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Abstract

This paper studies the impacts and incidence of subsidies for low-income housing development,
which are often portrayed as transfers to the developers of inframarginal projects. I estimate a
dynamicmodel of developer behavior using new data on competitions for Low-IncomeHousing
TaxCredits and three sources of policy variation: quasi-random assignment of subsidies, shocks
to subsidy generosity, and nonlinearities in scoring rules for subsidy applications. I find that
subsidies add few net units to the housing stock and instead pull investment forward in time.
Households benefit from modest rent discounts on subsidized units, but developers capture
around half of the subsidy in profits, and another quarter is dissipated in their fixed costs of
competing for subsidies. Due to lower developer incidence and entry costs, a voucher program
could likely generate similar household benefits at less fiscal cost.
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1 Introduction

Governments subsidize housing for lower-income people in three main ways: public housing,
“tenant-based” vouchers, and “project-based” assistance. Unlike vouchers, project-based subsidies
work through developers and the supply side of housing markets, supporting the construction,
renovation, and operation of income-restricted housing at regulated rents. In the United States,
project-based assistance is a major component of federal housing policy, despite longstanding and
unresolved questions about its impacts and incidence.

In 2022, around seven million U.S. households received some form of low-income housing
assistance, more than half of whom received it through project-based programs. The largest
project-based subsidy, the Low-Income Housing Tax Credit (LIHTC), has funded one in five of all
new U.S. multifamily units since 1987 through grants. About two percent of all U.S. households
lived in LIHTC units in 2022, more than received vouchers in the same year and more than lived
in public housing at its historical peak. Structured as a corporate income tax expenditure, the
LIHTC reduces annual federal receipts by about $15 billion. Its rise amounts to a momentous but
little-discussed reorientation of U.S. housing policy toward project-based assistance.

The key concern about project-based subsidies is that they may be transfers to the developers
of inframarginal projects, delivering neither net new units nor benefits to households. Glaeser
and Gyourko (2008), for instance, argue the LIHTC “essentially functions as a transfer program”
to developers, and Quigley (2011) writes project-based subsidies “must be justified on some
other basis” than as transfers to lower-income households. Advocates for the LIHTC dispute this
characterization, arguing it is effective in both expanding the housing stock and in redistributing to
lower-income households.1 Indeed, housing-policy experts currently hold views about the LIHTC
ranging from favoring its expansion to its abolition. Yet due to a host of empirical challenges,
debates over the fundamental design of housing assistance have remained almost frozen in time for
fifty years, when the U.S. turned away from public housing and toward vouchers.2

This paper revisits the impacts and incidence of project-based assistance using newly-collected
data on the applications of developers competing for the LIHTC. I estimate a dynamic model
of developer behavior using their responses to three sources of policy variation, each of which
is linked to a model primitive in the developer’s problem. These analyses show that developers
respond to subsidy awards mostly by retiming investment, rather than by producing net new units,
and that their applications for subsidies are highly responsive to changes in subsidy generosity

1Other arguments for project-based subsidies are that they may enable spatially-targeted investment, alleviate
housing discrimination, and be easily combined with supportive services for populations with complex housing needs.

2Kazis (2022) writes that “a rough equilibrium has held for years...it has been decades since Congress or HUD
has seriously reconsidered the basic forms of rental assistance.” The latest review of research on U.S. housing policy
(Olsen and Zabel, 2015) writes that there is “no [recent] high-quality evidence on cost-effectiveness” of project-based
assistance and describes this topic as the “highest priority for housing policy research.”
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and scoring rules. Using the estimated model, I find the LIHTC does little to expand the housing
stock on net. Households benefit from subsidies via modest rent discounts on subsidized units, but
economists’ concerns appear well-founded: Developers capture nearly half of the welfare gains.
Developers’ fixed costs to compete for subsidies are also high, further limiting the benefits to
households. In counterfactuals that compare the LIHTC to a stylized voucher program, I conclude
similar household benefits could likely be achieved at less fiscal cost through vouchers.

New data, introduced in Section 2, enable my analysis. Through public-information requests,
I collected administrative records on 453 rounds of LIHTC competitions from 40 states, covering
22,241 applications from 2005 through 2019 with requested subsidies of $200 billion in total. I
link these records to parcel-level tax assessments and neighborhood-level outcomes. Finally, I code
states’ grant rules from regulatory documents, which I use to compute ex-ante probabilities with
which developers could expect to win by simulating the mechanism. These rich data enable careful
study of developers, the key actors in project-based subsidies.

Section 3 presents the model of housing markets. In the model, each developer is associated
with a land parcel andmay enter it into a grant competition. The developer’s problem is intrinsically
dynamic. Instead of entering the competition, a developer can develop without a subsidy now or
wait, possibly to apply or to develop later—and they may also reapply in the future if they lose.
Developer behavior is shaped by three primitive objects: their value of winning the subsidy, their
outside option, and their cost of applying for the subsidy. Households rent the entire housing
stock, so they benefit from subsidies through rent savings in below-market units as well as general-
equilibrium effects on market-rent units. While reductions in market rents will occur only if
subsidies expand the housing stock, rent discounts allow subsidies to benefit households even
if subsidized units are purely inframarginal. Developers take win probabilities as given, and
equilibrium follows from profit maximization, market clearing, and rational expectations.

I start the empirical analysis by measuring the size of LIHTC rent discounts and to whom
they accrue. Average monthly LIHTC rents are about 12 percent below my estimates of potential
market rents for new units in the same neighborhoods, though the rent savings vary greatly across
neighborhoods. To my knowledge, these are the first national estimates of LIHTC rent discounts,
and they amount to less than a third of the LIHTC’s fiscal cost.3 At the same time, I also find
that LIHTC tenants are poorer than the likely tenants of counterfactual developments. I estimate,
for instance, that the LIHTC roughly triples the share of tenant households with incomes less than
$20,000 who ultimately live there. Taken together, these facts imply the LIHTC rent discount is a
progressive transfer, albeit modest in size. To understand how the LIHTC affects developers, I turn

3My estimates appear consistent with expert knowledge and two local estimates. Relying on their policy experience,
Khadduri and Wilkins (2008) write that LIHTC rents are “indistinguishable from market rents or only slightly below
market.” An analysis of LIHTC properties in Tallahassee, Florida finds modest rent savings (Burge, 2011). The larger
savings found by Cook et al. (2023) for the Chicago metropolitan area appear consistent with my national estimates.
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to the three quasi-experimental analyses.
The first empirical strategy (Section 4) uses quasi-random assignment of subsidies to estimate

the causal effects of winning on development activity. Developers apply under uncertainty about
their rivals, making subsidy assignment as good as random conditional on an estimable win
probability. I find small causal effects of winning on development: 75 percent of applicant parcels
would be developed within ten years if they were to lose. Instead, the LIHTC pulls development
forward in time, and it replaces some market-rate units with (slightly) subsidized ones. These
results are confirmed by neighborhood-level event studies that compare areas where winners and
losers applied with similar ex-ante win probabilities. From the model’s point of view, such behavior
suggests most applicants have profitable outside options.

The second empirical strategy (Section 5) estimates application supply responses to changes in
subsidy generosity. Through an event study and regression discontinuity design (RDD), I exploit
annual policy variation by Census tract in the LIHTC’s generosity. This variation is induced by a
cutoff-based rule whose inputs are measured with sampling error. Across both approaches, I find
that a ten-percent reduction in the net-of-tax cost of low-income housing development leads to an
increase in applications of at least three percent. The model-based implication is that entry costs
are high, as many developers apply only when the tax credits cover almost the entire construction
cost of low-income housing, even when these units command near-market rents.

The third empirical strategy (Section 6) infers the value to developers of winning the LIHTC
from their responses to application scoring rules. In applications, developers may “bid” lower rents
than the maximum allowed under federal regulations, so as to raise their win probabilities. I show
that scoring rules create strong and nonlinear incentives to reduce rents. Developers respond to
these incentives, bidding rents down and bunching at kink points. Such behavior implies winning
is profitable, as developers would otherwise not trade rental income for a higher win probability
on the margin. To quantify profit incidence, I simulate unilateral deviations to different rents and
obtain developer valuations through bid inversion. The average developer behaves as if they are
indifferent between a 0.9-percentage-point increase in win probability and a $1,000 increase in
present-value rental income per unit. These findings imply a developer incidence share of about 45
percent, matching the structural estimates that incorporate dynamic considerations.

I estimate the model in Section 7 to provide a unified explanation of developer behavior from
the three quasi-experimental analyses.4 Although the model is jointly estimated, I show how each
analysis is linked to a primitive: outside options for the causal effects of subsidy awards, entry
costs for responses to subsidy generosity, and win values for the trade-off between rental income

4Holmes and Sieg (2015) describe this approach as a way to unite the virtues of the quasi-experimental and structural
approaches: The former credibly estimates behavioral responses, while the latter maps this description of behavior into
the primitives of an equilibrium model.
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and win probability. I use the estimated model to evaluate the LIHTC’s impacts and incidence.
Both of these objects of interest are necessarily defined relative to a counterfactual world without
the LIHTC—one that is illuminated by, but is of course not implemented in, the quasi-experiments.
Estimation draws on methods from dynamic discrete choice (Rust, 2000; Sweeting, 2013) and
indirect inference (Gourieroux et al., 1993).

Section 8 reports the structural results. Estimates of model primitives reconcile the three
empirical analyses with a simple explanation: Developers self-select into application primarily
on the basis of their low entry costs, rather than their low outside options. That is, developers
apply because of cost advantages in pursuing the subsidy, not because their parcels lack alternative
profitable uses. Such results imply the LIHTC is ineffective in expanding the overall housing stock,
instead merely retiming investment. For every ten LIHTC units, I find about eight units displace
private housing that would have otherwise been built within ten years, and two units are net additions
to the housing stock. Applying these displacement estimates to the LIHTC in aggregate, I conclude
the LIHTC has expanded the U.S. housing stock by about 500,000 units, or by 0.4 percent.5 Due
to displacement, the fiscal cost of the LIHTC is about $1 million per net new unit on average.

Overall, themodel results show that project-based subsidies provide some benefit to households.
I calculate that households reap about 31 percent of the welfare gains, rejecting the hypothesis of
complete incidence on developers. These gains arise mostly because LIHTC units set rents below
market (23 percent of incidence) and in lesser part because the additional housing supply reduces
market rents (8 percent of incidence). Yet most of the subsidy eludes households for two reasons:
Developers capture a significant share (44 percent of incidence), and the remainder is competed
away in the fixed costs that developers pay to compete for subsidies (25 percent of incidence). In
driving profits to zero on the margin, marginal applicants pay heavy entry costs but do not eliminate
the profits of inframarginal developers with entry-cost advantages.

In counterfactuals, I compare the LIHTC’s incidence to that of a stylized voucher program.6
I find vouchers could provide the same welfare benefit to households as the LIHTC at a 25-
percent fiscal savings. Conversely, a balanced-budget reform that shifts from developer subsidies
to vouchers could raise household welfare. These findings reflect two considerations. First, these
subsidies have opposite-signed pecuniary externalities on the unsubsidized market. To offset effects
on unsubsidized households, vouchers requiremore spending to achieve the same household benefit,
all else equal. The second difference between the two policies is that vouchers reduce developer
incidence and eliminate entry costs. On net, the balance of these forces favors vouchers, but the
disadvantage of the LIHTC is relativelymodest. Considerations beyondmy analysis, many of which

5Impacts are larger as a share of the low-rent housing stock: 3 percent of units with monthly rents less than $1,000.
The benefits to lower-income households would be further amplified by reallocation effects.

6I model a general subsidy for market-rate housing. This might instead be seen as a change in property taxes,
depreciation schedules, or the tax treatment of rental income, and it abstracts away from voucher-specific frictions.
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are project-specific in nature, suggests economists’ predisposition against project-based assistance
appears sensible, although some LIHTC projects may well be better than vouchers.

This paper contributes to several literatures in public finance and urban economics. The
developer’s choice to build subsidized housing imposes a fundamental participation constraint on
the social problem of optimal housing policy (Soltas, forthcoming). Despite housing policy’s shift
from direct provision via public housing to market support via subsidies (Collinson et al., 2015),
little research has sought to understand the supply side facing the government in this domain. This
paper pursues this agenda for the largest U.S. project-based housing policy, bringing together a new
model, new data, and new sources of quasi-experimental variation.

The incidence and effectiveness of project-based assistance are classic issues in housing policy.
Early research on these topics was highly critical of public housing and project-based programs,
and its criticisms were influential in the rise of vouchers.7 Despite the LIHTC’s ascendance, these
issues have largely not been revisited. Recent research on the LIHTC has studied its displacement
or “crowding-out” effects on the neighborhood-level housing stock (Sinai and Waldfogel, 2005;
Baum-Snow andMarion, 2009; Eriksen and Rosenthal, 2010).8 Yet both the economic explanation
and incidence implications of such neighborhood-level displacement are fundamentally unclear.
If displacement occurs because, at the parcel level, development is inframarginal to subsidy, then
the subsidy’s incidence on developer profits is likely substantial—whereas it is likely small if
displacement reflects the spatial-equilibrium consequences of an elastic housing supply. This paper
shows that displacement arises because of parcel-level inframarginality, not spatial-equilibrium
effects, thus addressing both questions of impacts and incidence.9

Urban economists have recently adopted empirical techniques from industrial organization and
mechanism design (Murphy, 2018; Diamond et al., 2019; Waldinger, 2021; Calder-Wang, 2022;
Almagro and Domínguez-Iino, 2022; Hsiao, 2022; Cook et al., 2023). My approach to combining
a dynamic model and quasi-experimental evidence may be well-suited for other housing-supply
topics, as policy variation abounds but dynamic considerations loom large (Gyourko, 2009). Three
recent related papers, all of which take static empirical approaches, find significant developer re-
sponses to housing tax and regulatory policies (Anagol et al., 2021; Levy, 2021, 2023). The dynamic
framework allows me to capture key features of developer behavior in their pursuit of project-based
subsidies, such as reapplication and private development after unsuccessful applications.

7This research primarily estimates the extent of productive and allocative inefficiency from housing policies. See
Olsen (2003), Weicher (2012), and Olsen and Zabel (2015) for discussions. Economists have often argued for vouchers
over project-based subsidies (Aaron, 1972; Rosenthal, 2014), although views are diverse (Favilukis et al., 2023).

8Scholars have also studied effects on local amenities (Freedman and Owens, 2011; Davis et al., 2019; Diamond
and McQuade, 2019) and on resident outcomes (Ellen et al., 2016; Derby, 2021; Sportiche, 2022; Cook et al., 2023).

9It thus joins an empirical literature on the retiming responses to subsidies in markets for capital goods (House
and Shapiro, 2008; Mian and Sufi, 2012; Berger et al., 2020). In modeling the project pipeline from application to
completion, my framework could also be applied to study other competitive grants (e.g., Jacob and Lefgren, 2011).
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2 Setting and Data

2.1 The Low-Income Housing Tax Credit

Established in the Tax Reform Act of 1986 and defined in Section 42 of the Internal Revenue Code,
the LIHTC is an investment tax credit issued to developers against federal corporate income tax
liabilities.10 The credits reduce tax liabilities over ten years by a specified share of a project’s
“qualified basis.” The basis typically includes construction costs associated with low-income units,
as well as a developer fee, but it excludes land and predevelopment expenses.

Context. Figure 1 depicts the evolution of three leading housing programs as shares of the U.S.
housing stock: public housing, rent vouchers, and the LIHTC. The era of public housing prevailed
from the Great Depression until the 1970s, when it was ended by a construction moratorium and
a watershed report, the National Housing Policy Review (1973), which argued that public housing
was not cost-effective. A rapid transition to tenant-based subsidies followed, with sporadic use of
project-based assistance (Orlebeke, 2000). By the 1990s, debates over the proper form of housing
assistance were viewed as definitively resolved in favor of vouchers (Winnick, 1995). The rise of
the LIHTC has quietly overturned this consensus. Since 2000, the LIHTC’s growth has coincided
with the stagnation of vouchers, reorienting policy toward project-based subsidies.

Applications. Each year, state housing finance agencies may issue credits up to a per-capita
maximum. In 2022, the maximum is $2.60 in ten-year credits per state resident, with an additional
allowance for small states, amounting to a national annual tax expenditure of about $10 billion
(Joint Committee on Taxation, 2023). Agencies award credits through competitions in which they
receive proposals and select some for funding.

Each agency awards funding according to its Qualified Allocation Plan (QAP), a public docu-
ment of selection criteria. In 2019, all but two states used numerical rubrics that prevent discretion
at the level of individual applications. An application 8’s tax-credit assignment depends upon its
QAP score @8 and set-asides I8, along with those of other applications (W−8, `−8). The primary
purpose of set-asides is to balance the distribution of subsidies over geographies and demographic
constituencies (e.g., seniors). The assignment,8 ∈ {0, 1} is thus characterized by

,8 = , (@8, I8;W−8, `−8), (1)

where I refer to, (·) as the “grant rule.” I programmed the grant rules for each round in my data

10Throughout this paper, I focus on the “9%” (also known as “70%”) LIHTC, which is awarded competitively.
Another program, the “4%” (a.k.a. “30%”) LIHTC, funds developments at a lower credit rate. In general, this program
funds rehabilitation projects, rather than new construction, usually with tax-exempt bonds and without a competitive
process. Collinson et al. (2015) review the LIHTC alongside other low-income housing programs.
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Figure 1: U.S. Housing Policy in Historical Perspective
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Notes: This figure displays the assisted shares of households for three housing policies: public housing (built under
Section 9 of the U.S. Housing Act of 1937), tenant-based rental assistance (Section 8 vouchers and certificates), and
project-based developments financed by Low-Income Housing Tax Credits (9% and 4% LIHTC). Annual assisted unit
counts are drawn from Olsen (2003) and Vale and Freemark (2012). I extend the data to the present using the HUD
Picture of Subsidized Households and LIHTC Databases. I also adjust for incomplete reporting in the final three years
of the LIHTC time series. Household counts are from Census Table HH-1.

following my reading of the QAP. For instance, Georgia’s 2019 QAP reserved 10 percent of credits
for nonprofits, set aside another $15 million for rural projects that were already awarded another
project-based subsidy (HOME), and then split the remaining subsidy between rural and non-rural
regions, funding projects in score order within these regions.

Scoring rules @8 = @(G8) determine scores from application characteristics G8, which I take to
contain I8 and other variables. These rules are complex and differentiated across states (Shelburne,
2021), as federal regulations allow them to be “appropriate to local conditions.” Common criteria
include site selection, building amenities, and developer characteristics. Developers are thought to
“ ‘chase points’ when they make decisions” (Ellen and Horn, 2018). A key federal stipulation on
QAPs is that they must incorporate a preference for “projects serving the lowest income tenants.”
As U.S. housing policy links income and rent levels, states meet this requirement with rules favoring
applications that set rents below federally-determined levels.11 By observing official scores, I avoid

11The federal maximum onmonthly rent works out to 1.25 percent of the local AreaMedian Income (AMI), although
property-level “income averaging” introduced at the end of my sample allows some units to charge higher rents.
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score computations in most of the analysis. Typically, the scoring rules are additively separable in
characteristics G8. This feature makes it easy to compute a counterfactual score @′

8
= @(G′

8
) for a

deviation G′
8
− G8 from an actual application G8 and score @8.

Most states hold annual or semiannual application rounds. Rounds are open to a variety of
entrants: for-profit developers, non-profit developers, and public housing agencies. Application
appears costly, and developers must show their “readiness to proceed” if funded. Satisfying this
criterion usually entails “site control”—that is, ownership or a purchase option contract contingent
on winning. Applications also often include construction plans, zoning approvals, pro-forma
income statements, financing contracts, and letters of support from local politicians.12

Awards. Upon winning, developers transfer the credit to taxable equity limited-partner investors
who finance construction (Desai et al., 2010). Units are income- and rent-restricted for at least 30
years. If an applicant loses, they may reapply in subsequent cycles. There is also a landscape of
other subsidies they may pursue, including a less-generous credit that is not awarded competitively
in most states. Losing applicants are also free to not develop or to develop for alternative uses.

Winning applicants receive nonrefundable tax credits with a face value of 70 percent of their
project’s basis in present value, applied to tax liabilities over ten years. In some areas, winners
qualify for a 30-percent “boost” to their basis. Thus, when boosted, each basis dollar translates to
$0.91 in credits. Areas can qualify for the boost in two ways: as a Qualified Census Tract (QCT)
or as a Difficult Development Area (DDA). Federal regulations assign the boost based on Census
data, and the regulations are complicated. A tract can be designated a QCT according to its poverty
rate or its income distribution relative to the median income of the metropolitan area. Areas are
designated DDAs based on a ratio of rents to median incomes. Until 2016, this designation was set
by metropolitan area, after which it shifted to combinations of zipcodes and counties.13

2.2 Data

The next three subsections introduce the data. For further information, see Appendix B.

Applications. I built a new database of LIHTC applications covering 40 U.S. states from 2005
to 2019. The data are from the administrative records of state housing finance agencies, which I
compiled, digitized, and standardized.14 The database contains records of 22,241 LIHTC applica-
tions, both winning and losing, with a total funding request of approximately $200 billion in 2022

12The detail in applications fundamentally shapes this paper’s approach. On the one hand, enough is known about
losers to provide a counterfactual to winners. On the other hand, self-selection into application is a major concern.

13Since 2009, states are authorized to assign basis boosts discretionarily beyond federal requirements. However,
QAPs usually regulate the assignment of “discretionary” boosts. I intend to incorporate these rules in a future draft.

14To minimize the burden of my requests on agencies, I requested records produced in their review processes. Most
agencies were highly cooperative. I won or settled appeals against several agencies after they denied my initial requests.
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constant dollars, adjusted for inflation using the Consumer Price Index.
For each of the 453 application rounds in the data (see Appendix Figure A1), I have every

application considered. Due to agencies’ varying record-keeping practices, other rounds cannot be
fully reconstructed and are thus excluded from the data. For each application, I have the proposed
name and address of the development, the primary demographic group and income levels to be
served, the unit count (below-market andmarket-rate), the value of tax credits requested, the identity
of the applicant (their name, contact details, and nonprofit status), and whether the funds are for
new construction or rehabilitation. The data further include scores and all set-asides, enabling me
to simulate tax-credit assignments. I identify reapplications by linking across rounds.

Parcel Outcomes. By combining several data sources, I observe whether and what, if anything,
was developed at the level of the application parcel. The sources are CoreLogic and the National
Housing Preservation Database (NHPD). I manually link the applications to both datasets.

The CoreLogic data collate tax assessments from localities and therefore include variables that
are consistently available in such records. In particular, the data contain the assessed values of land
and improvements, year built (the end year of construction), land use (e.g., multifamily residential),
floor space (in square feet), and ownership information.

The NHPD is the most extensive database of U.S. subsidized housing, covering nearly all federal
programs. I use the NHPD to measure if a property is subsidized, and by which program if not the
LIHTC. If an application is never funded in my data (including reapplications), is not matched to
an NHPD record, but appears in CoreLogic, I assume it is not subsidized.

Neighborhood Data. I use data by Census tract and block group as outcomes and as covariates.
The outcome data come from the U.S. Postal Service (USPS) and amail-marketing firm (Data Axle,
formerly Infogroup). I align both to consistent Census 2000 geographies. I use covariates from the
2000 Census, not from later years, to avoid confounding from the developments themselves.

The USPS data are counts of residential addresses by tract and quarter since 2006. The Data
Axle files contain annual address-level microdata, also since 2006. I collapse the files to the block
group and tract, so as to complement the USPS counts with details on demography and land use.

2.3 Win Probabilities

A key input in my analysis is an application’s ex-ante win probability, taking rival applications as a
random variable whose distribution but not realization is known when a developer applies. These
win probabilities are used to balance winners and losers on unobservables in the quasi-experimental
analysis (Section 4) and as developers’ beliefs in the structural estimation (Section 8).

I estimate the win probabilities of applicants through a simulation procedure that I take from
research on auctions (Hortaçsu and McAdams, 2010) and market design (Abdulkadiroğlu et al.,
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2017). Following the auctions literature, I assume developers make application choices indepen-
dently within round, consistent with an informational assumption of independent private values.

The estimated win probability is a valid balancing score in the sense of Rosenbaum and Rubin
(1983) under two assumptions. First, the grant rule , (·) must be correctly specified. Second,
developers must know no more than their own application and the distribution of potential rivals.
The propensity-score theorem then gives that any residual variation in tax-credit assignment is
independent of potential outcomes.

Variation in assignment conditional on win probability, however, is not guaranteed in non-
stochastic mechanisms. A necessary condition for the existence of such variation is that the grant
or scoring rule is multidimensional, so that applicants with the same propensity score can differ in
their characteristics and thus assignments. Set-asides create such variation in my context.

To obtainwin probabilities, I first estimate the distribution Ψ̂8C = Ψ̂(W−8C , `−8C) of potential rivals
by resampling from applications within the same round. That is, for a bootstrap replication 1 =
1, . . . , �, I draw #−1 applications uniformly with replacement from each applicant’s distribution of
actual rivals. This yields simulated rivals (W1

−8C , `
1
−8C) for an application 8 in replication 1.15 Next,

I run the mechanism on the applicant and each simulated draw of rivals, which assumes developers
know their own score and set-asides.16 Running the mechanism, I obtain � simulated assignments
,̂1
8C
= ,

(
@8C , I8C ;W1

−8C , `
1
−8C

)
, and I calculate the estimated win probabilities by ?̂8C = 1

�

∑�
1=1 ,̂

1
8C
.

2.4 Summary Statistics

Application Characteristics. Table 1 summarizes the data. Columns 1 and 2 show means of
characteristics for winners and losers respectively. A typical application is for a development of
roughly 60 units, is entirely income-restricted, and charges a monthly rent of approximately $900
in 2019. About 45 percent of developments are intended for elderly or other non-family groups
(typically disabled, homeless, or supportive housing). The competitions are dominated by “repeat
players” (i.e., developers specialized in low-income housing), and 28 percent of applications involve
nonprofit organizations. Relative to the national average, neighborhoods with applications are poor
and densely-populated but do not have elevated rental vacancy rates.

Differences between winners and losers on observed characteristics are statistically significant
but of small magnitude. Without mechanism-based win probabilities, a researcher might rely on
simple comparisons of outcomes between winners and losers. However, Table 1 also suggests

15I implement this procedure in a way that is more computationally efficient, so as to avoid �# draws of the sample.
Before each bootstrap replication, I split realized applications into  “folds.” I retain the realized applications in one
fold and resample among the  − 1 others. In calculating ?̂8C , I only those replications in which application 8 is in the
retained fold. This procedure only requires � draws of the sample.

16Using the “self-scores” that developers submit in some states before their applications are reviewed, I find that
developers are highly informed about their own scores (see Appendix B).
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Table 1: Covariate Balance Between Winning and Losing Applications

Means Differences (SE)

Winners Losers Uncontrolled Controlled
(1) (2) (3) (4)

Panel A: Project Characteristics

Unit Count 61.62 64.94 -3.32*** (0.55) 0.20 (0.66)
% Low-Income Units 97.5 98.1 -0.6*** (0.1) -0.0 (0.1)
Monthly Rent $885.77 $894.37 -8.60** (4.16) 4.44 (5.40)
% New Construction 61.9 64.6 -2.8*** (0.8) -2.6*** (0.9)

Family 54.1 56.7 -2.6*** (0.9) 1.1 (1.0)
Elderly 31.4 33.5 -2.1*** (0.8) -1.3 (1.0)
Other 14.5 9.8 4.7*** (0.6) 0.2 (0.7)

Win Probability 69.9 23.6 46.3*** (0.5) ·
PDV Tax Credits Per Unit $144,900 $155,182 -10,282*** (1,056) -2,093 (1,314)

Panel B: Applicant Characteristics

Application Count in State 7.11 8.97 -1.87*** (0.21) -0.47* (0.24)
Win Rate in State 45.6 37.5 8.2*** (0.5) 2.3*** (0.6)
Nonprofit 28.0 28.1 -0.1 (0.7) -0.4 (0.8)

Panel C: Location Characteristics

Med. Income Per Capita $16,932 $16,826 106 (111) -101 (141)
% Poor 20.7 20.1 0.6** (0.2) 1.1*** (0.3)

% Less than HS 27.1 27.1 0.0 (0.2) 0.4 (0.3)
% HS Graduate 30.2 30.9 -0.6*** (0.1) -0.6*** (0.2)
% Some College 25.3 25.4 -0.1 (0.1) -0.1 (0.2)
% College Graduate 11.5 11.0 0.5*** (0.1) 0.2 (0.2)
% More than College 5.9 5.7 0.3*** (0.1) 0.1 (0.1)

% Non-Hispanic White 59.9 60.5 -0.6 (0.5) -1.0* (0.6)
% Non-Hispanic Black 19.9 21.5 -1.6*** (0.4) 0.5 (0.5)
% Hispanic 14.3 13.3 1.0*** (0.3) -0.5 (0.4)
% Asian 2.2 1.8 0.5*** (0.1) 0.4*** (0.1)

Pop. Density (per sq. mi.) 3,620 3,447 173** (82) 307*** (107)
% Rentals Vacant 8.0 8.3 -0.3*** (0.1) -0.1 (0.1)
% In QCT or DDA 42.2 44.2 -2.1*** (0.7) 1.0 (0.8)

Observations 9,022 11,968
%-val. of Balance Test 0.000 0.000

Notes: This table reports means and differences in means between winning and losing applications. Columns
1 and 2 respectively report means of characteristics for winning and losing applications. Column 3 reports the
unconditional win-minus-lose difference in means, and Column 4 reports the difference controlling nonparametrically
for the win propensity score. Standard errors are clustered by tract. Observations indicate counts of winning and losing
applications, but some covariates are unavailable for some applications. ∗ = ? < 0.10, ∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.
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Figure 2: Calibration and Distribution of Simulated Win Probabilities
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Notes: This figure plots, in the left panel, a binned scatterplot of empirical versus simulated probabilities of winning
a tax credit. In the right panel, the figure plots a histogram of the simulated win probabilities. The data is split into
twenty equal-interval bins in the left panel and fifty equal-interval bins in the right panel.

that such a design would be dangerous. Despite observable similarity, winners and losers differ
sharply in their ex-ante win probabilities: on average, by 46 percentage points. By contrast, if one
naively predicted win probabilities from a regression on all other application characteristics in this
table, the analogous difference would be 7 percentage points. The gap reflects that the information
contained in scores is not closely related to other observed characteristics.

Table 1 also shows that I can easily reject balance on observables between winners and losers,
even conditional on the win probabilities. This likely reflects mymisspecification of QAP rules, not
agencies’ secret discretion.17 I provide two checks regarding these imbalances, since I use winners-
versus-losers comparisons in Section 4. First, in the tract event study, I control for variables where
there is clear imbalance (Appendix Figure A2). This approach, however, does not address residual
imbalance on unobservables. I therefore also instrument for the actual assignment using my version
of the grant rule to simulate the assignment, while controlling for the win probability (Appendix
Figure A3). Both tests suggest the remaining imbalance is innocuous.

Figure 2 shows the calibration and distribution of the simulated win probabilities. In the left
panel, I present a binned scatterplot of the empirical win probabilities against the simulated values,
along with a 45-degree line for reference. The simulation would be perfectly calibrated if the
scatter points fell exactly along the reference line. The win probabilities are well calibrated but not

17QAPs occasionally provide opaque descriptions of aspects of their grant rules , (·), and I have simplified a few
very complex provisions.
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Figure 3: Rent Discounts in Tax Credit Units
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Notes: This figure compares rents in LIHTC units to the median rents of new units in the same Census block group.
See the text for explanations of the panels.

perfectly so. As above, the issue appears to be difficulties in coding the QAP rules.

Rent Discounts. Figure 3 describes the LIHTC in terms of the rent discounts it provides to tenants.
Panel A show that on average, the monthly rents of subsidized units are close to the rent that I
estimate could be charged by the median new unit in the same Census block group and with the
same number of bedrooms.18 All values are as of the year 2019.

Panel B shows a binned scatterplot of regulated LIHTC rents versus new-unit market rents.
Rent regulations bind strongly in high-rent neighborhoods, generating large discounts. However,
few LIHTC developments are built in such areas. I estimate that, on average, a new market-rate
unit in a neighborhood with a LIHTC application would rent for $990 per month, which is about
40 percent below the national-average rent for new units. Accounting for place—and, in particular,
that low-income housing is built mostly in places with low willingness to pay for new housing—
is crucial to estimate rent savings. Indeed, I find regulated rents do not bind for about half of
applications, so considerable subsidy goes to developments charging local market rents.

Assuming that LIHTC units charge the minimum of the market rent and their regulated rent,
the average monthly rent discount is 12 percent. In present-value terms, the LIHTC thus buys little
in rent savings. At a 5-percent annual discount rate, $1 in the present value of tax credits reduces

18“New” means built between 2010 and 2019. New-unit rents are observed in only 17 percent of Census tracts. I
therefore impute new-unit rents using a hedonic regression that incorporates local rents on older units and a sample-
selection correction that accounts for selective development with respect to potential rents. Other processing steps
project these rents to the block-group level and align regulated and market rents on bedrooms. See Appendix B.
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Figure 4: Tenant Incomes in LIHTC Units and Non-LIHTC Counterfactual Units
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Notes: This figure compares household incomes in LIHTC units with the predicted distribution in counterfactual
non-LIHTC units. The counterfactual assumes the building charges the estimated local market rent for new units.

the present value of rents by 27 cents.
Several caveats are relevant for these estimates. First, benchmarking LIHTC units to the median

new rental unit nearby assumes comparability on other dimensions, ignoring differences in quality as
well as any services provided by low-income units. Second, interpreting rent discounts as a measure
of tenant welfare assumes tenants treat the benefit as equivalent to cash. Third, my estimates are
for rent discounts when the building is new. As the building depreciates, its counterfactual market
rents fall, but regulated rents do not, reducing the rent savings. Finally, some LIHTC units surely
appear the new-unit comparison group, attenuating the estimated rent savings.

Tenant Composition. I also examine whether LIHTC tenants differ in income from the likely
tenants of counterfactual market-rate developments. This analysis uses property-level HUD data
on the household incomes of LIHTC tenants, along with ACS data on tract-level joint distributions
of rent and income to predict household income from a counterfactual rent (see Appendix B).

Figure 4 shows that LIHTC tenants have lower incomes than counterfactual non-LIHTC tenants.
The share of households earning less than $20,000 roughly triples, and few LIHTC households
earn more than $50,000, as compared to roughly a third of counterfactual residents.19

19The fact in the raw data that drives this result is that the median LIHTC household earns much less than the median
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These results raise the question of whether housing-cost effects reasonably summarize the
household welfare effects of the LIHTC. If housing markets facing low-income households are
competitive, this approach is sensible: Households then face no barriers other than price, so
the reallocation of new housing across households is not a source of welfare gains.20 However,
the assumptions underpinning this view are hardly beyond question. For instance, Bergman et
al. (forthcoming) and Christensen and Timmins (2023) find barriers for voucher recipients and
minorities in accessing high-quality neighborhoods.

3 A Dynamic Model of Housing Markets

This section introduces a dynamic equilibriummodel of themarkets for subsidized and unsubsidized
housing. Its primary aim is to jointly explain the application and building behavior of developers.
The model’s household side is kept simple, with the minimum needed for equilibrium effects of
subsidies in the unsubsidized market. I then provide welfare and incidence measures. Appendix C
discusses the model’s nonparametric identification.

3.1 Setup

Choices. A developer 8 ∈ � has the exclusive right to develop a land parcel. They make two
profit-maximizing choices in each time period C. The first, �8C ∈ {0, 1}, is whether to submit their
parcel to a grant competition. If they win, the developer must build low-income housing. If they
lose the competition, they may reapply in the future. The second choice, made subsequently, is
whether to build if they do not win or if they do not apply for the grant: �8C ∈ {0, 1}. Developers can
defer the building decision indefinitely. Whether subsidized or not, development is an absorbing
state. Figure 5 depicts the structure of choices in the model.

State Variables. The developer’s vector of state variables is denoted by s8C = {38C , ℎ8C , G8C , b8, A<C }.
The variable 38C indicates whether the parcel is developed by C. The “history” variable ℎ8C indicates
whether the developer has previously applied for the grant by C. The developer also has characteris-
tics G8C and scalar unobservable characteristic b8, which has a distribution �b and is fully persistent
through time. The market rent for housing is A<C .

Each period, the developer also draws temporary unobservable shocks 98C = (Y�8C , Y�8C ) from a
distribution �Y. The shocks are assumed to be independently and identically distributed (i.i.d.) and
additively separable from payoffs. Developers’ draws are private information, so that each faces

household in the same tract (see Appendix Figure A23). In Section 4, I present some direct evidence consistent with
reallocation of housing to voucher households.

20Indeed, the literature on household valuations of in-kind transfers usually interprets this distortion in housing
consumption as a source of welfare loss. Estimates reviewed in Olsen (2003), for instance, suggest tenants value
housing benefits at about 80 cents on the dollar.
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Figure 5: Decision Tree for the Developer
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uncertainty as to which rivals will apply. They therefore perceive a probability ?8C of winning the
grant if they apply. Developers are atomistic, taking their individual win probabilities and rents as
given but determining both collectively, following Hopenhayn (1992).

3.2 Application and Building Decisions

I express the developer’s problem through two Bellman equations. The first, which I call the
application value function, concerns the developer’s application choice. The second, which I call
the building value function, concerns the developer’s building choice. Developers move between
these value functions by deciding not to apply and by deciding not to build.

Application. The developer’s application value function in the state s8C is given by:

+ � (s8C , 98C) = max
0

{
Π� (0, s8C) + Y�8C (0)

}
, (2)

where their application choice is 0 andΠ� (0, s8C) denotes their flow payoff upon taking the action 0
from their state. Application choices are therefore �8C = �(s8C , 98C) = arg max0

{
Π� (0, s8C) + Y�8C (0)

}
.

The developer’s expected payoffs are

Π� (0, s8C) =

?8Cc1(s8C) + (1 − ?8C)VE[+ � (s8C+1, 98C+1) | s8C] − ^(s8C) if 0 = 1

E[+� (s8C , 98C) | s8C] if 0 = 0.
(3)

In choosing to apply, the developer compares the expected value of applying to a reservation
value, their building value function. If they apply, they receive an average of the win payoff c1(s8C)
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and the discounted continuation value VE[+ � (s8C+1, 98C+1) | s8C], weighted by the win probability,
less their entry cost ^(s8C). They pay entry costs whether they win or lose. Upon winning, the
developer receives no further payoffs. If they apply, the state is updated such that ℎ8C = 1; the update
is to ℎ8C+1 = 38C+1 = 1 if they win.

If the developer does not apply, their payoff is the building value functionE[+� (s8C , 98C) | s8C], tak-
ing the ex-ante expectation over Y�

8C
. By not applying, the continuation value E[+ � (s8C+1, 98C+1) | 0 =

0, s8C] is also set to zero for all states s8C . A decision not to apply thus moves the developer over to
the building value function, but it does not rule out applications in future periods. Not applying
preserves the developer’s history and development state variables: ℎ8C+1 = ℎ8C and 38C+1 = 38C .

Building. The building value function is

+� (s8C , 98C) = max
1

{
Π� (1, s8C) + Y�8C (1)

}
, (4)

where 1 is the building choice. These are given by �8C = �(s8C , 98C) = arg max1
{
Π� (1, s8C) + Y�8C (1)

}
.

The expected payoffs are

Π� (1, s8C) =

c0(s8C) if 1 = 1

VE[+ � (s8C+1, 98C+1) | s8C] if 1 = 0.
(5)

The developer’s building choice thus involves a comparison of their outside option and their
application value function. In particular, if the developer chooses to build, their payoff is c0(s8C).
They receive no further payoffs, and their development state variable is updated to 38C+1 = 1. If they
do not build, their payoff is the (ex-ante) application value function VE[+ � (s8C+1, 98C+1) | s8C]. They
also move back to the application value function and preserve history and development states.

3.3 Grant Mechanism

Applications are scored according to @8C = @(G8C , b8, Y8C). The dependence on the unobservables
induces both selection in awards and self-selection at application, as potential applicants anticipate
their win probabilities. If a developer applies, their grant assignment is given by Equation 1.

To compute their win probability, a developer evaluates the conditional expectation of their
assignment over the distribution of potential rival applicants Ψ8C :

?8C =

∫
, (@8C , G8C ;W−8C , ^−8C) 3Ψ8C (W−8C , ^−8C). (6)

The dependence on both the score @8C and characteristics G8C means the mechanism need not
have a single-index representation in which the score fully determines winners and losers. The
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potential-rival distribution is given by the product of the distribution i of potential-applicant
characteristics and the conditional probability of application for such a potential applicant: Ψ8C =∏

9∈�\8 Pr(� 9 C | s 9 C)i(s 9 C), where 9 indexes potential applicants. As the shocks 98C are private
information, developers cannot determine their rivals’ application decisions before making their
own, and so Pr(� 9 C | s 9 C) takes values betwen zero and one.

3.4 Housing Demand

A representative household rents the entire housing stock each period. They view subsidized and
unsubsidized housing as perfect substitutes, and they have constant elasticity of substitution (CES)
preferences over housing �C and a non-housing numeraire good �C :

max
�C

D(�C , �C) = [�
d−1
d

C + (q�C)
d−1
d ]

d

d−1 s.t. AC�C + �C = .C , (7)

where d is the elasticity of substitution and q is a preference weight on the numeraire. The
household has an exogenous nominal income of .C . These preferences give rise to a price index

%(AC) = [A1−d
C + qd−1]1/(1−d) ,

where AC = [_C (1−X) + (1−_)]A<C is the average rent. There is an equilibrium share _C of subsidized
units, renting at a discount of X, set by the government, relative to the market rent.

I measure household welfare by the present value of its indirect utility, +� =
∑
C V

C (.C/%(AC)).
For the counterfactuals, I assume that changes in rents enter developer primitives as present values:
Δc0(s8C) =

∑
C V

CΔA<C � (s8C) andΔc1(s8C) = (1−X)
∑
C V

CΔA<C � (s8C), where � (s8C) is the developer’s
potential number of units. This adjustment would result from treating the outside option as a
difference of construction cost and the present value of rent: c0(s8C) = −� (s8C) +

∑
C V

CA<C � (s8C).

3.5 Equilibrium and Welfare

Equilibrium. Given primitives {c0, c1, ^, �Y, �b , i}, parameters {V, q, d,.C}, and an initial state,
an equilibrium is defined by a sequence of endogenous developer quantities {�8C , �8C}, household
quantities {�C , �C}, and probabilities and prices {?8C , A<C } such that

1. Developers and households optimize: Application and development choices �8C and �8C
maximize Equations 2 and 4, and housing consumption �C maximizes Equation 7.

2. Housing market clears: Market rents A<C = A< balance supply and demand in expectation.

3. Rational expectations: Win probabilities ?8C satisfy Equation 6.
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Welfare. Social welfare is the sum of developer and household welfare:

W = E[+ � (s8C , 98C)] ++� .

Let Δ’s indicate differences with respect to some policy change, and let the present value of entry
costs be  = E[∑C V

C�8C^(s8C)]. In the incidence analysis, I refer to developer and household shares,
defined respectively as ΔE[+ � (s8C , 98C)]/(ΔW + Δ ) and Δ+�/(ΔW + Δ ). I also refer to the
share lost to entry costs, Δ /(ΔW + Δ ). The denominator of the incidence shares is the sum of
these money-metric changes in welfare and application costs, ΔW + Δ .21

4 Causal Effects of Tax Credit Awards

This section estimates the causal effects of winning the LIHTC on development outcomes. It
is the first of three empirical analyses that I aim to match in estimating the model in Section 3.
By estimating what winning developers would have done had they counterfactually lost, such an
analysis is informative about their outside options to the subsidy.

4.1 Setup

The probability that, from a state s8C , a developer builds without the LIHTC is

log
Pr(�8C = 1 | s8C)

1 − Pr(�8C = 1 | s8C)
=

1
f1

[
c0(s8C) − VE[+ � (s8C+1, 98C+1) | s8C]

]
, (8)

where I suppress the probability’s condition of having applied and lost, �8C = 1 and,8C = 0.22 All
else equal, a developer with a strong outside option (large c0(s8C)) is likelier to develop if they lose.
However, the build probability does not directly reveal outside options, in that it also depends on
the value of waiting to apply or build later (VE[+ � (s8C+1, 98C+1) | s8C]). The identification would be
one-to-one in a static model, where there is no value of waiting.

By conditioning on the unobservable part (b8) of the state s8C , Equation 8 also warns about
naive “winners-versus-losers” estimators of grant impacts that omit a win-probability control. For
instance, if applications viewed by the government as strong also tend to have strong outside options,
then naive estimates will overstate true causal effects and understate winners’ outside options.

I therefore estimate winners-versus-losers comparisons that compare applications with similar
win probabilities. Depending on context explained below, I estimate various event-study specifica-

21This sum differs from the fiscal cost. In the model, developers may value a subsidy dollar at something other than
a dollar, due to the additional costs (e.g., construction) and benefits (e.g., other subsidies) that come with the LIHTC.

22This equation also assumes that Y�
8C
is distributed Type I extreme value with dispersion f1 , as in Section 8.
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tions, but all comparisons fundamentally take form

.8 = V( ?̂8),8 + 5 ( ?̂8) + D8, (9)

where .8 is a development outcome for application 8,,8 is an indicator for 8’s tax-credit assignment
and ?̂8 is its win probability. To keep 5 (·) flexible, I use a cubic basis spline with four knots spaced
evenly through the distribution of win probabilities. The V( ?̂8) notation allows for heterogeneous
effects by win probability.

Let V̂ denote the estimator in Equation 9 imposing constant win effects. Under conditions
discussed in Section 2.3, the win probability fully controls for the government’s information set
with respect to application 8. It thus balances winners and losers on b8, with � [D8,8] = 0. By
consequence, V̂ is a valid estimator of a weighted-average causal effect of awards on winners.

4.2 Parcel Effects

Figure 6 shows the results of a parcel-level event study of development outcomes.23 The left half
of Panel A shows effects of winning and losing on the annual probability of development, relative
to earlier and later applicants. The right half of Panel A shows win-versus-lose estimates consistent
with Equation 9. In both, the outcome is an indicator for whether the parcel is recorded as having
construction or rehabilitation in that year.

Taken together, the two halves of Panel A tell a clear story. When developers win, construction
follows almost immediately. When developers lose, construction typically still happens, albeit
at a lag of several years and not substituting one-for-one with the LIHTC. I estimate that, at a
horizon of ten years after the LIHTC round, about 75 percent of winning parcels would have been
counterfactually developed had they lost. I compute this “displacement rate” by summing the lose
and win coefficients from Panel A and dividing the former by the latter.24

What gets built? I answer this in Panel B. Not surprisingly, winners build LIHTC units. There
is also a small effect on unsubsidized development on parcels I associate with winning applications.
When developers lose, some reapply, succeed in their reapplication, and therefore end up with
LIHTC developments. Around half of development among losers is due to reapplication. However,

23Some applications concern multiple parcels. When construction years differ across parcels, I code the outcome
for the largest parcel by floor space. Weighting results by floor space yields essentially identical results (see Appendix
Figure A4). There is some limited evidence for heterogeneous effects by win probability, with greater displacement
among applications that are likelier to win (see Appendix Figure A5).

24To consider the importance of pulling development forward in time, I first adjust the displacement rate for
discounting at five percent per year. I obtain a rate of 71 percent, as compared to 75 percent without discounting. I
also calculate the number of additional “building–years” within the 10-year horizon (linear discounting). The result
is 2.1 building–years, implying a displacement rate in these terms of 67 percent. Incorporating time preference thus
modestly reduces estimates of displacement.



Figure 6: Parcel Effects of Tax Credit Awards
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Notes: Panel A plots win and lose effects (on left) and the win–lose difference (on right), of tax credit awards on the
property construction is recorded as completed in a given year. Panel B decomposes these development impacts into
developments funded by theLIHTC, those funded by another subsidy, and those not subsidized. In both, the specification
is an event-study analog of Equation 9 on applicant parcels: �8C = U8 + UC +

∑
: [V:Win8C + W:Lose8C + 5: ( ?̂8C )] + 48C ,

for : years from the competition. Standard errors in Panel A are clustered by the consolidated parcel.
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many losers also find other ways to develop the property. About 21 percent of developments
among losers secure a project-based subsidy other than the LIHTC, while the remaining 29 percent
appears not to be subsidized. Overall, reapplication, substitution across subsidies, and substitution
to unsubsidized development are all relevant contributors to the high displacement rate.

The rightmost figure of Panel B provides the win–lose difference by type of development.
Winning the LIHTC pulls forward development in time and changes its nature from one subsidy
to another or from unsubsidized to subsidized. It largely does not induce development where it
otherwise would not happen within a few years. These results generally suggest applicants have
strong outside options to the subsidy. On the other hand, the key role of reapplication makes a clear
case for the model, as such behavior otherwise would confound attempts to estimate the value of
the non-LIHTC outside option.

4.3 Neighborhood Effects

Figure 7 shows the results of event-study comparisons of neighborhoods with winning and losing
applications to similar non-applicant tracts. All specifications control for win probabilities in
applicant tracts and for pre-award neighborhood observables.25

Panel A estimates quarterly impacts on a tract’s total occupied housing stock. It confirms the
parcel-level findings. Following a LIHTC win, there is a tract-level development “boom,” relative
to ex-ante similar non-applicant tracts, which occurs sharply with the timing of the LIHTC round.
The increase in its occupied housing stock corresponds to 150 additional households, which is
about three times the average number of proposed units.26

On its own, the comparison of winners to ex-ante similar non-applicants would suggest that
awards have large causal effects on development. Yet the comparison group of tracts with losing
applications suggests it is not so: The losers also “boom.” Indeed, at standard levels of statistical
significance, I cannot reject zero net impact of winning the LIHTC on a tract’s occupied housing
stock (see Appendix Figure A6). The null is sufficiently precise as to rule out effects larger than 30
households, or half of the average size of a single application.

Panel B estimates annual impacts on block groups’ household counts, splitting up each tract’s
block groups into those with LIHTC applications and those without. Nearly all of the tract-level
development “boom” occurs within the block group of the application, whereas little occurs in
adjacent block groups.27 These findings help to establish that we are observing the same economic

25The neighborhood controls are those listed in Panel C of Table 1. I take the logs of population density and
household income, and I also include the tract’s cumulative population growth rate from 1990 through 2000. In a few
tracts with multiple applications in the same year, I compute the probability any application wins in the tract, assuming
independence across applications.

26Some of the excess increase in the housing stock appears to reflect follow-on applications. It may also be
attributable in part to “crowded-in” developments that are unaffiliated with the applicant.

27Block groups are small geographic units. In the 2000 U.S. Census, there were 211,267 block groups, or 3.2 block
groups per tract, each containing about 500 households on average.
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Figure 7: Neighborhood Effects of Tax Credit Awards
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Notes: Panel A plots win and lose effects on the occupied housing stock (change in percentage points). Panel B plots
win and lose effects effects on the change (in percentage points) in the household count in the same Census block
group as the LIHTC application, or in the same tract but other block groups. In both, the specification is an event-study
analog of Equation 9 that includes non-applicant tracts: Δ log E[.8,C+: ] = U:Win8C + V:Lose8C + ^8C$: , for : quarters
or years from the award. The specification is estimated via Poisson regression, and it includes controls -8C for the win
probability, pre-award tract characteristics, and the baseline level of the outcome. Winning and losing are both defined
as a neighborhood’s first event in sample. In both panels, the color bands depict pointwise 95-percent confidence
intervals, and standard errors are clustered at the tract level.

23



phenomenon, of parcel-level displacement, in the parcel- and tract-level results.
Additional impacts on local demographics and land use suggest that LIHTC tenants are poorer

than the likely residents of counterfactual non-LIHTC developments, though the buildings them-
selves are observably similar, as Section 2 anticipates. In HUD administrative data, I find the share
of voucher-recipient households rises more in winning tracts than in losing tracts (see Appendix
Figure A8). Around one in four tenants in LIHTC developments also receives vouchers, and so
these results suggest the LIHTC can expand access to neighborhoods beyond those the voucher
holders could otherwise reach.28 The changes in local income distributions in winning and losing
tracts are more suggestive, perhaps because the income data are noisy (see Appendix Figure A9).
On land use, I find both winning and losing tracts see strong growth in the stocks of multi-family
housing and rental housing (Appendix Figure A7). Appendix B contains robustness checks.

5 Application Responses to Subsidy Generosity

This section estimates application responses to variation in the LIHTC’s value. From the perspective
of the model, developer responses to subsidy generosity are informative about the entry cost ^(s8C).
Holding fixed outside options and win values, developers are likelier to apply when entry costs are
lower, and they are more responsive to changes in win values when entry costs are less dispersed.
To see this, consider the developer’s application probability:

log
Pr(�8C | s8C)

1 − Pr(�8C | s8C)
=

1
f0

[
?8Cc1(s8C) + (1 − ?8C)VE[+ � (s8C+1, 98C+1) | s8C] − ^(s8C) − E[+� (s8C , 98C) | s8C]

]
,

where I impose the assumption (as I will in Section 7) that Y�
8C
is distributed Type I extreme value

with dispersion f0. This equation implies that, when the value of winning c1 rises, developers
become more likely to apply. As before, however, one cannot directly “read off” ^(s8C) from these
behavioral responses. In the dynamic setting, this policy variation also affects the value functions
+ � and +�, whereas in a static setting, it would directly identify ^(s8C).

To estimate application supply responses, I use the “basis boost” introduced in Section 2, which
raises the rate at which construction expenses reduce tax liabilities. I take two empirical approaches
to this variation: an event study around entry and exit from the boost, and an RDD at the boost
threshold. In structural estimation (Section 8), I draw on both approaches for targeted moments.

28This analysis weighs against one critique of Figure 4, which is that LIHTC units could create building-level
sorting without neighborhood-level changes. LIHTC advocates have previously argued for its complementarity with
vouchers. For example, one writes “it’s crucial that the LIHTC property exists to enable those lucky enough to
have a voucher find somewhere to use it” (https://www.novoco.com/notes-from-novogradac/hud-lihtc-tenant-report-
highlights-47-lihtc-residents-earn-or-below-30-ami).
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5.1 Event Study

Approach. Areas are assigned to the boost according to the tract-level poverty rate and median
income (see Section 2). Changes in boost thus reflect, in principle, a combination of sampling
variation and genuine changes in local economic conditions. As changes in conditions may
independently affect the desirability of local LIHTC investment, the credibility of the event-study
approach depends upon whether sampling variation or true economic variation predominates.

Simulations suggest the identifying variation in the boost is, fortunately, almost entirely due
to sampling. To arrive at this conclusion, I reassign the boost using the actual assignment rule
but drawing two sets of new values for its assignment variables. I draw the values using Census
estimates of tract-level standard errors (see Appendix B for details). In 2019 data, for instance,
around 3.9 percent of tracts are differently assigned between two simulation runs. By comparison,
8.0 percent of tracts changed their actual designation from 2018 to 2019, as I show in the left panel
of Figure 8. Sampling variation is so large because tract-level estimates from national surveys
are noisy. Furthermore, my event-study approach exploits variation in the timing of switches,
compounding the importance of sampling variation.29

I estimate impacts of the boost by the following generalized event-study specification:

H8C = U8 + UC +
∑
B

VBΔBoost8,C+B + ^8C$C + Y8C , (10)

where tracts are indexed by 8 and time C is in years. The terms U8 and UC are thus tract and year
fixed effects, and ^8C is a vector of controls with potentially time-varying coefficients $C . Standard
errors are clustered by tract. The specification is estimated via a Poisson regression.

I note several implementation details. The event variable, ΔBoost, can take three values: 0 (no
year-to-year change in boost), 1 (gains boost), or −1 (loses boost). This specification thus assumes
symmetric effects of entry and exit from boost, although I relax this assumption by allowing for
differential effects. I include leads of the event of up to eight years ahead and for lags up to six years
after. I bin any events occurring beyond these endpoints and thereby impose constant effects in
these ranges. I exclude always-boosted tracts from the sample, so that never-treated tracts form the
only pure control group in Equation 10. Due to a timing convention that LIHTC funds notionally
for year C are sometimes committed in the fourth quarter of C − 1 (and are therefore recorded in my
data as applications in C − 1), the base event-time period in this event study is two years prior to the
year a tract gains or loses its boost.

29In related work, Freedman and Owens (2011) use panel variation in the boosted share of a county’s Census tracts
as an instrument in a two-way fixed-effects model to study the effects of LIHTC on crime. In other policy contexts,
Feiveson (2015), Suárez-Serrato and Wingender (2016), and Chodorow-Reich et al. (2019) all exploit measurement
error and nonlinear transformations of data embedded in policy rules as sources of variation.
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Figure 8: Application Supply Responses to Changes in Eligibility for Basis Boost
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Notes: This figure plots, in the left panel, the share of Census tracts which enter or exit boost in years from 2001 to
2022. The right panel plots event-study coefficients from Equation 10 which allow for heterogeneous effects of entry
and exit from boost. I include state–year fixed effects as the controls. The bands show pointwise 95-percent confidence
intervals, with standard errors clustered by tract.

Results. The right panel of Figure 8 shows estimates of Equation 10, splitting effects into entry-
and exit-specific estimates. The count of applications from a tract changes by approximately 30
percent in the years immediately after a change in boost designation, with symmetric effects of
entry and exit. Pre-period coefficients appear steady before the change in boost. These results
imply the application elasticity with respect to the net-of-tax price is roughly 0.25.

I have also examined whether contemporaneous local shocks confound the event study (see
Appendix Figure A13). As a test, I predict application volume from the running variables among
the non-boosted tracts and then use these predicted volumes as the event-study outcome. I find
that year-to-year variation in the running variables is essentially unrelated to application volumes
in this sub-sample, consistent with noise. The expected change in applications around boost entry
and exit is thus essentially zero. Appendix B presents additional robustness checks.

5.2 Fuzzy Regression Discontinuity Design

Approach. The RDD directly exploits the cutoff rules in the boost designation. Some tracts are
boosted despite being on the “unboosted” side of the cutoff and vice versa, due to other rules,
making the discontinuity slightly fuzzy (see Appendix B). Relative to the event study, the main
strengths of this strategy is that I can investigate changes in application characteristics, as well as
its perhaps-finer control for local economic conditions.
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I define the running variable as a tract’s distance from the cutoff with respect to its rank in
the running-variable distribution for its metropolitan area. Thus, a running variable value of −0.1
implies a tract is 10 percentiles away in its metro-specific distribution from being designed for the
boost. This approach consolidates cutoffs in the assignment rule. The median metro area contains
64 tracts, so comparisons within a bandwidth of 0.1 of the running variable represent comparisons
of roughly the six tracts nearest to either side of the cutoff in a typical metro area.

Both Baum-Snow and Marion (2009) and Davis et al. (2019) use the same discontinuity to
identify effects of LIHTC projects on local areas. I make several adjustments to the definition
of the running variable that strengthen the sharpness of the first stage (see Appendix B). These
adjustments incorporate steps in the boost assignment rule omitted in prior work.

I model the effect of being boosted as

.8C = VBoost8C + 52(28C , X) + D8C ,

where 52(28C , X) is a locally-linear specification in the running variable 28C estimated with a band-
width X. The coefficient V captures the effect on LIHTC outcomes of a tract just barely qualifying
for the boost as a Qualified Census Tract (QCT). The “first stage” in the fuzzy RD is

Boost8C = WQCT8C + 51(28C , X) + a8C ,

where 51(28C , X) is also locally linear in the running variable and QCT8C indicates QCT status.

Results. Figure 9 presents plots of the treatment and main outcome variable, the annual count of
applications per 100,000 households in the tract, around the cutoff. Table 2 reports accompanying
estimates for a broader array of application-supply outcomes. Overall, I find an increase in
application volumes of 90 percent at the threshold, exceeding the event-study impacts.

The left panel of Figure 9 shows treatment assignment around the threshold. The probability a
tract is a QCT jumps from approximately 20 percent to 80 percent at the threshold, as shown by the
hollow blue dots. Some tracts are boosted for other reasons, and so the solid blue dots show that
approximately 30 percent of tracts are boosted just below the QCT threshold. About 80 percent of
tracts are boosted just above the QCT threshold.

The right panel of Figure 9 visualizes the application response to the boost. There are an
additional 1.6 applications per 100,000 households in barely-boosted tracts, relative to a base level
of 3.4 applications in barely-unboosted tracts, yielding an IV-estimated increase of 90 percent.
The general upward slope in the outcome variable in Figure 9 reflects that tracts are poorer as the
running variable rises. Table 2 shows similar increases in other measures of application supply.

Appendix A includes supporting analyses. Appendix Figure A18 plots the discontinuity for all
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Figure 9: Application Volume Around the Qualified Census Tract Threshold
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Notes: In the left panel, this figure shows that the probabilities that a tract is designated a Qualified Census Tract (QCT)
and is boosted both rise discontinuously in its distance to the QCT threshold. In the right panel, this figure shows that
the count of LIHTC applications per 100,000 households living in the Census tract (in the year of application) also
jumps at the QCT threshold. In both panels, the running variable is a distance defined with respect to tract rank within
its metropolitan area. Both panels split the data into 15 equal-interval bins on either side of the QCT threshold.

outcomes in Table 2. The running variables in the assignment rule evolve smoothly through the
cutoff, along with four other tract characteristics (see Appendix Figure A19). Tracts just above
and below the cutoff appear similar on observable characteristics.30 I also find no evidence of
heterogeneity by six application characteristics (Appendix Figure A20) and modest, if imprecise,
evidence of heterogeneity across tracts (Appendix TableA1). Taken together, these analyses suggest
increases in the subsidy rate would not attract more, but not “better,” applications.

Implications. Both sets of results in this section suggest entry costs are high on average. Many
applicants apply only when the net-of-tax price of low-income housing is almost zero, as it is in
boosted tracts. There are two possible explanations for that result. One is that low-income housing
is not valuable to developers, but this is belied by the “bidding” analysis in Section 6. The remaining
possibility is that, although winning is valuable, entry costs negate most of the win value.

30Due to transformations involved in the running variable, there is a discrete change in the mass of tracts at the
cutoff, but institutional considerations rule out potential concerns of precise control.
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Table 2: Application Responses to Subsidy Generosity: QCT Threshold Estimates

Is Boosted Applications Wins Proposed Units Funded Units
(1) (2) (3) (4) (5)

Panel A: RD Estimates

QCT Threshold 0.541*** 0.155*** 0.069** 8.37** 3.46**
(0.014) (0.052) (0.027) (3.26) (1.68)

Panel B: Fuzzy RD Estimates

Is Boosted 0.308*** 0.123*** 16.34*** 5.50*
(0.104) (0.046) (6.06) (2.82)

Bandwidth 0.030 0.044 0.056 0.044 0.054
Tracts in Bandwidth 7,619 9,392 10,633 9,392 10,442
Untreated Mean at Threshold 0.340 0.341 0.134 17.47 6.72
Estimate / Mean 0.904 0.914 0.935 0.819

Notes: This table reports estimates of LIHTC application responses to the Qualified Census Tract (QCT) designation,
which raises subsidy generosity discontinuously at the QCT threshold. Outcomes in Columns 2–4 are in terms of
levels per 10,000 Census tract households per year. I define the running variable as a tract’s distance in ranks from the
QCT designation within the distribution of Census tracts in its metropolitan area. The untreated mean at the threshold
is estimated by local linear regression to the left of the QCT threshold using the corresponding bandwidth in Panel B.
The bottom row divides the fuzzy-RD estimate by the untreated mean at the threshold. ∗ = ? < 0.10, ∗∗ = ? < 0.05,
∗∗∗ = ? < 0.01.

6 Bidding for Subsidies

Developers face a trade-off between their win probability and the rent they may charge if they win.
This section characterizes their behavior in the face of this trade-off and estimates preferences over
these objects. Using the preferences, I obtain a semi-structural estimate of the LIHTC’s incidence
on developers. This provides a useful check on the structural estimation in Section 8, where I will
target this section’s reduced-form results directly, rather than its incidence estimate.

6.1 Trade-Off Between Win Probability and Rental Income

Incentives in QAPs for lower rents, as noted in Section 2, allow developers to adjust their win
probability by setting rents higher or lower. Three considerations make rent a useful dimension of
applications to study. First, rent is particularly flexible as a choice variable, while other dimensions
may be inflexible or require adjustments on other dimensions. Second, rent is a key component of
application scores. In the median state in 2019, I calculate that rent preferences amounted to one
quarter of the maximum point score. Third, the cost to developers of rent restrictions is measured
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Figure 10: Trade-Off Between Win Probability and Rental Income
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Notes: The left panel is a binned scatterplot of two dimensions of deviations from the applications that developers
actually submitted. The horizontal axis is the present-value rent difference in thousands of dollars per unit. The vertical
axis is the change in win probability in percentage points. The right panel is a histogram of the difference between
developers’ proposed average unit rent and the score-maximizing rent level.

in dollars, facilitating conclusions about their valuations of winning the LIHTC.31
To analyze bidding decisions, I compute win probabilities if developers were to deviate unilat-

erally by setting rents modestly higher or lower than those they actually propose. I implement this
approach by re-scoring 6,793 applications from 13 states (30 percent of my sample). For each, I
searched for “up” and “down” deviations that were compliant with the QAP, not strictly dominated
by another choice, and which solely involved a change in rents. I also determined the highest rent
that would still receive full points in the rent category. With the new scores in hand, I simulate new
win probabilities for applications as in Section 2. For additional details, see Appendix B.

The left panel of Figure 10 shows the rent-versus-win-probability frontier facing developers,
visualized as a binned scatterplot of both up and down deviations from actual applications. On
the horizontal axis, I plot the change in applications’ present values of rental income per unit. On
the vertical axis, I plot the change in applications’ win probabilities. The (negative of the) slope
of the line through these points can be interpreted as an average marginal rate of transformation
(MRT) between rents and probabilities. For a $1,000 reduction in the present value of rent per unit
over a project’s first thirty years of occupancy, developers can raise their probability of winning the

31An objection to rent as a trade-off variable is that, when rent regulations do not bind, rent concessions are free to
developers on the margin. Using the market rents estimated in Section 2 to adjust for bindingness, I estimate higher
marginal rates of substitution and lower developer incidence (see Appendix Table A2).
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LIHTC by about 0.9 percentage points on average.32
The right panel of Figure 10 shows developers respond to rent incentives. It presents a histogram

of applications’ proposed rents, computed as an application-level average, relative to the highest
rent level that would qualify for full points. Providing rent reductions beyond this level has no
direct QAP-score benefit, and thus QAPs generate strongly “kinked” incentives with respect to
rent around this level. About 30 percent of applications bunch precisely at the score-maximizing
kink point.33 Using variation in the location of the kink across states and over time also uncovers
substantial bunching under weaker parametric assumptions (Appendix Figure A21). Finally, using
application-level variation in local marginal rates of transformation, I show that developers with
stronger local incentives are more likely to set lower rents (Appendix Figure A22).

These results immediately suggest developer incidence of the LIHTC. Developers routinely
bid rents down to the minimum so as to maximize their win probabilities. If equilibrium profits
from the LIHTC were minimal, developers would be unwilling to trade lower rents for higher win
probabilities at the margin. Intuitively, if the benefit of a higher win probability exceeds the cost of
less rent if won, the prize must be worth winning.

6.2 Estimating Developer Preferences and Incidence

Approach. Consider a developer facing a menu of possible rents and win probabilities for their
application {A 9

8C
, ?8C (A 98C)}, holding fixed all other dimensions. Denote the rent difference between

two alternatives by ΔA8C and the win-probability difference by Δ?8C . In general, rent levels could be
related to other developer costs, which I represent as Δ48C = Δc1(s8C) − ΔA8C .

From Equation 2, the difference between these alternatives in the application value function is

Δ+ � (s8C) ≈ Δ?8C
[
c1(s8C) − (1 − ?8C)VE[+ � (s8C+1, 98C+1) | s8C]

]
+ ?8C [ΔA8C + Δ48C] , (11)

where c1(s8C) and ?8C are respectively the win value and the win probability associated with an
arbitrary base level for the rent.

This equation formalizes the developer’s trade-off between win probability and rental income.
In particular, indifference between two alternatives such that Δ?8C ≠ 0 reveals the win value:

c1(s8C) = (1 − ?8C)VE[+ � (s8C+1, 98C+1) | s8C] −
?8C (ΔA8C + Δ48C)

Δ?8C
. (12)

32Federal regulations do not require commitments to rent restrictions beyond 30 years, though some states encourage
such extended commitments. I do not analyze these, as the present value of further years of rent regulation is highly
sensitive to assumptions on developer discount rates.

33Many developers restrict rent even beyond what the LIHTC directly encourages. My inspection of applications
suggests that developers may do so to qualify for other point categories in some QAPs (e.g., SRO housing), to comply
with external rent restrictions (e.g., in public housing rehabilitation), or to pursue additional sources of funding.
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The indifference condition in Equation 12 is a bid inversion, akin to those in research on auctions.
Ignoring the value-function term, for example, a developer indifferent between a $1,000 per-unit
rise to the present value of rent and a one-percentage-point increase in win probability, starting at
a baseline probability of 50 percent, must value winning at $50,000 per unit in present value.34

Here I consider a simplified version of Equation 11, and in particular, the following auxiliary
model of developer choice:

ΔD8 9 = V1Δ?8 (A8 9 ) + V2Δ log A8 9 + Δ48 9 , (13)

where 9 denotes an alternative (that is, the actual choice, the “up” deviation, or the “down” deviation)
and Δ48 9 is an error term. I use the latent utility index ΔD to clearly distinguish from Equation 11,
which I estimate as a conditional logit and as a fixed-effects linear probability model (LPM).

The parameters to be estimated are V1, the developer’s preference for a higher win probability,
and V2, their preference for higher rents. Without further assumptions about the structural error
Δ48 9 , these parameters are not identified. That is, applications likely to win may be unattractive to
developers on dimensions other than rents (e.g., high construction costs). To obtain identification,
I therefore assume that within the comparisons I have constructed, differences in unobservables
are uncorrelated with differences in rents and win probabilities: E[Δ48 9Δ?8 9 ] = E[Δ48 9ΔA8 9 ] = 0.
The justification for this assumption is that I control the comparison choices and consider a tightly
restricted subset of alternatives.35

Results. Table 3 presents estimates of Equation 13. Both the LPM (Column 1) and the conditional
logit (Column 3) find an average marginal rate of substitution between win probability and rents
of approximately 0.9.36 On average, developers would be indifferent between a 0.9-p.p. rise in
their win probability and a $1,000 rise in present-value rent. Encouragingly, this marginal rate of
substitution matches the marginal rate of transformation in Figure 10. The final two rows of Table
3 use the approach in Equation 12 to estimate the mean per-unit value of winning the grant and for
the incidence of the grant on developer profits. I find developers value winning at approximately
$50,000 per unit in present value. By comparison, the average grant amount per unit is $120,000,
implying that developers capture around 45 percent of the grant.

I explore a key concern with the use of simulated win probabilities to estimate preferences in

34While the static value of winning is c1 (s8C ), the dynamic equivalent is c1 (s8C ) − (1− ?8C )VE[+ �(s8C+1, 98C+1) | s8C ].
Thus, the estimates in Table 3 apply to this dynamic object.

35This identification assumption follows Pakes (2010), who uses a similar comparison-based sample to difference
out a structural error term. It rules out the possibility of changes in other costs that flow from serving a different tenant
population. For instance, extremely-low-income tenants can require supportive services in addition to housing; this
would lead to some overstatement of developer incidence.

36Across columns, the coefficients fluctuate in level due to differences in econometric approach. Incidence and the
other objects of interest are determined by the ratio of coefficients, which is stable across approaches.
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Table 3: Estimating Valuations from Bidding Behavior

(1) (2) (3) (4)
OLS IV Cond. Logit. + Ctrl. Funct.

Win Probability 0.416*** 1.708*** 1.278*** 6.423***
(0.021) (0.042) (0.071) (0.195)

Log Average Rent 0.620*** 2.900*** 1.826*** 10.249***
(0.049) (0.098) (0.147) (0.395)

Applications 6,785 6,785 6,779 6,779

Marg. Rate of Substitution 0.923 1.051 0.884 0.987
(0.040) (0.021) (0.039) (0.019)

Mean Win Value Per Unit $54,957 $48,292 $57,385 $51,385
(2,441) (1,022) (2,608) (1,040)

Developer Incidence Share 0.456 0.401 0.476 0.427
(0.021) (0.010) (0.023) (0.010)

Notes: This table reports estimates of coefficients in Equation 13. In Column 4, I take a control-function approach to
instrument for the win probability in the conditional logit. Marginal rates of substitution are calculated as a ratio of
coefficients; see the text for detail on the other calculations. Standard errors are clustered by application. ∗ = ? < 0.10,
∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.

Columns 2 and 4 of Table 3. If the simulated probabilities provide noisy estimates of developers’
beliefs, as seems likely, then choices will be more responsive to win probabilities than Columns
1 and 3 suggest. This bias will cause me to understate the marginal rate of substitution and, in
turn, to overstate developer incidence. As a solution, I instrument for the win probability using the
application’s rank in the round-specific distribution of QAP scores, which is free from simulation-
based measurement error. This approach does in fact yield slightly higher estimates of marginal
rates of substitution and slightly lower developer valuations and incidence shares.

7 Structural Estimation

This section estimates the model introduced in Section 3. First, I introduce the parameterization
of model primitives, along with other significant choices. I then explain the estimation procedure,
which combines parametric policy iteration (PPI, see Rust, 2000; Sweeting, 2013) with simulated
minimum distance (SMD, see Gourieroux et al., 1993). Finally, I list the empirical moments used
in estimation, and I report the coefficient estimates and model fit.
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7.1 Setup

I parameterize the win value c1(s8C), the outside option c0(s8C), the entry cost ^(s8C), the distribution
� of persistent unobservables b8, and the distribution � of temporary unobservables 98C . I collect
the parameters in the vector ) . The matrix x8 contains observable application characteristics. The
parameterizations are as follows:

• Outside Option, Win Value, and Entry Cost: The primitives c0(s8C), c1(s8C), and ^(s8C)
are assumed to be linear in the history ℎ8C , the unobservable b8, and the characteristics of
applications and tracts. For instance, outside options are c0(s8C) = cℎ0ℎ8 + c

b

0b8 + 0
G
0x8, with

structural parameters (cℎ0 , c
b

0, 0
G
0). The characteristics are the unit count, the per-unit value

of tax credits, the tract poverty rate, and the tract (log) population density.

• Application Characteristics: I assume that potential applicants’ number of units and credits
per unit are distributed independent log-normally. To avoid drawing from the distributions
of scores and set-asides—an extremely high-dimensional object—I directly simulate appli-
cations’ chains of win probabilities for their initial application and any reapplications. I use
a bivariate beta distribution and assume the win probabilities follow a Markov process.

• Unobservables: I assume the persistent unobservable heterogeneity b8 is distributed normally,
setting the mean to zero and variance to unity, as it is rescaled in the primitive objects. For the
temporary unobservables, developers draw i.i.d. Type I extreme value shocks 98C = (Y�8C , Y�8C )
each period. The shocks are additively separable from mean payoffs. The dispersion
parameters are respectively f0 and f1.

The unit of simulation is a tract–year. Each tract draws a new potential applicant each year,
which then makes a sequence of application and building decisions until reaching a terminal state.
In estimating themodel, I define parameters in units of dollars of the potential application’s qualified
basis, normalizing for differences in scale. For instance, a value ^(s8C) = 0.1 would mean that the
entry cost is a tenth of the basis, or about 14 percent of tax-credit value.

The model’s household side is calibrated. In particular, I take the elasticity of substitution
d = 0.691 between housing and the non-housing good from Albouy et al. (2016), and I set q to
achieve a housing consumption share of 0.15.37 From Section 2, I set the rent discount X = 0.12.
For further details regarding the structural setup and counterfactuals, see Appendix B.

7.2 Procedure

Parametric Policy Iteration (PPI). The first part of the estimation procedure forms choice proba-
bilities for simulated developers. The challenge this part solves is that, in dynamic models, optimal

37Estimated fromU.S. Bureau of EconomicAnalysis data on the housing share of personal consumption expenditures.
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choices and thus choice probabilities can be costly to compute. My implementation of PPI, which
closely follows Sweeting (2013), is summarized below and is presented fully in Appendix C.

PPI methods form choice probabilities by iterating between two steps, “policy valuation”
and “policy improvement” (Rust, 2000). In the valuation step, I compute an approximation to
the expectation of the applicant value function at each state, E[+ � (s8C , 98C) | s8C], using a linear
regression of flow payoffsΠ� (0, s8C) on a polynomial basis of the state variables. This computation
uses initialized values for structural parameters as well as choice probabilities.

In the improvement step, I then use the approximation of E[+ � (s8C , 98C) | s8C] to update the choice
probabilities. In particular, application choice probabilities Pr(0 | s8C) at each state depend upon
Π� (0, s8C) + (1− ?8C)VE[+ � (s8C+1, 98C+1) | 0, s8C], the sum of the flow payoffs and the value function.
Building choice probabilities follow similarly. With the updated choice probabilities in hand, I
return to the valuation step. The procedure is repeated until revisions to the choice probabilities
become small in absolute magnitude.

Simulated Minimum Distance (SMD). The second part of the estimation procedure chooses
structural parameters to minimize a distance between moments of the actual data and simulated
data generated above. I target quasi-experimental moments and key descriptive patterns in the data,
so that simulated developers respond as do the actual developers to policy variation.

Formally, the SMD step finds parameter estimates )̂ that jointly minimize a distance between
empirical moments #̂ and their simulation analogs #̃()). In particular, the estimates )̂ solve

arg min
)
[ #̂ − #̃())]′�−1 [ #̂ − #̃())], (14)

where �−1 is a block-diagonal weight matrix. Each block is formed from the sum of the covariance
matrices of the empirical and simulated moments.

7.3 Moments

I target three groups of empirical moments #̂: (1) causal effects of the LIHTC using quasi-random
assignment, fromSection 4; (2) application responses to changes in subsidy generosity, fromSection
5; and (3) developer bidding behavior in response to incentives to reduce rents, from Section 6.
These are joined by moments to match descriptive patterns. In greater detail, the moments are:

• Winners Versus Losers. In the simulated data, I can compare winners and losers, controlling
for win probability (Equation 9). The model presumes that winners must build, so I estimate
an equivalent specification among losers only: �8C = ^8C$0 + W1?8C + D8C , where �8C is an
indicator for the development outcome and ^8C contains application characteristics. The
coefficients $0 and W1 are targeted moments.
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• Application Supply. First, I match application responses to the boost. The simulated response
is calculated as an average derivative across all potential applicants, and I target the event-
study estimate for the boost’s effect on the annual probability (in percentage points) of any
application from the tract. Second, I match the boost’s (small) effects on the composition
of the applicant pool from the RD estimates, targeting effects on win probabilities, credits
requested per unit, and proposed unit counts (Appendix Figure A19). Third, I match the
coefficients of two cross-sectional regressions. For all applications, I regress whether a tract
has any applications in a given year on tract characteristics. For reapplications, I regress
whether a losing applicant reapplies on both application and tract characteristics.

• Bidding. I target the fixed-effects LPM coefficients from Column 1 of Table 3. I enrich the
regression specification in the table by interacting the win-probability and rent variables with
the two tract characteristics, poverty and population density.

• Distributional Moments. I target the means and variances of application characteristics: the
number of units and the credit amount requested per unit. I also target the mean and variance
of the distribution of win probabilities. Among reapplicants, I match the coefficients of a
regression of their current-round win probabilities on their prior-round probabilities.

7.4 Coefficient Estimates and Model Fit

I briefly discuss the parameter estimates in Appendix Table A3, reserving further discussion for
the distributions of model primitives in Section 8, which are more readily interpreted.

Parameter estimates imply that potential applicants with high unit counts or in dense areas have
stronger outside options on average. Applications with larger credit requests per unit generally
have weaker outside options. There is state dependence: Applying improves applicants’ outside
options, and the cost of reapplying is lower than the cost of the initial application. The tax credit
makes up a larger share of win value in low-income areas and for projects with high credits per
unit. There are substantial returns to scale in entry costs, measuring size both by unit count and
in credits requested per unit. Entry costs are lower in poor and low-density areas. The persistent
unobservable induces a strong positive correlation in outside options and win values, implying
there is advantageous selection on outside options into the LIHTC.

The model fits the targeted moments reasonably well (see Appendix Table A4). This is
informative in itself: The model does not seem to struggle to explain developer behavior across
three distinct empirical analyses. The largest gaps in fit occur in the cross-sectional regression of
application supply on tract characteristics.
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Table 4: Estimates of Model Primitives and Potential-Applicant Characteristics

(1) (2) (3) (4) (5) (6)

Applicants Non-Applicants

Median P25 P75 Median P25 P75

Panel A: Model Primitives as a Share of Basis

Ex-Ante Value 1.41 1.13 1.76 0.56 0.25 0.94
Outside Option 1.25 0.88 1.65 -0.03 -0.71 0.63
Win Value 1.45 1.01 1.89 0.47 -0.11 1.06
Entry Cost 0.21 0.08 0.31 0.55 0.40 0.65

Panel B: Model Primitives in Thousands of Dollars Per Unit

Ex-Ante Value 193 136 285 65 30 115
Outside Option 165 102 263 -3 -94 75
Win Value 194 129 278 55 -15 120
Entry Cost 24 8 43 65 41 94

Panel C: Potential-Applicant Characteristics

Win Probability 0.48 0.05 0.71 0.29 0.10 0.55
Unit Count 51 34 89 43 31 59
Tax Credits Per Unit 218 137 301 184 133 259

Notes: Panels A and B report estimates of the model primitives, the ex-ante value of the application value function
E[+ �(s8C , 98C ) | s8C ], the outside option c0 (s8C ), the win value c1 (s8C ), and the entry cost ^(s8C ). Panel C reports
estimates of potential-applicant characteristics. Tax credits per unit are in thousands of dollars. Appendix Table A6
provides a similar analysis for winning and losing applicants.

8 Results and Counterfactuals

This section reports model results. After reviewing estimates of model primitives, I turn to the
paper’s two main questions: the LIHTC’s housing-market impacts and its incidence. I also assess
its cost-effectiveness in comparison to a stylized voucher program.

8.1 Model Primitives and Potential-Applicant Characteristics

Panels A and B of Table 4 reports estimates of the key model primitives. These are the (ex-ante)
application value function E[+ � (s8C , 98C) | s8C], the outside option c0(s8C), the win value c1(s8C), and
the entry cost ^(s8C). To summarize the heterogeneity, I report medians and interquartile ranges.
In Panel A, I report these values as shares of the potential application’s eligible basis. Panel B
rescales the values into dollar terms.

Estimated win values show winning the LIHTC is valuable to applicants. Taking the reciprocal,
the credits are worth about the full project value for the median applicant (1/(0.7 · 1.45) = 1.01).
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Beyond the grant, the project value reflects construction costs, future rents, and other subsidies, so
it could be greater or less than the grant amount in principle.

For the median applicant, winning is about 16 percent (1.45/1.25 − 1 = 0.16) better than
the outside option. For such an applicant, the LIHTC is narrowly “buying out” their next-best-
alternative land use. Moreover, outside options are positive (i.e., statically preferred to not building
that period) for nearly all applicants. In dollar terms, outside options appear plausible by comparison
to capitalized rents—that is, the former is less than the latter under reasonable discount rates. This
discussion illuminates how the model reconciles the application responses and the award effects: by
making applicants marginal to applying but not marginal to development. Applicants vary greatly
in their primitives; such heterogeneity is necessary for developer incidence in equilibrium.

I now turn to the win values and outside options of non-applicants. Win values generally
exceed outside options, and outside options are negative for approximately half of non-applicants,
implying much land with little productive use. Model results suggest the key driver of selection
into application is variation in entry costs: The median applicant has small entry costs, whereas
the median non-applicant would burn the subsidy’s entire value in applying. Such an applicant
would not find it profitable to apply even if they would win with certainty. This conclusion is
natural: Had selection into application been driven by variation in outside options, for instance,
losers would be unlikely to develop privately. Overall, estimated entry costs appear large, at 10
percent of win value for the median applicant.38 The table also examines potential applicants on
observable characteristics, finding that applicants are positively selected on win probability relative
to non-applicants.

8.2 Incidence and Impacts

Table 5 shows the model-based estimates of incidence and impacts. Column 1 reports overall
averages. Columns 2 to 5 split the simulation according to whether a potential applicant’s tract is
above or below the median on two characteristics, the poverty rate or the population density.

Overall, I find that households receive about 30 percent of the welfare gains from the LIHTC.
Much of the LIHTC instead goes to developer profits and entry costs. Entry costs absorb a quarter
of the LIHTC. The share is more greater in the comparisons of primitives above, as these costs are
paid by both winning and losing applicants, whereas households and developers only benefit when
applications win. The gains to households are split between rent savings and general-equilibrium
effects but mostly arise from the former.39

38These estimated entry costs are difficult to benchmark against real-world costs and are ultimately a structural object
needed to explain entry behavior. Although I take entry costs as arising per application, there is likely a large fixed
component at the developer corporate level.

39LIHTC residents are poorer than the typical resident of the same tract, so the general-equilibrium component is
less targeted to lower-income households than the rent-savings component (see Appendix Figure A23).

38



Table 5: Model-Based Incidence and Impacts

(1) (2) (3) (4) (5)
Poverty Rate Population Density

Above Med. Below Med. Above Med. Below Med.

Panel A: Incidence

Household Share 0.314 0.265 0.361 0.391 0.396
(0.027) (0.026) (0.029) (0.047) (0.031)

Rent Savings 0.233 0.180 0.284 0.265 0.177
(0.019) (0.016) (0.022) (0.022) (0.014)

Gen. Eqm. Effects 0.081 0.085 0.076 0.125 0.219
(0.022) (0.023) (0.021) (0.045) (0.024)

Developer Share 0.437 0.480 0.401 0.397 0.382
(0.033) (0.032) (0.034) (0.058) (0.032)

Entry Cost Share 0.250 0.255 0.239 0.212 0.222
(0.025) (0.030) (0.022) (0.045) (0.020)

Panel B: Impacts

Displacement Rate 0.777 0.758 0.788 0.579 0.845
(0.018) (0.024) (0.023) (0.103) (0.028)

Cost Per Net Unit 960 870 1019 515 1371
(100) (98) (126) (97) (388)

Notes: This table reports model-based estimates of the incidence and impacts of the LIHTC. The displacement rate is
one minus the net change in the housing stock per LIHTC unit. For tract characteristics, I split at the median among
simulated applicants. Costs per unit are in thousands of dollars. Bootstrap standard errors are reported in parentheses.

The model also finds that subsidized units substantially displace other construction on the same
parcel and are not one-for-one net additions to the local housing stock. For every ten subsidized
units, there are about two net units added to the housing stock, an estimate that is consistent with
Baum-Snow and Marion (2009). Unlike the results in Section 4, however, these estimates account
for reapplication, general-equilibrium effects, and state dependence in behavior.

There is spatial variation in the displacement rate and thus in costs per net unit. Displacement
is weaker in high-density than in low-density areas. As a result, the LIHTC’s cost per net new
unit varies notably, and essentially inversely with its cost per subsidized unit. Spatial heterogeneity
in incidence is also considerable. In low-poverty areas, the LIHTC provides larger transfers to
households, consistent with spatial variation in rent savings. Elsewhere, the LIHTCmore generally
subsidizes development with less redistributive benefit.

I explore the sensitivity of the structural results to changes in the empiricalmoments inAppendix
Table A5. Following Andrews et al. (2017), I report the changes in estimates of model primitives,
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Figure 11: Model-Based Comparison of the LIHTC and Rent Vouchers
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Notes: This figure contrasts the LIHTC to rent vouchers using the model. The voucher is specified to achieve the same
aggregate benefit to households as the LIHTC. All values are expressed in thousands of dollars per LIHTC unit.

incidence, and impacts that result from small perturbations to moments. There are three important
lessons. First, the direction of sensitivity of parameters to moments is generally intuitive. For
instance, a higher application-supply elasticity would push down estimated entry costs. Second,
specific equations do not identify specific structural parameters in isolation, so estimating the
model jointly over the moments does matter. Third, incidence estimates are especially sensitive to
reapplication behavior, a result that suggests the value of dynamic models in this context.

8.3 Vouchers as a Policy Alternative

In two counterfactuals, I compare the LIHTC to its natural policy alternative, vouchers. The first
counterfactual replaces the LIHTC with a tenant-based subsidy that achieves the same aggregate
benefit to households as the LIHTC, while allowing the fiscal cost to change. The second holds the
fiscal cost fixed and allows the transfer to households to change.

Both comparisons consider a stylized voucher program. That is, I abstract away from many
differences between these two programs and from institutional details of vouchers. The main
purpose of the comparison is therefore to interpret, within the context of the model, the magnitudes
of the incidence estimates. After presenting these results, I discuss considerations beyond the
model that are likely relevant to comparisons of the LIHTC to real-world vouchers.

Figure 11 reports results for the first counterfactual. Holding household utility fixed, vouchers
reduce present-value fiscal costs by 25 percent, or by $56,000 per LIHTC unit. In the fixed-budget
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counterfactual, the switch to vouchers expands the housing stock and raises household welfare.
Holding the budget fixed, vouchers’ effect on the aggregate housing stock is about 40 percent larger
than that of the LIHTC. The total welfare benefit to households would be about 60 percent larger,
rising from from $87,000 per LIHTC unit to $138,000.

I then use the model to examine how this cost difference arises. Vouchers and the LIHTC
impose opposite-signed pecuniary externalities on market rents. All else equal, the government
must therefore make a larger outlay under vouchers to achieve the same overall welfare gain
for households. In particular, offsetting vouchers’ pecuniary impacts on unassisted households
requires a transfer to assisted tenants that is more than twice the per-unit present value of the rent
discounts received by LIHTC tenants. Weighing in the other direction, vouchers by assumption
avoid the LIHTC’s entry costs, and they incur less incidence on developer profits. On balance,
these latter forces leave vouchers with a modest fiscal advantage over the LIHTC. My estimates
of the compensated difference in fiscal costs are close to accounting-style comparisons of housing
policies, which also find moderate advantages for vouchers (Weicher, 2012).

My analysis omits many interesting differences between real-world housing programs, some of
which are project-specific in nature. First, as noted above, project-based programs can simplify the
provision of other supports, particularly healthcare, alongside housing. This aspect is challenging
to value and could apply to the half of LIHTC properties that provide elderly or supportive housing
(Table 1). Second, the LIHTC’s federal tax expenditure understates its total cost: The developments
often also receive subsidized debt, state-level assistance, and local property tax abatements. Recent
estimates by Lang and Olsen (2023) suggest that, in California, these “hidden subsidies” may
amount to twice the federal tax credit. Third, vouchers have administrative costs ignored here.
Finally, the differences in average income between assisted and non-assisted households imply the
household benefits from vouchers are more progressively distributed than those of project-based
assistance. On balance, these factors are likely to enlarge LIHTC’s cost advantage on average,
but more significantly, they create project-level heterogeneity. Such heterogeneity could plausibly
justify the occasional use of project-based assistance but hardly overturns a presumption that it is
inferior to vouchers in general.

9 Conclusion

In the U.S. and other countries, limitations on the supply of housing in desirable cities have driven
up housing costs, creating demand for policy answers to the “housing crisis.” At the same time, poor
households have long faced severe housing-cost burdens, reflecting a denominator problem of low
incomes more so than a numerator problem of high rents. These twin social challenges motivate
many low-income housing policies, including public housing, rent vouchers, and project-based
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subsidies. Are project-based subsidies effective answers to either of these challenges?
I examine this question in the context of theLIHTC, the largestU.S. project-based subsidy. Using

newly-collected data on developer applications and three quasi-experimental research designs, I
estimate a dynamic model of developer behavior, and then I use the model to evaluate the LIHTC’s
impacts and incidence. I find the LIHTC has little impact on the overall size of the housing stock,
as the LIHTC heavily displaces private development that would have otherwise soon occurred.
Project-based subsidies are therefore of limited value as an answer to the first challenge.

I also find project-based subsidies ultimately benefit lower-income households, making them
relevant to the second social challenge. LIHTC residents receive a transfer through below-market
rents, albeit modest on average, and the transfer also reallocates new housing to lower-income
households than would otherwise live in it. Allocating capital in housing markets via a complex
governmental process, however, does create two significant problems: high entry costs and signif-
icant incidence on a subset of developers with a LIHTC-specific cost advantage. This conclusion
has particular relevance to recent U.S. expansions of “supply-side” subsidies in domains such as
energy and manufacturing. An important concern for policy design will be how difficult it is to
compete for these subsidies, both because of the intrinsic costs of policy complexity and because
such complexity may shift incidence to those firms most adept at navigating it.
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A Additional Tables and Figures

Figure A1: Data Coverage
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Notes: This figure shows the coverage of the LIHTC application data. Blue indicates coverage, red indicates non-
coverage, and gray indicates that the state did not hold a LIHTC round in that year.
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Figure A2: Neighborhood Effects of Tax Credit Awards:
Controlling for Application Characteristics
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Notes: The figure plots win and lose effects on the occupied housing stock (change in percentage points), as in
Figure 7. The specification is an event-study analog of Equation 9 that includes non-applicant tracts: Δ log E[.8,C+: ] =
U:Win8C + V:Lose8C + ^8C$: , for : quarters or years from the award. It is estimated via Poisson regression. The
key distinction from Figure 7 is that it includes in controls -8C the two application characteristics on which there is
significant imbalance: whether the application is entirely new-construction and the leave-out win rate of the developer.
The color bands depict pointwise 95-percent confidence intervals, and standard errors are clustered at the tract level.
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Figure A3: Neighborhood Effects of Tax Credit Awards,
Instrumenting for Actual Wins with Simulated Wins
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Notes: This figure plots win and lose effects on the occupied housing stock (change in percentage points). The
specification is an instrumental-variables (IV) version of Figure 7, where I instrument for the actual tax-credit assignment
of an application with its simulated assignment. I implement the IV within the Poisson regression using a control
function. The color bands depict pointwise 95-percent confidence intervals, and standard errors are clustered at the
tract level.
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Figure A4: Parcel-Level Effects of Tax Credit Awards (Weighted)

Panel A: Total Development
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Panel B: Development by Type
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Notes: Panel A plots win and lose effects (on left) and the win–lose difference (on right), of tax credit awards on the
probability that construction is recorded as completed in a given year. Panel B decomposes these development impacts
into LIHTC, other-subsidy, and unsubsidized development. Multiple parcels associated with a single application are
aggregated using floor-space weighting. Standard errors in Panel A are clustered by the consolidated parcel.
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Figure A5: Parcel-Level Effects of Tax Credit Awards: Heterogeneity by Win Probability

Panel A: Event Study
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Notes: Panel A plots effects of winning versus losing a tax credit award on the probability that construction is recorded
as completed in a given year. The figure reports these estimates separately by splitting the sample into quarter intervals
of the application’s win probability. Panel B reports the 10-year displacement rate by interval of the win probability.
Standard errors in Panel A are clustered by the consolidated parcel.
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Figure A6: Winners-Versus-Losers Comparison in Neighborhood Event Study
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Notes: This figure plots win–lose difference coefficients in an event-study comparison of Census tracts with LIHTC
applications. The blue line shows baseline estimates, which only include county–year fixed effects as controls. The
orange line augments this specification with the flexible control for win probability. The black line adds controls for
Census tract pre-award characteristics, as listed in Section 4. The color bands depict pointwise 95-percent confidence
intervals, and standard errors are clustered at the tract level.
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Figure A7: Detailed Land-Use Effects of Tax Credit Awards

Panel A: Single- Versus Multi-Family
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Panel B: Rental Versus Owner-Occupied
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Notes: Panel A plots win and lose effects on the number of households (change in percentage points) in the same
Census block group as the LIHTC application who reside in multi-family or single-family residences. Panel B reports
the same effects but for households who are likely renters versus likely owner-occupants. In both, the specification is
an event-study analog of Equation 9 that includes non-applicant tracts: Δ log E[.8,C+: ] = U:Win8C + V:Lose8C + ^8C$: ,
for : quarters or years from the award. The specification is estimated via Poisson regression, and it includes controls
-8C for the win probability, pre-award tract characteristics, and the baseline level of the outcome. In both panels, the
color bands depict pointwise 95-percent confidence intervals, and standard errors are clustered at the tract level.
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Figure A8: Effects of Tax Credit Awards on the Subsidized Housing Stock
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Notes: This figure plots win and lose effects on four categories of the subsidized housing stock. The outcome is
defined by taking annual HUD counts of subsidized units by Census tract and dividing it by the count of households
in 2000. The numerator is from the Picture of Subsidized Households database, and the denominator is from the 2000
Census. The specification is an event-study analog of Equation 9 that includes non-applicant tracts: Δ log E[.8,C+: ] =
U:Win8C + V:Lose8C + ^8C$: , for : quarters or years from the award. The specification is estimated via Poisson
regression, and it includes controls -8C for the win probability, pre-award tract characteristics, and the baseline level of
the outcome. In both panels, the color bands depict pointwise 95-percent confidence intervals, and standard errors are
clustered at the tract level.
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Figure A9: Effects of Tax Credit Awards on Population by Income Decile
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Notes: This figure plots win and lose effects on the number of households by income decile in the same Census block
group as the LIHTC application. The time horizon is 10 years after the award, and I rescale the effects so that they
represent contributions to the aggregate percentage change in the block-group household count. The specification is
an event-study analog of Equation 9 that includes non-applicant tracts: Δ log E[.8,C+: ] = U:Win8C + V:Lose8C + ^8C$: ,
for : quarters or years from the award. The specification is estimated via Poisson regression, and it includes controls
-8C for the win probability, pre-award tract characteristics, and the baseline levels of the outcomes. That is, to address
measurement error in household income, all specifications includes control for all baseline income-decile household
counts. The gray bars depict 95-percent confidence intervals, and standard errors are clustered at the tract level.
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Figure A10: Replication of Tract-Level Event Study (Data Axle)
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Notes: This plots win and lose effects effects on the change (in percentage points) in the household count in the LIHTC
application’s Census tract. The specification is intended for comparison to Figure 7, and it includes controls for the
win probability and pre-award tract characteristics. The color bands depict pointwise 95-percent confidence intervals,
and standard errors are clustered at the tract level.
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Figure A11: Neighborhood Effects of Tax Credit Awards, No Win-Probability Control

Panel A: Tract (USPS)

-5

0

5

10

15

-10 -5 0 5 10
Years from LIHTC Competition

Win
Lose

Percentage Change in Occupied Housing Stock

Panel B: Block Group (Data Axle)
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Notes: Panel A plots win and lose effects on the occupied housing stock (change in percentage points) from a quarterly
event-study analog of Equation 9 that includes non-applicant tracts. Panel B plots win and lose effects effects on the
change (in percentage points) in the household count in the same Census block group as the LIHTC application, or in
the same tract but other block groups. All specifications include controls for pre-award tract characteristics but exclude
the win-probability control. See Figure 7 for comparison. In both panels, the color bands depict pointwise 95-percent
confidence intervals, and standard errors are clustered at the tract level.
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Figure A12: Cohort-Specific Effects of LIHTC Application Wins and Losses
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Notes: This figure plots estimates of cohort-specific quarterly coefficients V:,H from an event-study specification that
is estimated on the subsample of tracts that have application in year H or that never apply. Estimated via a Poisson
regression, the specification is Δ log E[.8,C+: ] = U:,HWin8C + V:,HLose8C + ^8C$:,H for each time horizon : and cohort
H. Each grey line traces a path of coefficients for the same cohort H over the quarters : relative to the quarter of
application. The solid black line displays the precision-weighted averages of these cohort-specific coefficients at each
event time horizon.
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Figure A13: Application Supply Responses to Changes in Eligibility for Basis Boost:
Falsification Test
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Notes: This figure plots event-study coefficients from Equation 10 for various application supply outcomes. The
“actual” coefficients plot responses for actual application-supply outcomes. The “predicted” coefficients plot responses
for an outcome constructed as the predicted values of year-specific regressions on the QCT running variables. Entry
and exit from boost are assumed to have symmetric effects. All specifications are estimated by Poisson regression and
include state–year fixed effects as controls. The bands show pointwise 95-percent confidence intervals, with standard
errors clustered by tract.
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Figure A14: Application Supply Responses to Changes in Eligibility for Basis Boost:
Secondary Outcomes
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Notes: This figure plots event-study coefficients from Equation 10 for various application supply outcomes. Entry
and exit from boost are assumed to have symmetric effects. All specifications are estimated by Poisson regression and
include state–year fixed effects as controls. The bands show pointwise 95-percent confidence intervals, with standard
errors clustered by tract.
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Figure A15: Application Supply Responses to Changes in Eligibility for Basis Boost
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Notes: This figure plots event-study coefficients from Equation 10 for various application supply outcomes. Entry
and exit from boost are assumed to have symmetric effects. In the baseline specification, I include state–year fixed
effects. The other specifications introduce county–year fixed effects or tract controls interacted with year indicators.
The tract controls are decile-group indicators for the tract’s poverty rate, population density, and cumulative change
in population from 1990 to 2000. The bands show pointwise 95-percent confidence intervals, with standard errors
clustered by tract.
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Figure A16: Application Supply Responses to Changes in Eligibility for Basis Boost:
Include Always-Boosted Tracts
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Notes: This figure plots event-study coefficients from Equation 10 for various application supply outcomes. The
sole difference from Appendix Figure A14 is that here I include always–bosted tracts in the sample. Entry and exit
from boost are assumed to have symmetric effects. All specifications are estimated by Poisson regression and include
state–year fixed effects as controls. The bands show pointwise 95-percent confidence intervals, with standard errors
clustered by tract.
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Figure A17: Application Supply Responses to Changes in Eligibility for Basis Boost:
QCT and DDA Effects
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Notes: This figure plots event-study coefficients from Equation 10. Entry and exit from boost are assumed to have
symmetric effects, but I allow the two causes of basis boosts (Qualified Census Tract [QCT] and Difficult Development
Area [DDA]) to have different effects on application supply. The specification is estimated by Poisson regression and
includes state–year fixed effects as controls. The bands show pointwise 95-percent confidence intervals, with standard
errors clustered by tract.
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Figure A18: LIHTC Application Volume Around the Qualified Census Tract Threshold:
Alternative Outcomes
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Notes: This figure shows the impact of the Qualified Census Tract (QCT) threshold on four measures of tract-level
LIHTC application volume. In all panels, the running variable is a distance defined with respect to tract rank within
its metropolitan area. All panels split the data into 15 equal-interval bins on either side of the QCT threshold.
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Figure A19: Covariate Smoothness Around the Qualified Census Tract Threshold
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Notes: This figure examines the conditional expectation function for six covariates around the Qualified Census
Tract (QCT) threshold. In all panels, the running variable is a distance defined with respect to tract rank within its
metropolitan area. All panels split the data into 15 equal-interval bins on either side of the QCT threshold. The
“relative income” measure is an index, standardized to zero mean and unit standard deviation, used in QCT assignment
that compares a tract’s median household income to its metro-area median.

20



Figure A20: Application Characteristics Around the Qualified Census Tract Threshold
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Notes: This figure shows average application characteristics around the threshold of Qualified Census Tract (QCT).
In all panels, the running variable is a distance defined with respect to tract rank within its metropolitan area, and
the data is split into 15 equal-interval bins on either side of the QCT threshold. The RD estimate and standard error
corresponding to the plotted outcome is reported in the upper-right corner of each panel. LIHTC request per unit is in
thousands of dollars.
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Figure A21: Nonparametric Estimates of Bunching at Rent Score Kink
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Notes: This figure depicts estimated effects of kinked incentives in Qualified Allocation Plans for setting rents in
LIHTC units. The coefficients come from a Poisson regression log E[�A<] = UA + U< +

∑
B VB1[A − < = B], where

�A< is the count of applications with rent level A given that the score-maximizing rent level is <. The coefficients UA
and U< are respectively fixed effects for an application’s rent level and for an application round’s score-maximizing
rent level. “FE” bunching coefficients VB are identified from heterogeneity in the score-maximizing rent level. The
“naive” specification omits the fixed effects UA and U<, pooling variation. An application’s rent level is defined relative
to the local annual median income (AMI) of the household to whom its units would be “affordable,” that is, no greater
than 30 percent of income. To obtain counts, I bin the application data by rounding to full percentage points of AMI.
To facilitate interpretation, the Poisson coefficients are exponentiated to exp(VB) − 1.
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Figure A22: Heterogeneity in the Trade-Off Between Win Probability and Rental Income
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Notes: The left panel is a histogram of the marginal rate of transformation (MRT), local to the developer’s actual
choice. The MRT is defined as a ratio of the percentage-point change in win probability to the change in the present
discounted value of rental income per unit, measured in thousands of dollars. To aid visualization, I winsorize the
distribution at MRT < −10, and I drop the all observations with MRT = 0. The shares reported on the vertical axis are
thus conditional on a non-zero MRT. The right panel is a binned scatterplot of the probability the developer accepts
a choice giving them a higher rental income but lower win probability, scattered with respect to the MRT associated
with this choice.
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Figure A23: Income Comparison of LIHTC Residents to Other Locals
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Notes: This figure plots the distribution of a ratio of median incomes. The ratio compares the median household
income of LIHTC residents at the property level to the median in the corresponding Census tract. Median-income data
for LIHTC residents is as of 2019; the tract data come from the ACS centered on 2019. The histogram is weighted by
each LIHTC property’s total unit count.
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Figure A24: Map of LIHTC Applications

Notes: This figure displays a map of the tax-credit applications. States are shaded in grey if no data are available.

25



Figure A25: Counts of Applications and Proposed Units by Year and Outcome
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Notes: This figure plots, in Panels A and B respectively, the counts of applications and proposed total units (both
income-restricted and unrestricted) in the data for each year and application outcome.
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Figure A26: Round-Level Distributions of Average Simulated Win Probability and Explained
Share of Variance in Wins
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Notes: This figure displays, in the left panel, the distribution of average simulated win probabilities at the level of
tax-credit competition round. In the right panel, the figure displays the round-level distribution of the share of variance
of wins that is explained by variance in simulated win probabilities, that is, Var( ?̂8)/Var(Win8). The vertical lines
denote unweighted averages of the average simulated win probability (left) and the explained share of variance in wins
(right).
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Figure A27: Analysis of Self-Scores
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Notes: This figure displays, in the left panel, a binned scatterplot of actual application scores versus self-scores. I
transform scores into percentile ranks within the distribution of actual scores. In the right panel, the figure displays a
binned scatterplot comparing estimates of the win probability using actual and self-scores. The procedure to compute
win probabilities using self-scores is described in Appendix B.
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Table A1: Heterogeneous Application Supply Responses to Qualified Census Tract Threshold

Main Effect Interaction Effect

Est. SE Est. SE Median
(1) (2) (3) (4) (5)

Panel A: High Population Growth
QCT Threshold 0.592*** (0.084) -0.291*** (0.083) 0.043

Panel B: High Rental Vacancy
QCT Threshold 0.435*** (0.100) 0.019 (0.088) 0.063

Panel C: High Population Density
QCT Threshold 0.467*** (0.084) -0.062 (0.083) 3.85

Panel D: High Poverty Rate
QCT Threshold 0.501*** (0.116) -0.156 (0.124) 0.230

Panel E: High Non-Hispanic White Share
QCT Threshold 0.383*** (0.090) 0.123 (0.087) 0.539

Notes: This table estimates heterogeneous effects of the Qualified Census Tract (QCT) threshold on application supply
according to Census tract characteristics. In all panels, the outcome measure is the application count in that tract–year.
Effects are estimated using a local-linear Poisson regression with a triangular kernel of bandwidth 0.2 around the QCT
threshold. Main effects of the QCT threshold are reported in Columns 1 and 2, and interaction effects are reported in
Columns 3 and 4. In estimating heterogeneous effects, I split Census tracts at the median of the named variable, with
the median reported in Column 5. ∗ = ? < 0.10, ∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.
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Table A2: Estimating Developer Win Valuations from Bidding Behavior: Binding Subsample

(1) (2) (3) (4)
OLS IV Cond. Logit. + Ctrl. Funct.

Win Probability 0.407*** 1.801*** 1.199*** 6.277***
(0.029) (0.057) (0.091) (0.240)

Log Average Rent 1.029*** 3.667*** 2.970*** 11.956***
(0.073) (0.144) (0.216) (0.548)

Applications 4,274 4,274 4,268 4,268

Marg. Rate of Substitution 1.590 1.282 1.558 1.199
(0.059) (0.029) (0.057) (0.028)

Mean Win Value Per Unit $32,426 $40,235 $33,090 $43,019
(1,244) (971) (1,247) (931)

Developer Incidence Share 0.255 0.317 0.260 0.338
(0.010) (0.009) (0.011) (0.009)

Notes: This table reports estimates of coefficients in Equation 13. I use the subsample of the application data in
which I estimate that rent regulations bind. In Column 4, I take a control-function approach to instrument for the
win probability in the conditional logit. Marginal rates of substitution are calculated as a ratio of coefficients; see the
text for detail on the other calculations. Standard errors are clustered by application. ∗ = ? < 0.10, ∗∗ = ? < 0.05,
∗∗∗ = ? < 0.01.

30



Table A3: Structural Parameter Estimates

Group Parameter Estimate Standard Error

Outside Option Intercept -0.064 0.002
Poverty Rate -0.029 0.000
Log Population Density 0.197 0.002
Log Unit Count 0.277 0.003
Log Credits Per Unit -0.347 0.002
Permanent Unobs. 0.924 0.010
Reapplicant 0.396 0.003

Net Value of Win Intercept 0.388 0.005
Poverty Rate -0.465 0.014
Log Population Density 0.171 0.002
Log Unit Count -0.263 0.003
Log Credits Per Unit -0.574 0.006
Permanent Unobs. 0.731 0.010
Reapplicant 0.513 0.007

Entry Cost Intercept 0.584 0.003
Poverty Rate -0.212 0.003
Log Population Density -0.015 0.000
Log Unit Count -0.203 0.003
Log Credits Per Unit -0.103 0.001
Permanent Unobs. -0.073 0.001
Reapplicant -0.386 0.004

Win Probability Parameter 1 1.270 0.004
Parameter 2 0.686 0.003
Parameter 3 0.759 0.008

Temp. Unobs. Dispersion Application Cost 0.005 0.000
Outside Option 0.011 0.000
Bidding 0.097 0.007

Log Units Mean 3.804 0.020
Standard Deviation 0.497 0.006

Log Credits Per Unit Mean 12.142 0.018
Standard Deviation 0.492 0.009

Notes: This table reports estimates of the model structural parameters, along with standard errors. ∗ = ? < 0.10,
∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.
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Table A4: Model Fit

Data Simulation

Group Moment Estimate SE Estimate SE |C |

Application: Cross-Sectional Regression Intercept 0.030 0.001 0.036 0.003 2.07
Poverty Rate 0.146 0.007 0.000 0.022 6.37
Log Population Density -0.000 0.000 0.007 0.001 5.30

Application: Average Derivative Application Probability 0.014 0.002 0.033 0.002 6.17
Win Probability 0.003 0.030 -0.053 0.003 1.84
Log Request -0.010 0.043 -0.008 0.007 0.04
Log Units -0.030 0.044 0.079 0.009 2.43

Post-Loss Behavior Intercept 0.254 0.004 0.235 0.005 2.88
Win Probability 0.024 0.013 0.130 0.037 2.72
Poverty Rate -0.031 0.029 0.110 0.042 2.77
Log Population Density 0.030 0.003 0.023 0.004 1.70
Log Units -0.022 0.009 0.042 0.015 3.62
Log Credits Per Unit -0.048 0.009 -0.040 0.013 0.48
Reapplicant -0.027 0.009 -0.028 0.014 0.03

Reapplication Choice Intercept 0.367 0.004 0.408 0.006 5.36
Win Probability 0.040 0.015 0.252 0.042 4.75
Poverty Rate -0.017 0.032 0.072 0.048 1.53
Log Population Density 0.013 0.003 0.032 0.004 3.65
Log Units -0.074 0.010 -0.043 0.017 1.56
Log Credits Per Unit 0.020 0.010 0.032 0.015 0.68
Reapplicant 0.117 0.010 -0.006 0.014 6.51

Bid Choice Win Probability 0.386 0.025 0.353 0.011 1.19
Log Average Rent 0.755 0.079 0.817 0.028 0.74
Win Prob. × Poverty -0.361 0.171 -0.464 0.067 0.56
Log Avg. Rent × Poverty -1.092 0.553 0.008 0.206 1.86
Win Prob. × Density -0.059 0.014 -0.021 0.007 2.43
Log Avg. Rent × Density -0.097 0.043 -0.168 0.019 1.53

Distributional Parameters Win Probability Mean 0.436 0.003 0.412 0.026 0.91
Win Probability SD 0.387 0.002 0.347 0.019 2.11
Log Units Mean 4.005 0.004 4.011 0.047 0.13
Log Units SD 0.511 0.002 0.617 0.033 3.16
Log Request Mean 12.280 0.004 12.282 0.039 0.04
Log Request SD 0.573 0.003 0.508 0.027 2.35
Win Probability AR1 Intercept 0.274 0.007 0.273 0.007 0.14
Win Probability AR1 Slope 0.393 0.018 0.394 0.018 0.07

Notes: This table reports estimates and standard errors for the data moments to be matched in the structural model, alongside their simulation analogs. The final
column reports the absolute value of the C-statistic testing equality of each data and simulation moment. ∗ = ? < 0.10, ∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.

32



Table A5: Sensitivity Analysis

(1) (2) (3) (4) (5) (6)
App. Supply:
Intercept

App. Supply:
Derivative

Win–Lose:
Intercept

Reapplication:
Intercept

Bidding:
Win Prob. Coef.

Bidding:
Rent Coef.

Panel A: Model Primitives

Outside Option -0.264 0.013 0.009 -0.561 -0.169 0.045
Win Value -0.162 -0.331 -0.045 0.081 0.150 0.074
Entry Cost -0.006 -0.083 -0.007 0.095 0.026 -0.003

Panel B: Incidence

Household Share -0.041 0.035 -0.018 -0.229 -0.032 -0.009
Developer Share 0.021 -0.003 0.017 0.122 -0.005 0.013
Entry Cost Share 0.019 -0.032 0.002 0.108 0.037 -0.003

Panel C: Impacts

Displacement Rate -0.016 0.007 0.002 -0.039 -0.001 -0.010
Marginal Cost Per Unit -0.5 1.4 -3.0 -1.1 8.9 0.2

Notes: This table reports the results of a sensitivity analysis following Andrews et al. (2017). I consider centered one-percentage-point perturbations to the
regression coefficients used as empirical moments. I re-estimate the structural model with 0.5-p.p. upward and downward perturbations to each moment. This
centers the sensitivity analysis on the actual estimates and circumvents non-smoothness concerns. Marginal costs per unit are in thousands of dollars. ∗ = ? < 0.10,
∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.
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Table A6: More Estimates of Model Primitives and Potential-Applicant Characteristics

(1) (2) (3) (4) (5) (6)

Winners Losers

Median P25 P75 Median P25 P75

Panel A: Model Primitives as a Share of Basis

Ex-Ante Value 1.51 1.16 1.80 1.34 1.05 1.71
Outside Option 1.35 0.93 1.67 1.22 0.82 1.62
Win Value 1.72 1.43 2.21 1.23 0.64 1.62
Application Cost 0.17 0.10 0.25 0.25 0.03 0.33

Panel B: Model Primitives in Thousands of Dollars Per Unit

Ex-Ante Value 178 121 264 211 144 311
Outside Option 149 98 218 186 104 276
Win Value 211 154 288 178 112 248
Application Cost 19 9 27 30 4 57

Notes: This table reports estimates of the model primitives, the ex-ante value of the application value function
E[+ �(s8C , 98C ) | s8C ], the outside option c0 (s8C ), the win value c1 (s8C ), and the application cost ^(s8C ).

Table A7: Selectivity Correction for New-Unit Rent Hedonic Estimation

(1) (2) (3) (4)

Log Median Rent, 0.967 0.997 0.887 0.864
All Units (0.007) (0.008) (0.013) (0.016)

Selection Correction 0.076 0.069 0.055
(0.008) (0.008) (0.009)

Controls X X
State FE X

Clusters 14,615 14,579 14,544 14,544
First-Stage � Stat. 1,111,658 69,777 51,145
Mean Selectivity Bias 0.099 0.083 0.066

Notes: This table examines the bias from sample selection in the estimation of willingness to pay for new rental units
by Census tract. The specification estimated is Equation 17. Bootstrap standard errors account for first-stage estimation
of the selectivity correction. ∗ = ? < 0.10, ∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.
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Table A8: Application Data Coverage: By Property and State–Year

(1) (2) (3) (4) (5) (6)
Property Coverage State–Year Coverage

Yes No Diff. (SE) Yes No Diff. (SE)

Panel A: Property Characteristics

Unit Count 60.85 66.45 -5.60*** (0.90) 65.67 61.10 4.56*** (0.93)
% Low-Income Units 89.7 89.9 -0.3 (0.6) 88.7 91.8 -3.1*** (0.6)
Monthly Rent 1,672.97 1,693.44 -20.48** (8.70) 1,684.57 1,684.08 0.49 (9.08)
Rents Below Fed. Max. 75.8 54.9 20.9*** (0.9) 70.5 53.2 17.3*** (0.9)
% New Construction 68.9 60.4 8.5*** (0.8) 67.3 58.5 8.8*** (0.9)
Family 61.7 55.6 6.1*** (1.0) 58.9 56.8 2.1** (1.0)
Elderly 44.3 33.2 11.2*** (1.1) 38.9 35.8 3.1*** (1.1)
Other 15.1 18.0 -2.9*** (0.6) 17.3 15.8 1.6** (0.6)
PDV Tax Credits Per Unit 278,327 161,329 116,997*** (9,014) 239,807 165,749 74,059*** (9,241)
Nonprofit 27.6 33.5 -5.9*** (0.8) 29.2 34.3 -5.1*** (0.9)

Panel B: Location Characteristics

Mean Income Per Capita 27,539 27,554 -15 (330) 27,366 27,886 -520 (344)
% Poor 77.1 75.3 1.8*** (0.3) 76.3 75.8 0.5 (0.4)
% Less than HS 15.2 15.7 -0.4* (0.2) 15.5 15.3 0.2 (0.3)
% HS Graduate 32.0 31.5 0.5** (0.3) 32.1 30.9 1.2*** (0.3)
% Some College 29.5 28.7 0.8*** (0.2) 29.3 28.6 0.6*** (0.2)
% College Graduate 14.8 14.9 -0.1 (0.2) 14.6 15.3 -0.7*** (0.2)
% More than College 8.5 9.3 -0.8*** (0.2) 8.5 9.8 -1.3*** (0.2)
% Non-Hispanic White 54.7 51.5 3.2*** (0.8) 52.6 53.5 -0.9 (0.8)
% Non-Hispanic Black 23.1 27.7 -4.6*** (0.7) 25.6 25.8 -0.2 (0.8)
% Hispanic 14.8 13.8 1.0** (0.5) 14.6 13.5 1.1** (0.5)
% Asian 2.4 2.4 -0.0 (0.1) 2.4 2.4 0.0 (0.1)
Pop. Density (per sq. mi.) 3,708 5,252 -1,544*** (193) 4,155 5,349 -1,194*** (202)
% Rentals Vacant 6.01 6.00 0.00 (0.15) 5.97 6.07 -0.11 (0.16)

Observations 6,334 8,528 9,568 5,294
P-val of Balance Test 0.000 0.000

Notes: This table uses HUD’s LIHTC property database to compare properties with matches in my application data to unmatched properties. I use HUD data from
2005 to 2019 for all U.S. states. Location characteristics are from the five-year ACS centered on 2019. Columns 1 and 2 report means of the matched and unmatched
samples at the property level, and Column 3 reports the difference in means. Columns 4–6 proceed in parallel, but defining the match at the state–year level, so as
to distinguish between match failures and sample coverage. ∗ = ? < 0.10, ∗∗ = ? < 0.05, ∗∗∗ = ? < 0.01.
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B Supplemental Information

B.1 Data Construction

This appendix section explains the construction of data used in the analysis.

Data Coverage. Appendix Figure A24 shows a map of applications in my data. The key populous
states my data miss are Illinois (IL), Massachusetts (MA), and New York (NY).40 Appendix Figure
A25 shows application counts and their total proposed units by the year of application and by their
grant assignment. Nationwide, the actual number of funded LIHTC units has slightly declined over
this period. Data coverage therefore improves considerably over time.

Appendix Table A8 examines the coverage of my application data by matching winning appli-
cations to HUD’s LIHTC property database. This table excludes winning applications that are not
successfully matched into the HUD data. The HUD data suffers from significant flaws: Its own
coverage is far from complete, and properties are often miscoded in terms of the type of credit they
receive (4% or 9%), or are allocated funding in years other than the one in which they apply. With
these caveats in mind, however, it still provides a useful way to examine the consequences of the
incomplete state–year coverage of my application data. Columns 4–6 show that state–years covered
in my application data do differ on observables from all LIHTC state–years from 2005 to 2019.
They tend to have larger projects in unit count and in tax credits per unit, and they are more likely
to set rents below the federal maximum. The differences on location characteristics are smaller,
though my application data tends to overweight state–years with lower population density.

Appendix Figure A26 provides some histograms at the application-round level. In particular,
its left panel shows that the win probability in the median round is about 40 percent, and there
is substantial variation in win probabilities across rounds. Its right panel shows the distribution
of a measure of a round’s ex-ante probability, the “explained share” Var( ?̂8)/Var(W8). When
this explained share is one, then applicants face no uncertainty as to whether they would win or
lose. When this explained share is zero, then the competition is equivalent to a uniform lottery.
Intermediate cases are weighted lotteries. The histogram finds that applicants in most LIHTC
rounds feature substantial ex-ante uncertainty about their grant assignment.

Standardizing Geography Definitions. This paper almost exclusively uses the 2000 definition
of Census tracts, block groups, and blocks. The rationale for this choice is that 2010 and 2020

40Data were unavailable in IL due to the state’s public-records law protecting the contact information of developers.
The MA and NY housing finance agencies informed me they do not store some key variables for my analysis outside
of the paper applications submitted by developers. Among smaller states, Nevada, Kansas, and Louisiana all cited
record-keeping issues and were unable to entirely meet my records requests. A state law in Arkansas explicitly forbids
their agency to release LIHTC applications. Missouri and Vermont do not use numerical rules to score applications.
In the District of Columbia and South Dakota, the agencies refused my records requests, and my submissions to their
state appeal boards were unsuccessful.
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geography definitions are potentially endogenous to the LIHTC, in that developments can require
these geographies to be redrawn. The exceptions regarding 2000 Census geographies are the RDD,
rent discount, and counterfactual tenant income analyses.

Application data cover 2005 through 2019, and outcome data continue through 2021. I therefore
harmonize geographies across the 2000, 2010, and 2020 Censuses. I use probabilistic crosswalks
from IPUMS NHGIS which map from 2000 to 2010 and from 2010 to 2020 (Manson, 2017). I
reverse the direction of the crosswalks, and I combine the crosswalks in mapping data from the
2020 Census geography.

Another instance where I use geographic crosswalks is to reconcile HUD’s Difficult Develop-
ment Area (DDA) boundaries to lower-level Census geographies. First, I digitized lists of DDAs
for the application years 2002 through 2016.41 Over time, these DDAs have been defined at varying
combinations of geographic levels: county, county subdivision / town / place, Zip Code Tabulation
Area (ZCTA), and several metropolitan area concepts (MSA/PMSA/CBSA). Once digitized, I used
probabilistic crosswalks from Geocorr to map DDAs to the tract level.42 Finally, I harmonize the
tracts to the 2000 Census definition as above.

Geocoding Addresses. I used a combination of the Google Maps API, Geocodio, and Open-
StreetMap to geocode street addresses in applications. Results were first checked for basic consis-
tency with rules. For instance, the geocoded state should match the state in which the application is
submitted. Similarly, the geocoded county, town, and zip code should generally match information
submitted on the application. Inconsistencies were then hand-reviewed.43 Geocoding results were
also carefully hand-reviewed whenever these services flagged the geocode as inexact.

Some applications provide the address information in formats that do not lend themselves to
easy geocoding. This often occurs when a project is proposed in newer neighborhoods, or low-
density areas, where exact street numbers have not been assigned to every parcel. For instance, the
street-address field provided is sometimes an intersection, or with reference to an intersection (e.g.
“A St, 500 ft S of A St and B Ave” or “SEC [southeast corner] of A St and B Ave”). Such addresses
required extensive hand-review to assign geocodes.

A notable co-benefit of the data linkages to the NHPD and to CoreLogic was an opportunity to
detect and resolve other geocoding errors. Inconsistencies were also hand-reviewed. Through these
steps, I concluded my geocoding of LIHTC applications is likely to be highly accurate. Wilson et
al. (2022) document that the HUD LIHTC database has significant geocoding errors, motivating
my attention to this issue.

41The originals are available in PDFs on the HUD website: https://www.huduser.gov/portal/datasets/qct.html.
42Geocorr is maintained by the Missouri Census Data Center and is available at

https://mcdc.missouri.edu/applications/geocorr.html.
43In surprisingly many cases, the application submission is incorrect, and then I keep the geocoding output version

(e.g., the town is misspelled, the zip code is incompatible with other information).
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Detecting Reapplicants. To identify applications that are potentially reapplications, I first use
rule-based record-linkage methods (dtalink in Stata) to link my data to itself (i.e., duplicating
the database and treating the duplicate as if it were another file). After dropping cases where an
observation links to itself, using a unique application identifier that I assigned at data entry, the data
contain applications linked to their potential reapplications. Due to symmetry in the record-linkage
rules, all pairs necessarily appear in duplicate (A links to B, so B also links to A), which is easily
resolved by dropping one of each such pair.

Variables used in the record linkage included substrings of the project name and address,
geography (city, county, geographic coordinates in degree-wise Manhattan distance), developer
contact information, and project variables (unit count, funding request). Record-linkage programs
often assign “scores” based on the extent of matching criteria. I used this score to divide potential
links into extremely likely or unlikely reapplications and marginally-likely reapplications. I hand-
reviewed all applications of the marginal group and auto-coded those at the extremes.

DataAxle (Infogroup). TheDataAxle files are annual cross-sections from their “ConsumerHistor-
ical” database. I recode several variables formy analysis. First, the variableowner_renter_status
provides a scale of 0 to 9 for the likelihood the resident is a renter or owner-occupant. I split this
scale at the midpoint in identifying likely renters and owner-occupants. Second, the land-use vari-
able is location_type. I exclude any households coded as living in nursing homes, retirement
homes, trailers, or undefined location types in the single-family versus multi-family analysis. Third,
the variable find_div_1000 is the household’s predicted income in thousands of current dollars. I
map this to national household deciles in each year using Table A-4a of Semega and Kollar (2022).

Competition Dates. Analyses in Section 4 use quarterly data on the award dates of LIHTC
competitions. I collected these by hand in several steps. First, I looked for related documents
that had datestamps on them, such as award announcement press releases, the lists of winners,
or schedules included in the QAP. Second, I used the metadata on spreadsheets or other public
records shared with me, which was often not wiped in the public-records release process. These
spreadsheets often contain a “last saved” or “last printed” date which is the award date or close
to this date. Third, states typically follow the same annual or biannual schedule, so I interpolated
missing years.

NationalHousingPreservationDatabase (NHPD)Linkage. I use theNHPD to establishwhether,
in the absence of a LIHTC award, a losing application builds subsidized housing via another subsidy.
I use Stata’s dtalink to match the application data to the NHPD, using the same variables listed
in “Detecting Reapplicants.” I also then hand-review marginal potential matches.

CoreLogic Linkage. I link both winning and losing applicants to the CoreLogic data. For
losers, this is to establish whether any development occurs. For winners, this is both to confirm
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development and to obtain additional data (for use in potential future analyses).
The challenge in matching the CoreLogic data is its scale, requiring me to carefully control

false positives, as most parcels are not LIHTC parcels. I begin the match process by identifying a
subset of near-sure matches by (1) matching substrings of the LIHTC project name to the parcel’s
first-listed LLC owner, (2) the exact street address, or (3) a very small distance between my and
CoreLogic’s geocoded latitudes and longitudes. I hand-reviewed all such matches to confirm they
were not false positives.

I then use a regression model in the CoreLogic to predict likely matches based on a larger set
of variables. I do this iteratively in rounds of matching: After hand-reviewing the latest set of
matches, I add them to a file of confirmed matches used in predicting other likely matches. Over
many rounds of matching, I varied the set of variables, but they broadly fall into two classes. First
are common variables across the two datasets, like those used to identify reapplicants or perform
the NHPDmatch. Second are CoreLogic-only variables only measured in CoreLogic but that I find
to be highly effective in avoiding false positives, such as lot size and land-use classification.

B.2 Running Variable Definition in QCT RDD

This appendix section explains the differences from Baum-Snow and Marion (2009) and Davis
et al. (2019) in defining the running variable for the Qualified Census Tract (QCT) regression
discontinuity design.

The basic criteria to be a QCT are (1) a tract poverty rate above 25 percent and (2) a low
tract median household income. The definition of the second criterion is a ratio of tract median
income to its metropolitan area’s median income, adjusted for household size. A tract may qualify
if more than 50 percent of the tract earns less than 60 percent of the adjusted metro-area median.
Baum-Snow and Marion (2009) use only the latter threshold, whereas Davis et al. (2019) uses the
minimum of the distances to each threshold to collapse the two-dimensional discontinuity into a
single running variable.

HUD’s implementation of these thresholds is more complex than this summary. Among the
complexities are: (1) an adjustment to ensure that no more than 20 percent of a metropolitan area is
classified as a QCT, (2) disqualifications for tracts with high sampling error in the ACS, (3) unusual
methods of averaging over multiple American Community Survey years, and (4) a tiered ranking
based on whether the tract meets one or both of the criteria. These aspects all otherwise reduce the
first-stage coefficient in the QCT RDD.

From this complexity, a single priority ranking of tracts within each metro area nevertheless
does arise. That is, each tract 8 in each metro area < has a well-defined rank A<

8
, with a threshold

rank Ā< such that—with one exception of which I am aware—a tract’s QCT assignment is given by
�8 = 1[A<

8
< Ā<]. I use A<

8
as my running variable, rescaled into a metro-area percentile rank.
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The exception is that HUD classifies small tracts as QCTs that are beyond the metro-area
threshold rank Ā<, so that it can use up any “spare” capacity below the threshold of 20 percent
of metro-area population. It does this in rank order, explaining why my running variable still has
some tracts on the wrong side of the threshold still being QCTs.

Table 2 shows a first-stage coefficient of 0.62—that is, being just to the right of the QCT
threshold on the running variable raises the probability of being a QCT by 62 percentage points.
Baum-Snow and Marion (2009) do not provide an equivalent estimate, and the first stage in Davis
et al. (2019) is approximately 0.4. There is thus a considerable power gain to be extracted from
precisely replicating HUD’s QCT assignment formula.

B.3 Sampling Variation in Basis Boost

My analysis of the role of sampling variation in the basis boost is greatly facilitated by the HUD
Qualified Census Tract data files.44 These files include the official Census estimates of the margin
of error for each observation. HUD includes these values in the data files because the QCT rules
exclude tracts from QCT eligibility if these margins of error are too large relative to the estimate.

Census reports margins of error in the American Community Survey (ACS), the source of the
QCT variables since 2013, by multiplying estimated standard errors by exactly 1.645.45 For each
observation 8, I took two random draws from the normal distribution # (`8, f8), where `8 was the
Census estimate for that observation and f8 is its implied standard error.

Using the same programs as to measure the QCT running variable, I then calculate whether a
tract would have been assigned as a QCT. I hold DDA status as given, and so tracts that are already
in DDAs will be boosted irrespective of the random draws.

B.4 Construction of Hypothetical Applications

The following states are included in the subsample for which I can analyze the trade-off between
win probability and rental income: AZ, CA, CO, GA, IA, IN, NM, OH, OK, TX, UT, WA, WI. In
these states, I have data on proposed rents in applications, and the QAP scoring rule features some
bonus for lower rents.

After reviewing these states’ QAPs in each year, I calculated how many rent-related points each
application received, given their current application. I then simulated alternative applications by
recalculating the rent-related points and swapping out their actual score points for this alternative.

For applications at the federal maximum rent (60 percent of area median income), I did
not simulate an “up” deviation to a higher rent, as this would disqualify their application. For

44Available at https://www.huduser.gov/portal/datasets/qct.html.
45See “Worked Examples for Approximating Standard Errors Using American Community Survey Data,”

https://www2.census.gov/programs-surveys/acs/tech3>2B/022DA02H/2018��(�22DA02H�>2D<4=C, >A:43�G0<?;4B.?35 .
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applications at the score-maximizing kink, I simulated a “down” application with a modestly lower
rent but which received no additional QAP points.

I follow Section 2.3 to map from scores to win probabilities. I only allow one of the  “folds”
of the applications to deviate to an alternative rent (“up” or “down”) at a time. Alternative win
probabilities are calculated when applications are in the deviation fold. Within the deviation fold,
it is randomly assigned in each bootstrap whether an application will deviate up or down.

B.5 Robustness Checks

This appendix summarizes robustness checks for analyses presented in the main text of the paper.

Section 4. Appendix Figure A10 replicates the USPS tract-level event study in the Data Axle
data, finding considerable attenuation, which explains why the block-group and tract impacts in
Figure 7 are of roughly the same magnitude. Appendix Figure A11 shows that the results of
Figure 7 change little when I omit the win-probability control. This implies winners are not highly
selected on their outside option relative to losers. Appendix Figure A12 presents event studies
estimated separately for each treatment-year cohort, ruling out the possibility my results are driven
by improper comparisons between early-treated and late-treated cohorts.

Section 5. Appendix Figure A14 shows estimated boost effects on a broader set of outcomes, such
as the probability of at least one application from a Census tract in that year, counts of winning
and losing applications, and counts of funded units. Appendix Figure A15 shows the estimates
are robust to county–year fixed effects, as well as to controlling for tract characteristics with time-
varying coefficients. Appendix Figure A16 includes always-boosted tracts. Appendix Figure A17
separately estimates impacts for the two boost triggers (QCT and DDA).

B.6 Analysis of Self-Scores

A feature of the LIHTC is that, in some states, developer applicants are required or recommended
to submit “self-scores,” wherein they fill out the QAP scoring rubric before their application
is reviewed by the government. The self-score data allow me to explore developer’s elicited
expectations, similar to the survey in Kapor et al. (2020). The main takeaway from the self-score
data is that the typical developer essentially knows their application’s score when they apply.

I begin by comparing actual and self-scores in rank terms, ranking applications within their
rounds. Self-scores are highly informative about actual scores (Spearman rank correlation coeffi-
cient of 0.73) and in fact understate actual scores on average. The left panel of Appendix Figure A27
displays a binned scatterplot of actual scores ranks versus self-scores. I transform both self-scores
and actual scores into ranks in the distribution of actual scores. On average, an applicant whose
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self-score implies the top-rank score in their round has a 80th-percentile actual score, whereas a
bottom self-scoring applicant has a 5th-percentile actual score.

I then re-estimate applicants’ win probabilities using their self-scores. Following Hendren
(2013), my approach allows for developers to strategically report self-scores that are not their true
beliefs. To summarize the approach, I estimate the conditional distribution of actual scores given
self-scores, and then I compute the developer’s win probability by sampling from this conditional
distribution. The key implementation steps are: (1) pool scores across rounds by transforming them
into percentile ranks, and (2) use kernel-density methods to nonparametrically estimate the copula
between actual score percentile and self-score percentile. This approach assumes that applicants
know the distribution of their potential rivals but not the draw.

Similar to the results for self-scores, the new estimates of win probabilities show developers
are highly informed. The '2 of the win-probability measures constructed using actual scores and
self-scores is 0.94. The right panel of Appendix Figure A27 shows the binned scatterplot of these
two estimates of win probabilities. Perhaps surprisingly, there is substantial mass of the self-score-
based win probabilities near zero and one. A lack of knowledge about one’s own score is thus
unlikely to explain why I observe so many developer applications with little chance of winning. A
remaining potential explanation is that applicants are less informed about their potential rivals than
my simulations assume.

B.7 Estimating the Marginal Willingness to Pay for New Rental Housing

This section introduces an econometric strategy for estimating the marginal willingness to pay
(MWTP) for new rental housing by location. It addresses a sample-selection problem as in
Heckman (1979): Rents on new units are only observed when new units are built, and construction
occurs when potential rents exceed construction costs.

Such sample selection introduces a bias in hedonic regressions of new-unit rents on location
characteristics. Failing to account for sample selection will cause hedonic regressions to sys-
tematically overstate potential new-unit rents in neighborhoods where no new rental units were
built.

Addressing such sample-selection concerns is of potentially substantial importance, as new
construction of rental units occurs in only 17 percent of Census tracts from 2010 to 2019. By
implication, the researcher must impute new-unit rents in 83 percent of tracts.

SelectionModel. Following Heckman (1979), I derive a bivariate-normal sample-selection model.
I then discuss the use of lagged construction activity as a proxy for local construction costs,
motivating its use a instrument for the selection correction. Consider the following model of the
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MWTP for rental housing of age 0 in location 8:

'8 (0) = x8#(0) + X(0)b8 + Y8 (0),

where G8 contains observable location characteristics, b8 is a time-invariant scalar unobservable for
the location, and Y8 (0) is an i.i.d. normal error term across locations and unit ages. The outcome
'8 (0) is the (log) rent for units of age 0 in location 8. The terms #(0) and X(0) are age-specific
coefficients on location characteristics and the time-invariant unobservable respectively.

Suppose there are two ages of units, new (0 = 1) and old (0 = 0). I implicitly remove the
time-invariant location unobservable term b8 by controlling for old-unit rents in the same location.46
This yields a MWTP for new units of

'8 (1) = x8 #̃ + X'8 (0) + Ỹ8 . (15)

I now show the selection problem. The MWTP for new rental housing '8 (1) is observed if and
only if it exceeds construction cost:

�8 (1) = 1['8 (1) ≥ �8 (1)],

as otherwise there is no new rental development in location 8. I model construction costs by age
and location as:

�8 (0) = x8$ + d(0)[8 + D8 (0),

where [8 is similarly a time-invariant cost of the location and D8 (0) is an i.i.d. normal error term
across locations and unit ages. This can be similarly rewritten as

�8 (1) = x8$̃ + d�8 (0) + D̃8 . (16)

Combining Equations 15 and 16, I obtain that the gap between rents and costs is

'8 (1) − �8 (1) = x8)1 + X'8 (0) − d�8 (0) − a8 .

Using the normality of the error terms, the expected value of this gap, conditional on new construc-

46This selection-correction approach will therefore only yield estimates of the MWTP in locations with some old
rental housing, as such rents are otherwise unobserved. This covers the vast majority of locations of interest. I impute
rents from nearby Census block groups for remaining missing observations.
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tion occurring in the location, is

E[a8 | �8 (1) = 1] = q( d̃�8 (0) + x8 )̃1 + X̃'8 (0))
Φ( d̃�8 (0) + x8 )̃1 + X̃'8 (0))

,

where coefficients with tildes indicate normalization by the selection model’s scale coefficient.
This model predicts that, observed new-unit rents are positively selected on the error term

when new rental units are observed. Such sample-selection bias will be strongest when a location
has characteristics that predict the absence of construction. It is thus of particular relevance for
estimating theMWTP for subsidized development, which is less constrained by ex-ante profitability.
Using bivariate normality, we obtain that

E['8 (1) |G8, '8 (0), �8 (0)] = x8 #̃ + X'8 (0) + _
q( d̃�8 (0) + x8 )̃1 + X̃'8 (0))
Φ( d̃�8 (0) + x8 )̃1 + X̃'8 (0))

, (17)

where _ is a coefficient on the selection-correction term.

Results. Nonparametric identification of the parameters (#, X, _) requires a selection instrument.
Supply-side variables are natural instruments in this context, and the model above motivates lagged
construction costs�8 (0) for this purpose. In equilibrium, such costs should affect rents on new units
only as a proxy for current construction costs. Formally, the instrument requires the exogeneity
assumption that

E[Ỹ8 (1)D8 (0) |x8, '8 (0)] = 0,

implying that lagged construction costs are unrelated to current MWTP for new units conditional
on location characteristics G8 and current rents '8 (0) on old units. This instrument will be relevant
to the extent that there is a persistent component of construction cost, as in the model above. In
particular, I use the log count of rental units built before 1989 in the locality.

I estimate Equation 17 by the Heckman (1979) two-step approach, bootstrapping over both
steps so as to obtain standard errors of correct size. I use data at the Census tract level. For greater
data availability, I use log median rents across all units in the tract, rather than exclusively old units
as in '8 (0). I instrument for the selection-correction term with the following four variables: the
shares of rental units built in the tract from 1990 to 1999 and from 2000 to 2009, along with binary
indicators for whether any rental units in the tract were built in these intervals.

Appendix Table A7 reports the results. Column 1 shows that a tract’s new unit rents are closely
predicted by the rents on older units in the same tract. Column 2 includes the selection correction,
instrumented using lagged construction. Columns 3 and 4 augment this specification with tract
characteristics and with state fixed effects. In particular, the characteristics are: log population
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density, age shares of population (less than 18, 18–34, 35–64, 65 and over), racial/ethnic shares
of population (non-Hispanic white, non-Hispanic black, Hispanic, Asian, other), and educational-
attainment shares of population (less than high school, high-school graduate and some college,
bachelor’s degree and up), log median household income, and the housing-unit vacancy rate.

Across specifications, the coefficient on selection-correction term is statistically significant, and
the instruments are strong. The estimates imply an average selectivity bias of 6 to 10 percentage
points in extrapolating from tracts with new rental units to tracts without them. The selectivity bias
falls sharply when I include a powerful predictor of selection as a control: the log count of rental
units built in the tract before 1989. Overall, the results suggest that sample-selection concerns
are of considerable importance in estimating MWTP for new rental housing. Failing to account
for sample selection would have otherwise led to overestimates of MWTP and therefore of tenant
incidence.

Regulated Rents. To calculate LIHTC rent discounts, I also require regulated rents. Federal
regulations specifymaximum rents in terms of fractions of AMI: For instance, the federal maximum
rent for LIHTC units is that they are “affordable” (i.e., no more than 30 percent of income) for a
household making 60 percent of the area median. The maximum monthly rent is thus 1.5 percent
(0.6 · 0.3/12 = 0.015) of AMI. I use HUD data on Area Median Incomes (AMI) in 2019, aligning
with the central ACS year for market rents.

There is a specific AMI for each household size, whereas rents are set in terms of a unit’s
number of bedrooms. HUD’s conversion rule is 1.5 persons per bedroom: A one-bedroom unit’s
regulated rent is computed by averaging the AMI levels of a one- and two-person household, for
instance, whereas a two-bedroom unit’s rent reflects the AMI level of a three-person household.47
These steps yield rent levels for units by numbers of bedrooms in each HUD geography. I project
the data to the tract level using ACS data on the distribution of numbers of bedrooms in rental units
by tract. I use this approach to calculate an average federal maximum rent in LIHTC units by tract
that would be allowed at 100% AMI, and then I adjust using the actual limits in my application
data, which are specified as fractions of AMI.

B.8 Imputing Counterfactual Tenant Incomes

I estimate the distribution of LIHTC tenant incomes using property-level data from HUD (Table
8 of the 2019 LIHTC Tenant Data release). These data contain property-level medians as well as
household shares with annual incomes in the following ranges: $0 to $5,000; $5,000 to $10,000;
$10,000 to $15,000; $15,000 to $20,000; $20,000 and up. The income shares are extensively
censored for privacy.

47See https://www.huduser.gov/portal/datasets/il.html#faq_2023.
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I model the property-level income distributions as normal: H81 ∼ N(`1, f1). In particular, I
use median incomes to estimate the two parameters:

`1 = U + V ·MedInc1
f1 = W + X ·MedInc1 .

I obtain estimates of the parameters by method of moments, in particular by minimizing the sum
of square residuals between actual and predicted shares when reported.

For counterfactual tenants, I take the estimatedmarket rents from above, and I find the household
income distribution in ACS data that corresponds to that rent. In particular, I use ACSTable B25122
from the 2021 5-year ACS tabulation, which is centered on 2019. This table contains the joint
distribution of household income and gross rent by Census tract. I am therefore able to leverage
geography as well as the rent level to construct a counterfactual.

C Theoretical and Structural Appendix

C.1 Identification

Nonparametric identification of the developer primitives in the model poses three issues. First,
winners and losers may be selected by the government using information that is not directly
observable to the economist but may be known by the developers themselves. Second, applicants
self-select into participation from a pool of potential applicants. Third, there are both permanent
and transitory unobservable characteristics of developers that must be disentangled.

Let B denote the observable component of the developer’s state, and let b and Y respectively
denote the permanent and transitory unobservables. The primitives to be identified are: (1)
application flow payoffs Π� (0, B, b), (2) building flow payoffs Π� (1, B, b), (3) the distribution of
permanent unobservables �b (·|B), and (4) the distribution of transitory unobservables �Y (·|B, b).
The unobservable distributions may depend flexibly on the observable state B and, for the transitory
unobservables, the permanent unobservable b. As applying and building are binary choices, let
ΔΠ� (B, b) = Π� (1, B, b) − Π� (0, B, b) and ΔΠ� (B, b) = Π� (1, B, b) − Π� (0, B, b).

The data for each application are the grant assignment,8C , the win probability ?8C , observables
B8C , and the development choice �8C for losers. Non-applicants are not observed at the level
of individual (potential) applications, but instead the economist has counts of applications by
characteristics.

Step 1: Selection of Winners. The first step of the identification argument is to use the random
assignment of grants conditional on ?8C to address selection into winning. In particular, consider
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the probability of development after applying and losing:

Pr(�8C = 1 | B, �8C = 1,,8C = 0) =
∫

�Y (ΔΠ� (B, b) | B, b) 3�b (B | �8C = 1,,8C = 0). (18)

A naive attempt to estimate Π� (B, b) using the building probabilities of losing applicants would be
confounded by both selection of winners and self-selection into application. In particular, selection
generates covariance between B and E[b |B, �8C = 1,,8C = 0].

The win probability ?8C balances winners and losers on the unobservables (b, Y). Letting
B′ = (B, ?), Equation 19 becomes

Pr(�8C = 1 | B′, �8C = 1) =
∫

�Y (ΔΠ� (B′, b) | B′, b) 3�b (B′ | �8C = 1). (19)

Within sets of B′, winners and losers are balanced on b. However, applicants remain unrepresentative
of the population distribution of �b (B′). Insofar as the distribution of b depends upon B′, self-
selection still generates covariance between B′ and E[b |B′, �8C = 1,,8C = 0], confounding estimation
of Π� (B, b).

Step2: Self-Selection ofApplicants. I overcome the self-selection issue through an “identification-
at-infinity” argument as in Heckman (1990). I use shocks to the grant generosity as a selection
instrument. In particular, I rely on an argument I of B′(I) such that limI→∞ %(�8C = 1 | B(I)) = 1
for all I. Within such limit sets of B′(I), I have that

lim
I→∞

Pr(�8C = 1 | B′(I)) =
∫

�Y (ΔΠ� (B′, b) | B′, b) 3�b (B′). (20)

Winners and losers are therefore balanced on b, and applicants are representative of the population
�b (B).

Step 3: Permanent and Transitory Unobservables. It remains to distinguish the respective
distributions �Y and �b of permanent and transitory unobservables. To do so, I first note that we
can similarly express the application probability as

Pr(�8C = 1 | B′) =
∫

�Y (ΔΠ� (B′, b) | B′, b) 3�b (B′). (21)

I use the panel structure of the data, along with a support restriction on b, to obtain identification.
Following Bonhomme (2012) and Arellano and Bonhomme (2011), I assume that �b (B′) has finite
points of support. To apply their arguments, I define several objects.

Let %H |B′ be a matrix with columns of application probabilities Pr(�8C = 1 | B′) and of building
probabilities Pr(�8C = 1 | B′) at each state B′. In addition, let �(B′,b) (\) be a matrix of probabilities
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Pr(�8C = 1 | B′, b) and Pr(�8C = 1 | B′, b) that also condition on the persistent unobservable b, given
some value of the structural parameters \. Finally, let �b (B′) be the probabilities of each value of
the permanent unobservable b given the observable state B′, as above.

Then, for all B′, we have that

%H |B′ = �(B′,b) (\)�b (B′),

which, following Bonhomme (2012), generates the restrictions on \:

{� − �(B′,b) (\) [�(B′,b) (\)′�(B′,b) (\)]−1�(B′,b) (\)}%H |B′ = 0.

An alternative path to identification is to require that the distribution of permanent unobservables
�b does not depend on B′.

Further Points. I now discuss three remaining issues for identification.
The first issue is distinguishing win values c1(B, b) from entry costs ^(B, b), which are both

contained within Π� (0, B, b). I use the bid-inversion moments for this purpose. Another route to
identification, however, would be an instrument for the win probability that is excluded from either
c(B, b) or ^(B, b) or from both.

The second issue is the joint distribution of the application and building errors within �Y,
or similarly for the components of �b . In principle, these could be identified by the response
of private development to the generosity instrument. Intuitively, the errors in �Y are positively
correlated if marginal applicants are less likely to develop privately upon losing than observably-
similar inframarginal applicants. The cross-sectional relationship between win probabilities and
development choices is also informative about these joint distributions.

The third issue is the distinction between state dependence and unobservable heterogeneity.
“Excess support” from a longer panel dimension can provide the necessary identifying variation,
under an assumption that the process governing state dependence is shorter than the panel. Another
path to identification is identification-at-infinity argument. When a developer will never build
without subsidy, the impact on the value function from the shift in the outside option, c0(s8C (ℎ8C =
1)) − c0(s8C (ℎ8C = 0)), is zero. Outside of this limit set, developers can benefit from the effect of
applying on their post-application outside option.

C.2 Estimation Details

Parametric Policy Iteration. I present my implementation of PPI in detail, following Sweeting
(2013).

Let %̂� (0, s8C) be an initial estimate of the developer’s application probability from the state s8C ,
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Pr(�8C = 0 | s8C). Similarly, let %̂� (1, s8C) be an initial estimate of the building probability.48 Using
Equation 2 and these initial choice probabilities, I will compute the unconditional expectation of
the developer’s application value function as

+̄ � (s8C) =
∑
0

%̂� (0, s8C)
[
Π̃� (0, s8C) + VE[+̄ � (s8C+1)

�� s8C , �8C = 0]] , (22)

where Π̃� (0, s8C) = Π� (0, s8C) + E[Y�8C (0) | s8C , �8C = 0]. Under the distributional assumptions on
errors, E[Y�

8C
(0) | s8C , �8C = 0] = f0 (W − log Pr(�8C = 0 |s8C)), where W is Euler’s constant.

The first step of PPI, termed “policy valuation” in Rust (2000), computes the expected value
function +̄ � (s8C) under a given set of choice probabilities through a regression-based approximation.
To set up the regression, let the vector �̄% collect the expected payoffs at each state: �̄% =

E% [Π̃� (0, s8C)] =
∑
0 %̂

� (0, s8C)Π̃� (0, s8C), integrating over application choices. I then assume the
application value function can be approximated by basis functions q: (·) of the state:

+̄ � (s8C) ≈
 ∑
:=1

_:q: (s8C) = �8C,,

where I let �8C = �(s8C), and where _: is a coefficient on the :th basis function. I use quadratic
polynomials of the state variables as basis functions. Using this approximation and Equation 22,
the application value function can be represented by

�8C, = �̄% + VE% [�8C+1],,

with E% [�8C+1] collecting the  entries of E% [q: (s8C+1) | s8C].
Let the matrix � stack the basis-function vector �8C across individuals and periods. If there

were exactly  unique states, equal to the number of basis functions, one could obtain coefficients
, on the basis functions by (� − VE% [�])−1�%. In the typical (overidentified) case, the number
of unique states exceeds the number of basis vectors, and estimates of , can be obtained by

,̂ = ((� − VE% [�])′(� − VE% [�]))−1(� − VE% [�])′�%

which are the coefficients from an OLS regression of �̄% on the matrix � − VE% [�].
To complete the policy-valuation step, I use the estimates ,̂ to approximate the continuation

value functions by F̂V(0, s8C) ≈ E[+ � (s8C+1) | s8C , �8C = 0]. In particular,

F̂V(0, s8C) = E[�8C+1 | s8C , �8C = 0],̂.

48I initialize the choice probabilities using the predicted values of a flexible logit model on tract-level observables.
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Using these continuation values, I form the choice-specific values of applying and not applying:

+ � (0 = 1, s8C) = Π� (0, s8C) + V(1 − ?8C)F̂V(1, s8C)
+ � (0 = 0, s8C) = %̂� (1, s8C+1)) [c0(B8C+1) + � [Y�8C (1) |1 = 1]] + [1 − %̂� (1, s8C+1)]F̂V(1 = 0, s8C),

where, with some misuse of notation, F̂V(1 = 0, s8C) = E[�8C+1 | s8C , �8C = 0],̂. By Equations 4 and
5, I can also form choice-specific values for the building decision:

+� (1 = 1, s8C) = c0, +� (1 = 0, s8C) = F̂V(1 = 0, s8C).

In the second step of PPI, termed “policy improvement,” I use the choice-specific values to update
the choice probabilities. In particular,

%̂� (0, s8C) = Λ
(
f−1
0 [+ � (1, s8C) −+ � (0, s8C)]

)
and %̂� (1, s8C)) = Λ

(
f−1
1 [+

� (1, s8C) −+� (0, s8C)]
)

where the logistic function is Λ(·) = exp(·)/(1 + exp(·)).
The iteration can now proceed. I use the probabilities from the latest policy-improvement step

to recompute the policy-valuation step, iterating until the choice probabilities converge.

Sampling. A challenge in estimation is that applying for the LIHTC is rare. Each year, approxi-
mately three percent of tracts have at least one application. To raise precision without an excessive
number of observations, either simulated or actual sdata, I over-sample tracts with applications and
then re-weight the sample.

For the actual data, I use choice-based sampling as in Manski and Lerman (1977). In particular,
I configure the sample so that I retain all tract–years with applications, and I randomly sample
tract–years without applications so that such observations represent one-fourth of the sample. In
estimating the model, I always match data moments weighted to reflect the choice-based sample.

The same problem also arises in the simulated data. Here I use importance sampling to raise
the application probability in the unweighted simulated data. To motivate my approach, note
that applications with a strongly positive value for the persistent unobservable b8 are likelier to
apply (Appendix Table A3). Instead of the standard normal, I therefore use b8 ∼ N(2, 1) and
construct simulation weightsl8 = q(b8)/q(b8−2), where q(·) denotes the standard normal density.
In practice, I find this roughly triples the unweighted application probability in the simulation,
improving model precision at lower counts of simulated observations.

Drawing Potential Applicants. In the simulation, each tract draws a potential applicant each year.
I first sample with replacement from the empirical distribution of tract–years, providing me with a
simulated joint distribution of tract characteristics.
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For each simulated potential application, I then take i.i.d. lognormal draws for the number
of units and the tax credit amount per unit. The parameters of the lognormal distribution are
estimated. This procedure abstracts away from correlation between application characteristics
and tract characteristics. In my context, however, a negligible share of variation in application
characteristics is explained by tract characteristics. This simplification is likely inconsequential.

I also randomly sample the persistent unobservable b8 and an indicator for whether the potential
applicant is a reapplicant. I set the share of potential reapplicants to 0.22, consistent with the
empirical share of applicants that are reapplicants. As I do not target this share as a moment, this
choice merely controls the relative precision of the data moments for application and reapplication.
I thusignore the “initial conditions” problem of Heckman (1981) in drawing independent samples
of potential-reapplication status, the persistent unobservable, and application and tract observable
characteristics.

Counterfactual 1: No LIHTC. I calculate the incidence of the LIHTC by computing a counter-
factual in which the LIHTC does not exist. I do so by setting win probabilities to zero and by
changing the structural parameters so that entry costs are arbitrarily large and win values are zero.

I find the new equilibrium rents and housing quantity as follows. From the model’s demand
side, I impose that Δ log Ā = 1

Y
Δ log�, where Ā is the average rent, inclusive of the LIHTC rent

savings, and � is the total housing stock. The log change Δ log Ā therefore accounts for both rent
savings and general-equilibrium effects.

On the supply side, I increment the intercept coefficient on the outside option until equilibrium
is reached. An important detail in this approach is that the market rent A< prevails in the outside
option, both before and after the LIHTC is eliminated. I therefore net out the value of the rent
savings from Δ log Ā in adjusting outside options. This adjustment results in the market rent A<

rising less in logarithmic terms than the average rent Ā .

Counterfactual 2: Stylized Voucher. I eliminate the LIHTC as above. I then introduce the
stylized voucher as a subsidy wedge between the rents facing the supply and demand sides of the
model. This is accomplished by incrementing pre-voucher rents until enough housing is produced
that, at the post-voucher rent, the model’s demand side wants to consume as much housing as it did
under the LIHTC. This approach also restores the same average rent Ā as under the LIHTC. In the
budget-balanced voucher counterfactual, I increment pre-voucher rents as above but stop when the
fiscal cost of the voucher equals the fiscal cost of the LIHTC.

51



References for Appendices

Andrews, Isaiah, Matthew Gentzkow, and Jesse M Shapiro, “Measuring the Sensitivity of
Parameter Estimates to Estimation Moments,” Quarterly Journal of Economics, 2017, 132 (4),
1553–1592.

Arellano,Manuel and Stéphane Bonhomme, “Nonlinear Panel Data Analysis,” Annu. Rev. Econ.,
2011, 3 (1), 395–424.

Baum-Snow, Nathaniel and Justin Marion, “The Effects of Low Income Housing Tax Credit
Developments on Neighborhoods,” Journal of Public Economics, 2009, 93 (5-6), 654–666.

Bonhomme, Stéphane, “Functional Differencing,” Econometrica, 2012, 80 (4), 1337–1385.

Davis, Morris A, Jesse Gregory, and Daniel A Hartley, “The Long-Run Effects of Low-Income
Housing on Neighborhood Composition,” Working Paper 2019.

Heckman, James, “Sample Selection Bias as a Specification Error,” Econometrica, 1979, 47 (1),
153–161.

, “An Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a
Discrete Time-Discrete Data Stochastic Process,” The Structural Analysis of Discrete Data,
1981, pp. 179–195.

, “Varieties of Selection Bias,” American Economic Review, 1990, 80 (2), 313–318.

Hendren, Nathaniel, “Private Information and Insurance Rejections,” Econometrica, 2013, 81 (5),
1713–1762.

Kapor, Adam J, Christopher A Neilson, and Seth D Zimmerman, “Heterogeneous Beliefs and
School Choice Mechanisms,” American Economic Review, 2020, 110 (5), 1274–1315.

Manski, Charles F and Steven R Lerman, “The Estimation of Choice Probabilities from Choice
Based Samples,” Econometrica, 1977, 45 (8), 1977–1988.

Manson, Steven M, “IPUMS National Historical Geographic Information System: Version 12.0,”
2017.

Rust, John, “Parametric Policy Iteration: An Efficient Algorithm for Solving Multidimensional
DP Problems?,” Working Paper 2000.

Semega, Jessica andMelissa Kollar, “Income in the United States: 2021,” Census Bureau Report
P60-276, 2022.

52



Sweeting, Andrew, “Dynamic Product Positioning in Differentiated Product Markets: The Effect
of Fees for Musical Performance Rights on the Commercial Radio Industry,” Econometrica,
2013, 81 (5), 1763–1803.

Wilson, Nicole E, Michael Hankinson, Asya Magazinnik, and Melissa Sands, “Inaccuracies in
Low Income Housing Geocodes: When and Why They Matter,” Urban Affairs Review, 2022.

53


	Introduction
	Setting and Data
	A Dynamic Model of Housing Markets
	Causal Effects of Tax Credit Awards
	Application Responses to Subsidy Generosity
	Bidding for Subsidies
	Structural Estimation
	Results and Counterfactuals
	Conclusion
	Additional Tables and Figures
	Supplemental Information
	Theoretical and Structural Appendix

