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Abstract

This paper studies identification for a wide range of nonlinear panel data models,

including binary choice, ordered repsonse, and other types of limited dependent variable

models. Our approach accommodates dynamic models with any number of lagged

dependent variables as well as other types of (potentially contemporary) endogeneity.

Our identification strategy relies on a partial stationarity condition, which not only

allows for an unknown distribution of errors but also for temporal dependencies in

errors. We derive partial identification results under flexible model specifications and

provide additional support conditions for point identification. We demonstrate the

robust finite-sample performance of our approach using Monte Carlo simulations, and

apply the approach to analyze the empirical application of income categories using

various ordered choice models.
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1 Introduction

This paper studies semiparametric partial identification of a wide range of panel data models

with limited dependent variables, including various discrete choice models, censored depen-

dent variable models, and nonseparable models. In particular, our approach accommodates

dynamic models with any number of lagged dependent variables as well as other types of

endogenous covariates.

To fix ideas, we start with the following dynamic binary choice model, which is on its

own of considerable theoretical and applied interest. Sections 3-6 generalize the approach to

other limited dependent variable models. Specifically, consider

Yit = 1{Z ′
itβ0 +X ′

itγ0 + αi + ǫit ≥ 0}, (1)

where Yit ∈ {0, 1} denotes a binary outcome variable for individual i = 1, 2, ... and time

t = 1, ..., T , while Zit ∈ Rdz denotes exogenous covariates, Xit ∈ Rdx denotes potentially

endogenous covariates, αi ∈ R denotes the unobserved fixed effect for individual i, and ǫit

denotes the unobserved time-varying error term for individual i at time t. The objective is

to identify the parameter θ0 := (β ′
0, γ

′
0)

′ using a panel of observed variables (Zit, Xit, Yit)it.

We focus on short panels, where the number of time periods T ≥ 2 is fixed and finite.

The identification of model (1) has been explored in the literature under various assump-

tions. For example, Chamberlain (1980) examines identification under the logistic distri-

bution of ǫit and the independence of ǫit with respect to (αi, {(Zit, Xit)}Tt=1). Subsequently,

Manski (1987) relaxes the distributional assumption and employs the following conditional

stationarity of ǫit to achieve identification:

ǫis | Zis, Zit, Xis, Xit, αi
d
∼ ǫit | Zis, Zit, Xis, Xit, αi for any s, t ≤ T. (2)

This condition is also referred to as “group stationarity” or “group homogeneity” and has also

been exploited in studies such as Chernozhukov et al. (2013), Shi, Shum, and Song (2018)

and Pakes and Porter (2022). Condition (2) does not impose parametric restrictions on the

distributions of ǫit and allows dependence between the fixed effect αi and the covariates

(Zit, Xit). However, condition (2) does impose substantial restriction on the dependence

between (Zit, Xit) and the time-varying error term ǫit: it effectively requires that all covariates

in (Zit, Xit) are exogeneous with respect to the time varying error ǫit.
1

In many economic applications, certain components of the observable covariates, namely

Xit, may exhibit endogeneity. For example, in a dynamic setting where Xit includes the

lagged outcome variable Yi,t−1, then endogeneity of Yi,t−1 with respect to ǫi,t−1 arises imme-

1For instance, suppose E[ǫit|Zis, Zit, Xis, Xit] = X ′

it
η, then the conditional distributions of ǫit and ǫis

cannot be the same as long as X ′

it
η 6= X ′

is
η, so condition (2) fails in general.
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diately. For another example, if Xit includes “price” or other variables that may be endoge-

nously chosen by economic agents, then the exogeneity restriction imposed by condition (2)

will again fail to hold.

We propose in this paper a general identification approach for various nonlinear panel

models in the presence of endogenous regressors, using the following “partial stationarity”

condition, which can be viewed as a weaker verision of the stationarity condition (2) above:

ǫis | Zis, Zit, αi
d
∼ ǫit | Zis, Zit, αi for any s, t ≤ T. (3)

Our partial stationary condition (3), as its name suggests, only requires that the errors are

stationary across time periods conditional on the realizations of a subvector of the covari-

ates (i.e., the exogenous covariates denoted by Z) while allowing the remaining covariates

(denoted by X) to be endogenous in arbitrary manners. In short, condition (3) imposes ex-

ogeneity conditions only on exogenous covariates. Alternatively, we can interpret condition

(3) as an assumption of the existence of some covariates being exogenous.2

We describe how to exploit the partial stationarity condition (3) to derive the identified

set on the model parameters θ0 through conditional moment inequalities, which take the

form of lower and upper bounds for the conditional distribution ǫit + αi | Zis, Zit, solely as

functions of observed variables and the model parameters θ0. We show that these bounds

must have nonzero intersections over time under the partial stationarity assumption, thereby

forming identifying restrictions for the parameter θ0.

While extensive work exists on nonlinear panel models under stationarity, previous stud-

ies typically focus on individual models. The identification strategies are often context

specific and the identification results may have various complicated representations, as seen

in studies such as Khan, Ponomareva, and Tamer (2023) and Pakes and Porter (2022). Our

approach offers the advantage of providing a simple and unified characterization of the iden-

tified set for a broad range of static and dynamic panel models, irrespective of the specific

types of variables (discrete/continuous outcome and covariates) and forms of endogeneity

(lagged/contemporary endogenous regressors). Furthermore, our strategy does not rely on

scalar-additive structures that are often imposed in various parametric and semiparametric

models, and can be further extended to accommodate nonseparable panel data models.

We demonstrate the sharpness of the identified set for binary choice models when the

support of Xit is finite. More precisely, we show that, for any θ that satisfies all the condi-

tional moment inequalities we derived, we can construct an observationally equivalent joint

distribution of the observed and unobserved variables in our model. While our main result

is about set identification, we also provide sufficient conditions for the point identification of

2Condition (3) also accommodates the standard stationarity assumption conditional on all covariates.
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the coefficients β0 on exogenous covariates (under scale normalization) as well as the signs

of the coefficients on endogenous covariates γ0.

Our identification strategy based on partial stationarity can be applied more broadly

beyond the context of dynamic binary choice models. We demonstrate its applicability

to other limited dependent variable models, such as ordered response models, multinomial

choice models, and censored outcome models. The results of our approach accommodates

both static and dynamic settings across all these models. Furthermore, we illustrate the

adaptability of our key strategy to nonseparable semiparametric models with endogeneity.

We characterize the identified set using a collection of conditional moment inequalities,

based on which estimation and inference can be conducted using established econometric

methods in the literature, such as Chernozhukov, Hong, and Tamer (2007), Andrews and Shi

(2013), and Chernozhukov, Lee, and Rosen (2013). Through Monte Carlo simulations, we

demonstrate that our identification method yields informative and robust finite-sample con-

fidence intervals for coefficients in both static and dynamic models.

Literature Review

Our paper contributes directly to the line of econometric literature on semiparametric

panel discrete choice models. Dating back to Manski (1987), a series of work exploits

“full” stationarity conditions for identification, such as Chernozhukov et al. (2013),

Khan, Ponomareva, and Tamer (2016), Shi, Shum, and Song (2018), Pakes and Porter

(2022), Khan, Ouyang, and Tamer (2021), Khan, Ponomareva, and Tamer (2023),

Gao and Li (2020), and Wang (2022). As discussed above, full stationarity condi-

tions given all observable covariates effectively require that all covariates are exogenous with

no dynamic effects (i.e., lagged dependent variables). In contrast, we exploit the “partial”

stationarity condition, thereby allowing for lagged dependent variables as well as other

endogenous covariates.

In the literature on dynamic discrete choice models, our paper is most closely related to

Khan, Ponomareva, and Tamer (2023, KPT thereafter), who studies the following dynamic

panel binary choice model

Yit = 1{Z ′
itβ0 + Yi,t−1γ0 + αi + ǫit ≥ 0}, (4)

where the one-period lagged dependent variable Yi,t−1 ∈ {0, 1} serves as the endogenous

covariate, and Zit are exogenous covariates. KPT exploits the following assumption:

ǫis | Zit, Zis, αi
d
∼ ǫit | Zit, Zis, αi for any s, t ≤ T.

which is exactly a “partial stationarity” condition in the specific context of (4), and derives
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the sharp identified set for θ0 by explicitly enumerating the realizations of the one-period

lagged outcome variable Yi,t−1 (across two periods t, s). In contrast, our model (1), along

with the “partial stationarity” condition, is stated with more general specifications of the

endogenous covariates Xit. The covariates Xit can include more than one lagged depen-

dent variables (e.g. Yi,t−1, Yi,t−2, ...) and other endogenous variables (such as “price” if Yit

represents the purchase of a particular product), which may be continuously valued. Con-

sequently, our identification strategy is substantially different from that of KPT, and can

be applied more broadly to various other dynamic nonlinear panel models. In the specific

model (4), we show that the identifying restrictions we derived are equivalent to those de-

rived in KPT and thus both approaches lead to sharp identification. Relatedly, Mbakop

(2023) proposes a computational algorithm to derive conditional moment inequalities in a

general class of dynamic discrete choice models (potentially with multiple lags). The focus

of Mbakop (2023) is on scenarios where the lagged discrete outcome variables are the only

endogenous covariates in the model, and the proposed algorithm relies on the discreteness

of these variables. Relative to these works, our paper introduces an analytic approach that

directly applies to a more general class of dynamic binary choice models, as well as other

types of models with continuous limited dependent variables and any number of endogenous

covariates, regardless of whether they are discrete or continuous and whether they take the

form of lagged outcome variables or not.

Our identification strategy relies on a type of stationarity condition, while alternative ap-

proaches utilize other notions of exogeneity. For example, Aristodemou (2021) exploits a type

of “full independence” assumption to identify dynamic binary choice models. The “full inde-

pendence” assumption essentially requires that the time-varying errors from all time periods

and the exogenous variables from all time periods are independent (conditional on initial

conditions), but does not make intertemporal restrictions on the errors (such as stationar-

ity”. Hence, such ‘full independence” assumption and the partial stationarity assumption

in our paper do not nest each other as special cases. Chesher, Rosen, and Zhang (2023)

applies the framework of generalized instrumental variables (Chesher and Rosen, 2017) to

the context of various dynamic discrete choice models with fixed effects, and utilizes a sim-

ilar “full independence” assumption (Aristodemou, 2021) for identification.3 More differ-

ently, some other papers work with sequential exogeneity in various dynamic panel mod-

3Our identification strategy shares some conceptual similarity with the idea of generalized instrumental
variable (GIV) in Chesher and Rosen (2017), who proposes a general approach for representing the identi-
fied set of structural models with endogeneity. Chesher and Rosen (2017), Chesher and Rosen (2020), and
Chesher, Rosen, and Zhang (2023) demonstrate how the GIV framework can be applied to various settings,
but focus mostly on the use of exclusion restrictions and/or full independence assumptions. In this paper, we
neither impose exclusion restrictions nor independence assumptions but instead explore identification under
a partial stationarity condition.
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els and provide (non-)identification results under different model restrictions. For exam-

ple, Shiu and Hu (2013) imposes a high-level invertibility condition along with a restriction

that rules out the dependence of covariates on past dependent variables. More recently,

Bonhomme, Dano, and Graham (2023) investigates panel binary choice models with a sin-

gle binary predetermined covariate under sequential exogeneity, whose evolution may depend

on the past history of outcome and covariate values. The sequential exogeneity condition

considered in these papers and the partial stationarity condition in ours again do not nest

each other as special cases: in particular, our current paper accommodates contemporarily

endogenous covariates that violate sequential exogeneity. In summary, the key assumptions,

identification strategy, and identification results of these studies are substantially different

from and thus not directly comparable to those in our current paper.

Our paper is also complementary to the line of literature that studies dynamic logit mod-

els with fixed effects for binary, ordered responses, or multinomial choice models. This litera-

ture typically assumes that time-varying errors are conditionally independent across time, in-

dependent from all other variables, and follow the logistic distribution. The logit assumption

in panel data models has long been studied, such as in Chamberlain (1984) and Chamberlain

(2010). In the context of dynamic discrete choice models, Honoré and Kyriazidou (2000) first

shows how to conduct differencing of fixed effects under the logit assumption, while recent pa-

pers by Honoré and Weidner (2020) and Dano (2023) illustrate how to systematically obtain

moment conditions free of fixed effects and time-varing errors. Honoré, Muris, and Weidner

(2021) extends the approach in Honoré and Weidner (2020) to dynamic ordered logit mod-

els. Meanwhile, Dobronyi, Gu, and Kim (2021) derives sharp identification for dynamic

logit models using a different approach based on truncated moments. Alternatively,

Honoré and Tamer (2006) proposes a linear programming method to obtain bounds on model

parameters and average marginal effects under logit and other parametric error distributions.

In addition, Davezies, D’Haultfoeuille, and Laage (2021) provides analytic bounds on aver-

age marginal effects in static logit models. Relative to this line of literature, our paper does

not require parametric (logistic) or conditional independence assumptions, and provides gen-

eral semiparametric identification results for various dynamic panel models.

The rest of the paper is organized as follows. Section 2 studies the sharp identification

of binary choice models with endogenous covariates. We provide sufficient conditions to

achieve point identification and explore two classic models: static and dynamic models.

Sections 3-5 apply the identification approach to ordered response models, multinomial choice

models, and models with censored dependent variables. Section 6 broadens the scope to

general nonseparable models. Section 7 presents simulation results about the finite-sample
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performances of our approach and Section 8 explores the empirical application of income

categories using various ordered response models. We conclude with Section 9.

2 Binary Choice Model

2.1 Model

In this section, we focus on the identification of dynamic binary choice models with endoge-

nous covariates. Specifically, consider the following binary choice model:

Yit = 1{Z ′
itβ0 +X ′

itγ0 + αi + ǫit ≥ 0}, (5)

where Yit ∈ {0, 1} denotes the binary dependent variable for individual i ∈ {1, 2, ...} and time

t ≤ T , Zit ∈ Rdz denotes exogenous covariates, Xit ∈ Rdx denotes potentially endogenous

covariates, αi ∈ R denotes the unobserved fixed effect for individual i, and ǫit denotes the

unobserved time-varying error term for individual i at time t. The objective is to identify

the parameter θ0 := (β ′
0, γ

′
0)

′ using a short panel of observed variables (Zit, Xit, Yit)it, where

the number of time periods T ≥ 2 is fixed and finite.

The identification of model (5) has been explored in the literature under various as-

sumptions.4 Specifically, Manski (1987) exploits the following conditional stationarity (also

referred to as “group homogeneity”) of ǫit to achieve identification:

ǫis | Zis, Zit, Xis, Xit, αi
d
∼ ǫit | Zis, Zit, Xis, Xit, αi for any s, t ≤ T. (6)

The above condition does not impose parametric restrictions on the distributions of ǫit and

allows for dependence of ǫit over time. However, condition (2) does impose substantial re-

striction on the dependence between (Zit, Xit) and the time-varying error ǫit. For instance,

suppose E[ǫit|Zis, Zit, Xis, Xit] = Z ′
itη1 + X ′

itη2, then condition (2) fails in general. Hence,

condition (2) can also be interpreted as a form of exogeneity condition on ǫit and all covari-

ates (Zit, Xit). Importantly, in a dynamic setting where Xit includes the lagged dependent

variable Yi,t−1, then condition (2) is no longer a justifiable assumption to work with.

Our paper aims to study identification of θ0 robust to endogeneity of Xit, where Xit can

be arbitrarily dependent with (αi, ǫit). Before introducing our assumptions, we first provide

several applications to illustrate this endogeneity.

Example 1 (Dynamic Models). Khan, Ponomareva, and Tamer (2023) studies the following

dynamic model with one lagged dependent variable:

Yit = 1{Z ′
itβ0 + Yit−1γ0 + αi + ǫit ≥ 0},

4See Section 1 for more detailed discussions on related literature.
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under the stationarity assumption only given exogenous covariates Zit: ǫis | Zis, Zit, αi
d
∼ ǫit |

Zis, Zit, αi. In this model, the full stationarity condition may naturally fail due to its dynamic

nature. For example, suppose ǫit is i.i.d. across time and independent of ({Zit}Tt=1, αi). Given

Zis = Zit = z, αi = a, it is clear that the conditional distribution of ǫit | Yit−1, Yit, z, a will be

different from ǫit+1 | Yit−1, Yit, z, a
d
∼ ǫit+1, since Yit is informative for ǫit.

Example 2 (Omitted Variable). Consider the true model is given as Yit = 1{Z ′
itβ0+X ′

itγ0+

Sitη0+αi+vit ≥ 0}, where vit is independent of (αi, {Zit, Xit, Sit}Tt=1). However, the variable

Sit is omitted and we instead estimate the following model:

Yit = 1{Z ′
itβ0 +X ′

itγ0 + αi + ǫit ≥ 0},

where ǫit = vit+Sitη0. The covariate Xit can be correlated with ǫit through the omitted vari-

able Sit, provided that the omitted variable Sit is correlated with Xit. Then the conditional

distribution of ǫit | (Zis, Zit, Xis, Xit, αi) may differ from ǫis | (Zis, Zit, Xis, Xit, αi) since the

distribution of Sit | Xit could be different from the distribution Sis | Xis when Xit 6= Xis.

Example 3 (Measurement Error). Consider the true model is given as Yit = 1{Z ′
itβ0 +

X∗′

it γ0 + αi + vit ≥ 0}, where vit is independent of
(

αi, {Zit, X
∗
it}

T
t=1

)

. However, the covariate

X∗
it may not be observed and we only observe its measurement Xit which may be subject

to a measurement error Xit = X∗
it + eit. Suppose we estimate the following model using the

measurement Xit as a regressor:

Yit = 1{Z ′
itβ0 +X ′

itγ0 + αi + ǫit ≥ 0},

where ǫit = vit − e′itγ0. The error term ǫit would be correlated with the measurement Xit

through the measurement error eit. Similarly, the conditional stationarity in (2) could fail

since Xit is informative for eit such that the conditional distribution of ǫit | z,Xis, Xit, αi

would vary over time given different covariates Xis 6= Xit while holding Zis = Zit = z.

Motivated by the above examples, this paper aims to establish identification of θ0, while

being robust to endogeneity of Xit with respect to unobserved factors (αi, ǫit). Below we

propose an approach that accommodates various types of endogeneity, regardless of whether

the endogenous covariates Xit are discrete lagged outcome variables (as in Example 1) or

continuously-valued covariates with contemporary endogeneity as in other examples. To

achieve this, we introduce the following partial conditional stationarity assumption:

Assumption 1 (Partial Stationarity). The conditional distribution of ǫit | Zis, Zit, αi is

stationary over time:

ǫis | Zis, Zit, αi
d
∼ ǫit | Zis, Zit, αi for any s, t ≤ T.

8



Assumption 1 only assumes the stationarity given the covariate (Zis, Zit), but does not

impose any restrictions on the endogenous covariate Xit. The standard full stationarity

condition (2) is nested in Assumption 1, and it is in general stronger than Assumption

1. The main distinction is that Assumption 1 allows Xit to be arbitrarily dependent with

both the fixed effect αi and the time-changing error ǫit. In addition, their correlation can

be different across time. Assumption 1 also shares similar features with condition (2), in

that it does not impose any distributional assumption on ǫit and allows ǫit to be correlated

across time. The standard i.i.d. assumption of ǫit across time or independence of ǫit with

(αi, Zit, Xit) are also nested in Assumption 1 as special cases.

2.2 Identification Strategy

We now explain our key identification strategy based on partial stationarity. While it applies

more generally, we first illustrate the key idea in the specific context of the dynamic binary

choice model. Sections 3-6 provide generalizations of the idea to various models.

Let vit := −(ǫit + αi), Wit := (Zit, Xit), and Wist := (Wis,Wit). The conditional choice

probability is given as follows:

Pr (Yit = 1 | Wist = wst) = Pr (vit ≤ w′
tθ0 | Wist = wst) .

When assuming all covariates are exogenous under condition (2), variation in the choice

probability is solely due to variation in the covariate index w′
tθ0.

5 Therefore, as shown in

Manski (1987), the identified set for θ0 is characterized by the condition: an increase in the

value of w′
tθ0 over time implies an increase in the choice probability over time.

However, Manski (1987)’s method is not applicable to our setting with Assumption 1,

given that the endogenous regressor Xit can be correlated with vit. When the covariate Xit

changes, the conditional distribution of vit might potentially change as well. Variation in the

choice probability contains a mixture of changes in the covariate index and the conditional

distribution of vit. Hence, it is not feasible to derive identifying restrictions on θ0 merely by

examining the intertemporal variation in the choice probability.

Our analysis relies on the partial stationarity condition in Assumption 1, which implies

the stationarity of vit given Zist := (Zis, Zit):

vis | Zist
d
∼ vit | Zist.

The identification strategy proceeds in two steps. We first derive lower and upper bounds

for the distribution of vit | Zist at each period t. The derived bounds at each period t are

5Condition 2 implies the stationarity of vit: vis | Wist

d
∼ vit | Wist.
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functions of observed variables and the parameter θ0. Since the distribution of vit | Zist is the

same over time, then the bounds of the distribution across time should have intersections.

This restriction serves as the identifying restriction for θ0. Next, we show how to derive

bounds on the distribution of vit | Zist.

Let Fvt|Wst
(· | wst) denote the conditional CDF of vit given Wist = wst. For any fixed

point a ∈ R, we first derive bounds for the conditional distribution Fvt|Wst
(a | wst), and

then establish bounds on Fvt|Zst
(a | zst) by taking expectation over the covariate Xist given

Zist = zst.

Lower bound. The conditional choice probability given Wist = wst is given as

Pr (Yit = 1 | Wist = wst) = Pr(vit ≤ w′
tθ0 | Wist = wst) = Fvt|Wst

(w′
tθ0 | wst).

For any fixed point a, by the monotonicity of a distribution, Fvt|Wst
(a | wst) can be

bounded below using the observed choice probability:

Fvt|Wst
(a | wst) ≥ Pr(Yit = 1 | Wist = wst)1{w

′
tθ0 ≤ a}.

The above inequality holds since either a is larger than the covariate index w′
tθ0 so we

know Fvt|Wst
(a | wst) ≥ Fvt|Wst

(w′
tθ0 | wst) or the right hand side is equal to zero when a is

smaller than w′
tθ0.

As Assumption 1 is on the distribution of vit given Zist, we can establish the lower bound

for Fvt|Zst
(a | zst) by taking expectation over covariates Xist given Zist = zst:

Fvt|Zst
(a | zst) ≥

∫

xst

Pr(Yit = 1 | Wist = wst)1{w
′
tθ0 ≤ a}dFXst|Zst

(xst | zst)

= Pr(Yit = 1, z′tβ0 +X ′
itγ0 ≤ a | zst).

The above lower bound only depends on observed variables (Wist, Yit) and θ0, so it is identified

up to the parameter θ0. This bound will help construct identifying restrictions on θ0.

Upper bound. The idea of constructing the upper bound is similar. For any a ∈ R,

the conditional distribution Fvt|Wst
can be bounded above:

Fvt|Wst
(a | wst) ≤ Pr(Yit = 1 | Wist = wst)1{w

′
tθ0 ≥ a}+ 1{w′

tθ0 < a}.

Then, taking expectation over covariates Xist given Zist = zst leads to the upper bound

for Fvt|Zst
(a | zst):

Fvt|Zst
(a | zst) ≤

∫

xst

{

Pr(Yit = 1 | Wist = wst)1{w
′
tθ0 ≥ a}+ 1{w′

tθ0 < a}
}

dFXst|Zst
(xst | zst)

= Pr(Yit = 1, z′tβ0 +X ′
itγ0 ≥ a | zst) + Pr(z′tβ0 +X ′

itγ0 < a | zst)

= 1− Pr(Yit = 0, z′tβ0 +X ′
itγ0 ≥ a | zst).

10



Given the lower and upper bound for the distribution Fvt|Zst
(a | zst), we are ready to

establish identifying conditions for θ0. Since Assumption 1 requires that vt | Zist
d
∼ vs | Zist,

it implies the upper bound for the distribution of vs | Zist must be larger than the lower

bound for the distribution of vt | Zist otherwise Assumption 1 cannot hold. This restriction

characterizes an identified set for θ0, presented in the following proposition.

Proposition 1. Under Assumption 1, an identified set ΘI,1 for θ0 is the set of parameters

that satisfy the following conditions:

1− Pr(Yis = 0, z′sβ +X ′
isγ ≥ a | zst) ≥ Pr(Yit = 1, z′tβ +X ′

itγ ≤ a | zst), (7)

for any a ∈ R, any s, t ≤ T , and any zst ∈ Rdz ×Rdz .

Proposition 1 characterizes an identified set for θ0, using the conditional joint distribution

of (Yit, Xit) given Zist across any pair of periods (s, t). The identification result allows for

endogeneity in the covariate Xist and does not rely on any excluded instruments.6

The identifying condition in (7) can be reformulated as conditional moment inequalities,

by substituting the probability Pr(Yit = 0, z′tβ0 + X ′
itγ0 ≥ a | zst) with the conditional

expectation E [1{Yit = 0, z′tβ0 +X ′
itγ0 ≥ a} | zst]. Consequently, the estimation and inference

for θ0 can be conducted using established methods such as Chernozhukov, Hong, and Tamer

(2007), Andrews and Shi (2013), and Chernozhukov, Lee, and Rosen (2013).

Remark 1. Our “partial stationarity” condition accommodates the “full stationarity” con-

dition (2) as a special case. Under full stationarity, or in other words, when all covariates

are exogenous, Proposition 1 specializes to the following “maximum-score-type” identifying

restrictions in Manski (1987):

w′
sθ0 ≥ w′

tθ0 ⇔ 1− Pr(Yis = 0 | wst) = Pr(Yis = 1 | wst) ≥ Pr(Yit = 1 | wst).

Remark 2. In the special case where the only endogenous covariate is one lagged outcome

variable, as studied in Khan, Ponomareva, and Tamer (2023), the identifying restrictions

yielded by Proposition 1 become

1− Pr(Yis = 0, z′sβ0 + Yi,s−1γ0 ≥ a | zst) ≥ Pr(Yit = 1, z′tβ0 + Yi,t−1γ0 ≤ a | zst),

for any a ∈ {z′tβ0, z
′
tβ0+γ0, z

′
sβ0, z

′
sβ0+γ0}. As shown in Appendix A.4, the above identifying

condition on θ0 implies the identifying conditions in Khan, Ponomareva, and Tamer (2023,

Theorem 1, p. 8-9), under different values of (z′sβ0, z
′
tβ0, γ0).

6When a sub-vector Zexc

it
of Zit is assumed to be excluded from the binary choice model, then the

identifying restriction in (7) is adjusted by setting the coefficient of Zexc
it

as zero: βexc
0 = 0.
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Proposition 1 does not impose restrictions on the support of the endogenous covariate

Xit, allowing it to be either discrete or continuous. When Xit is continuous, then Propo-

sition 1 requires condition (7) to hold for any a ∈ R so it exploits the whole distribution

information of (Xit, Yit) at any value a. For the estimation and inference of θ0, we can follow

the conventional inference method to discretize the space of R and pick Kn points for a. In

the case of discrete Xit, the dimension of a can be further reduced, and the identified set

ΘI,1 can be characterized by finite number of restrictions, shown in the following corollary.

Corollary 1. When the endogenous covariate Xit ∈ {a1, ..., aK} only takes finite number of

values, then the identified set ΘI,1 is the set of parameters θ that satisfy condition (7) for

any a ∈ {z′sβ + a′kγ, z
′
tβ + a′kγ}

K
k=1, any s, t ≤ T , and any zst ∈ Rdz ×Rdz .

Corollary 1 reduces the number of restrictions in Proposition 1 to 2K number of moment

restrictions for any pair of two periods s, t. For the dynamic model where Xit includes one

lagged dependent variable Xit = Yi,t−1 ∈ {0, 1}, there are only four conditional restrictions

for θ0. When Xit includes j lagged dependent variable Xit = (Yi,t−1, Yi,t−2, ...Yi,t−j), then

there will be 2j+1 restrictions.

We show that ΘI,1 is an identified set for θ0, however, it is still unclear whether condi-

tion (7) exploits all the available information for θ0. The following theorem establishes the

sharpness of the identified set ΘI,1 when Xit takes finite number of values.

Theorem 1 (Sharpness). Under Assumption 1, the identified set ΘI,1 is sharp when Xit

takes finite number of values for any t ≤ T .

Proposition 1 provides identification results without restrictions on the support of Xit,

and Theorem 1 shows that the results already exhausted all available information for θ0

when Xit only takes finite number of values. This results implies that for dynamic models

with any number of lagged dependent variables, the identified set ΘI,1 is the smallest set we

can obtain.

2.3 Point Identification

Proposition 1 characterizes the sharp identified set for θ0 by only imposing Assumption 1.

This section provides sufficient conditions to achieve point identification for β0 (up to scale)

and the sign of γ0 under support conditions on the exogenous covariate Zit. We focus on the

scenario where the endogenous covariate Xit is discrete Xit ∈ X = {a1, a2, ..., aK} and there

are only two periods T = 2.

To point identify β0, the first step is to determine the sign of the covariate index (Zi2 −

Zi1)
′β0 under certain variation of observed choice probability. To identify the sign of (Zi2 −

12



Zi1)
′β0, we define the following two sets:

Z1 :=
{

(z1, z2) | ∃x ∈ X s.t. 1− Pr(Yi1 = 0, Xi1 = x | z12) < Pr(Yi2 = 1, Xi2 = x | z12)
}

,

Z2 :=
{

(z1, z2) | ∃x ∈ X s.t. 1− Pr(Yi1 = 1, Xi1 = x | z12) < Pr(Yi2 = 0, Xi2 = x | z12)
}

.

Let Z := Z1 ∪ Z2. Let ∆Zi = Zi2 − Zi1 and ∆Z be defined as

∆Z :=
{

∆z := z2 − z1 | (z1, z2) ∈ Z
}

.

As shown in Appendix A.3, when ∆z satisfies ∆z ∈ ∆Z, the sign of ∆z′β0 is identified.

In the definition of the two sets Z1,Z2, we only need the existence of one value in the support

of X such that the choice probability in the two sets are observed. When observing such

choice probability, the sign of ∆z′β0 is identified. Then β0 can be identified up to scale under

the standard large support condition on ∆z.

Let ∆zj denote the jth element of ∆z. The following is the support condition on the

covariate.

Assumption 2 (Support Condition). (1) ∆Z is not contained in any proper linear subspace

of Rdz ; (2) for any ∆z ∈ ∆Z, there exists one element ∆zj
∗

such that βj∗
0 6= 0, and the

conditional support of ∆zj
∗

is R given ∆z \ ∆zj
∗

, where ∆z \ ∆zj
∗

denote the remaining

components of ∆z besides ∆zj
∗

.

Proposition 2. Under Assumptions 1-2, the parameter β0 is point identified up to scale.

We provide point identification for β0 with two periods T = 2. When there are more

than two periods, then we only require the existence of two periods, satisfying Assumption

2. As shown in Manski (1987), the large support assumption is necessary to point identify

β0, as without it, there exists some b 6= kβ0 such that ∆z′b has the same sign with ∆z′β0

when ∆z has bounded support.

The parameter γ0 in general can be only partially identified given potential endogeneity

of Xit and flexible structures on (αi, ǫit). Nevertheless, we can still bound the value (x1 −

x2)
′γ0 and identify the sign of γ0 under certain choice probabilities. We derive the sufficient

conditions to identify the sign of γ0.

Let xj denote the j-th element of x and γj
0 denote the j-th coefficient of γ0. We define

the following two sets:

Zj
3 :=

{

(z1, z2) | ∃x1, x2 ∈ X with xj
1 6= xj

2, x
m
1 = xm

2 ∀m 6= j s.t.

1− Pr(Yi1 = 0, Xi1 = x1 | z12) < Pr(Yi2 = 1, Xi2 = x2 | z12)
}

;

Zj
4 :=

{

(z1, z2) | ∃x1, x2 ∈ X with xj
1 6= xj

2, x
m
1 = xm

2 , ∀m 6= j s.t.

1− Pr(Yi1 = 1, Xi1 = x1 | z12) < Pr(Yi2 = 0, Xi2 = x2 | z12)
}

.
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From the identifying results in Proposition 1, the value of (xj
1 − xj

2)γ
j
0 can be bounded

when (z1, z2) belong to the two sets:

(z1, z2) ∈ Zj
3 =⇒ (xj

1 − xj
2)γ

j
0 < ∆z′β0,

(z1, z2) ∈ Zj
4 =⇒ (xj

1 − xj
2)γ

j
0 > ∆z′β0.

Then the sign of γj
0 is identified if either the sign of ∆z′β0 is identified as negative when

(z1, z2) ∈ Z2 or as positive when (z1, z2) ∈ Z1.

Proposition 3. Under Assumptions 1, and for any 1 ≤ j ≤ dx, either Zj
3 ∩ Z2 6= ∅ or

Zj
4 ∩ Z1 6= ∅, then the sign of γ0 is identified.

When the endogenous variable Xit is a scalar, e.g., the lagged dependent variable

Xit = Yi,t−1, then the definition of the two sets Zj
3 ,Z

j
4 can be simplified as there exist-

ing x1 6= x2 such that the corresponding choice probability is observed. Besides the sign of

γ0, the identification results can also bound the value of γ0 from variation in the exogenous

covariates.

When Xit is multi-dimensional such as including two lagged dependent variable Xit =

(Yi,t−1, Yi,t−2) with γ0 = (γ1
0 , γ

2
0), then γ1

0 is identified when the required choice probability

in the two sets Z1
3 ,Z

1
4 are observed for (Yi,1, Yi,0) = (1, 1), (Yi,2, Yi,1) = (0, 1) or (Yi,1, Yi,0) =

(0, 0), (Yi,2, Yi,1) = (1, 0). We provide general sufficient conditions to identify the sign of γ0,

which may be stronger than necessary and can be relaxed in certain scenarios. For example,

when we know that γ1
0 + γ2

0 > 0 while γ1
0 < 0, we can infer that γ2

0 > 0 without requiring

additional assumptions on the two sets Z2
3 ,Z

2
4 .

3 Ordered Response Model

3.1 Model and Identification

Consider a setting where the outcome variable Yit is discrete and takes J values: Yit ∈

{y1, .., yJ}. For example, Yit can be different categories of income, health outcomes, or

educational attainment. We study the following panel ordered response model:

Y ∗
it = Z ′

itβ0 +X ′
itγ0 + αi + ǫit,

Yit =

J
∑

j=1

yj1{bj < Y ∗
it ≤ bj+1},

(8)

where Y ∗
it denotes the latent dependent variable, b1 = −∞, bJ+1 = +∞, and the remaining

threshold parameters bj (where bj ≤ bj+1) can be either known or unknown for 2 ≤ j ≤ J−1.

The binary choice model in (1) is nested with J = 2 and b2 = 0. Similar to model (1), Xit
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is the potentially endogenous covariate that can be arbitrarily dependent on (αi, ǫit), such

as the lagged dependent variable Yi,t−1, while Zit is the exogenous covariate that satisfies

Assumption 1:

ǫis | Zis, Zit, αi
d
∼ ǫit | Zis, Zit, αi for any s, t ≤ T.

We now show how our key identification strategy based on partial stationarity can also

be exploit to partially identify θ0. Similar to Section 2, we still seek to establish both lower

and upper bounds for the distribution Fvt|Zst
(a | zst), where vit := ǫit + αi. The distinction

is that in the ordered choice setting we can obtain J different (upper and lower) bounds,

which can then be aggregated over to form tighter bounds as shown below.

1. Lower bound. By the monotonicity of a distribution, we first derive a lower bound

for the distribution vt | wst conditional on all covariates Wist = wst, given as

Fvt|Wst
(a | wst) = Pr(vt ≤ a | wst)

≥ Pr(vt ≤ bj+1 − w′
tθ0 | wst)1{bj+1 − w′

tθ0 ≤ a},

where the above lower bound holds for any choice j ≤ J . Since the interval (−∞, bj+1−w′
tθ0]

can be expressed as the union of multiple intervals: (−∞, bj+1−w′
tθ0] =

j
⋃

k=1

(bk−w′
tθ0, bk+1−

w′
tθ0], the above lower bound can be also written as

Fvt|Wst
(a | wst) ≥

j
∑

k=1

Pr(bk − w′
tθ0 < vt ≤ bk+1 − w′

tθ0 | wst)1{bj+1 − w′
tθ0 ≤ a}

=

j
∑

k=1

Pr(Yit = yk | wst)1{bj+1 − w′
tθ0 ≤ a},

for any j ≤ J . Fixing the constant a, there exists a maximum choice j∗a, defined as j∗a :=

max{j : bj+1 − w′
tθ0 ≤ a}. Then, the largest lower bound is the sum of choice probabilities

up to the maximum choice j∗a :

Fvt|Wst
(a | wst) ≥

j∗a
∑

k=1

Pr(Yit = yk | wst)1{bj∗a+1 − w′
tθ0 ≤ a}.

An equivalent expression for this lower bound is given as:

Fvt|Wst
(a | wst) ≥

J
∑

j=1

Pr(Yit = yj | wst)1{bj+1 − w′
tθ0 ≤ a},

as the indicator function is zero 1{bj+1 − w′
tθ0 ≤ a} = 0 for any choice j > j∗a.

2. Upper bound. Similarly, we can derive the upper bound for Fvt|wst
(a | wst) using
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the sum of conditional choice probabilities, given as follows:

Fvt|Wst
(a | wst) = 1− Pr(vt > a | wst)

≤ 1−
J
∑

j=1

Pr(bj − w′
tθ0 < vt ≤ bj+1 − w′

tθ0 | wst)1{bj − w′
tθ0 ≥ a}

≤ 1−
J
∑

j=1

Pr(Yit = yj | wst)1{bj − w′
tθ0 ≥ a}.

Then, the upper bound for the distribution Fvt|zst(a | zst) is derived as follows by taking

expectation over covariate Xist given zst:

Fvt|zst(a | zst) ≤ 1−
J

∑

j=1

Pr(Yit = yj, bj − z′tβ0 −X ′
itγ0 ≥ a | zst).

Given the established lower and bounds on the distribution of vt | zst, an identified set

for θ0 is characterized in the following proposition.

Proposition 4. Under Assumption 1, the identified set ΘI,2 for θ0 is the set of parameters

θ that satisfy the following conditions:

1−
J

∑

j=1

Pr(Yis = yj, bj − z′sβ −X ′
isγ ≥ a | zst) ≥

J
∑

j=1

Pr(Yit = yj, bj+1 − z′tβ −X ′
itγ ≤ a | zst),

(9)

for any a ∈ R, any s, t ≤ T , and any zst ∈ Rdz ×Rdz .

Proposition 4 characterizes the identified set for θ0 for the general ordered response

model with potential endogeneity. This result allows for both static and dynamic models, as

discussed in Section 3.2. In comparison to the binary choice model, Proposition 4 aggregates

information from all J ordered responses across different time periods to identify θ0. When

there are only two choices (J = 2), this result simplifies to the identifying condition (7) in

Proposition 1, with y1 = 0, y2 = 1 and changing a to −a. Again, the result in Proposition 4

accommodates both discrete and continuous endogenous covariates. When the endogenous

Xit only takes a finite number of values, such as lagged dependent variable, we can reduce

the number of restrictions in Proposition 4 to a finite number, as shown in the next corollary.

Corollary 2. Under Assumption 1 and Xit only takes finite number of values Xit ∈

{a1, ..., aK}, the identified set ΘI,2 is the set of parameters θ that satisfy condition (9) for

any a ∈ Q2 := {bj − z′sβ − a′1γ, ..., bj − z′sβ − a′Kγ, bj − z′tβ − a′1γ, ..., bj − z′tβ − a′Kγ}
J
j=2, any

s, t ≤ T , and any zst ∈ Rdz ×Rdz .

Similar to Corollary 1, Corollary 2 reduces the number of conditional moment inequalities

to 2K×(J−1) numbers for any pair of two periods. For the dynamic model with one lagged
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dependent variable Xit = Yi,t−1 ∈ {y1, ..., yJ}, then there will be 2J(J − 1) number of

restrictions.

3.2 Applications

In this section, we apply the results in Proposition 4 to explore two panel ordered choice

model. The first one examines a static model where all covariates are exogenous, while

the other studies a dynamic model with one lagged dependent variable. To the best of our

knowledge, these two scenarios have not been explored in the literature within the framework

of the stationarity assumption.

Static model: we consider a static model where Assumption 1 holds conditional on all

covariates Wist. The identifying restriction in Proposition 4 is given as

1−
J
∑

j=1

Pr(Yis = yj | wst)1{bj − w′
sθ0 ≥ a} ≥

J
∑

j=1

Pr(Yit = yj | wst)1{bj+1 − w′
tθ0 ≤ a}.

We can further simplify the above condition by getting rid of the parameter a and trans-

form it into finite number of conditional moment inequalities. The following lemma presents

the identified set for ΘI,2 for this static model.

Lemma 1. Assume that ǫis | (Wist, αi)
d
∼ ǫit | (Wist, αi), the identified set ΘI,2 for θ0 is the

set of parameters θ that satisfy the following conditions:

bj1+1 − w′
sθ ≥ bj2+1 − w′

tθ =⇒

j1
∑

j=1

Pr(Yis = yj | wst) ≥

j2
∑

j=1

Pr(Yit = yj | wst),

for any 1 ≤ j1, j2 ≤ J − 1, s, t ≤ T , and wst ∈ Rd ×Rd.

In the static model, variation in conditional choice probability only comes from changes

in the covariate Wit. Thus, we can directly establish the relationship between the variation

in choice probability and the changes in covariates over time, eliminating the parameter a.

Different from the binary choice model, the results in Lemma 1 also exploit intertemporal

variation in the sum of multiple choices rather than investigating a single choice. Moreover,

we can utilize variations in the sum of different choices across various periods to identify θ0.

Besides the static model, the results in Proposition 4 can also be applied to study a

dynamic ordered response model, where people’s choice at the current period (t) can depend

on their choice in the last period (t− 1).

Dynamic model: consider the following dynamic ordered response model with one
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lagged dependent variable:

Y ∗
it = Z ′

itβ0 + Yit−1γ0 + αi + ǫit,

Yit =

J
∑

j=1

yj1{bj < Y ∗
it ≤ bj+1}.

In this example, the endogenous covariate is the lagged dependent variable Xit = Yit−1 ∈

{y1, ..., yJ}. The identifying restriction in Proposition 4 is presented as follows:

1−
J
∑

j=1

Pr (Yis = yj, bj − z′sβ − Yis−1γ ≥ a | zst)

≥
J

∑

j=1

Pr (Yit = yj, bj+1 − z′tβ − Yit−1γ ≤ a | zst) ,

for any a ∈ {bj − z′sβ − y1γ, ..., bj − z′sβ − yJγ, bj − z′tβ − y1γ, ..., bj − z′tβ − yJγ}Jj=2.

For the dynamic model, the identified set ΘI,2 is characterized by 2J(J − 1) number of

conditional inequalities for any pair of two periods (s, t). This approach can also allow for

dynamic models with more than one lagged dependent variable, such as Xit = (Yi,t−1, Yi,t−2).

Furthermore, it can accommodate dynamic models that allow for heterogeneous effects from

different choices in the last period, as given below:

Y ∗
it = Z ′

itβ0 +

J
∑

j=2

1{Yit−1 = j}γ0,j + αi + ǫit.

3.3 Point Identification

This section provides sufficient conditions to achieve point identification for β0 (up to scale)

and the sign of γ0. Similar to Section 2.3, we still focus on the scenario where the endogenous

covariate Xit only takes finite number of values Xit ∈ X = {a1, a2, ..., aK}, and we illustrate

the concept using two periods (T = 2).

To identify β0, we define the following two sets:

Z1,order :=
{

(z1, z2) |∃x ∈ X , 2 ≤ k ≤ J s.t.

1−
J
∑

j=k

Pr(Yi1 = yj, Xi1 = x | z12) <
k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x | z12)
}

;

Z2,order :=
{

(z1, z2) |∃x ∈ X , 2 ≤ k ≤ J s.t.

1−
k−1
∑

j=1

Pr(Yi1 = yj, Xi1 = x | z12) <
J
∑

j=k

Pr(Yi2 = yj, Xi2 = x | z12)
}

.
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Let Zorder := Z1,order ∪ Z2,order. Let ∆Zi = Zi2 − Zi1 and ∆Zorder be defined as

∆Zorder :=
{

∆z := z2 − z1 | (z1, z2) ∈ Zorder

}

.

Assumption 3 (Support Condition). (1) ∆Zorder is not contained in any proper linear

subspace of Rdz ; (2) for any ∆z ∈ ∆Zorder, there exists at least one least one element ∆zj
∗

with βj∗
0 6= 0, and the conditional support of ∆zj

∗

is R given ∆z \ ∆zj
∗

, where ∆z \ ∆zj
∗

denote the remaining components of ∆z besides ∆zj
∗

.

Proposition 5. Under Assumptions 1 & 3, the parameter β0 is point identified up to scale.

Similar to Proposition 2, the strategy is to first identify the sign of ∆z′β0 from certain

variation in the choice probability, as defined in the two sets (Z1,order,Z2,order). Given the

sign of ∆z′β0 is identified, then the parameter β0 is point identified up to scale under the con-

ventional large support condition on ∆z. For the static model (with γ0 = 0), all coefficients

β0 are point identified under the support condition.

To identify the sign of γ0, we define the following two sets: for j ≤ dx,

Zj
3,order :=

{

(z1, z2) |∃x1, x2 ∈ X with xj
1 6= xj

2, x
m
1 = xm

2 ∀m 6= j, ∃2 ≤ k ≤ J s.t.

1−
J

∑

j=k

Pr(Yi1 = yj, Xi1 = x1 | z12) <
k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x2 | z12)
}

;

Zj
4,order :=

{

(z1, z2) |∃x1, x2 ∈ X with xj
1 6= xj

2, x
m
1 = xm

2 ∀m 6= j, ∃2 ≤ k ≤ J s.t.

1−
k−1
∑

j=1

Pr(Yi1 = yj, Xi1 = x1 | z12) <
J
∑

j=k

Pr(Yi2 = yj, Xi2 = x2 | z12)
}

.

Proposition 6. Under Assumptions 1, and for any 1 ≤ j ≤ dx, either Z
j
3,order ∩Z2,order 6= ∅

or Zj
4,order ∩ Z1,order 6= ∅, then the sign of γ0 is identified.

For the dynamic model with one lagged dependent variable Xit = Yi,t−1, then the joint

choice probabilities defined in the two sets Zj
3,order,Z

j
4,order can be simplified as taking dif-

ferent values for the lagged dependent variable: Yi0 = yj1, Yi1 = yj2 with yj1 6= yj2. The

identifying restriction in Proposition 4, in general, can bound the value of (yj − yk)γ0 using

the variation in Zit. Proposition 6 ensures that its bound excludes zero for some (yj, yk),

thereby identifying the sign of γ0. When there are more than two periods (T > 2), then

point identification of β0 and the sign of γ0 is achieved when there exists two periods such

that the assumptions are satisfied.
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4 Multinomial Choice Model

4.1 Model and Identification

This section applies our key identification strategy to panel multinomial choice model with

endogeneity. Specifically, consider a set of choice alternatives J = {0, 1, ..., J}. Let uijt

denote the utility for individual i for choice j at time t, which depends on three components:

observed covariate Wijt = (Z ′
ijt, X

′
ijt)

′, unobserved fixed effects αij , and unobserved time-

varying preference shock ǫijt. The utility of choice 0 (outside option) is normalized to zero:

ui0t = 0. Let Yit ∈ J denote individual i’s choice at time t. We study the following panel

multinomial choice model:

uijt = Z ′
ijtβ0 +X ′

ijtγ0 + αij + ǫijt,

Yit = argmax
j∈J

uijt,

where Xijt denotes the potentially endogenous covariate, such as the lagged dependent vari-

able or endogenously determined prices, and Zijt denotes the exogenous covariates that

satisfies the partial stationarity condition (Assumption 1)

ǫis | Zis, Zit, αi
d
∼ ǫit | Zis, Zit, αi for any s, t ≤ T.

with Zit = {Zijt}j∈J ,αi = {αij}j∈J and ǫit = {ǫijt}j∈J defined to collect terms across all J

choice alternatives.

The identification of θ0 has been studied under the standard full stationarity con-

dition given all covariates Wist in different models, including Pakes and Porter (2022),

Shi, Shum, and Song (2018), Gao and Li (2020), and Wang (2022). The main focus of this

paper is to derive identification for θ0, while allowing for the endogenous covariate Xit. As

discussed in Section 4.2, our approach also accommodates the standard stationarity assump-

tion, and the results are consistent with those in Pakes and Porter (2022).

Let vijt = αij + ǫijt and vit = {vijt}j∈J . The identification strategy is still to establish

bounds on the distribution of vit | Zist and derive identifying restrictions on θ0 based on

partial stationarity. Here, the distinction is that the error term vit is multi-dimensional

instead of one-dimensional in binary or ordered choice models. Moreover, consumers’ choice

involves the comparison between different choices.

The observed choice probability of selecting j at period t is given as

Pr(Yit = j | wst) = Pr
(

w′
jtθ0 + vijt ≥ w′

ktθ0 + vikt ∀k ∈ J | wst

)

.

The above probability restricts the distribution Pr(vikt − vijt ≤ (wjt − wkt)
′θ0 ∀k 6= j | wst).

From observed choice probability, we can derive bounds for the distribution Pr(vikt − vijt ≤
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ajk ∀k 6= j | zst) as a function of θ0 and observed variable (Xit, Zit, Yit). Therefore, the

identifying condition for θ0 is characterized by the restriction that the bounds over different

periods must intersect. More generally, we observe the conditional probability Pr(Yit ∈ K |

wst) for any set K ⊂ J and can bound the probability Pr(vikt− vijt ≤ ajk ∃j ∈ K, ∀k ∈ Kc |

zst), where K
c := J \K. In the case where K is a singleton (K = {j}), it then becomes the

conditional probability of selecting a single choice j. The following proposition characterizes

the identification results for θ0.

Proposition 7. Under Assumption 1, an identified set ΘI,3 for θ0 is the set of parameters

θ = (β, γ) that satisfy the following condition:

1− Pr(Yis ∈ Kc, (zjs − zks)
′β + (Xijs −Xiks)

′γ ≥ ajk ∀j ∈ K, k ∈ Kc | zst)

≥ Pr(Yit ∈ K, (zjt − zkt)
′β + (Xijt −Xikt)

′γ ≤ ajk ∀j ∈ K, k ∈ Kc | zst), (10)

for any subset K ⊂ J , any ajk ∈ R with j ∈ K and k ∈ Kc, any s, t ≤ T , and any

zst ∈ Rdz ×Rdz .

Corollary 3. Under Assumption 1, and when Xijt−Xikt only takes finite number of values

Xijt − Xikt ∈ Xjk := {xjk,1, ..., xjk,M}, then the identified set ΘI,3 is the set of parameters

θ that satisfy condition (10) for any subset K ⊂ J , any ajk ∈ {(zjs − zks)
′β + x′

jkγ, (zjt −

zkt)
′β + x′

jkγ}xjk∈Xjk
with j ∈ K and k ∈ Kc, any s, t ≤ T , and any zst ∈ Rdz ×Rdz .

Proposition 7 provides general identification results for multinomial choice models with

discrete or continuous endogenous covariates. Corollary 3 further reduces the number of re-

strictions in Proposition 7 to a finite number when the difference in the endogenous covariate

between choices, Xijt − Xikt, only takes finite number of values. The results accommodate

both static models and dynamic models with any number of lagged dependent variables.

Point identification can be achieved under conditions similar to those presented in Section

2.3 and 3.3, so further analysis is omitted here.

4.2 Applications

We examine the two applications of Proposition 7 for the panel multinomial choice model.

The first one studies the static model, where all covariates Wit are exogenous (ǫis | Wist, αi
d
∼

ǫit | Wist, αi), which is the same setting as Pakes and Porter (2022). In this scenario, we show

that Proposition 7 boils down to the identifying results in Pakes and Porter (2022). Another

one explores the dynamic multinomial choice model, incorporating one lagged dependent

variable Yi,t−1.
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Static model: Pakes and Porter (2022) characterizes the sharp identified set for θ0 under

the stationarity assumption given all covariates: ǫis | Wis,Wit, αi
d
∼ ǫit | Wis,Wit, αi. Now, we

show that the identifying restriction in (10) is consistent with the results in Pakes and Porter

(2022).

Under full stationarity (given all covariates Wit), condition (10) becomes

1− Pr(Yis ∈ Kc, (wjs − wks)
′θ0 ≥ ajk ∀j ∈ K, k ∈ Kc | wst)

≥ Pr(Yit ∈ K, (wjt − wkt)
′θ0 ≤ ajk ∀j ∈ K, k ∈ Kc | wst).

The above equation is only informative when ajk ∈ [(wjt − wkt)
′θ0, (wjs − wks)

′θ0] for any

j ∈ K, k ∈ Kc; otherwise either the upper bound becomes one or the lower bound becomes

zero in the above restriction. When a ∈ [(wjt −wkt)
′θ0, (wjs −wks)

′θ0], the above restriction

is equivalent to the following condition: for any K ⊂ J ,

If (wjs − wks)
′θ0 ≥ (wjt − wkt)

′θ0 ∀j ∈ K, k ∈ Kc

=⇒ 1− Pr(Yis ∈ Kc | wst) = Pr(Yis ∈ K | wst) ≥ Pr(Yit ∈ K | wst),

which aligns with the identification result in Pakes and Porter (2022) (Proposition 1, P. 12).

Dynamic model: Proposition 7 is also applicable to the following dynamic panel multi-

nomial choice model:

uijt = Z ′
ijtβ0 + 1{Yi,t−1 = j}γ0 + αij + ǫijt.

The above model allows individuals’ current utility at time t to depend on their choices

at the last period t− 1. In this model, the endogenous variable Xijt is the lagged dependent

variable Yi,t−1, and the difference of the endogenous covariate between choices only takes

three values: Xijt−Xikt ∈ Xjk := {1,−1, 0}. Then the identified set for ΘI,3 is characterized

by the condition in Corollary 2 with ajk ∈ {(zjs−zks)
′β+γ, (zjs−zks)

′β−γ, (zjs−zks)
′β, (zjt−

zkt)
′β + γ, (zjt − zkt)

′β − γ, (zjt − zkt)
′β}.

5 Censored Dependent Variable Model

The previous sections primarily investigate discrete choice models, while our approach also

applies to models with continuous dependent variables, including those with censored or

interval outcomes. To illustrate, we focus on censored outcomes models below.

Consider the following panel models with censored outcomes:

Y ∗
it = Z ′

itβ0 +X ′
itγ0 + αi + ǫit,

Yit = max{Y ∗
it , 0},
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where Xit represents the endogenous covariate, Zit stands for the exogenous covariate that

satisfies Assumption 1, Y ∗
it denotes the latent outcome not observed in the data, and Yit

represents the observed outcome, which is censored at zero. The threshold for censoring

can be replaced with other nonzero constants. The identification strategy is still to derive

conditions for θ0 based on the stationarity assumption. Here the conditional distribution

of αi + ǫit | Zst is not identified since we only observe the censoring outcome Yit. While

we can still bound the conditional distribution αi + ǫit | Zst using variation in the joint

distribution (Yit, Zit, Xit). The following proposition presents the identification results of θ0

with censoring outcomes.

Proposition 8. Under Assumption 1, an identified set for θ0 is the set of parameters θ that

satisfy the following condition:

Pr(0 < Yis ≤ z′sβ +X ′
isγ − a | zst) + Pr(Yis = 0 | zst) ≥ Pr(Yit ≤ z′tβ +X ′

itγ − a | zst),

for any a ∈ R, any (s, t) ≤ T , and any zst ∈ Rdz ×Rdz .

Similar to discrete choice models studied in previous sections, Proposition 8 characterizes

an identified set for θ0 by exploiting the variation in the joint distribution (Yit, Xit) | Zist

over time and the variation in the exogenous covariates Zist. The bounds on the distribution

αi + ǫit | Zst can be derived either from the probability Pr(0 < Yit ≤ y | zst) or Pr(Yit = 0 |

zst), depending on the value of the covariate index z′tβ+X ′
itγ. This result still accommodates

both static and dynamic models with censored outcomes.

Static model: consider that the standard stationarity assumption holds, where ǫit |

αi,Wist
d
∼ ǫis | αi,Wist. Then, the identifying condition in Proposition 8 is given as

Pr(0 < Yis ≤ w′
sθ − a) + Pr(Yis = 0 | wst) ≥ Pr(Yit ≤ w′

tθ − a | wst). (11)

The above restriction is informative only when w′
tθ ≥ a, otherwise the lower bound becomes

zero. We discuss two cases for the constant a. When w′
sθ ≤ a ≤ w′

tθ, then condition (11)

becomes

Pr(Yis = 0 | wst) ≥ Pr(Yit ≤ w′
tθ − a | wst).

When a satisfies a ≤ min{w′
sθ, w

′
tθ}, condition (11) transforms into

Pr(0 < Yis ≤ w′
sθ − a | wst) + Pr(Yis = 0 | wst) = Pr(Yis ≤ w′

sθ − a | wst)

≥ Pr(Yit ≤ w′
tθ − a | wst).

Since the above condition needs to hold for any (s, t) and is symmetric in (s, t), it becomes

equalities after exchanging s and t.

The following lemma derives the identified set for θ0 using both conditional moment
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inequalities and equalities.

Lemma 2. Assuming that ǫit | αi,Wist
d
∼ ǫis | αi,Wist, an identified set for θ0 is characterized

by the set of parameters θ that satisfy the following conditions:
{

If w′
sθ ≤ a ≤ w′

tθ =⇒ Pr(Yis = 0 | wst) ≥ Pr(Yit ≤ w′
tθ − a | wst),

If a ≤ min{w′
sθ, w

′
tθ} =⇒ Pr(Yis ≤ w′

sθ − a | wst) = Pr(Yit ≤ w′
tθ − a | wst),

for any s, t ≤ T and any wst ∈ Rd ×Rd.

Dynamic model: Proposition 8 also accommodates the following dynamic model with

the lagged outcome Yi,t−1:

Y ∗
it = Z ′

itβ0 + Yi,t−1γ0 + αi + ǫit,

Yit = max{Y ∗
it , 0}.

In this model, since the endogenous variable Xit = Yi,t−1 ∈ [0,∞) can be continuous, we are

not able to further simplify the identifying condition in Proposition 8. Appendix A.10 also

studies dynamic models with the latent lagged outcome Y ∗
i,t−1. Consequently, the results in

Proposition 8 need to be adjusted as the endogenous variable Xit = Y ∗
i,t−1 is not observed.

6 Generalization to Nonseparable Models

The key idea underlying our identification strategy generalizes further beyond the models

considered before. In this section, we show that our approach relies only on two conditions:

partial stationarity and “index monotonicity.” Additional model specifications and restric-

tions, such as the scalar-additivity of fixed effects and time-varying errors, are not needed

for our identification strategy.

To illustrate, consider the following nonseparable semiparametric model:

Yit = G
(

W
′

itθ0, αi, ǫit

)

,

where αi is the individual fixed effect of arbitrary dimension, ǫit is the time-varying error of

arbitrary dimension, Wit is a vector of observable covariates, θ0 ∈ Rd is a conformable vector

of parameter, and the function G is allowed to be unknown, nonseparable but assumed to

be weakly monotone in the the parametric index:

Assumption 4 (Monotonicity). The mapping δ 7−→ G (δ, α, ǫ) is weakly increasing in δ ∈ R

for each realization of (α, ǫ).

Note that, by setting αi, ǫit to be scalar-valued, and G
(

W
′

itθ0, αi, ǫit
)

=

1

{

W
′

itθ0 + αi + ǫit ≥ 0
}

, we obtain the dynamic binary choice model in Section 2, where

G is by construction weakly increasing in W
′

itθ0.
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As before, we decompose Wit, and correspondingly θ0, into two components, Wit =
(

Z
′

it, X
′

it

)′

and θ0 =
(

β
′

0, γ
′

0

)′

so that

W
′

itθ0 = Z
′

itβ0 +X
′

itγ0,

where Zit denotes exogenous covariates while Xit denotes endogenous covariates, with the

precise definition of exogeneity encoded by the partial stationarity in Assumption 1.

Now we show how partial stationarity can be exploited in conjunction with weak mono-

tonicity (Assumption 4) to obtain identifying restrictions in the presence of endogeneity.

Let Y denote the support of Yit. For any a ∈ R and y ∈ Y , conditional on Wist = wst,

we can bound 1 {G (a, αi, ǫit) ≥ y} below as

1 {G (a, αi, ǫit) ≥ y} ≥ 1 {w′
tθ0 ≤ a}1 {G (a, αi, ǫit) ≥ y}

≥ 1 {w′
tθ0 ≤ a}1 {G (w′

tθ0, αi, ǫit) ≥ y} ,

and above as

1 {G (a, αi, ǫit) ≥ y}

≤ 1 {w′
tθ0 > a}1 {G (a, αi, ǫit) ≥ y}+ 1 {w′

tθ0 ≤ a}

≤ 1 {w′
tθ0 > a}1 {G (w′

tθ0, αi, ǫit) ≥ y}+ 1 {w′
tθ0 ≤ a}

= 1− 1 {w′
tθ0 > a}1 {G (w′

tθ0, αi, ǫit) < y} .

Then, the conditional probability P (G (a, αi, ǫit) ≥ y | wst) given Wist = wst can be

bounded as follows:

P (Yit ≥ y | wst)1 {w
′
tθ0 ≤ a} ≤ P (G (a, αi, ǫit) ≥ y | wst)

≤ 1− P (Yit < y | wst)1 {w
′
tθ0 > a} .

Taking conditional expectation of the above with respect to Xist given Zist = zst yields

P (Yis ≥ y,W ′
isθ0 ≤ a | zst)

≤ P (G (a, αi, ǫis) ≥ y | zst) = P (G (a, αi, ǫit) ≥ y | zst) by Assumption 1

≤ 1− P (Yit < y,W ′
itθ0 > a | zst) .

The key difference of (6) relative to the corresponding identifying restrictions in previous

sections lies in that the “middle term” in (6) is no longer the conditional CDF of αi+ ǫit, but

a conditional probability about the event G (a, αi, ǫis) ≥ y, with the latter representation

not dependent on scalar-additivity of fixed effects and time-varying errors.

We summarize the identifying restriction above by the following proposition:
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Proposition 9. Under Assumptions 1 and 4, the following condition holds:

1− P (Yit < y, z′tβ0 +X ′
itγ0 > a | zst) ≥ P (Yis ≥ y, z′sβ0 +X ′

itγ0 ≤ a | zst) , (12)

for any a ∈ R, y ∈ Y, s 6= t ≤ T , and zst ∈ Rdz ×Rdz .

Note that in the binary choice setting of Section 2, it suffices to set y = 1 in (12), which

then coincides with the identifying condition (7) in Proposition 1. It is also straightforward

to show that our identification results in Lemma 9 can be adapted to the ordered response

model in Section 3, the multinomial choice model in Section 4, and the censored outcome

model in Section 5 without the scalar additive specifications.

7 Simulation

This section examines the finite sample performance of our identification approaches using

Monte Carlo simulations. Since the literature has extensively studied binary choice models,

we focus on the static and dynamic ordered choice models explored in Section 3 as examples

to illustrate the approach. We implement the kernel-based CLR inference approach proposed

in the papers by Chernozhukov, Lee, and Rosen (2013) and Chen and Lee (2019), developed

to construct confidence interval based on general conditional moment inequalities.

7.1 Static Ordered Choice Model

This section explores a static ordered choice model with three choices Yit ∈ {1, 2, 3}. We

consider the following two-period model with T = 2, and the latent dependent variable Y ∗
it

is generated as:

Y ∗
it = Z1

itβ01 + Z2
itβ02 + αi + ǫit,

where the covariate Zk
it satisfies Zk

it ∼ N (0, σz) for k ∈ {1, 2}; the fixed effects αi are given

as αi =
∑T

t=1(Z
1
it + Z2

it)/(4 ∗ σz ∗ T ), so they are correlated with the covariates; the error

term (ǫi1, ǫi2) follows the normal distribution N (µ,Σ) with µ = (0, 0) and Σ = (1 ρ; ρ 1).

The true parameter is β0 := (β0,1, β02)
′ = (1, 1)′, the repetition number is B = 200, and the

sample size is n = {2000, 8000}. We consider three specifications for σz ∈ {1, 1.5, 2} and

ρ ∈ {0, 0.25, 0.5}.

The observed dependent variable Yit is given as

Yit = 1 ∗ (Y ∗
it ≤ b2) + 2 ∗ (0 ≤ Y ∗

it ≤ b2) + 3 ∗ (Y ∗
it > b3),

where b2 = −1 and b3 = 1.
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We consider the covariates Zit to be exogenous and Lemma 1 characterizes the identified

set for β0 using the following conditional moment inequalities:

E[g(Zist, Yist; β0) | zst] ≥ 0,

where

g(Zist, Yist; β0) =



























1{b2 − Z ′
isβ ≥ b2 − Z ′

itβ0}(1{Yis = 1} − 1{Yit = 1});

1{b2 − Z ′
isβ ≥ b3 − Z ′

itβ0}(1{Yis = 1} − 1{Yit ∈ {1, 2}});

1{b3 − Z ′
isβ ≥ b2 − Z ′

itβ0}(1{Yis ∈ {1, 2}} − 1{Yit = 1});

1{b3 − Z ′
isβ ≥ b3 − Z ′

itβ0}(1{Yis ∈ {1, 2}} − 1{Yit ∈ {1, 2}}).

The first element β01 of the parameter β0 is normalized to one, and we are interested in

conducting inference for the parameter β02 using the CLR approach. Tables 1 and 2 report

the average confidence interval (CI) for β02, the coverage probability (CP), the average length

of the CI (length), the power of the test at zero (power), and the mean absolute deviation

of the lower bound (lMAD) and upper bound (uMAD) of the CI.

Table 1: Performance of β02 under different values of σz (ρ = 0.25)

σz CI CP length Power lMAD uMAD

N = 2000
σz = 1 [0.537, 1.760] 0.876 1.222 1.000 0.476 0.784

σz = 1.5 [0.556, 1.768] 0.934 1.212 1.000 0.454 0.773

σz = 2 [0.567, 1.791] 0.950 1.224 1.000 0.440 0.796

N = 8000
σz = 1 [0.570, 1.532] 0.939 0.962 1.000 0.439 0.548

σz = 1.5 [0.607, 1.561] 0.975 0.954 1.000 0.398 0.563

σz = 2 [0.618, 1.571] 0.985 0.953 1.000 0.383 0.573

As shown in Tables 1 and 2, our approach exhibits robust performance across various

specifications of standard deviation σ and correlation coefficients ρ. The coverage probabil-

ities of the 95% confidence interval (CI) for β02 are close to the nominal level, the length of

the CI is reasonably small, and the CI consistently excludes zero. When the sample size in-

creases, there is a significant decrease in CI length, an improvement in coverage probability,

and a reduction of the mean absolute deviation (MAD) for the lower and upper bounds of

the CI. Overall, these results demonstrate the good performance of our approach in different

DGP designs.
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Table 2: Performance of β02 under different values of ρ (σz = 1)

ρ CI CP length Power lMAD uMAD

N = 2000
ρ = 0 [0.537, 1.755] 0.895 1.218 1.000 0.476 0.773

ρ = 0.25 [0.537, 1.760] 0.876 1.222 1.000 0.476 0.784

ρ = 0.5 [0.511, 1.765] 0.909 1.254 1.000 0.497 0.785

N = 8000
ρ = 0 [0.584, 1.553] 0.933 0.969 1.000 0.436 0.568

ρ = 0.25 [0.570, 1.532] 0.939 0.962 1.000 0.439 0.548

ρ = 0.5 [0.573, 1.526] 0.934 0.954 1.000 0.442 0.541

7.2 Dynamic Ordered Choice Model

In this section, we investigate a dynamic ordered choice model with one lagged dependent

variable Yi,t−1. The latent dependent variable Y ∗
it is generated as follows:

Y ∗
it = Zitβ0 + Yi,t−1γ0 + αi + ǫit.

where the endogenous variable is the lagged dependent variable Yi,t−1. We study three periods

T = 3 to illustrate our approach with multiple periods. The DGP is similar: the exogenous

covariate Zit satisfies Zit ∼ N (0, σz); the fixed effects αi are given as αi =
∑T

t=1 Zit/(4∗σz∗T );

the error term (ǫi1, ǫi2, ǫi3) follows the normal distribution N (µ,Σ) with µ = (0, 0, 0) and

Σ = (0.5 c c; c 0.5 c; c c 0.5), where c = 0.5∗ρ. The true parameter is θ0 := (β0, γ0)
′ = (1, 1)′,

the repetition number is B = 200, and the sample size is n ∈ {2000, 8000}. We consider

three specifications for σz ∈ {1, 1.5, 2} and ρ ∈ {0, 0.25, 0.5}.

The observed dependent variable Yit is given as

Yit = 1 ∗ (Y ∗
it ≤ b2) + 2 ∗ (0 ≤ Y ∗

it ≤ b2) + 3 ∗ (Y ∗
it > b3),

for 1 ≤ t ≤ T . The initial value Yi0 ∈ {1, 2, 3} is generated independently of all variables,

and follow the distribution Pr(Yi0 = 1) = 0.6,Pr(Yi0 = 2) = Pr(Yi0 = 3) = 0.2.

In this dynamic model, the covariates Zi := (Zit)
T
t=1 and the initial value Yi0 are exoge-

nous, while the lagged variable Yi,t−1 is endogenous. Proposition 4 characterizes the identified

set for θ0 with the following conditional moment inequalities:
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(1) When s ∈ {2, 3},

1−
3

∑

j=2

Pr (Yi1 = yj | z, y0) ∗ 1{bj − z′1β − y0γ ≥ a}

≥
2

∑

j=1

Pr (Yis = yj, bj+1 − z′sβ − Yis−1γ ≤ a | z, y0) ,

1−
3

∑

j=2

Pr(Yis = yj, bj − z′sβ − Yis−1γ ≥ a | z, y0)

≥
2

∑

j=1

Pr (Yi1 = yj | z, y0) ∗ 1{bj+1 − z′1β − y0γ ≤ a},

for any a ∈ {bj − z′1β − y0γ, bj − z′sβ − γ, bj − z′sβ − 2γ, bj − z′sβ − 3γ}Tj=2;

(2) When s, t ∈ {2, 3},

1−
3

∑

j=2

Pr(Yis = yj, bj − z′sβ − Yis−1γ ≥ a | z, y0)

≥
2

∑

j=1

Pr (Yit = yj, bj+1 − z′tβ − Yit−1γ ≤ a | z, y0) ,

for any a ∈ {bj − z′sβ − γ, bj − z′sβ − 2γ, bj − z′sβ − 3γ, bj − z′tβ − γ, bj − z′tβ − 2γ, bj −

z′tβ − 3γ}3j=2.

We normalize the first parameter β0 to one, and report the performance of the coefficient

γ0 for the lagged dependent variable. Tables 3 and 4 illustrate that our approach yields

robust and informative results for the dynamic ordered choice model across various DGP

specifications. The coverage probability of the CI nearly reaches 95%, and the CI consistently

excludes zero, producing significant coefficients. These results remain similar across different

values of correlation coefficients. When the standard deviation σz increases, the length of

the CI also experiences a slight increase. This phenomenon occurs because, in the dynamic

model, only partial identification is achieved, and the bound for γ0 depends on the variation

in ∆z′β0. A larger variation in ∆z′β0 may result in a wider identified set in this specification,

but it still provides informative results. As the sample size increases, the confidence interval

shrinks, and concurrently, the coverage probability improves in all specifications.
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Table 3: Performance of γ0 under different values of σz (ρ = 0.25)

σz CI CP length Power lMAD uMAD

N = 2000
σz = 1 [0.446, 1.606] 0.935 1.160 1.000 0.565 0.625

σz = 1.5 [0.375, 1.673] 0.959 1.298 1.000 0.629 0.693

σz = 2 [0.311, 1.730] 0.960 1.418 1.000 0.700 0.739

N = 8000
σz = 1 [0.529, 1.495] 0.969 0.966 1.000 0.473 0.504

σz = 1.5 [0.460, 1.559] 0.965 1.100 1.000 0.548 0.564

σz = 2 [0.427, 1.585] 0.985 1.158 1.000 0.573 0.589

Table 4: Performance of γ0 under different values of ρ (σz = 1)

ρ CI CP length Power lMAD uMAD

N = 2000
ρ = 0 [0.472, 1.593] 0.932 1.121 1.000 0.550 0.607

ρ = 0.25 [0.446, 1.606] 0.935 1.160 1.000 0.565 0.625

ρ = 0.5 [0.457, 1.631] 0.943 1.173 1.000 0.548 0.648

N = 8000
ρ = 0 [0.528, 1.472] 0.958 0.945 1.000 0.475 0.487

ρ = 0.25 [0.529, 1.495] 0.969 0.966 1.000 0.473 0.504

ρ = 0.5 [0.535, 1.515] 0.975 0.980 1.000 0.467 0.519
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8 Empirical Application

In this section, we apply our proposed approach to explore the empirical analysis of income

categories using the NLSY79 dataset. The dependent variable is three categories of (log)

income, denoted by the three values {1, 2, 3}, indicating whether an individual falls within

the top 33.3% highest income bracket, the 33.3%-66.6% highest income range, and the lowest

33.3% income tier, respectively. We include two covariates in this analysis: one is tenure,

defined as the total duration (in weeks) with the current employer, and the other is the

residence indicator for whether one lives in an urban or rural area.7 We use two periods of

panel data from the years 1982 and 1983 as well as the income data from 1981 as initial

values, and there are n = 5259 individuals in each period. The following table presents the

summary statistics of these variables.

Table 5: Application: Summary Statistics

income category residence tenure /100

mean 1.990 0.799 0.825

s.d. 0.810 0.401 0.738

25% quantile 1.000 1.000 0.220

median 2.000 1.000 0.605

75% quantile 3.000 1.000 1.280

minimum 1.000 1.000 0.010

maximum 3.000 1.000 4.850

We adopt various ordered response models introduced in Section 3 to analyze the income

category. The first model is the standard static model without any endogeneity. The sec-

ond is the static model, while treating residence as an endogenous covariate. Residence is

potentially endogenous since the choice of living area is typically endogenously determined

and may be correlated with individuals’ unobserved ability or preference. The last model

considers the dynamic model with one lagged dependent variable, allowing people’s income

in current periods to depend on their income in the last period. All three models allow for

individual fixed effects and do not impose any parametric distributions on time-changing

shocks. Proposition 4 characterizes the identified set of the model coefficients for these three

models using conditional moment inequalities. Similar to Section 7, we exploit the kernel-

7This dataset also contains other crucial factors for income such as gender and race. However, these
variables are time-invariant and cannot be included for panel models with fixed effects.
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based CLR inference method to construct confidence intervals. The coefficient of the variable

‘residence’ is normalized to one. Table 6 reports the confidence intervals for the coefficients

of the covariate ‘tenure’ and the lagged dependent variable (when applicable).

Table 6: Application: Income Categories

β0,1 (residence) β0,2 (tenure) γ0 (lag)

exogenous static model 1 [0.612, 0.939] -

endogenous static model 1 [0.041, 0.939] -

dynamic model 1 [0.531, 0.694] [0.286, 0.612]

As shown in Table 6, tenure exhibits a significantly positive effect on the income category

across all specifications. When allowing for the endogeneity of residence, the confidence

interval for tenure becomes wider, as we need to account for all possible correlations between

residence and unobserved heterogeneity. The results from the dynamic model show that the

income category in the current period is also positively affected by last period’s income,

and this effect is significant. Furthermore, this analysis demonstrates the flexibility of our

approach, which can not only allow for endogeneity introduced by dynamics but also account

for contemporary endogeneity.

9 Conclusion

We introduce a general method to identify nonlinear panel data models based on a partial sta-

tionarity condition. This approach accommodates dynamic models with an arbitrary finite

number of lagged outcome variables and other types of endogenous covariates. We demon-

strate how our key identification strategy can be applied to obtain informative identifying

restrictions in various limited dependent variable models, including binary choice, ordered

response, multinomial choice, as well as censored dependent variable models. Finally, we

further extend this approach to study general nonseparable models.

There are some natural directions for follow-up research. In this paper we focus on

the identification of model parameters, but it would also be interesting to investigate

how our identification strategy can be exploited to obtain informative bounds on average

marginal effects and other counterfactual parameters, say, following the approach proposed

in Botosaru and Muris (2022).8 Additionally, the idea of bounding an endogenous object

8Botosaru and Muris (2022) proposes an approach to obtain bounds on counterfactual CCPs in semi-
parametric dynamic panel data models, assuming that the index parameters are (partially) identified.
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(parametric index in our case) by an arbitrary constant so as to obtain an object free of

endogeneity issues may have broader applicability beyond the models studied in this work,

and it remains to see whether our key identification strategy can be further adapted to other

structures.

A Appendix

A.1 Proof of Lemma 1

Proof. The identifying condition (7) for the parameter θ in Proposition 1 is given as

1− Pr(Yis = 0, z′sβ +X ′
isγ ≥ a | zst) ≥ Pr(Yit = 1, z′tβ +X ′

itγ ≤ a | zst). (13)

Now we show that when Xit ∈ {a1, ..., aK}, the above condition is informative only at the

2K points a ∈ Q1 = {z′tβ + a′1γ, ..., z
′
tβ + a′Kγ, z

′
sβ + a′1γ, ..., z

′
sβ + a′Kγ}. Let qk ∈ Q1 denote

an element in Q. Without loss of generalization, we can rank qk as q1 ≤ q2 ≤ ... ≤ q2K .

When a > q2K , then a > z′sβ+max
k

a′kγ. Therefore, the upper bound becomes 1−Pr(Yis =

0, z′sβ +X ′
isγ ≥ a | zst) = 1 and the identifying condition holds for any θ. Therefore, there

is no information for θ when a > q2K .

When a < q1, similarly the lower bound is zero Pr(Yit = 1, z′tβ +X ′
itγ ≤ a | zst) = 0 and

the inequality has no identifying power for θ.

When a ∈ (qk, qk+1) for some k, the identifying restriction at a can be implied by the

restriction at a = qk+1. It is because the upper bound at qk+1 is the same as a since there does

not exist any point z′sβ+a′kγ that lies in (qk, qk+1). The lower bound Pr(Yit = 1, z′tβ+X ′
itγ ≤

a | zst) is weakly larger at qk+1 than a since it is weakly increasing. Then, any parameter

that satisfies condition (13) evaluated at qk+1 also satisfies the one at a, so condition (13)

evaluated at a does not contain additional information for θ.

A.2 Proof of Theorem 1

To prove sharpness of the identified set ΘI,1, we seek to show that, for any θ ∈ ΘI,1, there

exists an underlying DGP characterized by the conditional distribution of (vis, vit) | Wist)

that produces the same observed choice probability and satisfies Assumption 1. The following

construction is for one candidate parameter θ ∈ ΘI,1. We set the fixed effect to be zero αi = 0,

so that vit := −(ǫit + αi) = −ǫit.

Let Pst (j, k | wst) := Pr (Yis = j, Yit = k | Wist = wst) denote the observed joint probabil-

ity of selecting j at period s and selecting k at period t. The first requirement for sharpness
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is that the constructed distribution of (vis, vit) | Wist matches the observed joint choice

probability according to the model: given Wist = wst,

Pst (1, 1 | wst) = Pr (vis ≤ w′
sθ, vit ≤ w′

tθ | wst) ,

Pst (1, 0 | wst) = Pr(vis ≤ w′
sθ | wst)− Pr (vis ≤ w′

sθ, vit ≤ w′
tθ | wst) ,

Pst (0, 1 | wst) = Pr(vit ≤ w′
tθ | wst)− Pr (vis ≤ w′

sθ, vit ≤ w′
tθ | wst) ,

(14)

and Pst (0, 0 | wst) can be matched automatically when the above conditions hold.

Another condition for sharpness requires the marginal distribution of vit | Wist to satisfy

the following stationarity condition in Assumption 1:

Fvt|Zst
(a | zst) = Fvs|Zst

(a | zst) ∀a ∈ R. (15)

We can focus on a reduced problem, which is to find a marginal distribution vit | Wist

that matches the marginal choice probability and satisfies the stationarity assumption. Let

Pt(wst) := Pr(Yit = 1 | Wist = wst) and Ps(wst) := Pr(Yis = 1 | Wist = wst) denote the

observed marginal choice probability at t and s, given as follows:

Pt(wst) = Pr (vit ≤ w′
tθ | Wist = wst) ,

Ps(wst) = Pr (vis ≤ w′
sθ | Wist = wst) .

(16)

If we can construct a marginal distribution satisfying conditions (15) and (16), then the

joint choice probability in (14) is matched by setting the joint distribution of (vis, vit) | Wist

at (w′
sθ, w

′
tθ) as Pst (1, 1 | wst) = Pr (vis ≤ w′

sθ, vit ≤ w′
tθ | wst). This construction is feasible

since there is no other assumptions on the joint distribution (vis, vit) | Wist. Moreover, other

choice probabilities such as Pst (1, 0 | wst) can be computed using the marginal probability

Ps(wst) subtracting Pst (1, 1 | wst).

Now, for any θ ∈ ΘI,1, our objective is to construct the distribution of vit | Wst and

vis | Wst such that conditions (15) and (16) hold. Consider that the endogenous covariate

Xit only takes K values: Xit ∈ X = {a1, ..., aK} for any t ≤ T . 9 Given Zit = zt, the

covariate index z′tβ+x′
tγ belongs to the K points {z′tβ+a′1γ, ..., z

′
tβ+a′Kγ}. Without loss of

generalization, we can rank the K points as α′
1γ ≤ a′2γ ≤ ... ≤ a′Kγ since we can reindex the

K values of {a1, ..., aK} such that this ranking is satisfied. Let mk := z′tβ + a′kγ denote the

K points for which w′
tθ can take, and nk := z′sβ + a′kγ for 1 ≤ k ≤ K denote the K points

w′
sθ can take. Let m̄ = max{z′tβ, z

′
sβ}+ a′Kγ + ǫ for some ǫ > 0.

We first look at the stationarity condition in (15). Section 2.2 derives bounds for the

9The covariate Xit is allowed to have different support across time t, then X is the union of the support
of Xit over all periods.
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distribution Fvt|Zst
(a | zst), given as follows:

Fvt|Zst
(a | zst) ≤

∑

xst∈X

{

Fvt|Wst
(w′

tθ | wst)1{w
′
tθ ≥ a}+ 1{w′

tθ < a}
}

Pr(Xst = xst | zst)

:= Ut(a | zst),

Fvt|Zst
(a | zst) ≥

∑

xst∈X

Fvt|Wst
(w′

tθ | wst)1{w
′
tθ ≤ a}Pr(Xst = xst | zst) := Lt(a | zst).

Given the definition of the identified set ΘI,1, for θ ∈ ΘI,1, the following condition holds

for any a ∈ R,

max
s,t

{Ls(a | zst), Lt(a | zst)} ≤ min
s,t

{Ut(a | zst), Us(a | zst)},

Let L̃(a | zst) = maxs,t{Lt(a | zst), Ls(a | zst)}, the stationarity condition (15) is satisfied

by constructing the conditional distribution of F ∗
vs|Zst

(a | zst) = F ∗
vt|Zst

(a | zst) as follows:

F ∗
vs|Zst

(a | zst) = F ∗
vt|Zst

(a | zst) =















0 if a < m1,

L̃(a | zst) if m1 ≤ a < m̄,

1 if m̄ ≤ a.

(17)

The above construction guarantees that the marginal distribution F ∗
vs|Zst

(a | zst) lies

between the bounds [Ls(a | zst), Us(a | zst)]. From the definition of Lt(a), we know that

Lt(a | zst) ≥ Lt(a
′ | zst) for any a ≥ a′. Therefore, the monotonicity of the above distribution

is satisfied as max
s,t

{Lt(a | zst), Ls(a | zst)} ≥ max
s,t

{Lt(a
′ | zst), Ls(a

′ | zst)} for any a ≥ a′.

Additionally, the above construction satisfies the stationarity assumption given F ∗
vs|Zst

(a |

zst) = F ∗
vt|Zst

(a | zst) for any a.

We transform the two requirements of sharpness into finding a distribution F ∗
vt|Wst

(a | wst)

to generate the marginal distribution F ∗
vt|Zst

(a | zst) in (17) and also match the marginal

choice probability given in condition (16).

Construction

We focus on the construction for vit | Wist, and the construction for vis | Wist at period s

is similar so it is omitted here. The construction proceeds in four steps. We first constructs

a distribution to match the lower and upper bounds Lt(a | zst) and Ut(a | zst). Then, we

construct the distribution F ∗
vt|Wst

(a | wst) at the points {m1, ..., mK} with mk = z′tβ + a′kγ.

The third step look at the construction at the points {n1, ..., nK} with nk = z′sβ + a′kγ. The

final step examines the points a that are not in {m1, ..., mK , n1, ..., nK}.

Step 1:

We first show that the bounds Ut(a | zst) and Lt(a | zst) can be achieved under a
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distribution of vit | Wist that matches the marginal choice in (16). From its definition, the

upper bound Ut(a | zst) can be achieved under the following distribution FU
vt|Wst

(a | wst):

FU
vt|Wst

(a | wst) =















0 if a < m1,

Pt(wst) if m1 ≤ a < w′
tθ + ǫ,

1 if w′
tθ + ǫ ≤ a,

where ǫ > 0 is used to satisfy the right-continuity property of the distribution.

Similarly, the lower bound function Lt(a | zst) can be achieved under the following dis-

tribution FL
vt|Wst

(a | wst):

FL
vt|Wst

(a | wst) =















0 if a < w′
tθ,

Pt(wst) if w′
tθ ≤ a < m̄,

1 if m̄ ≤ a

From the definition of the distributions FU
vt|Wst

(a | wst), F
L
vt|Wst

(a | wst), they both satisfy

condition (16) which requires FU
vt|Wst

(w′
tθ | wst) = FL

vt|Wst
(w′

tθ | wst) = Pt(wst).

Step 2: this step establishes the construction of the distribution F ∗
vt|Wst

(a | wst) at the

points mk. The observed marginal distribution given in condition (16) only restricts the

distribution of vit | Wist at each point mk, given wst = (zst, xs, ak),

Pt(wst) = Pr(vit ≤ mk | zst, xs, ak).

(i) We start with the largest value mK = z′tβ + a′Kγ. From the definition of Ut(a |

zst), Lt(a | zst), we know that Ut(m1 | zst) = Lt(mK | zst) ≤ L̃(mK | zst) ≤ Ut(mK | zst),

which is described in the following graph:

Ut(m1 | zst)
= Lt(mK | zst)

Ut(mK−1 | zst)

L̃(mK | zst)

Ut(mK | zst)

Given the K points Ut(m1 | zst) ≤ Ut(m2 | zst) ≤ ... ≤ Ut(mK | zst), we can find

2 ≤ j1 ≤ K such that Ut(mj1−1 | zst) ≤ L̃(mK | zst) ≤ Ut(mj1 | zst). Then we can express

L̃(mK | zst) as follows: for some α1 ∈ [0, 1],

L̃(mK | zst) = α1Ut(mj1−1 | zst) + (1− α1)Ut(mj1 | zst).

Accordingly, we construct the distribution F ∗
vt|Wst

(mK | wst) as follows:

F ∗
vt|Wst

(mK | wst) = α1F
U
t (mj1−1 | wst) + (1− α1)F

U
t (mj1 | wst).
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The above construction generates the marginal distribution L̃(mK | zst). Moreover, it

matches the marginal choice probability when xt = aK in condition (16) since FU
t (mj |

wst) = Pt(wst) if xt = aK for any 1 ≤ j ≤ K from the definition of FU
t (mj | wst).

(ii) Now consider that a = mK−1. Given that Lt(mK−1 | zst) ≤ L̃(mK−1 | zst) ≤

Ut(mK−1 | zst), there either exists 1 ≤ j2 ≤ K − 1 such that L̃(mK−1 | zst) ∈ [Ut(mj2−1 |

zst), Ut(mj2 | zst)] or L̃(mK−1 | zst) ∈ [Lt(mK−1 | zst), Ut(m1 | zst)], given in the following

graph:

Lt(mK−1 | zst) Ut(m1 | zst)
= Lt(mK | zst)

Ut(mK−1 | zst)

L̃(mK−1 | zst)

Ut(mK | zst)

Then L̃(mK−1 | zst) can be expressed as follows, for α2 ∈ [0, 1] and α̃2 ∈ [0, 1],

L̃(mK−1 | zst)

=

{

α2Ut(mj2−1 | zst) + (1− α2)Ut(mj2 | zst) if L̃(mK−1 | zst) ∈ [Ut(mj2−1 | zst), Ut(mj2 | zst)],

α̃2Lt(mK−1 | zst) + (1− α̃2)Ut(m1 | zst) if L̃(mK−1 | zst) ∈ [Lt(mK−1 | zst), Ut(m1 | zst)].

Accordingly, the distribution F ∗
vt|Wst

(mK−1 | wst) at mK−1 is constructed as

F ∗
vt|Wst

(mK−1 | wst)

=

{

α2F
U
t (mj2−1 | wst) + (1− α2)F

U
t (mj2 | wst) if L̃(mK−1 | zst) ∈ [Ut(mj2−1 | zst), Ut(mj2 | zst)],

α̃2F
L
t (mK−1 | zst) + (1− α̃2)F

U
t (m1 | wst) if L̃(mK−1 | zst) ∈ [Lt(mK−1 | zst), Ut(m1 | zst)].

Condition (16) is satisfied since Ut(mj | wst) = Pt(wst) when xt = aK−1 for any 1 ≤ j ≤ K−1.

Now we still need to show that the constructed distribution satisfies monotonicity. If

L̃(mK−1 | zst) ∈ [Lt(mK−1 | zst), Ut(m1 | zst)], then F ∗
vt|Wst

(mK−1 | wst) ≤ FU
t (m1 | wst) ≤

F ∗
vt|Wst

(mK | wst). Otherwise, by the monotonicity of L̃(a | zst) in a, we know that j2 ≤ j1.

If j2 ≤ j1 − 1, then monotonicity is satisfied since F ∗
vt|Wst

(mK−1 | wst) ≤ FU
t (mj2 | wst) ≤

FU
t (mj1−1 | wst) ≤ F ∗

vt|Wst
(mK | wst). If j1 − 1 < j2 = j1, then it implies that α2 ≤ α1 since

L̃(mK−1 | zst) ≤ L̃(mK | zst). Therefore, we have F ∗
vt|Wst

(mK−1 | wst) ≤ F ∗
vt|Wst

(mK | wst).

The distribution F ∗
vt|Wst

(a | wst) for the remaining points a ∈ {m1, ..., mK−2} can be

constructed in the same way as F ∗
vt|Wst

(mK−1 | wst), so it is omitted here.

Step 3: we show the construction at the points a = nk for 1 ≤ k ≤ K. For points

a = nk, we only need to construct a proper distribution to be consistent with Equation (17).

We still start with the largest point nK . The distribution L̃(nK | zst) can be expressed as

37



follows in different scenarios: for some 2 ≤ j3 ≤ K

L̃(nK | zst) =















α3L̃(mK | zst) + (1− α3) ∗ 1 if nK > mK ,

α4L̃(mj3−1 | zst) + (1− α4)L̃(mj3 | zst) if mj3−1 < nK < mj3 ,

α5 ∗ 0 + (1− α5)L̃(m1 | zst) if nK < m1,

where α3, α4, α5 ∈ [0, 1].

Accordingly, the distribution F ∗
vt|Wst

(nk | wst) is constructed as follows,

F ∗
vt|Wst

(nK | wst) =















α3F
∗
vt|Wst

(mK | wst) + (1− α3) ∗ 1 if nK > mK ,

α4F
∗
vt|Wst

(mj3−1 | wst) + (1− α4)F
∗
vt|Wst

(mj3 | wst) if mj3−1 < nK < mj3 ,

α5 ∗ 0 + (1− α5)F
∗
vt|Wst

(mj1 | wst) if nK < m1.

When a = nK−1, the distribution L̃(nK−1 | zst) can be expressed as follows in different

scenarios: for some 1 ≤ j4 ≤ j3 − 1,

L̃(nK−1 | zst) =



























α6L̃(mK | zst) + (1− α6)L̃(nK | zst) if mK < nK−1 < nK ,

α7L̃(mj3−1 | zst) + (1− α7)L̃(nK | zst) if mj3−1 < nK−1 < nK < mj3 ,

α8L̃(mj4−1 | zst) + (1− α8)L̃(mj4 | zst) if mj4−1 < nK−1 < mj4 ≤ mj3−1,

α9 ∗ 0 + (1− α9)L̃(nK | zst) if nK−1 < nK < m1,

where α6, α7, α8, α9 ∈ [0, 1].

The distribution F ∗
vt|Wst

(nK−1 | wst) is constructed accordingly:

F ∗
vt|Wst

(nK | wst)

=



























α6F
∗
vt|Wst

(mK | wst) + (1− α6)F
∗
vt|Wst

(nK | wst) if mK < nK−1 < nK ,

α7F
∗
vt|Wst

(mj3−1 | wst) + (1− α7)F
∗
vt|Wst

(nK | wst) if mj3−1 < nK−1 < nK < mj3 ,

α8F
∗
vt|Wst

(mj4−1 | wst) + (1− α8)F
∗
vt|Wst

(mj4 | wst) if mj4−1 < nK−1 < mj4 ≤ mj3−1,

(1− α9)F
∗
vt|Wst

(nK | wst) if nK−1 < nK < m1.

The monotonicity of the distribution F ∗
vt|Wst

(a | wst) among the 2K points

{m1, ..., mK , n1, ..., nK} is satisfied by construction. Furthermore, the construction for the

rest of points {n1, ..., nK−2} are similar so it is omitted here.

Step 4: For any a /∈ {m1, ..., mK , n1, ..., nK}, The distribution is constructed as F ∗
vt|Wst

(a |

wst) = 0 if a < m1 and F ∗
vt|Wst

(a | wst) = 1 if a ≥ m̄. When a ∈ [m1, m̄], there must exist

some qj ∈ {m1, ..., mK , n1, ..., nK} such that qj < a and L̃(a | zst) = L̃(qj | zst). Then we

set F ∗
vt|Wst

(a | wst) = F ∗
vt|Wst

(mj | wst). This completes the construction for the distribution

F ∗
vt|Wst

(a | wst) for any a.
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A.3 Proof of Proposition 2 and 3

Proof. The proof for the point identification of β0 consists of two steps: we first show that

when ∆z ∈ ∆Z, the sign of ∆z′β0 is identified from the identifying condition (7) in Proposi-

tion 1. Then, the large support condition in Assumption 2 ensures that β0 is point identified

up to scale.

When Xit is discrete and there are two periods T = 2, the identifying condition (7) is

given as

1− Pr(Yi1 = 0, z′1β0 +X ′
i1γ0 ≥ a | z12) ≥ Pr(Yi2 = 1, z′2β0 +X ′

i2γ0 ≤ a | z12),

for a ∈ {z′1β0 + a′1γ0, ..., z
′
1β0 + a′Kγ0, z

′
2β0 + a′1γ0, ..., z

′
2β0 + a′Kγ0}, and another identifying

condition switches the order of period 1 and 2.

Let a = z′1β0 + a′kγ0,
10, then the above upper bound can be further bounded as

1− Pr(Yi1 = 0, z′1β0 +X ′
i1γ0 ≥ z′1β0 + a′kγ0 | z12) ≤ 1− Pr(Yi1 = 0, Xi1 = ak | z12).

When z′1β0 − z′2β0 ≥ 0 which implies z′1β0 + a′kγ0 ≥ z′2β0 + a′kγ0, then the lower bound

can be bounded below as

Pr(Yi2 = 1, z′2β0 +X ′
i2γ0 ≤ z′1β0 + a′kγ|z12) ≤ Pr(Yi2 = 1, Xi2 = ak | z12).

Combining the above results leads to

If z′1β0 − z′2β0 ≥ 0 =⇒ 1− Pr(Yi1 = 0, Xi1 = ak | z12) ≥ Pr(Yi2 = 1, Xi2 = ak | z12).

The contraposition of the above inequality yields

1− Pr(Yi1 = 0, Xi1 = ak | z12) < Pr(Yi2 = 1, Xi2 = ak | z12) =⇒ ∆z′β0 > 0.

Switching the order of the time period leads to another identifying restriction as follows:

1− Pr(Yi1 = 1, Xi1 = ak | z12) < Pr(Yi2 = 0, Xi2 = ak | z12) =⇒ ∆z′β0 < 0.

Therefore, when ∆z ∈ ∆Z, the sign of ∆z′β0 is identified.

Next, we show that β0 is point identified under the large support assumption. To prove

it, we will show that for any β 6= kβ0 for some k, there exists some value ∆z such that ∆z′b

has different signs from ∆z′β0.

From Assumption 2, the conditional support of ∆zj
∗

is R and βj∗

0 6= 0. We focus on the

case where βj∗

0 > 0, and the analysis also applies to the other case. Let ∆z̃ := ∆z \ ∆zj
∗

denote the remaining covariates in ∆z and β̃0 denote its coefficient. For any candidate b, we

10The value of a = z′2β0 + a′
k
γ0 leads to the same identifying condition.
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discuss three cases: bj
∗

< 0, bj
∗

= 0, and bj
∗

> 0.

Case 1: bj
∗

< 0. When the covariate ∆zj
∗

takes a large positive value ∆zj
∗

→ +∞ and

the remaining covariates take bounded values in their support, it implies that ∆z′β0 > 0 and

∆z′b < 0.

Case 2: bj
∗

= 0. For any value ∆z, the value of ∆z′b is either positive or nonpositive.

When ∆z′b > 0 is positive, then let ∆zj∗ take a large negative value ∆zj∗ → −∞ such

that ∆z′β0 < 0, which has a different sign from ∆z′b. Similarly, if ∆z′b ≤ 0, there exists

∆zj
∗

→ +∞ such that ∆z′β0 > 0.

Case 3: bj
∗

> 0. Assumption 2 requires that ∆Z is not contained in any proper linear

subspace, so there exists ∆z such that ∆z̃′β̃0/β
j∗

0 6= ∆z̃′b̃/bj
∗

. Suppose that ∆z̃′β̃0/β
j∗

0 −

∆z̃′b̃/bj
∗

= k > 0, then when the covariate takes the value ∆Zi = −∆z̃′b̃/bj
∗

−ǫ with 0 < ǫ <

k. The sign of the covariate index satisfies: ∆z′β0 = βj∗

0 (k − ǫ) > 0 and ∆z′b = −bj
∗

ǫ < 0.

The construction is similar when k < 0.

For the identification of γ0, under the similar analysis for β0, we have

(z1, z2) ∈ Zj
3 =⇒ (xj

1 − xj
2)γ

j
0 < ∆z′β0,

(z1, z2) ∈ Zj
4 =⇒ (xj

1 − xj
2)γ

j
0 > ∆z′β0.

As previously shown, when (z1, z2) ∈ Z2, it implies that ∆z′β0 < 0. Therefore, when

(z1, z2) ∈ Z2 ∩ Zj
3 , we have (xj

1 − xj
2)γ

j
0 < ∆z′β0 < 0 and the sign of γj

0 is identified

given xj
1 6= xj

2. Similarly, when (z1, z2) ∈ Z1 ∩ Zj
4 , the sign of γj

0 is also identified given

(xj
1 − xj

2)γ
j
0 > ∆z′β0 > 0. Proposition 3 requires that for any j ≤ dx, either Z2 ∩ Zj

3 6= ∅ or

Z1 ∩ Zj
4 6= ∅ so that the sign of γj

0 is identified for any j.
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A.4 Relationship to Khan, Ponomareva, and Tamer (2023)

Lemma 3. Under Assumption 1 and Xit = Yi,t−1, condition (7) implies the identifying

restriction Khan, Ponomareva, and Tamer (2023), presented as follows:

(i) P (yit = 1 | zst) > P (yis = 1 | zst) =⇒ (zt − zs)
′ β0 + |γ0| > 0,

(ii) P (yit = 1 | zst) > 1− P (yi,s−1 = 1, yis = 0 | zst) =⇒ (zt − zs)
′ β0 −min{0, γ0} > 0,

(iii) P (yit = 1 | zst) > 1− P (yi,s−1 = 0, yis = 0 | zst) =⇒ (zt − zs)
′ β0 +max{0, γ0} > 0,

(iv) P (yi,t−1 = 1, yit = 1 | zst) > P (yis = 1 | zst) =⇒ (zt − zs)
′ β0 +max{0, γ0} > 0,

(v) P (yi,t−1 = 1, yit = 1 | zst) > 1− P (yi,s−1 = 1, yis = 0 | zst) =⇒ (zt − zs)
′ β0 > 0,

(vi) P (yi,t−1 = 1, yit = 1 | zst) > 1− P (yi,s−1 = 0, yis = 0 | zst) =⇒ (zt − zs)
′ β0 + γ0 > 0,

(vii) P (yi,t−1 = 0, yit = 1 | zst) > P (yis = 1 | zst) =⇒ (zt − zs)
′ β0 −min{0, γ0} > 0,

(viii) P (yi,t−1 = 0, yit = 1 | zst) > 1− P (yi,s−1 = 1, yis = 0 | zst) =⇒ (zt − zs)
′ β0 − γ0 > 0,

(ix) P (yi,t−1 = 0, yit = 1 | zst) > 1− P (yi,s−1 = 0, yis = 0 | zst) =⇒ (zt − zs)
′ β0 > 0.

Proof. When the endogenous regressor is the lagged dependent variable Xit = Yit−1, the

identifying condition in Proposition 1 is given as

Us(a) := 1− Pr(Yis = 0, z′sβ0 + Yi,s−1γ0 ≥ a | zst)

≥ Pr(Yit = 1, z′tβ0 + Yi,t−1γ0 ≤ a | zst) := Lt(a).

Since Yi,t−1 only takes two values Yi,t−1 ∈ {0, 1}, we can express the probability in the above

bounds as a mixture of Yi,t−1 = 1 and Yi,t−1 = 0:

Us(a) = 1− Pr(Yis = 0, Yi,s−1 = 1 | zst)1{z
′
sβ0 + γ0 ≥ a}

− Pr(Yis = 0, Yi,s−1 = 0 | zst)1{z
′
sβ0 ≥ a}.

Similarly, the lower bound is given as

Lt(a) = Pr(Yit = 1, Yi,t−1 = 1 | zst)1{z
′
tβ0 + γ0 ≤ a}

+ Pr(Yit = 1, Yi,t−1 = 0 | zst)1{z
′
tβ0 ≤ a}.

Now we discuss different scenarios for the value of (z′tβ0, z
′
sβ0, γ0), leading to various

identifying restrictions in Khan, Ponomareva, and Tamer (2023) described in Lemma 3.

Case 1: consider that z′tβ0+max{0, γ0} ≤ z′sβ0+min{0, γ0}. Let a = z′tβ0+max{0, γ0},

the bounds can be simplified as

Us(a) = 1− Pr(Yis = 0, Yi,s−1 = 1 | zst)− Pr(Yis = 0, Yi,s−1 = 0 | zst) = Pr(Yis = 1 | zst),

Lt(a) = Pr(Yit = 1, Yi,t−1 = 1 | zst) + Pr(Yit = 1, Yi,t−1 = 0 | zst) = Pr(Yit = 1 | zst).
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By exploiting the condition max{0, γ0} −min{0, γ0} = |γ0|, the identifying condition is

given as

(z′tβ0 − z′sβ0) + |γ0| ≤ 0 =⇒ Us(a) = Pr(Yis = 1 | zst) ≥ Lt(a) = Pr(Yit = 1 | zst).

The contraposition of the above condition yields condition (i) in Lemma 3:

Pr(Yit = 1 | zst) > Pr(Yis = 1 | zst) =⇒ (z′tβ0 − z′sβ0) + |γ0| > 0.

Case 2: consider that z′tβ0 +max{0, γ0} ≤ z′sβ0 + γ0. Let a = z′sβ0 + γ0, the bounds are

simplified as

Us(a) ≤ 1− Pr(Yis = 0, Yi,s−1 = 1 | zst), Lt(a) = Pr(Yit = 1 | zst).

Given that max{0, γ0} − γ0 = −min{0, γ0}, we have the following identifying condition:

z′tβ0 − z′sβ0 −min{0, γ0} ≤ 0 =⇒ 1− Pr(Yis = 0, Yi,s−1 = 1 | zst) ≥ Pr(Yit = 1 | zst).

The contraposition of this condition leads to condition (ii) in Lemma 3:

Pr(Yit = 1 | zst) > 1− Pr(Yis = 0, Yi,s−1 = 1 | zst) =⇒ z′tβ0 − z′sβ0 −min{0, γ0} > 0.

The rest of conditions in Lemma 3 can be derived in a similar way so we omit the analysis

here.

A.5 Proof of Proposition 2

Proof. The identifying restriction (9) in Proposition 4 is given as follows:

Ut,order(a | zst) := 1−
J
∑

j=1

Pr(Yis = yj, bj − z′sβ −X ′
isγ ≥ a | zst)

≥
J
∑

j=1

Pr(Yit = yj, bj+1 − z′tβ −X ′
itγ ≤ a | zst) := Lt,order(a | zst).

(18)

The proof idea of Corollary 2 is the same as Appendix 1 for Corollary 1. Let qk ∈ Q2

denote a point in Q2, and we can rank the 2K(J − 1) points as q1 ≤ q2... ≤ q2K(J−1).

When a > q2K(J−1), then Pr(Yis = yj, bj − z′sβ −X ′
isγ ≥ a | zst) = 0 for any j such that

the upper bound is one Ut,order(a | zst) = 1. Therefore, condition (18) holds for any θ and it

is not informative for θ.

When a < q1, then Pr(Yit = yj, bj+1 − z′tβ − X ′
itγ ≤ a | zst) = 0 for any 2 ≤ j ≤ K so

that the lower bound is zero Lt,order(a | zst) = 0 and it is not informative for θ.

When a ∈ (qk, qk+1), we show that the identifying condition (18) at qk+1 contains more
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information than the one at a. The lower bound Lt,order(a | zst) is increasing in a, therefore

the lower bound evaluated at qk+1 is larger than the one evaluated at a. The upper bound is

the same when evaluated at qk+1 and at a, as there does not exist any point bj−z′sβ−a′kγ that

lies in [a, qk+1) from the definition of qk. Therefore, if the parameter θ satisfies condition (18)

evaluated at qk+1, it must satisfy condition (18) evaluated at a. The identifying condition

at a does not provide additional information for θ.

A.6 Proof of Lemma 1

Proof. When all regressors are exogenous in the sense ǫis | (Wist, αi)
d
∼ ǫit | (Wist, αi), the

identifying restriction in Proposition 4 is given as

1−
J
∑

j=1

Pr(Yis = yj | wst)1{bj −w′
sθ0 ≥ a} ≥

J
∑

j=1

Pr(Yit = yj | wst)1{bj+1 −w′
tθ0 ≤ a}. (19)

For any a ∈ R, the above identifying restriction is only informative when there exists

2 ≤ j1 ≤ J and 1 ≤ j2 ≤ J − 1 such that

bj1 − w′
sθ0 ≥ a, bj2+1 − w′

tθ0 ≤ a. (20)

It is because if the above condition does not hold, then either the upper bound in condition

(19) becomes one or the lower bound becomes zero. Then condition (19) holds for any θ and

there is no identifying power.

Condition (20) can be satisfied for some a if and only if there exists 2 ≤ j1 ≤ J and

1 ≤ j2 ≤ J − 1 such that bj1 − w′
sθ0 ≥ bj2+1 − w′

tθ0. In this case, the identifying condition

(19) becomes

if bj1 − w′
sθ0 ≥ bj2+1 − w′

tθ0 =⇒

j1−1
∑

j=1

Pr(Yis = yj | wst) = 1−
J

∑

j=j1

Pr(Yis = yj | wst)

≥

j2
∑

j=1

Pr(Yit = yj | wst).

Replacing j1 with j̃1 = j1 − 1 yielding the results in Proposition 4.

A.7 Proof of Proposition 5 and Proposition 6

Proof. We first prove that β0 is point identified up to scale by showing that for any ∆z ∈

∆Zorder, the sign of ∆z′β0 is identified. The identifying condition for θ0 in Proposition 4 is
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given as

1−
J
∑

j=1

Pr(Yi1 = yj, bj−z′1β0−X ′
i1γ0 ≥ a | z12) ≥

J
∑

j=1

Pr(Yi2 = yj, bj+1−z′2β0−X ′
i2γ0 ≤ a | z12),

and the same condition also holds when changing the order of period 1 and 2.

Let a = bk − z′1β0 − x′γ0 for 2 ≤ k ≤ J , then we know that bj − z′1β0 − x′γ0 ≥ a if j ≥ k.

Therefore, the upper bound becomes

1−
J
∑

j=1

Pr(Yi1 = yj, bj − z′1β0 −X ′
i1γ0 ≥ a | zst) ≥ 1−

J
∑

j=k

Pr(Yi1 = yj, Xi1 = x).

Moreover, if −z′2β0 ≤ −z′1β0, then bj+1 − z′2β0 − x′γ0 ≤ a for j +1 ≤ k. The lower bound

can be bounded below by

J
∑

j=1

Pr(Yi2 = yj, bj+1 − z′2β0 −X ′
i2γ0 ≤ a | z12) ≥

k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x | z12).

Combining the results yields the following conditions:

∆z′β0 ≥ 0 =⇒ 1−
J

∑

j=k

Pr(Yi1 = yj, Xi1 = x) ≥
k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x | z12).

The contraposition of the above condition generates

1−
J

∑

j=k

Pr(Yi1 = yj , Xi1 = x) ≥
k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x | z12) =⇒ ∆z′β0 < 0.

Therefore, when z ∈ Z1,order, the sign of ∆z′β0 < 0 is identified. Similarly, the sign of

∆z′β0 > 0 is also identified when z ∈ Z2,order. Given that the sign of ∆z′β0 is identified,

the parameter β0 is point identified up to scale under the large support condition ∆z. The

analysis is the same as proof A.3 for Proposition 2, so it is omitted here.

Now we look at the result for γ0 in Proposition 6. Let a = bk − z′1β0 − x′
1γ0, then the

upper bound becomes

1−
J

∑

j=1

Pr(Yi1 = yj, bj − z′1β0 −X ′
i1γ0 ≥ a | zst) ≥ 1−

J
∑

j=k

Pr(Yi1 = yj, Xi1 = x1).

If bk − z′2β0 − x′
2γ0 ≤ a, the lower bound becomes

J
∑

j=1

Pr(Yi2 = yj, bj+1 − z′2β0 −X ′
i2γ0 ≤ a | z12) ≥

k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x2 | z12).
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Combining the results leads to

if − z′2β0 − x′
2γ0 ≤ −z′1β0 − x′

1γ0 =⇒

1−
J
∑

j=k

Pr(Yi1 = yj, Xi1 = x1) ≥
k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x | z12).

Similarly, the contraposition of the above condition gives

1−
J
∑

j=k

Pr(Yi1 = yj, Xi1 = x1) <
k−1
∑

j=1

Pr(Yi2 = yj, Xi2 = x2 | z12) =⇒ ∆z′β0 < (x1 − x2)
′γ0.

Therefore, when ∆z ∈ Zj
3,order ∩ Z2,order, it implies that

0 < ∆z′β0 < (xj
1 − xj

2)γ
j
0.

Given that xj
1 − xj

2 6= 0, it implies that the sign of γj
0 is identified. Similarly when

∆z ∈ Zj
4,order∩Z1,order, we have 0 < ∆z′β0 < (xj

1−xj
2)γ

j
0. The sign of γj

0 is also identified. For

any j ≤ dx, Proposition 6 requires that either Zj
3,order ∩Z2,order 6= ∅ or Zj

4,order ∩Z1,order 6= ∅,

so the sign of γj
0 is identified for any j.

A.8 Proof of Proposition 7

Proof. For any set K ⊂ J , the conditional probability of selecting a choice j ∈ K given

Wist = wst is:

Pr(Yit ∈ K | wst) = Pr
(

∃j ∈ K s.t. w′
ijtθ0 + vijt ≥ w′

iktθ0 + vikt ∀k ∈ Kc | wst

)

.

The above observed probability provides information regarding the distribution of vikt −

vijt. Therefore, we can use observed data to bound the following distribution: for ajk ∈ R,

Qt(ajk | wst) := Pr (∃j ∈ K s.t. vikt − vijt ≤ ajk ∀k ∈ Kc | wst) .

When ajk satisfies ajk ≥ (wijt −wikt)
′θ0 for any (j, k), then the above probability can be

bounded below as

Qt(ajk | wst) ≥ Pr (∃j ∈ K s.t. vikt − vijt ≤ (wijt − wikt)
′θ0 ∀k ∈ Kc | wst)

= Pr(Yit ∈ K | wst).

Therefore, the lower bound for Qt(ajk | wst) is established as

Qt(ajk | wst) ≥ Pr(Yit ∈ K | wst)1{ajk ≥ (wijt − wikt)
′θ0 ∀j ∈ K, k ∈ Kc}.

The above inequality holds since either ajk ≥ (wijt − wikt)
′θ0 or the lower bound is zero.
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Since Assumption 1 is only conditioning on the exogenous covariate zst, we can bound

the conditional distribution Qt(ajk | zst) by taking expectation of Xit given zst:

Qt(ajk | zst) ≥ Pr (Yit ∈ K, ajk ≥ (zijt − zikt)
′β0 + (Xijt −Xikt)

′γ0 ∀j ∈ K, k ∈ Kc | zst) .

Similarly, an upper bound for the conditional probability Qt(ajk | wst) is derived as

follows:

Qt(ajk | wst) ≤ Pr(Yit ∈ K | wst)1{ajk ≤ (wijt − wikt)
′θ0 ∀j ∈ K, k ∈ Kc}+

1− 1{ajk ≤ (wijt − wikt)
′θ0 ∀j ∈ K, k ∈ Kc}.

The above inequality holds since either ajk ≤ (wijt−wikt)
′θ0 and the probability Qt(ajk | wst)

is weakly increasing or the upper bound is one.

After taking expectation of Xist given zst, the upper bound for Qt(ajk | zst) is obtained

as

Qt(ajk | zst) ≤ Pr (Yit ∈ K, ajk ≤ (zijt − zikt)
′β0 + (Xijt −Xikt)

′γ0 ∀j ∈ K, k ∈ Kc | zst)

+ 1− Pr (ajk ≤ (zijt − zikt)
′β0 + (Xijt −Xikt)

′γ0 ∀j ∈ K, k ∈ Kc | zst) .

Rearranging the above formula yields

Qt(ajk | zst) ≤ 1−Pr (Yit ∈ Kc, ajk ≤ (zijt − zikt)
′β0 + (Xijt −Xikt)

′γ0 ∀j ∈ K, k ∈ Kc | zst) .

Under Assumption 1, the conditional probability Qt(ajk | zst) is the same over the two

periods (s, t). Therefore, the upper bound at period s of Qt(ajk | zst) should be larger than

the lower bound at period t, yielding the identifying condition (10) as follows:

1− Pr(Yis ∈ Kc, (zjs − zks)
′β0 + (Xijs −Xiks)

′γ0 ≥ ajk ∀j ∈ K, k ∈ Kc | zst)

≥ Pr(Yit ∈ K, (zjt − zkt)
′β0 + (Xijt −Xikt)

′γ0 ≤ ajk ∀j ∈ K, k ∈ Kc | zst).

A.9 Proof of Proposition 8

Proof. Since the observed outcome Yit is censored, we either observe Yit = y > 0 or Yit = 0.

Let vit = −(αi + ǫit), the conditional probability of Yit = 0 is given as,

Pr(Yit = 0 | wst) = Pr(Y ∗
it ≤ 0 | wst) = Pr(vit ≥ z′tβ0 + x′

tγ0 | wst).
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When y > 0, the conditional distribution is given as

Pr(Yit ≤ y | wst) = Pr(Y ∗
it ≤ 0, Yit ≤ y | wst) + Pr(0 < Y ∗

it , Yit ≤ y | wst)

= Pr(Y ∗
it ≤ 0 | wst) + Pr(0 < Y ∗

it ≤ y | wst)

= Pr(Y ∗
it ≤ y | wst)

= Pr(vit ≥ z′tβ0 + x′
tγ0 − y | wst).

Combining the two scenarios, the full conditional distributional of Yit | Wist is character-

ized as follows:

Pr(Yit ≤ y | wst) =

{

Pr(vit ≥ z′tβ0+x′
tγ0 − y | wst) if y ≥ 0,

0 if y < 0.

Given observed distribution of Yit | Wist, the identification approach is to bound the dis-

tribution Pr(vit ≤ a | zst). We first look at the upper bound for the conditional distribution

vit | wst given all covariates Wist = wst.

Pr(vit ≥ a | wst) ≤ Pr(Yit ≤ z′tβ0 + x′
tγ0 − a)1{z′tβ0 + x′

tγ0 ≥ a}+

Pr(Yit = 0 | zst)1{z
′
tβ0 + x′

tγ0 < a},

where the above condition holds since either z′tβ0 + x′
tγ0 − a ≥ 0 so that there exists y =

z′tβ0 + x′
tγ0 − a ≥ 0 such that Pr(Yit ≤ y | wst) = Pr(vit ≥ a | wst), or Pr(vit ≥ a | wst) ≤

Pr(vit ≥ z′tβ0 + x′
tγ0 | wst) = Pr(Yit = 0 | wst) when z′tβ0 + x′

tγ0 < a.

Taking expectation over the endogenous covariate Xist yields the upper bound for the

distribution vit | zst:

Pr(vit ≥ a | zst) ≤ Pr(Yit ≤ z′tβ0 +X ′
itγ0 − a, z′tβ0 +X ′

itγ0 ≥ a | zst)+

Pr(Yit = 0, z′tβ0 +X ′
itγ0 < a | zst).

The above upper bound can be also also expressed as

Pr(Yit ≤ z′tβ0 +X ′
itγ0 − a, z′tβ0 +X ′

itγ0 ≥ a | zst) + Pr(Yit = 0, z′tβ0 +X ′
itγ0 < a | zst)

=Pr(0 < Yit ≤ z′tβ +X ′
itγ − a, z′tβ +X ′

itγ ≥ a | zst) + Pr(Yit = 0 | zst)

=Pr(0 < Yit ≤ z′tβ +X ′
itγ − a | zst) + Pr(Yit = 0 | zst).

Similarly, the conditional distribution vit | wst can be bounded below

Pr(vit ≥ a | wst) ≥ Pr(Yit ≤ z′tβ0 + x′
tγ0 − a),

where the above condition holds since either z′tβ0 + x′
tγ0 − a ≥ 0 so that there exists y =

z′tβ0 + x′
tγ0 − a ≥ 0 such that Pr(Yit ≤ y | wst) = Pr(vit ≥ a | wst), or the lower bound is

zero when z′tβ0 + x′
tγ0 < a.

47



Taking expectation over Xist leads to the following lower bound:

Pr(vit ≥ a | zst) ≥ Pr(Yit ≤ z′tβ0 +X ′
itγ0 − a | zst).

The conditional stationarity condition requires vis | Zist
d
∼ vit | Zist, which implies that

the bounds for vit | Zist must have intersections over any pair of periods (s, t). This restriction

generates the following identifying condition for θ0:

Pr(0 < Yis ≤ z′sβ +X ′
isγ − a | zst) + Pr(Yis = 0 | zst) ≥ Pr(Yit ≤ z′tβ0 +X ′

itγ0 − a | zst)

for any a ∈ R, any s, t, and any zst.

A.10 Dynamic Censored Models with Latent Dependent Vari-

ables

Consider the following dynamic censored models with the latent lagged outcome Y ∗
i,t−1:

Y ∗
it = Z ′

itβ0 + Y ∗
i,t−1γ0 + αi + ǫit,

Yit = max{Y ∗
it , 0},

In this model, the endogenous variable Xit is the lagged outcome: Xit = Y ∗
i,t−1. However,

the variable Y ∗
i,t−1 is not observed in data, so the results in Proposition 8 cannot be directly

applied here. Due to this feature in the dynamic model, we need to adjust the results in

Proposition 8. Given that Y ∗
i,t−1 = Yi,t−1 when Yi,t−1 > 0, we can further relax the lower and

upper bounds in (8) to identify θ0.

The lower bound in condition (8) can be bounded below as follows:

Pr(Yit ≤ z′tβ + Y ∗
i,t−1γ − a | zst)

≥ Pr(Yit ≤ z′tβ + Yi,t−1γ − a, Yi,t−1 > 0 | zst) := Lt,cen(a | zst; θ).

Similarly, the upper bound in condition (8) can be further bounded above

Pr(0 < Yis ≤ z′sβ + Y ∗
i,s−1γ − a | zst) + Pr(Yis = 0 | zst) ≤ Us,cen(a | zst; θ),

where Us,cen(a | zst; θ) is defined as

Us,cen(a | zst; θ) := Pr(0 < Yis ≤ z′sβ + Yi,s−1γ − a, Yi,s−1 > 0 | zst)

+ Pr(Yis > 0, Yi,s−1 = 0 | zst) + Pr(Yis = 0 | zst).

For the dynamic model, an identified set for θ0 is characterized by the following lemma:

Lemma 4. Under Assumption 1 and Xit = Y ∗
i,t−1, the identified set for θ0 is characterized
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by the set of parameters θ that satisfy the following conditions:

Us,cen(a | zst; θ) ≥ Lt,cen(a | zst; θ).

for any a ∈ R, s, t ≤ T , and zst.
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