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Abstract

The expectation is an example of a descriptive statistic that is monotone with
respect to stochastic dominance, and additive for sums of independent random variables.
We provide a complete characterization of such statistics, and explore a number of
applications to models of individual and group decision-making. These include a
representation of stationary monotone time preferences, extending the work of Fishburn
and Rubinstein (1982) to time lotteries. This extension offers a new perspective on
risk attitudes toward time, as well as on the aggregation of multiple discount factors.

1 Introduction

How should a random quantity be summarized by a single number? In Bayesian statistics,
point estimators capture an entire posterior distribution. In finance, risk measures quantify
the risk in a distribution of returns. And in economics, certainty equivalents characterize
an agent’s preference for uncertain outcomes.

We use the term descriptive statistic, or simply statistic, to refer to a map that assigns
a number to each bounded random variable. We study statistics that are monotone with
respect to first-order stochastic dominance, and additive for sums of independent random
variables. An example of a monotone additive statistic is the expectation. The median is
monotone but not additive, while the variance is additive, but not monotone.

Monotonicity is a well studied property of statistics (see, e.g., Bickel and Lehmann,
1975a,b), and holds, for example, for certainty equivalents of monotone preferences over
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lotteries. Additivity is a stronger assumption. We focus on this property because of its
conceptual simplicity and because it serves as a baseline assumption in many settings.
As we argue, additivity corresponds to stationarity in the context of preferences over
time lotteries (see §3). In the context of choices over monetary gambles it corresponds
to invariance to background risk (§4.1), or to a form of separability across independent
decision problems (§4.7).

Beyond the expectation, an additional example of a monotone additive statistic is the
map Ka that, given a ∈ R, assigns to each random variable X the value

Ka(X) = 1
a

logE
[
eaX

]
. (1)

In the fields of probability and statistics, this function is known as the (normalized) cumulant
generating function evaluated at a. In finance it is called the entropic risk measure. In
economics, it corresponds to the certainty equivalent of an expected utility maximizer
who exhibits constant absolute risk aversion (CARA) over gambles. For bounded random
variables, the essential minimum and maximum provide further examples of such statistics;
as we explain later, they are the limits of Ka as a approaches ±∞. The expectation is
equal to K0, the limit of Ka as a approaches 0.

Our main result establishes that these examples, and their weighted averages, are the
only monotone additive statistics. That is, we show that if a statistic Φ is monotone,
additive and normalized so that it satisfies Φ(c) = c for every constant c, then it is of the
form

Φ(X) =
∫
Ka(X) dµ(a)

for some probability measure µ over the extended real line. This result provides a simple
representation of a natural family of statistics, which one may a priori have expected to be
much richer.

Our first application is to time preferences. The starting point for our analysis is the
work by Fishburn and Rubinstein (1982), who study preferences over dated rewards—a
monetary reward, together with the time at which it will be received. They show that
exponential discounting of time arises from a set of axioms, of which the most substantial,
stationarity, postulates that preferences between two dated rewards are unaffected by the
addition of a common delay.

We extend the analysis of Fishburn and Rubinstein (1982) to time lotteries, which
consist of a monetary reward x and a random time T at which it will be received. In this
setting, we too introduce a stationarity axiom that requires preferences to be invariant
with respect to random independent delays. As we argue in the main text, this stationarity
axiom captures a dynamic consistency assumption, together with the idea that preferences
do not depend on calendar time.
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We show that a monotone and stationary preference over time lotteries admits a
representation of the form

u(x)e−rΦ(T ),

where Φ is a monotone additive statistic (Theorem 3). Thus, Φ(T ) is the certainty
equivalent of the random time T , i.e. the deterministic time that is as desirable as T . Over
deterministic dated rewards, the above representation coincides with standard discounted
utility. General time lotteries are reduced to deterministic ones through the certainty
equivalent Φ. By our main representation theorem, it takes the form Φ(T ) =

∫
Ka(T ) dµ(a).

In this context, each Ka(T ) is the certainty equivalent of T under an expected discounted
preference with discount rate −a. The different certainty equivalents are then averaged
according to the measure µ.

In this representation it is as if the decision maker had in mind not one but multiple
discount factors. Thus, Φ can be interpreted as the certainty equivalent of a decision
maker who is uncertain about the correct discount factor, or as the aggregated certainty
equivalent of a group of different discounting agents.

Our representation theorem for monotone and stationary time preferences has im-
plications for understanding the relation between stationarity and risk attitudes toward
time. How people choose among prospects that involve risk over time has been studied
both theoretically and experimentally (Chesson and Viscusi, 2003; Onay and Öncüler,
2007; Ebert, 2020; DeJarnette et al., 2020; Ebert, 2021). A basic paradox these papers
highlight is that many subjects display risk aversion over the time dimension, even though
the standard theory of expected discounted utility predicts that people are risk-seeking
with respect to time lotteries. Our analysis shows that expected discounted utility is only
one of many ways to extend exponential discounting from dated rewards to time lotteries
without violating stationarity. In particular, monotone and stationary time preferences
can accommodate risk aversion over time, as well as more nuanced preferences that display
risk-averse or risk-seeking behavior depending on the choice at hand.

We further apply the characterization of monotone stationary preferences to the problem
of aggregating heterogeneous time preferences. It is well known that directly averaging
exponential discounting utilities leads to present bias (see Jackson and Yariv, 2014, 2015).
Based on this observation, the literature concludes that within expected discounted utility,
it is impossible to aggregate individual preferences into a social preference unless the latter
is dictatorial.

We show that this difficulty is not due to stationarity, but rather to an insistence
on the idea that the social preference should conform to expected discounted utility.
When preferences are allowed to belong to the more general class of monotone stationary
preferences, then a social preference obtained by averaging the certainty equivalents of
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the individuals satisfies Pareto efficiency and stationarity. Moreover, every Paretian and
stationary social preference is obtained in this way (Theorem 4).

Monotone additive statistics also find applications to models of choice over monetary
gambles. It is well known that an expected utility agent whose preferences are invariant
to independent background risks must have CARA preferences. This invariance property
makes CARA utility functions useful modeling tools when the analyst does not observe
the agents’ wealth level or the additional risks they face (see, e.g., Barseghyan, Molinari,
O’Donoghue, and Teitelbaum, 2018). Beyond expected utility, monotone preferences that
are invariant to background risks have certainty equivalents that are monotone additive
statistics, and thus, by our representation theorem, are weighted averages of CARA
certainty equivalents, where the mixing measure µ is over the coefficient of absolute risk
aversion. Hence, in this representation, the decision maker entertains multiple utility
functions, each defining a different certainty equivalent. Each lottery is evaluated by
averaging over certainty equivalents.

An interesting feature of preferences represented by monotone additive statistics is that
they can display behavior that is not uniformly risk-averse nor risk-seeking, such as that of
an agent buying both lottery tickets and insurance (Friedman and Savage, 1948), all while
maintaining invariance to background risk. At the same time, a potential difficulty for this
class of preferences is that their defining parameter, the measure µ over the coefficient of
risk aversion, is infinite-dimensional. To narrow down the parameter space, we focus on
those preferences that also satisfy betweenness, a well-known weakening of the independence
axiom that has been extensively studied in the literature (see Dekel, 1986; Gul, 1991). We
show that a preference represented by a monotone additive statistic Φ satisfies betweenness
if and only if it is of the form

Φ(X) = βK−aβ(X) + (1− β)Ka(1−β)(X).

The parameter β ∈ [0, 1] controls the the relative weights of the risk-averse and risk-seeking
components, with increased β making the decision maker more risk-averse. The parameter
a is a scale parameter. This is a simple two-parameter family, but it is rich enough to
accommodate preferences that are neither risk-averse nor risk-seeking, while maintaining
stationarity.

Our final application concerns group decision-making under risk. We consider a firm
that employs multiple agents, each of whom makes decisions following an individual
preference relation, which can be seen as a decision rule prescribed by the firm. We show
that in order for the agents’ independent choices to not violate stochastic dominance
when combined, it is sufficient and necessary that their preferences are represented by the
same monotone additive statistic. Thus, these are the only preferences with the property
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that decentralized decisions cannot result in stochastically dominated outcomes for the
organization.

1.1 Related Literature

A large literature in statistics studies descriptive statistics of probability distributions. A
representative example is the work of Bickel and Lehmann (1975a,b), who study location
statistics using an axiomatic, non-parametric approach that is similar to ours. This
literature has however focused on different properties, and, to the best of our knowledge,
does not contain a similar characterization of additivity and monotonicity. The mathematics
literature has studied additive statistics as homomorphisms from the convolution semigroup
to the real numbers (see Ruzsa and Székely, 1988; Mattner, 1999, 2004), but without
imposing monotonicity.

In finance and actuarial sciences, −Ka(X) is also known as an entropic risk measure,
and is used to assess the riskiness of a financial position X. It is a canonical example of a
coherent risk measure (see Föllmer and Schied, 2002, 2011; Föllmer and Knispel, 2011). In
this literature, Goovaerts, Kaas, Laeven, and Tang (2004) study additive statistics that
are monotone with respect to all entropic risk measures, i.e. those with the property that
Ka(X) ≥ Ka(Y ) for all a ∈ R implies Φ(X) ≥ Φ(Y ), and show that they must be weighted
averages of entropic risk measures, as in our main representation. In contrast, we show
that this condition is implied by monotonicity and additivity of Φ.

In an earlier paper, Pomatto, Strack, and Tamuz (2020) show that on the domain
of random variables that have all moments, the only monotone additive statistic is the
expectation. The techniques used there involve fat-tailed random variables, which are
used to rule out all other monotone additive statistics.1 This precludes any study of risk
aversion. In contrast, in this paper we primarily study the domain of bounded random
variables, which allows for richer preferences with a variety of risk attitudes.

Monotone additive statistics also relate to what we called additive divergences in Mu,
Pomatto, Strack, and Tamuz (2021). An additive divergence is a map defined over Blackwell
experiments that satisfies monotonicity with respect to the Blackwell order and additivity
for product experiments. While some of the techniques used in the two papers are similar,
the main mathematical argument is fundamentally different. The last step of the proof
of our Theorem 1 is the same type of Riesz Representation Theorem argument used in
the previous paper. However, because the Blackwell order has different properties from
first-order stochastic dominance, the remainder of the proof is different, with the previous

1The same phenomenon is studied more in depth in Mu, Pomatto, Philipp, and Tamuz (2023) and Fritz,
Mu, and Tamuz (2020). In the latter paper it is shown that the expectation remains the unique monotone
additive statistic on the domain Lp, for any p ≥ 1, while there are no monotone additive statistics on Lp

with p < 1, or on the domain of all random variables.
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paper having no analogue of Theorem 7, which is the main technical step in the proof
of Theorem 1. This new technique is also needed for the proof of Theorem 2, which
characterizes monotone additive statistics beyond bounded random variables.

DeJarnette, Dillenberger, Gottlieb, and Ortoleva (2020) study preferences over time
lotteries that display risk aversion. One class of preferences they propose is a generalization
of expected discounted utility (GEDU) that for a random prize X delivered at a random
time T takes the form E

[
φ(u(X)e−rT )

]
for some strictly increasing transformation φ. The

curvature of φ determines the attitude towards risk. While GEDU satisfies stationarity
for deterministic X and T , stationarity does not in general hold once random times T
are considered, even with respect to adding a deterministic delay. The only intersection
between our model and GEDU are preferences represented by Ka, corresponding to a
point-mass mixing measure µ. These preferences have the standard EDU representation,
but perhaps with a negative discount rate, as we explain in §3.3.2

Applied to choice under risk, our representation also bears resemblance to cautious
expected utility theory (Cerreia-Vioglio, Dillenberger, and Ortoleva, 2015), in which a
gamble is evaluated according to the minimum certainty equivalent across a family of utility
functions. The two representations are conceptually related, as both involve uncertainty
about the correct utility function. Our axioms are however different in that we study
preferences that are invariant to adding an independent gamble, while Cerreia-Vioglio,
Dillenberger, and Ortoleva (2015) consider the effect of mixing with another gamble.

Decision criteria that aggregate multiple certainty equivalents have appeared before
in the literature. Myerson and Zambrano (2019) advocate the maximization of a sum of
certainty equivalents as an effective rule for risk sharing. Chambers and Echenique (2012)
formalize and characterize this rule as a social welfare functional.

The remainder of the paper is organized as follows. In §2 we introduce monotone
additive statistics and state our main result. In §3 we apply this result to time lotteries,
and in §4 we apply it to monetary gambles. Finally, §5 provides an overview of the proof of
our main result. The appendix and online appendix contain omitted proofs for the results
in the main text.

2 Monotone Additive Statistics

We denote by L∞ the collection of bounded real random variables, defined over a nonatomic
probability space (Ω,F ,P). We will identify each c ∈ R with the corresponding constant

2When the prize X is held constant, a GEDU preference reduces to an expected utility preference over
random times. In contrast, our prizes are always deterministic, and the stationary preferences over random
times are represented by monotone additive statistics, which are not expected utility unless the mixing
measure µ is a point mass (see Proposition 7 in §F of the online appendix).
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random variable taking value X(ω) = c at each ω ∈ Ω.
We say that a map Φ: L∞ → R is a statistic if it satisfies (i) Φ(X) = Φ(Y ) whenever

X,Y ∈ L∞ have the same distribution, and (ii) Φ(c) = c for every c ∈ R; that is, Φ
assigns c to the constant random variable c. We are interested in statistics that satisfy
monotonicity with respect to first-order stochastic dominance and additivity for sums of
independent random variables. Formally, Φ is

• additive if Φ(X + Y ) = Φ(X) + Φ(Y ) whenever X and Y are independent, and

• monotone if X ≥1 Y implies Φ(X) ≥ Φ(Y ), where ≥1 denotes first-order stochastic
dominance.

Since, by assumption, the value Φ(X) depends only the distribution of the random variable
X, monotonicity is equivalent to the requirement that Φ(X) ≥ Φ(Y ) whenever X ≥ Y

almost surely. This equivalence is based on the well-known fact that X ≥1 Y if and only if
there are random variables X̃, Ỹ such that X and X̃ are identically distributed, Y and Ỹ
are identically distributed, and X̃ ≥ Ỹ almost surely.3

We denote by R = R ∪ {−∞,∞} the extended real numbers. Given X ∈ L∞ and
a ∈ R \ {0,±∞}, we consider the statistic

Ka(X) = 1
a

logE
[
eaX

]
. (2)

The valueKa(X) is the certainty equivalent ofX for a CARA utility function with coefficient
of risk aversion −a. In probability and statistics, Ka(X) is known as the (normalized)
cumulant generating function of X, evaluated at a. If X and Y are independent, then
E
[
ea(X+Y )

]
= E

[
eaX

]
E
[
eaY

]
, and hence Ka is additive. It is also monotone.

We additionally define K0(X),K∞(X),K−∞(X) to be the expectation, the essential
maximum, and the essential minimum of X, respectively.4 This choice of notation makes
a 7→ Ka(X) a continuous function from R to R, for any X. Our main result is a
representation theorem for monotone additive statistics:

Theorem 1. Φ: L∞ → R is a monotone additive statistic if and only if there exists a
(unique) Borel probability measure µ on R such that for every X ∈ L∞

Φ(X) =
∫
R
Ka(X) dµ(a). (3)

3An alternative, equivalent definition for a statistic is to let the domain of Φ be the set of probability
distributions on R with bounded support. In this domain, additivity would be defined with respect to
convolution. We choose to have the domain consist of random variables, as this approach offers some
notational advantages.

4The essential maximum and minimum are the maximum and minimum of the support: max[X] =
sup{a : P [X ≤ a] < 1} and min[X] = inf{a : P [X ≤ a] > 0}.
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Each Ka satisfies monotonicity and additivity, and it is immediate that these two
properties are preserved under convex combinations. Theorem 1 says that the one-
parameter family {Ka} forms the extreme points of the set of monotone additive statistics;
every such statistic must be a weighted average obtained by mixing over this family. In §5
we provide an overview of the proof of Theorem 1.

Theorem 1 can be extended to other domains of random variables. We consider the
set LM of random variables X for which Ka(X), as defined in (2), is finite for all a ∈ R.
The domain LM contains those unbounded random variables whose distributions have
sub-exponential tails, as in the case of the normal distribution.

Theorem 2. Φ: LM → R is a monotone additive statistic if and only if it admits a
(unique) representation of the form (3) where the measure µ has compact support in R.

The extension of Theorem 1 to the larger domain LM adds to the applicability of our
representation, as it includes distributions with unbounded support, such as Gaussian or
Poisson, for which the function Ka has closed-form expressions. For example, Theorem 2
implies that when applied to a Gaussian random variable Z, a monotone additive statistic
Φ defined on LM takes the simple mean-variance form Φ(Z) = E [Z] + cVar[Z]/2, where
c ∈ R is the mean of the measure µ characterizing Φ.

A few additional remarks are in order. First, Theorems 1 and 2 answer an open
question in the mathematical finance literature on risk measures posed by Goovaerts,
Kaas, Laeven, and Tang (2004), who asked if entropic risk measures are the only additive
risk measures. Second, a possible strengthening of our additivity condition requires
Φ(X + Y ) = Φ(X) + Φ(Y ) to hold for all pairs of random variables, rather than just the
independent ones. As is well known, the only statistic that is additive in this more restrictive
sense is the expectation (see, for example, de Finetti, 1970). A different strengthening
is additivity with respect to uncorrelated random variables. It follows from the analysis
of Chambers and Echenique (2020) that on a finite probability space the expectation is,
again, the only monotone statistic that is additive for uncorrelated random variables.

3 Monotone Stationary Time Preferences

Next, we apply monotone additive statistics to the study of time preferences. We consider
decision problems where an agent is asked to choose between time lotteries that pay a fixed
reward at a future random time, as in the case of a driver choosing between different routes,
where some routes are more likely than others to face heavy traffic, or a company choosing
between projects with different random completion times. We argue that in this context
additivity is connected to a notion of stationarity, according to which a choice between
future rewards is not affected by the addition of an independent delay. In this section we
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study preferences over time lotteries that are monotone and stationary, characterize them
using monotone additive statistics, discuss the risk attitudes they can model, and apply
them to the problem of aggregating heterogeneous time preferences.

3.1 Domain and Axioms

A time lottery is a monetary reward received by a decision maker at a future, random time.
Formally, it consists of a pair (x, T ), where x ∈ R++ is a positive payoff and T ∈ L∞+ is
the random time at which it realizes.5 Thus, time is non-negative and continuous. Our
primitive is a complete and transitive binary relation � on the domain R++ × L∞+ . We
denote by ∼ the indifference relation induced by �. To avoid notational confusion, in the
rest of this section x and y always denote monetary payoffs, t, s and d denote deterministic
times, and T, S, and D denote random times.

We say that a preference relation � on R++ × L∞+ is a monotone stationary time
preference (henceforth, MSTP) if it satisfies the following axioms:

Axiom 3.1 (More is Better). If x > y then (x, T ) � (y, T ).

Axiom 3.2 (Earlier is Better). If s > t then (x, t) � (x, s), and if S ≥1 T then (x, T ) �
(x, S).

Axiom 3.3 (Stationarity). If (x, T ) � (y, S) then (x, T +D) � (y, S +D) for any D that
is independent from T and S.

Axiom 3.4 (Continuity). For any (y, S), the sets {(x, t) : (x, t) � (y, S)} and {(x, t) : (x, t) �
(y, S)} are closed in R++ × R+.

The first two Axioms 3.1 and 3.2 are standard conditions that directly generalize those
in Fishburn and Rubinstein (1982), who studied preferences over dated rewards {(x, t)}
with a deterministic time t. They require the decision maker to prefer higher payoffs,
and to prefer earlier times. Axiom 3.4 is a standard continuity assumption that does not
require a choice of topology over random times. The most substantive of our axioms is
stationarity. In §3.4 we discuss this axiom in depth and motivate it using the notions of
time invariance and dynamic consistency (Halevy, 2015).

It is worthwhile to note that we implicitly assume agents to be indifferent with respect
to the timing of resolution of uncertainty. We think of the choice as being made at time 0,
and we do not distinguish between situations where the realization of the random time T
is revealed immediately, gradually until time T , or only at time T . Modeling preferences
over the timing of resolution of uncertainty would require enlarging the choice domain
beyond time lotteries.

5Per standard notation, L∞+ denotes the set of non-negative bounded random variables.
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3.2 Representation

Our next result characterizes monotone stationary time preferences:

Theorem 3. A preference relation � over time lotteries is an MSTP if and only if there
exist a monotone additive statistic Φ, a constant r > 0, and a continuous and increasing
function u : R++ → R++ such that � is represented by

V (x, T ) = u(x) · e−rΦ(T ). (4)

As in Fishburn and Rubinstein (1982), the parameter r can be normalized to be any
arbitrary positive constant by applying a monotone transformation to the representation
V . We will often set r appropriately to simplify the form of the representation. In contrast,
the monotone additive statistic Φ is uniquely determined by the preference.

Over the domain of deterministic time lotteries (i.e. dated rewards), V coincides with
an exponentially discounted utility representation with discount rate r. For general time
lotteries, Φ(T ) is the certainty equivalent of T , i.e. the unique deterministic time that
satisfies (x, T ) ∼ (x,Φ(T )). The monotonicity and continuity axioms ensure that such a
certainty equivalent exists, and it is an implication of stationarity that Φ(T ) is independent
of the reward x. As we further show in the proof of Theorem 3, the monotonicity and
stationarity axioms formally translate into the certainty equivalent Φ being a monotone
additive statistic.

Proposition 6 in the appendix shows that the representation in Theorem 1 extends
to the domain of non-negative bounded random variables. Thus every MSTP can be
represented in the following form:

V (x, T ) = u(x) · e−r
∫
Ka(T ) dµ(a). (5)

We recover expected discounted utility when µ is a point mass concentrated on a point
−a < 0, in which case Φ takes the form

Φ(T ) = K−a(T ) = 1
−a

logE
[
e−aT

]
.

This certainty equivalent, with the normalization r = a, yields the familiar representation
V (x, T ) = u(x)E[e−aT ]. For a general measure µ, the statistic Φ(T ) =

∫
Ka(T ) dµ(a)

aggregates different discount rates by mixing over their corresponding certainty equivalents.
The key feature of the representation (5) is that the average is not over discount factors,

but instead over certainty equivalents induced by the discount factors. The resulting
representation is behaviorally distinct from expected discounted utility whenever µ is not a
point mass. Indeed, as we formally prove in §F in the online appendix, this representation
satisfies the independence axiom if and only if µ is a point mass.
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3.3 Implications for Risk Attitudes toward Time

Theorem 3 demonstrates that there are many ways to extend discounted utility to the
domain of time lotteries, while maintaining stationarity. As is well known, standard
expected discounted utility preferences are risk-seeking over time, in the sense that a decision
maker prefers receiving a reward at a random time T rather than at the deterministic
expected time t = E [T ]. But other monotone additive statistics lead to stationary time
preferences that are not risk-seeking. As an example, for every a > 0 the statistic

Φ(T ) = Ka(T ) = 1
a

logE
[
eaT

]
(6)

leads, with the normalization r = a, to the representation

V (x, T ) = u(x)
E [eaT ] , (7)

which is in fact risk-averse over time. Under this preference, the decision maker applies a
negative discount rate −a within the monotone additive statistic Φ, and yet is impatient.
These two aspects are compatible because in the representation u(x)e−rΦ(T ) the statistic
Φ controls the risk attitude, while the decision maker still prefers receiving prizes earlier
rather than later, since Φ appears with a negative coefficient.

Another key distinctive property of monotone stationary time preferences is their
flexibility in allowing for risk attitudes that are not uniform across time lotteries. To
illustrate this point, consider two decision problems with a fixed common reward x = $1000,
where in the first problem the choice is between

(I) receiving the reward after 1 day for sure, versus

(II) receiving the reward immediately with 99% probability and after 100 days with 1%
probability.

In the second decision problem the choice is between

(I’) receiving the reward after 99 days for sure, versus

(II’) receiving the reward immediately with 1% probability and after 100 days with 99%
probability.

In both problems, the times at which the safe options I and I’ deliver the prize are equal
to the expected delay of the lotteries II and II’, and thus a decision maker who is globally
risk-averse or risk-seeking toward time must either choose the safe options or the risky
options in both problems. Nevertheless, it does not seem unreasonable for a person to
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choose I over II in order to avoid the risk of a long delay, but also choose II’ to I’, since
the time lottery offers at least a chance of avoiding an otherwise very long delay.6

Preferences based on monotone additive statistics are not necessarily globally risk-averse
or risk-seeking, and can accommodate the aforementioned behavior. For example, the
statistic

Φ(T ) = 1
2K1(T ) + 1

2K−1(T ) = 1
2 logE

[
eT
]
− 1

2 logE
[
e−T

]
leads the decision maker to choose the safe option I in the first problem and the risky
option II’ in the second.

Empirically, both risk-averse and risk-seeking behavior over time lotteries are observed.
For example, the experiment by Ebert (2021) finds that there are risk-seeking and risk-averse
subjects: “Overall, therefore, and in contrast to the evidence on wealth risk preferences,
there is substantial heterogeneity in preferences toward delay risk.” Moreover, DeJarnette,
Dillenberger, Gottlieb, and Ortoleva (2020) find that even the same subject often exhibits
both risk aversion and risk seeking depending on the choice at hand. In their experiment,
out of 5 different choices over time lotteries, only 2.9% of subjects are always risk-seeking
and only 12.4% are always risk-averse. Thus 84.7% of subjects exhibit behavior that is
sometimes risk-seeking and sometimes risk-averse.7

In §4.5 below we provide a detailed analysis of the risk attitudes of preferences repre-
sented by monotone additive statistics, including a characterization of those statistics that
give rise to mixed risk attitudes, as in the above example.

3.4 Stationarity, Time Invariance and Dynamic Consistency

In the absence of risk, it was shown by Halevy (2015) that stationarity can be understood as
the implication of two more basic principles: that preferences are not affected by calendar
time, and that the decision maker is dynamically consistent. As we next argue, Axiom 3.3
can be motivated by applying similar reasoning to time lotteries.

We consider an enlarged framework where the decision maker is endowed with a profile
(�t) of preferences over time lotteries, with �t representing the preference the decision
maker expresses at time t. Formally, �t is a preference over R++ × L∞+ , where in the
context of �t the pair (x, T ) represents a payoff of x received at time t + T . Adapting
the definitions from Halevy (2015) to our setting, we define time invariance and dynamic
consistency below:8

6We are grateful to Weijie Zhong for suggesting this example to us.
7See Table 1 in DeJarnette et al. (2020). These percentages are for a treatment with maximal delay of

12 weeks across all questions. DeJarnette et al. (2020) also measured risk preferences for time lotteries with
a shorter maximal delay of 5 weeks. In this case an even higher number of 86.8% percent of subjects is
neither purely risk-seeking nor purely risk-averse across all choices.

8These definitions are slightly different from his, and in particular his (deterministic) dynamic consistency
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Definition. The collection of preferences (�t) satisfies time invariance if all the preferences
�t are equal.

Intuitively, if the agent chooses (x, T ) over (y, S) at some time t then she makes the
same choice at all other times.

Definition. The collection (�t) satisfies deterministic dynamic consistency if, for every
pair of time lotteries (x, T ) and (y, S), and every d, t ∈ R+ it holds that

(x, T ) �t+d (y, S) implies (x, T + d) �t (y, S + d).

That is, the decision maker does not reverse her choice between time t and time t+ d.
Time invariance together with deterministic dynamic consistency imply stationarity with
respect to deterministic delays, namely (x, T ) �t (y, S) implies (x, T + d) �t (y, S + d).

Our next definition proposes a generalization of dynamic consistency to a choice between
(x, T ) and (y, S) made after a random delay D. What we call weak dynamic consistency
requires that if, at the random time t+D, the decision maker always prefers (x, T ) over
(y, S), then she would not revert her choice if asked to make the decision at time t for her
future self. In general, the realization of the delay D could affect the distributions of S
and T faced by the decision maker. Weak dynamic consistency considers only the case
where the decision maker always faces the same choice independent of the delay, which
mathematically corresponds to D being independent of both S and T .

Definition. The collection (�t) satisfies weak dynamic consistency if, for every pair of
time lotteries (x, T ) and (y, S), every t ∈ R+, and every D ∈ L∞+ independent of S, T it
holds that

(x, T ) �t+D (y, S) a.s. implies (x, T +D) �t (y, S +D).

The condition (x, T ) �t+D (y, S) a.s. in this definition means that for almost every
realization d of D it holds that (x, T ) �t+d (y, S). As we record in the next claim, our
stationarity axiom is immediately implied by time invariance and weak dynamic consistency.

Claim 1. Suppose the collection (�t) satisfies time invariance, so that �t = � for every t,
and also satisfies weak dynamic consistency. Then the preference � satisfies stationarity.

Indeed, by time invariance (x, T ) �t (y, S) implies (x, T ) �t+d (y, S) for every realiza-
tion d of D. Thus by weak dynamic consistency (x, T ) �t (y, S) implies (x, T + D) �t
(y, S +D) whenever D is independent of S, T . It is easy to see that conversely, stationarity
also implies weak dynamic consistency under the assumption of time invariance.

axiom is slightly stronger, as his implication is in both directions.
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In the above weak dynamic consistency axiom we considered the case where D is
independent of S and T , which means that at the delayed time t + D the agent always
chooses between the same two time lotteries. A stronger dynamic consistency axiom would
impose the same condition, but for an arbitrary delay D that need not be independent
of S and T . To make this dependency more explicit we write Sd, Td for random variables
that have the conditional distributions of S, T when conditioning on D = d.

Definition. The collection (�t) satisfies strong dynamic consistency if, for every pair of
time lotteries (x, T ) and (y, S), every t ∈ R+, and every D ∈ L∞+ it holds that

(x, TD) �t+D (y, SD) a.s. implies (x, T +D) �t (y, S +D).

The distributions of TD and SD depend on the value of the delay D. Thus, different
values d of D correspond to different decision problems, each involving a choice between
(x, Td) and (y, Sd). Strong dynamic consistency requires that if in each such problem the
decision maker always prefers the first option, then she must also prefer the first option
from an ex-ante perspective.

Intuitively, strong dynamic consistency requires consistency at different times across
different decision problems, while weak dynamic consistency only requires it over the same
decision problem. For instance, imagine a traveler who must choose between a train and
a flight, which involve travel times S and T respectively, and who does not know the
specific day of the month D when they will need to travel. Dynamic consistency compares
a traveler who must buy their ticket at the start of the month to one who can make the
decision on the day of travel. Weak dynamic consistency applies when the distributions
of travel times S and T are not dependent on the day of the month. In this case, it is
reasonable to expect the two to make the same choice.

However, if travel times SD and TD do depend on the day D, such as during the holiday
season, the ex-ante decision problem becomes more difficult. The traveler must take into
account the conditional travel times for each day, which might not be cognitively feasible
and can result in a violation of strong dynamic consistency.

Under time invariance, strong dynamic consistency immediately implies a strong
stationarity axiom:

Axiom 3.5 (Strong Stationarity). For every pair of time lotteries (x, T ), (y, S) and every
D ∈ L∞+ not necessarily independent, if (x, TD) � (y, SD) a.s. then (x, T +D) � (y, S+D).

Together with monotonicity and continuity, strong stationarity constrains the preference
over time to be represented by Ka for some a ∈ R, rather than a general monotone additive
statistic Φ under (non-strong) stationarity, as in Theorem 3.
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Proposition 1. An MSTP satisfies strong stationarity if and only if it is represented by

V (x, T ) = u(x) · e−rKa(T )

for some a ∈ R, r > 0, and u : R++ → R++.

In other terms, the preference over time is either risk-neutral, expected discounted
utility, the discounted maximum or minimum, or the negatively discounted preference
described in (7). Proposition 1 follows from the fact that strong stationarity, in combination
with monotonicity and continuity, implies the classic independence axiom as we discuss in
§F of the online appendix. Weak dynamic consistency does not imply the independence
axiom and thus allows for a richer set of time preferences.

3.5 Aggregation of Preferences over Time Lotteries

In this section we apply monotone stationary time preferences to collective decision
problems. A company making a choice among projects with different expected completion
dates, a public agency choosing which research projects to fund, or a family deciding which
highway to take, are all examples of social decisions where the alternatives at hand can be
seen as time lotteries. In such situations, even if individuals share the same views about
the desirability of the possible outcomes, there still exists a need to compromise between
different degrees of patience and risk tolerance.

We model this type of problem by studying a group of individuals where each agent,
denoted by i, is equipped with a preference relation �i over time lotteries. These preferences
may display different degrees of patience. Following the approach in social choice, we ask
how individual preferences can be aggregated into a social preference relation � that is
aligned to the individual preferences by the Pareto principle. In this context, the Pareto
principle requires that if all individuals agree that one time lottery is better than another,
so should the social preference:

Axiom 3.6 (Pareto). If (x, T ) �i (y, S) for every i, then (x, T ) � (y, S).

We first consider the case where each preference admits a standard expected discounted
utility representation u(x)E[e−riT ], where u : R++ → R++ is a utility function that is
increasing, continuous, and common to all agents, and ri > 0 is agent i’s discount rate.
For simplicity, we follow here the literature on experts’ aggregation and focus on the case
where agents, and later the social planner, share the same utility function u but may have
different discount rates (Weitzman, 2001; Chambers and Echenique, 2018).

As implied by the next result, dictatorship is the only admissible aggregation procedure
satisfying the Pareto axiom if one insists that the social preference must conform to
expected discounted utility.
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Proposition 2. Let (�1, . . . ,�n,�) be expected discounted utility preferences over time
lotteries, where each �i is represented by u(x)E[e−riT ] and � is represented by u(x)E[e−rT ].
Then, the Pareto axiom is satisfied if and only if �i = � for some agent i.

As the proof shows, this impossibility result is a simple consequence of Harsanyi’s
theorem (Harsanyi, 1955). Similar impossibility results have been obtained in the setting of
preferences over consumption streams (Gollier and Zeckhauser, 2005; Zuber, 2011; Jackson
and Yariv, 2014, 2015; Feng and Ke, 2018; Chambers and Echenique, 2018).

The next result offers a solution to this impossibility result. It shows that Paretian
aggregation and stationarity are compatible, and do not necessarily result in a dictatorship,
if we allow preferences to belong to the larger class of MSTPs.

Theorem 4. Let (�1, . . . ,�n,�) be MSTPs, where each �i is represented by u(x)e−riΦi(T )

and � is represented by u(x)e−rΦ(T ) for some monotone additive statistics (Φi) and Φ.
Suppose the utility function u additionally satisfies limx→0 u(x) = 0 or limx→∞ u(x) =∞.

Then, the Pareto axiom is satisfied if and only if there exists a probability vector
(λ1, . . . , λn) such that

r =
n∑
i=1

λiri and rΦ =
n∑
i=1

λiriΦi.

Thus, under the Pareto axiom, the certainty equivalent Φ of the social preference
must be an average of the individual certainty equivalents. The theorem implies that in
the special case where individuals have expected discounted utility preferences, we can
aggregate preferences without violating stationarity by allowing the social preference to be
an MSTP. The key insight is that a linear aggregation of certainty equivalents preserves
both stationarity and the Pareto axiom, and that this is the unique way of preserving these
properties. This approach complements alternative solutions that have been proposed in
the literature to resolve the tension between Paretian aggregation and stationarity.9

In Theorem 4, the mild richness assumption on the utility function u implies that for
any individual i and any pair of random times S and T , there exist payoffs x and y such
that (x, T ) ∼i (y, S). This indifference is used in our argument to deduce the if-and-only-if
characterization stated in the result. For a general utility function u whose range may be
bounded away from 0 and ∞, our proof still shows that the social certainty equivalent Φ is
an average of the individual ones. But we need the additional assumption on u to conclude
the same for rΦ, which constrains the social discount rate r.

9For example, Feng and Ke (2018) define a different notion of Pareto efficiency that takes into account
the preferences of individuals across generations. They show that a standard expected discounted social
preference can satisfy this weaker Pareto axiom so long as it is more patient than all the individuals.
Chambers and Echenique (2018) study a number of representations that weaken stationarity and generalize
expected discounted utility.
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4 Preferences Over Gambles

In the theory of risk, CARA utility functions form a restrictive but useful class of expected
utility preferences. Their usefulness stems from the analytical tractability of the exponential
form, as well as from their invariance properties.

CARA utility functions are invariant to changes in wealth, so that a prospect X is
preferred to Y if and only if X + w is preferred to Y + w for all wealth levels w. They are
more generally invariant to the addition of background risks: if X is preferred to Y then
X +W is preferred to Y +W for every independent random variable W .

This property makes CARA utility functions a good approximation whenever stakes
are small. In addition, they are used in empirical settings in which wealth is unknown. For
example, when estimating risk preferences from insurance choices, the CARA family “has
the advantage that it implies a household’s prior wealth w, which frequently is unobserved,
is irrelevant to the household’s decisions.” (Barseghyan, Molinari, O’Donoghue, and
Teitelbaum, 2018). The stronger property of invariance to background risk is also important,
since households’ additional background risks—arising from, say, investments in the stock
market or health conditions—may be unobservable.

The invariance properties of CARA utility functions are conceptually distinct from the
assumption that preferences obey the axioms of expected utility. In this section, we apply
monotone additive statistics to study the general class of preferences that are monotone
with respect to stochastic dominance and are invariant to background risk.

4.1 Background-risk Invariant Preferences

We consider a complete and transitive preference relation � over L∞, interpreted here as
the space of monetary gambles. We assume that for every gamble X there exists a unique
certainty equivalent Φ(X) such that Φ(X) ∼ X. If the preference � is monotone with
respect to first-order stochastic dominance then so is Φ. We say that � is invariant to
background risk when it has the property that X � Y if and only if X + Z � Y + Z for Z
independent of X and Y .

As we now explain, a preference � is monotone and invariant to background risk if and
only if its certainty equivalent is a monotone additive statistic. Indeed, invariance implies
that X + Y ∼ Φ(X) + Y for any two independent random variables X and Y . Likewise,
Y + Φ(X) ∼ Φ(Y ) + Φ(X). Combining the two indifferences yields

X + Y ∼ Φ(X) + Φ(Y ).

So, the certainty equivalent of X + Y is given by the sum Φ(X) + Φ(Y ), and thus Φ is an
additive. The converse is immediate to verify.
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By Theorem 1, the certainty equivalent Φ of such a preference is a weighted average

Φ(X) =
∫
Ka(X) dµ(a)

of the certainty equivalents of multiple CARA expected utility agents, where µ is a
probability measure over the coefficient of absolute risk aversion. In §F of the online
appendix we show that this representation violates the expected utility axioms unless µ is
a point mass.

4.2 Risk Aversion

In this section we characterize risk-averse and risk-seeking behavior for preferences that
are represented by monotone additive statistics. A preference relation � over gambles
is risk-averse if its certainty equivalent Φ satisfies Φ(X) ≤ E [X] for every gamble X,
and risk-seeking if the opposite inequality holds. In the domain of time lotteries, since
the decision maker prefers lower waiting times, risk aversion corresponds to the opposite
inequality Φ(T ) ≥ E [T ] for every random time T .

Risk aversion translates into a property of the support of the corresponding mixing
measure µ:

Proposition 3. A monotone additive statistic satisfies Φ(X) ≤ E [X] for every X ∈ L∞

if and only if
Φ(X) =

∫
R
Ka(X) dµ(a)

for a Borel probability measure µ supported on [−∞, 0]. Symmetrically, Φ(X) ≥ E [X] for
every X if and only if the measure µ is supported on [0,∞].

In other words, a risk-averse decision maker ranks gambles by aggregating the certainty
equivalents of risk-averse CARA utility functions. For the setting of time lotteries, the
second part of the result shows that risk aversion, which corresponds to Φ(T ) ≥ E [T ],
happens if and only if the measure µ is supported on [0,∞].10 Thus, risk aversion toward
time lotteries occurs whenever the decision maker aggregates the certainty equivalents of
preferences that are represented by u(x)/E[eaT ], across different a > 0. Mixed risk attitude,
as discussed in §3.3, occurs when µ assigns positive mass to both negative and positive
values of a.

A corollary of Proposition 3 is that an additive statistic Φ is monotone with re-
spect to second-order (or any higher-order) stochastic dominance if and only if Φ(X) =∫
Ka(X) dµ(a) for a probability measure µ supported on [−∞, 0]. To see this, note that
10A small twist is that in the time setting, risk aversion only requires Φ(T ) ≥ E [T ] for every non-negative

bounded random variable T . But our proof shows that Proposition 3 holds without change on the smaller
domain L∞+ . This comment also applies to Theorem 5 below.
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monotonicity in higher-order stochastic dominance implies risk aversion and thus con-
strains the support of µ. Conversely, for each a ≤ 0, the statistic Ka(X) = 1

a logE[eaX ]
satisfies higher-order monotonicity because the function eax has derivatives of all orders
that alternate signs. By linearity,

∫
Ka(X) dµ(a) is also higher-order monotone whenever

µ is supported on [−∞, 0].

4.3 Higher-Order Risk Aversion

An important property of risk preferences is whether they display first- or second-order
risk aversion, which captures the willingness to pay to avoid small risks (see Segal and
Spivak, 1990). Formally, a preference with certainty equivalent Φ exhibits k-th order risk
aversion if the risk premium for a mean zero lottery X vanishes at the order k, i.e., Φ(εX)
is of order εk. First-order risk aversion plays a key role in explaining commonly observed
decisions such as the insurance of small risks and the demand for full insurance.11

We consider risk-averse preferences represented by monotone additive statistics, which
as we established in Proposition 3 correspond to µ being supported on [−∞, 0]. Our next
result identifies the conditions under which invariance to background risk implies first- or
second-order risk aversion.

Proposition 4. Let � be a risk-averse preference represented by a monotone additive
statistic Φ with mixing measure µ. Then
(i) � exhibits first-order risk aversion if and only if µ({−∞}) > 0.
(ii) � exhibits second-order risk aversion if and only if

∫
|a|dµ <∞.

If
∫
|a|dµ =∞ but µ does not have any mass at −∞, then the preference � is neither

first- nor second-order risk-averse. Note that by Theorem 2, if one allows for unbounded
random variables with sub-exponential tails (such as normal random variables), then the
mixing measure µ must have compact support, which implies second-order risk aversion
by the above result. Thus, while one might not a priori expect invariance to background
risk to be incompatible with first-order risk aversion, this follows as an implication of our
characterization of monotone additive statistics on the domain LM .

4.4 Mixed Risk Aversion

As pointed out in the classical work of Friedman and Savage (1948), it is not uncommon to
observe behavior that is neither risk-averse nor risk-seeking, such as that of a person who
buys both lottery tickets and insurance. For concreteness, in analogy with our discussion

11For example, Borch (1974) states that the prediction that people do not fully insure implied by second
order risk-aversion is “against all observation.”
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in the time domain, consider a decision maker faced with the following two choices. In the
first, the choice is between

(I) facing a risk of losing $100 with probability 1%, or

(II) paying $1 and being fully insured against that risk.

In the second decision problem the choice is between

(I’) paying $1 dollar for a lottery ticket that yields $100 with probability 1%, or

(II’) not participating in the lottery.

Under expected utility, a utility function that exhibits concavity and convexity across
different regions of its domain can rationalize the choices of buying insurance in the first
problem and buying the lottery ticket in the second one.12 However, no such preference
can predict such behavior at all wealth levels, let alone be invariant to background risk.

On the other hand, preferences that are represented by monotone additive statistics
can accommodate such behavior while at the same time remain invariant to background
risk. This is the case, for example, for a preference whose certainty equivalent Φ(X) takes
the form Φ(X) = 1

2K−a(X) + 1
2Ka(X), with a mixing measure that puts equal weights on

two coefficients of risk aversion a and −a. See §4.6 below for additional examples.

4.5 Comparative Risk Attitudes

We now proceed to compare the risk attitudes expressed by different monotone additive
statistics. For two preference relations �1 and �2 over gambles, with corresponding
certainty equivalents Φ1 and Φ2, the preference �1 is more risk-averse than �2 if Φ1(X) ≤
Φ2(X) for every gamble X ∈ L∞. That is, if the first decision maker assigns to every
gamble a lower certainty equivalent. The next proposition characterizes comparative risk
aversion for preferences represented by monotone additive statistics:

Theorem 5. Let �1 and �2 be represented by monotone additive statistics with mixing
measures µ1 and µ2, respectively. Then �1 is more risk-averse than �2 if and only if

(i) For every b > 0,
∫

[b,∞]
a−b
a dµ1(a) ≤

∫
[b,∞]

a−b
a dµ2(a).

(ii) For every b < 0,
∫

[−∞,b]
a−b
a dµ1(a) ≥

∫
[−∞,b]

a−b
a dµ2(a).

12This approach, first put forward by Friedman and Savage (1948), has been criticized by Markowitz
(1952) for implying a number of implausible predictions. Further, Machina (1982) argued that attitudes
towards gambling do not change drastically in response to a change in wealth levels.
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The condition that �1 is more risk-averse than �2 is, by definition, equivalent to having
the mixing measures µ1 and µ2 satisfy

∫
fdµ1 ≤

∫
fdµ2 for all functions f of the form

f(a) = Ka(X), as we vary X. Since Ka(X) increases in the parameter a, then a sufficient
condition for �1 being more risk-averse is that µ2 first-order stochastically dominates µ1.
Intuitively, first-order stochastic dominance suffices because we can think of each Φi as the
average certainty equivalent of an agent with a random CARA preference drawn from µi.
So if µ2 dominates µ1 then agent 2 is more risk-seeking than agent 1.

First-order stochastic dominance is, however, only a sufficient condition. The reason
is that the functions of the form K(·)(X), as we vary X, do not span in their cone the
collection of all increasing functions, and hence define a strictly finer stochastic order over
the mixing measures. Theorem 5 characterizes this stochastic order in simpler terms, by
showing that to check

∫
Ka(X)dµ1(a) ≤

∫
Ka(X)dµ2(a) for every gamble X it suffices to

check
∫
gdµ1 ≤

∫
gdµ2 only for the increasing functions g of the form g(a) = a−b

a 1a≥b or
g(a) = −a−b

a 1a≤b. In other words, the convex cone generated by the set of normalized
cumulant generating functions is equal to the convex cone generated by a simple one-
parameter family of test functions, a result that might be of independent interest.

For a concrete example that the order characterized by Theorem 5 is strictly finer than
first-order stochastic dominance, consider µ1 to be a point mass at a = 2 and µ2 to have
1/4 mass at a = 1 and 3/4 mass at a = 3. Clearly, neither one first-order dominates the
other. Condition (ii) in Theorem 5 is trivially satisfied, whereas condition (i) reduces to
1
2(2−b)+ ≤ 1

4(1−b)+ + 1
4(3−b)+, which holds because the function (a−b)+ = max{a−b, 0}

is convex in a.

4.6 Betweenness

A disadvantage of the class of preferences represented by monotone additive statistics is
that it is large, with the entire measure µ as an infinite-dimensional parameter of the
preference. In this section we identify a small subset of such preferences that is indexed by
only two parameters, and yet retains enough flexibility to accommodate interesting risk
attitudes such as mixed risk aversion.

To this end we study preferences that satisfy the betweenness axiom. This well-known
property, first studied by Dekel (1986) and Chew (1989), requires that the decision maker’s
preference over probability distributions displays indifference curves that are straight lines.
In comparison, the standard independence axiom (which we study in §F of the online
appendix) would additionally require the indifference curves to be parallel to each other.

Given two random variables X and Y , we denote by XλY a random variable whose
distribution is equal to X with probability λ ∈ [0, 1] and equal to Y with probability 1− λ.
Formally, XλY is any random variable whose distribution is a convex combination that
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assigns weight λ to the distribution of X and weight 1− λ to the distribution of Y .

Axiom 4.1 (Betweenness). For all X,Y and all λ ∈ (0, 1), X ∼ Y if and only if XλY ∼ Y .

The betweenness axiom characterizes the following class of preferences:

Proposition 5. Suppose a preference � on L∞ is represented by a monotone additive
statistic Φ(X) =

∫
RKa(X) dµ(a). Then � satisfies the betweenness axiom if and only if

Φ(X) = βK−aβ(X) + (1− β)Ka(1−β)(X)

for some β ∈ [0, 1] and a ∈ [0,∞).

This family of preferences is much smaller, as it is parameterized by only two numbers.
It retains the properties of monotonicity, invariance to background risk, as well as the
tractability of the CARA representation. Yet it is versatile enough to describe the kind of
mixed risk attitude that leads to buying both insurance and lottery tickets.

The risk-attitude parameter β weights the levels of risk aversion/seeking, with β = 1
corresponding to pure CARA risk aversion and β = 0 corresponding to pure CARA risk
seeking. For internal β, the preference exhibits mixed risk aversion as guaranteed by the
previous Proposition 3. Moreover, a simple calculation shows that for any β ∈ (0, 1), such
a preference would buy both insurance and lottery tickets of the kind described in §4.4
whenever those gambles entail a small probability of a large loss or gain.13

The parameter a is a scale parameter. It can be understood as the scale at which the
preference deviates from risk neutrality. For gambles whose sizes are much smaller than
1/a, the preference is very close to being risk-neutral. While for gambles that vary by much
more than 1/a, behavior will be far from risk-neutral. Changing a amounts to changing
units, e.g., increasing a by a factor of 100 is equivalent to measuring money in terms of
cents rather than dollars.

4.7 Combined Choices over Gambles

In large organizations, risky prospects are not always chosen through a deliberate, central-
ized process. Rather, they are combinations of independent choices, often carried out with
limited coordination among the different actors.

Consider, for example, a bank that employs two workers. The first is a trader who
must choose between two contracts, the Lean Hog futures X and X ′. The second is an

13It can be shown that if β 6= 0.5, then lottery tickets and insurance as described in §4.4 are preferred
if and only if the probability of gain/loss (0.01 in the example) is smaller than min(β, 1 − β), and the
corresponding gain/loss amount (100 in the example) is sufficiently large. If β = 0.5, then the same holds
for any probability of gain/loss < 0.5, and for any gain/loss amount.
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administrator who must choose between two insurance policies Y or Y ′ for the bank’s
building. Assuming the first worker chooses X and the second Y , the resulting revenue for
the bank is given by the random variable X + Y . When the agents face choice problems
that belong to independent domains, so that X and X ′ are stochastically independent from
Y and Y ′, it is natural to ask to what extent coordination is necessary for the organization.

In this section we make this question precise by asking under what conditions the
agents’ combined choices respect first-order stochastic dominance. Our result shows this
is true if and only if individual preferences are identical and represented by a monotone
additive statistic. Thus, this is the only class of preferences with the property that choices
over independent domains can be decentralized without obvious harm to the organization.

We study the following model. We are given two preference relations �1 and �2 over
L∞, the set of bounded gambles, that are complete and transitive (our result immediately
generalizes to three or more agents). As in the example above, we think of each preference
relation as describing the choices of a different agent, so that X �i X ′ if agent i chooses
X over X ′. These preferences can be interpreted as being endogenous or as the result of
exogenous incentives; for example, the bank trader’s preferences could be driven by her
contract with the employer.

Our main axiom requires that whenever the two agents face independent decision
problems, their choices, when combined, do not violate stochastic dominance:

Axiom 4.2 (Consistency of Combined Choices). Suppose X,X ′ are independent of Y, Y ′.
If X �1 X

′ and Y �2 Y
′, then X ′ + Y ′ does not strictly dominate X + Y in first-order

stochastic dominance.

If we interpret �1 and �2 as decision-making rules that are determined by the organiza-
tion, then Axiom 4.2 requires such rules to never result in an outcome that is stochastically
dominated. That collective choices should not violate stochastic dominance is clearly a
desirable requirement for a rational organization. A similar axiom was first introduced by
Rabin and Weizsäcker (2009) in the context of a model of narrow framing.

In addition to this axiom, we assume individual preference relations �i satisfy basic
continuity and monotonicity assumptions:

Axiom 4.3 (Continuity). If X � Y then there exists ε > 0 such that X � Y + ε and
X − ε � Y .

Axiom 4.4 (Responsiveness). X + ε �i X for every ε > 0.

We next show that under these axioms, the two preference relations must be represented
by monotone additive statistics. Moreover, the statistic must be the same for both agents.

Theorem 6. Two preference �1,�2 on L∞ satisfy Axioms 4.2, 4.3, and 4.4 if and only
if there exists a monotone additive statistic that represents both �1 and �2.
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Thus, when individual choices are not coordinated, their combination will, in general,
lead to violations of stochastic dominance, even when agents’ choices concern independent
decision problems. The theorem singles out preferences represented by monotone additive
statistics as the only class of preferences that are robust to this lack of coordination.

Theorem 6 admits an alternative interpretation, closely related to the work of Rabin
and Weizsäcker (2009) on narrow framing. In their paper, a decision maker faces multiple
decisions and engages in “narrow bracketing” by choosing separately, in each problem,
according to a fixed preference relation � over gambles. This is a special case of our
model where � = �1 = �2. They show that the decision maker’s combined choices
result in dominated outcomes whenever � is not wealth invariant (i.e. if X � Y but
Y + c � X + c for some X,Y and c ∈ R), but leave open the question of characterizing the
class of preferences, beyond expected utility, that satisfy Axiom 4.2. Theorem 6 provides a
complete characterization of those preferences over gambles for which narrow framing does
not lead to dominated choices.

5 Overview of the Proof of Theorem 1

Our approach to the proof of Theorem 1 is via a stochastic order known as the catalytic
stochastic order (see Fritz, 2017, and references therein). Given X,Y ∈ L∞, we say that X
dominates Y in the catalytic stochastic order on L∞ if there exists a Z ∈ L∞, independent
of X and Y , such that X + Z dominates Y + Z in first-order stochastic dominance.

The applicability of this order to our problem is immediate. If X dominates Y in the
catalytic stochastic order then

Φ(X + Z) ≥ Φ(Y + Z)

for some Z, independent of X and Y . If Φ is also additive, then Φ(X +Z) = Φ(X) + Φ(Z)
and Φ(Y + Z) = Φ(Y ) + Φ(Z), and so we have that Φ(X) ≥ Φ(Y ). Thus, any monotone
additive Φ is monotone with respect to this order.

Clearly, if X ≥1 Y then X also dominates Y in the catalytic stochastic order, as one
can take Z = 0. A priori, one may conjecture that this is also a necessary condition. But
as Figure 1 shows, it is easy to give examples of two random variables X and Y that are
not ranked with respect to first-order stochastic dominance, but are ranked with respect to
the catalytic stochastic order.14 The random variable X equals 1 with probability 1/3 and
0 with probability 2/3, while Y is uniformly distributed on [−3

5 ,
2
5 ]. As the figure shows,

their c.d.f.s are not ranked, and hence they are not ranked in terms of first-order stochastic
dominance.15

14We are indebted to the late Kim Border for helping us construct this example.
15Pomatto, Strack, and Tamuz (2020) give examples of random variables X and Y that are not ranked
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Figure 1: The c.d.f.s of X (blue) and Y (orange).
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Figure 2: The c.d.f.s of X + Z (blue) and Y + Z (orange).

However, if we let Z assign probability half to ±1
5 , then X + Z >1 Y + Z. Intuitively,

since the c.d.f. of X + Z is the average of the two translations (by ±1
5) of the c.d.f. of X,

and since the same holds for the c.d.f. of Y , the result of adding Z is the disappearance of
the small “kink” in which the ranking of the c.d.f.s is reversed. This is depicted in Figure 2.

Every monotone additive statistic Φ provides an obstruction to dominance in the
catalytic stochastic order. That is, if Φ(X) < Φ(Y ) then it is impossible thatX+Z ≥1 Y +Z
for some independent Z, since monotonicity would imply that Φ(X + Z) ≥ Φ(Y + Z), and
additivity would then imply that Φ(X) ≥ Φ(Y ). In particular, considering the statistic
Ka yields that Ka(X) ≥ Ka(Y ) for all a ∈ R is necessary for there to exist some Z that

in stochastic dominance, but are ranked after adding an unbounded independent Z. In fact, they show that
this is possible whenever E [X] > E [Y ]. As we explain below, this result no longer holds when Z is required
to be bounded.
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makes X stochastically dominate Y .16 The following result shows that the statistics Ka

are, in a sense, the only obstructions:

Theorem 7. Let X,Y ∈ L∞ satisfy Ka(X) > Ka(Y ) for all a ∈ R. Then there exists a
c.d.f. H such that any independent Z ∈ L∞ with c.d.f. H satisfies X + Z ≥1 Y + Z.

To prove Theorem 7 we explicitly construct H as a truncated Gaussian c.d.f. with
appropriately chosen parameters. The idea behind the proof is as follows. Denote by
F and G the c.d.f.s of X and Y , respectively, and suppose that they are supported on
[−N,N ]. Let h(x) = 1√

2πV e−
x2
2V be the density of a Gaussian Z. Then the c.d.f.s of X +Z

and Y + Z are given by the convolutions F ∗ h and G ∗ h, and their difference is equal to

[G ∗ h− F ∗ h](y) =
∫ N

−N
[G(x)− F (x)] · h(y − x) dx

= 1√
2πV

e−
y2
2V ·

∫ N

−N
[G(x)− F (x)] · e

y
V
·x︸ ︷︷ ︸

(∗)

· e−
x2
2V︸ ︷︷ ︸

(∗∗)

dx

If we denote a = y
V , then by integration by parts, the integral of just (∗) is equal to

1
a

(
E
[
eaX

]
− E

[
eaY

])
, which is positive by the assumption that Ka(X) > Ka(Y ) and is in

fact bounded away from zero. The term (∗∗) can be made arbitrarily close to 1—uniformly
on the integral domain [−N,N ]—by making V large. This implies that [G∗h−F ∗h](y) ≥ 0
for all y, and we further show that the inequality still holds if we modify H by truncating
its tails, ensuring that it is in L∞.

Theorem 7 leads to the following lemma, which is a key component of the proof of
Theorem 1:

Lemma 1. Let Φ: L∞ → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all
a ∈ R then Φ(X) ≥ Φ(Y ).

Proof. Suppose Ka(X) ≥ Ka(Y ) for all a ∈ R. Let X̂, Ŷ and Z in L be such that: X̂
has the same c.d.f. as X + ε, Ŷ has the same c.d.f. as Y , and Z has the c.d.f. obtained
by applying Theorem 7 to X̂ and Ŷ . We can indeed apply the theorem, since Ka(X̂) =
Ka(X) + ε > Ka(Y ) = Ka(Ŷ ) for all a. Hence, X̂+Z ≥1 Ŷ +Z. Thus, by monotonicity of
Φ, Φ(X̂ + Z) ≥ Φ(Ŷ + Z), and by additivity Φ(X̂) ≥ Φ(Ŷ ). This means that Φ(X) + ε =
Φ(X̂) ≥ Φ(Ŷ ) = Φ(Y ) for all ε > 0, and hence Φ(X) ≥ Φ(Y ).

16In fact, except for the trivial case where X and Y have the same distribution, this necessary condition
can be strengthened to a strict inequality Ka(X) > Ka(Y ) for all a ∈ R. This is because X + Z ≥1 Y + Z

implies the strict inequality Ka(X +Z) > Ka(Y +Z) for finite a whenever X +Z and Y +Z have different
distributions. Thus, Theorem 7 below implies that for distributions with different minima and maxima,
the condition Ka(X) > Ka(Y ) for all a ∈ R is both necessary and sufficient for dominance in the catalytic
stochastic order.
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Once we have established Lemma 1, the remainder of the proof uses functional anal-
ysis techniques (in particular the Riesz Representation Theorem) to deduce the integral
representation in Theorem 1. See §A in the appendix for the complete proof.

An alternative proof of Lemma 1 can be given based on a different stochastic order,
known as the large numbers order. Given two random variables X and Y , let X1, X2, . . .

and Y1, Y2, . . . be i.i.d. copies of X and Y , respectively. We say that X dominates Y in
large numbers if

X1 + · · ·+Xn ≥1 Y1 + · · ·+ Yn

for all n large enough. Using large-deviations techniques, it was shown by Aubrun and
Nechita (2008) that if Ka(X) > Ka(Y ) for all a ∈ R, then X dominates Y in large numbers.
This implies Lemma 1 since, by the additivity of Φ, Φ(X) ≥ Φ(Y ) holds if and only if
nΦ(X) = Φ(X1 + · · ·+Xn) ≥ Φ(Y1 + · · ·+ Yn) = nΦ(Y ).

Compared to this alternative argument, our proof of Lemma 1 based on Theorem 7
is self-contained and more elementary. More importantly, (an analogue of) the catalytic
stochastic order established in Theorem 7 is essential for studying monotone additive
statistics defined on a domain of unbounded random variables, for which the large numbers
order is difficult to characterize as far as we know.17 This generalization of Theorem 7 is
presented in Lemma 7 in the online appendix, as a key step toward the proof of Theorem 2.

17One particular challenge is that the large numbers order require a uniform comparison between the tail
probabilities of X1 + · · ·+Xn versus those of Y1 + · · ·+ Yn, for a fixed large n. For a given threshold of
the tail, large-deviations theory can be used to show the desired comparison when n is large enough. But
making the required n uniform across all thresholds becomes nontrivial when the random variables X and
Y are unbounded.
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Appendix

The appendix contains the omitted proofs for most of the results that have been explicitly
stated in the main text, in the order in which they appeared. The only exceptions are
Theorem 2 on the larger domain LM , Proposition 1 on strong stationarity and Proposition 5
on betweenness, whose proofs are relegated to the online appendix.

In the proofs we often use the notation KX(a) = Ka(X), so that KX is a map from R
to R. The following facts are standard:

Lemma 2. Let X,Y ∈ L∞.

1. KX : R→ R is well defined, non-decreasing and continuous.

2. If KX = KY then X and Y have the same distribution.

Proof. See Curtiss (1942).

A Proof of Theorem 1

We follow the proof outlined in §5 of the main text and first establish Theorem 7.

A.1 Proof of Theorem 7

First, we can add the same constant b to both X and Y so that min[Y + b] = −N and
max[X + b] = N for some N > 0. Since translating both X and Y leaves the existence of
an appropriate Z unchanged (and also does not affect KX > KY ), we henceforth assume
without loss of generality that min[Y ] = −N , and max[X] = N . Since KX > KY , we
know that min[X] > −N and max[Y ] < N .

Denote the c.d.f.s of X and Y by F and G, respectively. Let σ(x) = G(x) − F (x).
Note that σ is supported on [−N,N ] and bounded in absolute value by 1. Moreover, by
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choosing ε > 0 sufficiently small, we have that min[X] > −N + ε and max[Y ] < N − ε. So
σ(x) is positive on [−N,−N + ε] and on [N − ε,N ]. In fact, there exists δ > 0 such that
σ(x) ≥ δ whenever x ∈ [−N + ε

4 ,−N + ε
2 ] and x ∈ [N − ε

2 , N −
ε
4 ]. We also fix a large

constant A such that

e
εA
4 ≥ 8N

εδ
.

Define
Mσ(a) =

∫ N

−N
σ(x)eax dx.

Note that for a 6= 0, integration by parts shows Mσ(a) = 1
a

(
E
[
eaX

]
− E

[
eaY

])
, and that

Mσ(0) = E [X]− E [Y ]. Therefore, since KX > KY , we have that Mσ is strictly positive
everywhere. Since Mσ(a) is clearly continuous in a, it is in fact bounded away from zero
on any compact interval.

We will use these properties of σ to construct a truncated Gaussian density h such that

[σ ∗ h](y) =
∫ N

−N
σ(x)h(y − x) dx ≥ 0

for each y ∈ R. If we let Z be a random variable independent from X and Y , whose
distribution has density function h, then σ ∗ h = (G− F ) ∗ h is the difference between the
c.d.f.s of Y + Z and X + Z. Thus [σ ∗ h](y) ≥ 0 for all y would imply X + Z ≥1 Y + Z.

To do this, we write h(x) = e−
x2
2V for all |x| ≤ T , where V is the variance and T is the

truncation point to be chosen.18 We will show that given the above constants N and A,
[σ ∗ h](y) ≥ 0 holds for each y when V is sufficiently large and T ≥ AV +N .

First consider the case where y ∈ [−AV,AV ]. In this region, |y−x| ≤ T is automatically
satisfied when x ∈ [−N,N ]. So we can compute the convolution σ ∗ h as follows:∫

σ(x)h(y − x) dx = e−
y2
2V ·

∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx. (8)

Note that y
V in the exponent belongs to the compact interval [−A,A]. So for our fixed

choice of A, the integral Mσ( yV ) =
∫N
−N σ(x) · e

y
V
·x dx is uniformly bounded away from zero

when y varies in the current region. Thus,∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx = Mσ

(
y

V

)
−
∫ N

−N
σ(x) · e

y
V
·x · (1− e−

x2
2V ) dx

≥Mσ

(
y

V

)
− 2N · eAN · (1− e

−N2
2V ),

(9)

which is positive when V is sufficiently large. So the right-hand side of (8) is positive.
18In general we need a normalizing factor to ensure h integrates to one, but this multiplicative constant

does not affect the argument.
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Next consider the case where y ∈ (AV, T +N − ε]; the case where −y is in this range
can be treated symmetrically. Here the convolution can be written as

[σ ∗ h](y) =
∫ N

max{−N,y−T}
σ(x) · e

−(y−x)2
2V dx.

We break the range of integration into two sub-intervals: I1 = [max{−N, y − T}, N − ε]
and I2 = [N − ε,N ]. On I1 we have σ(x) = G(x)− F (x) ≥ −1. As long as AV ≥ N − ε,
we have e

−(y−x)2
2V ≤ e

−(y−N+ε)2
2V for y > AV and x ≤ N − ε, and thus∫
x∈I1

σ(x) · e
−(y−x)2

2V dx ≥ −2N · e
−(y−N+ε)2

2V .

On I2 we have σ(x) ≥ 0 by our choice of ε, and furthermore σ(x) ≥ δ when x ∈ [N− ε
2 , N−

ε
4 ].

Thus ∫
x∈I2

σ(x) · e
−(y−x)2

2V dx ≥ ε

4 · δ · e
−(y−N+ ε

2 )2

2V ≥ 2N · e
−(y−N+ ε

2 )2

2V − εA4 ,

where the second inequality holds by the choice of A. Observe that when y > AV and V
is large, the exponent −(y−N+ ε

2 )2

2V − εA
4 is larger than −(y−N+ε)2

2V . Summing the above two
inequalities then yields the desired result that [σ ∗ h](y) ≥ 0.

Finally, if y ∈ (T +N−ε, T +N ], then the range of integration in computing [σ∗h](y) is
from x = y−T to x = N , where σ(x) is always positive. So the convolution is positive. And
if y > T +N , then clearly the convolution is zero. These arguments symmetrically apply
to −y ∈ (T +N − ε, T +N ] and −y > T +N . We therefore conclude that [σ ∗ h](y) ≥ 0
for all y, completing the proof.

A.2 Integral Representation

For fixed X, KX(a) = Ka(X) is a function of a, from R to R. Let L denote the set of
functions {KX : X ∈ L∞}. If Φ is a monotone additive statistic and KX = KY , then X
and Y have the same distribution and Φ(X) = Φ(Y ). Thus there exists some functional
F : L → R such that Φ(X) = F (KX). It follows from the additivity of Φ and the additivity
of Ka that F is additive: F (KX +KY ) = F (KX) +F (KY ).19 Moreover, F is monotone in
the sense that F (KX) ≥ F (KY ) whenever KX ≥ KY (i.e., KX(a) ≥ KY (a) for all a ∈ R);
this follows from Lemma 1 which in turn is proved by Theorem 7 (see §5 in the main text).

The rest of this proof is a functional analysis exercise analogous to the proof of Theorem
2 in Mu, Pomatto, Strack, and Tamuz (2021), but for completeness we provide the details
below. The main goal is to show that the monotone additive functional F on L can be

19We note that L is closed under addition. This is because KX +KY = KX′ +KY ′ whenever X ′, Y ′ are
independently distributed random variables with the same distribution as X,Y . Such random variables
X ′, Y ′ exist as the probability space is non-atomic, see for example Proposition 9.1.11 in Bogachev (2007).
Thus, for KX ,KY ∈ L we can find X ′, Y ′ so that KX +KY = KX′ +KY ′ = KX′+Y ′ ∈ L.
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extended to a positive linear functional on the entire space of continuous functions C(R).
We first equip L with the sup-norm of C(R) and establish a technical claim.

Lemma 3. F : L → R is 1-Lipschitz:

|F (KX)− F (KY )| ≤ ‖KX −KY ‖.

Proof. Let ‖KX −KY ‖ = ε. Then KX+ε = KX + ε ≥ KY . Hence, by Lemma 1, F (KY ) ≤
F (KX+ε), and so

F (KY )− F (KX) ≤ F (KX+ε)− F (KX) = F (Kε) = Φ(ε) = ε.

Symmetrically we have F (KX)− F (KY ) ≤ ε, as desired.

Lemma 4. Any monotone additive functional F on L can be extended to a positive linear
functional on C(R).

Proof. First consider the rational cone spanned by L:

ConeQ(L) = {qL : q ∈ Q+, L ∈ L}.

Define G : ConeQ(L)→ R as G(qL) = qF (L), which is an extension of F . The functional
G is well defined: If mnK1 = r

nK2 for K1,K2 ∈ L and n,m, r ∈ N, then, using the fact that
L is closed under addition, we obtain mF (K1) = F (mK1) = F (rK2) = rF (K2), hence
m
n F (K1) = r

nF (K2). G is also additive, because

G

(
m

n
K1

)
+G

(
r

n
K2

)
= m

n
F (K1) + r

n
F (K2) = 1

n
F (mK1 + rK2) = G

(
m

n
K1 + r

n
K2

)
.

In the same way we can show G is positively homogeneous over Q+ and monotone.
Moreover, G is Lipschitz: Lemma 3 implies∣∣∣∣G(mn K1

)
−G

(
r

n
K2

)∣∣∣∣ = 1
n
|F (mK1)− F (rK2)| ≤ 1

n
‖mK1 − rK2‖ =

∥∥∥∥mn K1 −
r

n
K2

∥∥∥∥ .
Thus G can be extended to a Lipschitz functional H defined on the closure of ConeQ(L)
with respect to the sup norm. In particular, H is defined on the convex cone spanned by L:

Cone(L) = {λ1K1 + · · ·+ λkKk : k ∈ N and for each 1 ≤ i ≤ k, λi ∈ R+,Ki ∈ L}.

It is immediate to verify that the properties of additivity, positive homogeneity (now over
R+), and monotonicity extend, by continuity, from G to H.

Consider the vector subspace V = Cone(L)− Cone(L) ⊂ C(R) and define I : V → R as

I(g1 − g2) = H(g1)−H(g2)
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for all g1, g2 ∈ Cone(L). The functional I is well defined and linear (because H is additive
and positively homogeneous). Moreover, by monotonicity of H, I(f) ≥ 0 for any non-
negative function f ∈ V.

The lemma then follows from the next theorem of Kantorovich (1937), a generalization
of the Hahn-Banach Theorem. It applies not only to C(R) but to any Riesz space (see
Theorem 8.32 in Aliprantis and Border, 2006).

Theorem. If V is a vector subspace of C(R) with the property that for every f ∈ C(R)
there exists a function g ∈ V such that g ≥ f . Then every positive linear functional on V
extends to a positive linear functional on C(R).

The “majorization” condition g ≥ f is satisfied because every function in C(R) is
bounded and V contains all of the constant functions.

The integral representation in Theorem 1 now follows from Lemma 4 by the Riesz-
Markov-Kakutani Representation Theorem.

A.3 Uniqueness of Mixing Measure

We complete the proof of Theorem 1 by showing that the mixing measure µ is unique:

Lemma 5. Suppose µ and ν are two Borel probability measures on R such that∫
R
Ka(X) dµ(a) =

∫
R
Ka(X) dν(a).

for all X ∈ L∞.20 Then µ = ν.

Proof. We first show µ({∞}) = ν({∞}). For any ε > 0, consider the Bernoulli random
variable Xε that takes value 1 with probability ε. It is easy to see that as ε decreases
to zero, Ka(Xε) also decreases to zero for each a <∞ whereas K∞(Xε) = max[Xε] = 1.
Since Ka(Xε) is uniformly bounded in [0, 1], the Dominated Convergence Theorem implies

lim
ε→0

∫
R
Ka(Xε) dµ(a) = µ({∞}).

A similar identity holds for the measure ν, so µ({∞}) = ν({∞}) follows from the assumption
that

∫
RKa(Xε) dµ(a) =

∫
RKa(Xε) dν(a).

We can symmetrically apply the above argument to the Bernoulli random variable that
takes value 1 with probability 1− ε. Thus µ({−∞}) = ν({−∞}) holds as well.

Next, for each n ∈ N+ and real number b > 0, define a random variable Xn,b by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1− e−bn.
20The proof shows that it suffices to require such equality for non-negative integer-valued X.
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Then Ka(Xn,b) = 1
a log

[
(1− e−bn) + e(a−b)n

]
, and so

lim
n→∞

1
n
Ka(Xn,b) = lim

n→∞
1
n

1
a

log
[
1− e−bn + e(a−b)n

]
=

0 if a < b

a−b
a if a ≥ b.

This result holds also for a = 0,±∞.
Note that 1

nKa(Xn,b) is uniformly bounded in [0, 1] for all values of n, b, a, since
Ka(Xn,b) is bounded between min[Xn,b] = 0 and max[Xn,b] = n. Thus, by the Dominated
Convergence Theorem,

lim
n→∞

∫
R

1
n
Ka(Xn,b) dµ(a) =

∫
[b,∞]

a− b
a

dµ(a), (10)

and similarly for ν. It follows that for all b > 0,∫
[b,∞]

a− b
a

dµ(a) =
∫

[b,∞]

a− b
a

dν(a).

As µ({∞}) = ν({∞}), we in fact have∫
[b,∞)

a− b
a

dµ(a) =
∫

[b,∞)

a− b
a

dν(a).

This common integral is denoted by f(b).
We now define a measure µ̂ on (0,∞) by the condition dµ̂(a)

dµ(a) = 1
a ; note that µ̂ is a

positive measure, but need not be a probability measure. Then

f(b) =
∫

[b,∞)

a− b
a

dµ(a) =
∫

[b,∞)
(a− b) dµ̂(a) =

∫ ∞
b

µ̂([x,∞)) dx,

where the last step uses Tonelli’s Theorem. Hence µ̂([b,∞]) is the negative of the left
derivative of f(b) (this uses the fact that µ̂([b,∞]) is left continuous in b). In the same
way, if we define ν̂ by dν̂(a)

dν(a) = 1
a , then ν̂([b,∞]) is also the negative of the left derivative

of f(b). Therefore µ̂ and ν̂ are the same measure on (0,∞), which implies that µ and ν
coincide on (0,∞).

By a symmetric argument (with n−Xn,b in place of Xn,b), we deduce that µ and ν
also coincide on (−∞, 0). Finally, since they are both probability measures, µ and ν must
have the same mass at 0, if any. So µ = ν.

B Applications to Time Lotteries

B.1 Monotone Additive Statistics for Non-Negative Random Variables

In our applications to time lotteries the random times are non-negative (bounded) random
variables. We accordingly prove a version of Theorem 1 that applies to this smaller domain.
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Proposition 6. Φ: L∞+ → R is a monotone additive statistic if and only if there exists a
unique Borel probability measure µ on R such that for every X ∈ L∞

Φ(X) =
∫
R
Ka(X) dµ(a). (11)

Proof. It suffices to show that a monotone additive statistic defined on L∞+ can be extended
to a monotone additive statistic defined on L∞. Suppose Φ is defined on L∞+ . Then for
any bounded random variable X, we can define

Ψ(X) = min[X] + Φ(X −min[X]),

where we note that X −min[X] is a non-negative random variable.
Clearly Ψ is a statistic that depends only on the distribution of X (as Φ does), and

Ψ(c) = c + Φ(0) = c for constants c. When X is non-negative, the additivity of Φ
gives Φ(X) = Φ(min[X]) + Φ(X − min[X]) = min[X] + Φ(X − min[X]), so Ψ is an
extension of Φ. Moreover, Ψ is additive because min[X + Y ] = min[X] + min[Y ], and
Φ(X + Y − min[X + Y ]) = Φ(X − min[X]) + Φ(Y − min[Y ]) by the additivity of Φ.
Finally, to show Ψ is monotone, suppose X and Y are bounded random variables satisfying
X ≥1 Y . Then we can choose a sufficiently large n such that X + n and Y + n are both
non-negative, and X+n ≥1 Y +n. Since Φ is monotone for non-negative random variables,
Φ(X + n) ≥ Φ(Y + n). Thus Ψ(X + n) ≥ Ψ(Y + n) by the fact that Ψ extends Φ, and
Ψ(X) ≥ Ψ(Y ) by the additivity of Ψ. This proves that Ψ is a monotone additive statistic
on L∞ that extends Φ.

B.2 Proof of Theorem 3

It is straightforward to check that the representation satisfies the axioms, so we focus
on the other direction of deriving the representation from the axioms. In the first step,
we fix any reward x > 0. Then by monotonicity in time and continuity, for each (x, T )
there exists a (unique) deterministic time Φx(T ) such that (x,Φx(T )) ∼ (x, T ). Clearly,
when T is a deterministic time, Φx(T ) is simply T itself. Note also that if S first-order
stochastically dominates T , then

(x,Φx(T )) ∼ (x, T ) � (x, S) ∼ (x,Φx(S)),

so that Φx(S) ≥ Φx(T ). We next show that for any T and S that are independent,
Φx(T+S) = Φx(T )+Φx(S). Indeed, by stationarity, (x,Φx(T )) ∼ (x, T ) implies (x,Φx(T )+
S) ∼ (x, T + S) and (x,Φx(S)) ∼ (x, S) implies (x,Φx(T ) + Φx(S)) ∼ (x,Φx(T ) + S).
Taken together, we have

(x,Φx(T ) + Φx(S)) ∼ (x, T + S).
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Since Φx(T ) + Φx(S) is a deterministic time, the definition of Φx gives Φx(T ) + Φx(S) =
Φx(T + S) as desired. It follows that each Φx : L∞+ → R is a monotone additive statistic.

In the second step, note that our preference � induces a preference on R++ × R+

consisting of deterministic dated rewards. By Theorem 2 in Fishburn and Rubinstein
(1982), for any given r > 0 we can find a continuous and strictly increasing utility function
u : R++ → R++ such that for deterministic times t, s ≥ 0

(x, t) � (y, s) if and only if u(x) · e−rt ≥ u(y) · e−rs.

By definition, (x, T ) ∼ (x,Φx(T )) for any random time T . Thus we obtain that the decision
maker’s preference is represented by

(x, T ) � (y, S) if and only if u(x) · e−rΦx(T ) ≥ u(y) · e−rΦy(S).

It remains to show that for all x, y > 0, Φx and Φy are the same statistic. For this we
choose deterministic times t and s such that (x, t) ∼ (y, s), i.e., u(x) · e−rt = u(y) · e−rs.
For any random time T , stationarity implies (x, t+ T ) ∼ (y, s+ T ), so that

u(x) · e−rΦx(t+T ) = u(y) · e−rΦy(s+T ).

Using the additivity of Φx and Φy, we can divide the above two equalities and obtain
Φx(T ) = Φy(T ) as desired. Since this holds for all T and all x, y > 0, we can write
Φx(T ) = Φ(T ) for a single monotone additive statistic Φ. This completes the proof.

B.3 Proof of Proposition 2

Define, for every t ≥ 0, vi(t) = e−rit and v(t) = e−rt. We have that for any two random
times S and T , (1, S) �i (1, T ) if and only if E[vi(S)] ≥ E[vi(T )], and (1, S) � (1, T ) if and
only if E[v(S)] ≥ E[v(T )]. Thus it follows from the Pareto axiom that for any two random
times S and T , E[vi(S)] ≥ E[vi(T )] for all i implies E[v(S)] ≥ E[v(T )].

By Harsanyi’s Theorem (Zhou, 1997, Theorem 2) there exist (λi) in R+ and α ∈ R
such that for every t, v(t) =

∑
i λivi(t) + α. By letting t → ∞ we obtain 0 = α and by

setting t = 0 it follows that 1 =
∑
i λi. Further plugging in t = 1 and t = 2, we obtain

n∑
i=1

λie−2ri = e−2r =
(
e−r

)2 =
(

n∑
i=1

λie−ri
)2

.

But the Cauchy-Schwartz inequality gives
n∑
i=1

λie−2ri =
(

n∑
i=1

λie−2ri

)
·
(

n∑
i=1

λi

)
≥
(

n∑
i=1

λie−ri
)2

.

Thus equality holds, which implies that ri = rj for any two agents such that λi > 0 and
λj > 0. From e−r =

∑n
i=1 λie−ri we conclude that r = ri for any agent i with λi > 0.

38



B.4 Proof of Theorem 4

We first prove that the proposed representation for the social preference relation � satisfies
the Pareto axiom. If (x, T ) �i (y, S) for every i, then u(x)e−riΦi(T ) ≥ u(y)e−riΦi(S), which
can be rewritten as

ri(Φi(S)− Φi(T )) ≥ log u(y)
u(x) .

Summing across i using the weights λi we obtain
n∑
i=1

λiri(Φi(S)− Φi(T )) ≥ log u(y)
u(x)

n∑
i=1

λi = log u(y)
u(x) .

Since rΦ =
∑n
i=1 λiriΦi, it follows that r(Φ(S) − Φ(T )) ≥ log u(y)

u(x) as well, which is
equivalent to u(x)e−rΦ(T ) ≥ u(y)e−rΦ(S). Thus (x, T ) � (y, S) as desired.

The rest of this proof shows that the Pareto axiom implies rΦ =
∑n
i=1 λiriΦi and

r =
∑
i λiri for some non-negative weights λi that sum to 1. To that end we first show that

Φ itself is an average of (Φi). Note that if Φi(T ) ≤ Φi(S) for every i, then (1, T ) �i (1, S)
for every i and thus, by the Pareto axiom, (1, T ) � (1, S) and Φ(T ) ≤ Φ(S) also hold.

We say that a collection of monotone additive statistics (Φ1, . . . ,Φn,Φ) have the Pareto
property if Φi(T ) ≤ Φi(S) for every i implies Φ(T ) ≤ Φ(S). We now show:

Lemma 6. Let (Φ1, . . . ,Φn,Φ) be monotone additive statistics defined on L∞+ , and suppose
that they satisfy the Pareto property. Then there exists a probability vector (β1, . . . , βn)
such that Φ =

∑n
i=1 βiΦi.

Proof. Let (µ1, . . . , µn, µ) be the mixing measures on R that correspond to the monotone
additive statistics (Φ1, . . . ,Φn,Φ). Define the linear functionals (I1, . . . , In, I) on C(R) as
Ii(f) =

∫
R fdµi and I(f) =

∫
R fdµ.

We call a set of functions D ⊆ C(R) a Pareto domain if for every f, g ∈ D,

Ii(f) ≥ Ii(g) i = 1, . . . , n =⇒ I(f) ≥ I(g).

The Pareto property implies L+ = {KX : X ∈ L∞+ } is a Pareto domain. Define, as in the
proof of Theorem 1, L = {KX : X ∈ L∞} as well as the rational cone spanned by L:

coneQ(L) = {qL : q ∈ Q+, L ∈ L} =
∞⋃
n=1

1
n
L

We show that L and coneQ(L) are both Pareto domains. Given X,Y ∈ L∞, let c be a
large positive constant such that X + c ≥ 0 and Y + c ≥ 0. If Ii(KX) ≥ Ii(KY ) for all i
then Ii(KX + c) ≥ Ii(KY + c) for all i since each Ii is linear. Thus, by the Pareto property
and the linearity of I, I(KX + c) ≥ I(KY + c) and I(KX) ≥ I(KY ). This shows L is a
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Pareto domain. As for coneQ(L), observe that Ii( 1
mKX) ≥ Ii( 1

nKY ) for all i is equivalent
to Ii(nKX) ≥ Ii(mKY ) for all i, which implies I(nKX) ≥ I(mKY ) since L is a Pareto
domain and is closed under addition. This shows I( 1

mKX) ≥ I( 1
nKY ) as desired.

Next we show that the closure of coneQ(L) (with respect to the usual sup norm) is also
a Pareto domain. Let f, g be in the closure, such that Ii(f) ≥ Ii(g) for all i. Pick sequences
(fk) and (gk) in coneQ(L) converging to f and g. Define εi,k = |Ii(f)−Ii(fk)|+|Ii(g)−Ii(gk)|
and εk = max1≤i≤n εi,k. Then from Ii(f) ≥ Ii(g) we deduce Ii(fk) ≥ Ii(gk)−εk = Ii(gk−εk)
for every i. Note that gk− εk belongs to coneQ(L) since the latter contains all the constant
functions and is closed under addition. Thus by the fact that coneQ(L) is a Pareto domain,
Ii(fn) ≥ Ii(gn − εn) for every i implies I(fk) ≥ I(gk − εk) = I(gk) − εk for every k.
Continuity of the functionals (Ii) yields εk → 0. Continuity of I thus yields I(f) ≥ I(g).

This proves that the closure of coneQ(L) is a Pareto domain. Since the subset of a
Pareto domain is a Pareto domain, we conclude that cone(L) (i.e. the cone generated by
L) is a Pareto domain as well.

Now define V = cone(L)− cone(L) to be the vector space generated by the cone. It
is immediate to verify, using the linearity of the integral, that V is a Pareto domain as
well. In particular, for any f ∈ V , Ii(f) ≤ 0 for every i implies I(f) ≤ 0. Corollary 5.95 in
Aliprantis and Border (2006) thus implies there exist non-negative scalars β1, . . . , βn such
that I =

∑n
i=1 βiIi on V. So I(KX) =

∑n
i=1 βiIi(KX) for every X ∈ L∞, which implies

Φ(X) =
∑n
i=1 βiΦi(X). For constant X this implies

∑
i βi = 1, proving the lemma.

To show that rΦ is also an average of (riΦi), we make use of the Pareto axiom when
applied to time lotteries with different rewards. For any S, T ∈ L∞+ , the Pareto axiom
says that if rewards x, y are such that riΦi(S)− riΦi(T ) ≥ log (u(y)/u(x)) for all i, then
rΦ(S) − rΦ(T ) ≥ log (u(y)/u(x)) also holds. By the richness assumption on u, we can
choose x, y with

log (u(y)/u(x)) = min
1≤i≤n

{riΦi(S)− riΦi(T )}.

Therefore the Pareto axiom implies that for any S, T ∈ L∞+ ,

rΦ(S)− rΦ(T ) ≥ min
1≤i≤n

{riΦi(S)− riΦi(T )}. (12)

The conclusion that rΦ is an average of (riΦi) will follow from the condition (12) via
an application of Farkas’ Lemma. To rewrite this condition in linear algebra form, we let
m ≤ n be the largest number of different Φi that are linearly independent (when viewed
as functions on L∞+ ). Reordering if necessary, we can assume Φ1, . . . ,Φm are linearly
independent, and every Φi is a (not necessarily positive) linear combination of those m.
Thus we can find vectors γ1, . . . , γn ∈ Rm such that every riΦi can be rewritten as the
following inner product (i.e., linear combination):

riΦi = γi · (Φ1, . . . ,Φm).
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Since Φ is an average of (Φi), there also exists γ ∈ Rm such that rΦ = γ · (Φ1, . . . ,Φm).
Consider the following set of vectors:

W = {w ∈ Rm : γ · w ≥ min
1≤i≤n

γi · w}.

Let D be all vectors of the form (Φ1(S)−Φ1(T ), . . . ,Φm(S)−Φm(T )) for some S, T ∈ L∞+ .
Condition (12) says that D ⊆ W. Note that −D = D, and D is closed under addition
because every Φi is additive. Moreover, since the definition of W involve homogeneous
inequalities, 1

ND ⊆ W for every positive integer N . From these properties we deduce that
any vector of the form q1w1 + · · ·+ qkwk with qj ∈ Q and wj ∈ D belongs to W , because it
can be written as 1

Nw for some positive integer N and w ∈ D. Since W is a closed set, the
span of D (not just the rational span) is also contained in W. Finally note that D spans
the entirety of Rm. This is because by setting T = 0, D in particular includes vectors of
the form (Φ1(S), . . . ,Φm(S)), and such vectors cannot all belong to a lower-dimensional
subspace by the assumption that Φ1, . . . ,Φm are linearly independent.

Therefore, D =W = Rm, which implies

γ · w ≥ min
1≤i≤n

γi · w for all w ∈ Rm. (13)

For any ε > 0, this condition implies that there exists no w ∈ Rm such that −γi ·w ≤ −1−ε
for every i while γ·w ≤ 1. LetA be an (n+1)×mmatrix whose first n rows are−γ1, . . . ,−γn,
and whose last row is γ. Let b be the n + 1-dimensional vector (−1 − ε, . . . ,−1 − ε, 1).
Then Aw ≤ b has no solution w ∈ Rm.

By Farkas’ Lemma, there exists a non-negative n+1-dimensional vector z = (z1, . . . , zn+1)
such that z′A = 0 while z · b < 0. The former implies zn+1γ = z1γ

1 + · · ·+ znγ
n, while the

latter implies zn+1 < (1 + ε)(z1 + · · ·+ zn). Note that zn+1 cannot be zero, for otherwise
we have a positive linear combination of γ1, . . . , γn that gives the zero vector, leading to
the impossible implication that a positive linear combination of Φ1, . . . ,Φn equals zero.

Thus we can write γ = α1γ
1 + · · ·+ αnγ

n, with non-negative weights αi = zi
zn+1

whose
sum is greater than 1

1+ε . Consequently rΦ =
∑n
i=1 αiriΦi, which implies r =

∑n
i=1 αiri

and thus αi ≤ r
ri

in any such representation. Since ε is arbitrary, a compactness argument
then yields that γ =

∑n
i=1 αiγ

i for some non-negative weights αi with
∑n
i=1 αi ≥ 1.

We can also choose b̂ = (1− ε, . . . , 1− ε,−1) and deduce from (13) that Aw ≤ b̂ has no
solution w ∈ Rm. Then a similar analysis yields γ = α̂1γ

1 + · · ·+ α̂nγ
n for some weights

α̂i ≥ 0 and
∑n
i=1 αi <

1
1−ε . Again by compactness, we can assume

∑n
i=1 α̂i ≤ 1. Finally,

by suitably averaging between αi and α̂i, we can find non-negative weights (λi) whose sum
is equal to 1, such that γ =

∑n
i=1 λiγ

i. So rΦ =
∑n
i=1 λiriΦi. Since Φ is also a convex

combination of (Φi), it follows that r =
∑
i λiri, completing the proof.
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C Preferences over Gambles

C.1 Proof of Proposition 3

The result can be derived as a corollary of Theorem 5, but we also provide a direct proof
here. We focus on the “only if” direction because the “if” direction follows immediately
from the monotonicity of Ka(X) in a. Suppose µ is not supported on [−∞, 0], we will
show that the resulting monotone additive statistic Φ does not always exhibit risk aversion.
Since µ has positive mass on (0,∞], we can find ε > 0 such that µ assigns mass at least
ε to (ε,∞]. Now consider a gamble X which is equal to 0 with probability n−1

n and
equal to n with probability 1

n , for some large positive integer n. Then E [X] = 1 and
Ka(X) ≥ min[X] = 0 for every a ∈ R. Moreover, for a ≥ ε we have

Ka(X) ≥ Kε(X) = 1
ε

log
(
n− 1
n

+ 1
n

eεn
)
≥ n

2
whenever n is sufficient large. Thus

Φ(X) =
∫
R
Ka(X) dµ(a) ≥

∫
[ε,∞]

Ka(X) dµ(a) ≥ n

2 ε.

We thus have Φ(X) > 1 = E [X] for all large n, showing that the preference represented by
Φ sometimes exhibits risk seeking.

Symmetrically, if µ is not supported on [0,∞], then Φ must sometimes exhibit risk
aversion (by considering X equal to 0 with probability 1

n and equal to n with probability
n−1
n ). This completes the proof.

C.2 Proof of Proposition 4

Fix X ∈ L∞ with E [X] = 0 and min[X] < 0. For a ∈ (−∞, 0) define fa,X(ε) = Ka(εX) =
1
a logE

[
eaεX

]
for ε ≥ 0. Then we have

f ′a,X(ε) = ∂

∂ε
Ka(εX) =

E
[
XeaεX

]
E [eaεX ] .

Thus f ′a,X(0) = E [X] = 0, implying that

lim
ε→0

Ka(εX)
ε

= 0 whenever a ∈ (−∞, 0).

Note that K0(εX) = E [εX] = 0 for every ε, while K−∞(εX) = min[εX] = εmin[X]. So
the above limit is also zero for a = 0 but equal to min[X] < 0 for a = −∞.

Since Ka(εX)
ε is uniformly bounded between min[X] and 0, we can apply the Dominated

Convergence Theorem to deduce

lim
ε→0

1
ε

Φ(εX) = lim
ε→0

1
ε

∫
Ka(εX) dµ(a) =

∫ (
lim
ε→0

Ka(εX)
ε

)
dµ(a) = min[X] · µ({−∞}).
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This shows that Φ exhibits first-order risk aversion if and only if µ({−∞}) > 0.
Below we assume µ(−∞) = 0 and use a similar method to study second-order risk

aversion, focusing on the limit limε→0
Ka(εX)
ε2 for a ∈ (−∞, 0). From the above formula for

f ′a,X(ε), we can further compute the second derivative as

f ′′a,X(ε) =
aE
[
X2eaεX

]
· E
[
eaεX

]
− aE

[
XeaεX

]2
E [eaεX ]2

.

In particular, f ′′a,X(0) = aVar(X), and ‖f ′′a,X(ε)| ≤ |a|max{max[X]2,min[X]2} for every ε.
By Taylor’s Theorem, we can write Ka(εX) = fa,X(ε) as

fa,X(ε) = fa,X(0) + f ′a,X(0) · ε+ 1
2f
′′
a,X(η) · ε2 for some η ∈ (0, ε).

Plugging in fa,X(0) = f ′a,X(0) = 0, this yields Ka(εX)
ε2 = 1

2f
′′
a,X(η) which converges to

1
2f
′′
a,X(0) = 1

2aVar(X) as ε → 0. This ratio is also bounded in absolute value by the
dominating function 1

2 |a|max{max[X]2,min[X]2}.
When

∫
|a| dµ(a) is finite, the dominating function is integrable. Thus by the Dominated

Convergence Theorem,

lim
ε→0

1
ε2 Φ(εX) = lim

ε→0

1
ε2

∫
Ka(εX) dµ(a) =

∫ (
lim
ε→0

Ka(εX)
ε2

)
dµ(a) = Var(X) ·

∫
a

2 dµ(a).

This is a finite negative number, showing that Φ exhibits second-order risk aversion when∫
|a|dµ(a) is finite.
Finally suppose

∫
|a| dµ(a) =∞, we will show limε→0

1
ε2 Φ(εX) = −∞ so that Φ is not

second-order risk averse. Indeed, since −Ka(εX)
ε2 is non-negative for every ε ≥ 0 and a ≤ 0,

we can apply Fatou’s Lemma to deduce

lim inf
ε→0

1
ε2

∫
−Ka(εX) dµ(a) ≥

∫ (
lim inf
ε→0

−Ka(εX)
ε2

)
dµ(a) = Var(X)·

∫ −a
2 dµ(a) =∞.

Thus limε→0
−Φ(εX)

ε2 =∞ as we desire to show.

C.3 Proof of Theorem 5

We first show that conditions (i) and (ii) are necessary for
∫
RKa(X) dµ1(a) ≤

∫
RKa(Y ) dµ2(a)

to hold for every X. This part of the argument closely follows the proof of Lemma 5.
Specifically, by considering the same random variables Xn,b as defined there, we have the
key equation (10). Since the limit on the left-hand side is smaller for µ1 than for µ2, we
conclude that for every b > 0,

∫
[b,∞]

a−b
a dµ1(a) on the right-hand side must be smaller than

the corresponding integral for µ2. Thus condition (i) holds, and an analogous argument
shows condition (ii) also holds.
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To complete the proof, it remains to show that when conditions (i) and (ii) are satisfied,∫
R
Ka(X) dµ1(a) ≤

∫
R
Ka(X) dµ2(a)

holds for every X. Since µ1 and µ2 are both probability measures, we can subtract E [X]
from both sides and arrive at the equivalent inequality∫

R 6=0
(Ka(X)− E [X]) dµ1(a) ≤

∫
R 6=0

(Ka(X)− E [X]) dµ2(a). (14)

Note that we can exclude a = 0 from the range of integration because Ka(X) = E [X]
there. Below we show that condition (i) implies∫

(0,∞]
(Ka(X)− E [X]) dµ1(a) ≤

∫
(0,∞]

(Ka(X)− E [X]) dµ2(a). (15)

Similarly, condition (ii) gives the same inequality when the range of integration is [−∞, 0).
Adding these two inequalities would yield the desired comparison in (14).

To prove (15), we let LX(a) = a ·Ka(X) = logE
[
eaX

]
be the cumulant generating

function of X. It is well known that LX(a) is convex in a, with L′X(0) = E [X] and
lima→∞ L

′
X(a) = max[X]. Then the integral on the left-hand side of (15) can be calculated

as follows:∫
(0,∞]

(Ka(X)− E [X]) dµ1(a) =
∫

(0,∞)
(Ka(X)− E [X]) dµ1(a) + (max[X]− E [X]) · µ1({∞})

=
∫

(0,∞)
(LX(a)− aE [X]) dµ1(a)

a
+ (max[X]− E [X]) · µ1({∞})

Note that since the function g(a) = LX(a)− aE [X] satisfies g(0) = g′(0) = 0, it can be
written as

g(a) =
∫ a

0
g′(t) dt =

∫ a

0

∫ t

0
g′′(b) dbdt =

∫ a

0
g′′(b) · (a− b) db.

Plugging back to the previous identity, we obtain∫
(0,∞]

(Ka(X)− E [X]) dµ1(a)

=
∫

(0,∞)

∫ a

0
L′′X(b) · (a− b) dbdµ1(a)

a
+ (max[X]− E [X]) · µ1({∞})

=
∫ ∞

0
L′′X(b)

∫
[b,∞)

(a− b) dµ1(a)
a

db+ (L′X(∞)− L′X(0)) · µ1({∞})

=
∫ ∞

0
L′′X(b)

∫
[b,∞)

a− b
a

dµ1(a) db+
∫ ∞

0
L′′X(b) · µ1({∞}) db

=
∫ ∞

0
L′′X(b)

∫
[b,∞]

a− b
a

dµ1(a) db,

where the last step uses a−b
a = 1 when a =∞ > b.

The above identity also holds when µ1 is replaced by µ2. We then see that (15) follows
from condition (i) and L′′X(b) ≥ 0 for all b. This completes the proof.
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C.4 Proof of Theorem 6

The “if” direction is straightforward: if �1 and �2 are both represented by a monotone
additive statistic Φ, then they satisfy responsiveness and continuity. In addition, combined
choices are not stochastically dominated because if X �1 X

′ and Y �2 Y
′ then Φ(X) >

Φ(X ′) and Φ(Y ) > Φ(Y ′). Thus Φ(X+Y ) > Φ(X ′+Y ′) and X ′+Y ′ cannot stochastically
dominate X + Y .

Turning to the “only if” direction, we suppose �1 and �2 satisfy the axioms. We
first show that these preferences are the same. Suppose for the sake of contradiction that
X �1 Y but Y �2 X for some X,Y . Then by continuity, there exists ε > 0 such that
Y �2 X + ε. By responsiveness, we also have X �1 Y � Y − ε

2 . Thus X �1 Y − ε
2 ,

Y �2 X + ε, but X +Y is strictly stochastically dominated by Y − ε
2 +X + ε = X +Y + ε

2 ,
contradicting Axiom 4.2.

Henceforth we denote both �1 and �2 by �. We next show that for any X and
any ε > 0, max[X] + ε � X � min[X] − ε. To see why, suppose for contradiction that
X is weakly preferred to max[X] + ε (the other case can be handled similarly). Then
we obtain a contradiction to Axiom 4.2 by observing that X � max[X] + ε

2 ,
ε
4 � 0 but

X + ε
4 <1 max[X] + ε

2 + 0.
Given these upper and lower bounds for X, we can define Φ(X) = sup{c ∈ R : c � X},

which is well-defined and finite. By definition of the supremum and responsiveness, for
any ε > 0 it holds that Φ(X)− ε ≺ X ≺ Φ(X) + ε. Thus by continuity, Φ(X) ∼ X is the
(unique) certainty equivalent of X.

It remains to show that Φ is a monotone additive statistic. For this we show that
X ∼ Y implies X + Z ∼ Y + Z for any independent Z. Suppose for contradiction that
X + Z � Y + Z. Then by continuity we can find ε > 0 such that X + Z � Y + Z + ε. By
responsiveness, it also holds that Y + ε

2 � Y ∼ X. But the sum (X + Z) + (Y + ε
2) is

stochastically dominated by (Y + Z + ε) +X, contradicting Axiom 4.2.
Therefore, from X ∼ Φ(X) and Y ∼ Φ(Y ) we can apply the preceding result twice

to obtain X + Y ∼ Φ(X) + Y ∼ Φ(X) + Φ(Y ) whenever X,Y are independent, so that
Φ(X + Y ) = Φ(X) + Φ(Y ) is additive. Finally, we show Φ is monotone. Consider any
Y ≥1 X, and suppose for contradiction that X � Y . Then there exists ε > 0 such that
X � Y +ε. This leads to a contradiction since X � Y +ε, ε2 � 0, but X+ ε

2 is stochastically
dominated by Y + ε+ 0.

This completes the proof that both preferences �1 and �2 are represented by the same
certainty equivalent Φ(X), which is a monotone additive statistic.
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Online Appendix

D Proof of Theorem 2

The proof is considerably more complex than the proof of Theorem 1, so we break it into
several steps below.

D.1 Step 1: Catalytic Order on LM

We first establish a generalization of Theorem 7 to unbounded random variables. For two
random variables X and Y with c.d.f. F and G respectively, we say that X dominates Y
in both tails if there exists a positive number N with the property that

G(x) > F (x) for all |x| ≥ N.

In particular, X needs to be unbounded from above, and Y unbounded from below.

Lemma 7. Suppose X,Y ∈ LM satisfy Ka(X) > Ka(Y ) for every a ∈ R. Suppose further
that X dominates Y in both tails. Then there exists an independent random variable
Z ∈ LM such that X + Z ≥1 Y + Z.

Proof. We will take Z to have a normal distribution, which does belong to LM . Following
the proof of Theorem 7, we let σ(x) = G(x)− F (x), and seek to show that [σ ∗ h](y) ≥ 0
for every y when h is a Gaussian density with sufficiently large variance. By assumption,
σ(x) is strictly positive for |x| ≥ N . Thus there exists δ > 0 such that

∫N+2
N+1 σ(x) dx > δ,

as well as
∫−N−1
−N−2 σ(x) dx > δ. We fix A > 0 that satisfies eA ≥ 4N

δ .

Similar to (8), we have for h(x) = e−
x2
2V that

e
y2
2V

∫
σ(x)h(y − x) dx =

∫ ∞
−∞

σ(x) · e
y
V
·x · e−

x2
2V dx. (16)

The variance V is to be determined below.
We first show that the right-hand side is positive if V ≥ (N + 2)2 and y

V ≥ A. Indeed,
since σ(x) > 0 for |x| ≥ N , this integral is bounded from below by∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx+

∫ N+2

N+1
σ(x) · e

y
V
·x · e−

x2
2V dx

≥ − 2N · e
y
V
·N + δ · e

y
V
·(N+1) · e−

(N+2)2
2V

= e
y
V
·N · (−2N + δ · e

y
V · e−

(N+2)2
2V )

> 0,
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where the last inequality uses e
y
V ≥ eA ≥ 4N

δ and e−
(N+2)2

2V ≥ e−
1
2 > 1

2 . By a symmetric
argument, we can show that the right-hand side of (16) is also positive when y

V ≤ −A.
It remains to consider the case where y

V ∈ [−A,A]. Here we rewrite the integral on the
right-hand side of (16) as∫ ∞

−∞
σ(x) · e

y
V
·x · e−

x2
2V dx = Mσ( y

V
)−

∫ ∞
−∞

σ(x) · e
y
V
·x · (1− e−

x2
2V ) dx,

where Mσ(a) =
∫∞
−∞ σ(x) · eax dx = 1

aE
[
eaX

]
− 1

aE
[
eaY

]
is by assumption strictly positive

for all a. By continuity, there exists some ε > 0 such that Mσ(a) > ε for all |a| ≤ A. So it
only remains to show that when V is sufficiently large,∫ ∞

−∞
σ(x) · eax · (1− e−

x2
2V ) dx < ε for all |a| ≤ A. (17)

To estimate this integral, note that Mσ(A) =
∫∞
−∞ σ(x) · eAx dx is finite. Since σ(x) >

0 for |x| sufficiently large, we deduce from the Monotone Convergence Theorem that∫ T
−∞ σ(x) · eAx dx converges to Mσ(A) as T →∞. In other words,

∫∞
T σ(x) · eAx dx→ 0.

We can thus find a sufficiently large T > N such that
∫∞
T σ(x) · eAx dx < ε

4 , and likewise∫−T
−∞ σ(x) · e−Ax dx < ε

4 .

As 1− e−
x2
2V ≥ 0 and eax ≤ eA|x| when |a| ≤ A, we deduce that∫

|x|≥T
σ(x) · eax · (1− e−

x2
2V ) dx < ε

2 for all |a| ≤ A.

Moreover, for this fixed T , we have e−
T2
2V → 1 when V is large, and thus∫

|x|≤T
σ(x) · eax · (1− e−

x2
2V ) dx < 2T eAT (1− e−

T2
2V ) < ε

2 for all |a| ≤ A.

These estimates together imply that (17) holds for sufficiently large V . This completes the
proof.

D.2 Step 2: A Perturbation Argument

With Lemma 7, we know that if Φ is a monotone additive statistic defined on LM , then
Ka(X) ≥ Ka(Y ) for all a ∈ R implies Φ(X) ≥ Φ(Y ) under the additional assumption
that X dominates Y in both tails (same proof as for Lemma 1). Below we deduce the
same result without this extra assumption. To make the argument simpler, assume X
and Y are unbounded both from above and from below; otherwise, we can add to them
an independent Gaussian random variable without changing either the assumption or
the conclusion. In doing so, we can further assume X and Y admit probability density
functions.

We first construct a heavy right-tailed random variable as follows:
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Lemma 8. For any Y ∈ LM that is unbounded from above and admits densities, there
exists Z ∈ LM such that Z ≥ 0 and P[Z>x]

P[Y >x] →∞ as x→∞.

Proof. For this result, it is without loss to assume Y ≥ 0 because we can replace Y by |Y |
and only strengthen the conclusion. Let g(x) be the probability density function of Y . We
consider a random variable Z whose p.d.f. is given by cxg(x) for all x ≥ 0, where c > 0 is
a normalizing constant to ensure

∫
x≥0 cxg(x) dx = 1. Since the likelihood ratio between

Z = x and Y = x is cx, it is easy to see that the ratio of tail probabilities also diverges.
Thus it only remains to check Z ∈ LM . This is because

E
[
eaZ

]
= c

∫
x≥0

xg(x)eax dx,

which is simply c times the derivative of E
[
eaY

]
with respect to a. It is well-known that

the moment generating function is smooth whenever it is finite. So this derivative is finite,
and Z ∈ LM .

In the same way, we can construct heavy left-tailed distributions:

Lemma 9. For any X ∈ LM that is unbounded from below and admits densities, there
exists W ∈ LM , such that W ≤ 0 and P[W≤x]

P[X≤x] →∞ as x→ −∞.

With these technical lemmata, we now construct “perturbed” versions of any two
random variables X and Y to achieve dominance in both tails. For any random variable
Z ∈ LM and every ε > 0, let Zε be the random variable that equals Z with probability ε,
and 0 with probability 1− ε. Note that Zε also belongs to LM .

Lemma 10. Given any two random variables X,Y ∈ LM that are unbounded on both sides
and admit densities. Let Z ≥ 0 and W ≤ 0 be constructed from the above two lemmata.
Then for every ε > 0, X + Zε dominates Y +Wε in both tails.

Proof. For the right tail, we need P[X + Zε > x] > P[Y + Wε > x] for all x ≥ N . Note
that Wε ≤ 0, so P[Y +Wε > x] ≤ P[Y > x]. On other hand,

P[X + Zε > x] ≥ P[X ≥ 0] · P[Zε > x] = P[X ≥ 0] · ε · P[Z > x].

Since by assumption X is unbounded from above, the term P[X ≥ 0] ·ε is a strictly positive
constant that does not depend on x. Thus for sufficiently large x, we have

P[X ≥ 0] · ε · P[Z > x] > P[Y > x]

by the construction of Z. This gives dominance in the right tail. The left tail is similar.
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D.3 Step 3: Monotonicity w.r.t. Ka

The next result generalizes the key Lemma 1 to our current setting:

Lemma 11. Let Φ: LM → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all
a ∈ R then Φ(X) ≥ Φ(Y ).

Proof. As discussed, we can without loss assume X,Y are unbounded on both sides, and
admit densities. Let Z and W be constructed as above, then for each ε > 0, X + Zε

dominates Y +Wε in both tails, and Ka(X + Zε) > Ka(X) ≥ Ka(Y ) > Ka(Y +Wε) for
every a ∈ R, where the inequalities are strict as Z,W are not identically zero.

Thus the pair X + Zε and Y +Wε satisfy the assumptions in Lemma 7. We can then
find an independent random variable V ∈ LM (depending on ε), such that

X + Zε + V ≥1 Y +Wε + V.

Monotonicity and additivity of Φ then imply Φ(X)+Φ(Zε) ≥ Φ(Y )+Φ(Wε), after canceling
out Φ(V ). The desired result Φ(X) ≥ Φ(Y ) follows from the lemma below, which shows
that our perturbations only slightly affect the statistic value.

Lemma 12. For any Z ∈ LM with Z ≥ 0, it holds that Φ(Zε) → 0 as ε → 0. Similarly
Φ(Wε)→ 0 for any W ∈ LM with W ≤ 0.

Proof. We focus on the case for Zε. Suppose for contradiction that Φ(Zε) does not converge
to zero. Note that as ε decreases, Zε decreases in first-order stochastic dominance. So
Φ(Zε) ≥ 0 also decreases, and non-convergence must imply there exists some δ > 0 such
that Φ(Zε) > δ for every ε > 0. Let µε be image measure of Zε. We now choose a sequence
εn that decreases to zero very fast, and consider the measures

νn = µ∗nεn ,

which is the n-th convolution power of µεn . Thus the sum of n i.i.d. copies of Zεn is a
random variable whose image measure is νn. We denote this sum by Un.

For each n we choose εn sufficiently small to satisfy two properties: (i) εn ≤ 1
n2 , and

(ii) it holds that
E
[
enUn − 1

]
≤ 2−n.

This latter inequality can be achieved because E
[
enUn

]
=
(
E
[
enZεn

])n
, and as εn → 0 we

also have E
[
enZεn

]
= 1− εn + εnE

[
enZ

]
→ 1 since Z ∈ LM .

For these choices of εn and corresponding Un, let Hn(x) denote the c.d.f. of Un, and
define H(x) = infnHn(x) for each x ∈ R. Since Hn(x) = 0 for x < 0, the same is true for
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H(x). Also note that each Hn(x) is a non-decreasing and right-continuous function in x,
and so is H(x).

We claim that limx→∞H(x) = 1. Indeed, recall that Un is the n-fold sum of Zεn , which
has mass 1−εn at zero. So Un has mass at least (1−εn)n ≥ (1− 1

n2 )n ≥ 1− 1
n at zero. In other

words, Hn(0) ≥ 1− 1
n . By considering the finitely many c.d.f.s H1(x), H2(x), . . . ,Hn−1(x),

we can find N such that Hi(x) ≥ 1 − 1
n for every i < n and x ≥ N . Together with

Hi(x) ≥ Hi(0) ≥ 1− 1
i ≥ 1− 1

n for i ≥ n, we conclude that Hi(x) ≥ 1− 1
n whenever x ≥ N ,

and so H(x) ≥ 1− 1
n . Since n is arbitrary, the claim follows. The fact that Hn(x) ≥ 1− 1

n

also shows that in the definition H(x) = infnHn(x), the “inf” is actually achieved as the
minimum.

These properties of H(x) imply that it is the c.d.f. of some non-negative random
variable U . We next show U ∈ LM , i.e., E

[
eaU

]
< ∞ for every a ∈ R. Since U ≥ 0, we

only need to consider a ≥ 0. To do this, we take advantage of the following identity based
on integration by parts:

E
[
eaUn − 1

]
= −

∫
x≥0

(eax − 1) d(1−Hn(x)) = a

∫
x≥0

eax(1−Hn(x)) dx.

Now recall that we chose Un so that E
[
enUn − 1

]
≤ 2−n. So E

[
eaUn − 1

]
≤ 2−n for every

positive integer n ≥ a. It follows that the sum
∑∞
n=1 E

[
eaUn − 1

]
is finite for every a ≥ 0.

Using the above identity, we deduce that

a

∫
x≥0

eax
∞∑
n=1

(1−Hn(x)) dx <∞,

where we have switched the order of summation and integration by the Monotone Conver-
gence Theorem. Since H(x) = minnHn(x), it holds that 1−H(x) ≤

∑∞
n=1(1−Hn(x)) for

every x. And thus
E
[
eaU − 1

]
= a

∫
x≥0

eax(1−H(x)) dx <∞

also holds. This proves U ∈ LM .
We are finally in a position to deduce a contradiction. Since by construction the c.d.f.

of U is no larger than the c.d.f. of each Un, we have U ≥1 Un and Φ(U) ≥ Φ(Un) by
monotonicity of Φ. But Φ(Un) = nΦ(Zεn) > nδ by additivity, so this leads to Φ(U) being
infinite. This contradiction proves the desired result.

D.4 Step 4: Functional Analysis

To complete the proof of Theorem 2, we also need to modify the functional analysis step
in our earlier proof of Theorem 1. One difficulty is that for an unbounded random variable
X, Ka(X) takes the value ∞ as a→∞. Thus we can no longer think of KX(a) = Ka(X)
as a real-valued continuous function on R.
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We remedy this as follows. Note first that if Φ is a monotone additive statistic defined
on LM , then it is also monotone and additive when restricted to the smaller domain of
bounded random variables. Thus Theorem 1 gives a probability measure µ on R ∪ {±∞}
such that

Φ(X) =
∫
R
Ka(X) dµ(a)

for all X ∈ L∞. In what follows, µ is fixed. We just need to show that this representation
also holds for X ∈ LM .

As a first step, we show µ does not put any mass on ±∞. Indeed, if µ({∞}) = ε > 0,
then for any bounded random variable X ≥ 0, the above integral gives Φ(X) ≥ ε ·max[X].
Take any Y ∈ LM such that Y ≥ 0 and Y is unbounded from above. Then monotonicity
of Φ gives Φ(Y ) ≥ Φ(min{Y, n}) ≥ ε · n for each n. This contradicts Φ(Y ) being finite.
Similarly we can rule out any mass at −∞.

The next lemma gives a way to extend the representation to certain unbounded random
variables.

Lemma 13. Suppose Z ∈ LM is bounded from below by 1 and unbounded from above,
while Y ∈ LM is bounded from below and satisfies lima→∞

Ka(Y )
Ka(Z) = 0, then

Φ(Y ) =
∫

(−∞,∞)
Ka(Y ) dµ(a).

Proof. Given the assumptions, Ka(Z) ≥ 1 for all a ∈ R, with lima→∞Ka(Z) = ∞.
Let LZM be the collection of random variables X ∈ LM such that X is bounded from
below, and lima→∞

Ka(X)
Ka(Z) exists and is finite. LZM includes all bounded X (in which case

lima→∞
Ka(X)
Ka(Z) = 0), as well as Y and Z itself. LZM is also closed under adding independent

random variables.
Now, for each X ∈ LZM , we can define

KX|Z(a) = Ka(X)
Ka(Z) ,

which reduces to our previous definition of KX(a) when Z is the constant 1. This function
KX|Z(a) extends by continuity to a = −∞, where its value is min[X]

min[Z] , as well as to a =∞
by definition of LZM . Thus KX|Z(·) is a continuous function on R.

Since Φ induces an additive statistic when restricted to LZM , and KX|Z + KY |Z =
KX+Y |Z , we have an additive functional F defined on L = {KX|Z : X ∈ LZM}, given by

F (KX|Z) = Φ(X)
Φ(Z) .

Because Z ≥ 1 implies Φ(Z) ≥ 1, F is well-defined, and F (1) = 1. By Lemma 11, F is
also monotone in the sense that KX|Z(a) ≥ KY |Z(a) for each a ∈ R implies F (KX|Z) ≥
F (KY |Z).
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Likewise we can show F is 1-Lipschitz. Note that KX|Z(a) ≤ KY |Z(a) + m
n is equivalent

to Ka(X) ≤ Ka(Y ) + m
nKa(Z) and equivalent to Ka(X∗n) ≤ Ka(Y ∗n + Z∗m), where we

use the notation X∗n to denote the sum of n i.i.d. copies of X. If this holds for all a, then
by Lemma 11 we also have Φ(X∗n) ≤ Φ(Y ∗n + Z∗m), and thus Φ(X) ≤ Φ(Y ) + m

n Φ(Z) by
additivity. An approximation argument shows that for any real number ε > 0, KX|Z(a) ≤
KY |Z(a) + ε for all a implies Φ(X) ≤ Φ(Y ) + εΦ(Z). Thus the functional F is 1-Lipschitz.

Given these properties, we can exactly follow the proof of Theorem 1 to extend the
functional F to be a positive linear functional on the space of all continuous functions
over R (the majorization condition is again satisfied by constant functions, as KZ|Z = 1).
Therefore, by the Riesz Representation Theorem, we obtain a probability measure µZ on
R such that for all X ∈ LZM ,

Φ(X)
Φ(Z) =

∫
R

Ka(X)
Ka(Z) dµZ(a).

In particular, for any X bounded from below such that lima→∞
Ka(X)
Ka(Z) = 0, it holds

that
Φ(X) =

∫
[−∞,∞)

Ka(X) · Φ(Z)
Ka(Z) dµZ(a),

where we are able to exclude ∞ from the range of integration (this is useful below).
If we define the measure µ̂Z by dµ̂Z

dµZ (a) = Φ(Z)
Ka(Z) ≤ Φ(Z), then since Ka(X) is finite for

a <∞, we have
Φ(X) =

∫
[−∞,∞)

Ka(X) dµ̂Z(a).

This in particular holds for all bounded X, so plugging in X = 1 gives that µ̂Z is a
probability measure. But now we have two probability measures µ and µ̂Z on R that lead
to the same integral representation for bounded random variables, so Lemma 5 implies
that µ̂Z coincides with µ and is supported on the standard real line. Plugging in X = Y

in the above display then yields the desired result.

The next lemma further extends the representation:

Lemma 14. For every X ∈ LM that is bounded from below,

Φ(X) =
∫

(−∞,∞)
Ka(X) dµ(a).

Proof. It suffices to consider X that is unbounded from above. Moreover, without loss
we can assume X ≥ 0„ since we can add any constant to X. Given the previous lemma,
we just need to construct Z ≥ 1 such that lima→∞

Ka(X)
Ka(Z) = 0. Note that E

[
eaX

]
strictly

increases in a for a ≥ 0. This means we can uniquely define a sequence a1 < a2 < · · ·
by the equation E

[
eanX

]
= en. This sequence diverges as n → ∞. We then choose any

increasing sequence bn such that bn > n and anbn > 2n2.
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Consider the random variable Z that is equal to bn with probability e−
anbn

2 for each n,
and equal to 1 with remaining probability. To see that Z ∈ LM , we have

E
[
eaZ

]
≤ ea +

∞∑
n=1

e−
anbn

2 · eabn = ea +
∞∑
n=1

e(a−an2 )·bn .

For any fixed a, an
2 is eventually greater than a + 1. This, together with the fact that

bn > n, implies the above sum converges.
Moreover, for any a ∈ [an, an+1), we have

E
[
eaZ

]
≥ E

[
eanZ

]
≥ P[Z = bn] · eanbn ≥ e

anbn
2 > en2

,

whereas E
[
eaX

]
≤ E

[
ean+1X

]
≤ en+1. Thus

Ka(X)
Ka(Z) =

logE
[
eaX

]
logE [eaZ ] ≤

n+ 1
n2 ,

which converges to zero as a (and thus n) approaches infinity.

D.5 Step 5: Wrapping Up

By a symmetric argument, the representation Φ(X) =
∫

(−∞,∞)Ka(X) dµ(a) also holds for
all X bounded from above. In the remainder of the proof, we will use an approximation
argument to generalize this to all X ∈ LM . We first show a technical lemma:

Lemma 15. The measure µ is supported on a compact interval of R.

Proof. Suppose not, and without loss assume the support of µ is unbounded from above.
We will construct a non-negative Y ∈ LM such that Φ(Y ) =∞ according to the integral
representation. Indeed, by assumption we can find a sequence 2 < a1 < a2 < · · · such
that an → ∞ and µ([an,∞)) ≥ 1

n for all large n. Let Y be the random variable that
equals n with probability e−

an·n
2 for each n, and equals 0 with remaining probability. Then

similar to the above, we can show Y ∈ LM . Moreover, E
[
eanY

]
≥ e

an·n
2 , implying that

Kan(Y ) ≥ n
2 . Since Ka(Y ) is increasing in a, we deduce that for each n,∫

[an,∞)
Ka(Y ) dµ(a) ≥ Kan(Y ) · µ([an,∞)) ≥ n

2 ·
1
n

= 1
2 .

The fact that this holds for an →∞ contradicts the assumption that Φ(Y ) =
∫

(−∞,∞)Ka(Y ) dµ(a)
is finite.

Thus we can take N sufficiently large so that µ is supported on [−N,N ]. To finish
the proof, consider any X ∈ LM that may be unbounded on both sides. For each positive
integer n, let Xn = min{X,n} denote the truncation of X at n. Since X ≥1 Xn, we have

Φ(X) ≥ Φ(Xn) =
∫

[−N,N ]
Ka(Xn) dµ(a)
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Observe that for each a ∈ [−N,N ], Ka(Xn) converges to Ka(X) as n→∞. Moreover, the
fact that Ka(Xn) increases both in n and in a implies that for all a and all n,

|Ka(Xn)| ≤ max{|Ka(X1)|, |Ka(X)|} ≤ max{|K−N (X1)|, |KN (X1)|, |K−N (X)|, |KN (X)|}.

As Ka(Xn) is uniformly bounded, we can apply the Dominated Convergence Theorem to
deduce

Φ(X) ≥ lim
n→∞

∫
[−N,N ]

Ka(Xn) dµ(a) =
∫

[−N,N ]
Ka(X) dµ(a).

On the other hand, if we truncate the left tail and consider X−n = max{X,−n}, then a
symmetric argument shows

Φ(X) ≤ lim
n→∞

∫
[−N,N ]

Ka(X−n) dµ(a) =
∫

[−N,N ]
Ka(X) dµ(a).

Therefore for all X ∈ LM it holds that

Φ(X) =
∫

[−N,N ]
Ka(X) dµ(a).

This completes the entire proof of Theorem 2.

E Proof of Proposition 5

Since the preference � is represented by Φ, the betweenness axiom is equivalent to the
following:

Φ(X) = Φ(Y ) if and only if Φ(XλY ) = Φ(Y ).

In this case, we say that the statistic Φ satisfies betweenness. We need to show that
Φ(X) satisfies betweenness if and only if it is equal to Ka(X) for some a ∈ R or equal to
βK−aβ(X) + (1− β)Ka(1−β)(X) for some β ∈ (0, 1) and a ∈ (0,∞).

We first show the “if” direction. Specifically, when Φ(X) = Ka(X) for some a ∈ R, then
the preference is CARA expected utility, which satisfies independence and thus betweenness.
When Φ(X) = βK−aβ(X) + (1− β)Ka(1−β)(X), we can use the definition of K to rewrite
it as

Φ(X) = 1
a

(
logE[ea(1−β)X ]− logE[e−aβX ]

)
.

Thus Φ(X) = Φ(Y ) if and only if logE
[
ea(1−β)X

]
− logE

[
e−aβX

]
= logE

[
ea(1−β)Y

]
−

logE
[
e−aβY

]
, which in turn is equivalent to

E
[
ea(1−β)X

]
E
[
ea(1−β)Y ] =

E
[
e−aβX

]
E [e−aβY ] .
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Since E
[
ebXλY

]
= λE

[
ebX

]
+ (1− λ)E

[
ebY
]
for every b ∈ R, it is not difficult to see that

the above ratio equality holds if and only if it holds when X is replaced by XλY . Hence
Φ(X) = Φ(Y ) if and only if Φ(XλY ) = Φ(Y ), i.e. betweenness is satisfied.

Turning to the “only if” direction. We will characterize any monotone additive statistic
Φ that satisfies a weaker form of betweenness:

Lemma 16. Suppose Φ is a monotone additive statistic such that Φ(X) = c implies
Φ(Xλc) = c whenever c is a constant. Then either Φ takes the form described by Proposi-
tion 5, or Φ(X) = βmin[X] + (1− β) max[X] for some β ∈ [0, 1].

This result implies Proposition 5 because Φ(X) = βmin[X] + (1− β) max[X] violates
the original betweenness axiom. To see that, let X = 0 and choose any Y supported on
±1. Then XλY and Y have the same minimum and maximum, so that Φ(XλY ) = Φ(Y ).
But Φ(X) = Φ(Y ) cannot hold for all Y supported on ±1.

The proof of Lemma 16 is in turn based on the following lemma which further relaxes
betweenness:

Lemma 17. Suppose Φ(X) =
∫
RKa(X) dµ(a) has the property that Φ(X) = c implies

Φ(Xλc) ≤ c. Then the measure µ restricted to [0,∞] is either the zero measure, or it is
supported on a single point.

Proof. It suffices to show that if µ puts positive mass on (0,∞], then that mass is supported
on a single point and µ({0}) = 0. For this let N > 0 denote the essential maximum of the
support of µ; that is, N = min{x : µ((x,∞]) = 0}. We allow N =∞ when the support of
µ is unbounded from above, or when µ has a non-zero mass at ∞. For any positive real
number b < N , consider the same random variable Xn,b as in the proof of Lemma 5, given
by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1− e−bn.

As shown in the proof of Lemma 5, 1
nKa(Xn,b) is uniformly bounded in [0, 1], and

lim
n→∞

1
n
Ka(Xn,b) = (a− b)+

a
.

Thus if we let cn = Φ(Xn,b), then by the Dominated Convergence Theorem,

lim
n→∞

cn
n

= lim
n→∞

1
n

Φ(Xn,b) = lim
n→∞

∫
R

1
n
Ka(Xn,b) dµ(a) =

∫
(b,∞]

a− b
a

dµ(a).

Denote γ =
∫

(b,∞]
a−b
a dµ(a). This number γ is strictly positive because b < N implies

µ((b,∞]) > 0. We can also assume γ < 1, since otherwise µ must be the point mass at ∞.
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Now, as Φ(Xn,b) = cn we know by assumption that Φ(Yn,b) ≤ cn for each n, where Yn,b
is the mixture between Xn,b and the constant cn (in what follows λ is fixed as n varies):

P [Yn,b = n] = λe−bn

P [Yn,b = 0] = λ(1− e−bn)

P [Yn,b = cn] = 1− λ.

Using limn→∞ cn/n = γ, we have

lim
n→∞

1
n
Ka(Yn,b) = lim

n→∞
1
n

1
a

log
[
λ
(
1− e−bn + e(a−b)n

)
+ (1− λ)ea·cn

]

=



0 if a < 0

(1− λ)γ if a = 0

γ if 0 < a < b
1−γ

a−b
a if a ≥ b

1−γ .

Note that the cutoff point a = b
1−γ is where a − b = aγ. When a is smaller than this,

the dominant term in the bracketed sum above is (1− λ)ea·cn . Whereas for larger a, the
dominant term becomes λe(a−b)·n.

Crucially, limn→∞
1
nKa(Yn,b) ≥ (a−b)+

a holds for every a, with strict inequality for
a ∈ [0, b

1−γ ). Thus again by the Dominated Convergence Theorem,

lim
n→∞

cn
n
≥ lim

n→∞
1
n

Φ(Yn,b) = lim
n→∞

∫
R

1
n
Ka(Yn,b) dµ(a) ≥

∫
(b,∞]

a− b
a

dµ(a).

But we know that the far left is equal to the far right. So both inequalities hold equal, and
in particular limn→∞

1
nKa(Yn,b) = (a−b)+

a holds µ-almost surely.
As discussed, limn→∞

1
nKa(Yn,b) > (a−b)+

a for any a ∈ [0, b
1−γ ). So we can conclude

that µ([0, b
1−γ )) = 0. This must hold for any b ∈ (0, N) and corresponding γ. Letting

b arbitrarily close to N thus yields µ([0, N)) = 0 (since b
1−γ > b). It follows that when

restricted to [0,∞] the measure µ is concentrated at the single point N , as we desire to
show.

Proof of Lemma 16. From Lemma 17, we know that the measure µ associated with Φ can
only be supported on one point in all of [0,∞]. By a symmetric argument, µ also has
at most one point support in all of [−∞, 0]. Thus either µ = δa for some a ∈ R, or µ is
supported on two points {a1, a2} with a1 < 0 < a2. In the former case we are done, so
below we study the latter case where µ has two-point support.

Suppose Φ(X) = βKa1(X) + (1 − β)Ka2(X) for some β ∈ (0, 1) and a1 < 0 < a2. If
a1 = −∞ while a2 <∞, then Φ(X) = βmin[X]+(1−β)Ka2(X). Take any non-constant X
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and let c denote Φ(X). Note that sinceKa2(X) > min[X], c = βmin[X]+(1−β)Ka2(X) lies
strictly between min[X] and Ka2(X). Consider the mixture Xλc, then min[Xλc] = min[X],
whereas

Ka2(Xλc) = 1
a2

log
(
λE
[
ea2X

]
+ (1− λ)ea2c

)
<

1
a2

logE
[
ea2X

]
= Ka2(X),

where the inequality uses c < Ka2(X) = 1
a2

logE
[
ea2X

]
and a2 > 0. We thus deduce that

Φ(Xλc) = βmin[Xλc] + (1− β)Ka2(Xλc) < βmin[X] + (1− β)Ka2(X) = c,

contradicting the betweenness axiom. A symmetric argument rules out the possibility that
a1 > −∞ while a2 =∞.

Hence, either a1 = −∞ and a2 =∞, or a1 ∈ (−∞, 0) and a2 ∈ (0,∞). In the former
case Φ(X) is an average of the minimum and the maximum, so we are again done. It
remains to consider the latter case where a1, a2 are both finite. In this case we will show
that β = −a1

a2−a1
. Once this is shown, we can let a = a2 − a1 so that a1 = −aβ and

a2 = a(1− β). Thus Φ(X) = βK−aβ(X) + (1− β)Ka(1−β)(X) as desired.
Let us take an arbitrary non-constant X, and let

c = Φ(X) = β

a1
logE

[
ea1X

]
+ 1− β

a2
logE

[
ea2X

]
.

For an arbitrary λ ∈ [0, 1], we must also have

c = Φ(Xλc) = β

a1
logE

[
λea1X + (1− λ)ea1c

]
+ 1− β

a2
logE

[
λea2X + (1− λ)ea2c

]
. (18)

Since (18) holds for every λ, we can differentiate it with respect to λ to obtain

0 =
β(E

[
ea1X

]
− ea1c)

a1E [λea1X + (1− λ)ea1c] +
(1− β)(E

[
ea2X

]
− ea2c)

a2E [λea2X + (1− λ)ea2c] .

Plugging in λ = 0 and λ = 1 gives, respectively,

β(E
[
ea1X

]
− ea1c)

a1ea1c
= −

(1− β)(E
[
ea2X

]
− ea2c)

a2ea2c
. (19)

β(E
[
ea1X

]
− ea1c)

a1E [ea1X ] = −
(1− β)(E

[
ea2X

]
− ea2c)

a2E [ea2X ] . (20)

Since c = βKa1(X) + (1− β)Ka2(X), the fact that Ka2(X) > Ka1(X) implies c is strictly
between Ka1(X) and Ka2(X). Thus, using a1 < 0 < a2 we deduce ea1c < E

[
ea1X

]
and

ea2c < E
[
ea2X

]
.

We can therefore divide (19) by (20) to obtain

E
[
ea1X

]
ea1c

=
E
[
ea2X

]
ea2c

.

Plugging this back to (19), we conclude β
a1

= −1−β
a2

, so β = −a1
a2−a1

as we desire to show.
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F Monotone Additive Statistics and the Independence Axiom

In this appendix we discuss the classic independence axiom and what it implies for
preferences represented by monotone additive statistics.

Axiom F.1 (Independence). For all X,Y, Z and all λ ∈ (0, 1), X � Y implies XλZ �
YλZ.

Proposition 7. Suppose a preference � is represented by a monotone additive statistic
Φ(X) =

∫
RKa(X) dµ(a). Then � satisfies the independence axiom if and only if µ is a

point mass at some a ∈ R.

Proof. The “if” direction is relatively straightforward. If a = 0 then Φ(X) = E [X]. In this
case E [X] ≥ E [Y ] does imply

E [XλZ] = λE [X] + (1− λ)E [Z] ≥ λE [Y ] + (1− λ)E [Z] = E [YλZ].

If a > 0 then Φ(X) ≥ Φ(Y ) implies E
[
eaX

]
≥ E

[
eaY

]
and thus

λE
[
eaX

]
+ (1− λ)E

[
eaZ

]
≥ λE

[
eaY

]
+ (1− λ)E

[
eaZ

]
,

so that Φ(XλZ) ≥ Φ(YλZ). A similar argument applies to the case of a < 0. Finally it is
easy to see that max[X] ≥ max[Y ] implies max[XλZ] ≥ max[YλZ] and the same holds for
the minimum. So the above independence axiom holds for a = ±∞ as well.21

We turn to the “only if” direction of the result. By the independence axiom, whenever c
is a constant we have X � c implies Xλc � c and c � X implies c � Xλc. Therefore X ∼ c
implies Xλc ∼ c, which allows us to directly apply Lemma 16 from before. It remains
to show that independence rules out Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X) for some
β ∈ (0, 1) and a ∈ (0,∞].

Suppose Φ takes the above form. If a =∞ then Φ(X) = βmin[X] + (1− β) max[X]
for some β ∈ (0, 1). To see that it violates independence, choose X supported on 0 and

1
1−β , and Y = 1 so that Φ(X) = Φ(Y ). But with Z being a sufficiently large constant we
see that XλZ has the same maximum as YλZ, but a strictly smaller minimum. Hence
Φ(XλZ) < Φ(YλZ), contradicting independence.

If instead a ∈ (0,∞), then we can do a similar construction by choosing X and Y

such that Φ(X) > Φ(Y ) but K−aβ(X) < K−aβ(Y ). For example, let Y = 1, and let X be
supported on {0, k}, with P [X = k] = 1

k . Then

Kb(X) = 1
b

logE
[
1− 1

k
+ ebk

k

]
.

21Note however that Φ(X) = max[X] or min[X] would violate a stronger form of independence that
additionally requires X � Y to imply XλZ � YλZ with strict preferences. This is related to the fact that
these extreme monotone additive statistics do not satisfy mixture continuity.
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For k tending to infinity, Kb(X) tends to zero if b < 0, and to infinity if b > 0. Hence, for
k large enough, X and Y will have the desired property.

Now let Z = n where n is a large positive integer. Then

Kb(Yλn) = 1
b

logE
[
λE
[
ebY
]

+ (1− λ)ebn
]

Kb(Xλn) = 1
b

logE
[
λE
[
ebX

]
+ (1− λ)ebn

]
and so

Kb(Yλn)−Kb(Xλn) = 1
b

log

λE
[
ebY
]

+ (1− λ)ebn

λE [ebX ] + (1− λ)ebn

 .
It easily follows that for fixed λ ∈ (0, 1) and b,

lim
n→∞

Kb(Yλn)−Kb(Xλn) = 0 if b > 0;

lim
n→∞

Kb(Yλn)−Kb(Xλn) = Kb(Y )−Kb(X) if b < 0.

Thus, as n tends to infinity,

lim
n

Φ(Yλn)− Φ(Xλn)

= lim
n
β [K−aβ(Yλn)−K−aβ(Xλn)] + (1− β)

[
Ka(1−β)(Yλn)−Ka(1−β)(Xλn)

]
= β [K−aβ(Yλn)−K−aβ(Xλn)] > 0.

Therefore, for n large enough, we have found X and Y such that Φ(X) > Φ(Y ) but
Φ(Xλn) < Φ(Yλn). This implies X � Y but Xλn ≺ Yλn, which contradicts the indepen-
dence axiom and completes the proof of Proposition 7.

F.1 Proof of Proposition 1

We now prove Proposition 1 as a corollary of Proposition 7. Suppose that � is an MSTP
that satisfies strong stationarity. Let �∗ denote the preference over random times induced
by � when fixing the payoff. That is, T �∗ S if and only if (x, T ) � (x, S) for any (and
every) x > 0.

Fix any X �∗ Y and any Z ∈ L∞+ , which can be considered as random times. For a
given λ ∈ (0, 1), choose D to be a random variable that is equal to either 0 or 1, with
probability λ and 1 − λ, respectively. Let X̃ be a random variable that conditioned on
D = 0 has the same distribution as X + 1, and conditioned on D = 1 has the same
distribution as Z. Likewise, let Ỹ be a random variable that conditioned on D = 0 has the
same distribution as Y + 1, and conditioned on D = 1 has the same distribution as Z.
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By construction X̃D �∗ ỸD for every possible value of D, so by strong stationarity
X̃ +D �∗ Ỹ +D must hold. But X̃ +D has the same distribution as (XλZ) + 1 while
Ỹ + D has the same distribution as (YλZ) + 1, which implies (XλZ) + 1 �∗ (YλZ) + 1.
Since this is an MSTP, we deduce XλZ �∗ YλZ as the independence axiom requires.

Note that even though �∗ and the associated monotone additive statistic Φ are defined
only for non-negative bounded random variables, it can be extended to all of L∞ as shown
in the proof of Proposition 6. Given additivity, it is easy to see that the extension preserves
independence. So we can assume �∗ and Φ satisfy independence on L∞. This allows us to
apply Proposition 7 and deduce that Φ must have a point-mass mixing measure µ, which
proves the “only if” direction of Proposition 1.

As for the “if” direction, we need to verify that an MSTP represented by V (x, T ) =
u(x) · e−rKa(T ) does satisfy strong stationarity. First consider a = 0, in which case the
representation simplifies to u(x) ·e−E[T ] with the normalization r = 1. From the assumption
(x, TD) � (y, SD) a.s. we obtain u(x) · e−E[TD] ≥ u(y) · e−E[SD], which can be rewritten as
E [SD]− E [TD] ≥ log (u(y)/u(x)). Thus we can also add any fixed value of D to obtain

E [SD +D]− E [TD +D] ≥ log (u(y)/u(x)) a.s.

Averaging across different values of D , this implies E [S +D]−E [T +D] ≥ log (u(y)/u(x)),
which after rearranging yields u(x) · e−E[T+D] ≥ u(y) · e−E[S+D]. So (x, T +D) � (y, S+D)
as demanded by strong stationarity.

Next consider a > 0. In this case we normalize r = a and adjust u accordingly, to
arrive at an equivalent representation V (x, T ) = u(x)/E

[
eaT

]
. From (x, TD) � (y, SD) we

obtain u(x) · E
[
eaSD

]
≥ u(y) · E

[
eaTD

]
and thus

u(x) · E
[
ea(SD+D)

]
≥ u(y) · E

[
ea(TD+D)

]
a.s.

Averaging across different values of D then yields u(x) · E
[
ea(S+D)

]
≥ u(y) · E

[
ea(T+D)

]
,

which after rearranging gives the desired conclusion V (x, T +D) ≥ V (y, S +D).
If instead a < 0, then we normalize r = −a and recover the usual EDU representation

V (x, T ) = u(x) · E
[
eaT

]
. Essentially the same argument as above applies to this case.

Finally consider a =∞, so that V (x, T ) = u(x) · e−max[T ] after normalizing r = 1. Here
(x, TD) � (y, SD) implies max[SD]−max[TD] ≥ log (u(y)/u(x)), and thus

max[SD +D]−max[TD +D] ≥ log (u(y)/u(x)) a.s.

Let α = max[S +D] and c = log (u(y)/u(x)) be constants. Then the above implies that
for almost every value of D, TD +D ≤ α− c. Thus T +D ≤ α− c almost surely, which
gives max[S +D]−max[T +D] ≥ c. This implies V (x, T +D) ≥ V (y, S +D) as desired.

A similar argument applies to the case of a = −∞, completing the proof.
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