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Abstract

An analyst observes the frequency with which an agent takes actions, but

not the frequency with which she takes actions conditional on a payoff relevant

state. In this se�ing, we ask when the analyst can rationalize the agent’s choices

as the outcome of the agent learning something about the state before taking

action. Our characterization marries the obedience approach in information de-

sign (Bergemann and Morris, 2016) and the belief approach in Bayesian persua-

sion (Kamenica and Gentzkow, 2011) relying on a theorem by Strassen (1965) and

Hall’s marriage theorem. We apply our results to ring-network games and to

identify conditions under which a data set is consistent with a public informa-

tion structure in first-order Bayesian persuasion games.

Keywords: Bayes correlated equilibrium, Bayesian persuasion, information de-

sign, stochastic choice, distributions with given marginals, cooperative games, set

functions, core

1 Introduction

Given a primitive payoff structure, information design provides a framework for ratio-
nalizing outcomes as the result of non-cooperative play without having to specify the
players’ information structure. For this reason, the seminal work of Bergemann and Morris
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(2016) has spurred renewed interest among empirical scholars wishing to obtain iden-
tification and estimation results under a weaker set of information assumptions (see,
for instance, Syrgkanis et al., 2017; Magnolfi and Roncoroni, 2019; Koh, 2022).

However, the weaker set of assumptions on the information structure comes at the
cost of increasing demands on the data set available to the analyst. Indeed, the usual
assumption in the literature is that the analyst is given a joint distribution over payoff
relevant states and action profiles. For instance, the literatures on rational ina�ention
and stochastic choice usually assume that the analyst observes an agent’s choices
conditional on the state of the world (e.g., Caplin and Dean, 2015; Aguiar et al., 2018).
Given this data set, Bayes correlated equilibrium provides an easy to test set of con-
ditions that the joint distribution over states and action profiles must satisfy in order
to be consistent with the outcome of non-cooperative play under some information
structure.

O�entimes, however, the analyst’s data set is more limited. The analyst may observe
the distribution over the payoff relevant states of the world and the distribution over
action profiles, but not the distribution over action profiles conditional on the state
of the world.1 We can then ask, given the primitive payoff structure, which marginal
distributions can be rationalized as the outcome of non-cooperative play under some
information structure. We refer to such marginals as BCE consistent because they
satisfy that a joint distribution over states and action profiles exists that is consistent
with the marginals and is a Bayes correlated equilibrium. Characterizing the set of
BCE-consistent marginal distributions can only increase the practical applicability of
Bayes correlated equilibrium.

The set of BCE-consistent marginal distributions is of interest for two other reasons.
First, the analyst o�entimes is not just interested in the existence of an information
structure that rationalizes the (marginal) distribution of play, but one that satisfies
certain properties. For instance, the analyst may want to test whether the agents
have private information. As we explain below, our characterization result provides us
with a test for the existence of a public information structure that rationalizes the ob-
served distribution of play. The second reason is related to reduced-form implementa-
tion in mechanism design (Ma�hews, 1984; Border, 1991). Whenever the information
designer only cares about the agents’ action profiles, but not the state of the world,
the information designer’s problem can be expressed as the choice out of the set of
BCE-consistent marginals.

In this paper, we take the first step towards characterizing the set of BCE-consistent

1Whereas state-dependent stochastic choice data is useful to guide the design and interpretation of
experiments, this data is o�entimes hard to come by outside the experimental se�ing. Dardanoni et al.
(2020) provides an eloquent discussion of the data voracity of stochastic choice.
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marginals by considering the single-agent case. Theorem 1 provides a characteriza-
tion of the set of BCE-consistent marginals building on a theorem in Strassen (1965).
Furthermore, marrying the obedience approach in information design with the belief
approach in Kamenica and Gentzkow (2011), Proposition 1 characterizes the Bayes
plausible distributions over posteriors that implement a given marginal over actions.
We provide two network-based proofs of Proposition 1. Relying on recent extensions
of Hall’s marriage theorem in Barseghyan et al. (2021) and Azrieli and Rehbeck (2022),
the first characterization uncovers a connection between BCE-consistency and the
core of the game induced by loosely speaking, some (Bayes plausible) posterior distri-
bution (see Remark 2 andGrabisch et al., 2016). The second proof relies on the demand
problem of Gale (1957). We show that one can interpret BCE-consistency problem as
a supply-demand problem in a persuasion economy, in which the marginal action dis-
tribution describes the demand and a Bayes plausible posterior distribution describes
the supply. We then rely on the results in Gale (1957) to determine when the demand
is feasible given the supply.

Section 4 illustrates how Theorem 1 already allows us to study multi-agent games.
Section 4.1 applies Theorem 1 to the first-order Bayesian persuasion se�ing of Arieli et al.
(2021) to characterize the subset of BCE-consistent marginals that are consistent with
a public information structure. Instead, Section 4.2 applies Theorem 1 to characterize
BCE-consistent marginals in ring-network games as in Kneeland (2015).

Related literature The two closest papers to ours are Rehbeck (2023) andAzrieli and Rehbeck
(2022). Rehbeck (2023) studies the same question as us, but when the analyst has ac-
cess to a decision maker’s unconditional stochastic choices, possibly out of different
menus. For the case of a single menu, the characterization in Rehbeck (2023) is differ-
ent from that in Theorem 1 and is stated in terms of the non-existence of a possibly
mixed deviation. Azrieli and Rehbeck (2022) study a similar question to ours in the
context of stochastic choice. In their se�ing, the analyst has access to a marginal dis-
tribution over a decision maker’s choices and a marginal distribution over the menus
out of which the decision maker made her choices. Azrieli and Rehbeck (2022) show
that the marginal distributions are consistent if and only if the marginal over choices
is in the core of the game induced by the marginal over menus.

A literature in decision theory and experimental economics studies when choices can
be rationalized via costly information acquisition and whether the choices can be
used to identify the information acquisition costs (see, e.g., Caplin and Dean (2015),
Caplin et al. (2017), Chambers et al. (2020), Dewan and Neligh (2020), Denti (2022)).
Like we do, many of these papers assume that the decision maker’s utility is known.
More recently, assuming that the analyst has access to state-dependent stochastic
choice data, Caplin et al. (2023) study when choices can be rationalized as if the agent
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has access to some information before choosing her actions. Whereas their analyst
has access to a richer data set, they require consistency of the information structure
across a family of decision problems.

Arieli et al. (2021) and Morris (2020) characterize joint distributions over posterior
beliefs that are consistent with some information structure.2 Both papers cast the
problem as one of distributions with given marginals: they take as given a profile
of marginal distributions over posterior beliefs with the same mean and character-
ize when a joint distribution with the given marginals exists that is consistent with
information.

Finally, Vohra et al. (2023) study reduced-form implementation in a Bayesian persua-
sion in which the sender and the receiver care only about the posterior mean of the
states. They leverage the mean preserving spread property to write a linear program-
ming problem for the sender that only depends on the marginal distribution over ac-
tions. Beyond the posterior mean se�ing, they do not provide a characterization of
the set of implementable marginal action distributions.

2 Model

Anticipating our multi-agent results in Section 4, our notation below presumes multi-
ple agents. We then specialize it to the single-agent case in Section 3:

Base game: An incomplete information base game, G, is defined as follows. We are
given a set ofN players, [N ]={1, . . . , N}. Each player i ∈ [N ] chooses an action from
the finite set Ai. Payoffs ui(a, θ) depend on the action profiles a ∈ A ≡ ×i∈[N ]Ai and
the state of the world, θ, an element of the finite set Θ.3 The players share a common
prior µ0 ∈ ∆(Θ) over the state of the world. That is, G = 〈Θ, (Ai, ui)i∈[N ], µ0〉.

Bayes correlated equilibrium: An outcome is a joint distribution over action pro-
files and states of the world, π ∈ ∆(A ×Θ). We are concerned with those outcomes
that are consistent with non-cooperative play of the base game, where the solution
concept is Bayes Nash equilibrium. The notion of Bayes correlated equilibrium in
Bergemann and Morris (2016) captures the set of outcomes that are consistent with
(Bayes Nash) equilibrium of the base game under some information structure:

2Whereas Arieli et al. (2021) study the binary-state case, the characterization in Morris (2020) re-
quires no such assumption.

3As we explain in Section 3 our single-agent characterization extends to the case in which Θ and
A are infinite (see Remark 1). However, the set of finitely many states and actions allows us to provide
a sharper characterization.
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Definition 1 (Bayes correlated equilibrium). An outcome distribution π ∈ ∆(A×Θ) is
a Bayes correlated equilibrium of base game G = 〈Θ, (Ai, ui)i∈[N ], µ0〉, if for all agents
i ∈ [N ], actions ai, a

′
i ∈ Ai, the following holds

∑

(a−i,θ)

π(ai, a−i, θ) [ui(ai, a−i, θ)− ui(a
′
i, a−i, θ)] ≥ 0, (O)

and for all θ ∈ Θ

∑

a∈A

π(a, θ) = µ0(θ). (MΘ)

Let BCE (µ0) denote the set of Bayes correlated equilibria.

In words, a Bayes correlated equilibrium is an outcome distribution that satisfies a
series of obedience constraints (O) and a martingale condition (MΘ). The first ensures
each player’s best response condition under some information structure, whereas the
second ensures the existence of an information structure that is consistent with the
players’ prior information. Note that any Bayes correlated equilibrium π ∈ ∆(A×Θ)
induces two marginal distributions, (πΘ, πA) ∈ ∆(Θ)×∆(A). The definition of Bayes
correlated equilibrium implies that the primitive base game G pins down πΘ, but not
necessarily πA.

Information Design with Given Marginals: We take the point of view of an an-
alyst who knows the base game, but not the information structure under which the
base game is played. The analyst is also endowed with information about the actions
taken by the players. The analyst’s goal is to determine whether this information is
consistent with non-cooperative play of the base game under some information struc-
ture.

We consider two kinds of information the analyst may have about the players’ ac-
tions, which are equivalent in the single-agent se�ing. In the first case, the analyst is
endowed with a distribution over action profiles, ν0 ∈ ∆(A). In the second case, the
analyst is endowed with a profile of action distributions, one for each player, that is,
ν0 = (ν0,1, . . . , ν0,N) ∈ ×i∈[N ]∆(Ai).

In each of these cases, the analyst wants to ascertain whether a Bayes correlated
equilibrium π ∈ BCE (µ0) exists such thatπA coincideswith the analyst’s information
about the players’ actions (i.e., πA = ν0 or ×i∈[N ]πAi

= ν0). In this case, we say that
the marginals (µ0, ν0) are BCE-consistent or that the profile of marginal distributions
(µ0, ν0) are M-BCE-consistent. Definition 2 records this for future reference:

Definition 2 (BCE- and M-BCE-consistent marginals). Say that (µ0, ν0) are BCE-
consistent if a Bayes correlated equilibrium π ∈ BCE (µ0) exists such that πA = ν0.
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Similarly, we say that (µ0, ν0) are M-BCE-consistent if a Bayes correlated equilibrium

π ∈ BCE (µ0) exists such that for all players i ∈ [N ], πAi
= ν0,i.

Note that if (µ0, ν0) are BCE-consistent, then le�ing ν0,i denote the marginal of ν0
over Ai, we have that (µ0, ν0,1, . . . , ν0,N) are M-BCE-consistent.

Constrained Optimal Transport We close this section by noting a connection
with optimal transport. Given (µ0, ν0), let Π(µ0, ν0) denote the set of joint distri-
butions π ∈ ∆(A × Θ) withmarginals (µ0, ν0), i.e., (πΘ, πA) = (µ0, ν0). Note that
Π(µ0, ν0) is always nonempty, e.g., the joint distribution π(a, θ) = ν0(a)µ0(θ) satis-
fies the marginal constraints. Instead, the subset ΠO(µ0, ν0) ofΠ(µ0, ν0) that satisfies
the obedience constraints (O) may be empty. Thus, the characterization of the set
of BCE-consistent marginals (µ0, ν0) is equivalent to the characterization of when
the feasible set of a constrained optimal transport problem–in this case ΠO(µ0, ν0)–is
nonempty.4

3 Single-agent case

In this section we characterize the set of BCE-consistent marginals in the case of a
single agent, that is, N = 1. For this reason, in what follows we remove the index
i = 1 from the action set and the utility function.

Distributions over posteriors and stochastic choice An outcome distribution
π ∈ ∆(A × Θ) with marginals (µ0, ν0) induces two conditional probability systems:
The first, {µ(·|a) ∈ ∆(Θ) : a ∈ A}, describes the agent’s beliefs conditional on action
a and satisfies for all actions a ∈ A,

ν0(a)µ(θ|a) = π(a, θ).

In this case, one can view ν0 as a distribution over posteriors and the belief system
(µ(·|a))a∈A as its support.

The second, {σ(·|θ) ∈ ∆(A) : θ ∈ Θ}, describes the agent’s actions conditional on
state θ and satisfies for all states θ ∈ Θ,

µ0(θ)σ(a|θ) = π(a, θ).

The collection {σ(·|θ) : θ ∈ Θ} is what the stochastic choice literature dubs the
agent’s stochastic choice rule.

4In their study of credible Bayesian persuasion, Lin and Liu (2022) characterize the set of credible
outcome distributions by noting a connection with optimal transport. In their case, to check whether a
given message distribution λM is implementable, it must be that no other joint distribution over states
and messages that respects the given marginals exists and is preferred by the sender to λM .
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The analysis that follows characterizes the set of BCE-consistent marginals relying on
the belief system, {µ(·|a) ∈ ∆(Θ) : a ∈ A}. Instead, the stochastic choice rule σ(·|θ)
is the focus of the analysis in Section 3.1.

The action marginal as a distribution over posteriors Given marginals (µ0, ν0),
the goal is to determine whether a belief system {µ(·|a) : a ∈ A} exists that satisfies
for all states θ ∈ Θ

∑

a∈A

ν0(a)µ(θ|a) = µ0(θ), (BPµ0
)

and for all a, a′ ∈ A,

∑

θ∈Θ

ν0(a)µ(θ|a) [u(a, θ)− u(a′, θ)] ≥ 0. (Oµ)

For an action a, let ∆∗(a) denote the set of beliefs under which a is optimal.5 Then,
Equations BPµ0

and Oµ require that (i) ν0 induces a Bayes plausible distribution over
posteriors and (ii) for all actions a, the posterior belief µ(·|a) is an element of ∆∗(a).
Under this interpretation, the action distribution ν0 describes the frequency with
which inducing beliefs in ∆∗(a) is necessary. Unsurprisingly, some of the conditions
in Theorem 1 below also check that ν0 satisfies a version of the martingale condition
(Aumann et al., 1995; Kamenica and Gentzkow, 2011).

Theorem 1 characterizes the set of BCE-consistent marginals:

Theorem 1 (BCE-consistency). The pair (µ0, ν0) is BCE-consistent if and only if for all
states θ ∈ Θ,

∑

a∈A

ν0(a) min
µ∈∆∗(a)

µ(θ) ≤ µ0(θ), (1)

and for all pairs of actions a′, a′′ ∈ A,

∑

a∈A

ν0(a) max
µ∈∆∗(a)

∑

θ∈Θ

µ(θ) [u(a′, θ)− u(a′′, θ)] ≥
∑

θ∈Θ

µ0(θ) [u(a
′, θ)− u(a′′, θ)] . (2)

The proof is in Appendix A. In what follows, we provide intuition for the statement in
Theorem 1 and review the main steps of its proof.

Equation 1 can be interpreted through the lens of the martingale property of beliefs.
As discussed before Theorem 1, the action distribution ν0 describes the frequency with

5Formally,∆∗(a) = {µ ∈ ∆(Θ) : (∀a′ ∈ A)
∑

θ∈Θ
µ(θ) (u(a, θ)− u(a′, θ)) ≥ 0}.
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which beliefs in∆∗(a) must be induced to satisfy (BPµ0
). For a given state θ ∈ Θ, the

term
µ
a
(θ) ≡ min

µ∈∆∗(a)
µ(θ),

describes the smallest probability that the agent can assign to state θ and action a
be optimal. Thus, Equation 1 states that for (µ0, ν0) to be BCE-consistent, it must be
that the average under ν0 of these minimum probabilities, µ

a
(θ), are below the prior

probability of θ, µ0(θ). It is immediate that if for some state θ, Equation 1 does not
hold, then (µ0, ν0) cannot be BCE-consistent.

As we argue next, Equation 2 can be interpreted through the lens of amartingale prop-
erty for the utility differences, u(a′, θ)−u(a′′, θ). That is, for all pairs of actions, a′, a′′,
the agent’s expected ranking over a′ and a′′ under the experiment that rationalizes
(µ0, ν0) has to coincide with the agent’s ex ante ranking over these actions, which is
the right-hand side of Equation 2. Indeed, because Equation 2 must hold when we
exchange the roles of a′ and a′′, we obtain that (µ0, ν0) must also satisfy that

∑

a∈A

ν0(a) min
µ∈∆∗(a)

∑

θ∈Θ

µ(θ) [u(a′, θ)− u(a′′, θ)] ≤
∑

θ∈Θ

µ0(θ) [u(a
′, θ)− u(a′′, θ)] . (3)

That is, the ranking at the prior between a′ and a′′ must be in between the worst and
best rankings under the “distribution over posteriors” ν0.

This is most easily seen in the simple case that a′′ is strictly optimal at the prior and
{a′, a′′} are the only actions in the support of ν0. Because a′ is in the support of ν0,
under a BCE π that satisfies the marginal constraints the agent must sometimes find
it optimal to take action a′ instead of a′′. Note, however, that on average it must be
the case that the agent finds action a′′ be�er than a′. Consequently, under π, when
the agent takes a′′, the agent must prefer a′′ over a′ (weakly) more than at the prior.
Because the le�-hand side of Equation 2 selects beliefs in favor of a′, it is immediate
that if Equation 2 fails one cannot find an experiment in which the agent would take
action a′ with sufficiently high probability so as to match ν0.

So far, we have argued that the conditions in Theorem 1 are necessary for (µ0, ν0) to
be BCE-consistent. To explain why they are also sufficient, it is useful to review the
main steps in the proof of Theorem 1. Key to our proof is the following result from
Strassen (1965), which we record in present notation:

Observation 1 (Strassen (1965, Theorem 3 and Corollary 1)). A conditional probability

system {µ(·|a) ∈ ∆(Θ) : a ∈ A} exists such that

1. For all actions a ∈ A, µ(·|a) ∈ ∆∗(a), and

2. For all states θ ∈ Θ, BPµ0
holds,
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if and only if for all directions c ∈ R
|Θ|,

∑

a∈A

ν0(a)max{cTµ : µ ∈ ∆∗(a)} ≥ cTµ0. (4)

Whereas Theorem 3 in Strassen (1965) requires that Equation 4 holds for all directions
inR|Θ|, Theorem 1 states that verifying Equation 4 holds for finitely many directions is
enough to conclude that (µ0, ν0) are BCE-consistent. To see this, note that Equations
1 and 2 correspond to Equation 4 for specific directions c ∈ R

|Θ|. Indeed, Equation 1
corresponds to c = −eθ ∈ R

|Θ|, where eθ is the vector with a 1 in the θ-coordinate
and 0 otherwise. Instead, Equation 2 corresponds to the direction c = −da′,a′′ , where
da′,a′′ is the vector with θ-coordinate da′,a′′(θ) = u(a′, θ)− u(a′′, θ).

To see why verifying that Equation 4 holds for directions {(−eθ)θ∈Θ, (−da′,a′′)a′,a′′∈A}
is enough to determine that Equation 4 holds for all directions c ∈ R

|Θ|, note the
following. First, for a fixed action a′, the directions {(−eθ)θ∈Θ, (−da′,a′′)a′′∈A} are the
normal vectors that define the polyhedron ∆∗(a′). Indeed, the directions (−eθ)θ∈Θ
correspond to the condition that the elements of ∆∗(a′) are non-negative, whereas
the directions (−da′,a′′)a′′∈A correspond to the condition that action a′ is optimal for
all beliefs in∆∗(a′). Second, it is immediate that in each of themaximization problems
on the le� hand side of Equation 4, the maximum is a�ained at an extreme point of
∆∗(a). Standard results in convex analysis then imply that if Equation 4 holds at
all normal directions defining the polyhedra {∆∗(a) : a ∈ A}, then it holds for all
directions (cf. Hiriart-Urruty and Lemaréchal, 2004).

We close Section 3 with a remark on the generality of the results in Strassen (1965). It
can be skipped with no loss of continuity.

Remark 1 (Strassen, 1965). Theorem 3 and Corollary 1 in Strassen (1965) hold more

generally than our current assumptions. In present notation, Corollary 1 applies whenever

(i) Θ and A are compact metric spaces and the mapping a 7→ ∆∗(a) from A to subsets

of ∆(Θ) is such that ∪a∈A{a} × ∆∗(a) is closed within A × ∆(Θ) endowed with the

weak∗-topology.6

In other words, under the aforementioned assumptions, (an integral version of) Equation 4

characterizes the set of BCE-consistent marginals.7 The finite model allows us to provide

6Instead, Strassen (1965, Theorem 3) requires that Θ is Polish, A be a convex compact topological
vector space, and an appropriate measurability condition on the mapping a 7→ sup{

∫

c(θ)µ(dθ) : µ ∈
∆∗(a)} for any continuous function c on Θ.

7To be precise, Equation 4 now becomes for all continuous functions c : Θ 7→ R,

∫

Θ

c(θ)µ0(dθ) ≤

∫

A

sup

{
∫

Θ

c(θ)µ(dθ) : µ ∈ ∆∗(a)

}

ν0(da)

.
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a sharper characterization by reducing the number of directions one needs to consider.

3.1 The core of Bayesian Persuasion

In this section we provide a different perspective on Theorem 1. Together with the
marginal distributions, (µ0, ν0), we are given a distribution over posteriors τ ∈ ∆(∆(Θ))
with mean equal to the prior µ0. Proposition 1 below characterizes the set of such
distributions over posteriors that can implement the marginal ν0. Whereas this char-
acterization does not substitute that in Theorem 1, it allows us to illustrate how one
would go about constructing an information structure that implements ν0. Along the
way we also establish formal connections with the literature on stochastic choice. For
this reason, we work with the agent’s stochastic choice rule {σ(·|θ) : θ ∈ Θ} instead
of the belief system {µ(·|a) : a ∈ A}.

Obedient stochastic choice To understand the results that follow, it is useful to
state the obedience and marginal conditions in terms of the stochastic choice rule:
Given (µ0, ν0), we want a stochastic choice rule that satisfies for all actions a ∈ A

∑

θ∈Θ

µ0(θ)σ(a|θ) = ν0(a), (MA)

and for all a, a′ ∈ A,
∑

θ∈Θ

µ0(θ)σ(a|θ) [u(a, θ)− u(a′, θ)] ≥ 0. (Oσ)

Distributions over posteriors and stochastic choice Given a Bayes plausible
distribution over posteriors τ ∈ ∆(∆(Θ)), constructing a state-dependent stochas-
tic choice rule is almost at hand. Almost because a Bayes plausible distribution over
posteriors does not specify how the agent breaks ties when indifferent. Indeed, to
a Bayes plausible distribution over posteriors, τ(µ), we can associate a decision rule
α : ∆(Θ) 7→ ∆(A), describing the probability α(a|µ) with which the agent takes
action a when her belief is µ. The pair (τ, α) determines a stochastic choice rule
{σ(·|θ) : θ ∈ Θ} as follows:

σ(a|θ) =
∑

µ∈∆(Θ)

τ(µ)
µ(θ)

µ0(θ)
α(a|µ). (5)

Equation 5 suggests that conditions under which a stochastic choice rule that satisfies
MA and Oσ are intimately related to the existence of a Bayes plausible distribution τ
and a decision rule α that satisfy certain properties. In fact, the analysis that follows
identifies conditions on Bayes plausible distributions over posteriors under which a
decision rule exists that induces a stochastic choice rule–and hence a joint distribution
π ∈ ∆(A×Θ)–that satisfies all the constraints.

10



Distributions over posteriors as distributions over menus Given a Bayes plau-
sible τ ∈ ∆(∆(Θ)), one can construct a measure over subsets B of the set of actions
A as follows. For each µ ∈ ∆(Θ), let a∗(µ) denote the agent’s best response when her
belief is µ. That is, a∗(µ) = argmaxa∈A Eθ∼µ [u(a, θ)]. For each B ⊆ A, define τA(B)
as

τA(B) = τ{µ ∈ ∆(Θ) : a∗(µ) = B}. (6)

In words, each action subset B has mass equal to the probability that τ induces a
belief under which B is optimal.

Proposition 1 characterizes when the distribution over posteriors τ implements ν0:

Proposition 1. Suppose (µ0, ν0) are BCE-consistent. A Bayes plausible distribution over

posteriors, τ ∈ ∆(∆(Θ)), implements ν0 if and only if for allB ⊆ A, the following holds

∑

a∈B

ν0(a) ≥
∑

C⊆B

τA(C). (7)

To interpret Equation 7, note the following. The le�-hand side of Equation 7 is the
probability under which the agent takes some action a in the setB. Instead, the right-
hand side of Equation 7 is the probability under which the agent finds optimal some

action in the set B (but no action that is not in B). Equation 7 then says that the
frequency with which the agent takes actions in B has to be at least the frequency
with which an action in B is optimal.

Remark 2 (A core interpretation). Equation 7 implies that ν0 is in the core of the game
induced by the measure τA.

8 Indeed, given τA, define the cooperative game (A,wτA) as
follows. The set function wτA : 2A 7→ R is given by wτA(B) =

∑

C⊆B τA(C). Because
wτA ≥ 0, the core of the game (A,wτA) is given by

Core(wτA) =

{

p ∈ ∆(A) : (∀B ⊆ A)
∑

a∈B

p(a) ≥ wτA(B)

}

.

The proof of Proposition 1 is based on the following graphical representation of the
BCE-consistency problem depicted in Figure 1. Consider the following graph. Nodes
are (i) the actions a ∈ A, (ii) the (non-empty) action subsets B ⊆ A (i.e., the elements
of 2A \ {∅}), (iii) a source node s, and (iv) a sink node t. Edges are as follows. There is
an edge of weight one between a ∈ A and B ⊆ A if and only if a ∈ B. There is an
edge with weight ν0(a) between the source s and a. Finally, there is an edge between

8Azrieli and Rehbeck (2022) also note the connection between stochastic menu choice and cooper-
ative games.
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a1 a2 a3

ν0(a1) ν0(a2) ν0(a3)

B1 B2

B3 = {a3}

B12 = {a1, a2}

B23 = {a2, a3}

B13 = {a1, a3}

B123 = {a1, a2, a3}

B3 B12 B13 B23 B123

s

τA(B123)τA(B13)τA(B23)

τA(B12)

τA(B3)τA(B2)τA(B1)

1 1

t

B2 = {a2}

B1 = {a1}

Figure 1: Graphical representation of the BCE-consistency problem with 3 actions.

B ⊆ A and the sink t with weight τA(B). The condition in Equation 7 ensures that a
feasible flow exists throughout the network.9

Proof of Proposition 1. It is immediate to show that if (µ0, ν0) are BCE-consistent,
then a Bayes plausible distribution over posteriors τ exists such that Equation 7 holds.

Suppose that Equation 7 holds for all B ⊆ A. Azrieli and Rehbeck (2022, Proposition
9) implies that a conditional probability system α′ : 2A 7→ ∆(A) exists such that for
all a ∈ A

ν0(a) =
∑

B:a∈B

τA(B)α′(a|B). (8)

The slight abuse of notation in the definition of the conditional probability system is
justified since α′ below plays the role of the decision rule in Equation 5.

We use the conditional probability system to create a s stochastic choice rule σ : Θ 7→
∆(A) as follows:

σ(a|θ) =
∑

B:a∈B

∑

µ:a∗(µ)=B

µ(θ)

µ0(θ)
τ(µ)α′(a|B).

The experiment has an intuitive explanation: We first draw a subset of actionsB using
the measure τA and then recommend to the agent which particular action she must
take using the conditional probability system α′(·|B).

9That is, a flow f such that
∑

a∈A f(s, a) =
∑

B∈2A
f(B, t) = 1.
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Define the information structure, π ∈ ∆(A×Θ) by le�ing π(a, θ) = µ0(θ)σ(a|θ). To
see that it has the desired properties, note first that

∑

a∈A

σ(a|θ) =
∑

a∈A

∑

B:a∈B

∑

µ:a∗(µ)=B

µ(θ)

µ0(θ)
τ(µ)α′(a|B)

=
∑

B⊆A

(

∑

a∈B

α′(a|B)

)

∑

µ:a∗(µ)=B

τ(µ)
µ(θ)

µ0(θ)
=
∑

B⊆A

∑

µ:a∗(µ)=B

τ(µ)
µ(θ)

µ0(θ)
= 1

Second, note that

∑

θ∈Θ

π(a, θ) =
∑

θ∈Θ

µ0(θ)σ(a|θ) =
∑

θ∈Θ

∑

B:a∈B

∑

µ:a∗(µ)=B

µ(θ)τ(µ)α′(a|B)

=
∑

B:a∈B

∑

µ:a∗(µ)=B

(

∑

θ∈Θ

µ(θ)

)

τ(µ)α′(a|B) = ν0(a),

by Equation 8.

Finally, note that the experiment is obedient: If a is recommended with positive prob-
ability, then a set B exists such that a ∈ B and µ such that a∗(µ) = B is in the
support of τ , under which a is optimal. Because σ(a|θ) is obtained by averaging over
beliefs in which a is optimal, it remains optimal.

Appendix B provides an alternative proof of Proposition 1 using Gale’s network flow
theorem.

Connection to stochastic choice: The proof of Proposition 1 connects two sets
of conditional distribution over choices that arise in the stochastic choice literature:
stochastic choices conditional on a state of the world–denoted by σ in the proof–and
stochastic choices out of a menu–denoted by α′ in the proof. Indeed, the measure τA
can be interpreted as the frequency withwhich the agent faces differentmenus–action
subsets in this case–whereas the measure ν0 represents the frequency with which the
agent makes different choices. In other words, the pair (τA, ν0) is analogous to the
data set in Azrieli and Rehbeck (2022). Our ultimately goal, however, is to obtain the
agent’s stochastic choice rule, which we obtain relying on the Bayes’ plausibility of τ .

4 Applications

We consider in this section two applications of Theorem 1 to simple multi-agent set-
tings. Section 4.1 studies underwhat conditions a pair ofmarginal distributions (µ0, ν0)
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can be rationalized by a public information structure. Section 4.2 shows that Theorem 1
characterizes the set of M-BCE-consistent marginals.

4.1 When is information public?

We consider in this section the following multiplayer game. We assume N ≥ 1 and
that each player’s utility function depends only her own action and the state of the
world.10 That is, for all players i ∈ {1, . . . , N}, all action profiles (ai, a−i) ∈ A, and
states of the world θ ∈ Θ,

ui (ai, a−i, θ) = ui (ai, θ) .

The analyst, who knows the base game G and the marginal distribution of play ν0 ∈
∆(A), wants to ascertain whether the distribution of play ν0 can be rationalized by
a public information structure (i.e., the players publicly observe the realization of a
common signal structure before play).

As we show next, Theorem 1 can be applied to address this question. In what follows,
we rely on the following definition:

Definition 3 (Public BCE-consistency). The pair (µ0, ν0) is public BCE-consistent if:
(i) (µ0, ν0) are BCE-consistent, and (ii) a BCE π ∈ BCE (µ0) ∩ Π(µ0, ν0) exists, whose
information structure uses public signals alone.

Consider now an auxiliary single-agent base game Ḡ = 〈Θ, (A, ū), µ0〉. In this game,
a player with payoff ū(a) =

∑N

i=1 ui(ai, θ) chooses an action a ∈ A = ×i∈NAi under
incomplete information about θ.

The following result is an immediate corollary of Theorem 1 and the focus on public
signals:

Corollary 1. (µ0, ν0) are public BCE-consistent if and only if (µ0, ν0) are BCE-consistent
in base game Ḡ.

Because of the focus on public signal structures, the analysis of the multi-agent game
reduces to the analysis of a single-agent problem. To see this, in a slight abuse of
notation, letA∗(µ) denote the set of actions that the agent with payoff ū finds optimal
when their belief is µ. It is immediate thatA∗(µ) = ×i∈Na

∗
i (µ), where for each player

i, a∗i (µ) denotes the set of actions player i finds optimal when her belief is µ. That is,
the profile a = (a1, . . . , aN) ∈ A is optimal for the agent with payoff ū if and only
if action ai is optimal for agent i, for all i ∈ [N ]. And, given a posterior belief µ, any
distribution of (optimal) action profiles that the agent with payoff ū can generate, can

10Arieli et al. (2021) dub this se�ing first-order Bayesian persuasion.
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also be generated by the players using a public correlation device or by duplicating
signal realization, and vice versa.11 Notice that this equivalence no longer holds if
either information is not public, or the players’ utilities are interdependent.

4.2 Ring-network games

We consider here ring-network games as in Kneeland (2015), extended to account for
incomplete information. A ring-network game is a base game G in which player’s
payoffs satisfy the following:

u1(a, θ) = ũ1(a1, θ) (RN-P)

(∀i ≥ 2)ui(a, θ) = ũi(ai−1, ai).

In words, player 1 cares about their action and the state of the world, whereas for
i ≥ 2 player i cares about their action and that of player i − 1. Ring-network games
are used in the experimental literature that measures players’ higher order beliefs to
identify departures from Nash equilibrium.

The analyst knows the ring-network base game and for each player i, player i’s action
distribution, ν0,i ∈ ∆(Ai). The analyst wants to ascertain whether (µ0, ν0) is M-
BCE-consistent. Relying on Theorem 1 and the ring-network structure, Proposition 2
characterizes the set of M-BCE-consistent marginals:

Proposition 2 (M-BCE-consistency in ring-network games). The profile (µ0, ν0) is
M-BCE-consistent for the ring-network game (ũi)

N
i=1 if and only if the following holds:

1. (µ0, ν0,1) are BCE-consistent in the base game 〈Θ, A1, ũ1, µ0〉,

2. For all i ≥ 2, (ν0,i−1, ν0,i) are BCE-consistent in the base game 〈Ai−1, Ai, ũi, ν0,i−1〉.

Similar to Corollary 1, Proposition 2 exploits the structure of the ring-network game
to reduce it to a series of single-agent problems in which except for player 1, the states
are given by the actions of the preceding player and the prior distribution over this
state space by the marginal over actions of the preceding player. Indeed, for i ≥ 2,
BCE-consistency of (ν0,i−1, ν0,i) implies that an information structure exists that ratio-
nalizes player i’s choices as the outcome of some information structure under “prior”
ν0,i−1, whereas BCE-consistency of (ν0,i−2, ν0,i−1)

12 guarantees that the “prior” ν0,i−1

11For example, suppose that the signal realization s induces the posterior belief µ. Suppose also
that under µ, the agent with payoff ū selects the two optimal action profiles a, a′ ∈ A∗(µ) with equal
probability. The same distribution of actions can be generated by the players: Indeed, one can “split”
the signal s into two new signals, s′ and s′′, such that both new signals induce the same posterior
belief µ, and each of them is sent with half the probability of the original signal s. If whenever s′ and
s′′ are realized, each agent acts according to her corresponding optimal action in the profiles a and a′,
respectively, the distribution over actions will coincide with that of the agent with payoff ū.

12With the understanding that ν0,0 = µ0.
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is consistent with player i − 1 observing the outcome of some information structure
given their belief ν0,i−2.
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A Omi�ed proofs

A.1 Proof of Theorem 1

Preliminaries Before stating the proof of Theorem 1, we collect some definitions
and results from convex analysis that we use in the proof.

Define C(a′) = {(−eθ)θ∈Θ, (−da′,a′′)a′′∈A} to be the normal directions to the polyhe-
dron ∆∗(a′), which is implicitly defined as the set of vectors x in R

|Θ| that satisfy:

(∀θ ∈ Θ)(−eθ)
Tx ≤ 0 (9)

(∀a′′ ∈ A)(−da′,a′′)
Tx ≤ 0.

We are omi�ing the condition that
∑

θ∈Θ x(θ) = 1, but this is irrelevant in what
follows.

Recall that for x ∈ R
|Θ|, the normal cone of ∆∗(a) at x, N(x|∆∗(a)), is defined as

N(x|∆∗(a)) = {c ∈ R
|Θ| : (∀x′ ∈ ∆∗(a))cTx′ ≤ cTx}. (10)

That is, the normal cone of ∆∗(a) at x is the set of directions c for which x solves
max{cTx′ : x′ ∈ ∆∗(a)}. Importantly, the normal cone of a polyhedron, like ∆∗(a),
satisfies the following property. To state it, recall that given a set of pointsC , the cone
of C is defined as cone(C) = {

∑J
j=1 αjcj : J < ∞, cj ∈ C, αj ≥ 0}.

Lemma1 (Hiriart-Urruty and Lemaréchal (2004, Example 5.2.6(b))). Supposeµ ∈ ∆∗(a)
and let B(µ) = {c ∈ C(a) : cTµ = 0}. Then, N(µ|∆∗(a)) = cone(B(µ)).

Proof of Theorem 1. Necessity of Equations 1 and 2 follows from Strassen (1965, The-
orem 3).

We now argue sufficiency. Given Observation 1, it suffices to show that Equations 1
and 2 imply Equation 4 holds for all c ∈ R

|Θ|.

For fixed c, we can write Equation 4 as follows:

∑

a∈A

ν0(a) max
µ∈∆∗(a)

cT (µ− µ0) ≥ 0. (11)

Thus, Equation 4 holds for all directions c ∈ R
|Θ| if and only if

min
c∈R|Θ|

∑

a∈A

ν0(a) max
µ∈∆∗(a)

cT (µ− µ0) ≥ 0. (12)
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Note that we can replace ∆∗(a) for the set of extreme points of ∆∗(a), ∆∗
E(a) in

Equation 12. That is,

min
c∈R|Θ|

∑

a∈A

ν0(a) max
µ∈∆∗

E
(a)

cT (µ− µ0) ≥ 0. (13)

Now, let E =
∏

{∆∗
E(a) : a ∈ A}. For µ̄e ≡ (µe,a)a∈A ∈ E, let

C(µ̄e) = {c ∈ R
|Θ| : (∀a ∈ A) cTµe,a = max

µ∈∆∗(a)
cTµ}.

Then, we can write the le� hand side of Equation 13 as follows:

min
µ̄e∈E

min
c∈C(µ̄e)

∑

a∈A

ν0(a) max
µ∈∆∗

E
(a)

cT (µ− µ0). (14)

Note that for each µ̄e ∈ E

C(µ̄e) = ∩a∈AN (µe,a|∆
∗(a)) , (15)

and by Lemma 1, N (µe,a|∆
∗(a)) ⊆ C(a). Thus, Equations 1 and 2 ensure that the

term inside minµ̄e∈E is non-negative, so that Equation 4 holds for all c ∈ R
|Θ|.

A.2 Proof of Proposition 2

Proof of Proposition 2. In the ring-network base game, for a joint distribution π ∈
∆(A×Θ), the obedience constraints can be wri�en as follows:

(∀a1, a
′
1 ∈ A1)

∑

θ∈Θ

πΘ×A1
(a1, θ) (ũ(a1, θ)− ũ(a′1, θ)) ≥ 0

(∀i ∈ {2, . . . , N})(∀ai, a
′
i ∈ Ai)

∑

ai−1∈Ai−1

πAi−1,i(a, θ) (ũ(ai−1, ai)− ũ(ai−1, a
′
i)) ≥ 0,

where πΘ×A1
is the marginal of π over Θ×A1 and similarly for i ≥ 2, πAi−1×Ai

is the
marginal of π overAi−1×Ai. Thus, it is immediate that the conditions in Proposition 2
are necessary for (µ0, ν0) to be M-BCE-consistent.

For sufficiency, note that Theorem 1 implies that under the conditions of Proposition 2,
(

πΘ×A1
, . . . , πAN−1×AN

)

exist each of which satisfy the respective marginal conditions
and obedience constraints.

Given these distributions, define π̂ ∈ ∆(A×Θ) as follows: for each (a, θ) ∈ A×Θ

π̂(a, θ) = πA1×Θ(a1, θ)πA1×A2
(a2|a1)× . . . πAN−1×AN

(aN |aN−1), (16)
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where abusing notation we let for i ≥ 2, πAi−1×Ai
(·|ai−1) denote the distribution

πAi−1×Ai
conditional on a′i−1 = ai−1.

Note that π̂(a, θ) satisfies the obedience constraints of player 1 if and only if πA1×Θ(·)
does. Indeed, for all a1, a

′
1, we have

∑

a−1,θ

π̂(a1, a−1, θ) (ũ1(a1, θ)− ũ1(a
′
1, θ)) =

∑

θ

πA1×Θ(a1, θ) (ũ1(a1, θ)− ũ1(a
′
1, θ))

∑

(a2,...,aN )

N
∏

i=2

πAi−1×Ai
(ai|ai−1) =

∑

θ

πA1×Θ(a1, θ) (ũ1(a1, θ)− ũ1(a
′
1, θ)) . (17)

Consider now player i ≥ 2. For simplicity, fix i = 2–the rest of the players follow
immediately. Then, let a2, a

′
2 ∈ A2. We want to check that π satisfies the obedience

constraint of player 2 if and only if πA1×A2
does.

∑

a−2,θ

π̂(a2, a−2, θ) (ũ2(a1, a2)− ũ2(a1, a
′
2)) =

∑

a1,θ

πA1×Θ(a1, θ)πA1×A2
(a2|a1) (ũ2(a1, a2)− ũ2(a1, a

′
2))

∑

(a3,...,aN )

N
∏

i=3

πAi−1×Ai
(ai|ai−1) =

∑

a1∈A1

(

∑

θ

πA1×Θ(a1, θ)

)

πA1×A2
(a2|a1) (ũ2(a1, a2)− ũ2(a1, a

′
2)) =

∑

a1∈A1

ν01(a1)πA1×A2
(a2|a1) (ũ2(a1, a2)− ũ2(a1, a

′
2)) =

∑

a1∈A1

πA1×A2
(a1, a2) (ũ2(a1, a2)− ũ2(a1, a

′
2)) ,

where the third equality follows from the assumption thatπA1×Θ satisfies themarginal
constraints for player 1.

B A demand-supply interpretation

We provide here an alternative, but still network based, proof of Proposition 1 using
the fundamental results of Gale (1957) on demand and supply in a network.

Flows in networks: The problem in Gale (1957) can be described as follows. Given
a graph (V,E), suppose that to each node v ∈ V corresponds a real number d(v). If
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d(v) > 0 we interpret |d(v)| as the demand of node v for some homogenous good. If
d(v) < 0 we interpret |d(v)| as the supply of the good by v. To each edge (v, v′) ∈ E
correspond two nonnegative real numbers c(v, v′) and c (v′, v), the capacity of this
edge, which assign an upper bound to the possible flow of the good from v to v′ and
from v′ to v, respectively. The demand d(ν0,τ) is called feasible if there is a flow in the
graph such that the flow along each edge is no greater than its capacity, and the net
flow into (out of) each node is at least (at most) equal to the demand (supply) at that
node. The demand problem identifies the conditions under which a given demand
d(ν0,τ) is feasible in the graph.

BCE-consistency and the demand problem: Fix a Bayes plausible distribution
τ ∈ ∆(∆ (θ)) and denote its support by T = supp τ . Because A is finite, it is without
loss of generality to assume thatT is a finite set (Myerson, 1982; Kamenica and Gentzkow,
2011).

The conditions in Gale (1957) can be used to check whether τ implements the action
distribution ν0: That is, that a decision rule α exists that together with τ define an
obedient experiment (see Equation 5). To that end, we construct a (bipartite) graph
in which posterior beliefs serve as supply nodes, and actions serve as demand nodes.
That is, the homogeneous good in our construction can be thought of as probability
that “flows” from induced posterior beliefs to actions. The construction of the graph
guarantees that if the demand is feasible, we can specify choices for the agent such
that the probabilities according to which she breaks ties between optimal actions at
each posterior belief induce the (ex-ante) desired action distribution ν0.

Formally, define the graph GP (τ) = (A ∪ T,E) as follows. To each action a ∈ A
corresponds a node that demands themarginal probability of a, i.e. d(ν0,τ) (a) = ν0 (a).
To each belief µ ∈ T corresponds a node that supplies the probability with which µ
is realized in τ , i.e. d(ν0,τ) (µ) = −τ (µ). For any belief-action pair (µ, a), an edge
(µ, a) ∈ E exists between the nodes µ and a if and only if action a is optimal under
posterior belief µ, that is if and only if, a ∈ a∗ (µ). Finally, for any edge (µ, a) ∈ E,
the edge’s flow capacity is given by c (µ, a) = ∞ and c (a, µ) = 0. That is, there is
no upper bound on the flow from µ to a, but there cannot be a flow from a to µ. We
denote the flow from node µ to node a by f (µ, a). If there is no edge between µ and
a then f (µ, a) = 0. The right-hand side panel of Figure 2 illustrates the graph GP .

Proposition 3 motivates the connection between our problem and that in Gale (1957).

Proposition 3 (Feasibility and BCE-consistency). The Bayes plausible distribution over
posteriors τ implements ν0 if and only if d(ν0,τ) is feasible on GP (τ).

The proof of Proposition 3 relies on the following lemma:

21



µ0

µ1

µ2
µ3

∆∗(a3) ∆∗(a2)

∆∗(a1) µ12

µ123

µ23

µ13

Figure (a)
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Figure 2: Illustration of the supply-demand proof of Proposition 1 with
|A| = |Θ| = 3. The simplex on the le�-hand side depicts the optimal action(s) for
each posterior belief. The graph on the right-hand side corresponds to the Bayes

plausible distribution over posteriors τ supported on T = {µ12, µ2, µ123}.

Lemma 2 (Market clearing). If d(ν0,τ) is feasible on GP (τ), then the flow out of any

supply node µ ∈ T is exactly τ (µ) (and not less), and the flow into any demand node

a ∈ A is exactly ν0 (a) (and not more).

Proof of Lemma 2. Suppose that d(ν0,τ) is feasible. We show that the flow into any de-
mand nodea ∈ A is exactly ν0 (a). Towards a contradiction, suppose that

∑

µ∈T f (µ, a) ≥
ν0 (a) for all a ∈ A, with strict inequality for some a. Summing over all actions on
both sides of the inequality yields

∑

a∈A

∑

µ∈T

f (µ, a) >
∑

a∈A

ν0 (a) = 1.

On the other hand, because d(ν0,τ) is feasible, then the flow out of each µ ∈ T is at
most τ (µ), and therefore for all µ ∈ T

∑

a∈A

f (µ, a) ≤ τ (µ) .

Summing again over all actions on both sides yields

∑

µ∈T

∑

a∈A

f (µ, a) ≤
∑

µ∈T

τ (µ) = 1,

a contradiction. The proof that the flow out of any supply node µ is exactly τ (µ) is
analogous and hence omi�ed.
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Proof of Proposition 3. Suppose first that the Bayes plausible distribution over pos-
teriors τ is such that d(ν0,τ) is feasible on GP (τ) and let f denote the feasible flow.
Consider a decision rule α : ∆(Θ) 7→ ∆(A) such that the agent takes action a ∈ A
when the belief is µ ∈ T with probability σ (a | µ) = f (µ, a) /τ (µ). This correctly
defines a decision rule as

∑

a∈A

α (a | µ) =

∑

a∈A f (µ, a)

τ (µ)
= 1

where the second equality is implied by Lemma 2. Furthermore, α is optimal for the
agent because µ and a are connected with an edge only if a is optimal under µ, i.e.
a ∈ a∗ (µ).

To verify that (τ, α) induce ν0, note that for all a ∈ A

∑

µ∈T

τ (µ)α (a | µ) =
∑

µ∈T

f (µ, a) = ν0 (a) .

where the second equality follows again from Lemma 2. Thus, ν0 is consistent with τ .

Conversely, suppose that (µ0, ν0) are BCE-consistent. Then, by Equation 5, a Bayes
plausible distribution over posteriors τ and a decision rule α exists that induce an
obedient experiment.13 Define the graphGP (τ) and the demand d(ν0,τ). Note that the
demand d(ν0,τ) is feasible on GP (τ) by defining the flow f (µ, a) = α (a | µ) τ (µ) for
all (µ, a) ∈ T × A.

Proposition 3 implies that verifying that τ implements ν0 is equivalent to verifying the
feasibility of the demand d(ν0,τ) for the graph GP . The main theorem in Gale (1957)
provides necessary and sufficient conditions under which d(ν0,τ) is feasible. Adapted
to our se�ing, the conditions in Gale (1957) can be stated as follows:

Proposition 4 (Gale, 1957). The demand d(ν0,τ) is feasible on graph GP (τ) if and only

if for every set B ⊆ A a flow fB exists such that:

1.
∑

a∈A fB (µ, a) ≤ τ (µ) for all µ ∈ T , and

2.
∑

a∈B

∑

µ∈T fB (µ, a) ≥
∑

a∈B ν0 (a).

13Namely, BCE-consistency implies the existence of an obedient experiment from which we can
infer the following distribution over posteriors. First, let

µa(θ) =
µ0(θ)π(a|θ)

∑

θ′∈Θ
µ0(θ′)π(a|θ′)

,

and let τ({µa}) =
∑

θ∈Θ
µ0(θ)π(a|θ). The decision rule α(·|µa) = 1[a′ = a] completes the construc-

tion.
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In our se�ing, given a set B ⊆ A items 1 and 2 in Proposition 4 are satisfied for some
flow fB if and only if they are satisfied when the out flow from every supply node
that is connected to nodes in B is maximal. Denote the set of all posterior beliefs in
T for which some action in B is optimal (and perhaps also actions that are not in B)
by ∆∗ (B) = {µ ∈ T | ∃a ∈ B, a ∈ a∗ (µ)}. Thus, in the graph we constructed, all
and only beliefs (i.e., supply nodes) in ∆∗ (B) are connected to actions (i.e., demand
nodes) in B. The next corollary follows immediately:

Corollary 2. The Bayes plausible distribution over posteriors τ implements ν0 if and

only if for every subset B ⊆ A,

∑

µ∈∆∗(B)

τ (µ) ≥
∑

a∈B

ν0 (a) . (18)

To see that the condition in Corollary 2 is equivalent to that in Proposition 1, note
first that because τ, ν0 are measures (and hence add up to 1), Equation 18 can be
equivalently wri�en as follows:

∑

a∈B

ν0 (a) ≥
∑

µ∈∆∗(B)

τ (µ) , (19)

where the upper-bar notation denotes the complement of a set–for instance, B =
A \B.

Note that

∆∗(B) = {µ ∈ T |a∗(µ) ∩ B = ∅} =
⋃

C⊆B

{µ ∈ T |a∗(µ) = C}.

Hence, we can write Equation 19 as follows

∑

a∈B

ν0(a) ≥
∑

C⊆B

∑

µ∈T :a∗(µ)=C

τ(µ) (20)

which is the equation in Proposition 1.

24


	Introduction
	Model
	Single-agent case
	The core of Bayesian Persuasion

	Applications
	When is information public?
	Ring-network games

	Omitted proofs
	Proof of Theorem 1
	Proof of Proposition 2

	A demand-supply interpretation

