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Abstract: We introduce and characterize inertial updating of beliefs. Under inertial updat-

ing, a decision maker (DM) chooses a belief that minimizes the subjective distance between

their prior belief and the set of beliefs consistent with the observed event. Importantly, by

varying the subjective notion of distance, inertial updating provides a unifying framework

that nests three different types of belief updating: (i) Bayesian updating, (ii) non-Bayesian

updating rules, and (iii) updating rules for events with zero probability, including the con-

ditional probability system (CPS) of Myerson (1986a,b). We demonstrate that our model is

behaviorally equivalent to the Hypothesis Testing model (HT) of Ortoleva (2012), clarifying

the connection between HT and CPS and non-Bayesian updating models. We apply our

model to a persuasion game.
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1 Introduction

How decision makers revise their beliefs after receiving information is a foundational problem

in economics and game theory. While the benchmark model of Bayesian updating is broadly

appealing for a variety of reasons, it has two major issues. First, it is descriptively limited;

there is robust experimental evidence that people’s beliefs systematically deviate from what

Bayesian updating prescribes.1 Second, it is incomplete; a well-known limitation of Bayesian

updating is that it is not defined for zero-probability events.2 We resolve these limitations

of Bayesian updating by introducing the Inertial Updating (IU) representation: a complete

theory of belief updating that unifies Bayesian and non-Bayesian updating rules.

IU addresses both of these issues by recasting belief updating as an optimization prob-

lem; belief updating is transformed into a problem of belief selection satisfying two intuitive

properties. First, our DM must select a belief that is consistent with the information, hence

information induces a constraint set. Second, our DM selects a belief that is closest to her

current belief according to a subjective distance function.3 Slightly more formally, given a

prior µ over a set of states S and any event E ⊂ S, her new belief µE is the distribution over

E that is “closest” to µ among all of the probability distributions over E. Since our DM

minimizes the change in her beliefs relative to her prior, we refer to this behavior as Inertial

Updating. Since our DM utilizes a subjective notion of distance, our framework is flexible

enough to encompass a variety of updating patterns. We provide a complete behavioral

analysis of IU and demonstrate that it provides a unifying framework to capture various

belief updating rules in the literature.

The IU representation is characterized by three axioms (see section 3). The first two

postulates are standard: SEU Postulates imposes a subjective expected utility representa-

tion for each conditional preference %E , and Consequentialism ensures that for any event

E, the DM only considers states within E possible (i.e., µE ∈ ∆(E)). The third axiom,

Dynamic Coherence, was introduced by Ortoleva (2012) to characterize the Hypothesis

Testing model (HT).4 To interpret this axiom, say that an event A is revealed implied by

event B if every state that the DM believes is possible after learning B is also an element of

1For experimental evidence, see Kahneman and Tversky (1972), Kahneman and Tversky (1983), Camerer
(1987), Eil and Rao (2011), along with surveys by Camerer (1995) and Benjamin (2019).

2This is an especially important issue in dynamic games of incomplete information, as particular off-path
beliefs are used to support certain equilibria. Accordingly, complete theories of belief updating, such as the
Conditional Probability System introduced by Myerson (1986a,b), have been proposed.

3For ease of exposition, we use the term “distance function,” which may not satisfy the triangle inequality
in our case.

4In the HT, an agent’s behavior is consistent with SEU, yet she also has a second-order belief and thus
has multiple beliefs in mind. She updates her prior according to Bayes’ rule if she receives “expected”
information. When information is “unexpected,” she rejects her prior and uses her second-order belief to
select a new belief according to a maximum likelihood rule. Thus an HT agent is essentially Bayesian, but
is nevertheless open to fundamentally shifting her worldview.
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A. That is, once the DM learns that the “true state is contained in B,” she is also convinced

that that “true state is contained in A,” and therefore Ac is believed to be null after B.

Dynamic Coherence requires that this revealed implication over events is acyclic.

Our main result, Theorem 1, shows that the preceding three axioms are necessary and

sufficient for the IU representation. Our proof is based on an extension of Afriat’s theorem

(Afriat (1967), Varian (1982)) for general budget sets due to Matzkin (1991). We are able

to apply this theorem by showing that Dynamic Coherence implies that the data set of

“belief choices” satisfies the Strong Axiom of Revealed Preferences (SARP). As in Afriat’s

theorem, we get continuity and strict convexity of the distance function for free. A corollary

of our theorem is that IU and HT are behaviorally equivalent, despite their stark difference

in appearance and the significantly different proof techniques.

One key feature of IU is that it is descriptively rich; IU accommodates Bayesian

and non-Bayesian updating. While it is well known that Dynamic Consistency ensures

Bayesian updating, we provide a complimentary result showing that distance functions that

are generalizations of the celebrated Kullback-Leibler (KL) divergence deliver posteriors

that are consistent with Bayesian updating. We then build upon this insight to define a

family of non-Bayesian updating rules that we call Distorted Bayesian.

A variety of updating biases fall under Distorted Bayesian. In particular, Distorted

Bayesian updating has a non-trivial connection to the well-known α−β rule from Grether

(1980), capturing forms of under- or over-reaction. The Distorted Bayesian can also

allow for asymmetric reactions, along with features of confirmation bias. Further, this rule

allows for history-dependent updating, and therefore it can capture a wide array of context

effects. We provide a behavioral characterization of Distorted Bayesian via two axioms,

both of which are weaker than Dynamic Consistency. The characterization of Distorted

Bayesian and a discussion of the preceding examples can be found in section 3.2.

The other key feature of IU is that it is a complete theory of updating: conditional

beliefs are well-defined for all events. This follows because the DM’s notion of distance is

well-defined for all distributions. Of course, we are not the first to propose a complete theory

of updating. The most prominent complete theory is Myerson’s Conditional Probability

System (CPS) (Myerson, 1986a,b), which was motivated by the Sequential Equilibria of

Kreps and Wilson (1982).

We provide a simple behavioral foundation for CPS in section 4.1. Our characterization

relies upon a novel axiom, Conditional Consistency, that implies Dynamic Consis-

tency among the non-null events and extends this consistency to “conditionally non-null”

events. We then show that CPS is a special case of IU by providing an explicit distance

function that generates any CPS. Because IU and HT are behaviorally equivalent, this also

establishes that the CPS is a special case of HT.
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The relations between HT and other models of updating such as CPS and Grether’s

α−β rule were not known previously, partly due to stark differences in their representations.

By recasting the problem of updating as an optimization problem, our model and results

clarify the exact relations between HT, CPS, Grether’s α− β rule, and Distorted Bayesian

in general.

We apply IU to settings with signal structures and provide a distance function that

generalizes the α−β rule from Grether (1980) in section 5. The generalization of Grether’s

rule uses two distortion functions, a prior distortion g and signal distortion f , and reduces

to Grether’s rule when both distortions are power functions. We discuss how over-reaction

and under-reaction to news can be captured simultaneously.

We use this distorted Bayesian distance to analyze the effect of non-Bayesian belief

updating on the optimal signal structure in the Bayesian persuasion games of Kamenica

and Gentzkow (2011) (section 6). We find that the way it distorts prior probabilities, g, has

no qualitative impact on the optimal signal structure, whereas the optimal signal structure

depends critically on the curvature of the signal distortion f . In particular, the set of states

at which the sender is fully revealing when f is concave is drastically different from when

f is strictly convex.

We close the paper by introducing a generalization of IU that relaxes Consequentialism

(section 7) and discussing related literature (section 8).

2 Model

2.1 Basic Setup

We study choice under uncertainty in the framework of Anscombe and Aumann (1963).

A DM faces uncertainty described by a nonempty and finite set of states of nature S =

{s1, . . . , sn}.5 Let Σ be an arbitrary collection of nonempty subsets of S such that S ∈ Σ.

Any element E of Σ is called an event. Let X be a nonempty, finite set of outcomes and

∆(X) be the set of all lotteries over X, i.e., ∆(X) :=
{
p : X → [0, 1] |

∑
x∈X p(x) = 1

}
.

We are interested in a DM’s preference over acts, which are mappings f : S → ∆(X)

that assigns a lottery to each state. The set of all acts is F := {f : S → ∆(X)}. Any act

f that assigns the same lottery to all states (f(s) = p for all s ∈ S) is called a constant

act. Using a standard abuse of notation, we denote by p ∈ F the corresponding constant

act. Hence, we can identify the set of lotteries ∆(X) with the constant acts. We define

mixed lotteries and acts in the usual way: for any λ ∈ [0, 1], λp + (1 − λ)q is the lottery

providing x with probability λp(x) + (1 − λ)q(x), and λf + (1 − λ)g is the act that yields

5We focus on a finite state space as it is more standard for decision theoretic analysis and general enough
for most economic applications, but we can easily extend our model to an infinite state space.
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λf(s) + (1 − λ)g(s) in state s. Moreover, for any E ∈ Σ, and f, h ∈ F , fEh denotes that

conditional act that returns f(s) for s ∈ E and h(s) otherwise.

The DM’s behavior is depicted by a family of preference relations {%E}E∈Σ, each

defined over F . We write % in place of %S , and we call % the initial preference. As usual,

for each E ∈ Σ, �E and ∼E are the asymmetric and symmetric parts of %E , respectively.

We say that E is %-null (or simply null) if fEg ∼ g for any f, g ∈ F . Otherwise, E is

non-null. Similarly, we say E is %A-null if fEg ∼A g for any f, g ∈ F . If E is not %A-null,

then it is %A-non-null.

We denote by ∆(S) the set of all probability distributions on S. For notational con-

venience, for each µ ∈ ∆(S) and each si ∈ S, we will sometimes write µi in place of µ(si):

the probability of state si according to µ. For any π ∈ ∆(S), let sp(π) denote the support

of π. For any µ and event E such that µ(E) > 0, let BU(µ,E) denote the Bayesian update

of µ conditional on E.

Finally, let ‖ · ‖ denote the Euclidean norm. For any set A and a function d on A, we

write arg min d(A) = {x ∈ A | d(y) ≥ d(x) for any y ∈ A} (whenever this is well-defined).

2.2 Inertial Updating

When the DM observes an event E ∈ Σ, she revises her initial preference % to a conditional

preference denoted %E . This setting is quite general and incorporates the standard signal

structure as a special case.6 We provide additional analysis of this special case in section 5.

Rather than specify a specific formula that generates the DM’s conditional beliefs (e.g.,

Bayes’ rule, Grether’s α− β rule), IU imposes general restrictions on the revision process.

That is, IU requires that her new belief is (i) consistent with the information and (ii) of

minimal distance to her prior, while allowing the distance notion to be subjective. We now

formally define our notion of distance.

Definition 1 (Distance Function). A function d : ∆(S)→ R is a distance function with

respect to µ ∈ ∆(S), denoted by dµ, if dµ(µ) < dµ(π) for any π ∈ ∆ \ {µ}.

The only condition required of the the distance function is that the prior is the global

minimizer among all beliefs. This is a simple coherence property, because otherwise a DM

should immediately adopt some other belief. Equipped with this notion of distance, we

now introduce the IU representation. For ease of exposition, we use the term “distance

function” even though d may not satisfy the triangle inequality.

Definition 2 (IU). A family of preference relations {%E}E∈Σ admits an Inertial Updat-

ing representation if there are a Bernoulli utility function u : X → R, a prior µ ∈ ∆(S),

6In particular, when S = Ω × M , for a set of payoff relevant states Ω and signals M , the signal m
corresponds to the event {(ω,m) ∈ S | ω ∈ Ω}.
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a distance function dµ : ∆(S) → R such that for each E ∈ Σ, the preference relation %E

admits a SEU representation with (u, µE), meaning that for any f, g ∈ F ,

(1) f %E g if and only if
∑
s∈E

µE(s)u
(
f(s)

)
≥
∑
s∈E

µE(s)u
(
g(s)

)
,

where

(2) µE ≡ arg min
π∈∆(E)

dµ(π).

Since the prior is the global minimizer of dµ, µ = arg minπ∈∆(S) dµ(π). For any E ∈
Σ, the constraint ∆(E) is convex, and so arg minπ∈∆(E) dµ(π) will be unique whenever

dµ is strictly quasi-convex. In fact, the following much weaker condition will suffice: for

any π, π′ ∈ ∆(S) with π 6= π′, if dµ(π) = dµ(π′), then there is α ∈ (0, 1) such that

dµ(απ + (1 − α)π′) < dµ(π). As our main theorem shows, we get continuity and strict

convexity of d for free. Hence, we will not impose any additional properties on d.7

2.3 Notions of Distance

By allowing for a subjective notion of distance, the IU generalizes Bayesian updating while

also providing a unifying approach to non-Bayesian updating rules. In this section, we

discuss a few examples of distance functions and the beliefs they generate. We begin by

introducing a Bayesian distance, which will also be useful in defining non-Bayesian distances

later.

Definition 3 (Bayesian Divergence). For any strictly increasing and strictly concave

function σ : R+ → R, let dµ be given by

(3) dµ(π) = −
n∑
i=1

µi σ

(
πi
µi

)
.

Our first proposition shows that any Bayesian Divergence will generate Bayesian

posteriors for all non-null events.8

Proposition 1. For any non-null E ∈ Σ,

µE = arg min
π∈∆(E)

−
n∑
i=1

µi σ

(
πi
µi

)
= BU(µ,E)

7The distance functions in Definitions 3-4 are convex, and the distance functions in Definitions 5-7 are
strictly convex.

8Bayesian divergence must be modified to be part of an IU representation; i.e., to yield a complete
updating rule. For example, see Definition 6 for one such way to extend dµ.
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Notably, Equation 3 “includes” the KL divergence as a special case (σ(x) = ln(x)).

However, since ln(0) = −∞, the KL divergence is not well-defined when sp(µ) ⊆ sp(π).

Therefore, we focus our attention on σ that are well defined on R+. For example, σ(x) =

ln(αx + β) where α, β > 0 is a well-defined, strictly increasing, and strictly concave func-

tion. Alternatively, σ(x) = xα−1
1−α (resulting in the Renyi divergence) is well-defined, strictly

increasing, and strictly concave when α ∈ (0, 1).

We now introduce the following notation to simplify our exposition.

Notation. The Bayesian function for a given σ is denoted by βσ : Rn+ × Rn+ → R; i.e.,

βσ(x,y) = −
n∑
i=1

xi σ

(
yi
xi

)
for any x,y ∈ Rn+.

The Bayesian update of x on E is denoted by

BU(x, E) =

(
xi 1{i ∈ E}∑

j∈E xj

)
i∈S

for any x ∈ Rn+ with
∑
j∈E

xj > 0.

Note that x and y are not necessarily probability distributions.

Following the intuition from Bayesian Divergence, we can introduce a distorted

version of this distance notion to capture non-Bayesian beliefs.

Definition 4 (Distorted Bayesian). An IU DM admits a Distorted Bayesian distance if

dµ(π) = βσ(δ(µ), π)

where δ : [0, 1]→ R+ and σ is strictly increasing and strictly concave. Then by Proposition

1,

(4) µE = BU(δ(µ), E)

for any non-null E ∈ Σ. Further, we say that this distance is Monotonic if δ is strictly

increasing.

If δ > 0, then we also have µE = BU(δ(µ), E) for any E, resulting in a complete theory

of belief updating.9 For example, suppose δ is defined as follows: δ(t) = t + ε1{t = 0}
where ε is small enough. Then µE is approximately equivalent to BU(µ,E) when E is

non-null and when E is a null-event, µE is equivalent to BU(µ∗, E) where µ∗ is the uniform

distribution over S. This example approximates a special case of Myerson’s CPS introduced

in Definition 6.

9Otherwise, the distance must be modified slightly. See, for example, Definition 6.
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The Distorted Bayesian distance notion captures non-Bayesian updating through the

distortion function δ.10 Intuitively, such an agent behaves as if they apply Bayes’ rule to a

distorted prior. When δ(x) = xα, this corresponds to a special case of Grether’s α− β rule

(Grether, 1980) where α = β. For α < 1, this captures under-reaction to information and

base-rate neglect, while α > 1 captures over-reaction to information. In section 5, we show

that our model nests the general version of Grether’s α− β rule. It is also straightforward

to generalize δ to capture a variety of belief distortions, including asymmetric reactions

based on prior beliefs like confirmation bias (á la Rabin and Schrag (1999)) or over(under)

reaction to small(large) probabilities (Kahneman and Tversky (1979)).

In section 3.2 we characterize Distorted Bayesian and Monotonic Distorted Bayesian.

Although δ is independent of the realized event, the Distorted Bayesian distance can cap-

ture features of history or reference dependence.

Definition 5 (Mixed Bayesian). Let dµ be given by

(5) dµ(π) = βσ(µ+ ρ, π),

where σ is strictly increasing and strictly concave and sp(µ) ∪ sp(ρ) = S. Then for any

E ∈ Σ, by Proposition 1,

µE = BU(µ+ ρ,E) = α(E) BU(µ,E) + (1− α(E)) BU(ρ,E),

where α(E) = µ(E)
µ(E)+ρ(E) .

Notice that sp(µ)∪sp(ρ) = S ensures that Mixed Bayesian yields a complete updating

rule; it is defined for all events. When E is a null-event, µE = BU(ρ,E). Through ρ, the

Mixed Bayesian distance can capture motivated reasoning Kunda (1990) or wishful thinking

(Mayraz (2011); Caplin and Leahy (2019); Kovach (2020b)).

To illustrate other forms of IU updating rules for zero-probability events, we can define

a support-dependent Bayesian divergence.

Definition 6 (Support-Dependent Bayesian Divergence). Let

dµ(π) =

βσ(µ, π) if µ(sp(π)) > 0,

βσ(µ∗, π) + σ(1) + |σ(0)| otherwise,

for µ∗ with sp(µ) ∪ sp(µ∗) = S.

10For example, δ captures the DM’s imperfect memory or recall of her previously updated belief – prior
(e.g., see Mullainathan (2002), Wilson (2014), Gennaioli and Shleifer (2010), and Bordalo et al. (2016).
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Proposition 2. For any E ∈ Σ,

µE =

BU(µ,E) if µ(E) > 0,

BU(µ∗, E) otherwise.

This distance yields Bayesian updating whenever possible. After a null event, the DM

switches to µ∗ and then utilizes Bayes’ rule. This complete belief updating rule was used

in Galperti (2019), and is a special case of both Myerson (1986a,b) and Ortoleva (2012).

A final example that we wish to mention is the Euclidian distance.

Definition 7 (Euclidean distance). Let dµ(π) = ||µ− π||. Then

µE(s) = µ(s) +
1− µ(E)

|E|
for any E ∈ Σ and s ∈ E.

This distance has several nice features. First, it yields a complete updating rule. Second,

the Euclidean distance is a metric, unlike KL divergence. On the other hand, it is always

non-Bayesian and “under utilizes” prior odds when updating beliefs: probability is allocated

to the remaining states (i.e., those in E) uniformly. These features echo two consistent

findings from experiments: DM’s exhibit base-rate neglect (Benjamin, 2019) and are biased

toward uniform distributions or the “ignorance prior” (Fox and Clemen, 2005).

3 Axiomatic Characterization

In this section, we present three behavioral postulates that characterize IU. Our first axiom

imposes the standard SEU conditions of Anscombe and Aumann (1963) on each conditional

preference relation, %E , along with a condition that ensures risk preferences are unaffected

by information. Because these conditions are well-understood, we will not provide a formal

discussion of the conditions.

Axiom 1 (SEU Postulates). For each E ∈ Σ, the following conditions hold.

(i) Weak Order: %E is complete and transitive.

(ii) Archimedean: For any f, g, h ∈ F , if f �E g and g �E h, then there are α, β ∈ (0, 1)

such that αf + (1− α)h �E g and g �E βf + (1− β)h.

(iii) Monotonicity: For any f, g ∈ F , if f(s) %E g(s) for each s ∈ S, then f %E g.

(iv) Nontriviality: There are f, g ∈ F such that f �E g.
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(v) Independence: For any f, g, h ∈ F and α ∈ (0, 1], f %E g if and only if αf + (1 −
α)h %E αg + (1− α)h.

(vi) Invariant Risk Preference: For all lotteries p, q ∈ ∆(X), p % q if and only if

p %E q.

The next axiom is standard and ensures that the DM forms a new belief that is consis-

tent with the available information.

Axiom 2 (Consequentialism). For any E ∈ Σ and all f, g ∈ F ,

f(s) = g(s) for all s ∈ E =⇒ f ∼E g.

The next axiom, Dynamic Coherence, was introduced in Ortoleva (2012), and a

careful discussion may be found there. In our setting, we say that an event A is revealed

implied by event B if every state that the DM believes is possible after learning B is also an

element of A. Dynamic Coherence requires that this “revealed preference” over events

is acyclic.

Axiom 3 (Dynamic Coherence). For any A1, . . . , An ⊆ S, if S \Ai is %Ai+1-null for each

i ≤ n− 1 and S \An is %A1-null, then %A1=%An .

If S\Ai is %Ai+1-null, then Ai is revealed implied by Ai+1. Since Dynamic Coherence

implies this relation is acyclic, the revealed preference satisfies SARP. Using the result of

Matzkin (1991), an extension of Afriat (1967) to general budget sets, SARP is a necessary

and sufficient condition for the existence of a subjective distance function for belief selection.

Theorem 1. The following are equivalent.

(i) A family of preference relations {%E}E∈Σ admits an IU representation.

(ii) It satisfies SEU Postulates, Consequentialism, and Dynamic Coherence.

(iii) It admits an IU representation with respect to a continuous, strictly convex

distance function.

For a simple intuition behind our result, note that SEU Postulates and Conse-

quentialism imply that our DM has a conditional belief µE with support contained in E,

or µE ∈ ∆(E). Consequently, we may view each event E as generating a “budget set,”

∆(E), from which the DM must choose her conditional belief. The conditional belief, µE ,

is therefore “revealed preferred” to any other belief in the budget set. Dynamic Coher-

ence ensures that this revealed preference satisfies SARP, allowing for the construction of

a “utility function” (i.e., a distance function) that generates these beliefs.
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Similar to Afriat’s theorem, we obtain a continuous, strictly convex distance function

without additional restrictions on preferences. The above result holds for an arbitrary col-

lection Σ of events. One advantage of our proof is that it is easy to extend to more general

models. In section 7, we consider a generalization of IU that satisfies a weakening of Conse-

quentialism and the corresponding characterization theorem uses the same generalization

of Afriat’s theorem.

3.1 Bayesian Updating

Our main theorem does not require Dynamic Consistency, and in fact our axioms are

independent of this classic postulate. Similar to results from Ghirardato (2002) and Epstein

and Breton (1993), imposing Dynamic Consistency in our setting ensures that condi-

tional beliefs are consistent with Bayesian updating whenever possible. Recall that fEh

denotes that conditional act that returns f(s) for s ∈ E and h(s) otherwise.

Axiom 4 (Dynamic Consistency). For all non-null events E ∈ Σ and f, g, h ∈ F ,

fEh % gEh if and only if f %E g.

Proposition 3. A family of preference relations {%E}E∈Σ satisfies SEU Postulates,

Consequentialism, Dynamic Coherence, and Dynamic Consistency if and only if

it admits an IU representation and µE = BU(µ,E) for each non-null E.

Since Dynamic Consistency has been discussed extensively, (both Ghirardato (2002)

and Epstein and Breton (1993) include excellent discussions), we will not discuss this result

further. Instead, we simply wish to remark that Dynamic Consistency places no restric-

tions on conditional beliefs after null events, which is a major drawback of the standard

model.

A strength of IU is that it provides a coherent framework for belief revision after null

events, which we discuss in section 4. Notably, in section 4.1 we introduce a strengthening

of Dynamic Consistency, which we call Conditional Consistency, that extends the

logic of Dynamic Consistency to all conditional events and show that this condition

characterizes the CPS of Myerson (1986a,b).

3.2 Distorted Bayesian Updating

One of the key insights provided by IU is that distance minimization can be viewed as

a unifying framework that accommodates various updating behaviors. In this section, we

expand upon this insight by characterizing Distorted Bayesian and monotonic Distorted

Bayesian with a few simple relaxations of Dynamic Consistency.
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Axiom 5 (Consistency). For any non-null E ∈ Σ, s, s′ ∈ E, and x, y ∈ X,

x{s}y ∼ x{s′}y implies x{s}y ∼E x{s′}y.

Consistency requires that if the DM initially believes that two states are equally

likely, then she continues to believe that they are equally likely after observing some event

containing them.11

We characterize Distorted Bayesian with one additional condition that we call In-

dependence of Irrelevant Information. This axiom ensures that updating behavior

only depends on the probability of a state and not on the name of the state. Further, this

condition also ensures that the relative distortions are independent of the realized event.

Axiom 6 (Independence of Irrelevant Information). For any non-null E1, E2 ∈ Σ \S,

s, s′ ∈ E1 ∩ E2, and p, q, r ∈ ∆(X),

p{s}r ∼E1 q{s′}r if and only if p{s}r ∼E2 q{s′}r.

Proposition 4. Consider a family of preference relations {%E}E∈Σ with an IU represen-

tation. The IU representation admits a Distorted Bayesian distance if and only if

Consistency and Independence of Irrelevant Information hold.

We can now characterize Monotonic Distorted Bayesian distance by introducing a

condition ensuring that the DM preserves the “more likely than” judgments implied by her

prior.

Axiom 7 (Monotonicity). For any non-null E ∈ Σ, s, s′ ∈ E, and x, y ∈ X,

x{s}y % x{s′}y if and only if x{s}y %E x{s′}y.

To understand Monotonicity, consider S = {s1, s2, s3}, µ = (12/20, 7/20, 1/20), and

E = {s2, s3}. Under Dynamic Consistency, relative likelihoods are exactly preserved and

so a Bayesian DM continues to believe that s2 is seven times as likely as s3 upon learning E.

Without Dynamic Consistency, the IU would place no restrictions on the conditional

relative likelihoods of s2 and s3. Since our DM believed that E was relatively unlikely, it is

plausible that she is now less confident in her judgment about the relative odds of s2 and

s3. Consequently, she may desire to further modify her belief. For example, she may now

think that s2 is only twice as likely as s3, resulting in the posterior µE = (2/3, 1/3). Notice

that s2 is still more likely than s3; she does not entirely disregard her previous judgments.

This restriction is precisely the content of Monotonicity.

11If we strengthen Consistency and the following two axioms by requiring the same condition for null
events, we obtain Distorted Bayesian updating with δ > 0.
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Proposition 5. Consider a family of preference relations {%E}E∈Σ with an IU represen-

tation. The IU representation admits a Monotonic Distorted Bayesian distance if

and only if Monotonicity and Independence of Irrelevant Information hold.

Below we present several examples of Distorted Bayesian updating. In each of the

following examples, we let S = {s1, s2, s3}, and suppose µ = (12/20, 7/20, 1/20). In each of

the tables, blue (light) shading indicates that the state is under-weighted relative to Bayes’

rule, while red (dark) shading indicates the state is over-weighted.

Example 1 (Bayesian). Our Distorted Bayesian model includes Bayesian updating as the

special case δ(x) = x. These posteriors are given in the table below and will serve as the

benchmark to describe our other examples.

s/A {s1, s2} {s2, s3} {s1, s3}
s1 0.63 − 0.92

s2 0.37 0.875 −
s3 − 0.125 0.08

Table 1: Bayes’ Posteriors for various events

Example 2 (Under/Over-Reaction). Suppose for some α > 0,

δ(x) = xα.

Note that for α = 1 this reduces to Bayes’ rule (see Table 1) . For α < 1, the relative

probabilities are “compressed,” capturing under-reaction to the higher probability state.

One the other hand, when α > 1, relative probabilities are “exaggerated,” capturing over-

reaction to the higher probability state.

s/A {s1, s2} {s2, s3} {s1, s3}
s1 0.606 − 0.88

s2 0.394 0.826 −
s3 − 0.174 0.12

s/A {s1, s2} {s2, s3} {s1, s3}
s1 0.656 − 0.95

s2 0.344 0.912 −
s3 − 0.088 0.05

Table 2: Posteriors for α = 0.8 and α = 1.2.

Comparing to the Bayesian posteriors in Table 1, it is simple to see that when α < 1

the DM always under-weights the more likely state, and when α > 1 the DM always over-

weights the more likely state.

Example 3 (S-reaction). When δ has a sigmoid shape, it simultaneously captures under-

reaction to “expected states” and over-reaction to “unexpected states.” For some x0 ∈ R
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and a > 0,

δ(x) =
1

1 + ea(x0−x)
.

s/A {s1, s2} {s2, s3} {s1, s3}
s1 0.69 − 0.91

s2 0.31 0.821 −
s3 − 0.179 0.09

Table 3: Posteriors for S-reaction with a = 6, x0 = 0.5.

Compared to the Bayesian posteriors, the DM over-weights s1 after {s1, s2}, exhibit-

ing features of over-reaction, while the DM under-weights s1 after {s1, s3} and s2 in after

{s2, s3}. This is because the shape of δ induces over-reaction to rare events, thereby increas-

ing the probability of s3.

Example 4 (Confirmation Bias). Confirmation bias refers to the tendency to give extra

credence to “believed hypothesis.” For some b > 0, let

δ(x) = x+ b1

{
x >

1

2

}
.

Under this rule, states which are believed to be more likely are biased by b.

s/A {s1, s2} {s2, s3} {s1, s3}
s1

12+20b
19+20b − 12+20b

13+20b

s2
7

19+20b .875 −
s3 − .125 1

13+20b

Table 4: Posteriors under Confirmation Bias.

The DM always over-reacts to s1, her favored state, whenever information allows. When

the information precludes s1 she behaves in accordance with Bayes’ rule.

3.3 Other Forms of Non-Bayesian Updating

There are of course many forms of non-Bayesian updating captured by IU that fall outside

of Distorted Bayesian. Below we illustrate how the Mixed Bayesian distance can

capture motivated reasoning and wishful thinking.

Example 5 (Mixed Bayesian Optimism). We still let S = {s1, s2, s3} and suppose µ =

(12/20, 7/20, 1/20), as before. Now suppose our DM uses the Mixed Bayesian distance

with ρ = (0, 0, 1), where ρ captures the idea that s3 is the “best state,” i.e., the DM has a

motivation to believe that s3 is true.
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After {s1, s2} is realized, the posteriors are identical to the Bayesian posteriors because

s3 has been ruled out. For the other two events, the DM exhibits “reversals.” Under

both {s2, s3} and {s1, s3} the DM believes s3 is now the most likely state, which violates

Monotonicity. The belief after {s2, s3} is more extreme because {s2, s3} is “unexpected”

under the prior, which pushes the DM more toward ρ.

s/A {s1, s2} {s2, s3} {s1, s3}
s1 0.63 − 0.36

s2 0.37 0.25 −
s3 − 0.75 0.64

Table 5: Posteriors under Mixed Bayesian updating

4 Updating After Zero-probability Events

The most well-known limitation of Bayesian updating is that it is incomplete; it is not de-

fined for zero-probability events. This is particularly problematic in game theoretic settings,

where beliefs are induced by the equilibrium strategies and any action off the equilibrium

path leads to a zero-probability event. In contrast, our notion of belief updating is well-

defined for zero-probability events. Thus, IU provides a way to extend (non-)Bayesian

updating to all events.

4.1 Conditional Probability System

Perhaps the most well-known method for handling beliefs conditional on null-events is the

conditional probability system (CPS) introduced by Myerson (1986a,b).12 The development

of CPS is closely related the developments of Perfect Bayesian Equilibrium and its refine-

ments. PBE requires that agents’s beliefs are Bayes-consistent with the prior whenever

possible. However, PBE does not make any restrictions when Bayes’ rule is not applicable.

Hence, PBE may allow for some unreasonable beliefs after actions off the equilibrium path.

The Sequential Equilibria of Kreps and Wilson (1982) refines the PBE by requiring that any

belief in sequential equilibria should be a limit of full-support beliefs after applying Bayes

rule accordingly. Checking whether conditional beliefs can be supported by full-support

beliefs is not an easy task, and Myerson (1986a,b) shows that this limit requirement of

sequential equilibria is equivalent to the following simple condition.

Definition 8. A Conditional Probability System (CPS) is a collection {µE}E∈Σ of

12The idea of CPS goes back to Rényi (1955).
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conditional probability distributions such that for all s ∈ F ⊆ E,

(6) µE(s) = µF (s)µE(F ).

When µE(F ) 6= 0, Equation 6 reduces to Bayes’ rule. However, when µE(F ) = 0, it

implies that µE(s) = 0 as well, and so it places no restriction directly on µF (s).

As we will show below, CPS is a special case of our model. A major distinction between

CPS and IU is that CPS requires Bayesian updating whenever possible, while IU provides

a unifying framework that allows for Bayesian and non-Bayesian updating. To characterize

CPS, we introduce the following strengthening of Dynamic Consistency.

Axiom 8 (Conditional Consistency). For all E ∈ Σ, %E-non-null A ⊂ E, and f, g, h ∈
F ,

f Ah %E g Ah if and only if f %A g.

Conditional Consistency implies Dynamic Consistency but also has bite on events

that are %-null. In essence, Conditional Consistency extends the logic of Dynamic

Consistency to all conditional preferences E and nested events that are %E-non-null.

To illustrate Conditional Consistency, imagine a coin flip. The states h and t

are the usual outcomes of heads or tails, e and e′ denote edges where e′ has been warn

thin, while l1 and l2 denote landing on a marked location, which yields the state space

S = {h, t, e, e′, l1, l2}. Initially, the DM believes that µ(h) = µ(t) = 1
2 , and treats the other

states as null.

Suppose the DM is informed that, astonishingly, the coin did not land on a face; A =

{e, e′, l1, l2} was realized. Further, suppose that our DM believes that the coin landing on

either of the marked locations is more impossible than its landing on an edge. Accordingly,

her conditional beliefs are µA({e, e′}) = 1 and µA({l1, l2}) = 0. If this information is

further refined so that {e} is ruled out and our DM continues to utilize Bayes’ rule, then we

expect µB({e′}) = 1 (where B = {e′, l1, l2}). Conditional Consistency imposes Dynamic

Consistency between µA and µB because B becomes %A-non-null and B ⊂ A.

Our next theorem states that Conditional Consistency is the precise strengthening

of Dynamic Consistency required to characterize CPS.

Theorem 2. A family of preference relations {%E}E∈Σ satisfies SEU Postulates, Con-

sequentialism, and Conditional Consistency if and only if it admits a CPS repre-

sentation.

While our theorem ensures that the collection of beliefs satisfies the requirement of a

CPS (Definition 8), it does not directly shed light on the structure of the CPS. It does not

imply yet that CPS is a special case of IU.
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Our next proposition shows that any CPS is a special case of IU and it can be described

by a collection of beliefs whose supports partition S. Further, the DM moves between these

beliefs in an “ordered” fashion and this CPS representation is generated by a support-

dependent bayesian distance.

Proposition 6. Suppose a family of preferences {%E}E∈Σ admits a CPS representation.

Then there are µ0, . . . , µK ∈ ∆(S) such that sp(µ0), . . . , sp(µK) is a partition of S and for

any E ∈ Σ,

µE = BU(µk
∗
, E) where k∗ = min{k | µk(E) > 0}.

Moreover, {%E}E∈Σ has an IU representation with respect to the following distance func-

tion:

dµ(π) = βσ(µk
∗
i , π) + k∗

(
σ(1) + |σ(0)|

)
where k∗ = min{k | µk(sp(π)) > 0}.13

Note that Proposition 2 is a special case of the above result when K = 1.

Example 6 (Coin Flip). Recall the coin flip example from before, where the states are

S = {h, t, e, e′, l1, l2}, where h and t correspond to heads or tails, e and e′ correspond to the

coin landing on an edge, where one edge is thinner than the other, while l1 and l2 correspond

to the coin landing on precisely marked locations. These possibilities are described by the

probability distributions

µ0(s) =

1
2 s ∈ {h, t}

0 otherwise
;µ1(s) =


7
8 s = e

1
8 s = e′

0 otherwise

; and µ2(s) =

1
2 s ∈ {l1, l2}

0 otherwise
.

Our DM has the initial prior µ0 (i.e., % has an SEU representation with (u, µ0)).

Suppose she observes A = {e, e′, l1, l2}. Since µ0(A) = 0, Bayesian updating is not defined.

After A, the DM selects µ1 (i.e., µA = µ1) because it is of “lower order” than µ2 and

therefore it takes precedence.

4.2 Hypothesis Testing

A recent and elegant addition to the literature on updating after zero-probability events is

the Hypothesis Testing model (HT) of Ortoleva (2012). Such an agent will update using

Bayes’ rule for expected events: events with probability above some threshold ε. When an

event E is unexpected (i.e., under the agent’s prior µ(E) ≤ ε), the agent rejects her prior,

13The first part of this proposition is not entirely new. Kreps and Wilson (1982) already pointed out a
connection between sequential equilibria beliefs and a collection of linearly ordered priors µ0, . . . , µK .

17



updates a second-order prior over beliefs, and selects a new belief according to a maximum

likelihood procedure. Formally, a HT representation is given by a triple, (µ, ρ, ε), consisting

of a prior µ ∈ ∆(S), a second order prior ρ ∈ ∆(∆(S)), and a threshold ε ∈ [0, 1) with the

requirement that µ = arg maxπ∈∆(S) ρ(π). Then, for any E ∈ Σ,

µE =

BU(µ,E) if µ(E) > ε,

BU(πE , E) otherwise.

where πE = arg maxπ∈∆(S) ρ(π)π(E). It turns out that HT is behaviorally equivalent to

IU.

Corollary 1. A family of preference relations {%E}E∈Σ admits an HT representation if

and only if it admits an IU representation.

This corollary follows from our Theorem 1 and Theorem 1 of Ortoleva (2012). However,

it is important to note that our proof techniques are quite different.

4.3 Relating HT and CPS

The formal relationship between HT and CPS has not previously been established. Our

results, Corollary 1 and Proposition 6, indirectly show that CPS is a special case of HT.

Further, since every CPS satisfies Bayes’ rule, it is a special case of HT with ε = 0.

Corollary 2. If a family of preference relations {%E}E∈Σ admits an CPS representation,

then it admits an HT representation with ε = 0.

However, the converse does not hold; even when ε = 0, HT preferences may be incon-

sistent with CPS preferences. The reason for this is due to the way in which the selection of

new beliefs occurs in HT. Indeed, our previous results formally show why. In HT, ε = 0 if

and only if Dynamic Consistency holds. Hence, Proposition 3 characterizes HT with ε = 0.

Theorem 2 implies that HT with ε = 0 is strictly more general than CPS since Conditional

Consistency is strictly stronger than Dynamic Consistency.

4.4 A Non-Bayesian CPS

A natural way to generalize the CPS is to retain the sequential selection of new beliefs while

incorporating the idea of “non-Bayesian reaction to unexpected events” from the HT model.

To do so, we introduce ε-CPS, a one-parameter, non-Bayesian extension of the CPS. This

extension may lead to an interesting, non-Bayesian generalization of sequential equilibria.
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Definition 9. A family of preferences {%E}E∈Σ admits an ε-CPS representation if there

are probability distributions µ0, . . . , µK ∈ ∆(S) and ε ∈ [0, 1) such that

µE = BU(µk
∗
, E) where k∗ = min{k ≤ K | µk(E) > ε},

for every E ∈ Σ.

The ε-CPS representation incorporates the key idea of HT by allowing for non-Bayesian

reactions to unexpected events: µk(E) ≤ ε. However, it provides additional structure to

the posterior selection process. The ε-CPS remains a special case of HT and IU.

Theorem 3. Any ε-CPS representation also has a HT representation. Moreover, if

ε = 0, then the threshold for the HT representation is also zero.

4.5 Relationships

Since there are multiple approaches to updating after zero probability events, we summarize

their relationship to each other and the key axioms in Figure 1.

ϵ-CPS with ϵ > 0 HT with ϵ = 0

CPS

Conditional Consistency

Dynamic Consistency

Dynamic Coherence

IU=HT

Figure 1: Relationship between complete updating models.

Figure 1 clearly illustrates two notable discoveries. First, Conditional Consistency

implies both Dynamic Consistency and Dynamic Coherence. Second, Dynamically

Consistent HT is strictly more general than the CPS.
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5 Incorporating a Signal Structure

While our setting is quite general, it is often useful to make explicit reference to a signal

structure. We therefore illustrate that our framework can incorporate standard signal struc-

tures utilized in experimental settings and game theory by introducing more structure to

the state space (e.g., S has a product structure).

Let Ω be the payoff relevant state space and M be the set of all signals. For each ω ∈ Ω

and m ∈ M , let P (ω) be the (unconditional) probability that the payoff relevant state ω

occurs and P (m|ω) be the (conditional) probability that the DM receives the signal m when

the state is ω. Indeed, receiving a signal is equivalent to observing an event in an expanded

state space, S = Ω×M . Specifically, receiving the signal m is equivalent to observing the

event {(ω,m)}ω∈Ω in S.

Let µ be the prior on S, so that µωm = P (m|ω)P (ω) for each (ω,m). In the case

of Bayesian updating, the connection between our framework and the signal structure is

straightforward. Note that the Bayesian divergence generates Bayesian updating in the

signal structure framework:

P (ω|m) =
µωm∑

ω′∈Ω µω′m
=

P (m|ω)P (ω)∑
ω′∈Ω P (m|ω′)P (ω′)

.

A similar connection is possible for non-Bayesian updating rules. For example, consider

the following distance function. For α, β ≥ 0,

dµ(π) =
∑

(ω,m)∈Ω×M

( ∑
m′∈M

µωm′

)α−β
µβωm log

(
πωm
µωm

)
.

This distance generates the posterior

P (ω|m) =

(∑
m′∈M µωm′

)α−β
µβωm∑

ω′∈Ω

(∑
m′∈M µω′m′

)α−β
µβω′m

=
(P (m|ω))β (P (ω))α∑

ω′∈Ω(P (m|ω′))β (P (ω′))α
,

which is precisely the non-Bayesian updating rule proposed by Grether (1980). This is

a simple generalization of Bayes’ rule, where α captures the influence of the prior and β

captures the influence of the signals.

In general, the following distance function

dµ(π) =
∑

(ω,m)∈Ω×M

g

( ∑
m′∈M

µωm′

)
f

(
µωm∑

m′∈M µωm′

)
log

(
πωm
µωm

)
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generates Distorted Bayesian updating in the signal structure framework:

P (ω|m) =
f
(∑

m′∈M µωm′
)
g
( µωm∑

m′∈M µωm′

)∑
ω′∈Ω f

(∑
m′∈M µω′m′

)
g
( µω′m∑

m′∈M µω′m′

) =
f
(
P (m|ω)

)
g
(
P (ω)

)∑
ω′∈Ω f

(
P (m|ω′)

)
g
(
P (ω′)

) .
The above updating rule reduces to Grether’s rule when f(x) = xβ and g(x) = xα. We

apply this updating rule to “Bayesian” persuasion games in section 6.

Example 7. Consider the following example, with Ω = {ωH , ωL} and M = {h, l}. We

suppose P (ωH) = 5
8 and P (h|ωH) = P (l|ωL) = 3

5 .

h l

ωH 0.375 0.25

ωL 0.15 0.225

µ(·|h) µ(·|l)
ωH 0.7143 0.5263

ωL 0.2857 0.4737

Table 6: Induced prior µ over S = Ω×M and the corresponding Bayes’ posteriors.

Table 6 Illustrates the prior over S and the resulting posterior beliefs under Bayesian

updating. Applying the Distorted Bayesian distance yields the following conditional prob-

abilities for ωH after signals h and l:

µ(ωH |h) =
f(0.6)g(0.625)

f(0.6)g(0.625) + f(0.4)g(0.375)
,

µ(ωH |l) =
f(0.4)g(0.625)

f(0.4)g(0.625) + f(0.6)g(0.375)
.

To further illustrate, we consider several specifications for f(x) = xβ and g(x) = xα in

the table below.

µ(·|h) µ(·|l)
ωH 0.7264 0.4603

ωL 0.2736 0.5397

µ(·|h) µ(·|l)
ωH 0.6755 0.5211

ωL 0.3245 0.4789

µ(·|h) µ(·|l)
ωH 0.7347 0.5517

ωL 0.2653 0.4483

Table 7: The left table reports posteriors with Base-rate neglect (α = 0.8) and over-reaction
to signals (β = 1.4), the middle table reports posteriors with Base-rate neglect (α = 0.8) and
under-reaction to signals (β = 0.8), and the right table reports posteriors with Base-rate
bias (α = 1.2) and an accurate reaction to signals (β = 1).

6 Application to Bayesian Persuasion

In this section, we demonstrate the usefulness of our model by applying it to the Bayesian

persuasion games of Kamenica and Gentzkow (2011). In particular, we analyze the effects
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of non-Bayesian updating rules on the optimal information structure. We first describe the

general Bayesian persuasion environment. Let Ω be the set of payoff-relevant states and ρ

be a prior over Ω = {ω1, . . . , ωn}. Let A and M be the finite sets of actions and messages,

respectively. A signal structure is a function π : Ω→ ∆(M). Given action a ∈ A and state

ω ∈ Ω, the receiver’s payoff is u(a, ω) and the sender’s payoff is v(a, ω). Given message

realization m and signal structure π, the receiver’s optimal action is determined by

a∗π(m) = arg max
a∈A

Eω∼µπ(·|m)u(a, ω)

where µπ(·|m) is a conditional probability distribution over Ω. The sender’s goal is to

persuade the receiver to take certain actions by choosing a signal structure π. The optimal

signal structure for the sender must solve

max
π∈Π

Eω∼ρEm∼π(ω)v
(
a∗π(m), ω

)
.

To illustrate the implications of our model, we now consider a simpler environment with

two actions; A = {a, b}. Then

a∗π(m) = a if
n∑
i=1

µπ(ωi|m)ui ≥ 0,

where ui = u(a, ωi)− u(b, ωi). We assume that the sender always prefers action a, which is

captured by v(a, ω) = 1 and v(b, ω) = 0. Hence, the sender maximizes∑
m∈M

∑
ω∈Ω

µ(ω,m)1{a∗(m) = a}.

This simple environment is rich enough to nest the judge-prosecutor example of Kamenica

and Gentzkow (2011) and the police-driver example of Kamenica (2019). Since min{|Ω|, |A|} =

2, we will first assume that |M | = 2 and consider the case of |M | ≥ 3 in online Appendix B.14

To apply our model, let S = Ω ×M and let µ be a prior over S determined by ρ and

π: µ(ωi,m) = ρi πm(ωi).
15 Our model determines the conditional probability µπ(·|m) and

the rest is standard. We assume biased Bayesian updating defined in section 5, where the

conditional probability is given by

µπ(ωi|m) =
g
(
ρi
)
f
(
πm(ωi)

)∑n
j=1 g

(
ρj
)
f
(
πm(ωj)

) .
14When f is not linear, the revelation principle may be violated (see de Clippel and Zhang (2022)). Hence,

the assumption |M | = 2 is not without loss of generality. We show that our main findings do not change
substantively when |M | ≥ 3 (see online Appendix B).

15Bayesian plausibility is already satisfied with this Cartesian structure.

22



We assume that f and g are positive valued and f is strictly increasing.16 Below we

demonstrate how the curvature of f determines the form of the optimal signal structure for

the sender. We find that as it distorts prior probabilities g has no qualitative impact on the

optimal signal structure, whereas the optimal signal structure significantly varies with the

curvature of f . In particular, the set of states at which the sender is fully revealing when

f is concave is drastically different from the set of fully reveling states when f is strictly

convex.

Given this updating rule, the optimal action of the receiver is

a∗π(m) = a iff
n∑
i=1

g
(
ρi
)
f
(
πm(ωi)

)
ui ≥ 0.

The sender’s optimization problem is

max
π∈Π

V (π) =
∑
m∈M

( n∑
i=1

ρi πm(ωi)
)
1
{ n∑
i=1

g
(
ρi
)
f
(
πm(ωi)

)
ui ≥ 0

}
.

To simplify the exposition, we first rule out some uninteresting scenarios in which

persuasion does not matter. Note that the maximum value for V is 1. To focus on the

interesting cases, suppose now that we have u1, . . . , un and ρ such that V = 1 cannot be

achieved. This assumption implies that the fully revealing signal structure is not optimal;

i.e.,
∑n

i=1 g
(
ρi
)
ui < 0. Since messages m1 and m2 are symmetric, we will focus on signal

structures such that a∗π(m1) = a.

Let A = {i ≤ n : ui ≥ 0} denote the set of states in which the sender’s and receiver’s

interests are aligned. Then the sender’s problem is simply to maximize

max
πm1∈[0,1]|Ω|

n∑
i=1

ρi πm1(ωi) subject to
∑
i∈A

g
(
ρi
)
f
(
πm(ωi)

)
ui ≥

∑
i∈Ac

g
(
ρi
)
f
(
πm(ωi)

)
|ui|.

Intuitively, the sender must optimally allocate the utility generated from the states in A

(i.e.,
∑

i∈A g
(
ρi
)
f
(
πm(ωi)

)
ui)) across the states in Ac. Since the objective function is linear,

the curvature of f essentially dictates the form of the optimal signal structure.

Proposition 7. Suppose either f(x) = x and g(ρi)ui
ρi
6= g(ρj)uj

ρj
for any i, j with ui, uj < 0 or

f is strictly concave. For any optimal signal structure π∗, there is ω̄ ∈ Ac and non-empty

Ω1 ⊇ A such that

π∗m1
(ω1) = 1 for any ω1 ∈ Ω1 and π∗m1

(ω2) = 0 for any ω2 ∈ Ω \ (Ω1 ∪ {ω̄}).
16Although it is not essential, for simplicity, we assume f is differentiable.
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Proposition 7 shows that the sender randomizes at no more than one state (i.e., ω̄) when

f is concave. That is because when f is concave, the sender’s objective function is convex.

Hence, the optimal signal structure is essentially an extreme point of [0, 1]Ω, ignoring ω̄.17

However, when f is not concave, in particular when f ′(0) = 0, extreme points of

[0, 1]Ω\{ω̄} cannot be optimal. In fact, the sender randomizes at as many states in Ac as

possible, depending on the total resource generated by states in A.

Proposition 8. Suppose f ′(0) = 0.18 For any optimal signal structure π∗, there is Ω1 ⊇ A
such that

πm1(ω1) = 1 for any ω1 ∈ Ω1 and πm1(ω2) ∈ (0, 1) for any ω2 ∈ Ω \ Ω1.

Proposition 8 shows that for Grether’s α − β rule, the optimal signal structure in the

case of β ≤ 1 (including Bayesian updating) is qualitatively different from the case of β > 1.

The difference between the cases β ≤ 1 and β > 1 is more precisely illustrated by following

example.

Example 8. Suppose |Ω| = 3. Let ρ = (1
7 ,

3
7 ,

3
7) and (u1, u2, u3) = (1,−1

2 ,−1). When

β ≤ 1,

πHm1
= 1, πMm1

=
(2

3

) 1
β ∈ (0, 1), and πLm1

= 0.

However, when β > 1,

πHm1
= 1, πMm1

=
2

1
β−1(

3(1 + 2β−1)
) 1
β

∈ (0, 1), and πLm1
=

1(
3(1 + 2β−1)

) 1
β

∈ (0, 1).

7 Partial Consequentialism and Weighted IU

In this section, we generalize our main result by relaxing Consequentialism. Following

our analogy to revealed preference theory, Consequentialism ensures that E is equivalent

to the budget set ∆(E). By dropping Consequentialism, we allow for the DM to perceive

a subjective budget set from which she may choose. For instance, this may be because

the DM perceives the information as less reliable than the analyst, or the DM may have

an imperfect memory and her uncertainty about which event transpired is reflected in her

beliefs. We do however impose two natural conditions on her behavior.

17de Clippel and Zhang (2022) show that optimal signal structures in the special case of Grether’s rule with
f(x) = x and g(x) = xα are not qualitatively different from the standard Bayesian case. Our proposition
shows a similar result in this different environment.

18The strict convexity of f is not necessary for this result.
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Definition 10 (wIU). A family of preference relations {%E}E∈Σ admits a Weighted

Inertial Updating representation if there are a Bernoulli utility function u : X → R, a

prior µ ∈ ∆(S), a distance function dµ : ∆(S) → R, and a weight γ ∈ [0, 1) such that for

each E ∈ Σ, the preference relation %E admits a SEU representation with (u, µE), where

(7) µE ≡ γ µ+ (1− γ) arg min
π∈∆(E)

dµ(π).

This generalization of IU nests the updating rules studied in Epstein (2006), Kovach

(2020a), and Epstein et al. (2008).

We first demonstrate that IU representations can be generated from wIU representa-

tions by imposing Consequentialism.

Proposition 9. If a family of preference relations {%E}E∈Σ admits a wIU representation

and satisfies Consequentialism, then it also admits an IU representation.

To characterize wIU, we need to weaken Dynamic Coherence and Consequential-

ism to accommodate the DM’s partial reaction to information. While our DM does not

fully incorporate the informational content of the event A, her belief in A increases and,

consequently, she necessarily gives lower credence to S \A and any E ⊆ S \A.

We introduce the following definition to capture the DM’s subjective perception of

events that become relatively less likely after A.

Definition 11 (Unfavored Event). We say E is %A-unfavored if for any E′ ⊆ S and

p, q ∈ ∆(X),

pE′w ∼ q E w implies pE′w %A q E w,

with at least one strict inequality for some E′. We then say E is a %A-favored event if Ec

is %A-unfavored.

Similar to how Dynamic Coherence ensures a consistent reaction to null events,

Partial Dynamic Coherence ensures a consistent reaction to favored events.

Axiom 9 (Partial Dynamic Coherence). For any A1, . . . , An ⊆ S, if Ai is %Ai+1-favored

for each i ≤ n− 1 and An is %A1-favored, then %A1=%An .

Next, we require that her subjective belief in E weakly increases after she is told that

E has occurred. While Consequentialism demands that the DM is convinced of E, our

novel axiom, Partial Consequentialism, only demands that she puts more stock in E.

Axiom 10 (Partial Consequentialism). For any E ⊆ S, E is %E-favored.

Finally, we require a condition to ensure a consistent reaction to all events. That is,

the following condition guarantees that γ is event independent.
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Axiom 11 (Relative Tradeoff Consistency). For any A,B ∈ Σ, p, q, r ∈ ∆, and α ∈
(0, 1),

If wAq ∼ p and wAq ∼A αp+ (1− α)w, then

wB q ∼ r implies wB q ∼B α r + (1− α)w.

Theorem 4. Suppose % has a full-support. The following are equivalent.

(i) A family of preference relations {%E}E∈Σ admits a wIU representation.

(ii) It satisfies SEU Postulates, Partial Dynamic Coherence, Partial Consequen-

tialism, and Relative Tradeoff Consistency.

(iii) It admits a wIU representation with respect to a continuous, strictly convex

distance function.

8 Related Literature

A few papers have studied the idea of distance minimization and how it relates to belief up-

dating. Perea (2009) axiomatized imaging rules, which are minimum distance rules utilizing

Euclidean distance. Under imaging, for each E ⊆ S a posterior π is selected that minimizes

dµ(π) = ‖φ(µ)−φ(π)‖, where π ∈ ∆(E) and φ is an affine function. This is a special case of

the IU. More recently, Basu (2019) studies AGM (Alchourrón et al., 1985) belief revision.

Within this setting, he establishes an equivalence between lexicographic updating rules and

updating rules that are AGM-consistent, Bayesian, and weak path independent. He then

turns to minimum distance updating rules and shows that every support-dependent lexi-

cographic updating rule admits a minimum distance representation. In contrast, we allow

for non-Bayesian updating. Zhao (2022) and Dominiak et al. (2022) both study distance

minimization “general information;” information is a subset I of ∆(S) rather than an event.

This more general notion of information requires significantly different axioms. Moreover,

Zhao (2022) focuses on Bayes’ rule.

There is a large literature in experimental economics and psychology documenting var-

ious belief biases, and excellent surveys can be found in Camerer (1995) and Benjamin

(2019). There is also growing number of papers taking axiomatic approaches to studying

forms of non-Bayesian updating.19 Of course, Ortoleva (2012) is the most closely related

among these, and has already been discussed in detail. Other papers include Suleymanov

(2021), which studies deviations from Bayesian updating caused by ambiguity; Jakobsen

19For behavioral models of non-Bayesian updating, see, for example Barberis et al. (1998); Rabin and
Schrag (1999); Mullainathan (2002); Rabin (2002); Mullainathan et al. (2008); Gennaioli and Shleifer (2010);
and Bordalo et al. (2016).
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(2022), which studies a “nearly Bayesian” updater that selects between subjectively plau-

sible posteriors; Epstein (2006) and Kovach (2020a), both of which study a prior-biased

updating rule in which posterior beliefs are a convex combination of the prior and the

Bayesian posterior; and Epstein et al. (2008), which extends Epstein (2006) to an infinite

horizon setting. Ke et al. (2022) studies a rule that also involves a convex combination

between prior beliefs and a “recommended belief,” but does so in the context of general

information (i.e., subsets of ∆(S)) so it is not directly comparable. The updating rule in

Epstein (2006), Kovach (2020a), and Epstein et al. (2008) is a special case of Weighted IU

characterized in section 7.

Our paper also contributes to a growing literature applying models of non-standard

belief updating rules to games of strategic information transmission. Recent contributions

in this are include Galperti (2019), de Clippel and Zhang (2022), and Lee et al. (2023).

As we carefully discussed in section 4, updating under zero-probability events is studied

in Myerson (1986a,b) and Ortoleva (2012). Another well-known approach to dealing with

null events is the Lexicographic Probability System (LPS) of Blume et al. (1991). While

LPS also involves a collection of probability distributions, LPS utilizes the entire collection

of distributions in the evaluation process via a lexicographic ordering. Consequently, a

DM described by LPS will violate Archimedean Continuity, (see Axiom 1(ii)) of the initial

preference. Further, LPS replaces (Savage) null-events with “infinitely more likely than,” so

that null-events are effectively precluded. While LPS necessarily deviates from SEU, there

is a mathematical equivalence between conditional probabilities generated by LPS and CPS

(e.g., see Brandenburger et al. (2006)). Hence, our results further clarify the connections

between HT, CPS, and LPS.

A Proofs

A.1 Proof of Proposition 1

Take any non-null E ∈ Σ. Let sp(µ) = A ∪ C and E = B ∪ C where sp(µ) ∩ E = C. We

then solve the following optimization problem:

max
π∈∆(E)

n∑
i=1

µi σ

(
πi
µi

)
=
∑

i∈A∪C
µi σ

(
πi
µi

)
=
∑
i∈C

µi σ

(
πi
µi

)
+ µ(A)σ(0).
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Hence we want to maximize f((πi)i∈C) =
∑

i∈C µi σ
(
πi
µi

)
subject to the constraint

∑
i∈C πi =

1−π(A). Let us first fix α = 1−π(A) and C ′ = {i ∈ C|πi > 0}. Then we need to maximize

∑
i∈C′

µi σ

(
πi
µi

)
− λ(

∑
i∈C′

πi − α).

The first order condition gives σ′(πiµi ) = λ for each i ∈ C ′ (Since σ is strictly concave, the

FOC is sufficient). Hence, πi = µi c
′−1(λ). After finding λ from the constraint

∑
i∈C′ πi = α,

we have πi = α µi
µ(C′) . If we calculate the objective function at the above values:

f((πi)i∈C) = µ(C ′)σ

(
α

µ(C ′)

)
+ µ(C \ C ′)σ(0)

We need to find the optimal α and C ′. Let us prove that µ(C) > µ(C ′) implies

µ(C)σ

(
α

µ(C)

)
> µ(C ′)σ

(
α

µ(C ′)

)
+ µ(C \ C ′)σ(0);

equivalently,

µ(C)
(
σ

(
α

µ(C)

)
− σ(0)

)
> µ(C ′)

(
σ

(
α

µ(C ′)

)
− σ(0)).

To obtain the above inequality, it is sufficient to show that x(σ(αx )−σ(0)) is strictly increas-

ing; i.e., (x(σ(αx )−σ(0)))′ = σ(αx )−σ(0)−α
x σ
′(αx ) > 0. The inequality σ(αx )−σ(0) > α

x σ
′(αx )

holds since σ is strictly concave. Hence, f is maximized when C ′ = C.

Since σ is strictly increasing, we also have µ(C)σ
(

1
µ(C)

)
> µ(C)σ

(
α

µ(C)

)
when 1 > α.

Hence, f is maximized when α = 1 and C ′ = C. In other words, πi = µi
µ(C) ; i.e., µE =

BU(µ,E).

A.2 Lemma 1

The following result will be useful.

Lemma 1. For any µ, π ∈ ∆(S), −σ(0) ≥ βσ(µ, π) ≥ −σ(1).

Proof of Lemma 1. Since σ is strictly increasing, it is immediate that βσ(µ, π) ≤ −σ(0).

For any C ∈ Σ, let

f(C) = µ(C)σ
( 1

µ(C)

)
+ (1− µ(C))σ(0).

As we showed in the proof of Proposition 1, xσ( 1
x) + (1 − x)σ(0) is strictly increasing

when x ∈ (0, 1). Hence we have, σ(1) ≥ f(C). Let A = sp(µ)
⋂

sp(π). By Proposition 1,

f(A) ≥ −βσ(µ, π). Hence, βσ(µ, π) ≥ −σ(1).
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A.3 Proof of Proposition 2

We first consider the scenario where E is a null-event. Then for any π ∈ ∆(E), we have

dµ(π) = βσ(µ∗, π).

Then by Proposition 1, we have µE = BU(µ∗, E). Suppose now E is non-null. Let sp(µ) =

A ∪ C and E = B ∪ C where sp(µ) ∩ E = C.

dµ(π) =

βσ(µ, π) if π ∈ ∆(E) \∆(B),

βσ(µ∗, π) + σ(1) + |σ(0)| if π ∈ ∆(B).

Let µ1 = BU(µ,E) and µ2 = BU(µ,B). By Proposition 1, µ1 maximizes βσ(µ, π) subject

to the constraint π ∈ ∆(E). Again, by Proposition 1, µ2 maximizes βσ(µ∗, π) subject to

the constraint π ∈ ∆(B). Hence, to show that µE = µ1, it is sufficient to prove that

dµ(µ1) < dµ(µ2); equivalently,

dµ(µ1) = βσ(µ, µ1) < dµ(µ2) = βσ(µ∗, µ2) + σ(1) + |σ(0)|.

The above inequality is implied by Lemma 1.

A.4 Proof of Theorem 1

Note that (iii) trivially implies (i). Let us first show that (i) implies (ii). Suppose {%E}
admits an IU representation with respect to (µ, u, dµ). The IU representation indeed

satisfies SEU Postulates. We now prove the necessity of Consequentialism and Dynamic

Coherence.

Consequentialism. Take any E ∈ Σ and f, g ∈ F such that f(s) = g(s) for all s ∈ E.

Since µE(E) = 1 and f(s) = g(s) for all s ∈ E, we have∑
s∈S

µE(s)f(s) =
∑
s∈E

µE(s)f(s) =
∑
s∈S

µE(s)g(s) =
∑
s∈E

µE(s)g(s);

i.e., f ∼E g.

Dynamic Coherence. Take any A1, . . . , An ⊆ S such that S \ Ai is %Ai+1-null for each

i ≤ n − 1 and S \ An is %A1-null. Equivalently, µAi+1(Ai) = 1 for each i ≤ n − 1 and

µA1(An) = 1. Since µAi+1 ∈ ∆(Ai) and µAi = arg minπ∈∆(Ai) dµ(π), dµ(µAi) ≤ dµ(µAi+1).

Similarly, we have dµ(µAn) ≤ dµ(µA1). Therefore, we have

dµ(µA1) ≤ dµ(µA2) ≤ . . . ≤ dµ(µAn) ≤ dµ(µA1);

29



i.e., dµ(µA1) = dµ(µAn). Since µAn is the unique minimizer of dµ in ∆(An) and µA1 ∈
∆(An), dµ(µA1) = dµ(µAn) implies that µA1 = µAn ; i.e., %A1=%An .

Let us now show that (ii) implies (iii). Suppose {%E}E∈Σ satisfies SEU Postulates,

Consequentialism, and Dynamic Coherence. Since % satisfies SEU postulates, there is

(µ, u) such that % has a SEU representation with (µ, u). Since %E satisfies SEU postulates,

there is (µE , uE) such that %E has a SEU representation with (µE , uE). By Invariant Risk

Preference, uE(p) ≥ uE(q) and u(p) ≥ u(q) for any p, q ∈ ∆(X). Without loss of generality,

let us assume that uE = u. Hence, %E has a SEU representation with (µE , u).

Let us now discuss the implications of Consequentialism. Take any E ∈ Σ and any

f, g ∈ F and p, q ∈ ∆(X) such that p � q and f(s) = g(s) = p for all s ∈ E and f(s) = p

and g(s) = q for any s ∈ Ec. By Consequentialism, we have f ∼E g; equivalently,∑
s∈S

µE(s)f(s) = u(p) =
∑
s∈E

µE(s)g(s) = µE(E)u(p) + (1− µE(E))u(q).

In other words, we have µE(E) = 1; i.e., µE ∈ ∆(E).

Afriat’s theorem for general budget sets. To obtain the IU representation, we use an

extension of Afriat’s theorem (Afriat (1967)) for general budget sets due to Matzkin (1991).

To state Afriat’s theorem for general budget sets, some notation is necessary. Let Z be a

convex, bounded subset of Rn+. Let D = (xt, Bt)t∈T be a data set where xt ∈ Bt is the

observed consumption bundle that is chosen from the budget set Bt ⊂ Z at observation

t ∈ T . We say that (xt, Bt) is a co-convex subset of Z if the following three conditions

hold: (i) Z \ Bt is open and convex; (ii) for any e ≥ 0 and x ∈ Z \ Bt, x + e ∈ Z implies

x + e ∈ Z \Bt; and (iii) for any e > 0, xt + e ∈ Z implies xt + e ∈ Z \Bt.

Let us now define the following revealed preference relation on {xt}t∈T . We say xt is

revealed preferred to xs, denoted by xt %R xs if xs ∈ Bt. We say xt is strictly revealed

preferred to xs, denoted by xt �R xs if xs ∈ Bt and xt 6= xs. Finally, we say the data

set D = (xt, Bt)t∈T satisfies the Strong Axiom of Revealed Preferences (SARP) if %R is

acyclic; i.e., there is no sequence xt1 ,xt2 , . . . ,xtL such that xtl %R xtl+1 for each l ≤ L− 1

and xtL �R xt1 .

Theorem 1 of Matzkin (1991). Suppose for each t ∈ T , (xt, Bt) is a co-convex subset

of Z. Then the data set D = (xt, gt)t∈T satisfies SARP if and only if there is a strictly

increasing, continuous, strictly concave utility function u : Z → R such that for any t ∈ T ,

u(xt) > u(x) for any x ∈ Bt \ {xt}.

To apply the above theorem, let us arbitrarily label the set of all events: Σ = {Et}t∈T .
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Then let Z = ∆(S) and xt = µEt and Bt = ∆(Et) for each t ∈ T . Let D = (xt, Bt)t∈T .

Note that Z is a convex, bounded subset of Rn+. Let us show that (xt, Bt) is a co-convex

subset of Z. First, Z \ Bt is open and convex in Z. Second, for any x ∈ Z and e ≥ 0,

x + e ∈ Z implies e = 0. Hence, (ii) and (iii) of co-convexity are trivially satisfied.

Let us now show that Dynamic Coherence implies that D = (xt, Bt)t∈T satisfies

SARP. Take any sequence xt1 ,xt2 , . . . ,xtL such that xtl %R xtl+1 for each l ≤ L − 1 and

xtL %R xt1 . To prove SARP, we shall show that xtL = xt1 . By definition of the revealed

preference relation %R, xtl %R xtl+1 is equivalent to xtl+1 ∈ ∆(Etl). In other words,

µEtl+1
∈ ∆(Etl) for each l ≤ L− 1. Similarly, µEt1 ∈ ∆(EtL).

Note that µEtl+1
∈ ∆(Etl) implies µEtl+1

(Etl) = 1; equivalently, µEtl+1
(S \Etl) = 0. In

other words, S \ Etl is %Etl+1
-null for each l ≤ L − 1. Similarly, S \ EtL is %Et1

-null. By

Dynamic Coherence, %Et1
=%EtL

; equivalently, µEt1 = µEtL . In other words, xt1 = xtL .

Since D = (xt, Bt)t∈T satisfies SARP, by Theorem 1 of Matzkin (1991), there is a

strictly increasing, continuous, strictly concave utility function u : Z → R such that for any

t ∈ T ,

u(xt) > u(x) for any x ∈ Bt \ {xt}.

Let dµ = −u. Then since Bt = ∆(Et) and xt = µEt ,

µEt = arg min
π∈∆(Et)

dµ(π).

Finally, note that dµ is continuous and strictly convex.

A.5 Proof of Proposition 3

This follows directly from existing results on Dynamic Consistency. For example, see Ghi-

rardato (2002).

A.6 Proof of Proposition 4

We start by constructing a distortion δE for an arbitrary non-null event E. Without loss,

suppose |E| ≥ 2. Fix s∗ ∈ E with µE(s∗) > 0. For all s ∈ E, let δE(µ(s)) = µE(s)
µE(s∗) .

Consider any s1, s2 ∈ E such that µ(s1) = µ(s2). Then by Consistency it follows that

µE(s1) = µE(s2), and by construction of δE , it follows that δE(µ(s1)) = µE(s1)
µE(s∗) = µE(s2)

µE(s∗) =

δE(µ(s2)), hence δE is well-defined. Finally, note that for any s, s′ ∈ E, δE(µ(s′))
δE(µ(s)) = µE(s′)

µE(s) .

Summing over s′ ∈ E and using
∑

s′∈E µE(s′) = 1 yields µE(s) = δE(µ(s))∑
s′∈E δE(µ(s′)) , hence

µE = BU(δE(µ), E).

Next, we use Independence of Irrelevant Information to show that δE is in fact in-

dependent of E. Fix any E1, E2 with s, s′ ∈ E1∩E2. Consider some p, q such that p{s}r ∼E1
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q{s′}r. It is without loss to suppose u(r) = 0, and hence u(p)µE1(s) = u(q)µE1(s′). By the

previous result, it follows that

u(p)
δE1(µ(s))∑
s̃∈E1

δE1(µ(s̃))
= u(q)

δE1(µ(s′))∑
s̃∈E1

δE1(µ(s̃))
,

and so
δE1(µ(s))

δE1(µ(s′))
=
u(q)

u(p)
.

By applying Independence of Irrelevant Information, it follows that p{s}r ∼E2 q{s′}r,
and hence

δE1(µ(s))

δE1(µ(s′))
=
u(q)

u(p)
=
δE2(µ(s))

δE2(µ(s′))
.

Hence there exists a δ : [0, 1] → R+ such that for any non-null E, µE = BU(δ(µ), E).

Finally, since δ is clearly only unique up to a scalar, it is without loss to suppose that

δ : [0, 1]→ [0, 1].20

A.7 Proof of Proposition 5

It is clear that Monotonicity implies Consistency, and by the previous result we have

some δ : [0, 1] → [0, 1] such that µE = BU(δ(µ), E) for any non-null E. Consider any E

and s, s′ ∈ E and suppose µ(s) > µ(s). Then from Monotonicity, if x � y if follows

that x{s}y � x{s′}y and thus x{s}y �E x{s′}y, which implies µE(s) > µE(s′). From here

it is immediate that δ(µ(s)) > δ(µ(s′)). Since δ is arbitrary outside of {µ(s)}s∈S , it can

extended to [0, 1] so that δ is strictly increasing.

A.8 Proof of Theorem 2

Necessity of the axioms is trivial, so we only prove sufficiency. By SEU Postulates, there

are U and {µE}E∈Σ such that for any E ∈ Σ, %E admits a SEU representation with (µE , u);

for all f, g ∈ F :

f %E g if and only if
∑
s∈E

U
(
f(s)

)
µE(s) ≥

∑
ω∈SE

U
(
g(s)

)
µE(s).

By Consequentialism, µE(E) = 1. We now shall show Equation 6. Take any E ∈ Σ and

A ⊆ E. Let A ∈ Σ be a %E-non-null event; i.e., µE(A) > 0. Consider acts fAh and gAh

20It is clear from our proof that Consistency and Independence of Irrelevant Information can be
imposed for null-events and we obtain Distorted Bayesian with δ > 0.
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such that fAh %E gAh; i.e.,∑
s∈S

u
(
fAh(s)

)
µE(s) ≥

∑
s∈S

u
(
gAh(s)

)
µE(s).(8)

By Consequentialism,∑
s∈E

u
(
fAh(s)

)
µE(s) ≥

∑
s∈E

u
(
gAh(s)

)
µE(s),(9)

or equivalently, ∑
s∈A

u
(
f(s)

)
µE(s) ≥

∑
s∈A

u
(
g(s)

)
µE(s).(10)

By Conditional Consistency, f %A g; i.e.,∑
s∈A

u
(
f(s)

)
µA(s) ≥

∑
s∈A

u
(
g(s)

)
µA(s).(11)

Since Equations (10) hold for any f, g, we have Bayesian updating

µA(s) =
µE(s)

µE(A)
for each s ∈ A.(12)

Finally, if µE(A) = 0, then we have µE(s) = 0 for any s ∈ A. Hence, Equation 6 holds.

A.9 Proof of Proposition 6

Suppose {%E}E∈Σ admits a CPS representation. To prove the first part of this proposition,

we construct µ0, . . . , µK ∈ ∆(S) inductively. Let S0 = S, and consider %S0 . We let

µ0 = µS0 , and if µ0 has full support, stop. Otherwise, let S1 denote the set of all %S0-null

states, and let µ1 = µS1 . By Consequentialism, µ1(S0 \ S1) = 0. If sp(µ1) = S1, stop.

Otherwise, let S2 denote the set of all %S1-null states, and µ2 = µS2 . We proceed in this

fashion until we reach a K such that sp(µK) = SK . Since S is finite, we must eventually

stop. Note that we have constructed µ0, . . . , µK ∈ ∆(S) such that sp(µ0), . . . , sp(µK)

is a partition of S. We now shall prove that for any E ∈ Σ, µE = BU(µk
∗
, E) where

k∗ = min{k | µk(E) > 0}.
Since k∗ = min{k | µk(E) > 0}, E ⊆ Sk∗ =

⋃
k≥k∗ sp(µk). By the construction,

µk
∗

= µSk∗ . Hence, µSk∗ (E) > 0. Then by Equation 6, for any s ∈ E, µE(s) = µk
∗

(s)

µk∗ (E)
;

equivalently, µE = BU(µk
∗
, E).

We now shall show that {%E}E∈Σ has an IU representation with respect to the following

33



distance function:

dµ(π) = βσ(µk
∗
, π) + k∗

(
σ(1) + |σ(0)|

)
,

where k∗ = min{k | µk(sp(π)) > 0}. It is enough to show that for any E ∈ Σ,

µE = arg min
π∈∆(E)

dµ(π).

Take any E and let k∗ = min{k | µk(E) > 0}. Note that for any π ∈ ∆(E), min{k |
µk(sp(π)) > 0} ≥ k∗. Hence, ∆k∗ , . . . ,∆K be the partition of ∆(E) such that for any

π ∈ ∆(E), π ∈ ∆l if and only if l = min{k | µk(sp(π)) > 0}. Let ρl = arg minπ∈∆l
dµ(π).

By Proposition 1, ρk
∗

= BU(µk
∗
, E). Take any l > k∗. We shall show dµ(ρk

∗
) < dµ(ρl);

equivalently,

βσ(µk
∗
, ρk

∗
)− βσ(µl, ρl) < (l − k∗)

(
σ(1) + |σ(0)|

)
.

The above inequality is implied by Lemma 1.

A.10 Proof of Corollary 2

See the proof of Theorem 3 as this corollary is a special case of Theorem 3 when ε = 0.

Alternatively, Proposition 3 and Theorem 2 also imply this corollary.

A.11 Proof of Theorem 3

Let {%E} be a family of preference relations with an ε-CPS representation for some ε ∈ [0, 1).

Then, there are probability distributions µ0, . . . , µK such that

µE = BU(µk∗ , E) where k∗ = min{k ≤ K | µk(E) > ε}

for every E ∈ Σ. Let Σ0, . . . ,ΣK be a partition of Σ such that for each k, Σk is the collection

of events for which the prior µk is used for updating:

Σk = {E ∈ Σ | k = min{k̃ ≤ K | µk̃(E) > ε}}.

Throughout this proof, we assume that for any k ≤ K, Ek is an element of Σk. Take

ρ0, ρ0
, . . . , ρK , ρK with

ρ0 > ρ
0
> ρ1 > ρ

1
> . . . > ρK > ρ

K
> δ ρ0 > 0

and ρ
k
> ρk µ

E′k(Ek) for any Ek, E
′
k with µE

′
k(Ek) < 1.

Let µEk = BU(µk, E) for any E ∈ Σ. Let ρ be an element of ∆({µEkk }k≤K,Ek∈Σk) such

that (i) ρ(µEkk ) ∈ (ρ
k
, ρk) for any k ≤ K and (ii) ρ(µEkk ) > ρ(µ

E′k
k ) if µEkk 6= µ

E′k
k and
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µ
E′k
k (Ek) = 1.

Let us first show that there is ρ that satisfies (ii). Let µEkk �∗ µE
′
k

k if µEkk 6= µ
E′k
k

and µ
E′k
k (Ek) = 1. It is enough to show that �∗ is acyclic. To show acyclicity, suppose

that there are E1
k , . . . , E

T
k such that µ

Etk
k (Et+1

k ) = 1 for each t ≤ T − 1 and µ
ETk
k (E1

k) = 1.

Note that µ
E′k
k (Ek) = 1 is equivalent to sp(µk) ∩ E′k ⊆ Ek. Hence, µ

E′k
k (Ek) = 1 implies

sp(µk) ∩E′k ⊆ sp(µk) ∩Ek. Then, µ
Etk
k (Et+1

k ) = 1 implies sp(µk) ∩Etk ⊆ sp(µk) ∩Et+1
k and

µ
ETk
k (E1

k) = 1 implies sp(µk)∩ETk ⊆ sp(µk)∩E1
k . Hence, sp(µk)∩Etk = sp(µk)∩Et

′
k for any

t, t′; i.e., µ
Etk
k = µ

Et
′
k

k .

We now show that {%E} has a HT representation with (ρ, δ) when δ is large enough.

Hence, we shall show that for any Ek,

ρ(µEkk )µEkk (Ek) = ρ(µEkk ) > ρ(µ
Ej
j )µ

Ej
j (Ek) for any j 6= k.

For any j > k, the above holds since ρ(µEkk ) > ρ(µ
Ej
j ). Suppose now j < k. In this

case, µj(Ek) ≤ ε since k is the lowest index such that µk(Ek) > ε. Then, µ
Ej
j (Ek) =

BU(µj , Ej)(Ek) =
µj(Ek∩Ej)
µj(Ej)

. Since µj(Ek) ≤ ε and µj(Ej) > ε, there is a large enough

δ ∈ [0, 1) such that µ
Ej
j (Ek) ≤ δ. Hence, by the construction of ρ,

ρ(µEkk ) > δρ(µ
Ej
j ) ≥ ρ(µ

Ej
j )µ

Ej
j (Ek).

We finally show that the HT representation correctly chooses µEkk among {µE
′
k

k }E′k for each

Ek. When µ
E′k
k (Ek) < 1, we have

ρ(µEkk )µEkk (Ek) = ρ(µEkk ) > ρ
k
> ρkµ

E′k
j (Ek) > ρ(µ

E′k
k )µ

E′k
j (Ek).

When µ
E′k
k (Ek) = 1 and µEkk 6= µ

E′k
k ,

ρ(µEkk )µEkk (Ek) = ρ(µEkk ) > ρ(µ
E′k
k ) = ρ(µ

E′k
k )µ

E′k
j (Ek).

It is immediate from the above construction of δ, δ = 0 whenever ε = 0.

A.12 Proof of Proposition 7

Let B = Ω \A. Let xi = πm1(ωi) and δi = |g
(
ρi
)
ui|. The sender’s problem reduces to

max
x∈[0,1]n

n∑
i=1

ρi xi subject to
n∑
i∈A

δi f(xi) ≥
n∑
i∈B

δi f(xi).
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It is immediate that x∗i = 1 whenever i ∈ A. Let M =
∑

i∈A δi f(1). Then

max
xi∈[0,1]

∑
i∈B

ρi xi subject to M ≥
∑
i∈B

δi f(xi).

Case 1. f(x) = x and g(ρi)ui
ρi
6= g(ρj)uj

ρj
for any i, j with ui, uj < 0

Note that when ρi
δi
>

ρj
δj

, we cannot have 1 > x∗i and x∗j > 0. The optimal signal

structure takes a form

x∗i1 = . . . = x∗ik = 1 > x∗ik+1
=
M −

∑k
s=1 δis

δik+1

≥ x∗ik+2
= x∗i|B| = 0,

where
ρi1
δi1

> . . . >
ρik
δik

> . . . >
ρi|B|
δi|B|

.

Case 2. f is strictly concave.

Let us show that for any i, j, we cannot have x∗i , x
∗
j ∈ (0, 1). Take any i, j and let

δif(x∗i ) + δjf(x∗j ) = m. Then x∗i , x
∗
j must be the solution to the following maximization

problem

max
xi,xj∈[0,1]

ρixi + ρjxj subject to δif(xi) + δjf(xj) = m.

From the constraint, we have xj = f−1
(m−δif(xi)

δj

)
. Hence, the above maximization problem

reduces to

max
xi∈[a1,a2]

ρixi + ρj f
−1
(m− δif(xi)

δj

)
,

where a1 = max{0, f−1
(m−δjf(1)

δi

)
} and a2 = min{1, f−1

(m−δjf(0)
δi

)
}. The objective func-

tion is strictly convex since f is strictly concave and f is increasing. Hence, either x∗i = a1

or x∗i = a2. Note that x∗i = a1 means that either x∗i = 0 or x∗j = 1 and x∗i = a2 means that

either x∗i = 1 or x∗j = 0. Hence, the optimal signal structure takes a form

x∗i1 = . . . = x∗ik = 1 > x∗ik+1
=
M −

∑k
s=1 δisf(1)−

∑|B|
s=k+2 δisf(0)

δik+1

≥ x∗ik+2
= x∗i|B| = 0,

where {i1, . . . , i|B|} is a permutation of B.

A.13 Proof of Proposition 8

Similar to the argument in the proof of Proposition 7, we need to solve

max
xi∈[0,1]

∑
i∈B

ρi xi subject to M ≥
∑
i∈B

δi f(xi),
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where M =
∑

i∈A δi f(1). As long as M > 0, there exists x∗j > 0. Take any i 6= j. Let

us show that x∗i = 0. Let δif(x∗i ) + δjf(x∗j ) = m. Then x∗i , x
∗
j must be the solution to the

following maximization problem

max
xi,xj∈[0,1]

ρixi + ρjxj subject to δif(xi) + δjf(xj) = m.

From the constraint, we have xj = f−1
(m−δif(xi)

δj

)
. Hence, the above maximization problem

reduces to

max
xi∈[a1,a2]

ρixi + ρj f
−1
(m− δif(xi)

δj

)
,

where a1 = max{0, f−1
(m−δjf(1)

δi

)
} and a2 = min{1, f−1

(m−δjf(0)
δi

)
}. Since f ′(0) = 0,

(ρixi + ρj f
−1
(m−δif(xi)

δj

)
)′xi |xi=0 = ρi > 0. Hence x∗i = 0 cannot be optimal solution.

Hence, x∗i > 0.

A.14 Proof of Theorem 4

(ii) ⇒ (iii). Take any A ⊂ S. Since % and %A have SEU representations with respect to

(u, µ) and (u, µA), E is %A-unfavored if for any E′ ⊆ S and p, q ∈ ∆(X), for any u(p)µ(E′) =

u(q)µ(E) implies u(p)µA(E′) ≥ u(q)µA(E), with at least one strict inequality for some E′.

Note that when µ = µA, there is no %A-unfavored event since u(p)µ(E′) = u(q)µ(E) implies

u(p)µA(E′) = u(q)µA(E) for every E′ and p, q. However, by Partial Consequentialism, Ac

is %-unfavored. Hence, µ 6= µA.

If E is %A-unfavored, then δ(A) = µA(E)
µ(E) where δ(A) = minE′

µA(E′)
µ(E′) . Since µ 6= µA,

δ(E) < 1. Therefore,

E is %A -unfavored iff
µA(E)

µ(E)
= δ(A).

Consider the vector µ∗A = µA−δ(A)µ
1−δ(A) . For each s ∈ S, since µA(s)

µ(s) ≥ δ(A), µ∗A(s) =
µA(s)−δ(A)µ(s)

1−δ(A) ≥ 0. Moreover,
∑

s∈S µ
∗
A(s) =

∑
s∈S

µA(s)−δ(A)µ(s)
1−δ(A) = 1. Hence, µ∗A ∈ ∆(S)

and

µA = δ(A)µ+ (1− δ(A))µ∗A.

Note that E is %A-unfavored iff µA(E) = δ(A)µ(E) iff µ∗A(E) = 0. Then by Partial

Consequentialism, Ac is %A-unfavored iff µ∗A(Ac) = 0. Hence, µ∗A ∈ ∆(A). We now shall

show that there is a function d that µ∗A = arg minπ∈∆(A) dµ(π).

We now essentially repeat the part of Theorem 1 for the data set D∗ = {(µ∗A,∆(A))}A∈Σ

where µ∗S = µ. To apply the aforementioned generalization of Afriat’s theorem for general

budget sets, we first define the following revealed preference relation. We say that µ∗A is

strictly revealed preferred to µ∗B, denoted by µ∗AR
∗µ∗B, if µ∗B ∈ ∆(A) and µ∗A 6= µ∗B. First,
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note that µ∗SR
∗µ∗A for any A ∈ Σ \ {S}. Second, ¬µ∗AR∗µ∗S since µ 6∈ ∆(A). Third, for any

A,B ∈ Σ \ {S}, µ∗AR∗µ∗B implies that A is %B-favored. Hence, Partial Dynamic Coherence

is equivalent to the acyclicity of R∗.

By the arguments provided in the proof of Theorem 1, (µ∗A,∆(A)) is co-convex. SinceD∗

satisfies SARP, by Theorem 1 of Matzkin (1991), there is a strictly increasing, continuous,

strictly concave utility function u : ∆(S)→ R such that for any A ∈ Σ,

µ∗A = arg max
π∈∆(A)

u(π).

Let dµ = −u and note that µ is the global minimizer of dµ by the previous equation.

Moreover,

µ∗A = arg min
π∈∆(A)

dµ(π).

Finally, note that dµ is continuous and strictly convex. To sum up, we have

µA = δ(A)µ+ (1− δ(A)) arg min
π∈∆(A)

dµ(π)

for any A ⊆ S. We now shall show that δ(A) = δ(B).

Take any A,B ∈ Σ \ S. There are p, q, r such that µ(Ac)u(q) = u(p) and µ(Bc)u(q) =

u(r); equivalently, wAq ∼ p and wB q ∼B r. Since µA(Ac) = δ(A)µ(Ac), we have

δ(A)µ(Ac)u(q) = µA(Ac)u(q) = δ(A)u(p); equivalently, wAq ∼A δ(A) p + (1 − δ(A))w.

By Relative Tradeoff Consistency, we have wB q ∼ δ(A) r+ (1− δ(A))w; equivalently,

µB(Bc)u(q) = δ(B)µ(Bc)u(q) = δ(A)u(r) = δ(A)µ(Bc)u(q). Hence, δ(A) = δ(B) = δ.

Finally, we set δ(S) = δ and obtain a Weighted IU representation.

(i) ⇒ (ii). SEU postulates are trivially satisfied. Since µ has full-support, µA 6= µ for

any A ⊂ S. We now shall prove the necessity of the other three axioms. By the argument

above, E is %A-unfavored iff µ∗A(E) = 0 where µ∗A = arg minπ∈∆(A) dµ(π). Equivalently, E

is %A-favored iff µ∗A(E) = 1.

Partial Consequentialism is satisfied because A is %A-favored; i.e., µ∗A ∈ ∆(A).

To prove Partial Dynamic Coherence, take any A1, . . . , An ⊆ S such that Ai is %Ai+1-

favored for each i ≤ n − 1 and An is %A1-favored. In other words, µ∗Ai+1
(Ai) = 1 for each

i ≤ n − 1 and µ∗A1
(An) = 1. Note that µ∗Ai+1

(Ai) = 1 means that µ∗Ai+1
∈ ∆(Ai). Since

µ∗Ai is the unique minimizer of dµ in ∆(Ai), we have dµ(µ∗Ai) ≤ dµ(µ∗Ai+1
), the inequality

is strict when µ∗Ai 6= µ∗Ai+1
. We will obtain a contradiction if there is at least one strict

inequality. Hence, µ∗A1
= . . . = µ∗An , which implies %A1=%An .

To prove Relative Tradeoff Consistency, take any A,B ∈ Σ, p, q ∈ ∆, and α ∈ (0, 1)

such that

wAq ∼ p and wAq ∼A αp+ (1− α)w;
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equivalently, µ(Ac)u(q) = u(p) and µA(Ac)u(q) = αu(p). Since µA(Ac) = δ µ(A), we

have α = δ. Take any r such that wB q ∼ r; equivalently, µ(Bc)u(q) = u(r). Since

µB(Bc) = αµ(B), we have µB(Bc)u(q) = αu(r); equivalently, wB q ∼B α r + (1− α)w.
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B Bayesian Persuasion: A Richer Message Space - Online

Publication Only

When f is not linear, the revelation principle may be violated (see de Clippel and Zhang

(2022)). Hence, the assumption |M | = 2 is not without loss of generality. We show that

the conclusions of the previous section do not change substantively when |M | ≥ 3.

Suppose |M | ≥ 3 and a∗π(ms) = a holds for at most k ∈ [2, |M | − 1] distinct messages

ms. We assume f is continuous. The sender’s problem reduces to

max
π

k∑
s=1

( n∑
i=1

ρi πms(ωi)
)

subject to
∑
i∈A

δi f
(
πms(ωi)

)
≥

n∑
i∈Ac

δi f
(
πms(ωi)

)
for each s ≤ k.

We show that the optimal signal structures in this case are similar to ones we obtained

in Propositions 7 and 8.

Proposition 10. Suppose f is strictly concave. For any optimal signal structure π∗, there

is ω̄ ∈ Ac such that

π∗ms(ω1) =
1

k
for any ω1 ∈ A and s ≤ k, and

π∗ms(ω2) ∈ {0, 1} for any ω2 ∈ Ac \ {ω̄} and s ≤ k.

Proposition 10 shows that, when f is strictly concave, the sender randomizes at states

in A and never randomizes at states in Ac \ ω̄. In contrast, when f is strictly convex, the

sender never randomizes at states in A, but instead randomizes at states in Ac. This is

shown in Proposition 11 below.

Proposition 11. Suppose f is strictly convex and f ′(0) = 0. For any optimal signal

structure π∗,

π∗ms(ω1) ∈ {0, 1} for any ω1 ∈ A and s ≤ k

π∗m1
(ω2) = π∗ms(ω2) ∈ (0, 1) for any ω2 ∈ Ac and s ≤ k.

The intuition behind the above results is the same as the intuition behind Propositions

7 and 8 since strictly concave (convex) f leads to a strictly convex (concave) objective

function. The following example further illustrates the difference between the case β > 1

and the case β < 1.
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Example 8 (continuing from p. 24). Suppose now |M | = 3 and k = 2. When β < 1,

πHm1
= πHm2

=
1

2
, πMm1

∈ (0, 1), and πMm2
= πLm1

= πLm2
= 0.

However, when β > 1,

πHm1
= 1 and πHm2

= 0 and πMm1
= πMm2

∈ (0, 1) and πLm1
= πLm2

∈ (0, 1).

B.1 Proof of Proposition 10

We first solve

max
π

∑
s≤k

∑
i∈A

δi f
(
πms(ωi)

)
= max

π

∑
i∈A

δi

k∑
s=1

f
(
πms(ωi)

)
.

Since f is strictly concave, π∗ms(ωi) = 1
k for any s ≤ k and i ∈ A. Hence,

max
π

∑
s≤k

∑
i∈A

δi f
(
πms(ωi)

)
= k f(

1

k
)
∑
i∈A

δi = M.

Then we shall solve

max
π

k∑
s=1

(∑
i∈B

ρi πms(ωi)
)

=
∑
i∈B

ρi
( k∑
s=1

πms(ωi)
)

subject to
∑
s≤k

∑
i∈B

δi f
(
πms(ωi)

)
=
∑
i∈B

δi
(∑
s≤k

f
(
πms(ωi)

))
≤M.

The solution to the above problem will be the solution to the problem below for some Mi:

max

k∑
s=1

πms(ωi) subject to
∑
s≤k

f
(
πms(ωi)

)
≤Mi.

Since f is strictly concave, there is some s such that πms(ωi) = min{1, f−1(Mi)} and

πms′ (ωi) = 0 for each s′ 6= s. By Proposition 8, there is ω̄ ∈ Ac such that Mi is either f(1)

or f(0) for each i ∈ Ac \ {ω̄}.

B.2 Proof of Proposition 11

We first solve

max
π

∑
s≤k

∑
i∈A

δi f
(
πms(ωi)

)
=
∑
i∈A

δi

k∑
s=1

f
(
πms(ωi)

)
.
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Since f is strictly convex, there is s ≤ k such that π∗ms(ωi) = 1 and π∗ms′ (ωi) = 0 for each

s′ 6= s. Hence,

max
π

∑
s≤k

∑
i∈A

δi f
(
πms(ωi)

)
= f(1)

∑
i∈A

δi = M.

Then we shall solve

max
π

k∑
s=1

(∑
i∈B

ρi πms(ωi)
)

=
∑
i∈B

ρi
( k∑
s=1

πms(ωi)
)

subject to
∑
s≤k

∑
i∈B

δi f
(
πms(ωi)

)
=
∑
i∈B

δi
(∑
s≤k

f
(
πms(ωi)

))
≤M.

The solution to the above problem will be the solution to the problem below for some Mi:

max

k∑
s=1

πms(ωi) subject to
∑
s≤k

f
(
πms(ωi)

)
≤Mi.

Since f is strictly convex, πms(ωi) = min{ 1
k , f

−1(Mi
k )} for each s ≤ k. By Proposition 7,

Mi > f(0).
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