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Abstract

In macroeconomic models, it is standard practice to assume that imperfectly com-

petitive firms either set a price in advance and supply at the market-clearing quan-

tity (price-setting) or set a quantity in advance and sell at the market-clearing price

(quantity-setting). However, under imperfect information, these choices have different

costs and benefits. In this paper, we introduce a “prices vs. quantities” choice and

study its macroeconomic implications. We first derive a closed-form condition for the

advantage of price-setting over quantity-setting in terms of the price elasticity of de-

mand and four estimable moments that describe uncertainty. Firms prefer to set prices

under high demand uncertainty and prefer to set quantities under high aggregate price

uncertainty. We then embed the choice of choices in a monetary business-cycle model.

We derive macroeconomic dynamics under price-setting and quantity-setting and char-

acterize when each case emerges in equilibrium. Under quantity-setting, money has no

real effects and passes through fully into prices. Under price-setting, money has real

effects and passes through imperfectly to prices. This asymmetry generates new mon-

etary policy trade-offs: attempts to stabilize the economy can backfire by inducing a

regime shift that renders monetary policy ineffective. In US data, we estimate that the

economy has moved between price-setting and quantity-setting regimes over the last

60 years. As predicted by the theory, we find suggestive evidence that contractionary

monetary policy shocks are output-neutral and deflationary in quantity-setting regimes

and output-depressing and non-deflationary in price-setting regimes.
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1 Introduction

At the heart of modern macroeconomic models are firms that make supply decisions under

uncertainty, due to inattention (Mankiw and Reis, 2002), contracting frictions (Taylor, 1980;

Calvo, 1983), or organizational constraints (Klemperer and Meyer, 1989). It is common to

restrict these firms’ supply decisions to an important but narrow class: setting a price

and committing to produce enough to meet ex post demand. For example, price-setting is

assumed in classic models of inflation dynamics based on exogenous, infrequent adjustment

(Taylor, 1980; Calvo, 1983), menu costs (Barro, 1972; Sheshinski and Weiss, 1977), and

limited information (Woodford, 2003a; Maćkowiak and Wiederholt, 2009).

In this paper, we enrich the baseline model to allow firms to choose different supply

schedules. In the spirit of the classic debate regarding Bertrand (1883) and Cournot (1838),

we focus on the most extreme departure from price-setting, quantity-setting : that is, pro-

ducing a fixed amount and selling it at the ex post market-clearing price. Quantity-setting,

while less commonly studied than price-setting, is often applied in models of real fluctuations

in which production responds to expected demand (e.g., Angeletos and La’O, 2010, 2013;

Benhabib et al., 2015; Flynn and Sastry, 2022a,b). We allow optimizing firms to make a

“choice of choices” between price-setting and quantity-setting. These approaches are equally

consistent with the aforementioned informational, contracting, or organizational constraints.

However, they may differ in their appeal to firms and in their macroeconomic consequences.

We first study monopolistically competitive firms’ “choice of choices” in partial equilib-

rium. We derive a formula for the relative benefits of price-setting and quantity-setting in

terms of the elasticity of demand and four moments of firms’ beliefs about demand, costs,

and others’ prices. The basic logic echoes Weitzman’s (1974) classic “prices vs. quantities”

analysis of regulation: agents choose the decision variable that best insulates their payoff

from shocks on which they cannot condition. A key trade-off that emerges in our setting is

that price-setting insulates the firm against demand shocks, while quantity-setting insulates

the firm against shocks to aggregate prices.

We next embed firms’ price-setting vs. quantity-setting choice in a monetary business-

cycle model. Macroeconomic dynamics are drastically different when firms set quantities as

opposed to prices. In the former case, money does not affect real output and passes through

one-for-one into prices. In the latter case, money has positive effects on real output and

passes through less than one-for-one into prices. We derive the equilibrium incentives for

price- and quantity-setting and show that they can generate self-fulfilling macroeconomic

volatility in demand and prices. Moreover, monetary policy rules intended to stabilize the

economy can backfire by inducing a switch to a more volatile regime.
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We finally provide evidence that the “choice of choices” is empirically relevant. First,

estimating our formula for the comparative advantage of price-setting in the data, we find

evidence for both price and quantity regimes in US data – the former through the 1960s,

the Great Moderation, and the financial crisis, and the latter in the 1970s stagflation and

the post-Covid inflation. Second, testing our prediction that monetary policy has state-

dependent effects, we find that contractionary monetary shocks (Romer and Romer, 2004)

control inflation but not output in quantity-setting regimes and output but not inflation

in price-setting regimes. Taken together, these findings show that adding the prices vs.

quantities choice improves the model’s ability to match regime shifts in US macroeconomic

dynamics and suggest that the policy trade-offs implied by our theory are realistic.

The Prices vs. Quantities Choice. We first study the choice of setting prices vs.

quantities for a single firm. The firm operates a Cobb-Douglas production function and faces

a constant price elasticity of demand. It maximizes dollar profits, deflated by the aggregate

price, and multiplied by a real stochastic discount factor. It is uncertain about shocks to

demand, input prices, productivity, the stochastic discount factor, and the aggregate price

level, all of which are jointly lognormally distributed.

The firm chooses either its price or its quantity under this uncertainty. The assumption

underlying this choice is that the firm’s attentional, contracting, or organizational frictions

preclude it from making decisions after the realizations of uncertainty, but do not constrain

whether the firm’s ex ante plan takes a price or quantity form. Moreover, as is conventional,

we assume that the variable that the firm does not choose is determined by ex post market

clearing. If a firm chooses a price, it produces the quantity on the demand curve; if a firm

chooses a quantity, it sells at the price on the demand curve.

In this environment, we derive the following closed-form expression for the relative value

of price-setting versus quantity setting, ∆, in terms of the price elasticity of demand η > 1

and four moments of beliefs:

∆ =
1

2
(η − 1)

(
1

η
Var[Demand]− ηVar[Price Level]

− 2Cov[Real Marg. Cost, Demand]− 2ηCov[Real Marg. Cost, Price Level]

) (1)

Firms prefer to set prices when ∆ > 0, and quantities otherwise.

Four terms determine incentives in Equation 1. First, uncertainty about demand favors

price-setting. Intuitively, the ex post optimal relative price is a fixed markup over real

marginal costs regardless of demand – in this way, price-setting is hedged against unknown
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demand. Second, uncertainty about the price level favors quantity-setting. A price-setting

firm needs to know aggregate prices to scale its price, while a quantity-setting firm does not –

in this way, quantity-setting is hedged against unknown aggregate prices. Third and fourth,

a positive covariance of real marginal costs with demand or the price level favors quantity-

setting. In either case, price-setters mistakenly produce more exactly when marginal costs

are high, amplifying their ex post profit losses.

The prices vs. quantities choice is a special case of the general problem of choosing

supply functions, as studied by Klemperer and Meyer (1989) in the case of oligopoly. In

an extension, we study how firms optimally choose flexible supply schedules. The globally

optimal supply schedule is log-linear and nests pure price- and quantity-setting in special

cases that are consistent with the trade-offs described above. To tractably study equilibrium,

while maintaining the same economic trade-offs, we proceed in the remainder of the analysis

to study the prices vs. quantities choice.

Macroeconomic Model and Implications. To understand the equilibrium implications

of the prices vs. quantities choice, we embed it in a monetary business-cycle model with in-

complete information, following Woodford (2003a) and Hellwig and Venkateswaran (2009).

In addition to exogenous microeconomic and macroeconomic uncertainty, the model gener-

ates endogenous macroeconomic uncertainty about firms’ demand, aggregate prices, and real

marginal costs. In particular, because of imperfect competition between firms, the model

features aggregate demand externalities (Blanchard and Kiyotaki, 1987) whereby firms face

greater demand when aggregate output is high. Moreover, because households demand

money, both the level of the money supply and aggregate output jointly determine the ag-

gregate price level. Finally, because of income effects in labor supply, real marginal costs are

higher when aggregate output is higher.

We first study how aggregate outcomes evolve in temporary equilibria in which firms’

price-setting and quantity-setting decisions are taken as given. We find that monetary shocks

are neutral under quantity-setting and affect aggregate prices one-for-one. Intuitively, if firms

set quantities, any increase in demand that a monetary expansion may induce can never be

met by a commensurate increase in supply if firms imperfectly respond to the monetary

expansion. Thus, the price level must adjust one-for-one to clear the goods market and

aggregate output does not change in equilibrium. By contrast, under price-setting, monetary

shocks have effects on real output and affect aggregate prices less than one-for-one. The

basic logic behind this result echoes Lucas (1972): because firms are uncertain of the money

supply, they do not increase their prices one-for-one in response to monetary shocks, and so

monetary shocks can have real effects on the economy.

Having studied how the economy evolves under price- and quantity-setting, we return
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to the general-equilibrium version of our original question: when do equilibrium regimes

of price- and quantity-setting exist? We first show that “choices of choices” are strategic

complements: when other firms choose prices, a given firm has stronger incentives to choose

prices. The intuition is sharpest when the economy is driven solely by money shocks: the

price-setting regime induces more output volatility and less price volatility, which further

favors price-setting. Building on this observation, we characterize conditions under which

each equilibrium exists and under which both equilibria exist as functions of model primi-

tives. The latter allows the model to generate time-varying macroeconomic volatility as the

economy switches between price-setting and quantity-setting regimes.

Finally, we study monetary policy transmission. We ask how the extent to which the cen-

tral bank “leans into” or “leans against” productivity shocks affects macroeconomic volatil-

ity and the possibility of both price-setting and quantity-setting regimes. Monetary policy

that leans against productivity shocks can stabilize real output in a price-setting regime.

Moreover, while monetary policy cannot affect real outcomes under quantity-setting, it does

affect the volatility of aggregate prices and therefore the relative likelihood that the economy

switches to a quantity-setting regime. Thus, monetary stabilization policy can run the risk

of destabilizing the economy by inducing a switch into a higher volatility, quantity-setting

regime. Moreover, our theory implies that policymakers face a state-dependent “Phillips

curve.” In particular, there is a trade-off between reducing aggregate prices and keeping real

output high if and only if the economy is in a price-setting regime.

Taking the Model to the Data. To assess whether these trade-offs are empirically rele-

vant, we estimate a time series for the relative advantage of price-setting (∆ from Equation

1) in US data from 1960 to the present. We discipline parameters using a GARCH model for

the stochastic volatility of macroeconomic aggregates, a calibrated demand elasticity based

on the estimates of Broda and Weinstein (2006), and a calibrated ratio of microeconomic to

macroeconomic demand uncertainty based on the estimates of Bloom et al. (2018).

Using these methods, we find that both price-setting and quantity-setting are optimal at

different points in US macro history. Price-setting is optimal for most (87%) of the sample,

when inflation is relatively tame (the 1960s or the Great Moderation) and/or when demand

volatility spikes (the Great Recession or Covid-19 Lockdown). Quantity setting is optimal

when inflation volatility is high relative to demand volatility, as we estimate for much of

the 1970s and the post-Covid-Lockdown inflation. In summary, the data do not support the

assumption of time-invariant price-setting or quantity-setting. They instead suggest regime

shifts as incentives move over time.

We next test the model’s key macroeconomic prediction: monetary expansions increase

real output more in price-setting regimes and increase prices more in quantity-setting regimes
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(and vice versa for contractions). We do so by estimating impulse responses of output (real

GDP) and prices (GDP deflator) to Romer and Romer (2004) monetary policy shocks,

interacted with an indicator for whether firms would set prices according to our calculation

of price-setting’s comparative advantage.

We find, consistent with the theory, that monetary expansions have a relatively more

positive effect on real output and a relatively more negative effect on prices in price-setting

regimes. Strikingly, we cannot reject the null hypothesis of zero effect of monetary shocks on

real GDP in quantity-setting regimes, while we find strong evidence of a negative effect in

price-setting regimes. These results verify the novel prediction for macroeconomic dynamics

that the “prices vs. quantities” mechanism implies.

Related Literature. The closest theoretical analysis to our paper is Reis (2006), who

introduces a “prices vs. quantities” choice for a rationally inattentive firm. Studying a firm

that faces general demand and cost curves, Reis derives an approximate condition for whether

a firm should plan in prices or quantities. When the price elasticity of demand is constant,

demand shocks are Gaussian and multiplicative, and cost shocks are independent of demand

shocks, Reis shows that price-setting is preferred to quantity-setting. On the basis of this

analysis, Reis concludes that price-setting is the better choice for firms. Our analysis differs

from and builds on Reis’ analysis in three ways. First, our partial-equilibrium analysis

holds without approximation. Second, we study a case with uncertainty about multiple,

correlated shocks, which we show is important in business-cycle models in which costs and

demand are endogenously co-determined. Third, we characterize the prices vs. quantities

choice in equilibrium and study its implications for macro dynamics and policy.

Our work also relates theoretically to studies by Klemperer and Meyer (1986, 1989),

in which the authors study oligopoly games under uncertainty with, respectively, price vs.

quantity choice and supply-function choice. These authors’ work on supply-function equilib-

rium relates to prior work by Grossman (1981) and Hart (1985) motivating supply-function

choice as an outcome of realistic contracting and applying it to oligopoly without uncer-

tainty. Our analysis shares similar abstract motivations, but differs in studying monopolistic

competition instead of oligopoly and embedding the findings in a macroeconomic model.

Our work’s macroeconomic predictions relate to the literature on how uncertainty mat-

ters for the business cycle and vice versa. Previous work emphasizes how macroeconomic

uncertainty affects firms’ quantitative decisions, such as how much to produce (see, e.g.,

Basu and Bundick, 2017; Bloom et al., 2018). By contrast, our analysis studies how the

nature and extent of uncertainty about various factors affect the qualitative aspects of firms’

choices about what to choose. Moreover, our theory offers a novel mechanism for endogenous

macroeconomic uncertainty through variations in how firms make decisions. In so doing, our
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work relates to the literature that asks if the economy has time-varying volatility because of

either time-varying shock sizes or because of time-varying responsiveness (see, e.g., Berger

and Vavra, 2019). Our analysis, however, emphasizes that time-varying volatility may itself

generate time-varying responsiveness by changing the qualitative nature of firms’ choices.

Finally, our findings regarding monetary policy relate to the literature on the state-

dependent effects of monetary policy. This literature provides mixed evidence for whether

monetary policy is more powerful (Weise, 1999; Garcia and Schaller, 2002; Lo and Piger,

2005) or less powerful (Tenreyro and Thwaites, 2016) in recessions. Our analysis differs in

two respects. First, following our theory, our conditioning variable is not current or recent

GDP, but instead the comparative advantage of price-setting which depends on (multiple)

dimensions of uncertainty.1 Second, unlike all aforementioned studies save Weise (1999), we

jointly test for asymmetries in the responses of both output and prices.

Outline. The rest of the paper proceeds as follows. In Section 2, we perform our partial-

equilibrium analysis. In Section 3, we present a monetary business-cycle model. In Section

4, we derive our theoretical characterization of price-setting and quantity-setting equilibria.

In Section 5, we study the transmission of monetary policy. In Section 6, we apply our

model to estimate our formula for the comparative advantage of price-setting. In Section 7,

we test the macroeconomic implications of the theory by studying state-dependent effects of

monetary policy. Section 8 concludes.

2 Prices vs. Quantities for a Single Firm

We first study the problem of a single firm that must choose what to choose in the presence

of uncertainty about demand, costs, aggregate prices, and the stochastic discount factor. We

assume that the firm faces a constant price elasticity of demand, constant physical returns

to scale, and jointly normal productivity, demand, input price, risk pricing, and aggregate

price shocks. We derive a formula for the advantage of price-setting relative to quantity-

setting in units of log expected profits. The formula conveys that price-setting is relatively

more advantageous when demand volatility is high, aggregate price volatility is low, and the

covariances of marginal costs with demand and aggregate prices are lower.

1A related point applies to Castelnuovo and Pellegrino’s (2018) study of how the effects of monetary
policy depend on “aggregate uncertainty.” In our model, different components of uncertainty tip toward
price-setting or quantity-setting, and therefore have opposite predictions for the effects of monetary policy.
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2.1 The Firm’s Problem

Set-up. A firm produces output q ∈ R+ via a constant-returns-to-scale, Cobb-Douglas

production technology:

q = Θ
I∏
i=1

xαii (2)

where each xi ∈ R+ is the quantity of a different input, Θ ∈ R++ is the firm’s Hicks-neutral

productivity and αi ∈ [0, 1] is the input share of good i, with the property that
∑I

i=1 αi = 1.

The firm can purchase bundles of inputs x ∈ RI
+ at prices px ∈ RI

++. The firm faces a

constant-price-elasticity-of-demand demand curve given by:

p

P
=
( q
Ψ

)− 1
η

(3)

where p ∈ R+ is the market price, Ψ ∈ R++ is a demand shifter, P ∈ R++ is the aggregate

price level, and η > 1 is the price elasticity of demand. The firm’s profits are priced according

to a real stochastic discount factor Λ ∈ R++. The firm’s objective is to maximize (expected)

profits under this discount factor.

At the beginning of the decision period, the firm is uncertain about costs, demand, and

the stochastic discount factor. Specifically, they believe that the state (Ψ, P,Θ,Λ, px) follows

a log-normal distribution with mean µ and variance Σ.

Prices vs. Quantities. The firm must make a supply decision before resolving uncertainty

about the state, due to some underlying friction. This friction, which need not be specified

for our analysis, might be sticky information (Mankiw and Reis, 2002), infrequent ability to

adjust contracts (Taylor, 1980; Calvo, 1983), or slow implementation of decisions within an

organization (Klemperer and Meyer, 1989).

We allow the firm’s supply decision to take one of two forms. First, the firm can fix a

price p ∈ R+ and commit to selling the quantity that clears markets ex post. Second, the

firm can fix a quantity q ∈ R+ and sell at the market-clearing price ex post. We refer to

these strategies as “price-setting” and “quantity-setting,” respectively.

While both strategies are consistent with the assumed decision frictions, they have differ-

ent implications for market outcomes under uncertainty. We illustrate these differences via

an example in Figure 1. In the top two graphs, we illustrate the strategies of setting price

p = 1 (log p = 0) or setting quantity q = 1 (log q = 0) in a Marshallian “supply and demand”

diagram, indicating the firm’s uncertainty about the demand curve (arising from uncertain Ψ

and P ) with blue shading. If there were no uncertainty, or the demand curve coincided with

its mean, then both strategies would implement the same outcome log p = log q = 0. Instead,
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Figure 1: An Illustration of the Prices vs. Quantities Choice
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Note: This figure illustrates the outcomes of setting price p = 1 (Panel (a)) or quantity q = 1
(Panel (b)) in a calibrated example with η = 1.1, µ = 0, and Σ = I. In the top figures, the dashed
line indicates the supply choice, the blue solid line indicates the mean demand curve, and the blue
shading indicates 68% and 95% level sets of the demand-curve uncertainty. In the bottom figures,
the red density is pdf for the realized quantity-price pair (log q, log p).

with uncertainty, they implement different outcomes, which coincide with the intersection of

each supply curve with the stochastic demand curve. Price-setting creates uncertainty about

the ex post quantity, plotted in the bottom left figure. Quantity-setting creates uncertainty

about the ex post prices, plotted in the bottom right figure. Together with uncertainty about

costs and the stochastic discount factor, this induces uncertainty about discounted profits.

Because the entire distribution of discounted profits differs between the two choices, so too

does the firm’s ex ante payoff.

Optimal Price-Setting. To study the firm’s problem, we first consider optimal price-

setting. If the firm sets a price p, it sells the quantity that clears markets ex post, or lies on

the demand curve: q = Ψ
(
p
P

)−η
. That is, the firm has committed to meeting demand at

this price.
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We now derive the optimal price. The cost of producing q is given by:

c(q; px,Θ) = min
x∈RI+

I∑
i=1

pxixi s.t. q = Θ
I∏
i=1

xαii (4)

Taking first-order conditions, we obtain that the real cost function is given by:

c(q; px,Θ)

P
= M(P,Θ, px)q (5)

with real marginal cost:

M(P,Θ, px) = P−1Θ−1

I∏
i=1

(
pxi
αi

)αi
(6)

Thus, the problem of setting the optimal price reduces to:

V P = max
p∈R+

E
[
Λ
( p
P

−M
)
Ψ
( p
P

)−η]
(7)

Taking first-order conditions, the optimal price is given by:

p∗ =
η

η − 1

E [ΛMP ηΨ]

E [ΛP η−1Ψ]
(8)

where the numerator is the expected marginal benefit of charging higher prices in reducing

costs and the denominator is the expected marginal cost of charging higher prices in increas-

ing revenue. In the absence of uncertainty, this reduces to the statement that the optimal

relative price is a constant markup of η
η−1

on real marginal costs. Substituting the optimal

price into the firm’s payoff function and rearranging, we obtain that:

V P =
1

η − 1

(
η

η − 1

)−η
E [ΛMP ηΨ]1−η E

[
ΛP η−1Ψ

]η
(9)

Optimal Quantity Setting. We now study quantity-setting. If the firm sets a quantity

q, it sells at the price that clears markets ex post : p = P
(
q
Ψ

)− 1
η . This is the natural analog

of the ex post market clearing assumed with price-setting. In practice, it may reflect firms’

ability to deploy managerial resources toward running an auction (Walrasian or otherwise)

after demand is realized, at the cost of having to specify production in advance.
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Applying the earlier steps, the problem of setting the optimal quantity reduces to:

V Q = max
q∈R+

E
[
Λ

(( q
Ψ

)− 1
η −M

)
q

]
(10)

The optimal quantity is given by:

q∗ =

 η

η − 1

E [ΛM]

E
[
ΛΨ

1
η

]
−η

(11)

where the numerator is the expected marginal cost of expanding production and the de-

nominator is the expected marginal revenue from expanding production. In the absence of

uncertainty, this is the quantity that the firm sells by setting its relative price equal to a

constant markup on its real marginal cost. Substituting the optimal quantity into the firm’s

payoff, we obtain:

V Q =
1

η − 1

(
η

η − 1

)−η
E [ΛM]1−η E

[
ΛΨ

1
η

]η
(12)

2.2 Result: When to Set Prices vs. Quantities

A cursory inspection of the values of price-setting and quantity-setting (Equations 9 and

12) reveals that they are not generally equal. We now characterize the relationship between

the two and study the conditions under which each is preferred. Define the log-difference

between the values of price-setting and quantity-setting as:

∆ = log V P − log V Q (13)

We obtain that:

∆ = η

(
logE

[
ΛP η−1Ψ

]
− logE

[
ΛΨ

1
η

])
− (η − 1)

(
E [ΛMP ηΨ]− E [ΛM]

)
(14)

where we call the first term the “revenue-hedging” benefit of prices over quantities and the

second term the “cost-hedging” cost of prices over quantities.

Under our log-normality assumption on the distribution of (Ψ, P,Θ,Λ, px), we have that

(Ψ, P,Λ,M) is also log-normal. Thus, we can analytically evaluate these expectations and

compute their differences. Performing these calculations, we obtain the following formula

(that we claimed in Equation 1) for the proportional benefit of prices over quantities:
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Proposition 1 (Prices vs. Quantities). The comparative advantage of prices over quantities

is given by:

∆ =
1

2
(η − 1)

(
1

η
σ2
Ψ − ησ2

P − 2σΨ,M − 2ησP,M

)
(15)

Proof. See Appendix A.1.

This formula expresses the relative benefit of prices over quantities in terms of a single

structural parameter, the price elasticity of demand, and the following four moments: the

variance of demand shocks, the variance of the aggregate price, the covariance between

demand shocks and real marginal costs, and the covariance between the aggregate price and

real marginal costs. In the four relevant moments, price-setting is relatively better than

quantity-setting when (i) the volatility of demand σ2
Ψ is high, (ii) the volatility of aggregate

prices σ2
P is low, (iii) the covariance between demand and real marginal costs is low, and (iv)

the covariance between aggregate prices and real marginal costs is low. In the absence of

uncertainty, ∆ = 0 and the firm is indifferent between setting prices or quantities. Finally,

the proof in Appendix A.1 reveals that the distribution of the stochastic discount factor

drops out of the calculation; thus, ∆ is in units of log expected real profits.

To understand the intuition for (i)-(iv), we go case by case. First, in the presence of

demand shocks alone, setting relative prices equal to a constant markup on marginal costs

coincides with the first-best. By contrast, fixing the quantity supplied induces losses. Thus,

demand shocks favor price-setting. Second, in the face of aggregate price shocks, fixing an

optimal quantity allows relative prices to adjust perfectly while fixing an optimal price leads

the firm’s price to diverge from the aggregate price and loses revenue. Thus, aggregate price

shocks favor quantity-setting. Third and fourth, when demand and real marginal costs or

aggregate prices and real marginal costs negatively covary, price-setting causes the firm to

produce a large amount exactly when costs are low, favoring price-setting. The extent to

which the firm values (i)-(iv) is mediated by the price elasticity of demand, as that determines

how rapidly prices respond to underlying changes.

As important as what does appear is what does not appear. First, in light of constant

physical returns-to-scale, no means of any variables appear. Second, no moments involving

the stochastic discount factor appear. This is somewhat surprising as the proof of the result

shows that both the revenue-hedging benefits and cost-hedging costs depend on the prop-

erties of the stochastic discount factor. However, the stochastic discount factor enters both

of these terms symmetrically, and its properties are therefore immaterial for the comparison

of price-setting and quantity-setting. Third, the variance of real marginal costs does not

appear as both quantity and price-setting manage real marginal cost variation equally well

under constant physical returns.
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We finally observe that the advantage of price-setting in Equation 15 could be empirically

estimated if we could measure the elasticity of demand and firms’ uncertainty about demand,

the price level, and marginal costs. This calculation relies on the model structure of our firm’s

problem, but not on the specific general equilibrium closure we will pursue in Sections 3, 4,

and 5. We will do such a calculation in Section 6.

2.3 Extensions

Before proceeding to study the macroeconomic implications of our findings, we briefly review

two extensions of our single-firm analysis.

Adjustment Costs. Our model assumes that there are no direct costs to ex post variation

in prices or quantities, holding fixed their effects on (discounted) profits. However, in prac-

tice, adjusting quantities ex post could be costly because it is difficult to deploy (or hoard)

factors, and adjusting prices ex post could be costly because it confuses or upsets consumers.

To capture these forces, we pursue an extension in Appendix B.1 which allows for adjustment

costs proportional to the unexpected variance of log quantities and log prices and provide the

analog to Proposition 1. Intuitively, quantity variance penalties favor quantity-setting and

price variance penalties favor price-setting. Nonetheless, the key considerations described

in our main analysis survive. In this way, adjustment costs might tilt the balance toward

either prices or quantities, but not upset the logic that prices become more favorable with

high demand variance and low price-level variance.

Flexible Supply Schedules. Our analysis restricted attention to the “prices vs. quan-

tities” choice. This choice is traditional (Cournot, 1838; Bertrand, 1883; Weitzman, 1974),

but obviously not exhaustive. In principle, as noted by Grossman (1981), Hart (1985), and

Klemperer and Meyer (1989), firms could choose other supply schedules that link prices

and quantities. Price-setting and quantity-setting are nested as “horizontal” and “vertical”

supply curves, as indicated in Figure 1.

In Appendix B.2, we derive the optimal general supply schedule in our setting. We show

that this schedule is log-linear and limits the price-setting and quantity-setting in natural

special cases: respectively, when demand or price-level variance drowns out all other forces.

Moreover, the contribution of each term toward price- or quantity-setting in Proposition 1

extends to a smooth comparative static in the slope of the price-quantity relationship under

the optimal flexible schedule. We proceed in the subsequent general-equilibrium analysis

under the binary prices vs. quantities choice instead of the continuous supply-function

choice because the former admits more tractable general-equilibrium analysis.
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3 A Monetary Macroeconomic Model

We now embed the problem of “choosing what to choose” in a monetary macroeconomic

model. We intentionally use standard microfoundations (see, e.g., Woodford, 2003b; Hell-

wig and Venkateswaran, 2009; Drenik and Perez, 2020) and deviate only in allowing firms

to choose whether to commit to price or quantity choice. We use this model to derive a

fully micro-founded, general-equilibrium specialization of Proposition 1 and to study the

equilibrium implications of price vs. quantity choice.

3.1 Households

Time is discrete and infinite t ∈ N. There is a continuum of differentiated goods indexed by

i ∈ [0, 1], each of which is produced by a different firm.

A representative household has expected discounted utility preferences with discount

factor β ∈ (0, 1) and per-period utility defined over consumption of each variety, Cit; holdings

of real money balances, Mt

Pt
; and labor effort supplied to each firm, Nit:

E0

[ ∞∑
t=0

βt
(
C1−γ
t

1− γ
+ ln

Mt

Pt
−
∫
[0,1]

ϕitNit di

)]
(16)

where γ ≥ 0 indexes income effects in both money demand and labor supply and ϕit > 0

is the marginal disutility of labor supplied to firm i at time t, which is an IID lognormal

variable with time-dependent variance, or log ϕit ∼ N(µϕ, σ
2
ϕ,t). The consumption aggregate

Ct is a constant-elasticity-of-substitution aggregate of the individual consumption varieties

with elasticity of substitution η > 1:

Ct =

(∫
[0,1]

ϑ
1
η

itc
η−1
η

it di

) η
η−1

(17)

where ϑit is an IID preference shock that is also lognormal with time-dependent variance, or

log ϑit ∼ N(µϑ, σ
2
ϑ,t). We also define the corresponding ideal price index:

Pt =

(∫
[0,1]

ϑitp
1−η
it

) 1
1−η

(18)

Households can save in either money or risk-free one-period bonds Bt (in zero net supply)

that pay an interest rate of (1 + it). The household owns the firms in the economy, each of

which has profits of Πit. Thus, the household faces the following budget constraint at each

13



time t:

Mt +Bt +

∫
[0,1]

pitCit di =Mt−1 + (1 + it−1)Bt−1 +

∫
[0,1]

witNit di+

∫
[0,1]

Πit di (19)

where pit is the price of variety of variety i and wt is the nominal wage.

The aggregate money supply follows an exogenous random walk with drift µM and time-

dependent volatility σMt :

logMt = logMt−1 + µM + σMt ε
M
t (20)

where the money innovation is an IID random variable that follows εMt ∼ N(0, 1). So that

interest rates remain strictly positive, we assume that 1
2
(σMt )2 ≤ µM for all t ∈ N.

3.2 Firms

The production side of the model follows closely the model from Section 2. Each consumption

variety is produced by a separate monopolist firm, also indexed by i ∈ [0, 1]. Each firm

operates a production technology that is linear in labor, the sole input:

qit = zitAtLit (21)

where Lit is the amount of labor employed, zit is IID lognormal with time-dependent volatility

σz,t, or log zit ∼ N(µz, σ
2
z,t), and logAt follows an AR(1) with time-varying volatility σAt :

logAt = ρ logAt−1 + σAt ε
A
t (22)

where the productivity innovations are IID and follow εAt ∼ N(0, 1). When the firm sells

output at price pit and hires labor at wage wit, its nominal profits are given by:

Πit = pitqit − witLit (23)

Since firms are owned by the representative household, their objective is to maximize expec-

tations of real profits, discounted by some stochastic discount factor, or Λt
Pt
Πit.

At the beginning of time period t, firms first observe At−1 and Mt−1. Firms also receive

private signals about aggregate productivity sAit and the money supply sMit :

sAit = logAt + σA,sε
s,A
it

sMit = logMt + σM,sε
s,M
it

(24)
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where the signal noise is IID and follows εs,Ait , ε
s,M
it ∼ N(0, 1). Firms are uninformed about

the idiosyncratic productivity shock zit, demand shock ϑit, and labor supply shock ϕit.

In each period, conditional on this information set, firms decide whether to set prices

or set quantities and choose the value of their respective instrument. As in the partial-

equilibrium example of Section 2, firms make this decision under uncertainty about demand,

costs, and the stochastic discount factor. But, as will become clear, this uncertainty is now

partially about endogenous objects.

After firms make their choices, the money supply, idiosyncratic demand shocks, and

both aggregate and idiosyncratic productivity are realized. Finally, the household makes its

consumption and savings decisions and any prices that were not fixed adjust to clear the

market.

3.3 Equilibrium

We define equilibrium in two steps. We first fix firms’ “choice of choices” at each date t to

define a rational expectations temporary equilibrium:

Definition 1 (Temporary Equilibrium). A temporary equilibrium is a partition of N into

two sets T P and T Q and a collection of variables{
{pit, qit, Cit, Nit, Lit, wit, ϕit, ϑit, zit,Πit}i∈[0,1], Ct, Pt,Mt, At, Bt, Nt,Λt, σ

ϕ
t , σ

ϑ
t , σ

z
t , σ

A
t , σ

M
t

}
t∈N

such that:

1. In periods t ∈ T P , all firms choose their prices pit to maximize expected real profits

under the household’s real stochastic discount factor.

2. In periods t ∈ T Q, all firms choose their quantities qit to maximize expected real profits

under the household’s real stochastic discount factor.

3. In all periods, the household chooses consumption Cit, labor supply Nit, money holdings

Mt, and bond holdings Bt to maximize their expected utility subject to their lifetime

budget constraint, while Λt is the household’s marginal utility of consumption.

4. In all periods, money supply Mt and productivity At and evolve exogenously via Equa-

tions 20 and 22.

5. In all periods, firms’ and consumers’ expectations are consistent with the equilibrium

law of motion.

6. In all periods, the markets for the intermediate goods, final good, labor varieties, bonds,

and money balances all clear.
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In a temporary equilibrium, firms set either prices or quantities, but the choice between

the two is not necessarily optimal. We define an equilibrium as a temporary equilibrium in

which the choice between price and quantity-setting is optimal at all times:

Definition 2 (Equilibrium). An equilibrium is a temporary equilibrium in which:

1. If t ∈ T P , all firms find price-setting optimal. That is, expected real profits under the

household’s real stochastic discount factor are weakly higher under price-setting than

quantity-setting.

2. If t ∈ T Q, all firms find quantity-setting optimal. That is, expected real profits under

the household’s real stochastic discount factor are weakly higher under price-setting

than quantity-setting.

4 Prices vs. Quantities in General Equilibrium

We now study the equilibrium properties of the model. We begin by deriving the structure of

firms’ demand and costs in equilibrium. Using this, we characterize the aggregate behavior

of consumption and prices under quantity-setting and price-setting temporary equilibrium,

in which all firms always use the respective planning instrument. If all firms set prices,

monetary shocks have effects on real output. By contrast, if all firms set quantities, money

is neutral and has no effect on real output. We finally characterize when price-setting and

quantity-setting equilibria obtain and derive comparative statics for their presence in terms

of the extent and nature of aggregate volatility.

4.1 Demand and Costs in Equilibrium

We begin by deriving the general-equilibrium analogs of the four objects that were central

to the firm’s problem in Section 2: firm-specific demand shocks, firm-specific marginal costs,

the price level, and the stochastic discount factor. From the intratemporal Euler equation

for consumption demand vs. labor supply, the household equates the marginal benefit of

supplying additional labor witC
−γ
t P−1

t with its marginal cost ϕit. Thus, labor supply is

wit = ϕitPtC
γ
t (25)

From the intertemporal Euler equation between consumption and money today, the cost of

holding an additional dollar today C−γ
t P−1

t equals the benefit of holding an additional dollar
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today M−1
t plus the value of an additional dollar tomorrow βEt

[
C−γ
t+1

1
Pt+1

]
:

C−γ
t

1

Pt
=

1

Mt

+ βEt
[
C−γ
t+1

1

Pt+1

]
(26)

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+it times the value of an additional dollar tomorrow:

C−γ
t

1

Pt
= β(1 + it)Et

[
C−γ
t+1

1

Pt+1

]
(27)

By combining Equations 26 and 27, we obtain that aggregate consumption follows:

Ct =

(
it

1 + it

) 1
γ
(
Mt

Pt

) 1
γ

(28)

which implies that aggregate consumption is increasing in real money balances, with elasticity

given by 1
γ
. Intuitively, when consumption has greater curvature, income effects in money

demand are larger and money demand is more responsive to changes in consumption. Thus,

consumption responds less to real money balances when γ is large. The level of real money

balances naturally depends on the opportunity cost of holding money it, and so money

demand is lower when interest rates are high, all else equal.

Moreover, by substituting Equation 28 back into Equation 27, we obtain a recursion that

interest rates must satisfy:

1 + it
it

= 1 + βEt
[
1 + it+1

it+1

Mt

Mt+1

]
(29)

As money follows a random walk, solving this equation forward and employing the house-

hold’s transversality condition, we obtain that:2

1 + it
it

= 1 + β exp{−µ+
1

2
(σMt )2}

∞∑
i=1

i∏
j=1

β exp{−µ+
1

2
σ2
M,t+j} (31)

which is deterministic, but depends on the full future path of monetary volatility.

2Observe also that in the case of time-invariant money volatility, interest rates follow the familiar equation:

1 + i∗ = β−1 exp

{
µM − 1

2
(σM )2

}
(30)
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From the household’s choice among varieties, the demand curve for each variety i is

pit
Pt

=

(
cit
ϑitCt

)− 1
η

(32)

Firm i faces strong demand when aggregate consumption is high, its competitors’ prices are

low, or its idiosyncratic demand is high. Moreover, η is the price elasticity of demand.

Summarizing the above, we have derived the following equilibrium mapping from endoge-

nous objects to the objects that are relevant to the firm in partial-equilibrium.

Lemma 1 (Firm-Level Shocks in General Equilibrium). In any temporary equilibrium, de-

mand shocks, aggregate price shocks, stochastic discount factor shocks, and marginal cost

shocks follow:

Ψit = ϑitCt , Pt =
it

1 + it
C−γ
t Mt , Λt = C−γ

t , Mit =
ϕitC

γ
t

zitAt
(33)

Proof. See Appendix A.2.

The first expression conveys that demand shocks have two components: an idiosyncratic

shock deriving from consumer preferences and an aggregate shock corresponding to the ag-

gregate demand externality (Blanchard and Kiyotaki, 1987). The second expression derives

from households’ demand for money balances, and conveys the fact that the price level must

increase in nominal money balances, increase in the nominal interest rate, and decrease in

consumption to lie on this demand curve. The third expression derives from the represen-

tative consumer’s CRRA preferences. The fourth expression derives from combining the

labor supply curve with the assumption that firms’ productivity has a microeconomic com-

ponent zit and a macroeconomic component At. Finally, note that the presence of common

macroeconomic variables in these four expressions necessarily implies covariances between

these objects.

An important implication of Lemma 1 is that, if Ct is log-normal in a temporary equi-

librium, then so too is (Ψit, Pt,Λt,Mit). This follows from the fact that all four expressions

are log-linear and all other fundamentals (Mt, ϑit, ϕit, zit, At) are log-normal by assumption.

Therefore, if we can find that Ct is log-normal in a temporary equilibrium, our Proposition 1

can be directly applied to calculate the relative benefits of quantity-setting and price-setting

in general-equilibrium. We will call a temporary equilibrium in which logCt is linear in

(logAt, logMt) a log-linear temporary equilibrium.
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4.2 Outcomes Under Price-Setting and Quantity-Setting

We next characterize aggregate outcomes in the economy taking as given that all firms

set either prices or quantities. In particular, we establish that there are indeed temporary

equilibria in which aggregate consumption is exactly log-linear in aggregate shocks.

Outcomes Under Price-Setting. Suppose that all firms set prices. We guess and verify

that there exists a unique temporary equilibrium in which aggregate consumption is log-

linear in aggregate shocks:

logCt = χP0,t + χPA,t logAt + χPM,t logMt (34)

Combining our formula for the optimal price (Equation 8) with Lemma 1, the optimal price

follows:

log pit = log

(
η

η − 1

)
+ logEit

[
ϕit(zitAt)

−1P η
t ϑitCt

]
− logEit

[
C1−γ
t P η−1

t ϑit
]

(35)

Substituting our guess that Ct is log-linear in the aggregate shocks, we obtain that pit is

log-linear in the firm’s signals about the aggregate shocks. We can then aggregate the prices

that firms set by exploiting the formula for the aggregate price along with log-normality of

the signals and the idiosyncratic demand shocks:

logPt =
1

1− η
logEt [exp {log ϑit + (1− η) log pit}] (36)

Substituting this into the household’s consumption demand (Equation 28) yields a formula

for aggregate consumption. As this is indeed log-linear, we can solve for the unique coeffi-

cients (χP0,t, χ
P
A,t, χ

P
M,t) that verify the conjecture. To this end, define:

κAt =
1

1 +
(
σA,s
σAt

)2 , κMt =
1

1 +
(
σM,s
σMt

)2 (37)

which is the posterior weight on the firms’ signals of productivity and the aggregate money

supply. Performing the above steps yields the dynamics of the economy when all firms choose

to set prices.

Proposition 2 (Outcomes under Price-Setting). If all firms set prices, output in the unique

log-linear temporary equilibrium follows:

logCt = χP0,t +
1

γ
κAt logAt +

1

γ

(
1− κMt

)
logMt (38)
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and the aggregate price in the unique log-linear temporary equilibrium is given by:

logPt = χ̃P0,t − κAt logAt + κMt logMt (39)

where χP0,t and χ̃P0,t are constants that depend only on parameters and past shocks to the

economy.

Proof. See Appendix A.3.

This result establishes that, when all firms set prices and information about the money

supply is imperfect, monetary shocks affect real output and consumption. The basic logic

echoes that of Lucas (1972). When the money supply increases by one percent, the partial-

equilibrium effect is that real money balances increase by one percent and, therefore, con-

sumption increases by 1
γ
percent. This causes real wages to increase by γ × 1

γ
= 1 percent.

Given their imperfect information, firms perceive on average that the money supply has

increased by κMt < 1 percent and therefore that real marginal costs have increased by κMt

percent. Since price-setting firms charge a constant markup on their expected marginal

costs, they increase prices by κMt percent on average. On top of this, there are two general

equilibrium effects. First, this κMt percent increase in prices reduces real money balances

by κMt percent, which reduces consumption by 1
γ
κMt percent, which decreases perceived real

marginal costs and prices by (κMt )2. Second, as prices have gone up by κMt percent, all firms

adjust their prices up by (κMt )2. These two general equilibrium effects perfectly offset. Thus,

the total effect is simply the partial-equilibrium effect and prices rise by κMt percent. Thus,

prices rise by κMt percent. Given this imperfect pass-through to equilibrium prices, the equi-

librium effect on real money balances of a one percent expansion in the money supply is a

1− κMt percent increase. Hence, aggregate consumption increases by 1
γ
(1− κMt ) percent.

A similar logic underlies the pass-through of productivity shocks. Suppose that produc-

tivity increases by one percent. Because of imperfect information, firms perceive this as a

κAt percent decrease in marginal cost. Under price-setting, this translates to an equal per-

centage reduction in prices. As above, there are off-setting general equilibrium effects from

factor markets and firms’ desire to match competitors’ prices. Finally, the κAt percent fall in

prices induces an equivalent increase in real money balances and a 1
γ
κAt percent increase in

consumption.

Outcomes Under Quantity-Setting. Next, we suppose that all firms set quantities. We

again conjecture that aggregate consumption is log-linear in aggregate shocks:

logCt = χQ0,t + χQA,t logAt + χQM,t logMt (40)
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where, as we derived in Section 2 the optimal quantity set by firms is given by

log qit = −η
[
log

(
η

η − 1

)
+ logEit

[
ϕit (zitAt)

−1]− Eit
[
ϑ

1
η

itC
−γ+ 1

η

t

]]
(41)

Substituting our guess that Ct is log-linear in the aggregate shocks, we can obtain a log-

linear expression for qit, which we may substitute into the consumption index (Equation 17).

Aggregating quantities in this way yields a log-linear expression for aggregate consumption,

which we can use to solve for the unique coefficients
(
χQ0,t, χ

Q
A,t, χ

Q
M,t

)
. We derive the following

equilibrium law of motion:

Proposition 3 (Outcomes under Quantity-Setting). If all firms set quantities, output in

the unique log-linear temporary equilibrium follows:

logCt = χQ0,t +
ηκAt

1− κAt (1− ηγ)
logAt (42)

and the aggregate price in the unique log-linear temporary equilibrium is given by:

logPt = χ̃Q0,t −
ηγκAt

1− κAt (1− ηγ)
logAt + logMt (43)

where χQ0,t and χ̃Q0,t are constants that depend only on parameters and past shocks to the

economy.

Proof. See Appendix A.4.

Money supply shocks are neutral in quantity-setting equilibria, in a striking and impor-

tant contrast to the price-setting analysis of Proposition 2. The reason is subtle. Suppose

that the money supply goes up by one percent. Absent any adjustment in prices, consumer

demand would go up by 1
γ
percent. This has two effects on firms’ quantity-setting choices.

First, firms on average perceive that wages and real marginal costs increase by κMt = γ× 1
γ
κMt

percent. Second, firms on average perceive that aggregate demand increases by 1
γ
× 1

η
κMt

percent. Thus, the quantity that the firm sets increases by 1
γ
κMt η

(
1
η
− γ
)
percent. How-

ever, for the goods market to clear, we require that the change in demand equals the change

in supply, which requires that 1
γ

= 1
γ
κMt η

(
1
η
− γ
)
. This is equivalent to requiring that

1 = κMt (1 − ηγ). However, as ηγ ≥ 0 and κMt < 1, this is impossible. Intuitively, even in

the absence of income effects in labor supply, as firms imperfectly respond to any increases

in demand that a monetary expansion might induce, supply can never meet demand. Thus,

prices must increase until any increase in demand is perfectly offset, which requires that real
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money balances remain unchanged. Hence, there are no real effects of changes in the money

supply and full pass-through of changes in the money supply into prices.

To understand the pass-through of productivity shocks under quantity-setting, we de-

scribe the partial-equilibrium effects on production and their general-equilibrium amplifica-

tion. Under quantity-setting, when aggregate productivity goes up, firms on average think

that aggregate productivity has gone up by κAt as they observe this increase imperfectly.

In response to a one percent productivity increase, firms increase production by η percent.

This itself increases aggregate demand by 1
η
percent through aggregate demand externalities,

which increases production by η× 1
η
= 1 percent. However, it also increases wages by γ per-

cent because of income effects, which causes firms to reduce production by ηγ percent. Thus,

the direct effects on production are κAt × η and the first-round general-equilibrium effects

are κAt × (1− ηγ). Iterating this logic through higher-round general-equilibrium effects, we

obtain that:3

∂ logCt
∂ logAt

= ηκAt︸︷︷︸
PE

+ ηκAt

∞∑
k=1

[
κAt × (1− ηγ)

]k
︸ ︷︷ ︸

GE

=
ηκAt

1− κAt (1− ηγ)
(44)

Thus, 1
1−κAt (1−ηγ)

is a general-equilibrium multiplier to the partial equilibrium effect. The

multiplier amplifies shock response if ηγ < 1, dampens shock response if ηγ > 1, and

is neutral if ηγ = 1. Overall, the pass-through of productivity shocks increases in firms’

perception of productivity shocks κAt because this increases both the partial-equilibrium

effect and the multiplier. The pass-through decrease in η and γ, due to their effects on the

multiplier.

Comparing Outcomes under Price-Setting and Quantity-Setting. We now sum-

marize the key differences in how macroeconomic variables respond to shocks under the

two regimes. We first formalize the sharp difference between how the economy responds to

monetary shocks across the price-setting and quantity-setting regimes:

Corollary 1 (Differential Responses to Monetary Shocks). In the unique log-linear tempo-

rary equilibria under price-setting and quantity-setting, the responses of real output and the

aggregate price to money shocks satisfy:

∂ logCP
t

∂ logMt

≥ ∂ logCQ
t

∂ logMt

= 0 1 =
∂ logPQ

t

∂ logMt

≥ ∂ logP P
t

∂ logMt

(45)

with equality if and only if κMt = 1.

3This logic relies on κA
t (1− ηγ) > −1, but Proposition 3 and its proof do not.
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For the reasons we have described, money shocks have a higher pass-through into real con-

sumption and a lower pass-through into prices in a price-setting economy versus a quantity-

setting economy. These differences vanish if firms are perfectly informed about the money

supply, highlighting the importance of uncertainty for differentiating price- and quantity-

setting outcomes. We will test this prediction of differential pass-through in Section 7. We

next summarize the differential response to productivity shocks:

Corollary 2 (Differential Responses to Productivity Shocks). In the unique log-linear tem-

porary equilibria under price-setting and quantity-setting, the responses of real output and

the aggregate price to productivity shocks satisfy, when ηγ < 1:

∂ logCP

∂ logA
≥ ∂ logCQ

∂ logA
> 0

∂ logP P

∂ logA
≤ ∂ logPQ

∂ logA
< 0 (46)

with the reverse inequalities (but the same sign) when ηγ > 1 and equality for the weak

inequalities (but the same sign) if κAt = 1 or ηγ = 1.

Whether output responds more or less to productivity shocks under price- or quantity-

setting depends on whether ηγ ≷ 1 (the behavior of prices is the opposite). When ηγ < 1,

the quantity-setting regime has both a larger PE effect and an amplifying multiplier; when

ηγ > 1, the quantity-setting regime has a smaller PE effect and a dampened multiplier.

When either ηγ = 1 (zero GE effects) or κAt = 1 (no uncertainty about productivity), the

shock responses are the same in each regime. Intuitively, it is the elasticity of substitution

that mediates how much firms choose to adjust their production in response to a perceived

productivity change under quantity-setting. By contrast, it is real money balances – which

are independent of η – that mediate the responsiveness of output in a price-setting regime.

Overall, these results emphasize that the general equilibrium transmission of shocks to the

economy substantially depends on the firms’ price vs. quantities choice.

4.3 Prices vs. Quantities in Equilibrium: Incentives and Strategic

Interactions

Having described dynamics in temporary equilibria (Definition 1) in which all firms set prices

or quantities by assumption, we now return to the central question of Section 2: when would

firms prefer to set one or the other?

To study this, we first derive an expression for ∆ in terms of uncertainty about equi-

librium objects. We combine Proposition 1 with (i) Lemma 1 and (ii) the observation that
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consumption is log-linear in both temporary equilibria to derive that:

∆t =
1

2
(η − 1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C,t − η(σMt )2 + 2(1− ηγ)σC,A,t

)
(47)

where σ2
C,t is the firm’s posterior variance for output, σC,A,t is the firm’s posterior covari-

ance for output and productivity, σ2
ϑ,t is the variance of idiosyncratic demand shocks, and

(σMt )2 is the variance of money supply innovations. Higher uncertainty about idiosyncratic

demand shocks and lower uncertainty about the money supply provide exogenous incentives

for price-setting. Higher uncertainty about consumption provides an endogenous incentive

that unambiguously favors price setting. This is the net effect of two forces that favor

price-setting – increasing demand uncertainty and decreasing the covariance of prices and

marginal costs – with two forces that favor quantity setting – increasing price uncertainty and

increasing the covariance between demand and marginal costs. Higher covariance between

consumption and productivity favors price setting if ηγ < 1 and quantity-setting other-

wise. In the former case, the dominant effect of this covariance is to lower the covariance of

marginal costs and demand (favoring price-setting); in the latter case, the dominant effect

is to raise the covariance of marginal costs and the price level (favoring quantity-setting).

Finally, the variance of idiosyncratic productivity shocks and the variance of idiosyncratic

labor supply (factor price) shocks drop out, because they do not induce covariance between

marginal costs and either demand or the price level.

We now combine the previous observation with the equilibrium dynamics (Propositions

2 and 3) to fully describe ∆t in terms of primitives in each regime:

Lemma 2 (Prices vs. Quantities in Equilibrium). If all firms set quantities, then the com-

parative advantage of price-setting is:

∆Q
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t − ηκMt σ

2
M,s

+

(
1

η
(1− ηγ)

ηκAt
1− κAt (1− ηγ)

+ 2

)
(1− ηγ)

η
(
κAt
)2

1− κAt (1− ηγ)
σ2
A,s

) (48)

Moreover, all firms can set quantities in equilibrium at time t if and only if ∆Q
t ≤ 0.
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If all firms set prices, then the comparative advantage of price-setting is:

∆P
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t +

(
−η + 1

η
(1− ηγ)2

(
1− κMt
γ

)2
)
κMt σ

2
M,s

+

(
1

η
(1− ηγ)

κAt
γ

+ 2

)
(1− ηγ)

(
κAt
)2

γ
σ2
A,s

) (49)

Proof. See Appendix A.5.

Importantly, since ∆Q
t ̸= ∆P

t in general, others’ choice of whether to set prices or quanti-

ties affects any given firm’s incentives to set prices or quantities. Does the fact that others set

prices (quantities) increase or decrease my own desire to set prices (quantities)? Strikingly,

we find that these decisions are always strategic complements. That is, when all other firms

set prices, a given firm has stronger incentives to set prices:

Proposition 4 (Complementarity in Choices of Choices). The decision to set a price or

a quantity is one of strategic complements, i.e, ∆P
t ≥ ∆Q

t , with strict inequality whenever

ηγ ̸= 1.

Proof. See Appendix A.6.

To give the intuition for this result, we first consider the case when ηγ < 1. In this

case, consumption responds more to productivity shocks under price-setting (Corollary 2).

Moreover, regardless of the value of ηγ, consumption responds more to monetary shocks

under price-setting (Corollary 1). Therefore, others being price-setters increases both the

variance of consumption and the covariance of consumption with productivity. Both of these

forces favor price-setting, as shown in Equation 47. In summary, others setting prices induces

aggregate volatility which makes it more attractive for any given firm to also set a price. In

the case of ηγ ≥ 1, consumption is more responsive to monetary shocks but less responsive to

productivity shocks under price-setting versus quantity-setting. In the proof, we show how

these effects net out in Equation 47 in the direction of making price-setting more attractive

when other firms set prices.

We now use this result to show the existence of equilibria in which all firms optimally

choose to set prices or quantities:

Corollary 3 (Existence of Pure Equilibria). There exists an equilibrium in which, at each

date t, either all firms set prices or all firms set quantities.

To prove this result, we consider two cases at each date t. First, suppose that firms

prefer to set prices if others set quantities, or ∆Q
t ≥ 0. In this case, they even more strongly
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prefer to set prices if others set prices, or ∆P
t ≥ ∆Q

t ≥ 0. Therefore, choosing to set prices

is consistent with equilibrium. Conversely, suppose that firms prefer to set quantities when

others set quantities, ∆Q
t < 0. In this case, choosing to set quantities is consistent with

equilibrium. As these cases are exhaustive, a pure equilibrium exists. Note that this logic

heavily relies on our finding that the decision to set prices was one of complements; if instead

it were one of substitutes, pure equilibria could fail to exist.4

4.4 Time-Varying Uncertainty and Regime Switches

As shown in Lemma 2, the comparative advantage of price-setting vs. quantity-setting

changes over time because firms’ uncertainty about microeconomic and macroeconomic vari-

ables changes over time. This observation, combined with Corollary 3, implies the existence

of equilibria in which time-varying volatility induces time-varying uncertainty and regime

changes between price- and quantity-setting. These regime changes, in turn, affect the

propagation of aggregate shocks as summarized in Corollaries 1 and 2. Thus, “uncertainty

shocks” that affect exogenous volatility have further effects on the volatility of endogenous

outcomes (income, prices) due to the endogenous “choice of choices.”

To better understand these forces, we now study the comparative statics of (∆Q
t ,∆

P
t )

in the parameters for time-varying volatility. We start by studying uncertainty about the

aggregate productivity state At. Higher aggregate productivity uncertainty pushes toward

either price- or quantity-setting depending on the parameter condition ηγ ≷ 1:

Corollary 4. If ηγ > 1, then both ∆Q
t and ∆P

t are decreasing in κAt and in σAt . If ηγ < 1,

then both ∆Q
t and ∆P

t are increasing in κAt and in σAt . If ηγ = 1, then ∆Q
t and ∆P

t are equal

and invariant to κAt and σAt .

Proof. See Appendix A.7.

When ηγ < 1, the dominant effects of productivity uncertainty are to increase aggregate

demand uncertainty and to lower the covariance between demand and marginal costs. When

ηγ > 1, the dominant effect is to increase the covariance between marginal costs and the

price level. Finally, in the special case in which ηγ = 1, these forces net out to zero.

We illustrate this result and its implications for equilibrium regime-switching in a nu-

merical example. In Figure 2, we plot ∆Q and ∆P as a function of κA for two different

calibrations, corresponding to ηγ < 1 and ηγ > 1. We shade regions of the parameter space

in which only one equilibrium exists (blue for quantity-setting and orange for price-setting)

and in which both equilibria exist (red). In the economies corresponding to each parameter

4A mixed equilibrium would always exist.
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Figure 2: Equilibrium with Changing Productivity Uncertainty
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Note: This figure illustrates firms’ equilibrium incentives for price-setting as uncertainty about
productivity changes. In each panel, we plot ∆Q (dashed line) and ∆P (dotted line) as a function
of κA, fixing all other parameter values. In Example A, we use parameters such that ηγ < 1. In
Example B, we use parameters such that ηγ > 1. We shade the region with only a quantity-setting
equilibrium blue, the region with only a price-setting equilibrium orange, and the region with both
equilibria red.

case, as κAt moves exogenously (because of underlying movements in σAt ), the equilibrium

transitions between quantity-setting and price-setting. For example, in the left panel with

ηγ < 1, periods of high productivity uncertainty (high κAt ) correspond to price-setting and

periods of low productivity uncertainty (high κAt ) correspond to quantity-setting. If κAt lies

in the middle, red-shaded region in any period t, there exists an equilibrium in which firms

set prices in that period as well as one in which they set quantities in that period. In this

way, even if κAt were constant over time but lying in this multiple-equilibrium region, there

could be self-fulfilling macroeconomic volatility that arises from endogenous regime shifts.

We next study the role of idiosyncratic uncertainty. We find that idiosyncratic demand

uncertainty unambiguously favors quantity-setting, while idiosyncratic uncertainty about

productivity and factor prices (via labor supply) do not matter:

Corollary 5. Both ∆Q
t and ∆P

t are increasing in σ2
ϑ,t and neither depends on σ2

z,t or σ
2
ϕ,t.

This result is immediate from inspection of the formulas in Lemma 2 and is not inter-

mediated by equilibrium forces. Economically, it implies that “uncertainty shocks” that

increase idiosyncratic variation in firms’ demand unambiguously push the economy toward

price-setting. In light of empirical evidence that (i) idiosyncratic volatility in firms’ revenue

TFP rises dramatically in recessions (e.g., Bloom et al., 2018) and (ii) a majority of rev-
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Figure 3: Equilibrium with Changing Money-Supply Uncertainty
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Note: This figure illustrates firms’ equilibrium incentives for price-setting as uncertainty about the
money supply changes. We plot ∆Q (dashed line) and ∆P (dotted line) as a function of κM , fixing
all other parameter values. We use parameters such that ηγ > 1

2 , so both functions are monotone
decreasing (see Corollary 6). We shade the region with only a quantity-setting equilibrium blue,
the region with only a price-setting equilibrium orange, and the region with both equilibria red.

enue TFP variation arises from demand rather than productivity shocks (Foster et al., 2008),

Corollary 5 suggests a powerful force for regime switches that line up with the business cycle.

By contrast, uncertainty about idiosyncratic productivity and factor prices does not behave

symmetrically to uncertainty about demand. This follows from our original observation that

the uncertainty about marginal costs matters only through its covariance with demand and

the price level, and not through its variance (Proposition 1).

We finally study uncertainty about the money supply Mt. As with uncertainty about

productivity, understanding its effect requires disciplining opposing equilibrium forces:

Corollary 6. ∆Q
t is always decreasing in κMt and σMt . If ηγ ≥ 1

2
, then ∆P

t is strictly

decreasing in κMt and σMt . If ηγ < 1
2
, then there exists a κ̄M ∈ [0, 1/3] such that ∆P

t is

increasing for κMt < κ̄M and decreasing for κMt > κ̄M .

Proof. See Appendix A.8.

Under quantity setting, because monetary shocks are neutral for output, increasing the

volatility of money-supply shocks (lowering κMt ) serves only to increase the volatility of the

price level and further favor quantity setting. Under price setting, because monetary shocks

are not neutral for output, there is a countervailing effect from increasing the volatility

of aggregate demand. Therefore, when ηγ is sufficiently low, the effect of money-supply

uncertainty is ambiguous.
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We illustrate this result numerically in Figure 3. We focus on a calibration in which

ηγ > 1
2
, so both ∆Q

t and ∆P
t are monotone decreasing in κMt . In periods of low money-supply

uncertainty, firms have stronger incentives to set prices; in periods of high money-supply un-

certainty, firms have stronger incentives to set quantities. Moreover, in the quantity-setting

regimes, the aggregate price level responds more to money-supply innovations (Corollary 1)

which further sharpens the incentives for quantity-setting. This positive feedback loop un-

derlies our comparative statics result. We will explore the further implications of this logic

for systematic monetary policy in the next section.

5 Monetary Policy Transmission

In our equilibrium analysis, we highlighted how the transmission of money supply shocks

to aggregate quantities and prices was shaped by firms’ price vs. quantity choice. But our

model allowed no role for systematic monetary policy, or manipulation of the money supply

in response to economic conditions. We now investigate how monetary stabilization policy

is affected by firms’ choices of what to choose. We derive how the identity of the decision

regime (price-setting or quantity-setting) affects the transmission of policy and how policy

affects firms’ choice of decision variable. Taken together, these results suggest novel trade-

offs for policymakers who wish to both manage output and price variation within a regime

and, potentially, induce the economy to transition to a more advantageous regime.

5.1 Set-up: The Model with a Monetary Rule

To study monetary policy in our model, we allow the money supply to have a drift that

depends linearly on aggregate productivity:

logMt = logMt−1 + µM + αA logAt + σM logmt (50)

The “policy instruments” are µM and αA. The former controls average money growth and

the latter controls responses to aggregate conditions. Intuitively, αA > 0 corresponds to

“leaning with” shocks and αA < 0 corresponds to “leaning against” shocks. The term

logmt ∼ N(0, 1) is an (uncontrolled) monetary shock and is IID across time. Finally, for

this analysis, we assume that logAt ∼ N(µA, σ
2
A) and is IID. The definitions of temporary

equilibrium and equilibrium are analogous to those given in Section 3, with Equation 50

replacing the original money-supply evolution in Equation 20. The original model, under

the restriction to IID productivity, is nested when αA = 0 and logmt = ϵMt .
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5.2 Monetary Rules and Aggregate Outcomes

We begin by characterizing equilibrium dynamics under price- and quantity-setting tempo-

rary equilibria under the policy rule:

Proposition 5 (Outcomes under the Monetary Rule). If all firms set prices, output and the

price level in the unique log-linear equilibrium follow:

logCt = χT,10,t +
1

γ

(
αA(1− κA) + κA

)
logAt +

1

γ
σM(1− κM) logmt

logPt = χ̃T,10,t + (αA − 1)κA logAt + σMκM logmt

(51)

If all firms set quantities, output and the price level in the unique log-linear equilibrium

follow:

logCt = χT,20,t +
ηκA

1− κA(1− ηγ)
logAt

logPt = χ̃T,20,t +

(
αA − ηγκA

1− κA(1− ηγ)

)
logAt + σM logmt

(52)

where χT,x0,t and χ̃T,x0,t are constants that depend only on parameters and past shocks to the

economy.

Proof. See Appendix A.9

Under price-setting, the response of both consumption and prices to productivity shocks

increases in αA. This is natural since a policymaker setting αA > 0 induces demand when

productivity is high, and a policymaker setting αA < 0 cools off demand when productivity is

high. When firms set quantities, equilibrium consumption is invariant to αA and equilibrium

prices are proportional to the money supply expansion αA logAt. This follows from the

neutrality of money under quantity-setting (Proposition 3). Finally, manipulating the drift

of the money supply affects the aggregate price level, but neither the level of consumption

nor the responsiveness of consumption and prices to shocks.

5.3 How Monetary Rules Affect Choices of Choices

The previous result established how monetary policy affected the economy in a fixed regime,

price-setting or quantity-setting. We now study how the possibility of each regime is itself

shaped by policy.

In a quantity-setting regime, monetary policy affects aggregates only through the price

level. This can affect firms’ incentives to set prices vs. quantities. To study these effects,

we say that quantity-setting is more possible if ∆Q, the relative preference for price-setting
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conditional on all other firms setting quantities, decreases. The following result characterizes

how the nature of monetary policy affects the possibility of quantity-setting:

Proposition 6 (Monetary Policy and the Possibility of Quantity-Setting). Increasing αA

makes quantity-setting less possible if αA < 1 and more possible if αA > 1.

Proof. See Appendix A.10.

When policy is neutral, or αA = 0, prices move opposite to productivity. Increasing αA

away from 0 has two effects. First, it increases the volatility of the money supply, which

increases the volatility of prices and favors quantity-setting. This effect is second-order in

αA. Second, it increases the covariance between productivity shocks and the money supply,

which reduces the covariance between prices and real marginal costs and favors price-setting.

This effect is first-order in αA. The second effect dominates the first until αA reaches one,

at which point the quadratic nature of the first effect dominates. Thus, around the case of

neutral policy (αA = 0), leaning against the wind makes quantity-setting more likely and

leaning into the wind makes quantity-setting less likely.

We now study the effects of policy in a price-setting regime. In this case, monetary policy

has the same direct effects on the relative preference for prices or quantities through the

volatility of money and the covariance between money and productivity as under quantity-

setting. However, monetary policy now also has an additional effect because it shapes the

transmission of productivity shocks to output. We characterize these net effects below:

Proposition 7 (Monetary Policy and the Possibility of Price-Setting). Starting from passive

monetary policy, increasing αA makes price-setting more possible, i.e.,

∂

∂αA
∆P |αA=0 > 0 (53)

Moreover, ∆P is a strictly concave function of αA if and only if ηγ > 1−κA
2−κA ∈ (0, 1

2
). When

∆P is concave, increasing αA makes price-setting more possible if αA < α∗
A and less possible

if αA > α∗
A, where:

α∗
A =

1 +
(

1−ηγ
ηγ

)2
(1− κA)κA + 1−ηγ

ηγ
(1− κA)

1−
(

1−ηγ
ηγ

)2
(1− κA)2

> 0 (54)

When ∆P is strictly convex, increasing αA makes price-setting more possible if αA > α∗
A

(where α∗
A < 0) and less possible if αA < α∗

A.

Proof. See Appendix A.11
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Figure 4: Policy Rules and Regime Shifts
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Note: This figure illustrates in a numerical example how changing the policy rule can induce regime
switches between price- and quantity-setting. Panel (a) of this figure illustrates Propositions 6 and
7 by plotting ∆Q (dotted line) and ∆P (dashed line) as a function of the policy parameter αA,
fixing all other parameters. Panel (b) plots the variance of output in the quantity-setting regime
(dashed line), price-setting regime (dotted line), and the equilibrium (solid blue line). Panel (c)
plots the variance of the price level in the same way. In all three panels, the vertical grey line
denotes (∆P )−1(0), the point of regime switch. In the calibration, we set ηγ > 1 so that ∆P is
concave and that output volatility jumps up at the regime switch.

Under a price-setting regime, increasing αA has the same direct effects on the volatility of

the money supply (that favor quantity-setting to second-order) and the covariance between

money and productivity (that favor price-setting to first-order). In addition, however, there

are now indirect effects as equilibrium consumption in a price-setting regime becomes more

volatile when monetary policy leans into productivity (a second-order effect that favors

price-setting) and has a higher covariance with productivity (a first-order effect that favors

price-setting when ηγ < 1 and favors quantity-setting when ηγ > 1). The first-order effects

always net in the direction of favoring price-setting and so policy that leans into productivity

shocks makes price-setting more likely. The relative magnitude of the second-order effects is

ambiguous and the direct effects dominate the indirect effects if and only if substitutability

ηγ is sufficiently high (a sufficient condition is that ηγ > 1
2
). In this case, price-setting is

made most likely by a policy that leans into productivity shocks at rate α∗
A. In the convex

case, the policymaker can always make ∆P as large as they like by setting αA large enough

in absolute value.

In Panel (a) of Figure 4, we use a numerical example to illustrate these results. We plot

∆Q and ∆P as a function of αA. We observe that both functions are increasing at αA = 0

(i.e., marginally against the wind favors quantity-setting) and that they are maximized

respectively at 1 and α∗
A.
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Moreover, there are αA such that ∆P < ∆Q: thus, in contrast to our analysis without

policy (Proposition 4), there can be strategic substitutability in the choice of choices. When

planning decisions are strategic substitutes, there is no guarantee that a pure quantity-

setting or price-setting equilibrium exists. In Appendix B.4, we provide sufficient conditions

for strategic complementarities in planning under active monetary policy. Moreover, even

when strategic complementarity fails, we show that there always exists a mixed equilibrium

in which some fraction of the population engages in price-setting and the remaining firms

engage in quantity-setting. We characterize the equilibrium fraction of price-setting firms to

first-order in Appendix B.5.

5.4 How Regime Change Can “Undo” Stabilization Policy

A key lesson from our analysis is that while adjusting αA has smooth marginal effects on

output and price volatility within regimes, it can also induce sharp regime switches that

induce volatility to jump. These jumps can undo the “intended” effects.

If a policymaker wishes to stabilize output, they can do so by setting αA < 0, thereby

leaning against productivity shocks. However, this will only succeed if the economy remains

in a price-setting regime. Propositions 6 and 7 show that setting αA < 0 always reduces ∆Q

and always locally reduces ∆P , as in Figure 4.5 Thus, by stabilizing output, they both make

price-setting harder to sustain and quantity-setting easier to sustain. In this sense, attempts

to stabilize output have the potential to switch the economy into a quantity-setting regime.

When the economy is less responsive to productivity under quantity-setting (ηγ < 1), this

switch is desirable as output is less volatile under quantity-setting. Thus, the policymaker

has a free lunch: output stabilization policies stabilize output conditional on remaining in a

price-setting regime and may switch the economy into a less volatile quantity-setting regime.

However, when the economy is more responsive to productivity shocks under price-setting

(ηγ > 1), this switch is undesirable, as output is more volatile under quantity-setting. Hence,

attempts to stabilize output can backfire by inducing an adverse regime shift. We illustrate

such an adverse regime switch in Panel (b) of Figure 4, in a case in which ηγ > 1. In

this example, when there are multiple possible equilibria, we use the selection rule favoring

the price-setting equilibrium. Reducing αA, or fighting productivity shocks with tighter

monetary policy, succeeds in reducing the variance of output until αA reaches the critical

threshold (∆P )−1(0). At this point, price-setting is no longer sustainable in equilibrium. The

economy switches to a quantity-setting regime and output variance discontinuously increases.

Similarly, a policymaker can stabilize the price level by setting αA > 0 and leaning into

5It also does so globally whenever ∆P is concave or whenever αA > α∗
A when ∆P is convex.
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productivity shocks. This is true in both price-setting and quantity-setting regimes. We

illustrate this in a continuation of the numerical example in Panel (c) of Figure 4.

What differs sharply across regimes is the relationship between price and output volatility:

that is, the “Phillips curve” trade-off between stabilizing output and prices. In a price-setting

regime, increasing αA familiar cost of increasing output volatility and induces a trade-off

between lowering the price level and keeping real output high. However, in a quantity-setting

regime, the policymaker has a free lunch: they can control the price level with monetary

policy while the real economy remains unaffected (i.e., to the left of the regime switch in

Figure 4). Thus, our model generates a state-dependent “Phillips curve,” which is shaped by

the nature of policy as well as microeconomic and macroeconomic uncertainty. In particular,

policymakers face a “Phillips curve” if and only if the economy lies in a price-setting regime.

6 Price and Quantity Regimes in US Data

Having described the theoretical model and its equilibrium implications for macroeconomic

dynamics and policy, we now turn to the data. We first ask: does the data, when viewed

through the lens of our model, suggest that firms would prefer to set prices or quantities in

different realistic circumstances? Or does the price-vs.-quantities choice decidedly favor one

over the other all the time?

In this section, we calculate the relative advantage of price-setting from Proposition 1

in US data. Our approach is to combine time-varying statistical estimates of each volatility

term in Equation 15 with an external calibration for the demand elasticity. We find that

price-setting is optimal in times of tame inflation (the Great Moderation) and high demand

uncertainty (the Great Recession or first quarter of Covid-19 lockdown), while quantity-

setting is optimal in times of volatile inflation (the 1970s and post-Covid inflation). Thus,

the economic considerations in Proposition 1 deliver a close “horse race,” with different

winners in different periods of history.

6.1 Data and Methods

For our main calculation, we use quarterly-frequency US data on real GDP, GDP deflator,

and capacity-utilization adjusted total factor productivity (TFP) (Basu et al., 2006; Fernald,

2014) from 1960Q1 to 2022 Q4. Thus, our mapping from model to data considers quarterly-

frequency decisions.

We map these variables to model quantities as follows. First, consistent with our equi-

librium model, we model the demand shock as Ψ = Y ϑ, where Y is aggregate real GDP
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(i.e., “aggregate demand”) and ϑ is a firm-specific demand shock that is, by construction,

orthogonal to aggregate conditions. Thus, we can decompose σ2
Ψ = σ2

Y +σ
2
ϑ, where the latter

two terms are respectively the variances of log Y and log ϑ.

Second, we assume as in the equilibrium model that real marginal costs are determined

at the aggregate level as M = Y γ/A, where γ > 0 measures wealth effects in labor supply

and controls the cyclicality of real wages and A is an aggregate shock to productivity. We

set γ = 0.095 based on the calibration in Flynn and Sastry (2022a) for the rigidity of

US real wages. We measure A via the aforementioned data on the utilization-adjusted

aggregate Solow residual. The assumption that physical productivity is identical across

firms, while demand varies, is consistent with the findings of Foster et al. (2008) that cross-

firm variation in revenue total factor productivity (TFPR) derives almost exclusively from

demand differences rather than marginal cost differences within specific industries. Assuming

that all cross-firm variation derives from demand shocks biases our calculation toward price-

setting, in light of our findings in Proposition 1.

Finally, we assume that uncertainty about idiosyncratic demand is directly proportional

to uncertainty about aggregate marginal costs, or σ2
ϑ = R2σ2

M. We justify this based on the

finding of Bloom et al. (2018) that the stochastic volatility of TFPR among manufacturing

firms (“micro volatility”) is well modeled as directly proportional to stochastic volatility in

aggregate conditions (“macro volatility”). Based on these authors’ quantitative findings,

we take R = 6.5 as a baseline. In an extension, we directly use (annual) data on TFPR

dispersion from Bloom et al. (2018) to inform our calculation.

The assumptions described above make all variance terms in Proposition 1 functions

of the time-varying uncertainties about aggregate real GDP, inflation, and real marginal

costs. We estimate these time-varying uncertainties using a multivariate GARCH model. In

particular, letting Zt denote the vector of these three variables, we model

Zt = AZt−1 + εt, ε ∼ N(0,Σt), Σt = D
1
2
t RD

1
2
t (55)

where A is a matrix of AR(1) coefficients, Dt is a diagonal matrix of time-varying vari-

ances (and D
1
2
t is a diagonal matrix of standard deviations) and R is a static matrix of

correlations. We assume that each diagonal element of Dt, denoted as σ2
i,t, evolves as

σ2
i,t = si + αiε

2
i,t−1 + βiσ

2
i,t−1, with unknown constant si and coefficients (αi, βi). Formally,

this is a GARCH(1,1) model with constant conditional correlations (Bollerslev, 1990). In

our context, the restriction to constant correlations restricts the covariances in Equation 15

to move in proportion to the variances and thus rules out the possibility that the correlation

structure among output, prices, and marginal costs varies over time. We estimate all of the
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parameters via joint maximum likelihood.

From this, we derive maximum-likelihood point estimates of every element of Σt, which

correspond to the variances in the (Gaussian) conditional forecast of Zt. Letting σ̂t denote

the point estimates of specific elements of that matrix, we compute:

σ̂2
Ψ,t = σ̂2

Y,t +R2σ̂2
M,t , σ̂Ψ,M,t = σ̂Y,M,t (56)

Finally, we take a central estimate of η = 9 from the study of Broda and Weinstein (2006).

These authors use comprehensive panel data on US imports to estimate demand curves at

the level of disaggregated products. This is, usefully for our purposes, direct evidence for

the slope of demand curves, as opposed to indirect evidence from matching average product

markups under the assumption that firms are full-information price setters.

We now calculate our empirical proxy for the benefit of price-setting,

∆̂t =
1

2
(η − 1)

(
1

η
σ̂2
Ψ,t − ησ̂2

P,t − 2σ̂Ψ,M,t − 2ησ̂P,M,t

)
(57)

Our calculation captures uncertainty about outcomes realized in quarter t, and is measurable

in data from quarter t − 1 and earlier. It therefore describes incentives of a decisionmaker

fixing a choice for quarter t based on their uncertainty at the beginning of the quarter, before

data are realized.

6.2 Quantity-Setting Regimes Emerge When Inflation is Volatile

We plot our calculation of ∆̂t in Figure 5. We show our overall calculation in black and each

component in color. We shade periods which favor quantity-setting, or for which ∆̂t < 0.

Strikingly, both quantity- and price-setting are optimal at different points in the sample.

Thus, viewed through the lens of our model and its mapping to the data, firms may be either

price- or quantity-setters depending on the macroeconomic context. Moreover, through the

same lens, this evidence rules out the conventional assumption that firms always choose

prices or always choose quantities.

Price-setting is optimal in most of the sample, or 219 of 251 quarters. This notably

comprises the 1960s and the Great Moderation, in which both inflation and demand variance

were relatively tame, and the Great Recession and the onset of the Covid-19 Lockdown

Recession (Q2 2020), when demand variance abruptly spiked.

Quantity-setting is optimal intermittently between 1972 Q2 and 1981 Q2, for a total of

25 of the possible 37 quarters in this period, and continuously between 2021 Q2 and the end
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Figure 5: The Relative Benefit of Price-Setting in US Data
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Note: This figure plots our empirical estimate of ∆̂t (the comparative advantage of price-setting
relative to quantity-setting) and its components, as defined in Proposition 1 (Equation 15). The
black line plots ∆̂t, in units of expected percent profit improvement (100 times log points). The
blue (dashed), orange (dotted), green (dashed), and red (dash-dotted) lines plot each of the four
components of ∆̂t, corresponding to uncertainty about different variables. The grey shading denotes
periods in which ∆̂t < 0 and thus, according to Proposition 1, quantity-setting is optimal for firms.
As described in Section 6.1, the calculation uses estimates of time-varying volatilities from a CCC
GARCH(1,1) model and a calibrated demand elasticity of η = 9. The demand component exceeds
the scale of the figure in Q2 and Q3 of 2020.

of the sample. These all correspond to periods of particularly high contributions of the terms

corresponding to inflation variance and inflation-marginal-cost covariance. Through the lens

of the model, firms would prefer to set quantities in these periods to hedge against the increase

in uncertainty about joint movements in inflation and marginal costs. Our calculation weighs

this consideration against demand risk, which favors price-setting and may also be elevated

in recessions. For example, in 1975 Q2 and 2021 Q1, demand uncertainty is sufficiently high

to outweigh elevated inflation and inflation-marginal-cost uncertainty, and our calculation

favors price-setting on net (∆̂t > 0).

We finally note that the advantage of one method over another is always relatively small

in payoff terms. In our sample, this advantage peaks at 0.48% (0.0048 log points) in Q3 of

2020. In all periods excluding Q2 and Q3 of 2020, the difference peaks at 0.16%. This is

a striking juxtaposition with the model prediction that a change in firm behavior between

price- and quantity-setting can have large effects on equilibrium outcomes.
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Figure 6: The Relative Benefit of Price-Setting Under Alternative Parameters
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Note: Both panels plot our empirical estimate of ∆̂t defined in Proposition 1 (Equation 15) under
alternative assumptions for the elasticity of substitution η (left) and the micro-to-macro volatility
ratio R (right). In both plots, our baseline estimate corresponds to the solid black line.

Robustness to Parameter Values and Measurement Strategies. Two parameters

that were central to our calculation, but difficult to pin down in the data, were the price

elasticity of demand (η = 9) and the ratio of micro to macro volatility (R = 6.5). In Figure

6, we plot the implied time series for ∆ under specific alternative assumptions for each

parameter. In Appendix Figure 9, we vary both parameters continuously over a larger grid

and plot “heat maps” for the average value of ∆̂t and the percentage of the sample with

∆̂t > 0.

Decreasing the elasticity of demand favors price-setting, while increasing the elasticity

of demand favors quantity-setting (left panel). The primary reason, quantitatively, is that

highly inelastic demand curves amplify the effects of demand shocks on prices for fixed

quantities, and hence increase potential losses from quantity-setting. In the data, this further

pushes toward price-setting, especially in time periods with especially high demand volatility.

Increasing demand risk favors price-setting by construction (right panel). In particular,

increasing the extent of microeconomic volatility by 50% favors price-setting in all periods

(orange dotted line), while decreasing this parameter by 50% implies quantity-setting in a

majority of periods (blue dashed line). As noted by Bloom et al. (2018), calibrating this

parameter on the basis of observed variances in measured firm-level fundamentals requires

modeling choices. In particular, one must take a stand on what fraction of measured volatility
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corresponds to measurement error and what fraction of volatility from an econometrician’s

perspective is unknown to firm managers, who likely have superior information.

As an alternative strategy to measure the contribution of idiosyncratic volatility, we can

use the direct measurements of Bloom et al. (2018) based on annual data from manufac-

turing establishments from 1972 to 2010, along with assumptions about measurement error

and observability of shocks. To accommodate this variant calculation, we re-estimate the

VAR(1) CCC GARCH(1,1) model on annual data for the same macro time series. We then

use the Bloom et al. (2018) estimates of the cross-sectional standard deviation of manufac-

turing TFPR along with those authors’ quantitative assumption that 45.4% of this measured

volatility (standard deviation) corresponds to measurement error. We make the intentionally

extreme assumption that all of this remaining variance is unforecastable by firms. Appendix

Figure 10 shows our results. This calculation echoes the conclusion that the 1970s were

favorable to quantity-setting due to the relatively high inflation volatility and relatively low

demand volatility.

Comparison to External Evidence. An alternative way to gauge the plausibility of

firms’ entertaining both price- and quantity-setting plans is via direct survey evidence. As

observed by Reis (2006), Aiginger (1999) collected data on this topic. In a survey of managers

of Austrian manufacturing firms, he asked: “What is your main strategic variable: do you

decide to produce a specific quantity, thereafter permitting demand to decide upon price

conditions, or do you set the price, with competitors and the market determining the quantity

sold?” Among managers, 32% said that they use the quantity plan and 68% said that they

use the price plan. We interpret this as additional evidence that neither price nor quantity

plans is obviously favored in practice.

7 Testing the Model: Asymmetric Effects of Monetary

Policy in Price and Quantity Regimes

Our model predicts that expansionary monetary shocks have muted effects on real output

and exaggerated effects on prices in a quantity-setting regime compared to a price-setting

regime (Corollary 1). The model also predicts that incentives for price-setting are shaped by

the volatility of macroeconomic and microeconomic aggregates in a specific way (Proposition

1 and Lemma 2). Crucially, both predictions rely purely on the premise of “choice of choices”

and not on specific parameter restrictions.6 Thus, we can use them to derive an empirical

6By contrast, the sign of the differential response to productivity shocks in each regime (Corollary 2)
depends on the parametric condition ηγ ≷ 1.
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test of our model’s new substantive assumption.

In this final section, we provide suggestive evidence consistent with these predictions. In

particular, using local projection regressions, we find that output responds more negatively

and price respond less negatively to contractionary Romer and Romer (2004) monetary

policy shocks in price-setting regimes relative to quantity-setting regimes, measured using

the method of Section 6. Through the lens of our analysis, these results validate that regime

shifts between price and quantity-setting shape the transmission of economic shocks.

7.1 Hypotheses and Strategy

We test the main model prediction that monetary shocks are: (i) neutral for output under

quantity-setting regimes, (ii) contractionary for output under price-setting regimes, and (iii)

more inflationary under quantity-setting regimes. Formally, Corollary 1 implies that the

following relationships hold:

log Yt = χPMI[∆t > 0] logMt + εYt (58)

logPt = logMt − χ̃PMI[∆t > 0] logMt + εPt (59)

where χPM > 0, χ̃PM ∈ (0, 1), and ∆t, logMt ⊥ εYt , ε
P
t . Thus, given a measure of ∆t and

exogenous monetary shocks Mt, we can estimate these equations consistently via ordinary

least squares. Here the model-implied definition of an exogenous monetary shock is one

that is not a response by the central bank to either endogenous or exogenous economic

circumstances.

7.2 Measurement and Empirical Specification

We measure monetary policy shocks using the methodology of Romer and Romer (2004).

These authors residualize changes in the Federal Funds Rate on the Federal Reserve’s macroe-

conomic projections reported in the Greenbook. Specifically, we use the updated series re-

ported in Ramey (2016) which spans March 1969 to December 2007. We aggregate these

shocks to a quarterly-frequency variable, MonShockt by summing. The key quantity-setting

regimes that overlap with the studied sample of Romer and Romer (2004) shocks are pri-

marily in the 1970s.

To proxy for whether the economy is in a price-setting or quantity-setting regime, we

translate ∆̂t into a binary variable PriceSett = 1∆t+1>0. In the model, this object determines

whether decisionmakers who observe data before and during time t would set prices as their
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decision variable for period t+ 1. This timing convention is appropriate since we will focus

on how macroeconomic aggregates at time t+ 1 and onward respond to shocks at time t.

To estimate an empirical analog of Equations 58 and 59, we proxy for real output with real

GDP and the price level with the GDP deflator. We estimate the state-dependent response

of outcomes Zt ∈ {RealGDPt,GDPDeflatort} to the variable MonShockt by running the

following local projection regressions for each horizon h ∈ {1, . . . , 12}:

Zt+h = βh ·MonShockt + γh · PriceSett + ϕh · (MonShockt × PriceSett) + τ ′Xt + εt,h

(60)

As control variables, we include the contemporaneous and lagged values of real GDP, GDP

deflator, and utilization-adjusted TFP, and interactions of all of these variables with PriceSett.
7

Including the interaction variables is consistent with our model’s implications that the joint

dynamics of macroeconomic variables may change between the two regimes.8 In all reported

results, we report frequentist confidence intervals based on Newey et al. (1987) standard

errors with a six-quarter bandwidth.

The coefficients {βh}Hh=1 measure the response of output (or prices) to monetary shocks

in the quantity regime. We predict that βh < 0 for both outcomes. The coefficients {ϕh}Hh=1

measure the differential response of output (or prices) to monetary shocks in the price regime,

compared to the quantity regime. We predict that ϕh < 0 when real GDP is the outcome

and ϕh > 0 when the GDP deflator is the outcome.

7.3 Results: State-Dependent Effects of Monetary Policy

We show our results graphically in Figure 7. We first consider our results for output (top

row). We find on average a zero response to monetary shocks in quantity-setting regimes

(βh = 0; first column). This average zero response belies weak evidence of a negative

response at shorter horizons (h < 6) and a positive response at longer horizons (h ∈ {7, 8}).
By contrast, we find a consistently negative response under price-setting for all horizons

h > 4. This is statistically significant at the 68% level for h ≥ 6 and at the 95% level

for h ∈ {10, 11}. The difference between these responses is also negative (ϕ < 0) at these

longer horizons, and statistically significant at the 95% level for h ≥ 7. These results, taken

7As observed by Ramey (2016), including contemporaneous values amounts to assuming a zero con-
temporaneous response of macroeconomic quantities to shocks on impact, as is typical in the structural
VAR literature (e.g., Christiano et al., 2005). This is also consistent with our conditioning on ∆t, which
is measurable in time-t macroeconomic aggregates. Results are very similar when we do not control for
contemporaneous values, suggesting that this timing assumption is close to correct in the data.

8Tenreyro and Thwaites (2016) make a similar observation about the necessity of these controls in a local-
projections estimation of whether monetary policy shocks, also measured as in Romer and Romer (2004),
have different effects in recessions.
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Figure 7: IRFs to Monetary Shocks in Price-Setting and Quantity-Setting Regimes
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Note: These plots display our estimates of the state-dependent response to monetary policy shocks
from Equation 60. The outcome variable is real GDP in the top row and GDP deflator in the
bottom row. The columns respectively show our estimates of βh, the response under quantity-
setting; βh + ϕh, the response under price-setting; and ϕh, the difference between the price-setting
and quantity-setting responses. In each plot, the solid line gives the point estimates, the dark-
shaded region gives 68% confidence intervals, and the light-shaded region gives 95% confidence
intervals, where the latter two are based on Newey et al. (1987) standard errors with a six-quarter
bandwidth.

together, are consistent with our theory: in price-setting regimes, contractionary monetary

policy has considerably more power to shape real outcomes.

We next consider our results for prices (bottom row). We find a small negative response

in quantity-setting regimes (column 1) and a significant positive response in price-setting

regimes (column 2). The second prediction violates the theory in the direction of the fa-

miliar “price puzzle” (see, e.g., Ramey, 2016). But our prediction for the difference of

coefficients is consistent with the theory (ϕh > 0, column 3): under quantity-setting regimes,

contractionary policy is more able to control the price level.

Robustness. In the Appendix (Table 1), we probe the robustness of these findings on

three margins. When reporting these results, we focus on the interactive coefficients ϕ at the
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horizon h = 12. First, we vary the timing of our measurement of PriceSet, since the mapping

from theory to data imperfectly captured the realistic delays in the effects of monetary policy.

When we replace PriceSet with a four-quarter backward-looking average (model (2) of Table

1) or a four-quarter forward-looking average (model (3) of Table 1), we continue to find

ϕRGDP < 0 and ϕPGDP > 0. Next, we parametrize the model using the continuous measure

of ∆ rather than the binary measure of PriceSet. This guards against the possibility that

our binary transformation masked non-monotone effects. We again find ϕRGDP < 0 and

ϕPGDP > 0.

7.4 Interpretation and Discussion

Comparison to the Literature. Existing work draws a mixed conclusion on whether

monetary policy is more or less powerful in “downturns,” broadly defined. Weise (1999)

finds weaker price effects and stronger output effects when output is initially low; Garcia and

Schaller (2002) and Lo and Piger (2005) find stronger responses of output in recessions; and

Tenreyro and Thwaites (2016) find weaker responses of output and prices in recessions. Our

analysis differs both because (i) it conditions on a different variable, the model’s prediction

for whether firms set prices or quantities, which itself depends on uncertainties rather than

means; and (ii) it tests for differences in both the response of output to monetary shocks

and the response of prices to monetary shocks, as predicted by the theory.

Lessons from History, and for the Present. Interpreting the historical data through

the lens of the model, these results suggest that monetary policy actions of a fixed size may

have had greater effects on inflation in the 1970s and early 1980s, a quantity-setting regime,

than in other periods. This notably includes the first contractionary “Volcker shock” in 1979

Q3 as well as the expansionary shock in 1980 Q2, when rates surprisingly plummeted.

Although outside the scope of our empirical analysis, the fact that the Volcker Fed’s

conquering of US inflation corresponded with a transition to lower inflation variance and

a price-setting regime (Figure 5) would be consistent with the policy trade-offs that we

described in Section 5. In particular, a monetary rule that sought to induce price stability

(i.e., increasing αA and leaning into productivity shocks) could have induced a regime switch

from quantity-setting to price-setting (as per Propositions 6 and 7) that led the monetary

contraction to have large contractionary effects on real output.

Moreover, the data suggest that the current post-Covid inflationary period favors quantity-

setting. Thus, our results suggest that current monetary policy, as in the 1970s, should be

especially able to control inflation with a limited trade-off of cooling output. This notwith-

standing, our analysis emphasizes that policymakers need to proceed with moderation. An
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overly strong accommodation of productivity shocks could induce a switch to price-setting,

forcing the policymaker to face the classic trade-off between price and output stabilization.

8 Conclusion

In this paper, we apply a classic mode of economic analysis – asking what choice variable

is optimal under uncertainty – to a new context: firms’ supply decisions in macroeconomic

models. We first study the problem of a single firm and characterize how the nature of

firms’ demand curves and uncertainty determine whether price-setting or quantity-setting is

optimal. We next embed the prices vs. quantities choice in general equilibrium and show that

it has significant implications for macroeconomic dynamics and policy. In particular, money

has no real effects and highly inflationary effects under quantity-setting, while money has real

effects and muted inflationary effects under price-setting. Moreover, monetary stabilization

policy encounters new trade-offs: policies that stabilize output under price-setting may run

the risk of switching the economy into a more volatile quantity-setting regime. We finally

provide empirical evidence that the US economy has historically moved between quantity-

and price-setting regimes and that US monetary policy has had state-dependent effects that

are consistent with the theory’s predictions.

Our analysis is, however, by no means exhaustive. Three particularly interesting avenues

for future theoretical research include: studying the general-equilibrium implications of price-

and quantity-setting in richer macroeconomic models; considering how this choice of choices

matters for optimal monetary and fiscal policy; and considering richer choices of choices for

firms that can do more than simply set prices or quantities (such as managing inventories or

engaging in different varieties of investment). Moreover, on the empirical side, our analysis is

suggestive of the importance of price- and quantity-setting as it verifies the predictions of the

theory, but it does not directly measure firms’ choices of choices. Directly asking firms about

their pricing and production strategies and what determines them could be an important

source of further tests and serve as input into positive and normative business-cycle analysis.

We leave these issues to subsequent research.
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Appendices

A Omitted Derivations and Proofs

A.1 Proof of Proposition 1

Proof. We systematically work through the derivations that underlie Equation 15. We first

derive the cost function c. By the first-order condition of Equation 4, we have that:

pxi = λαi
q

xi
(61)

where λ is the Lagrange multiplier on the constraint. Multiplying both sides by zi and

summing, we obtain that:

c(q; px,Θ) =
N∑
i=1

pxixi = λq (62)

Moreover, setting q = 1, and substituting the first-order condition into the constraint, we

obtain that:

λ = Θ−1

I∏
i=1

(
pxi
αi

)αi
(63)

Thus, real marginal costs are given by M = P−1λ, as claimed in Equation 6.

To derive the optimal price, we take the first-order condition of Equation 7. This yields:

ηp∗
−η−1E [ΛMP ηΨ] = (η − 1)p∗

−ηE
[
ΛP η−1Ψ

]
(64)

which rearranges to Equation 8. Substituting p∗ into Equation 7, we obtain Equation 9:
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)
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where ξP = E [ΛMP ηΨ] and ζP = E [ΛP η−1Ψ].

To derive the optimal quantity, we take the first-order condition of Equation 10. This

yields:

E [ΛM] =
η − 1

η
q∗

− 1
η E[ΛΨ

1
η ] (66)

which rearranges to Equation 41. Substituting q∗ into Equation 10, we obtain Equation 12:

V Q = E
[
Λ

(( x
Ψ

)− 1
η −M

)
q

]
= E

[
Λ

(
η

η − 1

ξQ

ζQ
Ψ

1
η −M

)(
η

η − 1

)−η (
ξQ

ζQ

)−η]

=

(
η

η − 1

)−η
[

η

η − 1

(
ξQ

ζQ

)1−η
ζQ −

(
ξQ

ζQ

)−η
ξQ

]

=

(
η

η − 1

)−η [
η

η − 1
− 1

]
ξQ

1−η
ζQ

η

=
1

η − 1

(
η

η − 1

)−η
E [ΛM]1−η E[ΛΨ

1
η ]η

(67)

where ξQ = E [ΛM] and ζQ = E[ΛΨ
1
η ].

To find ∆, we first write 14 as:

∆ = η(log ζP − log ζQ)− (η − 1)(log ξP − log ξQ) (68)

Thus, it suffices to compute (ζP , ζQ, ξP , ξQ). To this end, we first prove establish that

(Ψ, P,Λ,M) is log-normal. We assumed that (Ψ, P,Θ,Λ, pz) is log-normal. Moreover, we

have that:

logM = − log Θ +
I∑
i=1

αi log pzi −
I∑
i=1

αi logαi (69)

which is an affine combination of jointly normal random variables, and is therefore jointly

normal with (Ψ, P,Λ). Given log-normality of (Ψ, P,Λ,M), we may write:
log Ψ

logP

log Λ

logM

 ∼ N




µΨ

µP

µΛ

µM

 ,


σ2
Ψ σΨ,P σΨ,Λ σΨ,M

σΨ,P σ2
P σP,Λ σP,M

σΨ,Λ σP,Λ σ2
Λ σΛ,M

σΨ,M σP,M σΛ,M σ2
M


 (70)

49



To compute the first term, the cost-hedging cost of prices, we compute:

log ξP = logE [ΛMP ηΨ] = logE [exp{log Λ + logM+ η logP + logΨ}]

= µΛ + µM + ηµP + µΨ +
1

2

(
σ2
Λ + σ2

M + η2σ2
P + σ2

Ψ

)
+ σΛ,M + ησΛ,P + σΛ,Ψ + ησM,P + σM,Ψ + ησP,Ψ

(71)

and

log ξQ = logE[ΛM] = logE[exp{log Λ + logM}]

= µΛ + µM +
1

2

(
σ2
Λ + σ2

M
)
+ σΛ,M

(72)

Thus, the cost-hedging cost of prices is given by:

(η − 1)(log ξP − log ξQ) = (η − 1)

[
ηµP + µΨ +

1

2

(
η2σ2

P + σ2
Ψ

)
+ ησΛ,P + σΛ,Ψ + ησM,P + σM,Ψ + ησP,Ψ

] (73)

To compute the revenue-hedging benefit of prices, we compute:

log ζP = logE
[
ΛP η−1Ψ

]
= logE[exp{log Λ + (η − 1) logP + logΨ}]

= µΛ + (η − 1)µP + µΨ +
1

2

(
σ2
Λ + (η − 1)2σ2

P + σ2
Ψ

)
+ (η − 1)σΛ,P + σΛ,Ψ + (η − 1)σP,Ψ

(74)

and

log ζQ = logE
[
ΛΨ

1
η

]
= logE

[
exp

{
log Λ +

1

η
log Ψ

}]
= µΛ +

1

η
µΨ +

1

2

(
σ2
Λ +

1

η2
σ2
Ψ

)
+

1

η
σΛ,Ψ

(75)

Thus, the revenue-hedging benefit of prices is given by:

η(log ζP − log ζQ) = η

[
(η − 1)µP +

η − 1

η
µΨ +

1

2

(
(η − 1)2σ2

P +

(
1− 1

η2

)
σ2
Ψ

)

+ (η − 1)σΛ,P +
η − 1

η
σΛ,Ψ + (η − 1)σP,Ψ

] (76)
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Taking the difference between the cost-hedging and revenue-hedging terms, we obtain Equa-

tion 15:

∆ =
1

2

[(
η(η − 1)2 − η2(η − 1)

)
σ2
P +

(
η

(
1− 1

η2

)
− (η − 1)

)
σ2
Ψ

]
− η(η − 1)σM,P − (η − 1)σM,Ψ

=
1

2

(
η − 1

η
σ2
Ψ − η(η − 1)σ2

P − 2(η − 1)σM,Ψ − 2η(η − 1)σM,P

) (77)

Completing the proof.

A.2 Proof of Lemma 1

Proof. We first derive Equation 28. From Equations 26 and 27, we obtain:

1

Mt

+ βEt
[
C−γ
t+1

1

Pt+1

]
= β(1 + it)Et

[
C−γ
t+1

1

Pt+1

]
(78)

It follows that:
1

Mt

= βitEt
[
C−γ
t+1

1

Pt+1

]
=

it
1 + it

C−γ
t

1

Pt
(79)

where the second equality uses Equation 27 once again. This rearranges to Equation 28.

We next derive Equation 31. Substituting equation 28 into Equation 27, we obtain:

1 + it
it

1

Mt

= β(1 + it)Et
[
1 + it+1

it+1

1

Mt+1

]
(80)

Dividing both sides by (1 + it), multiplying by Mt, and then adding one, we obtain:

1 + it
it

= 1 + βEt
[
1 + it+1

it+1

Mt

Mt+1

]
= 1 + βEt

[
exp{−µ− σMt ε

M
t }1 + it+1

it+1

]
(81)

where the second equality exploits the fact that Mt follows a random walk with drift. If we

guess that it is deterministic and define xt =
1+it
it

, then we obtain that:

xt = 1 + δtxt+1 (82)

where:

δt = β exp

{
−µ+

1

2
(σMt )2

}
(83)

We observe that δt ∈ [0, β] for all t due to the assumption that 1
2
(σMt )2 ≤ µM . Solving this
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equation forward, we obtain that:

xt = 1 + δt

T−1∑
i=1

i∏
j=1

δt+j + δt

(
T∏
j=1

δt+j

)
xt+T+1 (84)

Taking the limit T → ∞, this becomes:

xt = 1 + δt

∞∑
i=1

i∏
j=1

δt+j + δt lim
T→∞

(
T∏
j=1

δt+j

)
xt+T+1 (85)

where the final term can be bounded using the fact that δt ∈ [0, β]:

0 ≤ δt lim
T→∞

(
T∏
j=1

δt+j

)
xt+T+1 ≤ lim

T→∞
βT+1xt+T+1 (86)

The household’s transversality condition ensures that this upper bound is zero. Formally,

the transversality condition (necessary for the optimality of the household’s choices) is that:

lim
T→∞

βT
C−γ
T

PT
(MT + (1 + iT )BT ) = 0 (87)

Moreover, as Bt = 0 for all t ∈ N, this reduces to limT→∞ βT
C−γ
T

PT
MT = 0. By Equation 79,

we have that xt
Mt

=
C−γ
t

Pt
. Thus, the transversality condition reduces to limT→∞ βTxT = 0.

Combining this with Equation 86, we have that limT→∞
(∏T

j=1 δt+j

)
xt+T+1 = 0. Equation

31 follows:

1 + it
it

= 1 + β exp{−µ+
1

2
(σMt )2}

∞∑
i=1

i∏
j=1

β exp{−µ+
1

2
σ2
M,t+j} (88)

The formulae in Equation 33 then follow. In particular, Ψit = ϑitCt follows from comparing

Equations 3 and 32. Pt =
it

1+it
C−γ
t Mt follows from equation 28. Λt = C−γ

t is the households

marginal utility from consumption. Finally, Mit =
1

zitAt

wit
Pt

=
ϕitC

γ
t

zitAt
follows from Equation

25.
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A.3 Proof of Proposition 2

Proof. To work out the prices that firms set (Equation 35), we need to compute two objects

logEit [ϕit(zitAt)−1P η
t ϑitCt] and logEit

[
C1−γ
t P η−1

t ϑit
]
. For the first of these, we have:

logEit
[
ϕit(zitAt)

−1P η
t ϑitCt

]
= logEit [exp {log ϕit − log zit − logAt + η logPt + log ϑit + logCt}]

(89)

By Lemma 1, we have that:

logPt = log
1 + i∗

i∗
+ logMt − γ logCt (90)

Moreover, we have conjectured that:

logCt = χP0,t + χPA,t logAt + χPM,t logMt (91)

Thus, we can express:

logEit [exp {log ϕit − log zit − logAt + η logPt + log ϑit + logCt}]

= η log
1 + i∗

i∗

+ logEit [exp {log ϕit − log zit − logAt + η logMt + log ϑit + (1− ηγ) logCt}]

= η log
1 + i∗

i∗
+ (1− ηγ)χP0,t

+ logEit
[
exp

{
log ϕit − log zit − logAt + η logMt + log ϑit + (1− ηγ)

(
χPA,t logAt + χPM,t logMt

)}]
= η log

1 + i∗

i∗
+ (1− ηγ)χP0,t

+ logEit
[
exp

{
log ϕit − log zit + ((1− ηγ)χPA,t − 1) logAt + (η + (1− ηγ)χPM,t) logMt + log ϑit

}]

(92)

As ϕit, zit, ϑit, At, and Mt are independent random variables, we can compute:

logEit
[
exp

{
log ϕit − log zit + ((1− ηγ)χPA,t − 1) logAt + (η + (1− ηγ)χPM,t) logMt + log ϑit

}]
= logEit [exp {log ϕit}] + logEit [exp {− log zit}] + logEit [exp {log ϑit}]

+ logEit
[
exp

{
((1− ηγ)χPA,t − 1) logAt

}]
+ logEit

[
exp

{
(η + (1− ηγ)χPM,t) logMt

}]
= µϕ +

1

2
σ2
ϕ,t − µz +

1

2
σ2
z,t + µϑ +

1

2
σ2
ϑ,t

+ κAt ((1− ηγ)χPA,t − 1)sAit + (1− κAt )((1− ηγ)χPA,t − 1)µAt−1

+
1

2
((1− ηγ)χPA,t − 1)2σ2

A|s,t−1

+ κMt (η + (1− ηγ)χPM,t)s
M
it + (1− κMt )(η + (1− ηγ)χPM,t)µ

M
t−1

+
1

2
(η + (1− ηγ)χPM,t)

2σ2
M|s

(93)
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Thus, we have that:

logEit
[
ϕit(zitAt)

−1P η
t ϑitCt

]
= at−1 + bt−1s

A
it + ct−1s

M
it (94)

at = η log
1 + i∗

i∗
+ (1− ηγ)χP0,t + µϕ +

1

2
σ2
ϕ,t − µz +

1

2
σ2
z,t + µϑ +

1

2
σ2
ϑ,t

+ (1− κAt )((1− ηγ)χPA,t − 1)µAt−1

+
1

2
((1− ηγ)χPA,t − 1)2σ2

A|s,t−1 + (1− κMt )(η + (1− ηγ)χPM,t)µ
M
t−1

+
1

2
(η + (1− ηγ)χPM,t)

2σ2
M |s

bt = κAt ((1− ηγ)χPA,t − 1)

ct = κMt (η + (1− ηγ)χPM,t)

(95)

Moving to the second conditional expectation, we have that:

logEit
[
C1−γ
t P η−1

t ϑit

]
= logEit [exp {(1− γ) logCt + (η − 1) logPt + log ϑit}]

= (η − 1) log
1 + i∗

i∗

+ logEit
[
exp

{
(1− ηγ)χP0,t + (1− ηγ)χPA,t logAt +

(
(η − 1) + (1− ηγ)χPM,t

)
logMt + ϑit

}]
= (η − 1) log

1 + i∗

i∗
+ (1− ηγ)χP0,t + µϑ +

1

2
σ2
ϑ,t

+ κAt (1− ηγ)χPA,ts
A
it + (1− κAt )(1− ηγ)χPA,tµ

A
t−1 +

1

2
(1− ηγ)2χP

2

A,tσ
2
A|s,t−1

+ κM

(
(η − 1) + (1− ηγ)χPM,t

)
sMit + (1− κM )

(
(η − 1) + (1− ηγ)χPM,t

)
µMt−1

+
1

2

(
(η − 1) + (1− ηγ)χPM,t

)2
σ2
M|s,t−1

(96)

Thus, we have that:

logEit
[
C1−γ
t P η−1

t ϑit
]
= dt + ets

A
it + fts

M
it (97)

where:

dt = (η − 1) log
1 + i∗

i∗
+ (1− ηγ)χP0,t + µϑ +

1

2
σ2
ϑ,t

+ (1− κAt )(1− ηγ)χPA,tµ
A
t−1 +

1

2
(1− ηγ)2χP

2

A,tσ
2
A|s,t−1

+ (1− κMt )
(
(η − 1) + (1− ηγ)χPM,t

)
µMt−1 +

1

2

(
(η − 1) + (1− ηγ)χPM,t

)2
σ2
M |s,t−1

et = κAt (1− ηγ)χPA,t

ft = κMt
(
(η − 1) + (1− ηγ)χPM,t

)
(98)
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Substituting back into the best reply, we have that:

log pit = ãt + b̃ts
A
it + c̃ts

M
it (99)

where ãt = log η
η−1

+ at − dt, b̃t = bt − et, c̃t = ct − ft. Thus log pit is a normal random

variable. Under these normal best replies, the aggregate price level is given by the ideal price

index (Equation 36):

logPt =
1

1− η
logEt [exp {log ϑit + (1− η) log pit}]

=
1

1− η

(
µϑ +

1

2
σ2
ϑ,t

)
+ Et[log pit] +

1− η

2
Vt[log pit]

(100)

where Et[log pit] = ãt + b̃tAt + c̃tMt and Vt[log pit] = b̃2tσ
2
s,A + c̃2tσ

2
s,M . Thus, we have that:

logPt =
1

1− η

(
µϑ +

1

2
σ2
ϑ,t

)
+ ãt +

1− η

2

(
b̃2tσ

2
s,A + c̃2tσ

2
s,M

)
+ b̃t logAt + c̃t logMt (101)

This in turn, by Equation 28, implies that:

logCt = −1

γ
log

1 + i∗

i∗
− 1

γ
logPt +

1

γ
logMt

= −1

γ

(
log

1 + i∗

i∗
+

1

1− η

(
µϑ +

1

2
σ2
ϑ,t

)
+ ãt +

1− η

2

(
b̃2tσ

2
s,A + c̃2tσ

2
s,M

))
− 1

γ
b̃t logAt +

1

γ
(1− c̃t) logMt

(102)

Thus, we have a unique solution to the original conjecture, with:

χP0,t = −1

γ

(
log

1 + i∗

i∗
+

1

1− η

(
µϑ +

1

2
σ2
ϑ,t

)
+ ãt +

1− η

2

(
b̃2tσ

2
s,A + c̃2tσ

2
s,M

))
χPA,t = −1

γ
b̃t−1 =

1

γ
κAt

χPM,t =
1

γ
(1− c̃t−1) =

1

γ
(1− κM)

(103)

Completing the proof.

A.4 Proof of Proposition 3

Proof. The overall level of consumption in the economy is given by
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Ct =

[∫
ϑ

1
η

itq
η−1
η

it di

] η
η−1

(104)

We guess that conditional on the realizations of Λ and M , the qit are distributed according

to a log-normal random variable. This will be confirmed under our log-linear guess for

consumption later. This implies that we may write:

logCt = E[log qit] +
1

2

η − 1

η
Var

(
log qit +

(
η

η − 1

)2
1

η2
log ϑit

)
(105)

where the expectation and variance are over the cross-sectional distribution of the qit’s.

Recall that log qit is given by:

log qit = −η
[
log

(
η

η − 1

)
+ logEit

[
ϕit(zitAt)

−1
]
− Eit

[
ϑ

1
η

itC
−γ+ 1

η

t

]]
(106)

We guess that

logCt = χQ0,t + χQA,t logAt + χQM,t logMt (107)

We proceed by substituting our guess into (106). To ease notation, define δx, ζx as the

precision of the prior and the signal at time t corresponding to variable x, respectively.

Further, let µx denote the prior mean of variable x at time t. We simplify (106) term by

term to obtain the following:

logEit
[
ϕit(zitAt)

−1
]
=− µz + µϕ +

1

2
(δz)

−1 +
1

2
(δϕ)

−1 −
(

ζA

ζA + δA
sAit +

δA

ζA + δA
µA

)
+

1

2
(ζA + δA)

−1

logEit
[
ϑ

1
η C

−γ+ 1
η

]
=

(
−γ +

1

η

)
χQ0,t + χQA,t

(
−γ +

1

η

)(
ζA

ζA + δA
sAit +

δA

ζA + δΛ
µA

)
+

1

2

(
χQA,t

)2
(
−γ +

1

η

)2

(ζA + δA)
−1 +

1

η
µϑ +

1

2η2
(δϑ, t)−1

+ χQM,t

(
−γ +

1

η

)(
ζM

ζM + δM
sMit +

δM

ζM + δM
µM

)
+

1

2

(
χQM,t

)2
(
−γ +

1

η

)2

(ζM + δM )−1

(108)

we can now collect terms after observing that E[sAit] = logAt and E[sMit ] = logMt where the

expectation is again over i. Collecting all terms for At and equating coefficients yields:

χQA,t = η

[(
ζA

ζA + δA

)
+

(
1

η
− γ

)(
ζA

ζA + δA

)
χQA,t

]
(109)

for which we obtain

χQA,t =
1

ζA+δA
ζA

(
1
η

)
− 1

η
+ γ

(110)
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which is exactly the equation in the main text after substituting δA = σ−2
A,t and ζA =

(
σAs
)−2

.

Similarly, we may collect all terms on Mt to obtain:

χQM,t = η

(
1

η
− γ

)(
ζA

ζA + δA

)
χQM,t (111)

for which we obtain χQM,t = 0. Note further that all other terms only depend on t through

δA. This verifies our conjecture that consumption is log-normal in aggregates as well as our

conjecture that quantities are distributed log-normally across firms (conditional on At and

Mt). In order to obtain the expression for the price level, note that (33) implies that

logPt = log
i∗

1 + i∗
− γ logCt + logMt (112)

And therefore we have

logPt = γ(log κ− logχ0,t)− γχQA,t logAt +
(
1− γχQM,t

)
logMt (113)

The result follows.

A.5 Proof of Lemma 2

Proof. From Proposition 1, we have that:

∆t =
1

2
(η − 1)

(
1

η
σ2
Ψ,t − ησ2

P,t − 2σΨ,M,t − 2ησP,M,t

)
(114)

where, now, all the variances are time-dependent. Applying Lemma 1 to obtain expressions

for (Ψ, P,M) in equilibrium, and exploiting the log-linearity of each expression, we have

that:
σ2
Ψ,t = σ2

ϑ,t + σ2
C,t

σ2
P,t = γ2σ2

C,t + (σMt )2 − 2γσC,M,t

σΨ,M,t = γσ2
C,t − σC,A,t

σP,M,t = γσC,A,t − γ2σ2
C,t + γσC,M,t

(115)

where σ2
X,t denotes the firm’s posterior variance of variable X at time t and σX,Y,t denotes

the firm’s posterior covariance of variables X and Y at time t. Substituting these formulae,

we obtain Equation 47:

∆t =
1

2
(η − 1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C,t − η(σMt )2 + 2(1− ηγ)σC,A,t

)
(116)
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Moreover, applying Propositions 2 and 3, we have that these variances for the firm in each

of the price-setting and quantity-setting regimes are given in each regime X ∈ {Q,P} by

(σXC,t)
2 = (χXA,t)

2σ2
A|s,t + (χXM,t)

2σ2
M |s,t

(σXC,A,t)
2 = χXA,tσ

2
A|s,t

(117)

Substituting Equation 117 into Equation 47, we obtain the following expression for ∆t in-

dexed by the regime X ∈ {Q,P}:

∆X
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t +

(
−η + 1

η
(1− ηγ)2(χXM,t)

2

)
σ2
M |s,t

+

(
1

η
(1− ηγ)χXA,t + 2

)
(1− ηγ)χXA,tσ

2
A|s,t

) (118)

We now derive the two desired expressions for ∆t, splitting the calculation into the

quantity-setting and price-setting cases.

Quantity-Setting. Substituting χQA,t and χ
Q
M,t = 0 from Proposition 3 and exploiting the

fact that the conditional variances are given by σ2
A|s,t = κAt σ

2
A,s and σ2

M |s,t = κMt σ
2
M,s, we

obtain:

∆Q
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t − ηκMt σ

2
M,s

+

(
1

η
(1− ηγ)

ηκAt
1− κAt (1− ηγ)

+ 2

)
(1− ηγ)

ηκAt
1− κAt (1− ηγ)

κAt σ
2
A,s

) (119)

as desired.

Price-Setting. Mirroring the steps above using the coefficients from Proposition 2, we

obtain

∆P
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t +

(
−η + 1

η
(1− ηγ)2

(
1− κMt
γ

)2
)
κMt σ

2
M,s

+

(
1

η
(1− ηγ)

κAt
γ

+ 2

)
(1− ηγ)

κAt
γ
κAt σ

2
A,s

) (120)

yielding the claimed expressions.
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Next, consider the comparative statics for ∆P
t . First,

∂∆P
t

∂κMt
= σ2

M,s

(
−η + 1

η
(1− ηγ)2

(
1− κMt
γ

)2

+
2

ηγ2
(1− ηγ)2(1− κMt )κMt

)
(121)

The condition
∂∆Pt
∂κMt

> 0 corresponds to

(
ηγ

1− ηγ

)2

< (1− κMt )2 + 2(1− κMt )κMt = 1− (κMt )2 (122)

Re-arranging gives, as desired, κMt <

√
1−

(
ηγ

1−ηγ

)2
. Next, ∆P

t is strictly increasing in κAt if

and only if: (
1

η
(1− ηγ)

κAt
γ

+ 2

)
(1− ηγ)

(
κAt
)2

γ
(123)

is strictly increasing in κAt . As argued above, this condition holds if ηγ < 1 and does not if

ηγ > 1.

A.6 Proof of Proposition 4

Proof. Define ∆∆t = ∆P
t −∆Q

t and observe that:

∆∆t =
1

2
(η − 1)

[
1

η
(1− ηγ)2

(
1− κMt
γ

)2

κMt σ
2
M,s

+

(
1

η
(1− ηγ)2

(
χP

2

A,t − χQ
2

A,t

)
+ 2(1− ηγ)(χPA,t − χQA,t)

)
κAt σ

2
A,s

] (124)

First, when ηγ = 1, we have that ∆∆t = 0. Second, suppose that ηγ < 1. We observe that

the first term in brackets is strictly positive. Turning to the second term, as ηγ < 1, we have

that ∆∆t > 0 if and only if χPA,t > χQA,t. This inequality is equivalent to:

κAt
γ
>

ηκAt
1− κAt (1− ηγ)

(125)

As ηγ < 1 and κAt ∈ (0, 1), we have that the denominator on the right-hand side is positive.

Thus, we can re-express this required inequality as:

1− ηγ > κAt (1− ηγ) (126)
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which is true as ηγ < 1 and κAt ∈ (0, 1). Thus, ∆∆t > 0 when ηγ < 1. Third, suppose that

ηγ > 1. Once again, the first term in brackets is strictly positive. Thus, it suffices to show

that:
1

η
(1− ηγ)2

(
χP

2

A,t − χQ
2

A,t

)
+ 2(1− ηγ)(χPA,t − χQA,t) > 0 (127)

See that we can factor the left-hand side of this expression as:

(1− ηγ)(χPA,t − χQA,t)

(
1

η
(1− ηγ)(χPA,t + χQA,t) + 2

)
(128)

By the reverse of the logic in part two, we have that χPA,t < χQA,t. Thus, the expression in

question is strictly positive if and only if:

2 >
1

η
(ηγ − 1)(χPA,t + χQA,t) (129)

We now observe that χPA,t + χQA,t < 2χQA,t. Moreover, χQA,t is an increasing function of κAt and

is therefore bounded above by η
1+ηγ−1

= 1
γ
. Thus, we have that:

1

η
(ηγ − 1)(χPA,t + χQA,t) <

2

ηγ
(ηγ − 1) = 2− 2

ηγ
< 2 (130)

This establishes that ∆∆t > 0 if ηγ > 1. Taken together, we have shown that ∆∆t ≥ 0 and

∆∆t > 0 if and only if ηγ ̸= 1, establishing the claim.

A.7 Proof of Corollary 4

Proof. We consider the three cases ηγ = 1, ηγ < 1, and ηγ > 1 separately.

1. ηγ = 1. By Lemma 2, we have that ∆Q
t = ∆Q(0) and ∆P

t = ∆Q(0), which are both

independent of κAt .

2. ηγ < 1. By Lemma 2, we have that ∆Q
t is strictly increasing in κAt if and only if

(
1

η
(1− ηγ)

ηκAt
1− κAt (1− ηγ)

+ 2

)
(1− ηγ)

η
(
κAt
)2

1− κAt (1− ηγ)
(131)

is strictly increasing in κAt . As ηγ < 1 and
ηκAt

1−κAt (1−ηγ)
is strictly increasing in κAt and

strictly positive, we have that the term in parentheses is strictly positive and strictly

increasing. The term outside parentheses is strictly increasing and strictly positive for
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the same reasons. Moreover, ∆P
t is strictly increasing in κAt if and only if:

(
1

η
(1− ηγ)

κAt
γ

+ 2

)
(1− ηγ)

(
κAt
)2

γ
(132)

is strictly increasing in κAt . As ηγ < 1, this is immediate.

3. ηγ > 1. By Lemma 2, we have that ∆Q
t is strictly decreasing in κAt if and only if

Expression 131 is strictly decreasing in κAt . Define ω = 1 − ηγ and observe that we

need to show that: (
ωκAt

1− ωκAt
+ 2

)
ω
(
κAt
)2

1− ωκAt
(133)

is a strictly decreasing function of κAt . Taking the derivative of this expression and

rearranging, we require that:

ωκAt

(
ω2
(
κAt
)2 − 3ωκAt + 4

)
< 0 (134)

As ω < 0, we require that ω2
(
κAt
)2 − 3ωκAt + 4 > 0. This is positive if the quadratic

on the left-hand side has no real roots. As 9ω2 − 16ω2 < 0, the quadratic indeed has

no real roots and so ∆Q
t is strictly decreasing in κAt .

∆P
t is strictly decreasing in κAt if and only:(

ω

1− ω
κAt + 2

)
ω

1− ω

(
κAt
)2

(135)

is strictly decreasing in κAt . Taking the derivative of this expression and rearranging,

we require that:

κAt <
4

3

ω − 1

ω
(136)

which is always satisfied as ω < 0.

As κAt is increasing in σAt , this establishes the result.

A.8 Proof of Corollary 6

The fact that ∆Q
t is decreasing in κMt is immediate from Lemma 2. Moreover, from Lemma

2, ∆P
t is decreasing in κMt if and only if(

−η + 1

η
(1− ηγ)2

(
1− κMt
γ

)2
)
κMt (137)
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is decreasing in κMt . Taking the derivative of this expression, this is equivalent to

(1− ηγ)2

(ηγ)2

(
1− 2ηγ

(1− ηγ)2
− 4κMt + 3(κMt )2

)
< 0 (138)

This is a strictly convex quadratic. Hence, if we show that this expression is weakly negative

evaluated at κMt = 0 and κMt = 1, it will be strictly negative for all κMt ∈ (0, 1). A sufficient

condition for this expression to be weakly negative at κMt = 0 is that

1− 2ηγ

(1− ηγ)2
≤ 0 (139)

which occurs if and only if ηγ ≥ 1/2. It is easily verified that ηγ ≥ 1/2 also makes the

expression strictly negative at κMt = 1. This proves that ∆P
t is strictly decreasing for all

κMt ∈ (0, 1) whenever ηγ ≥ 1/2.

We next study the case in which ηγ < 1
2
. We re-arrange condition (138) to

κMt (4− 3κMt ) >
1− 2ηγ

(1− ηγ)2
(140)

We first observe that this condition always holds at κMt = 1, as the left-hand-side is 1 and the

right-hand-side, given ηγ < 1/2, is bounded above by 1. Therefore, the critical value κ̄M is

the smaller root of the quadratic equation κMt (4− 3κMt )− 1−2ηγ
(1−ηγ)2 = 0. By direct calculation,

this is

κ̄M =
1

3

(
2−

√
4− 3

1− 2ηγ

(1− ηγ)2

)
(141)

=
1

3

2−
√
1−

(
ηγ

1− ηγ

)2
 (142)

=
2

3
−
√

1

9
+

1

3

(
ηγ

1− ηγ

)2

(143)

where, in the second equality, we use the fact that 1−2ηγ
(1−ηγ)2 = 1 −

(
ηγ

1−ηγ

)2
. We finally note

that κ̄M is monotone increasing in ηγ, is minimized at 0 when ηγ = 1/2, and is maximized

at 1
3
when ηγ = 0.
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A.9 Proof of Proposition 5

Proof. We first begin by showing that the interest rate is constant under this new monetary

rule. Note that the logarithm of money in first differences is a normal random variable with

mean

µM + αAµA (144)

and variance

α2
A(σ

A)2 + (σM)2 (145)

We can therefore apply the analysis in 4.1 to obtain:

1 + i∗ = β−1 exp

{
µM + αAµA − 1

2

(
α2
A(σ

A)2 + (σM)2
)}

(146)

Noting that the interest rate is independent of At and mt, we guess that prices across firms

are log-normally distributed across i. This implies that we may write

logPt = E[log pit] +
1− η

2
Var

(
log pit +

1

(1− η)2
σ2
ϑ,t

)
(147)

We also guess that the aggregate price level is log-linear in productivity and the money

shock:

logPt = logχ0,t + χ1 logAt + χ2 logmt (148)

Recall that pit is given by

log pit = log
η

η − 1
+ logEit[ϕit(zitAt)−1P ηCϑit]− logEit[C1−γP η−1ϑit] (149)

We simplify each term individually. We first make use of the relationship between consump-

tion and real money balances derived in Lemma 1, the equation for the monetary policy rule

(50), and the law of motion for the aggregate price level (148) to simplify the first expectation

term:

Eit
[
ϕit(zitAt)

−1P ηCϑit
]
= Eit

[
ϕit(zit)

−1χ
η− 1

γ

0,t Aχ1(η− 1
γ )+

αA
γ

−1mχ2(η− 1
γ )+

σM

γ ϑit

(
i

1 + i

) 1
γ

]
(150)

Simplifying this expression yields a constant independent of i and two terms involving i-

specific signals. We list them separately. The constant is given by:
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(
η − 1

γ

)
logχ0,t + µϕ − µz + µϑ +

1

2

(
σ2
ϕ,t + σ2

z,t + σ2
ϑ,t

)
+

1

γ
log

i

1 + i
+

1

γ
µM +

1

γ
logMt−1

+

[
χ1

(
η − 1

γ

)
+
αA
γ

− 1

]
σ−2
A

σ−2
A + σ−2

A,s

µA +
1

2

[
χ1

(
η − 1

γ

)
+
αA
γ

− 1

]2 σ2
Aσ

2
A,s

σ2
A + σ2

A,s

+

[
χ2

(
η − 1

γ

)
+
σM

γ

]
1

1 + σ−2
m,s

µm +
1

2

[
χ2

(
η − 1

γ

)
+
σM

γ

]2 σ2
m,s

1 + σ2
m,s

(151)

The i-specific terms are given by:[
χ1

(
η − 1

γ

)
+
αA
γ

− 1

]
σ−2
A,s

σ−2
A + σ−2

A,s

sAit +

[
χ2

(
η − 1

γ

)
+
σM

γ

]
σ−2
m,s

1 + σ−2
m,s

smit (152)

We may simplify the second expectation term in a similar fashion and collect the constants

and i-independent terms separately. We begin with the constant:

(
η − 1

γ

)
logχ0,t ++µϑ +

1

2
σ2
ϑ,t +

(
1

γ
− 1

)
i

1 + i
+

(
1

γ
− 1

)
µM +

(
1

γ
− 1

)
logMt−1

+

[
(αA − χ1)

(
1

γ
− 1

)
+ χ1(η − 1)

]
σ−2
A

σ−2
A + σ−2

A,s

µA +
1

2

[
(αA − χ1)

(
1

γ
− 1

)
+ χ1(η − 1)

]2 σ2
Aσ

2
A,s

σ2
A + σ2

A,s

+

[
(σ − χ2)

(
1

γ
− 1

)
+ χ2(η − 1)

]
1

1 + σ−2
m,s

µm +
1

2

[
(σ − χ2)

(
1

γ
− 1

)
+ χ2(η − 1)

]2 σ2
m,s

1 + σ2
m,s

(153)

The i-specific terms are given by[
(αA − χ1)

(
1

γ
− 1

)
+ χ1(η − 1)

]
σ−2
A,s

σ−2
A + σ−2

A,s

sAit+

[
(σ − χ2)

(
1

γ
− 1

)
+ χ2(η − 1)

]
σ−2
m,s

1 + σ−2
m,s

smit

(154)

Collecting all terms with sAit from both expressions, noting that E[sAit] = logAt (where the

expectation is over i), and equating coefficients with (148) yields the following equation for

χ1:

χ1 =

[
χ1

(
η − 1

γ

)
+
αA
γ

− 1

]
σ−2
A,s

σ−2
A + σ−2

A,s

−
[
(αA − χ1)

(
1

γ
− 1

)
+ χ1(η − 1)

]
σ−2
A,s

σ−2
A + σ−2

A,s

(155)
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which we may solve to obtain

χ1 =
αA − 1

1 +
σ2
A,s

σ2
A

= (αA − 1)κA (156)

Repeating the steps above yields the following equation for χ2

χ2 =

[
χ2

(
η − 1

γ

)
+
σM

γ

]
σ−2
m,s

1 + σ−2
m,s

−
[
(σ − χ2)

(
1

γ
− 1

)
+ χ2(η − 1)

]
σ−2
m,s

1 + σ−2
m,s

(157)

which we may solve to obtain

χ2 = σMκM (158)

By Lemma 1, the coefficient on At for consumption is given by

1

γ
(αA − χ1) =

1

γ
(αA(1− κA) + κA)) (159)

while the coefficient on the monetary shock is given by

1

γ
σM(1− κM) (160)

Finally, in order to obtain the coefficients on output, we can proceed exactly as in Appendix

A.4, where we instead assume that consumption is log-linear in the monetary shock mt

instead of Mt. Because mt does not appear in (41), the coefficient χQM,t continues to be

zero, while the coefficient χQA,t remains the same. The coefficients on the evolution for the

aggregate price level can then be found using Lemma 1. The proof follows.

A.10 Proof of Proposition 6

Proof. From Proposition 1, we have that:

∆ =
1

2
(η − 1)

(
1

η
σ2
Ψ − ησ2

P − 2σΨ,M − 2ησP,M

)
(161)

Moreover, applying Lemma 1, we have that:

σ2
Ψ = σ2

ϑ,t + σ2
C (162)

σ2
P = γ2σ2

C + σ2
M − 2γσC,M (163)
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σΨ,M = γσ2
C − σC,A (164)

σP,M = γσC,A − γ2σ2
C + γσC,M − σA,M (165)

Substituting these formulae, we obtain:

∆ =
1

2
(η − 1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C − ησ2
M + 2(1− ηγ)σC,A + 2ησA,M

)
(166)

Now σA,M = αAκ
Aσ2

A,s by assumption and σ2
M = α2

Aκ
Aσ2

A,s + κMt σ
2
m,s. Thus, we have that:

∆ =
1

2
(η−1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C − η
(
α2
Aκ

Aσ2
A,s − 2αAκ

Aσ2
A,s + κMt σ

2
m,s

)
+ 2(1− ηγ)σC,A

)
(167)

By Proposition 5, σ2
C and σC,A do not depend on αA. Thus,

∂∆Q

∂αA
= −η(η − 1)κAσ2

A,s (αA − 1) (168)

which is strictly positive when αA < 1 and strictly negative when αA > 1. Moreover,
∂2∆Q

∂α2
A

= −η(η − 1)κAσ2
A,s < 0, so ∆A is strictly concave in αA. Moreover, inspecting the

formula, ∆Q(αA) > ∆Q(0) if and only if αA ∈ (0, 2).

A.11 Proof of Proposition 7

Proof. By Proposition 6, we have that:

∆P =
1

2
(η − 1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C − η
(
α2
Aκ

Aσ2
A,s − 2αAκ

Aσ2
A,s + κMt σ

2
m,s

)
+ 2(1− ηγ)σC,A

)
(169)

Moreover, by Proposition 5, in a price-setting regime we have that:

σ2
C =

(
αA(1− κA) + κA

)2
γ2

κAσ2
A,s +

(1− κMt )2

γ2
κMt σ

2
m,s (170)

σC,A =
αA(1− κA) + κA

γ
κAσ2

A,s (171)
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We now need to determine the behavior of ∆P (α). Combining Equations 169 and 170, we

obtain:

∆P (αA) = cons.+
1

2
η(η − 1)κAσ2

A,s

([(
1− ηγ

γη

)2

(1− κA)
2 − 1

]
α2
A

+ 2

[(
1− ηγ

ηγ

)2

(1− κA)κA +
1− ηγ

ηγ
(1− κA) + 1

]
αA

) (172)

where cons. is independent of αA.

The linear part of ∆P is increasing when:(
1− ηγ

ηγ

)2

(1− κA)κA +
1− ηγ

ηγ
(1− κA) + 1 > 0 (173)

When ηγ ≤ 1, all terms on the left-hand side are positive and the inequality holds. When

ηγ > 1, we require that:(
ηγ − 1

ηγ

)2

(1− κA)κA + 1 >
ηγ − 1

ηγ
(1− κA) (174)

The first term on the left-hand side is strictly positive. Moreover, the term on the right-

hand side is strictly less than one as ηγ−1
ηγ

∈ (0, 1) (because ηγ > 1) and κA ∈ (0, 1). Hence,

∆P ′
(0) > 0, as we have claimed.

Moreover, ∆P is a concave function whenever:(
1− ηγ

γη

)2

(1− κA)
2 < 1 (175)

When ηγ ≥ 1, this is always satisfied as κA ∈ (0, 1). When ηγ < 1, this is satisfied whenever:

ηγ > 1−κA
2−κA ∈ (0, 1

2
). Moreover, when ∆P is concave, we have that ∆P is increasing up until

α∗, where α∗ solves:

α∗
[(

1− ηγ

γη

)2

(1− κA)
2 − 1

]
+

[(
1− ηγ

ηγ

)2

(1− κA)κA +
1− ηγ

ηγ
(1− κA) + 1

]
= 0

(176)

Rearranging yields Equation 54. In the convex case, ∆P is increasing after α∗ and decreasing

before α∗.
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B Additional Theoretical Results

In this appendix, we present several extensions of our theoretical results to cover: adjustment

costs (B.1), more general planning rules (B.2), decreasing returns to scale and non-linear

labor disutility (B.3), strategic complementary under active monetary rules (B.4), and mixed

equilibria (B.5).

B.1 Adjustment Costs

In our main analysis, we did not introduce any mechanical costs of price and/or quantity

adjustments. However, in practice, many firms may face such adjustment costs. In this

section, we enrich the model to allow for both price and quantity adjustment costs. The

preference between price-setting and quantity-setting is influenced by the same forces as

previously. However, these forces must now be balanced against the adjustment costs they

induce.

Suppose that the firm is subject to adjustment costs in prices and quantities of the form

δPV[log p] and δQV[log q]. That is, the firm faces a quadratic cost of adjusting its price and

quantity in percentage units away from what it expects. These costs could stem from the

physical costs of changing outputs and or prices.

In this setting, we obtain the following characterization of when price-setting and quantity-

setting obtain:

Proposition 8. With adjustment costs, price-setting is preferred to quantity-setting if and

only if:

∆ ≥ log

1 +

(
ηδQ − 1

η
δP

)
( 1
η
σ2
Ψ + ησ2

P + 2σP,Ψ)

V Q

 (177)

Quantity-setting is preferred to price-setting under the reverse inequality. Moreover,

V Q =
1

η − 1

(
η

η − 1

)−η

× exp

{
µΛ + (1− η)µM + µΦ +

1

2

(
σ2
Λ + (1− η)σ2

M +
1

η
σ2
Ψ + (1− η)σΛ,M + σΛ,Ψ

)}
(178)

Proof. We first derive the adjustment costs that the firm incurs under both planning regimes.

First, for any fixed q, price adjustment costs are:

CQ = δPV[−
1

η
log q + logP +

1

η
log Ψ] = δP (σ

2
P +

1

η2
σ2
Ψ +

2

η
σP,Ψ) (179)
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Second, for any fixed p, quantity adjustment costs are:

CP = δQV[−η log p+ logΨ + η logP ] = δQ(σ
2
Ψ + η2σ2

P + 2ησΨ,P ) (180)

Thus:

CQ − CP = (1− δQ
δP
η2)CQ = (1− δQ

δP
η2)δP (σ

2
P +

1

η2
σ2
Ψ +

2

η
σP,Ψ) (181)

or:

CQ − CP =

(
1

η
δP − ηδQ

)
(
1

η
σ2
Ψ + ησ2

P + 2σP,Ψ) (182)

Prices are preferred to quantities if and only if V P − V Q ≥ CP −CQ. When δP = η2δQ, this

reduces to main analysis. Otherwise, we have that V P −V Q = (exp{∆}− 1)V Q. So, we can

write the condition as:

(exp{∆} − 1)V Q ≥
(
ηδQ − 1

η
δP

)
(
1

η
σ2
Ψ + ησ2

P + 2σP,Ψ) (183)

We also know that:

V Q =
1

η − 1

(
η

η − 1

)−η
E [ΛM]1−η E[ΛΨ

1
η ]η (184)

logE[ΛM] = logE[exp{log Λ + logM}] = µΛ + µM +
1

2

(
σ2
Λ + σ2

M
)
+ σΛ,M (185)

logE
[
ΛΨ

1
η

]
= logE

[
exp

{
log Λ +

1

η
log Ψ

}]
= µΛ+

1

η
µΨ+

1

2

(
σ2
Λ +

1

η2
σ2
Ψ

)
+
1

η
σΛ,Ψ (186)

Thus:
V

Q
=

1

η − 1

(
η

η − 1

)−η
exp

{
µΛ + (1 − η)µM + µΦ +

1

2

(
σ
2
Λ + (1 − η)σ

2
M +

1

η
σ
2
Ψ + (1 − η)σΛ,M + σΛ,Ψ

)}
(187)

Completing the proof.

In the absence of adjustment costs δP = δQ = 0, this reduces to the familiar requirement

that ∆ ≥ 0. Away from this case, if ηδQ >
1
η
δP and quantity adjustment costs are relatively

larger, then ∆ must be sufficiently larger than zero to make price-setting more attractive

than quantity-setting. Conversely, when ηδQ < 1
η
δP , price-setting can be attractive even

when ∆ < 0. In the neutral case of ηδQ = 1
η
δP , adjustment costs along both margins are

of equal magnitude in profit units and the preference between price-setting and quantity-

setting continues to be governed by the comparison between ∆ and 0. Thus, adjustment costs

matter. But they do not affect the qualitative nature of the preference between price-setting

and quantity-setting.
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B.2 Beyond Prices and Quantities: General Supply Schedules

For the main analysis, we focused attention on the two most basic and well-studied forms of

planning: price-setting and quantity-setting. However, firms may also wish to employ richer

price-quantity plans. To understand the importance of this, we study optimal plans under

only the restriction that firms may condition their plans exclusively on (i) what they know

and (ii) variables that are under their control. This analysis allows firms to choose arbitrary,

non-parametric supply schedules, as has been studied in the industrial organization literature

(see e.g., Klemperer and Meyer, 1989). We find that the globally optimal price-quantity plan

is log-linear and limits to (i) price-setting when demand risk dominates aggregate price risk

and (ii) quantity-setting when aggregate price risk dominated demand risk. Thus, we argue

that our insights are qualitatively similar if firms can choose more general plans.

Set-up. Suppose, as in Klemperer and Meyer (1989), that the firm can commit to im-

plementing price-quantity pairs described by the implicit equation f(p, q) = 0 where f :

R2
++ → R. We will refer to f as the price-quantity plan. Price-setting is nested as a case in

which f(p, q) ≡ fP (p). Quantity-setting is nested as a case in which f(p, q) ≡ fQ(q). More

generally, we allow plans to be given by any non-parametric function f , even allowing for

non-monotonicity and discontinuities.

As in the baseline model with prices vs. quantity choice, the realized outcome for (q, p)

is the intersection of the demand curve and the firm’s supply-commitment curve. To build

intuition for this in a case that does not correspond to price-setting or quantity-setting, we

illustrate the (p, q) outcomes in a case where the supply schedule is p = q or the supply

function is f(p, q) = 1− pq (Figure 8). This illustration is intentionally parallel to Figure 1

in the main text which illustrates the outcomes under price-settting and quantity-setting.

Optimal Supply Schedules. We now characterize the globally optimal price-quantity

plan. To do this, observe that the firm’s demand curve is given by q = ΨP ηp−η and define

z = ΨP η. Given a plan f , the firm implements any price-quantity pair that lies on q = zp−η

and is such that f(p, q) = 0. Hence, it is fully equivalent to think of firms as committing

to a z-measurable price plan p̃ : R → R++ that solves f(p̃(z), zp̃(z)−η) = 0. As f has no

restrictions, it is equivalent to think of firms as choosing p̃ directly. Under such a price plan,

the firm’s expected payoff is given by:

J(p̃) =

∫
R4
++

Λ

(
p(z)

P
−M

)
zp(z)−η dF (Λ, P,M, z) (188)
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Figure 8: An Illustration of a Flexible Supply Schedule
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Note: This figure illustrates the outcomes of committing to the supply schedule f(p, q) = 1 − pq,
or the supply curve p = q, in a calibrated example with η = 1.1, µ = 0, and Σ = I. In the left
figure, the dashed line indicates the supply choice, the blue solid line indicates the mean demand
curve, and the blue shading indicates 68% and 95% level sets of the demand-curve uncertainty. In
the right figure, the red density is pdf for the realized quantity-price (log q, log p).

We therefore study the problem:

sup
p̃
J(p̃) (189)

Using variational methods in the space of price plans, we establish the following result that

provides the globally optimal price-quantity plan:

Proposition 9. Any optimal plan is almost everywhere given by:

f(p, q) = log p− α0 − α1 log q (190)

where the slope of the optimal price-quantity locus, α1 ∈ R, is given by:

α1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(191)

Proof. Consider a variation p̃(z) = p(z) + εh(z). The expected payoff under this variation

is:

J(ε;h) =

∫
R4
++

Λ

(
p(z) + εh(z)

P
−M

)
z (p(z) + εh(z))−η dF (Λ, P,M, z) (192)

A necessary condition for the optimality of a function p is that Jε(0;h) = 0 for all F−measurable
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h. Taking this derivative and setting ε = 0, we obtain:

0 =

∫
R4
++

[
Λ
h(z)

P
zp(z)−η − ηΛh(z)

(
p(z)

P
−M

)
zp(z)−η−1

]
dF (Λ, P,M, z) (193)

Consider h functions given by the Dirac delta functions on each z, h(z) = δz. This condition

becomes:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
f(Λ, P,M, t) dΛdP dM (194)

for all t ∈ R++. This is equivalent to:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
f(Λ, P,M|t) dΛdP dM

= (1− η)E
[
Λ
1

P
|z = t

]
tp(t)−η + ηE [ΛM|z = t] tp(t)−η−1

(195)

Thus, we have that an optimal solution necessarily follows:

p(t) =
η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]
(196)

Moreover, as z = qpη, we can re-express this as:

p(qpη) =
η

η − 1

E[ΛM|z = qpη]

E[ΛP−1|z = qpη]
(197)

Or equivalently, in the original planning form, as:

f(p, q) = p− η

η − 1

E[ΛM|z = qpη]

E[ΛP−1|z = qpη]
(198)

Exploiting joint log-normality, we can go further. Concretely, we have that:

E[ΛM|ΨP η = z] = exp

{
µΛ|z(z) + µM|z(z) +

1

2
σ2
Λ|z +

1

2
σ2
M|z + σΛ,M|z

}
(199)

E[ΛP−1|ΨP η = z] = exp

{
µΛ|z(z)− µP |z(z) +

1

2
σ2
Λ|z +

1

2
σ2
P |z − σΛ,P |z

}
(200)

And so:

E[ΛM|ΨP η = z]

E[ΛP−1|ΨP η = z]
= exp

{
µM|z(z) + µP |z(z) +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z

}
(201)
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Computing these terms, we moreover have that:

µM|z(z) =

(
1− σM,z

σ2
z

)
µM +

σM,z

σ2
z

log z (202)

µP |z(z) =

(
1− σP,z

σ2
z

)
µP +

σP,z
σ2
z

log z (203)

σ2
M|z = σ2

M − σ2
M,z

σ2
z

(204)

σ2
P |z = σ2

P − σ2
P,z

σ2
z

(205)

σΛ,M|z = σΛ,M − σΛ,zσM,z

σ2
z

(206)

σΛ,P |z = σΛ,P − σΛ,zσP,z
σ2
z

(207)

where:

σ2
z = σ2

Ψ + η2σ2
P + 2ησΨ,P (208)

σM,z = σM,Ψ + ησM,P (209)

σP,z = σP,Ψ + ησ2
P (210)

σΛ,z = σΛ,Ψ + ησΛ,P (211)

Combining all of this information, we have that the optimal rule follows:

log p = ω0 + ω1 log z = ω0 + ω1(log q + η log p) (212)

where:

ω0 = log
η

η − 1
+

(
1− σM,z

σ2
z

)
µM+

(
1− σP,z

σ2
z

)
µP +

1

2
σ2
M|z−

1

2
σ2
P |z+σΛ,M|z+σΛ,P |z (213)

ω1 =
σM,z + σP,z

σ2
z

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + η2σ2

P + 2ησΨ,P
(214)

Thus:

log p = α0 + α1 log q (215)

where:

α1 =
ω1

1− ηω1

(216)
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α0 =
ω0

1− ηω1

(217)

Thus:

α1 =

σM,Ψ+ησM,P+σP,Ψ+ησ2
P

σ2
Ψ+η2σ2

P+2ησΨ,P

1− η
σM,Ψ+ησM,P+σP,Ψ+ησ2

P

σ2
Ψ+η2σ2

P+2ησΨ,P

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + ησΨ,P − ησM,Ψ − η2σM,P

(218)

Completing the proof.

This result says that the globally optimal price-quantity plan is log-linear, with an elas-

ticity given by α1. Within the log-linear class, price-setting is nested with α1 = 0 and

quantity-setting is nested with α1 = ∞. With this, we can see how each of these plan-

ning regimes obtains endogenously in the limit as aggregate price and demand risk become

dominant:

Corollary 7. The following statements are true:

1. As σ2
P → ∞, the optimal plan converges to quantity-setting

2. As σ2
Ψ → ∞, the optimal plan converges to price-setting

This result mirrors our earlier analysis: when price risk is high relative to demand risk,

quantity-setting is better than price-setting (and vice versa).

Away from these limits, we show that the firm chooses the slope of the price-quantity

locus so that its price is an optimal markup on the ratio between its conditionally expected

marginal costs and the conditionally expected inverse aggregate price. That is, the optimal

plan is given by:

f(p, q) = p− η

η − 1

E[ΛM|z = qpη]

E[ΛP−1|z = qpη]
(219)

Intuitively, the firm wants to set its relative price equal to a constant markup on marginal

cost, as is standard under monopolistic competition. However, through conditioning on its

own strategic variables, the firm learns information about a composite of the strength of

demand and the aggregate price z. Thus, in setting its optimal price the firm must inter-

nalize this information. Computing the conditional expectations using Gaussian-regression

formulae yields the optimal elasticity.

B.3 Decreasing Returns-To-Scale and Labor Disutility

This section characterizes the economy under general, iso-elastic decreasing returns to scale

technology, and general Frisch elasticities for the labor supply.
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Preferences are now given by:

E0

[ ∞∑
t=0

βt

(
C1−γ
t

1− γ
+ ln

Mt

Pt
−
∫ 1

0

ϕit
N1+ψ
kt

1 + ψ
di

)]
(220)

and production features decreasing returns-to-scale:

xit = zitAtL
α
it (221)

so the benchmark case is nested when α = 1 and ψ = 0. We solve the equilibrium fixed

point problem under this more general specification. To this end, note that the wage schedule

facing a firm is

wit = ϕitPtC
γ
t L

ψ
it (222)

we may also relate quantities to labour-hiring as follows

(
xit
zitAt

) 1
α

= Lit (223)

Quantity Setting. We first derive the dynamics of the economy under a quantity setting

regime. To this end, a firm that sets quantities faces the following problem:

max
qit

Eit

[
C−γ
t

Pt

((
qit
ϑitCt

)−1/η

Ptqit − PtC
γ
t ϕit

(
qit
zitAt

)ψ+1
α

)]
(224)

The optimal quantity set by firms is therefore given by:

log qit = − αη

α + ψη + η(1− α)

[
log

(
η(ψ + 1)

α(η − 1)

)
+
(
E
[
ϕit (zitAt)

−ψ+1
α

])
−
(
E
[
ϑ

1
η

itC
−γ+ 1

η

])]
(225)

Our solution strategy is identical to the one in the main text: we conjecture a log-linear

solution for aggregate consumption (40), which we use to obtain a log-linear expression for

qit in terms of aggregates. We then substitute this expression into the consumption index (17)

and solve the fixed point. We may then obtain the following characterization of aggregate

consumption and the price level in a quantity setting regime.

Proposition 10. If all firms set quantities, output in the unique log-linear temporary equi-

librium is given by:

logCt = χQ0,t +
η(ψ + 1)κAt

η(1 + ψ − α) + α (1− κAt (1− ηγ))
logAt (226)
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where and χQ0,t is a constant that depends only on parameters. The aggregate price level

follows:

logPt = χ̃Q0,t−1 +
γη(ψ + 1)κAt

η(1 + ψ − α) + α (1− κAt (1− ηγ))
logAt + logMt+1 (227)

where χQ0,t and χ̃
Q
0,t−1 are constants that depend only on parameters and past shocks to the

economy.

Note that setting ψ = 0 and α = 1 yields the result in the main text. We note how the

presence of more general forms of labor disutility and decreasing returns to scale change the

responsiveness of consumption to output. First, it is straightforward to see that χQA,t−1 is

globally increasing in ψ for all parameter values, and that

lim
ψ→∞

logCt = κAt (228)

Hence, the presence of ψ can increase the response of consumption to productivity shocks

(relative to the baseline case) if and only if γ > 1. This is because large values for ψ effectively

eliminate wealth effects on the choice of labour, thereby making logCt independent of γ.

The effect of α on χQA,t−1 is more nuanced. If κAt is sufficiently low, increasing α raises the

responsiveness of consumption to productivity shocks. This captures the standard effect of

reducing the concavity inherent in the production function. If κAt is large and γ > 1, χQA,t−1

decreases. For large values of γ and signal-to-noise ratios, firms respond to positive signals

about productivity by increasing their demand for labor, on average. This increased demand

pushes up wages through wealth effects, which has a counteracting force on firm demand

in general-equilibrium. This “negative” demand component increases faster than the direct,

partial-equilibrium effect with respect to α when labour is sufficiently responsive to wages

(i.e. γ > 1).

Price Setting. We now turn our attention to the firm’s problem under a price-setting

regime. Under price-setting, the firms solve:

max
pit

Eit

[
pit
C−γ
t

P

((
pit
Pt

)−η
ϑitCt − ϕitPtC

γ
t

(
pit
Pt

)− η(1+ψ)
α
(
zitAt
ϑitCt

) 1+ψ
α

)]
(229)

The optimal price set by firms is therefore given by:

log pit =
α

α + η(1 + ψ − α)

[
log

η(ψ + 1)

α(η − 1)
+ logEit

[
ϕit
(
(zitAt)

−1 P η
t ϑitCt

) 1+ψ
α

]
− logEit[C1−γ

t P η−1
t ϑit]

]
(230)
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We may solve for the fixed point as above. This yields the following proposition.

Proposition 11. The aggregate price level in the unique log-linear equilibrium is given by

logPt = logχP0,t−1 + χPA,t−1 logAt + χPM,t−1 logMt (231)

where

χPA,t−1 =
−(1 + ψ)κAt

(α + η(1 + ψ − α))−
(
η − 1

γ

)
(1 + ψ − α)κAt

(232)

χPM,t−1 =

1
γ
(1 + ψ − α(1− γ))κMt

(α + η(1 + ψ − α))−
(
η − 1

γ

)
(1 + ψ − α)κMt

(233)

and aggregate consumption follows

logCt = χ̃P0,t −
1

γ
χPA,t logAt +

1

γ
(1− χPM,t) logMt (234)

Note again that letting ψ = 0 and α = 1 yields the corresponding proposition in the main

text. An interesting observation is that, under price setting, increasing ψ makes the price

level more responsive to money. High values of ψ increase the responsiveness of marginal

costs to aggregate demand, thereby inducing firms to increase their prices further in response

to perceived changes in aggregate demand conditions.

B.4 Strategic Complementarity Under Active Monetary Rules

As we discussed earlier, an active monetary rule can break strategic complementarity in

planning. The next proposition gives sufficient conditions for planning choices to be strategic

complements, thereby ensuring the existence of at least one “pure” quantity-setting or price-

setting equilibrium.

Proposition 12 (Monetary Policy and Regime Switching). The decision to set a price or

a quantity is one of strategic complements, i.e. ∆P ≥ ∆Q, if one of the following conditions

are satisfied:

1. ηγ = 1

2. ηγ < 1 and αA ≥ α̃A, where

α̃A ≡ −κA(1− ηγ)

1− κA(1− ηγ)
∈ (−∞, 0) (235)
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3. ηγ > 1 and αA ≤ α̃A, where

α̃A ≡ −κA(1− ηγ)

1− κA(1− ηγ)
∈ (0, 1) (236)

Moreover,

lim
αA→±∞

(
∆P −∆Q

)
≥ 0 (237)

Proof. Suppose that

logCt = χ0 + χ1 logAt + χ2 logmt (238)

We may use Equation (167) to express ∆ as a function of χ1 and χ2:

∆ =
1

2
(η − 1)

(
1

2
σ2
ϑ +

(
1

η
(1− ηγ)2χ2

2 − η

)
κMt σ

2
m,s +

(
1

η
(1− ηγ)χ1 + 2

)
(1− ηγ)χ1κ

Aσ2
A,s

)
+

1

2
(η − 1)

(
(2− αA)αAηκAσ

2
A,s

)
We can therefore right ∆P −∆Q as

1

2
(η − 1)

(
1

η
(1− ηγ)2(χP2 )

2κMt σ
2
m,s +

1

η
(1− ηγ)2

[
(χP1 )

2 − (χQ1 )
2
]
κAσ2

A,s + 2(1− ηγ)(χP1 − χQ1 )κAσ
2
A,s

)
where χPj and χQj , j ∈ {1, 2} denote the dynamics of the economy in Proposition 5, under

price-setting and quantity-setting, respectively. We now derive sufficient conditions for ∆P−
∆Q ≥ 0. Note that this is always true if ηγ < 1 and χP1 ≥ χQ1 . This is true if and only if

αA ≥ κA(ηγ − 1)

1− κA(1− ηγ)
(239)

where it easily verified the above fraction is negative whenever ηγ < 1 and can take on any

value strictly less than zero. Moreover, when ηγ > 1, ∆P −∆Q ≥ 0 if χP1 ≥ χQ1 . This is true

if and only if

αA ≤ κA(ηγ − 1)

1− κA(1− ηγ)
(240)

where it is easily verified that the above fraction is between zero and one if ηγ > 1. Finally,

the limiting result follows by noting that ∆P−∆Q is quadratic in αA with a positive coefficient

on the quadratic term.

In particular, planning choices are always strategic complements if ηγ < 1 and αA is

not too negative, or ηγ > 1 and αA is not too positive. The intuition for this result is as

follows. If ηγ < 1, a larger covariance between consumption and productivity, σC,A, enters
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positively into (15). This is because increasing σC,A reduces σΨ,M more than it raises η×σP,M
whenever ηγ < 1. However, σC,A is larger under price setting than quantity setting if and

only if αA ≥ α̃A . If ηγ > 1, σC,A enters negatively into (15), which requires that σC,A be

lower under price setting than quantity setting to ensure the existence of complementarities.

This is occurs if and only if σC,A ≤ α̃A, as per the proposition.

Although the presence of strategic substitutability implies that a “pure” equilibrium

may not exist for some parameter values, a mixed equilibrium clearly exists. The next

section (Appendix B.5) characterizes – to first-order – the dynamics of the price level and

consumption in the presence of mixing, in which λt ∈ (0, 1) fraction of firms set prices,

and a fraction 1 − λt of firms set quantities. In the case with mixing, the dynamics of

the economy become a convex combination of the “pure” dynamics under price setting and

quantity setting.

B.5 Mixed Equilibria

We may also consider “mixed” regimes, in which a fraction λt ∈ (0, 1) of firms set prices at

time t. We first expand our definition of a temporary equilibrium to allow for mixing.

Definition 3 (Temporary Equilibrium with Mixing). A temporary equilibrium is a partition

of N into three sets T P , T Q, and T PQ and a collection of variables

{
{pit, qit, Cit, Nit, Lit, wit, ϕit, ϑit, zit,Πit}i∈[0,1], Ct, Pt,Mt, At, Bt, Nt,Λt, λt

}
t∈N (241)

such that:

1. In periods t ∈ T P , all firms choose their prices pit to maximize expected real profits

under the household’s real stochastic discount factor.

2. In periods t ∈ T Q, all firms choose their quantities qit to maximize expected real profits

under the household’s real stochastic discount factor.

3. In periods t ∈ T PQ a fraction λt of firms choose prices pit and a fraction (1−λt) choose
quantities qit to maximize expected real profits under the households’ real stochastic

discount factor.

4. In all periods, the household chooses consumption Cit, labor supply Nit, money holdings

Mt, and bond holdings Bt to maximize their expected utility subject to their lifetime

budget constraint, while Λt is the household’s marginal utility of consumption.

5. In all periods, money supply Mt and productivity At and evolve exogenously via Equa-

tions 20 and 22.
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6. In all periods, firms’ and consumers’ expectations are consistent with the equilibrium

law of motion.

7. In all periods, the markets for the intermediate goods, final good, labor varieties, bonds,

and money balances all clear.

As in the main text, we define an equilibrium as a temporary equilibrium in which the

choice of setting prices or quantities is optimal. In the case where there is mixing, firms are

indifferent between price or quantity-setting.

Definition 4 (Equilibrium with Mixing). An equilibrium is a temporary equilibrium in

which:

1. If t ∈ T P , all firms find price-setting optimal. That is, expected real profits under the

household’s real stochastic discount factor are weakly higher under price-setting than

quantity-setting.

2. If t ∈ T Q, all firms find quantity-setting optimal. That is, expected real profits under

the household’s real stochastic discount factor are weakly higher under price-setting

than quantity-setting.

3. If t ∈ T PQ firms are indifferent between price or quantity-setting.

The presence of mixing complicates the equilibrium characterization because it generally

leads to a solution for aggregate consumption that is not log-linear in aggregates, thereby

making it difficult to characterize in closed form. We address this challenge by taking a

log-linear approximation of the aggregate price level (18) around a zero innovation limit at

t − 1, which we denote by P full
t−1 . Approximating (18) in this way yields the following, to

first-order in the shocks At and Mt:

logPt = P full
t−1 + λtE [log pit|price setting] + (1− λt)E [log pit|quantity setting] (242)

where the expectations are over the cross-sectional distribution of firms, conditional on their

choice to set prices or quantities. Crucially, we still allow firms best responses to be fully

non-linear. This feature implies that our approximate formulas for the dynamics of the

economy under mixing will exactly equal our fully non-linear characterization in the main

text whenever λt = 0 or λt = 1. The following proposition characterizes the dynamics of

the economy in the unique log-linear approximate equilibrium for λt ∈ [0, 1]. We present the

proposition under the conditions that permit active monetary policy (outlined in Section 5),

and only note that the special case of αA = 0 can also encompass time-varying volatility in

output.
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Proposition 13. Equilibrium prices and consumption in a mixed regime are given by the

following expressions, to first-order:

logPt = χPQ0,t−1 + χPQA,t−1(λt) logAt + χPQA,t−1(λt) logMt (243)

logCt = χ̃PQ0,t−1 −
1

γ
χPQA,t−1(λt) logAt +

1

γ

(
1− χPQM,t−1(λt)

)
logMt (244)

where

χPQA (λt) =
ηγκA (αA − 1)− (1− λt)αA

(
κA − 1

)
ηγ − (1− λt) (ηγ − 1) (1− κA)

(245)

χPQm (λt) =
ηγλtκ

M
t + (1− λt)

(
κMt (ηγ − 1) + 1

)
ηγλt + (1− λt) (κMt (ηγ − 1) + 1)

σM (246)

Proof. We guess that the price level is a log-linear function of the money supply shock and

productivity:

logPt = logχ0 + χ1 logAt + χ2 logmt (247)

Note also that equation (33) implies that the dynamics for consumption are given by

logCt = −1

γ

(
log (χ0)− log

(
i∗

1 + i∗

))
− 1

γ
(χ1 − αA) logAt −

1

γ
(χ2 − σM) logmt (248)

We now consider the first expectation term in Equation (242), which the cross-sectional

average of log-prices for all price-setters. Following through Equations (149)-(154) in A.9,

we can collect all terms that depend on logAt and logmt to obtain:

logAt : (αA − 1)κA (249)

logmt : σMκM (250)

We now consider the second expectation term in Equation (242), which is the cross-

sectional average of log-prices for all quantity-setters. Using (41), this is given by

E
[
log

(
η

η − 1

)
+ logEit

[
ϕit (zitAt)

−1]− Eit
[
ϑ

1
η

itC
−γ+ 1

η

t

]
+

1

η
logCt + logPt

]
(251)
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Simplifying this expression and collecting terms for logAt and logmt separately yields

logAt : −
(
1 + χ1

(
1− 1

ηγ

))
κA + χ1

(
1− 1

ηγ

)
+ αAκA

(
1− 1

ηγ

)
(252)

logmt : χ2

(
1− 1

ηγ

)(
1− κM

)
+

(
1− 1

ηγ

)
σMκM +

1

ηγ
σM (253)

We may now equate coefficients using (242). This yields an equation for χ1:

χ1 = λt (αA − 1)κA+(1−λt)
[
−
(
1 + χ1

(
1− 1

ηγ

))
κA + χ1

(
1− 1

ηγ

)
+ αAκA

(
1− 1

ηγ

)
+

1

ηγ
αA

]
(254)

We can similarly obtain equation for χ2:

χ2 = λtσ
MκM + (1− λt)

(
1

ηγ
+ κM

(
1

ηγ
− 1

))
σMκM (255)

Solving these two equations yields:

χ1(λt) =
ηγκA (αA − 1)− (1− λt)αA (κA − 1)

ηγ − (1− λt) (ηγ − 1) (1− κAt )
(256)

χ2(λt) =
ηγλtκ

M + (1− λt)
(
κM (ηγ − 1) + 1

)
ηγλt + (1− λt) (κM (ηγ − 1) + 1)

σM (257)

The proof follows.

It is straightforward to verify that setting λt = 0 or λt = 1 gives us the dynamics for

prices and consumption for “pure” equilibria considered in Section 5.
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C Supplemental Tables and Figures

Figure 9: The Relative Benefit of Price-Setting in an Alternative, Annual Calculation
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Note: This figure summarizes the relative advantage of price-setting for alternative values of the
elasticity of demand (horizontal axis) and the ratio of microeconomic to macroeconomic volatility
(vertical axis). The left panel plots the average advantage of price-setting over the sample, in units
of 100 times log points (percent). The right panel plots the fraction of the sample in which price
setting is optimal, or in which ∆̂t > 0. In both panels, our baseline calibration is indicated with a
solid dot.
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Figure 10: The Relative Benefit of Price-Setting in an Alternative, Annual Calculation
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Note: This figure plots our empirical estimate of ∆̂t (the comparative advantage of price-setting
relative to quantity-setting) and its components, as defined in Proposition 1 (Equation 15), under a
variant method with annual-frequency data and direct measurement of micro volatility from Bloom
et al. (2018). Note that the time period (1972-2010) and time frequency (annual) differs from that
in Figures 5 and 6 (quarterly, 1960 Q1 to 2022 Q4). The black line plots ∆̂t, in units of expected
percent profit improvement (100 times log points). The blue (dashed), orange (dotted), green
(dashed), and red (dash-dotted) lines plot each of the four components of ∆̂t, corresponding to
uncertainty about different variables. The grey shading denotes periods in which ∆̂t < 0 and thus,
according to Proposition 1, quantity-setting is optimal for firms. As described in Section 6.1, the
calculation uses estimates of time-varying volatilities from an annual-frequency CCC GARCH(1,1)
model and a calibrated elasticity of demand η = 9
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Table 1: Asymmetric Effects of Monetary Policy, Robustness

Panel (a): Outcome is log RealGDPt+12

(1) (2) (3) (4)
Baseline Lag Avg. Lead Avg. Continuous

MonShockt × PriceSett -0.0172 -0.0071 -0.0253
(0.0077) (0.0101) (0.0162)

MonShockt × ∆̂t+1 -28.50
(13.51)

MonShockt ✓ ✓ ✓ ✓
PriceSett ✓ ✓ ✓
∆̂t+1 ✓
Macro Controls ✓ ✓ ✓ ✓
Macro Controls ×PriceSett ✓ ✓ ✓
Macro Controls ×∆̂t+1 ✓
N 156 156 156 156

Panel (b): Outcome is logGDPDeflatort+12

(1) (2) (3) (4)
Baseline Lag Avg. Lead Avg. Continuous

MonShockt × PriceSett 0.0120 0.0042 0.0184
(0.0053) (0.0059) (0.0083)

MonShockt × ∆̂t+1 1.018
(10.38)

MonShockt ✓ ✓ ✓ ✓
PriceSett ✓ ✓ ✓
∆̂t+1 ✓
Macro Controls ✓ ✓ ✓ ✓
Macro Controls ×PriceSett ✓ ✓ ✓
Macro Controls ×∆̂t+1 ✓
N 156 156 156 156

Note: This Table shows results from estimating Equation 60 at the 12-quarter horizon with different
constructions of the interactive variable, focusing only on estimates of the interaction coefficient.
In Panel (a) the outcome variable is Real GDP and in Panel (b) the outcome variable is GDP
Deflator. Model (1) is our baseline. Model (2) uses a four-quarter lagged average of PriceSet,
or sets PriceSett = (

∑3
j=0 PriceSetBaselinet−j)/4. Model (3) uses a four-quarter lead average of

PriceSet, or sets PriceSett = (
∑3

j=0 PriceSetBaselinet+j)/4. Model (4) uses the continuous variable

∆̂t+1. In all cases, we control for interactions of the macroeconomic variables (contemporaneous
and lagged values of log Real GDP, log GDP Deflator, and log TFP) interacted with the variant
construction of PriceSet or ∆. Standard errors in parentheses are based on the method of Newey
et al. (1987) with a six-quarter bandwidth.
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