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Abstract

We introduce a model of strategic experimentation on social networks where forward-
looking agents learn from their own and neighbors’ successes. In equilibrium, private
discovery is followed by social diffusion. Social learning crowds out own experimenta-
tion, so total information decreases with network density; we determine density thresh-
olds below which agents asymptotically learn the state. In contrast, agent welfare is
single-peaked in network density, and achieves a second-best benchmark level at inter-
mediate levels that achieve a balance between discovery and diffusion. We also show
how learning and welfare differ across directed, undirected and clustered networks.

1 Introduction

The discovery and diffusion of innovations are key drivers of long-term economic growth.
This is illustrated by the seminal papers of Griliches (1957) and Coleman, Katz, and Menzel
(1957) that document the spread of new technologies by farmers and doctors. From the per-
spective of societal welfare, discovery and diffusion are complements: Mokyr (1992) argues
that both are required for sustained economic progress. From an individual strategic per-
spective, they are substitutes: Grossman and Stiglitz (1980) famously point out that if prices
aggregate information efficiently, then individual agents have no incentive to privately gener-
ate such information. Economic theory has made large strides in understanding information
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acquisition and aggregation in centralized settings such as financial markets, auctions, and
collective experimentation. These incentives are less well understood in decentralized set-
tings, where information slowly diffuses through society. This paper seeks to reconcile these
forces in a parsimonious equilibrium model of experimentation on networks.

The classic paper on this topic, Bala and Goyal (1998), restricts attention to myopic, non-
Bayesian agents, shortcutting strategic considerations and allowing them to solve the model
as a sequence of static decision problems. In contrast, our agents are forward-looking, and
fully Bayesian, so both past and future social learning crowds out private experimentation.
The key simplifying assumption is that agents learn via perfect good news events: This
reduces each agent’s problem to choosing a deterministic cutoff time, with social learning
described by ordinary differential equations, opening the gate to a myriad of questions about
experimentation on networks.

We use this new approach to study how asymptotic information and welfare depend on
network density, as measured by either the size of the core in core-periphery networks or by
the degree in regular random networks. For either measure we show that agents’ asymptotic
information decreases monotonically in network density and they learn the truth when the
network is sufficiently sparse. In contrast, welfare is single-peaked in network density and
attains a second-best welfare benchmark when density is intermediate; such networks both
encourage generation of information and quickly diffuse the discoveries. Finally, we provide
a tight comparison between directed, undirected and clustered networks. Collectively, these
results paint a clear picture about learning dynamics, information aggregation, and welfare
in networks when agents are forward-looking.

In the model, a group of I agents (Iris, John, Kata. . .) are connected by an exogenous
network (e.g. clique, tree, core-periphery). They can each experiment with a new technology
whose state is high or low; experimentation generates successes at random times iff the
state is high. Agents learn from own and neighbors’ successes but do not observe neighbors’
actions. This simple model captures a number of applications: Consider farmers learning
about the success of a new crop from neighbors, doctors learning about a new drug from
colleagues, or landowners learning about the presence of oil from nearby frackers.

In Section 3.1, we first characterize Iris’s best-response to arbitrary strategies of other
agents. Observing a success perfectly reveals the high state and essentially ends the game for
her. Before this time, Iris’s experimentation decision is based on her social learning curve,
i.e. the expected effort of her neighbors. We show that Iris’s dynamic experimentation prob-
lem is solved by a simple cutoff strategy: In the absence of success, Iris stops experimenting
at some cutoff time τi. An increase in social information crowds out Iris’s private experi-
mentation, lowering her cutoff time: Unsuccessful past social learning makes Iris pessimistic,
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while future social information lowers the information value of own experimentation.
Section 3.3 illustrates in examples how to aggregate individuals’ cutoff times into social

learning curves for their neighbors. In the clique network, where all agents observe one
another, the unique equilibrium features complete crowding out: The agents collectively
experiment as much as a single agent would by herself. Adding agents speeds up experi-
mentation and spreads its cost, but does not raise the amount of information generated. In
the line network, an initial experimentation phase is followed by a contagion phase. Agents
asymptotically learn the state, but welfare is limited by the slow rate of information diffusion.

In Section 4, we study the effect of network density on asymptotic information and
welfare. Specifically, we consider two canonical types of networks (regular random networks
and core-periphery) as I → ∞. To study aggregate information, define the asymptotic
information to be the total information created by society; there is asymptotic learning if
asymptotic information is unbounded, meaning that the agents learn the state. To study
welfare, we propose a second-best benchmark that provides an upper bound on equilibrium
utility (of the worst-off agent) across all networks. Neither the clique nor the line attain this
benchmark: The former generates too little information, while the latter diffuses information
too slowly. Nevertheless, we show below that the benchmark is attained by some networks.

We first study large regular random networks with degree nI . This model encompasses
sparse trees, where nI ≡ n, and dense cliques, where nI/I → 1. Theorem 1 shows that
asymptotic information decreases in network density, and asymptotic learning obtains if
density is below a threshold; specifically the agents fully learn if the time-diameter (the
typical time for information to travel between two agents) exceeds σ∗, which is the time such
that perfectly learning the state at t = σ∗ renders agents indifferent about experimentation
at t = 0. Welfare is single-peaked in network density and attains the second-best benchmark
if nI → ∞ and nI/I → 0. Intuitively, asymptotic learning requires sparsity to sustain
private experimentation incentives; high welfare additionally requires density to promptly
diffuse news across society.

To study the role of network position on experimentation incentives we next turn to core-
periphery networks, where KI core agents are connected to everyone while I−KI peripheral
agents are only connected to core agents. Such networks are used to describe financial
markets, with dealers or banks as core agents (e.g. Li and Schürhoff (2019)). In equilibrium,
core agents have more social information than peripherals, so experiment less and have higher
utility. While core agents experiment little themselves (if at all), they serve an important
role as information brokers connecting the peripherals. As I →∞, asymptotic learning and
welfare exhibit similar properties to large random networks, with core size substituting for
the degree. Theorem 2 shows that asymptotic information decreases in network density, and
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asymptotic learning obtains if KI remains below a threshold κ∗. Welfare is single-peaked in
network density and attains the second-best benchmark if KI exceeds κ∗ and KI/I → 0.
The threshold κ∗ renders peripherals indifferent about experimentation at t = 0 when κ∗

core agents work forever.
Our analysis of large random networks and core-periphery networks points to a funda-

mental tradeoff between social learning and welfare. These goals are often thought to be
aligned: Hayek (1945) famously emphasizes the importance of information aggregation for
allocative efficiency. In our model, agents must be incentivized to acquire information, so
the fast diffusion required for second-best welfare can lower total information. Indeed, for
core-periphery networks the two goals are mutually exclusive.

Our two families of networks differ in their network structure and thus exhibit different
social learning dynamics. In large random networks, the typical pair of agents has distance
log I/ log nI ; as the degree grows, social learning occurs in a single burst at a fixed time
σ. In contrast, in core-periphery networks, all peripheral agents are two links apart; social
learning occurs as the core agents slowly transmit the information created by the periphery.
Cumulative social learning curves are thus convex for large random networks but concave
for core-periphery networks, as illustrated in Figures 4 and 6.

In Section 5, we study different types of links in the context of regular tree networks,
including directed trees (e.g. Twitter), undirected trees (e.g. LinkedIn), and trees of triangles
that capture clustering (e.g. Facebook). As discussed above, trees approximate large random
networks. Trees are also highly tractable because neighbors’ behavior is independent; this
allows us to characterize social learning in the contagion phase by simple ordinary differential
equations. For example, in a directed line, social information arrives at a constant rate,
whereas in a directed tree with degree n ≥ 2, the arrival rate rises over time. Theorem 3
provides tight bounds on the utility of agents across different networks. The utility of an
agent in a undirected tree with degree n is sandwiched between her value in directed trees
with degree n − 1 and n. Thus, agents prefer directed to undirected links, but even more
strongly prefer to be in a tree with one more neighbor. Similarly, the utility of an agent in a
triangle tree with degree n is sandwiched between her value in undirected trees with degree
n− 1 and n. Link types are thus of second-order importance for dense networks, where the
distinction between, say, n = 74 friends and n′ = 78 friends becomes blurry. Collectively,
these results demonstrate the qualitative and quantitative importance of network structure.
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1.1 Literature

At the core of the paper is a “perfect good news” model of strategic experimentation with
private actions and payoffs. In the context of a clique, Keller, Rady, and Cripps (2005)
study a good-news model with observed actions and private payoffs, Bonatti and Hörner
(2011) consider good-news model with unobserved actions and public payoffs, and Bonatti
and Hörner (2017) consider a bad-news model with unobserved actions and private payoffs.
In all of these papers, agents use mixed strategies. Specifically, in the first two papers,
agents gradually phase out their experimentation as the public belief approaches the exit
threshold. In our model, agents use simple cutoff strategies that allow us to go beyond the
clique and solve for equilibria in rich classes of networks. We also think that the assumptions
of unobserved actions and private payoffs is a natural way to model a network of farmers,
doctors or oil frackers whose externalities are purely informational.

Observational learning on networks was pioneered by Bala and Goyal (1998) who study
myopic, non-Bayesian agents and provide conditions on the network under which (i) agents
reach a consensus and (ii) the agents learn the state.1 Subsequent work has generalized
these two limit results in models with forward-looking, Bayesian agents who incorporate the
future value of information when choosing to experiment. Rosenberg, Solan, and Vieille
(2009) consider a very general model that encompasses strategic experimentation on net-
works, and shows that all agents eventually play the same action. Camargo (2014) considers
a continuum-agent model with “random sampling”, and shows that information aggregates
if each action is myopically optimal for a positive measure of agents’ heterogeneous priors.
By focusing on good news learning, we can characterize learning dynamics at each point
in time, rather than restricting attention to long-run behavior. This is important because
agents care about when innovations diffuse and not just if they diffuse; indeed, this consid-
eration underlies the contrast between sparse networks that aggregate information and the
denser networks that maximize welfare.2

Most closely related to our model, Salish (2015) embeds a discrete-time version of Keller,
Rady, and Cripps’s (2005) strategic experimentation model in a network. Neighbors observe
each others’ actions, which thus signal successes of second neighbors; Salish side-steps such

1Sadler (2020b) characterizes outcomes more completely in Bala-Goyal’s model with Brownian learning.
2A parallel literature considers dynamic learning games where private information is initially endowed to

agents, instead of being learned over time. Gale and Kariv (2003) show that consensus must emerge when
agents are Bayesian and myopic. Mossel, Sly, and Tamuz (2015) extend this result to forward-looking agents,
and also show that agents eventually learn the state if the network is not too connected (e.g. the network
is undirected with bounded degree). Another classic literature considers agents who move in sequence,
learning from (a subset of) prior agents. Acemoglu et al. (2011) show that society learns the state if signals
are unbounded and agents (indirectly) observe an unbounded number of agents. Mossel et al. (2020) unify
many of the results in these literatures by looking at steady-state asymptotic behavior.
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signaling by introducing an additional learning channel, whereby successes are automatically
transmitted across the network, one link per period. The paper shows that experimentation
tends to phase out over time, and that ring and star networks aggregate more information
than the clique. In contrast, our best-responses are determined by simple cutoffs, allowing
us to characterize equilibrium, aggregate information, and welfare.

The complexity of Bayesian updating has led some authors to consider reduced-form
models of information acquisition and aggregation. For example, Bramoullé and Kranton
(2007) and Galeotti and Goyal (2010) consider a local public goods game where each agent
chooses a contribution level, and benefits from her neighbors’ contributions. Since our agents’
optimally choose a deterministic stopping time, we recover the tractability of the reduced-
form models of experimentation in a model of Bayesian learning.

In seeking to characterize learning dynamics on networks, the paper is related to Board
and Meyer-ter-Vehn (2021). In that paper, myopic agents sequentially choose to acquire
information at a single point in time. Here, forward-looking agents simultaneously choose
to acquire information at every point in time. The different models give rise to different
economic forces: The forward-looking agents in this paper anticipate the arrival of future
social information which crowds out their private experimentation, and the repeated choices
gives rise to the clean distinction between an experimentation phase and a contagion phase.
This paper also focuses on a different question: How does aggregate information and welfare
change with network density? The results in Section 5 correspond most closely to our prior
paper, where we studied different types of links in the configuration model.3

The project also complements a growing empirical literature that studies how people
learn about innovations from their neighbors. Conley and Udry (2010), Banerjee et al.
(2013), BenYishay and Mobarak (2019) and Beaman et al. (2021) study the spread of new
production techniques and financial innovations in developing countries. Fetter et al. (2018)
and Hodgson (2021) study the diffusion of fracking and oil exploration decisions. And Moretti
(2011) and Finkelstein, Gentzkow, andWilliams (2021) explore the adoption of new products.
Such empirical analysis lacks a simple framework with forward-looking Bayesian agents that
can be estimated and used for counterfactuals. This paper proposes such a framework.

3More specifically, in Board and Meyer-ter-Vehn (2021) we consider a more general configuration model
with multiple types. We show that social learning was greater in directed networks than comparable undi-
rected networks, and greater in tree networks than than comparable triangle networks. Section 5 only
considers regular networks but provides a tighter characterization of the value of link type.
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2 Model

Network. Agents i = {1, ..., I} are connected by a network g ⊆ I2 that represents who
observes whom. If i (Iris) observes j (John), we write i→ j or (i, j) ∈ g, and call j a neighbor
of i. The set of Iris’s neighbors is Ni(g). The network may be directed or undirected. It
may be deterministic or random; denote the random network by G with realization g.

Game. The agents seek to learn about the effectiveness of a new technology as captured by
the state θ ∈ {L,H} = {0, 1}. Time is continuous, t ∈ [0,∞). At time t = 0, agents share a
common prior Pr(θ = H) = p0. At each time t, agent i privately chooses effort Ai,t ∈ [0, 1] at
flow cost c. This effort results in successes at random arrival times (T 1

i , T
2
i , ...) with arrival

rate Ai,tI{θ=H}. Agent i observes her own and her neighbors’ past successes, but not others’
actions. If the network is random, she knows G but nothing about the realization g, not
even her own degree.4

Payoffs. Agents receive payoff x > c from their own successes. Payoffs are discounted at
rate r > 0, so the expected discounted value equals

Vi = max
{Ai,t}t≥0

E

[
x
∞∑
ι=1

e−rT
ι
i − c

∫ ∞
0

e−rtAi,tdt

]
(1)

where the expectation is taken over quality θ, network G, and arrival times {T ιi }. We solve for
weak perfect Bayesian equilibria, where agents who have observed a success infer that θ = H.

Remarks. Agents observe neighbors’ successes but not their actions. This makes the model
tractable by focusing on a single mechanism of information transmission. We think this is
reasonable in many applications (e.g. a farmer doesn’t know if her neighbor experimented
with a new crop, but observes the results of a successful harvest). Agents also cannot
communicate with each other directly. An agent has little incentive to reveal her failures
since this will tend to make her neighbors more pessimistic and lower their experimentation.

Our model is equivalent to a model where each agent can only succeed once for a payoff
of x+(x−c)/r; while agents do not get to observe their neighbors’ repeated successes in this
model variant, this does not matter since the first observed success reveals θ = H perfectly.

4The main role of this assumption is to ensure our agents are symmetric in our large regular random
networks. It has no impact on the analysis of the best-response (Section 3.1), our deterministic examples
(Section 3.3) or the core-periphery (Section 4.3).
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3 Preliminary Analysis

3.1 Best-Responses: Cutoff Strategies

In this section, we characterize the best response of a generic agent Iris, given arbitrary
strategies of other agents.

As a benchmark, consider Iris’s single-agent experimentation problem, or equivalently
her problem when she has no neighbors. After her first success, she chooses maximal effort
Ai,t = 1 and obtains continuation value y := (x − c)/r. Before that, her posterior belief
evolves according to

pt = P ∅(t) :=
p0e
−t

p0e−t + (1− p0)
.

Iris thus experiments until time τ̄ when her belief hits the single-agent threshold belief pτ̄ =

p := c/(x + y). It is also useful to define the myopic threshold belief p̄ := c/x, where Iris
would stop if she ignored the future benefit of success, y.

Now, consider the general problem where Iris learns from her neighbors, Ni(G). Write
Ti = T 1

i for Iris’s first success time, and Si := minj∈Ni(G) Tj for her neighbors’ first success.
After Iris observes a success at min{Ti, Si}, she chooses maximal effort and receives contin-
uation value y. We can thus restrict attention to earlier times, and write {a∅i,t}t≥0 for her
experimentation, i.e. her effort before min{Ti, Si}. Also write

bi,t := EH

 ∑
j∈Ni(G)

Aj,t

∣∣∣∣t < Ti, Si

 (2)

for Iris’s rate of social learning,5 where the expectation is taken over the random network
G and success times {Tj}, conditional on θ = H. We also define Iris’s cumulative social
learning Bi,t :=

∫ t
0
bi,sds, and abuse terminology by referring to both {bi,t} and {Bi,t} as

Iris’s social learning curve. Since Iris’s experimentation is unobservable to others and her
own success effectively ends the game for her, Iris takes {bi,t} as given. We thus study the
best response {a∅i,t} to {bi,t}, and drop the i subscript for the rest of the section.6

When θ = H, the random time min{T, S} has hazard rate a∅t + bt, and so the chance of
not observing a success before t equals exp(−

∫ t
0
(a∅s + bs)ds). Bayes’s rule then implies the

posterior belief

pt = P ∅
(∫ t

0

(a∅s + bs)ds

)
.

5Iris additionally knows her past actions {Ai,s}s<t, but since these are deterministic given t < Ti, Si there
is no need to include them in the conditional expectation.

6The analysis in this section immediately applies to other models of social learning that give rise to a
social learning curve {bi,t}, say time-varying networks and/or random networks with private information.
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Truncating her objective function (1) at the first observed success reduces it to a deter-
ministic control problem

V = max
{a∅t }t≥0

∫ ∞
0

((
a∅t (x+ y) + bty

)
pt − a∅t c

)
e−

∫ t
0(r+(a∅s+bs)ps)dsdt. (3)

Intuitively, Iris receives x + y when she succeeds, y when a neighbor succeeds, and incurs
effort cost of c when she works. These payoffs are discounted at the interest rate plus the
success rate, (a∅s + bs)ps.

Clearly, Iris experiments above the myopic threshold, pt ≥ p̄. Conversely, equation
(3) implies that Iris stops to experiment below the single-agent threshold, pt ≤ p. For
intermediate beliefs pt ∈ [p, p̄], her choice depends on her social learning. To avoid trivialities,
we restrict p0 ∈ (p, 1). We say Iris’s prior is optimistic if p0 > p̄ and pessimistic if p0 < p̄;7 the
upshot of this distinction is that an optimistic agent always engages in some experimentation,
no matter her social learning curve.

We first claim that Iris uses a cutoff strategy in that she experiments maximally until
some cutoff time τ and then stops, a∅t = I{t≤τ}.8 Intuitively, it makes no sense to stop
experimenting at some τ ′, but then resume it after neighbors’ lack of success over [τ ′, τ ′′].
For a more rigorous argument, suppose Iris shirks at time t but works at time t + δ, and
consider the effect of front-loading effort ε from t + δ to t. This has two consequences.
First, if the effort pays off, i now gets to enjoy the success earlier, raising her value by
rδ(pt(x+ y)− c)ε, which is positive in the relevant range of posteriors pt > p. Second, if one
of her neighbors succeeds over [t, t+ δ], she ends up working at both t and t+ δ, raising her
value by ptbtδε(x − c) > 0. Thus, Iris always prefers to front-load experimentation, giving
rise to a cutoff time τ with cutoff belief pτ ∈ [p, p̄].

To characterize the optimal cutoff τ , define Iris’s experimentation incentives at time-t,

ψt := pt

(
x+ ry

∫ ∞
t

e−
∫ s
t (r+bu)duds

)
− c. (4)

To understand (4), suppose that successes from Iris’s neighbors arrive at constant rate b,
so (4) simplifies to pt(x + r

r+b
y) − c. If she raises the cutoff from t to t + δ, she gains

the expected payoff from a success pt(x + y)δ, forgoes the expected benefit of future social
learning pt( b

r+b
y)δ, and incurs marginal effort cost cδ. The experimentation incentives are

the sum of these three effects.
We summarize this discussion as follows:

7We are opportunistic about calling the boundary case p0 = p̄ optimistic or pessimistic.
8Of course, “stopping” is provisional in the sense that Iris starts to work again when she observes one of

her neighbors succeed at some t > τ .
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Proposition 1. Given social information {bt}, the agent’s optimal experimentation is given
by the cutoff strategy a∅t = I{t≤τ}, where the cutoff time τ ∈ (0, τ̄ ] uniquely solves ψτ = 0 if
ψ0 > 0, and τ = 0 if ψ0 ≤ 0.

Proof. See Appendix A.1.

Proposition 1 reduces the potentially complicated dynamic experimentation problem of a
forward-looking, Bayesian agent to choosing one number, τ , which is characterized explicitly
by setting (4) to zero. This tractability allows us to characterize equilibria for rich classes
of networks. In contrast to Proposition 1, the seminal papers on strategic experimentation
in the clique network, Keller, Rady, and Cripps (2005) and Bonatti and Hörner (2011),
both find agents gradually phase out effort in equilibrium. This difference arises because
free-riding incentives are greater in their models: In Keller, Rady, and Cripps (2005), Iris’s
neighbors observe her experimentation and makes them pessimistic (when it fails); in Bonatti
and Hörner (2011), the payoff is public, so Iris does not want to exert effort if others are
about to succeed.

3.2 Best-Responses: Comparative Statics

This section derives two useful comparative statics on Iris’s value and her optimal cutoff as
a function of social learning. The first result shows that more social information raises Iris’s
value and leads her to stop earlier. Thus, this is a game of strategic substitutes. The optimal
cutoff τ is maximized in the absence of social learning, Bt ≡ 0, where it coincides with the
single-agent solution, τ = τ̄ .

Lemma 1. Higher social learning {Bt}t≥0 increases value V and decreases the cutoff τ .

Proof. Clearly, a rise in {Bt} constitutes Blackwell-superior information, which raises V .
Experimentation incentives (4) fall both in pre-cutoff learning Bτ which lowers the cutoff
belief pτ = P ∅(τ +Bτ ) and in future learning {bt}t≥τ . To show that ψτ falls in the integral,
{Bt}, we need to compare the impact of “early” and “late” increases in bt.

Specifically, differentiating time-τ experimentation incentives (4) with respect to time-t
social learning, we get

−∂ψτ
∂bt

=

pτ
(
ry
∫∞
τ
e−

∫ s
τ (r+bu)duds+ x− c

)
for t < τ

pτry
∫∞
t
e−

∫ s
τ (r+bu)duds for t > τ,

(5)

where the case t < τ uses ∂pτ
∂bt

= −pτ (1 − pτ ) and (1 − pτ )(x + ry
∫∞
τ
e−

∫ s
τ (r+bu)duds) =

x + ry
∫∞
τ
e−

∫ s
τ (r+bu)duds − (ψτ + c). Clearly, (5) is positive and falls in t, weakly for t < τ

and discontinuously at t = τ .
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Thus, incentives ψτ fall as a function of cumulative learning {Bt}. Since ψt strictly single-
crosses from above (cf. proof of Proposition 1), the solution τ of ψτ = 0 falls in {Bt}.

Equation (5) tells us that pre-cutoff learning Bτ crowds-out the agent’s experimentation
more than post-cutoff learning {bt}t≥τ . After the cutoff, it crowds out the option value of
own experimentation ry

∫∞
τ
e−

∫ s
τ (r+bu)duds, as seen in the second line of (5) for t = τ . Before

the cutoff, the additional term x−c in the first line of (5) represents the reduced opportunity
of achieving a first success at τ , conditional on θ = H.9

Iris’s value depends on her social information {Bt}. The following lemma shows that
a sufficient statistic for {Bt} is her pre-cutoff learning Bτ and her optimal cutoff time
τ : Before τ , Iris exerts effort anyway, so does not care about the timing of social learn-
ing {Bt}t≤τ . Post-cutoff learning {Bt}t≥τ matters only via the continuation value Vτ =

pτy
∫∞
τ
bse
−

∫ s
τ (r+bu)duds = pτ (x+y)−c,10 which is a function of (τ, Bτ ) since pτ = P ∅(τ+Bτ ).

Lemma 2. Assume the agent is willing to experiment initially, ψ0 ≥ 0. There exists a
continuous function V : R2

+ → R+ that falls in both arguments, such that for any social
learning curve {Bt} with associated optimal cutoff τ , the agent’s value equals V(τ, Bτ ).

Proof. See Appendix A.2.

By Lemma 2, the agent’s value V(τ, Bτ ) falls in Bτ . This sounds counterintuitive, but it
arises because we fix the optimal stopping time τ , as characterized by ψτ = 0. An increase
in pre-cutoff learning Bτ must be compensated by a fall in post-cutoff learning {bt}t≥τ in
order to keep τ constant. Moreover, since pre-cutoff learning has a discontinuously larger
effect on ψτ than post-cutoff learning by (5), we must reduce the latter by a larger amount to
compensate. In contrast to (5), the effect of social learning on value, ∂V/∂bt, is continuous
in t, so the combination of a small raise of bτ−ε and a large drop of bτ+ε decreases value.

Lemma 2 is the key tool to compare equilibrium welfare across networks since τ and Bτ

are easily characterized in equilibrium. For example, suppose we take two networks G and
G′ such that an agent’s best-response is to shirk in the first, τ = 0, and work in the second,
τ ′ > 0. Since Bτ = 0 and Bτ ′ ≥ 0, the agent has utility V(0, 0) under G, which exceeds her
utility V(τ ′, Bτ ′) under G′.

Lemma 2 assumes that the agent is willing to experiment initially, so her stopping time
is characterized by ψτ = 0. Otherwise, if the agent is receiving too much social information,

9For optimistic agents, p0 > p̄, this asymmetry is stark: Full crowding out of incentives, is achieved by a
finite amount Bτ = τ̄ of pre-cutoff learning (inducing pτ < p and so ψτ < 0), but by no amount of post-cutoff
learning (since ψ0 > p0x− c > 0 for any {Bt}).

10The first equality leverages the fact that all learning after τ is social {bt}t≥τ , and the second leverages
the indifference condition ψτ = 0.

11



Figure 1: Equilibrium Analysis.

her value strictly exceeds V(0, 0).11 In the random networks in Section 4.2, all agents exert
some effort and so ψτ = 0. In the core-periphery networks in Section 4.3, we focus on the
welfare of the worst-off peripheral agents, who also exert some effort.

3.3 Equilibrium: Examples

In the prior sections, we studied Iris’s best response τi as a function of social learning {bi,t}.
To close the model in equilibrium we must study how individual cutoffs {τj} aggregate into
social learning curves {bi,t}, cf. Figure 1. Here we illustrate this aggregation in three canon-
ical example networks, foreshadowing the more general analysis in Section 4.

Example 1 (Clique). Assume that all agents observe each other. We claim there is a unique
equilibrium in which all agents equally divide the single-agent experimentation between them.
That is, each agent i uses cutoff τi = τ̄ /I, recalling the single-agent experimentation cutoff τ̄
that solves P ∅(τ̄) = p. The resulting social learning curve is shown in Figure 2(a). Aggregate
information is constant in I. Welfare rises with I as the agents share the total cost.

We prove our claim in two steps. First, the agents collectively experiment as much as
a single agent would by herself

∑
i τi = τ̄ . This is because the agent who experiments the

longest expects no social information after her cutoff, bi,s = 0 for s > τi. Hence she faces the
first-order condition of the single-agent problem, P ∅(

∑
j τj)(x + y) − c = 0 = p(x + y) − c.

Second, the agents must split total experimentation evenly, τj = τ̄ /I. This follows because
all agents are indifferent at p and, since agents prefer to front-load experimentation, they
all experiment until that point. This is formally shown in Proposition 3 for all strongly
symmetric networks.12 4

11Formally, V = V0 = p0y
∫∞

0
bse
−
∫ s
0

(r+bu)duds = p0(x+ y)− c− ψ0 = V(0, 0)− ψ0 > V(0, 0).
12The uniqueness of equilibrium is notable. In public good problems with linear costs there is a continuum

of equilibria; Bramoullé and Kranton (2007) select via a stability criterion while Galeotti and Goyal (2010)
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Example 2 (Infinite Directed Line). Consider the following network:

. . .→ i→ j → k → . . .

In the unique symmetric equilibrium, an initial experimentation phase of length τ is followed
by a contagion phase.13 For example, suppose Kata succeeds in the experimentation phase,
while Iris and John do not. After τ , Kata’s success means that Kata and John continue to
work while Iris shirks. Eventually John also succeeds, and all three work thereafter.

To solve for the equilibrium cutoff τ , we calculate Iris’s social information during the
contagion phase,

bi,t = EH [Aj,t|t < Ti, Si] = EH [Aj,t|t < Tj] = PrH (Tk < t|t < Tj) = 1− e−τ . (6)

The second equality uses that John is Iris’s only neighbor, so Si = Tj, and that his effort Aj,t
is independent of Iris’s lack of success, t < Ti. The third equality relies on the observation
that after τ , John works iff Kata has succeeded. The last equality uses Bayes’ rule,

PrH (t < Tk|t < Tj) =
PrH (t < Tj|t < Tk) PrH (t < Tk)

PrH (t < Tj)
= PrH (t < Tj|t < Tk) = e−τ .

Thus, social information arrives at constant rate bi,t ≡ 1− e−τ , as illustrated in Figure 2(b).
While the unconditional probability that Kata has succeeded, and hence John works, rises
over time, this positive effect is exactly cancelled by conditioning on the bad news event that
John has not succeeded yet, t < Tj.

Using (4), the equilibrium stopping time τ solves

ψτ = P ∅(2τ)

(
x+

r

r + (1− e−τ )y
)
− c = 0. (7)

Example 3 (Star). In the star, one core agent, Kata, k, has an undirected link to L

peripheral agents, Lili, `, who have no other links. By symmetry, Proposition 3 implies that
peripherals share a common cutoff, τ`. Moreover, Kata learns faster than the peripherals,
and so experiments less herself, τk < τ` (see Lemma 5 in Section 4.3). For large L, Kata

select via a network formation game. We resolve this determinacy through impatience. In experimentation
papers there are also asymmetric equilibria (e.g. Keller, Rady, and Cripps (2005), Bonatti and Hörner
(2011)). As discussed above, free-riding incentives are weaker in our paper, leading putative asymmetric
equilibria to unravel.

13In Section 5 we approximate this infinite network with a sequence of finite random networks, that
generate circles of random, exploding length. Corollary 1 shows that the unique equilibrium of each finite
random networks is symmetric, and Proposition 4 shows that these equilibria converge to the symmetric
equilibrium described here.
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Figure 2: Social Learning Curves. This picture shows the rate of social learning bit as defined in
equation (2) for Examples 1-3, as described in the text.

does not experiment herself, τk = 0. Information is thus primarily generated by peripherals,
but flows via Kata who serves as an information broker.

If a peripheral succeeds before τ`, Kata starts to work; her eventual success then triggers
all other peripherals to work. The resulting social learning curve for peripheral agent Lili b`,t
undergoes two phases, illustrated in Figure 2(right) and derived in (13) for K = 1. Up to
time τ`, it increases because of the effort of other peripherals, but tempered by Kata’s lack of
success. After τ`, no more additional information is created, and b`,t falls as the information
filters through Kata, and Lili becomes pessimistic about Kata having seen a success. These
dynamics are analogous to water flowing into a reservoir while the peripherals experiment,
and slowly draining out through a bottleneck as Kata conveys the information. 4

3.4 Equilibrium: Existence and Uniqueness

We round off our preliminary analysis by establishing equilibrium existence and presenting
a limited uniqueness result.

Proposition 2. Equilibrium exists.

Proof. We argue that Nash’s best-response mapping in cutoff vectors {τ ∗j } : [0, τ̄ ]I → [0, τ̄ ]I

is continuous, which implies equilibrium existence by Brouwer’s fix point theorem. First
note that i’s social learning curve {bi,t}t≥0, as in (2), is pointwise continuous in {τj}j 6=i for
all t 6= τj. Then, Lebesgue’s dominated convergence theorem implies that incentives ψi,t in
(4) are also continuous in {τj}j 6=i for all t. Finally, since ψi,t strictly single-crosses in t (see
the proof of Proposition 1), its root τ ∗i ({τj}j 6=i) is also continuous.
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Uniqueness is more difficult. We cannot prove equilibrium uniqueness in general, but
can show uniqueness for “strongly symmetric” networks. For a deterministic network g and
agents i 6= j, define gi↔j to be the same network when switching i and j.14 For a random
network G, define Gi↔j by PrGi↔j(g) = PrG(gi↔j) for all g.

Proposition 3. If i, j are symmetric in G, i.e. Gi↔j = G, then in any equilibrium τi = τj.

Proof. See Appendix A.3.

For an intuition, consider a deterministic, undirected network where i and j are not
connected. By contradiction assume τi > τj. Since i’s additional learning over [τj, τi] is
more immediate to i than to j, who only benefits indirectly via some other agent k, we can
argue that min{Ti, Si} is smaller than min{Tj, Sj}. This greater chance of learning the state
depresses i’s experimentation incentives below j’s, leading to the contradiction that τj > τi.

Say that network G is strongly symmetric if Gi↔j = G for any pair of agents i, j.

Corollary 1. Strongly symmetric networks have a unique equilibrium, characterized by a
cutoff τ ∈ (0, τ̄), such that τi = τ for all i.

Proof. Proposition 3 implies that all agents must share the same cutoff τ . Uniqueness of the
cutoff follows from strategic substitutes: Indeed, consider two cutoffs τ ′ > τ where the latter
constitutes a symmetric equilibrium: ψi,τ = 0 when τj = τ for all j 6= i. When others j 6= i

use the higher cutoff τj = τ ′, Iris learns more B′i,t ≥ Bi,t for all t, and thus chooses to stop
prior to τ < τ ′ by Lemma 1. Hence τ ′ does not constitute a symmetric equilibrium.

Caveat: Our notion of symmetry is so strong that only two deterministic networks satisfy
it: the clique, and the empty network. Indeed, the infinite directed line (Example 2) or a finite
directed circle violate it since only agent i observes i+1, so g 6= gi↔j for any j 6= i. With this
said, many natural classes of random networks, such as the configuration networks studied
in Section 4.2, do satisfy strong symmetry and Corollary 1 applies. Moreover, Proposition
3 is useful beyond strongly symmetric networks; for instance, equilibria in core-periphery
networks in Section 4.3 are characterized by one cutoff τk for all core-agents, and another
cutoff τ` for all peripherals.

14Formally, given g, we can define gi↔j by three types of links. First, links involving i and j: (i, j) ∈ gi↔j
iff (j, i) ∈ g, and analogously, (j, i) ∈ gi↔j iff (i, j) ∈ g. Second, links involving one third party: (i, k) ∈ gi↔j
iff (j, k) ∈ g and three analogous conditions, replacing i and j and switching the direction of these links.
Third, links involving two third parties: (k, `) ∈ gi↔j iff (k, `) ∈ g.
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4 Density of Links

We now turn to the main question of the paper: How learning and welfare depend on
the network density. Section 4.1 defines some terminology and introduces a second-best
benchmark for welfare. Section 4.2 studies large random networks. Section 4.3 studies core-
periphery networks. The results for asymptotic learning and welfare in these two sections
run parallel to one another, but the learning dynamics differ.

4.1 Bounds on Learning and Welfare

Information Aggregation. Iris eventually learns the successes of all agents with a path
from i to j. Lemma 1 implies τj ≤ τ̄ , and so Iris’s (eventual) social information, as t→∞,
is bounded by Bi,∞ ≤ (I − 1)τ̄ . To study large networks, we consider sequences of networks
{GI}I∈N with associated social information BI := minj B

I
j,∞ corresponding to the least-

informed agent. If GI admits multiple equilibria, we consider the infimum values of BI . In
the limit, as I → ∞, define asymptotic information as B = lim inf BI . There is asymptotic
learning if B =∞, so all agents eventually learn the state.

Welfare. Iris’s value in trivially bounded above by the value of learning the state perfectly
immediately, Vi < p0y. Another, less obvious, upper bound on agents’ value comes from the
fact that for i to socially learn, some other agent j 6= i must generate that social information.
By Lemma 2, this implies that minj Vj < V(0, 0) = p0(x+ y)− c,15 motivating the following
Rawlsian welfare upper bound

V ∗ := min{p0y, p0(x+ y)− c},

illustrated in Figure 3 as a function of p0. Given a sequence of networks {GI}I∈N, let
V I := minj V

I
j be the welfare of the worst-off agent. If GI admits multiple equilibria, we

consider the infimum values of V I . In the limit, as I → ∞, define asymptotic welfare as
V = lim inf V I . Our main results, Theorem 1 and 2 show that sequences of random networks
and core-periphery networks with the appropriate, intermediate network density can attain
the welfare upper bound, V = V ∗.16

15This upper bound relies on agents using equilibrium strategies. In a sequence of clique networks, and
symmetric cutoffs τ I that vanish individually lim τ I = 0 but explode in aggregate lim Iτ I = 0, agents’ payoffs
approach p0y, which exceeds p0(x + y)− c for pessimistic priors p0 < p̄. However, in equilibrium, an agent
in such a network would have a strict incentive to shirk for large I (see Example 1).

16In both cases, the proof of the Theorem characterizes unique limit points for {BI} and {V I}, so the
lim inf equals the ordinary limit. In the large random networks equilibria are unique, so taking the infimum
over equilibrium values is moot. In finite core-periphery networks, we do not know whether equilibrium is
unique, but the unique characterization of the limit points does not rely on taking the infimum over equilibria
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Figure 3: Value Bounds. The figure shows the bound on the value V ∗ as a function of the agent’s prior,
p0. This upper bound is piece-wise linear, with a downward kink at p̄, the myopic cutoff. The figure also
illustrates agents’ values in a large clique and when by themselves.

While asymptotic learning and the welfare benchmark are both driven by social learning
{Bt}, they are distinct concepts since asymptotic learning focuses on the long run, while
welfare incorporates discounting. For optimistic priors p0 ≥ p̄, the welfare bound requires
agents learn the state immediately, so clearly they also learn asymptotically. For pessimistic
priors p0 < p̄ we will see that, for core-periphery networks, asymptotic learning and the
welfare upper bound are mutually exclusive. To illustrate the benchmarks, we return to the
three examples in Section 3.3.

Example 1, Continued (Clique). In a finite network, the agents divide up the single-agent
experimentation, τi = τ̄ /I. As I →∞, individual experimentation vanishes and all learning
is social with asymptotic information B = τ̄ . Agents’ receive all their social information
before stopping, Bτ = τ̄ , and their asymptotic value equals V(0, τ̄). More concretely, their
beliefs instantly jump to 1 (if there is a success) or drop to p (if there is no success). The pay-
off to the former is y, so the equilibrium values converge to V(0, τ̄) = (p0−p)y/(1−p) < V ∗,
as illustrated in Figure 3. Thus, the speed of diffusion in the clique chokes off discovery and
means that agents neither asymptotically learn nor obtain the welfare benchmark. 4

Example 2, Continued (Infinite Directed Line). In this infinite network, each agent
experiments for time τ > 0, where τ solves (7). This network aggregates information: Each

and rather applies for any equilibrium selection.
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agent learns from infinite agents who each perform a strictly positive amount of experimenta-
tion. More explicitly, an agent’s social learning curve Bt = τ+(1−e−τ )(t−τ) is unbounded.
However, agents learn too slowly and they do not attain the welfare benchmark. Specifically,
each agent experiments for τ and learns an additional τ from her neighbor before stopping,
so Bτ = 2τ and welfare equals V(τ, 2τ) < V ∗. 4

Example 3, Continued (Star). When there is a large number of peripherals, the core
agent Kata shirks, τk = 0. The peripherals thus do all the experimentation and have the
lowest information and welfare, so we focus on them. We show in Section 4.3 that agents
asymptotically learn iff p0 ≥ ps. This threshold is defined so that a peripheral agent will just
work at t = 0 if he thinks Kata will instantly learn the state and choose bk,t ≡ 1 thereafter,

ψ`,0 = ps
(
x+

r

r + 1
y

)
− c = 0.

Note that ps ≤ p, so agents asymptotically learn if they have an optimistic prior.
The welfare result is exactly the opposite: Agents attain the welfare benchmark iff p0 ≤

ps. For a high prior, p0 > ps, the peripheral agents experiment in the limit, τ` > 0, meaning
Kata instantly learns. Thus a peripheral agent learns Bτ` = τ` before stopping and has value
V(τ, τ) < V ∗.17 For a low prior, p0 ≤ ps, the peripherals stop experimenting in the limit,
τ` = 0, and since Bτ` ≤ τ`, their value converges to its upper bound V ∗ = V(0, 0).18 Thus,
asymptotic learning and the welfare benchmark are not only distinct concepts, but in fact
mutually exclusive (for generic priors with p 6= ps). 4

4.2 Random Networks

We first study large random networks. This is a tractable canonical class of networks that
captures realistic contagion dynamics. For simplicity we focus on regular networks, where
agents all have the same number of neighbors, and comment after our main result which
insights generalize to non-degenerate degree distributions. This class is rich enough to en-
compass the clique and trees, as in Sadler (2020a) and Board and Meyer-ter-Vehn (2021).

We construct a regular random network as follows. Each of the I agents has n̂I ≥ 2 link
stubs. We randomly draw pairs of stubs and connect them into undirected links. We then
prune self-links (from i to i), multi-links (from i to j), and if n̂II is odd the single leftover
stub. We assume that agents observe nothing about the network realization, not even their

17This presumes p0 ≤ p̄ so that V ∗ = V(0, 0). For p0 > p̄, the welfare bound V ∗ = p0y requires immediate
perfect social information, which is clearly impossible with a single neighbor.

18It may appear paradoxical that the welfare upper bound V ∗ is achieved for low, but not high prior beliefs
p0. This is because V ∗ itself rises as function of p0, and is hence a more demanding benchmark for high p0.
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own degree; omitting such information seems innocuous since agents’ asymptotically know
their degree, cf. Lemma 3.

By construction, the random network is strongly symmetric, and so Corollary 1 implies
there is a unique equilibrium. Denote the symmetric cutoff by τ I and agents’ value by
V I . For tractability we consider sequences of such networks with degrees {n̂I}, and assume
existence of the limits ν := lim n̂I , λ := lim n̂I/ log I and ρ̂ := lim n̂I/I, possibly equal to∞.

Let N I be the number of realized links of a random agent. Some stubs fail to form links,
so N I is random with expectation nI := E[N I ] < n̂I . We now argue that we can ignore this
complication as I →∞.

Lemma 3. As the network grows large, I →∞,
(a) Realized degree: N I/nI

D→ 1.
(b) Expected degree: nI/I → 1− e−ρ̂. If ρ̂ = 0, then nI/n̂I → 1.
(c) Information at the cutoff time: limBI

τI = limnIτ I .

Proof. See Appendix B.1.

Lemma 3(a) means agents essentially know their realized degree N I . As a result, agents
do not update N I during the experimentation phase t < τ I , as stated in part (c). Part (b)
means we can ignore the distinction between stubs and links when ν <∞ or λ <∞ (which
imply ρ̂ = 0), and so ν = limnI , λ = limnI/ log I.

Our main result, Theorem 1, shows that the relevant measures of limit network density
are ν, λ and ρ := limnI/I = 1 − e−ρ̂. For sparse networks, where agents have a bounded
number of links, we have ν ∈ [2,∞). Proposition 4 in Section 5 shows that such networks
approach a tree as I →∞. For intermediate networks, where information spreads across the
network in finite time, as in Milgram’s six degrees of separation, we have λ ∈ (0,∞). Indeed,
Lemma 4 will show that the inverse 1/λ measures the network’s time-diameter, i.e. the time
for social information to travel between two random agents in the network.19 For dense
networks, where agents have finite proportion of links, we have ρ ∈ (0,∞) and agents are
at most two links apart. For ρ = 1 we approximate the clique. The set of network (limit)
densities is the disjoint union N ∪ {∞|0 · log I} ∪ (0,∞) ∪ {∞ · log I|0 · I} ∪ (0, 1], which we
endow with its natural order.20

19This time-diameter 1/λ = lim(log I/nI) is smaller than the typical diameter estimate for large random
networks lim(log I/ log nI). The smaller diameter reflects a faster contagion process: contagion in our model
does not travel one link in every discrete time period; rather each link transmits continuously with rate one.
Much like compound interest, this allows nodes infected at t′ ∈ [t, t+ 1] to begin transmitting immediately,
instead of having to wait until t+ 1.

20This order treats many sequences of networks as equally dense. For instance, nI = log log I or nI =
(log I)1/2 both correspond to ν = ∞, λ = 0. Theorem 1 shows that asymptotic information B and welfare
V of a sequence of networks {nI} only depends on its limit density.
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We now define the threshold density for asymptotic learning. For pessimistic priors,
p0 < p̄, let σ∗ ∈ [0,∞) be such that perfectly learning the state at time σ∗ renders an agent
indifferent about experimenting at t = 0

ψ0 = p0

(
x+ (1− e−rσ∗)y

)
− c = 0. (8)

Here, e−rσ∗y is the agent’s post-experimentation continuation value. For optimistic priors,
p0 ≥ p̄, set σ∗ = 0.

Theorem 1. In large random networks {nI}:
(a) Asymptotic information B is a decreasing function of network density: It attains

asymptotic learning B =∞ iff λ ≤ 1/σ∗, and strictly falls for λ ≥ 1/σ∗.
(b) Welfare V is a single-peaked function of network density: It first strictly rises in ν,

attains the benchmark V ∗ iff ν =∞ and ρ = 0, and then strictly falls in ρ.

Proof. See Appendix B.2

Asymptotic learning requires sparse networks. Intuitively, denser networks accelerate
learning, crowd out experimentation, and undermine learning in the long run. Welfare
attains the benchmark when network density is intermediate. Intuitively, welfare discounts
the future and so relies on both information generation and its quick dissemination. Figure 4
illustrates Theorem 1 for p0 < p̄.21 The top and middle panels sketch asymptotic information
B and welfare V as functions of network density. The bottom panel illustrates cumulative
social learning curves {Bt} for three qualitatively different regions of network density.22

In Figure 4(i) agents have finite links, ν <∞, so the network resembles a tree with inde-
pendent information across Iris’s neighbors. Social learning in the contagion phase {Bt}t≥τ
is convex with increasing rate bt described by a first-order ODE (see Section 5). This con-
vexity reflects the fact that an agent has ν first-degree neighbors, ν(ν − 1) second-degree
neighbors, ν(ν − 1)2 third-degree neighbors, and so on; so contagion accelerates over time.
Each agent experiments for a bounded time τ > 0, which ensures asymptotic learning,23

while welfare V(τ, ντ) falls short of the benchmark, V ∗. In the limit, as ν →∞, individual
experimentation vanishes, τ → 0, and the convex cumulative learning curve {Bt} converges
to a step function, constant equal to 0 below σ∗, and ∞ above.

To understand this, we need a brief detour. When ν = ∞, the success times of Iris’s
neighbors may no longer be independent. Instead, the key analytical tool is an accounting

21For p0 ≥ p̄, experimentation incentives are higher, and asymptotic learning obtains as long as ρ = 0.
22The more intuitive rates of social learning {bt} in Figure 2 fail to exist for ν =∞.
23Recall that an agent eventually learns the successes of all agents in her component. Given ν ≥ 2, the

component of a typical agent has size proportional to I almost surely.
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Figure 4: Large Random Networks for Pessimistic Priors, p0 ≤ p. The top panel shows asymptotic
information B as a function of network density, as described in Theorem 2(a). The middle panel shows
welfare V as a function of network density, as described in Theorem 2(b). The bottom panel shows the
cumulative learning curves of a typical agent in three canonical cases, as discussed in the text. In particular,
σ∗ is defined by (8) and B∗ is defined by (11).
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identity, that states that asymptotically all agents observe the first success at the same,
deterministic time. To state the result, consider any sequence of cutoffs {τ I} (not necessarily
equilibrium) such that the limit σ := lim − log τI

nI
∈ [0,∞] exists. Let SI be the random time

at which a given agent i gets exposed, let B̄ := lim Iτ I be total information, and S be the
binary random time with Pr(S = σ) = 1− e−B̄ and Pr(S =∞) = e−B̄.24

Lemma 4. Assume ν =∞. Asymptotically, i gets exposed at time σ or never: SI D→ S.

Proof. See Appendix B.3.

As a Corollary, Lemma 4 implies that agents learn asymptotically all generated infor-
mation, B = B̄. When B is finite, so is the expected number of “seeds” 1 − e−B, and the
exposure time coincides with the network’s time-diameter

σ = lim
log Iτ I − log τ I

nI
= lim

log I

nI
=

1

λ
. (9)

To understand Lemma 4, suppose Iris’s neighbors are a negligible share of the population,
ρ = 0. At τ I , there are approximately Iτ I exposed agents and the probability at least one
agent learns the state is 1−e−IτI . The contagion then grows geometrically at rate nI , so there
are approximately τ IIenI t exposed agents at time t and, heuristically, everyone is exposed
when τ IIenI t = I, or t = − log τI

nI
=: σ.25 This argument slightly overstates exposures because

of double-counting. But this problem scales with the share of exposed agents, and we only
need the argument as long as this share is negligible: once a fixed share of the population is
exposed, all agents are exposed immediately since nI →∞. The proof uses Chernoff bounds
to make these arguments rigorous.

Returning to our equilibrium characterization, consider networks with λ ∈ (0, 1/σ∗), so
a time-diameter 1/λ ≥ σ∗, as illustrated in Figure 4(ii). By Lemma 4, Iris learns at time σ.
To ensure equilibrium indifference (8), the rate at which τ I goes to 0 adjusts to keep σ = σ∗.
These networks are sparse enough to accommodate asymptotic learning. At the same time,
they are dense enough to fully crowd out agents’ pre-cutoff social learning, limnIτ I = 0, and
thus attain the welfare benchmark V ∗.

For denser networks λ ∈ (1/σ∗,∞),26 so a time-diameter 1/λ ≤ σ∗, learning is too fast
to sustain perfect learning. Agents are exposed at σ = 1/λ and equilibrium information

24Asymptotically the distinction between min{T I , SI} and SI vanishes. If τ I → 0 (as will be the case in
equilibrium), i’s experimentation is certain to fail; if lim τ I > 0, social learning is asymptotically immediate
and perfect, σ = 0 and B̄ =∞, so S = 0.

25Recalling footnote 19, here we see the difference between typical discrete-time contagion models where
exposed agents grow like e(lognI)t and our continuous-time model with the faster rate en

It.
26For optimistic priors, p0 ≥ p̄, this region is empty.
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B <∞ falls to maintain the indifference condition

p0

(
x+

(
1− e−rσ(1− e−B)

)
y
)

= c. (10)

Thus asymptotic learning fails but welfare attains its benchmark, V ∗. As λ grows, the corner
of the step function slides along the dashed line in Figure 4(ii). When λ = ∞ and ρ = 0,
agents learn the state with probability 1 − e−B

∗ immediately; the total information B∗ is
determined by agents’ indifference condition,

p0(x+ e−B
∗
y) = c. (11)

The third type of equilibrium occurs when ρ ∈ (0, 1), as illustrated by Figure 4(iii). Such
networks are analogous to the clique, so given total information B, agents learn ρB before
stopping and (1 − ρ)B immediately after stopping. Total information B is then given by
agents’ indifference condition,

P ∅(ρB)
(
x+ e−(1−ρ)By

)
= c.

As ρ→ 1, we approach the clique and B → τ̄ .
Theorem 1 is stated for regular, undirected networks. The analysis immediately ex-

tends to regular directed networks, or regular triangular network (as described in Section 5).
For networks with nondegenerate degree distributions where agents know their own degree,
experimentation falls with an agent’s degree. Equilibrium is thus characterized by a multi-
dimensional fixed point argument which no longer guarantees uniqueness and undermines
our sharp comparative statics. Non-regular networks also introduce a novel possibility for
asymptotic learning to fail: An agent may be isolated, or more generally the size of her limit
component may be finite. For instance, this arises with positive probability in Erdos-Renyi
networks where links realize with probability qI and qII is bounded. While our analysis
does not capture such networks, we nevertheless anticipate the spirit of the result to extend
because of the same underlying economic forces. Indeed, the next section derives a result
analogous to Theorem 1 for core-periphery networks, that are arguably more different from
our regular random networks than the variants just discussed.

4.3 Core-Periphery Networks

In this section we study core-periphery networks. Theorem 2 shows that asymptotic informa-
tion falls with network density while welfare is single-peaked, echoing Theorem 1 for random
networks. This analysis serves three purposes. First, core-periphery networks are of intrinsic
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Figure 5: Core-Periphery Network with K = 2 core agents, and L = 6 peripherals.

interest: They are used to describe financial markets (e.g. Li and Schürhoff (2019)) and
can arise endogenously in network formation models (Galeotti and Goyal (2010)). Second,
core-periphery networks allow us to examine the role of network position for information
generation. Third, core-periphery networks have a different neighborhood structure, with
relatively few first neighbors in the core constituting a bottleneck for transmitting the infor-
mation generated by the more numerous peripherals. As a result, social learning curves are
then concave rather than convex in the contagion phase.

A core-periphery network is an undirected, deterministic network that consists of K core
agents and L = I −K peripheral agents. The core agents k are connected to everyone. The
peripheral agents ` are only connected to core agents. See Figure 5 for an illustration. When
K = 1, we have the star from Example 3.

Lemma 5. Any equilibrium in a core-periphery network is characterized by two cutoffs, τk
for all agents in the core, and τ` for all peripherals. Core agents work less, τk < τ`, and have
higher values, Vk > V`.

Proof. By symmetry and Proposition 3, equilibrium is characterized by cutoffs (τk, τ`). Core
agents k observe all successes immediately, and so have greater total information than pe-
ripherals who observe some successes with delay, Bk,t + min{t, τk} > B`,t + min{t, τ`} for all
t > 0. Lemma 7 in Appendix A.3 implies τk < τ`.27 Since peripherals experiment more, core
agents have greater social learning, Bk,t > B`,t for all t > 0, and so Vk > V` by Lemma 1.

27There is a subtlety here. Lemma 1 tells us that more social learning leads to less experimentation, but
this is insufficient to conclude that core agents experiment less. For example, consider the star network and
assume peripherals do not experiment; the core agent then has no social information but the same amount
of total information as peripherals. Lemma 7 adapts the arguments from Lemma 1 to show that greater
total learning (including self-learning) implies less experimentation.
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We now characterize the equilibrium cutoffs. Core agents k observe all successes imme-
diately, so their social learning follows bk,t ≡ (K − 1)I{t≤τk} + LI{t≤τ`}. Experimentation
incentives (4) are given by

ψk,τk = P ∅(Iτk)

(
x+ y

(
1−

(
1− e−(r+L)(τ`−τk)

) L

r + L

))
− c (12)

where the opportunity cost is the continuation value from having L peripherals experiment
over [τk, τ`]. In equilibrium, ψk,τk ≤ 0 with equality if τk > 0.

Peripheral agents ` only observe the successes of core agents, so their social learning b`,t
equals K before τk and then drops to Kat where at := PrH(T`′ < t for at least one `′ 6=
`|t < T`, t < Tk for all k) is the conditional probability that some other peripheral agent has
succeeded by t and hence core agents are working. This follows

ȧ

1− a = (L− 1)I{t≤τ`} −Ka =

L− 1−Ka t ∈ (τk, τ`)

−Ka t > τ`
(13)

with boundary condition aτk = 1− e−(L−1)τk .28 Before τ`, social learning at rises because of
experimentation by the other L − 1 peripherals, tempered by the lack of success by the K
core agents. After τ`, only the latter effect remains, so social learning b`,t = Kat slows down.
Using equation (4), peripherals’ cutoff τ` > 0 then solves

ψ`,τ` = P ∅
(
K

(
τk +

∫ τ`

τk

atdt

)
+ τ`

)(
x+ ry

∫ ∞
τ`

e
−

∫ t
τ`

(r+Kas)dsdt

)
− c = 0.

For general, finite core-periphery networks we do not know if the cutoffs (τk, τ`) are unique.
In order to cleanly characterize how social information and welfare depend on the network

density, we consider sequences of core-periphery networks which we index by I ∈ N. Each
network is determined by its core size KI ; the number of peripherals is then LI = I −KI .
We assume the following two limits exist. Define κ := limKI ∈ N ∪ {∞} as the limit of
the absolute core size, and ρ := limKI/I ∈ [0, 1] as the limit of the relative core size, as a
proportion of the population. The set of network densities is the disjoint union N ∪ {∞|0 ·
I} ∪ (0, 1] which we endow with its natural order, concatenating the standard orders on

28To see (13), we apply Bayes’ rule

1−at =
PrH(∀k, `′ : t < Tk, T`′)

PrH(t < T`,∀k : t < Tk)
=


exp(−(K+L)t)
exp(−(K+1)t) = exp (−(L− 1)t) t < τk

exp(−Kτk−Lt))
exp
(
−K

(
τk+

∫ t
τk
asds

)
−t
) = exp

(
−(L− 1)t+K

∫ t
τk
asds

)
t ∈ (τk, τ`)

exp(−Kτk−Lτ`))
exp
(
−K

(
τk+

∫ t
τk
asds

)
−τ`

) = exp
(
−(L− 1)τ` +K

∫ t
τk
asds

)
t > τ`

and then differentiate wrt t.
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n ∈ N ∪ {∞} and ρ ∈ [0, 1] at ∞|0 · I.
We now define a threshold on core size that is critical for both asymptotic learning

and welfare. For pessimistic priors p0 < p̄, define κ∗ ∈ (0,∞) such that learning from κ∗

core agents who experiment forever, b`,t ≡ κ∗, renders a peripheral agent indifferent about
experimenting at t = 0,

ψ`,0 = p0

(
x+

r

r + κ∗
y

)
− c = 0. (14)

For optimistic priors, p0 ≥ p̄, set κ∗ =∞.

Theorem 2. In core-periphery networks {nI} and any equilibrium selection {τ Ik , τ I` }:
(a) Asymptotic information B is a decreasing function of network density: It attains

asymptotic learning B =∞ iff κ ≤ κ∗, and strictly falls for κ ≥ κ∗.
(b) Welfare V is a single-peaked function of network density: First, for κ ≤ κ∗, it strictly

rises, it attains the benchmark V ∗ iff κ ∈ [κ∗,∞], and then strictly falls in ρ.

Proof. See Appendix B.4.

Asymptotic learning is achieved when the core is sufficiently small, and welfare attains
the benchmark when core size is intermediate. Figure 6 illustrates Theorem 2. The top
and middle panels sketch asymptotic information B and welfare V as functions of core size.
The bottom panel illustrate three canonical social learning curves {B`,t}. While asymptotic
learning and the second-best welfare may a priori seem to be related goals, Theorem 2
shows that for pessimistic priors they are in fact mutually exclusive. This tension can be
understood with help of the value function V(τ, B) from Lemma 2. Value V falls in τ , so the
welfare benchmark V ∗ = V(0, 0) requires peripherals’ experimentation to vanish, τ I` → 0,
undermining perfect learning (except in the knife-edge case κ = κ∗).29

As with random networks, there are three regions of network density with qualitatively
different social learning dynamics. First, consider a small core κ < κ∗, as illustrated in Figure
6(i). The exploding number of peripherals experiment for a bounded time interval, τ` > 0,
and collectively create an exploding amount of information in an instant. This crowds out
experimentation by core agents. Peripherals choose to experiment since the flow of social
information is clogged by the small core size. Formally, B`,t = Kt so equation (14) implies
ψ`,0 > 0 given than κ < κ∗. Eventually the network aggregates information; but since each

29The “pessimistic prior” assumption is important. For optimistic priors, p0 ≥ p̄, it is easier to motivate
agents to experiment and our welfare benchmark requires asymptotic learning also holds. Moreover, both
these goals are obtained if κ =∞ and ρ = 0. This is a single point in our density order, but there any many
sequences that satisfy both conditions (e.g. KI = log I, KI = (nI)1/2).

26



Core-Periphery

B

1

⇤

1 0 1 ⇢

Asymptotic Info.1

⌧̄

V

1

⇤

1 0 1 ⇢

Welfare
V ⇤

V C

0 t

B`,t

⌧̄

B⇤

0 t

B`,t

⌧̄

B⇤

0 t

B`,t

⌧̄

B⇤

(i)  2 (0, ⇤) (ii)  2 (⇤,1) (iii) ⇢ 2 (0, 1)

1

Figure 6: Core-Periphery for Pessimistic Priors, p0 ≤ p. The top panel shows asymptotic information
B as a function of network density, as described in Theorem 2(a). The middle panel shows welfare V as a
function of network density, as described in Theorem 2(b). The bottom panel shows the learning curves of
a peripheral agent in three canonical cases, as discussed in the text. In particular, B∗ is defined by (11) and
κ∗ is defined by (14).
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peripheral generates a non-vanishing amount of information, their utility falls short of the
benchmark V(τ`, κτ`) < V ∗.

Second, consider an intermediate core κ ∈ (κ∗,∞), as illustrated in Figure 6(ii).30 With
this core size, perfect information from peripherals would crowd out peripherals’ experi-
mentation incentives. In equilibrium, peripheral agents lower their cutoffs, limiting their
total information B = limLIτ I` < ∞. The level of B is determined by peripheral agents’
indifference condition at t = 0,

ψ`,0 = p0

(
x+ ry

∫ ∞
0

e−
∫ t
0 (r+b`,s)dsdt

)
− c = 0

where `’s social learning curve satisfies

1− e−B`,t = (1− e−B)(1− e−κt).

Intuitively, ` learns the state if some peripheral learned it and a core agent succeeds. As
in the star, b`,t falls over time as agents grow pessimistic about the chance that one of
them succeeded. Asymptotic learning fails, but agents do obtain the welfare benchmark,
V(0, 0), as pre-cutoff learning (κ+ 1)τ I` vanishes. For large κ, the core transmits information
increasingly fast, reinforcing the crowding out and reducing asymptotic information. When
κ =∞ but ρ = 0, B = B∗ solves (11), so `’s social learning curve jumps to B∗ and remains
constant thereafter.

Third, consider a large core ρ ∈ (0, 1], as illustrated by Figure 6(iii). Now core agents
generate a non-vanishing share of total information. Social learning is asymptotically imme-
diate, B`,t = Bk,t = B for all t > 0, and core agents’ indifference condition becomes

P ∅(Bk,τ )
(
x+ ye−(B−Bk,τ )

)
− c = 0

with pre-cutoff learning Bk,τ = lim Iτ Ik . This equation together with the analogous, but
more involved expression for peripherals’ pre-cutoff learning limBI

`,τI`
, pin down asymptotic

information B, which is shown to fall in ρ with B = τ̄ for ρ = 1, as in the clique.
These results are reassuringly parallel to the ones for random networks in Section 4.2. In

both cases, asymptotic information decreases in density, while welfare is single-peaked. How-
ever, significant differences arise from the higher ratio of second neighbors to first neighbors.
First, the contrast between asymptotic information and welfare is starker: With p0 < p̄,
asymptotic learning and second-best welfare are mutually exclusive under core-periphery
networks, yet overlap under random networks. Second, social learning slows down over time
in core-periphery networks with a finite core, as the information trickles through the core; in

30As in footnote 26, for optimistic priors, p0 ≥ p̄, this region is empty.
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Figure 7: Regular Trees with degree n = 4.

contrast, social learning speeds up over time in random networks, as the number of indirect
neighbors grows exponentially with path length.

5 Types of Links

In Section 4 we examined the effect of the number of links on experimentation and welfare; we
now consider the effect of the type of links. We study this question in the context of regular
trees, as illustrated in Figure 7. In a directed tree ~T (n), there is at most one directed path
between any two agents; this resembles users following each other on Twitter. In a undirected
tree T̄ (n), there is at most one undirected path between any two agents; this resembles the
connections between acquaintances on LinkedIn. And in a triangle tree T̂ (n), agents are
connected in triangles; this resembles clusters of friends on Facebook. Trees approximate
large random networks; they are tractable because of the independence across neighbors,
e.g. in a triangle tree, Iris’s neighbors j and k have independent information given Iris has
not observed a success. Proposition 4 shows that large random networks with finite degree
converge to trees. Theorem 3 then shows that utility in a directed tree with n neighbors is
greater than utility in an undirected tree with n neighbors, but less than an undirected tree
with n + 1 neighbors. A similar comparison applies between undirected trees and triangle
trees. For large n, these tight imply that the type of the link is of second-order importance
for agents’ behavior and utility.31

31In Board and Meyer-ter-Vehn (2021) we compared directed, undirected and tree networks in an adoption
model, where each agent acts once. We showed that random networks converge to trees and compared welfare
across networks, analogous to Theorem 3. In the experimentation model here, each agent is forward-looking
and chooses an action at each time, so the proofs are novel.

29



5.1 Trees

We first consider directed trees, ~T (n), where every agent has n neighbors. Assuming sym-
metric cutoffs τ , let at = EH [Aj,t|t < Si] be Iris’s expectation of her neighbor John’s effort
in the contagion phase, t ≥ τ, in the absence of a success. As in equation (6) in Example 2,

1−at = PrH (t < Tk, ∀k ∈ Nj|t < Tj) =
PrH (t < Tj, Tk,∀k ∈ Nj)

PrH (t < Tj)
=

exp
(
−(n+ 1)τ − n

∫ t
τ
asds

)
exp

(
−τ −

∫ t
τ
asds

) .

(15)
For the denominator, the hazard rate of John’s first success time Tj equals 1 in the experi-
mentation phase t ≤ τ and at in the contagion phase t > τ . For the numerator, the hazard
rate of the success time min{Tj, Tk, Tk′ , . . .} equals n+1 in the experimentation phase t ≤ τ ;
in the contagion phase t > τ , the lack of success by {Tk, Tk′ , . . .} implies Aj,t = 0, so the
hazard rate drops to at for each k ∈ Nj. Differentiating, Iris’s belief follows the ODE

ȧt = (n− 1)a(1− a) (16)

with initial condition aτ = 1− e−nτ given by the probability that one of John’s n neighbors
succeeded in the experimentation phase.32 In the case of the directed line in Example 2,
n = 1, Iris’s belief at = 1− e−nτ is constant over time. If n ≥ 2, Iris’s belief rises over time
because the good news from John’s expected inflow of information outweighs the bad news
from his observed lack of success. The net effect is captured by the factor (n − 1) in (16):
The more neighbors John has, the faster he observes a success, and the faster rises Iris’s rate
of social learning.

In order to study undirected and triangle trees we must address “backward” links, where
agent i reasons about j who simultaneously learns from i’s successes (or lack thereof).

Example 4 (Undirected Line). Consider the infinite undirected line

. . .↔ i↔ j ↔ k ↔ . . .

As in the directed line (Example 2), let at be i’s expectation of j’s effort at time t > τ

conditional on not seeing a success; this coincides with i’s expectation that k has succeeded:

at := EH [Aj,t|t < Ti, Si] = 1− PrH (t < Tk|t < Ti, Tj) . (17)

Calculating this conditional expectation is more subtle than in the directed line, where we
32Inverting, (16) admits the closed-form solution at = 1/(1 + exp(−(d− 2)(t+ c))) with constant c.
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could simply drop the “t < Ti” term. Now that j also observes i but has not seen i succeed,
it is useful to introduce the expectation E−i over others’ success times {Tj}j 6=i, given a
symmetric cutoff τ , no successes of i, and θ = H. Then, at = E−i [Aj,t|t < Tj] and

PrH (t < Tk|t < Ti, Tj) = Pr −i (t < Tk|t < Tj) =
Pr−i (t < Tj, Tk)

Pr−i (t < Tj)
=

exp
(
−2τ −

∫ t
τ
asds

)
exp

(
−τ −

∫ t
τ
asds

) = e−τ .

(18)
For the denominator, the hazard rate of John’s first success time Tj equals 1 in the experi-
mentation phase t ≤ τ and at in the contagion phase t > τ , under expectation E−i. For the
numerator, the hazard rate of the success time min{Tj, Tk} equals 2 in the experimentation
phase t ≤ τ ; in the contagion phase t > τ , the lack of success by i, j, k implies Aj,t = 0,
so the hazard rate drops to EH [Ak,t|t < Tj, Sj] = at. Substituting back into (17) yields
at = 1 − e−τ , just like in the directed line. Thus, the additional backward link does not
affect the information i learns from j. Intuitively, while j has one more link, he is no more
informed once we condition on i not having succeeded. That is, j’s link to i does not help i
since she cannot learn from herself.

In contrast to the directed line, i now has two neighbors, so using (4), the equilibrium
stopping time τ solves

ψτ = P ∅(3τ)

(
x+

r

r + 2(1− e−τ )y
)
− c = 0.

Comparing this to (7), agents experiment less in the undirected line, which has more sources
of social information and hence greater crowding out. 4

We now generalize this example and consider an undirected tree T̄ (n) in which everyone
has n neighbors. Adapting (15) and (18), Iris’s belief of John’s effort follows the ODE

ȧ = (n− 2)a(1− a) (19)

with initial condition aτ = 1− e−(n−1)τ . In the case of the undirected line, n = 2, Iris’s belief
at = 1 − e−nτ is constant over time, as in Example 4. When n ≥ 3, Iris’s belief increases
over time. Compared to the directed tree, undirected links lower both the initial condition
and the rate of increase of John’s expected effort by one degree. Intuitively, i knows the
backward link j → i does not generate information for j, because she conditions on not
having seen a success herself.
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Finally, consider a triangle tree, T̂ (n). Adapting (15), Iris’s belief of John’s effort follows

ȧ = (n− 3)a(1− a) (20)

with initial condition aτ = 1− e−(n−2)τ . When compared to the undirected tree, this lowers
both the initial condition and the rate of increase by an additional neighbor. Intuitively, i
knows the triangle links j → i, k do not provide information for j, because she conditions
on not having seen a success by i or k herself.

To see how this difference in social learning feeds back into the equilibrium cutoff τ , write
experimentation incentives (4) as a function of social learning

ψτ ({nat}) = P ∅((n+ 1)τ)

(
x+ ry

∫ ∞
s=τ

e−
∫ s
t=τ (r+nat)dtds

)
− c = 0. (21)

Substituting the solutions of the ODEs (16), (19) and (20) for {at}t≥τ yields unique equilib-
rium cutoffs ~τ , τ̄ , τ̂ with associated social learning curves {~at}, {āt}, {ât}.

Theorem 3. Equilibrium cutoff times for regular trees are ranked as follows:

τ̂ (n+2) < τ̄ (n+1) < ~τ (n) < τ̄ (n) < τ̂ (n).

Equilibrium values are ranked in the opposite way:

V̂ (n+2) > V̄ (n+1) > ~V (n) > V̄ (n) > V̂ (n).

Proof. See Appendix C.1.

This result provides a tight relationship between the value of different network structures
and the value of extra neighbors. Intuitively, for fixed τ , the directed network ~T (n) has the
same number of neighbors as the undirected network T̄ (n), but more social information per
neighbor since the neighbor’s backward link is wasted. This extra social information provides
value and crowds out experimentation. Conversely, the undirected network T̄ (n+1) has the
same social information per neighbor as the directed network ~T (n) but more neighbors.
Again, this extra social information provides value and crowds out the agent’s effort.

This result is important for two reasons. First, it provides comparative statics across
canonical networks in terms of experimentation, social learning, and welfare. In contrast,
the rest of the literature typically focuses on long run considerations (e.g. whether the agents
reach consensus or aggregate information). Second, it allows us to quantitatively assess the
importance of network structure. This matters for network design (e.g. reducing clustering
is useful, but adding connections is even better). It can also be useful for empirical work
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since we need not worry about exactly specifying the network (at least, within a class) if
agents have many neighbors.

We end the section by showing that trees are indeed the limit of large random networks.
The construction of the sequences of regular, random networks follows Section 4.2. For
directed networks, suppose there are I agents, each of whom has n stubs that we randomly
connect to other agents. Define the equilibrium cutoff ~τ I , which is unique by Proposition
3, and social learning {~bIt}t. For undirected networks, where we connect pairs of stubs into
undirected links, define the equilibrium cutoff τ̄ I and social learning {b̄It}t. For triangle
networks each agent has nI/2 stub pairs; we randomly connect triples of stub pairs into
triangles, and define the equilibrium cutoff τ̂ I and social learning {b̂It}t.

To see how these random networks approximate trees as I →∞, fix a “root agent” i and
“uncover the network” from this root. That is, first randomly connect i’s link stubs, then
the stubs of i’s n neighbors, and so on. For fixed n and I →∞, i’s “local network” is almost
surely a tree. The next result formalizes the idea that i’s social learning only depends on
her local network, and thus the network equilibria converge to the heuristic tree equilibria.
The comparisons in Theorem 3 thus apply equally to large random networks.

Proposition 4. The equilibria of the large random networks with degree nI ≡ n converge to
the equilibria of the respective infinite regular n-trees:

(a) Directed networks: ~τ I → ~τ and ~bIt → n~at for all t 6= ~τ .
(b) Undirected networks: τ̄ I → τ̄ and b̄It → nāt for all t 6= τ̄ .
(c) Triangle networks: τ̂ I → τ̂ and b̂It → nât for all t 6= τ̂ .

Proof. See Appendix C.2.

6 Discussion

This paper studies a simple model of experimentation in networks. We characterize indi-
vidual experimentation, social learning curves, asymptotic information, and welfare in large
random networks and core-periphery networks. While asymptotic information falls in net-
work density, welfare is single-peaked. We also compare directed, undirected and clustered
links in trees. Compared to the literature, we go beyond long-term outcomes by describing
learning dynamics and welfare, and perform comparative statics across networks.

Our main result considers two canonical classes classes of networks, which admit natural
density measures and give rise to unique limit behavior. But the economic forces under-
lying our analysis transcend these two classes. For example, the general conflict between
learning and welfare for pessimistic priors p0 < p̄, is apparent from the welfare benchmark,
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V ∗ = V(0, 0), which requires individual experimentation to vanish, undermining asymptotic
learning. The details of how these forces play out does depend on the structure of the net-
work. For example, in core-periphery networks, asymptotic learning and second-best welfare
are generically incompatible, but in random networks the larger diameter allows them to
coexist for a range of intermediate network density.

This paper focuses on the role of networks in facilitating social learning. One can also
use the model to study the impact of communication more directly, by assuming that agents
observe each other imperfectly. The simplest such model has two agents, Iris and John, linked
(undirectedly) with probability γ. Thus Iris and John do not know if they are experimenting
by themselves, or if the other is working on the same problem. Over time, failure to observe
a success makes Iris pessimistic about her chance of being linked to John, so social learning
bi,t = EH [j ∈ Ni(G)|t < Ti, Si] = γe−2t

γe−2t+(1−γ)e−t
falls over [0, τ ] before dropping to 0 forever.

An increase rise in γ raises social learning {Bt} for fixed τ , so lowers the equilibrium cutoff
τ , and hence raises welfare V(τ, τ̄ − τ).

A related idea is a random matching model, where a continuum of agents observe the
current successes of n IID randomly sampled other agents at each t. When n is finite,
the expected effort of i’s random neighbor ãt = EH [At] follows ȧ = na(1 − a) with initial
condition aτ = 1− e−(n+1)τ , where the unique equilibrium cutoff τ̃ (n) solves (21) and induces
value Ṽ (n). One can adapt the proof of Theorem 3 to show that random matching induces
higher values than the directed tree network, but the additional value is less than one link:
~V (n+1) > Ṽ (n) > ~V (n) and ~τ (n+1) < τ̃ (n) < ~τ (n). Intuitively, random matching improves social
information by avoiding auto-correlation of successes. But for large n, fixed networks are
well approximated by random matching.

A third possibility is that I →∞ agents observe others’ successes with a fixed delay σ > 0.
Fix p0 < p̄ and define σ∗ as in equation (8). When σ > σ∗, initial experimentation incentives
are positive, so τ := lim τ I > 0 solves P ∅(τ)(x+ (1− e−r(σ−τ))y) = c. Agents learn perfectly
at σ, but welfare is below second-best V(τ, 0) < V ∗. Conversely, when σ < σ∗, perfect
learning at σ would eliminate experimentation incentives for finite I, so total information B
is finite and solves (10). Since τ I ≈ B/I → 0, welfare is second-best V(0, 0) = V ∗. While
this analysis is broadly parallel to the large random networks, the latter derives the delay
σ endogenously and consequently features the wide range of network densities that achieve
both benchmarks.
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A Appendix: Proofs from Section 3

A.1 Proof of Proposition 1 (Cutoff strategies)

To formalize the discussion surrounding the statement of Proposition 1, we write Iris’s payoff
from an arbitrary experimentation strategy as Π = Π({as}, {bs}). We will show that front-
loading incentives are positive, equal to

− d

dt

∂Π

∂at
=
(
r (pt(x+ y)− c) + ptbt(x− c)

)
e−

∫ t
0 r+pu(au+bu)du (22)

As discussed before the proposition statement, r (pt(x+ y)− c) is the time-value of front-
loading own experimentation from t+δ to t, while ptbt(x−c) captures the value of additional
experimentation that arises when a neighbor succeeds in [t, t+ δ]; finally, the discount-term
e−

∫ t
0 r+pu(au+bu)du reflects that (22) evaluates the effect of front-loading time-t effort from the

time-0 perspective. Equation (22) implies that agents maximally front-load their effort, and
so cutoff strategies are optimal.

To establish the second derivative (22), we first derive convenient expression for Π and
its various first derivatives. Truncating (3) at time-t, we get

Π =

∫ t

0

(
ps(as(x+ y) + bsy)− asc

)
e−

∫ s
0 r+pu(au+bu)duds+ Πte

−
∫ t
0 r+pu(au+bu)du. (23)

We next establish two convenient expressions for the continuation payoff

Πt =

∫ ∞
t

(
ps(as(x+ y) + bsy)− asc

)
e−

∫ s
t r+pu(au+bu)duds (24)

=

∫ ∞
t

e−r(s−t)
(
pte
−

∫ s
t (au+bu)du

(
as(x+ y − c) + bsy

)
− (1− pt)asc

)
ds (25)

Equation (24) follows the same logic as (3): the discounted chance of no success on [t, s] is
e−

∫ s
t r+pu(au+bu)du; at time-s we condition on θ and realize expected flow benefits as(x+y)+bsy

if θ = H and flow costs asc for either θ. Equation (25) conditions on the true state already
at time-t. For θ = H no success arrives by s with probability e−

∫ s
t (au+bu)du, and net flow

benefits are as(x+ y − c) + bsy; for θ = L, no success arrives ever, and Iris incurs flow costs
asc. Write αt :=

∫∞
t
e−r(s−t) (asc) ds with time-derivative α̇t = rαt − atc. By (25), Πt + αt is

a linear function of the posterior belief pt, and so

∂Πt

∂pt
=

1

pt
(Πt + αt) (26)

To compute ∂Π/∂at, define the derivative of the posterior belief pt = P ∅
(∫ t

0
(as + bs)ds

)
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with respect to “experimentation just before t”,

∂pt({as}s≥0)

∂at
= lim

ε→0

1

ε

(
pt({at,εs }s≥0)− pt({as}s≥0)

)
= −pt(1− pt)

where at,εs := as + I{s∈[t−ε,t]}. Similarly differentiating payoff (23) wrt at and using (26),

∂Π

∂at
=

(
pt(x+ y)− c+

∂Πt

∂pt

∂pt
∂at
− ptΠt

)
e−

∫ t
0 r+pu(au+bu)du

=
(
pt(x+ y)− c− (1− pt)αt − Πt

)
e−

∫ t
0 r+pu(au+bu)du (27)

Turning to the time-derivatives, we first note ṗt = −(at + bt)pt(1− pt), differentiate (24)

Π̇t = −
(
pt(at(x+ y) + bty − atc

)
+
(
r + pt(at + bt)

)
Πt.

and then (27)

e
∫ t
0 r+pu(au+bu)du d

dt

∂Π

∂at
=− pt(1− pt)(at + bt)(x+ y + αt)− (1− pt)(rαt − atc)

+
(
pt(at(x+ y) + bty)− atc

)
−
(
r + pt(at + bt)

)
Πt

− (r + pt(at + bt))
(
pt(x+ y)− c− (1− pt)αt − Πt

)
=− r (pt(x+ y)− c)− ptbt(x− c)

which is (22).
Having established that cutoff strategies are optimal, we now show that the optimal

cutoff is the unique solution of ψτ = 0. For cutoff strategies as = I{s≤t} we have αt =∫∞
t
e−r(s−t) (asc) ds = 0 and (25) simplifies to

Πt = pty

∫ ∞
t

e−r(s−t)bse
−

∫ s
t bududs = pty

(
1− r

∫ ∞
t

e−
∫ s
t (r+bu)duds

)
,

where the last equality uses integration by parts. Then (27) simplifies to

e
∫ t
0 r+pu(au+bu)du∂Π(I{s≤t})

∂at
= pt(x+ y)− c− Πt = pt

(
x+ ry

∫ ∞
t

e−
∫ s
t (r+bu)duds

)
− c = ψt.

(28)

Differentiating the LHS wrt t, we see that ψt strictly single-crosses from above since

ψ̇t = (r + pt(at + bt))ψt + e
∫ t
0 r+pu(au+bu)du d

dt

∂Π(I{s≤t})
∂at

is negative whenever ψt = 0 by (22).
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For future reference we summarize some properties of

ψτ ({Bt}) = P ∅(τ +Bτ )

(
x+ ry

∫ ∞
t

e−r(s−τ)−(Bs−Bτ )ds

)
− c. (29)

First, note that while (4) and (5) express ψ instead as a function of the social learning
rate {bt}, the definition and most properties of ψ extend to any increasing (not necessarily
continuous or positive) cumulative social learning curve Bt.

Lemma 6. Properties of ψτ ({Bt}).
(a) (29) falls in {Bt}, and thus also in {bt} with partial derivative given in (5).
(b) (29) strictly single-crosses from above in τ , and is equi-Lipschitz continuous in τ for

all uniformly bounded {bt}.
(c) The root τ of ψτ = 0 falls in {Bt}, and strictly falls in {bt}.

A.2 Proof of Lemma 2

We can write the agent’s value function as

V =

(
p0

∫ τ

0

e−
∫ t
0 (r+bs+1)ds(x+ (bt + 1)y − c)dt

)
−
(

(1− p0)

∫ τ

0

e−rtcdt

)
+ e−rτ

(
p0e
−Bτ−τ + (1− p0)

)
Vτ

= p0y(1− e−Bτ−(r+1)τ )− (1− p0)c
1− e−rτ

r
+ e−rτ

(
p0e
−Bτ−τ (x+ y − c)− (1− p0)c

)
=
p0x− c

r
+ e−rτ

(
p0e
−Bτ−τ (x− c)− (1− p0)c

r − 1

r

)
=: V(τ, Bτ ) (30)

The first line conditions on θ at time-0 and truncates flow payoffs (3) at t = τ . The second line
evaluates the first integral using x− c = ry, and the last term using p0e

−Bτ−τ + (1− p0) =

p0e
−Bτ−τ/pτ by Bayes’ rule, and Vτ = pτy

∫∞
τ
bt exp−

∫∞
t (r+bs)ds dt = pτ (x + y) − c (using

ψτ = 0). The last line uses y = (x− c)/r and reorders terms.
The monotonicity in Bτ is immediate from (30). To see the monotonicity in τ , note that

the first term in (30) is the payoff from experimenting forever. Thus, the second term is the
opportunity value of stopping earlier, which must be positive. Then

Testing

∂τV = −re−rτ
(
p0e
−B−τ (x− c)− (1− p0)c

r − 1

r

)
− e−rτp0e

−B−τ (x− c)

< −e−rτp0e
−B−τ (x− c) = ∂BV < 0.

(31)
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A.3 Proof of Proposition 3 (Equal Cutoffs of Equals)

We first establish two Lemmas that are of some independent interest and clarify the proof
logic. For social learning {Bt} and the associated optimal cutoff τ , define total learning
Bt + min{t, τ}. So defined, PrH(min{S, T} ≤ t) = 1− exp(−(Bt + min{t, τ})).

Lemma 7. Higher total learning, Bt + min{τ, t} ≥ B̂t + min{τ̂ , t} for all t, is associated
with lower cutoffs, τ ≤ τ̂ .

This is closely related to Lemma 1, that lower social learning {Bt} ≤ {B̂t} implies higher
cutoffs τ ≥ τ̂ . Lemma 7 shows additionally that the higher cutoff cannot lead to higher total
learning. Intuitively, all learning (both social and own) crowds out incentives.

Lemma 8. Fix a network G, cutoffs {τk}k 6=i,j and τ∗ < τ ∗, and write k’s first success time

as {Tk} if τi = τ ∗, τj = τ∗, and {T ′k} if τi = τ∗, τj = τ ∗. min{Ti, Si}
D

� min{T ′i , S ′i}.33

Lemma 8 is intuitive: Additional experimentation during [τ∗, τ ∗] is more immediate and
useful to i when done by i herself instead of j.

Proof of Proposition 3. By contradiction, assume τi > τj. Symmetry, Gi↔j = G, implies

min{Tj, Sj} D
= min{T ′i , S ′i}. Lemma 8 then implies min{Ti, Si}

D

� min{Tj, Sj}. Noting the
connection between total learning and the time of the first observed success, PrH(min{S, T} ≤
t) = 1 − exp(−(Bt + min{τ, t})), this implies {Bi,t + min{τi, t}} ≥ {Bj,t + min{τj, t}} and
so, by Lemma 7, τi ≤ τj.

Proof of Lemma 7. Lemmas 1 and 6 study incentives ψτ as a function of social learning
{Bt}; we now study ψτ as a function of total learning {Bt + min{t, τ}}.

By contradiction assume that Bt + min{τ, t} ≥ B̂t + min{τ̂ , t} for all t, yet τ > τ̂ . Define
B̃t := B̂t − (τ − τ̂); clearly B̃t ≤ Bt, and so

ψτ ({B̃t}) ≥ ψτ ({Bt}) = 0.

Since B̃τ + τ = B̂τ + τ̂ and b̃u = b̂u for u ≥ τ , time-τ experimentation incentives for the
social learning curve {B̂t} are also positive

e
∫ τ
0 r+pu(âu+b̂u)du∂Π̂(I{t≤τ̂})

∂aτ
= P ∅(B̂τ + τ̂)

(
x+ ry

∫ ∞
τ

e−
∫ s
τ (r+b̂u)duds

)
− c = ψτ ({B̃t}) ≥ 0

33As always, Si = minj∈Ni(G){Tj} and S′i = minj∈Ni(G){T ′j}.
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where the first equality follows as in (28), using âu = 0 at u ≥ τ since τ > τ̂ . Front-loading,
(22), then implies

∂Π̂(I{t≤τ̂})
∂aτ̂

>
∂Π̂(I{t≤τ̂})

∂aτ
≥ 0

contradicting the optimality of cutoff τ̂ .

Proof of Lemma 8. As a baseline, write T̄k for k’s first success time in network G when i

and j both use cutoff τ∗. For each realization of (T̄i, S̄i), we dynamically realize {Tk, T ′k}k as
follows. In a first step, raising τi (or τj) from τ∗ to τ ∗ begets new success opportunities on
[τ∗,min{τ ∗, T̄i, S̄i}] (successes after min{T̄i, S̄i} have already been realized). Thus, we draw
an exponential random variable Z ∼ Exp(1), and set

Ti, T
′
j =

τ∗ + Z if τ∗ + Z ≤ min{τ ∗, T̄i, S̄i},
T̄ otherwise.

In subsequent steps, we trace the effects of additional successes in the first step through the
network. Since this cascade starts at τ∗ + Z (if at all) and successes are not instantaneous,
we have Tk ∈ (τ∗ + Z, T̄k] for all k 6= i and T ′k ∈ (τ∗ + Z, T̄k] for all k 6= j.

So defined, if τ∗ + Z > min{τ ∗, T̄i, S̄i}, no additional successes realize, so Tk = T ′k = T̄k

for all k; a fortiori min{Ti, Si} = min{T ′i , S ′i} = min{T̄i, S̄i}. If τ∗ + Z ≤ min{τ ∗, T̄i, S̄i} we
have min{Ti, Si} = τ∗ + Z ≤ min{T ′i , S ′i} with equality iff j is a neighbor of i. All told,

min{Ti, Si}
D

� min{T ′i , S ′i} with equality iff j is a neighbor of i.

B Appendix: Proofs from Section 4

B.1 Proof of Lemma 3

Part (a): We will show separately that for every ε > 0

Pr
[
N I ≥ (1 + ε)I(1− e−n̂I/I)

]
→ 0, (32)

Pr
[
N I ≤ (1− ε)I(1− e−n̂I/I)

]
→ 0. (33)

This implies that the number of links converges to 1 − e−n̂
I/I in distribution, N I/(I(1 −

e−n̂
I/I))

D→ 1, and a fortiori in expectation, nI/(I(1− e−n̂I/I))→ 1.
Start with the upper bound, (32). We can restrict attention to ρ̂ = lim n̂I/I < ∞; for

ρ̂ = ∞, we have (1 + ε)I(1 − e−n̂
I/I) > I for any ε > 0 and large enough I, so trivially
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Pr[N I ≥ (1 + ε)I(1− e−n̂I/I)] = 0.
Realize Iris’s n̂I stubs k one after another, and keep track of the number of stubs KI(m)

used to reach degree m; if i has less than m neighbors set KI(m) := n̂I+1. When connecting
Iris’s kth stub to her mth neighbor, I − m potential new neighbors with n̂I(I − m) stubs
compete with n̂Im− (2k − 1) remaining stubs of Iris and her m− 1 neighbors, sandwiching
the success rate between I−m

I
and I−m

I−2
. Writing XI

` for independent (shifted) geometric

random variables with success rate I−`
I

we can thus upper-bound KI(m)
D

�∑m
`=1 X

I
` .

The chance of m or more neighbors is then upper-bounded by

Pr
[
N I ≥ m

]
= Pr

[
KI(m) ≤ n̂I

]
≤ Pr

[
m∑
`=1

XI
` ≤ n̂I

]
≤ inf

ξ≥0
exp

(
ξn̂I +

m∑
`=1

logE[e−ξX
I
` ]

)

= inf
ξ≥0

exp

(
ξ(n̂I −m)−

m∑
`=1

log
1− e−ξ`/I

1− `/I

)
(34)

where the second inequality is a Chernoff-bound, and the final equality evaluates the moment
generating function of the shifted geometric distribution, E[e−ξX

I
` ] = e−ξ(1−`/I)

1−e−ξ`/I .
Since log I−e−ξ`

I−` rises in `, the last term in (34) is lower-bounded by

m∑
`=1

log
1− e−ξ`/I

1− `/I ≥
∫ m

0

(∫ 1−e−ξ`/I

1−`/I

1

x
dx

)
d` =

∫ 1

1−m/I

(∫ min{eξI(1−x),m}

I(1−x)

1

x
d`

)
dx

=

∫ 1−e−ξm/I

1−m/I

m− I(1− x)

x
dx+

∫ 1

1−e−ξm/I

I(1− x)(eξ − 1)

x
dx

= I
[
(1−m/I) log(1−m/I)− eξ

(
1− e−ξm/I

)
log(1− e−ξm/I)

]
.

For any ε > 0, we now set m = mI :=
⌈
(1 + ε)I(1− e−n̂I/I)

⌉
, substitute back into the

term in parentheses in (34), and divide by I

ξ
n̂I −mI

I
− (1−mI/I) log(1−mI/I) + eξ

(
1− e−ξmI/I

)
log(1− e−ξmI/I) =: ΓI(ξ, ε)

with limit Γ(ξ, ε) = lim ΓI(ξ, ε). So defined, (34) becomes

Pr
[
N I ≥ (1 + ε)I(1− e−n̂I/I)

]
≤ inf

ξ≥0
exp

(
IΓI(ξ, ε)

)
(35)

The derivative Γξ(0, ε) = ρ̂ + log(1 − (1 + ε)(1 − e−ρ̂)) vanishes for ε = 0 and falls in ε.
Thus, for any ε > 0 we have Γξ(0, ε) < 0. Also, Γ(0, ε) = 0, and so Γ(ξ, ε) < 0 for small ξ,
and ΓI(ξ, ε) < 0 uniformly for large I. Thus, (35) vanishes for I → ∞, implying the upper
bound (32).

The lower bound (33) follows analogously.
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Part (b): Recall that ρ̂ = lim n̂I/I and, from part (a), I(1− exp−n̂
I/I)/nI → 1, allowing us

to asymptotically ignore the difference between nI and

I(1− exp−n̂
I/I) = I

(
n̂I

I
− 1

2

(
n̂I

I

)2

+
1

6

(
n̂I

I

)3

− ...
)
.

Thus, limnI/I = 1− e−ρ̂. And nI/n̂I − 1 is of order n̂I/I, which vanishes for ρ̂ = 0.

Part (c): Since At = 1 for t < τ , we have BI
τI =

∫ τI
0
bItdt =

∫ τI
0
EH [N I |t < T I , SI ]dt. For

I finite, EH [N I |t < T I , SI ] < nI (and so BI
τI < nIτ I) because lack of success, t < T I , SI ,

indicates fewer neighbors N I . To bound the effect of such updating, we note that conditional
on |N I − nI | ≤ εnI , and so N I ≤ (1 + ε)nI , we have PrH(t < T I , SI) ≥ e−((1+ε)nI+1)t. Thus

PrH(|N I − nI | ≤ εnI |t < T I , SI)

PrH(|N I − nI | ≥ εnI |t < T I , SI)
≥ PrH(|N I − nI | ≤ εnI)

PrH(|N I − nI | ≥ εnI)
e−((1+ε)nI+1)t. (36)

We show below that nIτ I is bounded. This bounds e−((1+ε)nI+1)t away from 0 for all
t ≤ τ I . Thus, as the prior likelihood-ratio of |N I − nI | ≤ εnI on the RHS of (36) diverges
as I →∞ (by part (a)), so does the posterior likelihood-ratio on the LHS of (36), implying
EH [N I |t < T I , SI ]/nI → 1 and so BI

τI/(n
Iτ I)→ 1, finishing the proof of part (c).

To show that nIτ I is bounded, assume it was not. Then we could choose τ̂ I < τ I

such that nI τ̂ I is bounded, but with limit limnI τ̂ I > τ̄ . Applying the above argument
to nI τ̂ I instead of nIτ I , we get limBI

τ̂I = limnI τ̂ I > τ̄ , leading to the contradiction that
pτI < pτ̂I = P ∅(BI

τ̂I + τ̂ I) < p for large I.

B.2 Proof of Theorem 1

For finite degrees ν <∞, the proof of Theorem 1 relies on results in Section 5. Proposition
4 shows that the component size of a typical node explodes with I; Theorem 3 shows that
equilibrium cutoffs τ = lim τ I > 0 (and fall in ν) so B =∞, and that V rises in ν.

For ν =∞, equilibrium cutoffs must vanish, τ I → 0; otherwise the posterior-belief at the
cutoff P ∅((nI + 1)τ I)→ 0, choking off experimentation incentives. The accounting identity,
Lemma 4 characterizes the limit of social learning curves as step functions Bt = BI{t≥σ};
if σ = 0, we can distinguish two bursts, with pre-cutoff information Bτ := limnIτ I , and
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post-cutoff information B −Bτ . The equilibrium indifference condition becomes

ψτ = limψIτI = p(Bτ )

(
x+ ry

∫ ∞
0

e−rt+Btdt

)
− c

= p(Bτ )
(
x+

(
1− e−rσ(1− e−(B−Bτ ))y

) )
− c = 0. (37)

To solve for Bτ , B, σ we complement (37) with the simple observation that

Bτ

B
=

limnIτ I

lim Iτ I
= lim

nI

I
= ρ, (38)

and two conditions linking the learning time σ = lim − log τI

nI
to pre-cutoff learning Bτ and

total learning B: First, bounded total learning B <∞, implies the learning time equals the
network’s time-diameter, σ = 1/λ, as seen in (9). Second, non-vanishing pre-cutoff learning
implies immediate learning

If Bτ = limnIτ I > 0, then σ = lim
log(nIτ I)− log τ I

nI
= 0. (39)

Case 1: ρ = 0 and p0 > p̄. The optimistic prior together with the equilibrium condition (37)
require non-vanishing pre-cutoff learning, Bτ > 0, and so by (39) immediate learning, σ = 0.
The sparsity of the network together with (38) implies perfect learning B = ∞. Perfect
immediate learning, B =∞, σ = 0, in turn implies the welfare benchmark V = p0y = V ∗.

Case 2: ρ = 0 and p0 ≤ p̄. We first observe Bτ = 0. Otherwise, if Bτ > 0, the proof for Case 1
implies B =∞ and σ = 0, and so experimentation incentives ψτ < p0x−c ≤ 0, contradicting
equilibrium. This implies the welfare benchmark, limV(τ I , nIτ I) = V(0, 0) = V ∗.

Turning to asymptotic information, we now show that B attains the benchmark ∞ iff
λ ≤ 1/σ∗, and strictly decrease above. For sparse networks λ ≤ 1/σ∗,34 if by contradiction
learning was imperfect B <∞, social learning happens too late, at σ = 1/λ ≥ σ∗ by (9), so
experimentation incentives are strictly positive

ψτ = p0

(
x+ (1− e−rσ(1− e−B))y

)
− c > p0

(
x+ (1− e−rσ∗)y

)
− c = 0,

contradicting equilibrium.
Conversely, for dense networks λ > 1/σ∗, the social learning time σ = lim log I−log IτI

nI
≤

lim log I
nI

= 1/λ is before σ∗, and equilibrium indifference

p0

(
x+ (1− e−rσ(1− e−B))y

)
− c = ψτ = 0 = p0

(
x+ (1− e−rσ∗)y

)
− c

34For p0 = p̄, we have σ∗ = 0, so this condition is always satisfied.
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requires B <∞. Moreover, B = B(σ) rises in σ, and so falls in λ = 1/σ.

Case 3: ρ > 0. Then Bτ = ρ̂B > 0; (39) then implies σ = 0, and so (37) becomes

p(ρ̂B)
(
x+ e−(1−ρ̂)By

)
= c.

In the notation of (51) in the proof of Theorem 2, this means Ψ(ρ̂B, (1 − ρ̂)B) = 0, so by
(52), information B = B(ρ̂) falls in ρ̂. Then also welfare V = p0(1− e−B) falls in ρ̂.

B.3 Proof of Lemma 4

With probability e−IτI , no agent succeeds by τ I , and so SI =∞; from here on we condition on
the complementary event that at least one agent succeeds during experimentation, triggering
a contagion process. For now, we also restrict attention to lim n̂I/I = 0, so that n̂I/nI → 1

by Lemma 3(a). This allows us to work with n̂I for finite I, but switch to nI in the limit
where σ := lim − log τI

nI
. We discuss the case lim n̂I/I > 0 later.

The overarching proof strategy is to separate the “geographical”/network aspects of the
contagion process from its timing. Specifically, we realize the randomness of the network GI

as agents succeed. To emphasize the analogy to epidemiological SI contagion processes, we
refer to agents who have succeeded as infected. When k agents are infected, let EI

k be the
random number of exposed agents, i.e. that have observed a success but have yet to succeed
themselves. Clearly EI

k ≤ n̂Ik; a (relative) exposure gap, ΓIk :=
n̂Ik−EIk
n̂Ik

> 0, opens up after
an exposed j agent succeeds (because the exposing agent i already succeeded and cannot
be re-exposed), or a stub of a succeeding agent connects to an already exposed agent. For
ε > 0, write EI(ε) := {ΓIk < 3ε for all k ≤ εI/n̂I} for the event that the gap process remains
bounded in early stages of the contagion

Lemma 9. For any ε > 0, limI→∞ Pr
(
EI(ε)

)
= 1.

We postpone the proof of Lemma 9; the idea is that with EI
k ≤ εI exposed agents, ε

small, and n̂I large, most stubs expose new agents.
For small ε, Lemma 9 means that after the approximately τ II initial infections in the

experimentation phase, the contagion process resembles a collection of tree networks em-
anating from these “seeds” at exponential rate n̂I . We now argue that as n̂I → ∞, this
contagion process reaches a negligible fraction of all agents at any t < σ = lim − log τI

n̂I
, but

approximately all agents at any t̄ > σ.
Specifically, write T Ik for the kth infection time, and KI for the (random) number of

infected agents at the cutoff time τ I . Also define inter-arrival times in the contagion phase
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∆I
k := T Ik+1 − T Ik for k > KI and ∆I

k := T Ik+1 − τ I for k = KI . The proof idea is to apply
Chernoff bounds to T Ik − τ I =

∑k−1
`=KI ∆I

` . Towards this goal, note that conditional on the
realization of the “geographical exposure process” {EI

k}k∈[KI ,εI/n̂I ], inter-arrival times ∆I
k are

independent with arrival rate EI
k . Conditional on EI(ε) we have EI

k ∈ [(1− 3ε)n̂Ik, n̂Ik], and
so

E[e−ξ∆
I
k |EI(ε)] ≤ n̂Ik

n̂Ik + ξ
for all ξ ≥ 0, (40)

E[eξ∆
I
k |EI(ε)] ≤ (1− 3ε)n̂Ik

(1− 3ε)n̂Ik − ξ for all ξ ∈ [0, (1− 3ε)n̂Ik). (41)

We now derive upper and lower bounds for the kth success time T Ik in the contagion phase
k ∈ [KI , εI/n̂I ]; in the limit I →∞ these bounds are then shown to imply vanishing chances
of getting exposed before σ and after σ, respectively. The upper bound is as follows

Pr(T Ik ≤ τ I + δ|EI(ε), KI) = Pr(
k−1∑
`=KI

∆I
` ≤ δ|EI(ε)) ≤ inf

ξ≥0
eξδ

k−1∏
`=KI

E[e−ξ∆
I
` |EI(ε)]

≤ inf
ξ≥0

exp

(
ξδ −

k−1∑
`=KI

(
log(n̂I`+ ξ)− log(n̂I`)

))

≤ inf
ξ∈[0,n̂I ]

exp

(
ξδ −

k−1∑
`=KI

ξ

n̂I

(
log(n̂I(`+ 1))− log(n̂I`)

))

= inf
ξ∈[0,n̂I ]

exp

(
ξ

(
δ − log k − logKI

n̂I

))
(42)

The first equality drops the τ I to focus on time since the cutoff, the first inequality is a
Chernoff-bound, the second uses (40), the third uses the concavity of the logarithm, and the
final equality collapses the telescopic sum.

Next, we argue that for fixed ε > 0 and the integer floor k =
⌊
εI/n̂I

⌋
, the fraction on

the RHS of (42) (which approximates the time for the contagion process to reach k agents)
converges to σ = lim − log τI

n̂I
:

log
⌊
εI/n̂I

⌋
− logKI

n̂I
D→ σ (43)

For B̄ = lim Iτ I <∞, this follows becauseKI is almost surely bounded above, so as n̂I →∞,
all terms other than log I

n̂I
vanish, and lim log I

n̂I
= lim log I−logB

n̂I
= lim − log τI

n̂I
= σ. For B =∞, it

follows because, by the law of large numbers, KI

IτI
D→ 1; equivalently, logKI−log I−log τ I

D→ 0

so the LHS of (43) becomes − log τI

n̂I
, whose limit is σ.

Exposing any positive fraction ε > 0 of nodes requires infecting at least εI/n̂I agents,
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and the chance of this at any time t < σ vanishes

lim
I→∞

Pr(T IbεI/n̂Ic ≤ τ I + t) = lim
I→∞

Pr(T IbεI/n̂Ic ≤ τ I + t|EI(ε)) ≤ inf
ξ≥0

exp (ξ (t− σ)) = 0

where the equality uses Lemma 9, and the inequality (42) and (43). A fortiori, Pr(T IbεI/n̂Ic ≤
t)→ 0.

Finally, for any population share ε > 0, the probability that a given agent i has been
exposed by time t is bounded above by the sum of that share ε and the probability that
more than share ε has been exposed by time t, Pr(SI ≤ t) ≤ ε+ Pr(T IbεI/n̂Ic ≤ t). Since this
inequality holds for any ε > 0, we have

lim
I→∞

Pr(SI ≤ t) ≤ lim
ε→0

lim
I→∞

(
ε+ Pr(T IbεI/n̂Ic ≤ t)

)
= 0. (44)

Turning to the lower bound for T Ik , using the same steps as for (42), but with (41)
substituting for (40) for the second inequality

Pr(T Ik ≥ τ I + δ|EI(ε), KI) ≤ inf
ξ≥0

e−ξδ
k−1∏
`=KI

E[eξ∆
I
` |EI(ε)]

≤ inf
ξ≥0

exp

(
−ξδ +

k−1∑
`=KI

(
log((1− 3ε)n̂I`)− log((1− 3ε)n̂I`− ξ)

))

≤ inf
ξ∈[0,(1−3ε)n̂I ]

exp

(
−ξδ +

k−1∑
`=KI

ξ

(1− 3ε)n̂I
(
log((1− 3ε)n̂I`))− log((1− 3ε)n̂I(`− 1))

))

= inf
ξ∈[0,(1−3ε)n̂I ]

exp

(
−ξ
(
δ − log(k − 1)− log(KI − 1)

(1− 3ε)n̂I

))
As for the upper bound, for k =

⌊
εI/n̂I

⌋
the fraction on the RHS converges, log(εI/n̂I−1)−log(KI−1)

(1−3ε)n̂I
D→

σ/(1− 3ε), so for any δ̄ > σ/(1− 3ε) in the limit

lim
I→∞

Pr(T IbεI/n̂Ic ≥ τ I + δ̄|EI(ε)) ≤ inf
ξ≥0

exp

(
−ξ
(
δ̄ − σ

1− 3ε

))
= 0.

Conditional on EI(ε),
⌊
εI/n̂I

⌋
infections guarantee ε(1−3ε)I exposures by τ I+δ̄. For ε′ >

0 small, approximately ε′ε(1−3ε)I of these get infected by τ I+δ̄+ε′, generating approximately
n̂Iε′ε(1 − 3ε)I new exposure possibilities; that is, an exploding number n̂Iε′ε(1 − 3ε) → ∞
for every agent. Now, for any t̄ > σ, we choose ε, ε′ > 0 small enough, and I large enough
that τ I + δ̄+ ε′ < t̄ for δ̄ := σ/(1− 3ε) + ε′ > σ. As I →∞, all remaining nodes get exposed
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before τ I + δ̄ + ε′ and thus before t̄ with probability

lim
I→∞

Pr(SI ≤ t̄) = 1. (45)

Jointly, (44) and (45) for any t < σ < t̄ establish Lemma 4.

The case lim n̂I/I > 0. So far we assumed lim n̂I/I > 0 so that limnI/n̂I = 1. Otherwise,
we have ρ = limnI/I = 1− exp(− lim n̂I/I) > 0, implying Bτ = ρB > 0 and so the desired
learning time equals σ = 0 by (39). To see that learning is indeed immediate, note that the
first infection exposes fraction ρ > 0 of nodes. The paragraph preceding (45) then implies
that indeed everyone else gets exposed immediately thereafter. Similarly, if lim τ I > 0, a
non-vanishing proportion of agents gets infected, and the entire population gets exposed at
any t > 0, consistent with σ = 0.

Proof of Lemma 9. We will construct p(ε) < 1 such that for large I and any k ≤ εI/n̂I the
chance of a large exposure gap is bounded above via

Pr(ΓIk > 3ε) < p(ε)n̂
Ik. (46)

Since EI(ε) is the complement of the union of these events over k ≥ 1, Boole’s inequality
implies 1− Pr(EI(ε)) ≤∑∞k=1 p(ε)

n̂Ik = p(ε)n̂
I
/(1− p(ε)n̂I )→ 0, which implies (46).

We construct p(ε) and show (46) with the help of Chernoff bounds. The increment
EI
k − EI

k−1 counts the newly exposed agents at the kth infection, when agent j. If j was
exposed himself, he exposes n̂I − 1 others and is himself deducted from EI

k ; if j was not
exposed, he exposes n̂I others. Each agent exposed by j was already exposed with probability
at most kn̂I/I. Thus, writing Xν for iid binary random variables with Pr(Xν = 1) = kn̂I/I,
and Xν = 0 else, we can upper bound the absolute exposure gap

n̂IkΓIk = n̂Ik − EI
k =

k∑
`=1

(
n̂I − (EI

` − EI
`−1)

) D

� 2k +
kn̂I∑
ν=1

Xν (47)

Now define p(ε) := infξ≥0

(
E[eXνξ]
e2εξ

)
. We have p(ε) < 1 since E[Xν ] = kn̂I/I < ε, and so

E[eXνξ]
e2εξ

≈ 1+E[Xν ]ξ
1+2εξ

≤ 1+εξ
1+2εξ

< 1 for small ξ > 0. For I large, such that εn̂I > 2, we then get
the following Chernoff-upper bound for the RHS of (47)

Pr

2k +
kn̂I∑
ν=1

Xν > 3εn̂Ik

 ≤ Pr

 kn̂I∑
ν=1

Xν > 2εn̂Ik

 ≤ inf
ξ≥0

(
E[eXνξ]

e2εξ

)n̂Ik
= p(ε)n̂

Ik
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which together with (47) implies (46), and hence Lemma 9.

B.4 Proof of Theorem 2

The challenge with this proof is the complexity of characterizing two outcome variables,
asymptotic information and welfare, for a myriad of cases. Specifically we must consider six
different network densities κ Q κ∗, ρ = 0, ∈ (0, 1), or = 1, and pessimistic priors p0 < p̄ as
well as optimistic ones. While some arguments apply to all of these cases, each case also has
its idiosyncrasies.

We structure the exposition in order of increasing network density, characterizing asymp-
totic information and welfare in parallel and emphasizing the case of pessimistic priors p0 < p̄.
But to avoid repetitions, we sometimes break this linear narrative by bracketing out argu-
ments that apply more broadly.

As in the paper body, we superscript variables in finite networks with the network size
I, e.g. τ I` , and drop the superscript in the limit, e.g. τ` := limI→∞ τ I` . A priori the limit
is well-defined only for some subsequence, but the analysis characterizes all limits under
consideration uniquely.

Asymptotic information equals B = limBI = lim(KIτ Ik + LIτ I` ) since the network is
connected and each agent’s own experimentation τ Ik,` (which in principle is excluded from
the social information B) is negligible as I →∞. It will be useful to decompose B into core
agents’ pre-cutoff learning ΥI

k := Iτ Ik and post cutoff learning ΥI
` := LI(τ I` − τ Ik ).

We can already note two bounds on Υk,Υ`: Total information B = Υk + Υ` is strictly
positive: By contradiction, B = 0 means agents face the single-agent problem, choose τk =

τ` = τ̄ > 0 and so B =∞. Any agent’s pre-cutoff learning Bτ is no larger than τ̄ , recalling
from (4) that P ∅(Bτ )(x+ y)− c ≥ ψτ = 0. For core agents, this means Υk ≤ τ̄ . Thus, there
is asymptotic learning iff Υ` =∞; a sufficient (but not necessary) condition is τ` > 0.

B.4.1 Case 1: Bounded core size κ <∞

Preliminaries. We first establish a necessary and sufficient condition for maximal social
learning by peripherals

B`,t ≡ κt iff Υ` =∞. (48)

If Υ` = ∞, core agents immediately observe a peripheral succeed, and then work forever
after. If Υ` <∞, the probability of a success 1− e−(Υk+Υ`) is less than one, bounding above
b`,t ≤ κ(1− e−(Υk+Υ`)) < κ for t > τk.
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By Lemma 1, the social learning upper-bound (48) implies an incentive lower-bound

ψ`,0 ≥ ψ
`,κ,0

:= p0

(
x+

r

r + κ
y

)
− c (49)

with equality iff Υ` =∞.
We distinguish three cases, κ Q κ∗; for optimistic priors p0 ≥ p̄, we have κ∗ =∞, and so

only case 1a) κ <∞ is relevant.

Case 1a: κ < κ∗. Since ψ
`,κ,0

falls in κ, we have ψ
`,κ,0

> ψ
`,κ∗,0

= 0, so ψ`,0 > 0, and
continuity of ψ`,0 implies τ` > 0, and asymptotic learning Υ` = ∞. By Lemma 2, welfare
is bounded away from second-best V(τ`, κτ`) < V(0, 0) = V ∗. Quantitatively, Υ` = ∞ and
(48) imply B`,t = κt, so welfare increases in κ by Lemma 1.

For p0 ≥ p̄, only one argument needs adapting: the welfare benchmark now equals
V ∗ = p0y which requires immediate and perfect social learning, Bt = ∞ for t > 0. Clearly,
B`,t = κt falls short of this benchmark.

Case 1b: κ = κ∗. Now ψ
`,κ,0

= 0. We show asymptotic learning, Υ` =∞, by contradiction:
By (49) Υ` < ∞ would imply ψ`,0 > 0 and so τ` > 0, leading to the contradiction that
Υ` =∞. In turn, Υ` =∞ implies by (48) and (49) that ψ`,0 = ψ

`,κ,0
= 0 and so τ` = 0 and

κτ` = 0, attaining the welfare upper bound V(0, 0) = V ∗.

Case 1c: κ ∈ (κ∗,∞). Now ψ
`,κ,0

< 0. Asymptotic learning fails because Υ` = ∞ would
imply by (48) and (49) that ψ`,0 = ψ

`,κ,0
< 0 and so τ I` = 0 and Υ` = 0. In turn, Υ` < ∞

implies τ` = 0 and ψ`,0 = 0. To quantify information, we first claim that Υk = lim Iτ Ik = 0:
Indeed, core agents receive all social information immediately, Bk,t = Υk + Υ` for all t > 0,
while peripherals’ learning is bounded by B`,t ≤ κt. This bounds incentives of core agents
above ψk,0 < ψ`,0 = 0, and so τ Ik = 0 for large I.35

Social information thus equals Υ`. We now show this falls in κ: Peripherals observe a
success by time t iff at least one peripheral succeeds during experimentation, and then a core
agent succeeds during (0, t]; thus 1−e−B`,t = (1−e−Υ`)(1−e−κt).36 Since the RHS rises with
both κ and Υ` and experimentation incentives ψ`,0 fall in {B`,t}, the equilibrium condition
ψ`,0 = 0 implies that a rise in information transmission κ must be compensated by a fall in
aggregate information Υ`. For future reference, we note that as κ→∞, the learning curve
B`,t converges to Υ` for each t > 0, and so peripherals’ indifference condition converges to

35We also get τ Ik = 0 for large I and Υk = 0 in cases 1a,b with p0 < p̄, where ψk,0 < 0 is ensured by
Bk,t =∞ for all t > 0.

36Solving for B`,t and differentiating yields b`,t = κ e−κt(1−e−Υ` )

e−κt(1−e−Υ` )+e−Υ`
, generalizing (48).
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p0(x+ e−Υ`y) = c, pinning down aggregate information Υ`.
Finally, since τ` = κτ` = 0, welfare attains the upper bound V(0, 0) = V ∗.

B.4.2 Case 2: Exploding core κ =∞

Preliminaries. For simplicity we first cover the case ρ < 1, and separate the analysis for
ρ = 1. We prepare the ground with two preliminary lemmas.

Lemma 10. Assume κ =∞, ρ < 1, and any prior p0 > p.
(a) Individual learning vanishes: τ Ik , τ I` → 0.
(b) Social learning is immediate: For all t > 0, BI

k,t, B
I
`,t → Υk + Υ`.

Proof. Part (a) follows by the upper bound on pre-cutoff learning Bτ ≤ τ̄ . For core agents,
BI
k,t = (I − 1)τ Ik ≤ τ̄ . For peripherals,

BI
`,τI`

:= KIτ Ik +

∫ τI`

τIk

KIaItdt (50)

where core agents’ expected effort aIt from (13) drifts towards min{(LI − 1)/KI , 1} and is
hence bounded away from 0 by our assumption that ρ < 1. The upper bound, BI

`,τ`
< τ̄ thus

requires the domain to vanish, τ I` → 0, as the integrand explodes, KI →∞.
Turning to part (b), the conditional probability that some agent i has observed a neighbor

succeed is bounded via(
1− exp(−(Iτ Ik + (LI − 1)τ I` ))

) (
1− exp(−KIt/2)

)
< 1− exp(−BI

t ) < 1− exp(−(ΥI
k +ΥI

`))

The upper bound is the probability that any agent ever succeeds. The lower bound is the
probability that some agent j 6= i succeeds before t/2, times the probability that a core agent
succeeds in (t/2, t). Both bounds converge to 1− exp(−(Υk + Υ`)) as I →∞.

Lemma 10(b) implies that welfare of both core agents and peripherals equals

Vk = V` = (1− exp (−(Υk + Υ`))) p0y

and thus rises in social information Υk + Υ`. All of our results for social information (mono-
tonicity and attainment of benchmarks) thus apply equally to welfare.

Lemma 10b implies that social learning of both core agents and peripherals occurs in two
bursts: one before the cutoff and one immediately after, and both approaching t = 0. For
such learning with burst sizes B− and B+, the indifference condition (4) becomes

Ψ(B−, B+) := P ∅(B−)(x+ e−B
+

y)− c = 0. (51)
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Recalling the effects of social learning on experimentation incentives (5) and ry = x− c, the
solution of (51) has slope

−dB
+

dB−
=
∂B−Ψ

∂B+Ψ
=
x+ e−B

+
y − c

e−B+y
= reB

+

+ 1. (52)

To apply (51) to core agents and peripherals, write asymptotic pre-cutoff learning and
experimentation incentives as B`,τ` = limBI

`,τI`
and ψ`,τ` = limψI

`,τI`
and similarly for core

agents, substituting “k” for “`”; note that even though τ I` → τ` = 0, this is distinct from,
and generally greater than the other limit B`,0 = limBI

`,0 = 0, cf (50). For core agents,
B− = Bk,τk = Υk, B+ = Υ`, and (51) coincides with the limit of (12) as L → ∞. For
peripherals, we get an explicit expression of B`,τ` in Υk,Υ` only for ρ > 0, (57).

Lemma 11. Assume κ =∞, ρ < 1, and any prior p0 > p.
(a) Core agents are initially indifferent

Ψ(Υk,Υ`) = P ∅(Υk)
(
x+ e−Υ`y

)
− c = 0. (53)

(b) Pre-cutoff learning of core agents and peripherals coincides: B`,τ` = Υk.

Proof. Part (a): For internal cutoffs τ Ik > 0, the indifference conditions ψI
k,τIk

= 0 converge
to (53). By contradiction, assume that τ Ik = 0 for large I, so that Υk = 0 and ψk,τk = ψk,0 =

p0

(
x+ e−Υ`y

)
− c < 0. Using Lemma 10(b) (immediate learning by both core agents and

peripherals) and the greater importance of pre-cutoff learning (52), strict shirking incentives
by core agents carry over to peripherals37

ψ`,τ` = Ψ(B`,τ` ,Υ` −B`,τ`) ≤ Ψ(0,Υ`) = ψk,τk < 0.

Thus τ I` = 0 for large I, leading to the contradiction that Υk + Υ` = 0 and ψk,0 = ψ`,0 =

p0 (x+ y)− c = Ψ(0, 0) > 0.
Part (b): The indifference condition of core and peripheral agents imply

Ψ(Υk,Υ`) = ψk,τk = 0 = ψ`,τ` = Ψ(B`,τ` ,Υk+Υ`−B`,τ`) = Ψ(Υk−(Υk−B`,τ`),Υ`+(Υk−B`,τ`)).

The greater effect of pre-cutoff learning on incentives (52) thus implies Υk −B`,τ` = 0.

Lemma 11 establishes two equations for Υk,Υ`. Below we show they admit a unique
solution; a corner solution for ρ = 0, and an internal one for ρ ∈ (0, 1).

37Note the contrast to the case with bounded core size κ <∞ (and p0 < p̄), where peripherals learn slower
than core agents, so that ψk,τk < ψ`,τ` = 0.
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Case 2a: ρ = 0. In this case we get a corner solution for Υk,Υ` with Υk/Υ` = 0. Indeed,
using Lemma 11(b), pre-cutoff learning is a vanishing proportion of post-cutoff learning

Υk = B`,τ` = limBI
`,τI`

< limKIτ I` = lim
KI

LI
LIτ I` ≤ “

ρ

1− ρ(Υk + Υ`)” . (54)

Since ρ = 0, we must have either Υk = 0 or Υ` =∞ (then the last term “0 · ∞” is not well
defined), or both.

For pessimistic priors p0 < p̄, core agents’ indifference (53) rules out asymptotic learning,
so Υ` < ∞ and (54) implies Υk = 0. In turn, aggregate information Υ` solves Ψ(0,Υ`) =

p0

(
x+ e−Υ`y

)
−c = 0. This is the same indifference condition we found in case 1c as κ→∞,

so aggregate information is continuous in this limit.
For p0 ≥ p̄, Υk solves P ∅(Υk) = p̄ and Υ` = ∞.38 Core agents’ indifference (53) clearly

requires experimentation until the myopic threshold, P ∅(Υk) ≤ p̄. If, by contradiction, core
agents experiment past the myopic threshold, P ∅(Υk) < p̄, then (53) implies Υ` < ∞, and
(54) leads to the contradiction that Υk = 0.

Case 2b: ρ ∈ (0, 1). In this case we get an internal solution for Υk,Υ`. We first further
operationalize Lemma 11(b) by replacing the upper bound in (54) with an explicit expression
of peripherals’ pre-cutoff learning B`,τ` in terms of Υk,Υ`, (57). To analyze (50) as the
integrand KIaIt explodes and the integration domain [τ Ik , τ

I
` ] vanishes, we rescale time αIt :=

aIt/I . The ODE (13) for core agents’ experimentation intensity thus becomes

I
α̇It

1− αIt
=


LI − 1 t < Iτ Ik

LI − 1−KIαIt t ∈ (Iτ Ik , Iτ
I
` )

−KIαIt t > Iτ I`

(55)

Recalling the definition of ρ,Υk,Υ`, as I →∞, this converges to the solution αt of

α̇

1− α =


1− ρ t < Υk

1− ρ− ρα t ∈ (Υk,Υk + Υ`/(1− ρ))

−ρα t > Υk + Υ`/(1− ρ)

(56)

Peripherals’ pre-cutoff learning (50) then converges to

B`,τ` = ρ

(
Υk +

∫ Υk+Υ`/(1−ρ)

Υk

αtdt

)
, (57)

38In the borderline case with p0 = p̄, we get both Υk = 0 and Υ` =∞.
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Proof of Theorem 1 (flipped)

⌥k

⌥`
0

0

�(⇢,⌥k,⌥`) = 0

�(⇢0,⌥k,⌥`) = 0

 (⌥k,⌥`) = 0

1 + re⌥`

1

⌧̄

3

Figure 8: Solutions of Φ(ρ,Υk,Υ`) = 0 and Ψ(Υk,Υ`) = 0.

so we can rewrite Lemma 11(b) as

Φ(ρ,Υk,Υ`) := ρ

(
Υk +

∫ Υk+Υ`/(1−ρ)

Υk

αtdt

)
−Υk = 0. (58)

We can now characterize equilibrium learning.

Lemma 12. Equations (53), (58) admit a unique solution (Υk,Υ`). This solution satisfies
0 < Υk,Υ` <∞, and aggregate information Υk + Υ` falls in ρ.

The proof of Lemma 12 relies on the following generalization of Leibniz’s integral rule: For
some “cutoff” s > 0 and Lipschitz-continuous functions f, g with g(xs(s)) 6= 0, let xt = xt(s)

be the continuous solution of an ODE with fixed x0, and

ẋ =

f(x) for t < s

g(x) for t > s.

Lemma 13. For any ∆ > 0

∂

∂s

∫ s+∆

s

xt(s)dt =
f(xs(s))

g(xs(s))
(xs(s+ ∆)− xs(s)) (59)

Proof of Lemma 12. Equation (58) together with Υk + Υ` > 0 and the fact that the solution
α of (56) is bounded away from zero imply Υk > 0, and in turn that 0 < Υ` < ∞. Thus,
asymptotic learning fails.
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To solve (53), (58), we note that Φ clearly rises in ρ and Υ`. We show below in (58) that
it falls in Υk. Hence zero-sets of Φ in (Υ`,Υk)-space are increasing and shift left when ρ rises
to ρ′, as illustrated in Figure 8. Recalling from (52) that zero-sets of Ψ are decreasing with
slope −1/(1 + re−Υ`) > −1, equations (53), (58) admit a unique solution (Υk,Υ`). A rise in
ρ shifts this solution left on the zero-set of Ψ, so Υk + Υ` falls.

In fact, the monotonicity of Υk + Υ` extends to the boundary points ρ = 0, 1: We recall
that for ρ = 0 all learning is post-cutoff, Υk = 0,Ψ(0,Υ`) = 0,39 and anticipate that for
ρ = 1 all learning is pre-cutoff, Υ` = 0,Ψ(Υk, 0) = 0, thus attaining the extreme points on
the zero set of Ψ(Υk,Υ`) = 0 as illustrated in Figure 8.

To show that Φ falls in Υk, we write α∗ = αΥk and α∗ = αΥk+Υ`/(1−ρ), assume that
1− ρ− ρα∗ 6= 0, and then argue40

∂Φ

∂Υk

= −(1− ρ) + ρ
1− ρ

1− ρ− ρα∗
(α∗ − α∗) = −(1− ρ)

1− ρ− ρα∗
1− ρ− ρα∗

< 0.

The first equality follows from Lemma 13 by substituting s = Υk and ∆ = Υ`/(1 − ρ)

for the integral boundaries, xt = αt for the trajectory, and f(α) = (1 − ρ)(1 − α) for the
law-of-motion before s = Υk and g(α) = (1− ρ− ρα)(1− α) after Υk.

The middle equality is an elementary algebraic transformation, and the final inequality
owes to the fact that α̇/(1− α) = 1− ρ− ρα cannot switch signs on [Υk,Υk + Υ`/(1− ρ)],
cf (56), so that 1−ρ−ρα∗

1−ρ−ρα∗ > 0.

Proof of Lemma 13. The Leibniz rule evaluates the LHS of (59) “vertically”, computing
∂
∂s
xt(s) = limδ→0

1
δ
(xt(s + δ) − xt(s)) for fixed t ∈ [s, s + ∆]. Since the ODE ẋ = g(x) is

autonomous, it is more economical to compare the trajectories {xt(s + δ)}t and {xt(s)}t
“horizontally”, as illustrated in Figure 9.

Formally, assume first that f(s) and g(s) have the same sign, and for δ > 0 small, let
δ′ > 0 solve xs+δ′(s) = xs+δ(s+ δ). At s+ δ′ the original trajectory “merges” with the shifted
trajectory and since ẋ = g(x) is autonomous we get xs+δ′+δ̂(s) = xs+δ+δ̂(s+ δ), as illustrated
in Figure 9(left). Thus∫ δ+∆

δ

xs+δ̃(s+ δ)dδ̃ =

∫ ∆

0

xs+δ+δ̂(s+ δ)dδ̂ =

∫ ∆

0

xs+δ′+δ̂(s)dδ̂ =

∫ δ′+∆

δ′
xs+δ̃(s)dδ̃ (60)

using the change of variable δ̃ = δ + δ̂ in the first equality, and δ̃ = δ′ + δ̂ in the last. Thus
39This assumes p0 < p̄. For p0 ≥ p̄, asymptotic information is infinite for ρ = 0, and hence trivially greater

than the finite learning for ρ > 0.
40Since αt = 1− exp(−(1− ρ)t) for t < Υk, there exists at most one value of Υk with 1− ρ− ραΥk = 0.

Since Φ is continuous in Υk and decreasing in Υk everywhere else, it decreases everywhere.
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Leibniz’s Rule
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Figure 9: Proof of Leibniz Rule. In both figures the difference of between the integral of the upper
solid line, xt(s + δ) over t ∈ [s + δ, s + δ + ∆], and the lower solid line, xt(s) over t ∈ [s, s + ∆], equals the
difference in the integrals of the shaded lines. E.g. In the left picture this is difference between xt(s) over
t ∈ [s+ ∆, s+ δ′ + ∆] and xt(s) over t ∈ [s, s+ δ′], which is the RHS of (61) after substituting t = s+ δ̃.

∫ s+∆+δ

s+δ

xt(s+ δ)dt−
∫ s+∆

s

xt(s)dt =

∫ δ+∆

δ

xs+δ̃(s+ δ)dδ̃ −
∫ ∆

0

xs+δ̃(s)dδ̃

=

∫ δ′+∆

δ′
xs+δ̃(s)dδ̃ −

∫ ∆

0

xs+δ̃(s)dδ̃ =

∫ ∆+δ′

∆

xs+δ̃(s)dδ̃ −
∫ δ′

0

xs+δ̃(s)dδ̃ (61)

where the first equality uses the change of variables t = s+ δ̃, the second uses (60), and the
third cancels identical terms

∫ ∆

δ′
xs+δ̃(s)dδ̃. In the limit

∂

∂s

∫ s+∆

s

xt(s)dt = lim
δ→0

δ′

δ
(xs+∆(s)− xs(s)) =

f(xs(s))

g(xs(s))
(xs+∆(s)− xs(s)) ,

where we used that at first-order δ′g(xs(s)) = δf(xs(s)).
If f and g have different signs, we let δ′ > δ solve xs+δ′(s + δ) = xs(s), so δf(s) + (δ′ −

δ)g(s) = 0, as illustrated in Figure 9(right). Analogous arguments as above then show

∂

∂s

∫ s+∆

s

xt(s)dt = lim
δ→0

δ′ − δ
δ

(xs(s)− xs+∆(s)) =
f(xs(s))

g(xs(s))
(xs+∆(s)− xs(s)) .

as required

Case 2c: ρ = 1. While Lemmas 10 and 11 and most other substantive intermediate results
remain true for ρ = 1, their proofs divide by 1 − ρ, and sometimes invoke that L → ∞.
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Instead of re-proving everything, we provide a separate analysis, solely based on the function
Ψ and its derivatives, (51-52), and the ODE (55). Specifically we will show that

Ψ(Υk,Υ`) ≤ ψk,τk ≤ 0 = ψ`,τ` = Ψ(Υk + Υ`, 0) (62)

Together with (52), this implies Υ` = 0, so the inequalities in (62) must hold with equality.
In particular 0 = Ψ(Υk, 0) = P ∅(Υk)(x + y)− c, so total information is as in the clique (or
the single-agent problem) Υk + Υ` = Υk = τ̄ .

We now show (62). The middle inequality and equality reflect (the limits of) peripherals’
indifference and core agents weak shirking incentives at their respective cutoffs. The first
inequality takes the limit of the strict inequality Ψ(ΥI

k,Υ
I
`) < ψI

k,τIk
, which reflects that core

agents’ observe post-cutoff information ΥI
` with a delay.

Only the last equality in (62), which states that peripherals’ learning is entirely pre-cutoff,
requires a novel argument and the assumption ρ = 1. Intuitively, information transmission
by KI core agents is infinitely faster than generation by LI peripherals.

Formally, we will show that peripherals’ aggregate post-cutoff learning vanishes

KI

I

∫ ∞
IτI`

αItdt→ 0. (63)

By (63), peripherals pre-cutoff learning BI
`,τI`

converges to total information Υk+Υ`, implying
the last equality in (62).

To see (63) we first argue that αIt → 0 for all t. By line one of (55), αIt ≤ LIt/I ≤
LI τ̄ /I → 0 for all t < Iτ Ik < τ̄ ; at t > Iτ Ik , lines two and three of (55) imply α̇It < 0 when
αIt ≥ LI/KI → (1− ρ)/ρ = 0. All told, αIt → 0 for all t. Turning to the aggregate in (63),
line three of (55) states that αIt decays exponentially at rate (1 − αIt )KI/I. Since this rate
converges to 1, we have

∫∞
IτI`

αItdt− αIIτI` → 0. Together with αI
IτI`
→ 0, this implies (63).

C Appendix: Proofs from Section 5

C.1 Proof of Theorem 3

We first show the comparisons between directed and undirected trees

τ̄ (n+1) < ~τ (n) < τ̄ (n) and V̄ (n+1) > ~V (n) > V̄ (n) (64)

and then comment how the same arguments imply the comparison between undirected trees
and triangle trees.

Emphasizing the role of degree n and cutoff τ , we write the neighbor’s expected time-t
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effort in directed and undirected tree as ~a(n)
t (τ), ā

(n)
t (τ). These equal 1 for t < τ , and solve

(16) and (19) for t > τ .
We first show ~τ (n) < τ̄ (n). For a given cutoff τ > 0, we have ~a(n)

t (τ) > ā
(n)
t (τ) for all

t ≥ τ : At the cutoff ~a(n)
τ (τ) = 1− e−nτ > 1− e−(n−1)τ = ānτ (τ), and this ranking prevails for

t > τ since the RHS of (16) exceeds the RHS of (19). Additionally, ~a(n)
t (τ), ā

(n)
t (τ) rise in τ ,

strictly for τ < t. By Lemma 6(b), for any τ ≤ ~τ (n)

0 = ψ~τ (n)({n~a(n)
t (~τ (n))}) < ψτ ({nā(n)

t (τ)}),

so in equilibrium we must instead have τ̄ (n) > ~τ (n), as desired. Agents in the directed
network then also have lower pre-cutoff social learning n~τ (n) < nτ̄ (n) and hence higher
welfare ~V (n) = V(~τ (n), n~τ (n)) > V(τ̄ (n), nτ̄ (n)) = V̄ (n) since V falls in both of its arguments
by Lemma 2.

We next show τ̄ (n+1) < ~τ (n). For a given cutoff τ , the degree difference exactly offsets
the difference in the laws-of-motion (16) and (19), so at the level of i’s random neighbor
j, social learning coincides ā(n+1)

t (τ) = ~a
(n)
t (τ). But then total social learning is higher in

the undirected network (n + 1)ā
(n+1)
t (τ) > n~a

(n)
t (τ). By Lemma 6(a,b), for any τ ≤ τ̄ (n+1)

we have 0 = ψτ̄ (n+1)({(n + 1)ā
(n+1)
t (τ̄ (n+1))}) < ψτ ({n~a(n)

t (τ)}), so in equilibrium we must
instead have ~τ (n) > τ̄ (n+1), as desired.

For the associated welfare ranking we will show more strongly that

τ̄ (n+1) < τ ′ :=
n+ 1

n+ 2
~τ (n) (65)

for then, by Lemma 2,

V̄ (n+1) = V(τ̄ (n+1), (n+2)τ̄ (n+1)−τ̄ (n+1)) > V(τ̄ (n+1), (n+1)~τ (n)−τ̄ (n+1)) > V(~τ (n), n~τ (n)) = ~V (n),

where the first inequality uses (65), and the second that adding ~τ (n)− τ̄ (n+1) > 0 to the first
argument of V and subtracting it from the second argument decreases V , since ∂τV < ∂BV <
0, as shown in (31).

To see (65), we compare a neighbor’s expected experimentation δ ≥ 0 after the cutoff
for the directed n-tree with equilibrium cutoff ~τ (n), ~aδ := ~a

(n)

~τ (n)+δ
(~τ (n)), and the undirected

(n+ 1)-tree with non-equilibrium cutoff τ ′ from (65), ā′δ := ā
(n+1)
τ ′+δ (τ ′). We will show that

n~aδ < (n+ 1)ā′δ. (66)
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Since pre-cutoff learning coincides, ~p(n)

~τ (n)
= P ∅((n+ 1)~τ (n)) = P ∅((n+ 2)τ ′) = p̄

(n+1)
τ ′ , we get

0 = ψ~τ (n)({n~a(n)
t (~τ (n))}) = ~p

(n)

~τ (n)
(x+ rye−

∫∞
0 (r+n~aδ)dδ)− c

> p̄
(n+1)
τ ′ (x+ rye−

∫∞
0 (r+(n+1)ā′δ)dδ)− c = ψτ ′({(n+ 1)ā

(n+1)
t (τ ′)})

and hence in equilibrium τ̄ (n+1) < τ ′, which is (65).
We now argue (66). We start by claiming a partial converse, ā′δ < ~aδ. This follows by

ā′0 = 1 − exp(−nτ ′) < 1 − exp(−n~τ (n)) = ~a0 and the fact that ā′δ and ~aδ follow the same
law-of-motion ȧ = (n − 1)a(1 − a) and hence can’t change position. Now (66) follows for
δ = 0 as follows

n~a0 = n(1−exp(−n~τ (n))) < (n+1)(1−exp(−n n

n+ 1
~τ (n))) < (n+1)(1−exp(−nτ ′)) = (n+1)ā0

(67)
where the first inequality uses that (1 − exp(−x))/x falls in x, and the second inequality
that n

n+1
~τ (n) < n+1

n+2
~τ (n) = τ ′. We show (66) for all δ > 0 by arguing that n~aδ cannot cross

(n+ 1)āδ from below: Assume n~aδ = (n+ 1)āδ. Then, using ~aδ > ā′δ

n~̇aδ = n(n− 1)~aδ(1− ~aδ) < (n+ 1)(n− 1)ā′δ(1− ā′δ) = (n+ 1) ˙̄a′δ.

We have thus proven the comparison between directed and undirected trees (64).
The comparison between undirected and triangle trees

τ̂ (n+1) < τ̄ (n) < τ̂ (n) and V̂ (n+1) > V̄ (n) > V̂ (n)

follows analogously: For equal degree n, we use the fact that ā(n)
t (τ) > â

(n)
t (τ) to argue

τ̄ (n) < τ̂ (n) and consequently V̄ (n) > V̂ (n). For triangle networks with degree n + 1, we use
the fact that â(n+1)

t (τ) = ā
(n)
t (τ) to argue τ̂ (n+1) < τ̄ (n); the argument that V̂ (n+1) > V̄ (n) relies

again on showing that incentives in the triangle network are strictly positive at τ ′ := n+1
n+2

τ̄ (n).
The only difference is that now â

(n+1)
t (τ) = ā

(n)
t (τ) equals 1 − e−(n−1)t for t = τ and then

evolves according to ȧ = (n − 2)a(1 − a), while in the comparison of the undirected n + 1-
tree to the directed n-tree the corresponding values were to 1 − e−nt for t = τ and then
ȧ = (n− 1)a(1− a), so in the analogue of (67) we must now use the fact that n−1

n
< n+1

n+2
.

C.2 Convergence: Proof of Proposition 4

We lead with the proof of part (b) for undirected networks (which are also used in Section
4.2), dropping the “upper bar”, say on āt, to ease notation. Subsequently, we discuss how to
adapt the proof for directed and triangular networks in parts (a) and (c) of Proposition 4.
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Notation and conventions. For an arbitrary cutoff τ ∈ [0, τ̄ ], write the social learning curve
in the I-agent network as BI(τ) = {BIt (τ)}t; in the unique equilibrium, bIt = BIt (τ I) and
ψτI (b

I) = 0. Analogously, in the infinite regular n-tree T , define A(τ) = {At(τ)}t as follows:
For t < τ , At(τ) := 1; for t > τ , it is the solution of (19), ȧ = (n− 2)a(1− a) with boundary
condition aτ = 1 − e−(n−1)τ . In equilibrium, (τ ∗, a∗ = {a∗t}) uniquely solve a∗ = A(τ ∗) and
ψτ∗(na

∗) = 0. Convergence of functions bI = {bIt} is always point-wise for all but at most
one t, namely the cutoff t = τ̄ ∗.

We will prove that τ I → τ ∗ and that bIt → na∗t for all t 6= τ ∗. We restrict attention to a
subsequence where τ I converges to some τ∞. The triangle inequality implies that for all I

|ψτ∞(nA∗(τ∞))| ≤|ψτ∞(nA∗(τ∞))− ψτ∞(nA∗(τ I))|+
|ψτ∞(nA∗(τ I))− ψτ∞(BI(τ I))|+
|ψτ∞(BI(τ I))− ψτI (BI(τ I))|+ |ψτI (BI(τ I))|

As I →∞, the first term vanishes by continuity of A∗t (τ) in τ for all t 6= τ ∗, and continuity
of ψτ∞(b) in b = {bt}. The second term vanishes by continuity of ψτ∞(b) in b = {bt} and
because for all t ≥ 0

lim
I→∞

sup
τ∈[0,τ̄ ]

|BIt (τ)− nA∗t (τ)| = 0 (68)

as we show below. The third term vanishes because by Lemma 6(b). The fourth term is 0

for all I since τ I is the equilibrium cutoff of GI
Thus, ψτ∞(nA∗(τ∞)) = 0. Since τ ∗ is the unique solution of this equation, we have

τ∞ = τ ∗. Since the subsequence of τ I that converges to τ∞ was arbitrary, the entire se-
quence τ I converges to τ ∗ as desired. The triangle inequality then implies |bIt − na∗t | =

|BIt (τ I)− nA∗t (τ ∗)| ≤ |BIt (τ I)− nA∗t (τ I)|+ n|A∗t (τ I)−A∗t (τ ∗)| → 0 for all t 6= τ ∗.

Proof of (68). The social learning converges for fixed τ . Fix an agent i, and consider
times t > τ . Let GI,r

i be the event that, i has n neighbors, n(n − 1) second neighbors, ...,
n(n − 1)r−1 agents at distance r, and all of these agents are distinct. For all fixed r and
t, limI→∞ Pr(GI,r

i ) → 1. For the upcoming arguments, we state that this convergence also
conditional on the event {θ = H, t < Ti, Si}

lim
I→∞

PrH(GI,r
i |t < Ti, Si)→ 1. (69)

We will now define upper and lower bounds art (τ), ārt (τ) for the expected effort of i’s
neighbors j in both the network aI,rt (τ) := EH [AIj,t|GI,r

i , t < Ti, Si] and in the infinite tree
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At(τ). We show below that

lim
r→∞

sup
τ∈[0,τ̄ ]

|ārt (τ)− art (τ)| = 0. (70)

Then, by the triangle inequality

|BIi,t(τ)− nAt(τ)| ≤ |BIt (τ)− naI,rt (τ)|+ |nAI,rt (τ)− nA∗t (τ)|
≤ n(1− PrH(GI,r

i |t < Ti, Si)) + n|ārt (τ)− art (τ)|

and so (69) and (70) imply

lim
r→∞

lim
I→∞

sup
τ∈[0,τ̄ ]

|BIi,t(τ)−nA∗t (τ)| ≤ lim
r→∞

lim
I→∞

n(1−PrH(GI,r
i |t < Ti, Si))+ lim

r→∞
sup
τ∈[0,τ̄ ]

n|ārt (τ)−art (τ)| = 0

which is (68), since the LHS does not depend on r.

Proof of (70). Construction of the bounds art , ārt and their convergence. We define the
bounds art , ārt (dropping τ for a moment to ease notation) as i’s expectation over neighbor
j’s effort conditional on pessimistic/optimistic assumptions about successes of distant agents.
Specifically, we define expectations E−i,r, Ē−i,r over the first success times Ti of all agents
k with distance 1, ..., r from i, both of which condition on GI,r

i , θ = H and the fact that
i’s neighbors j have not seen i succeed. Additionally, E−i,r conditions on no “leaf agent” `
with distance r from i having observed a success from an “outside” agent at distance r + 1

from i; conversely, Ē−i,r conditions on every “leaf agent” ` having observed a success from
an “outside” agent. We then set art := E−i,r[Aj,t|t < Tj] and ārt := Ē−i,r[Aj,t|t < Tj].

We proceed by induction over r. For r = 1, this means a1
t ≡ 0, ā1

t ≡ 1 for t > τ . More
generally, for r > 1, i’s neighbor j shirks at t > τ iff none of his n − 1 other neighbors
k ∈ Nj(G)\{i} have succeeded.

1− art =
Pr−i(t < Tj, t < Tk∀k ∈ Nj\{i})

Pr−i(t < Tj)
=

exp
(
−nτ − (n− 1)

∫ t
τ
ar−1
s ds

)
exp

(
−τ −

∫ t
τ
arsds

) (71)

The last equality is analogous to the undirected line in Example 4: The denominator follows
because the hazard rate of Tj equals 1 before τ and ars after. In turn the event in the
numerator has hazard rate n when all agents experiment before τ ; after τ , having observed
no success j shirks, while the expected effort of each of his n − 1 neighbors k equals ar−1

s

since the event GI,r
i implies GI,r−1

j . We rewrite (71) as an ODE

ȧr = ((n− 1)ar−1 − ar)(1− ar) (72)

61



with initial condition arτ = 1 − e−(n−1)τ . The upper bounds ārt also obey (72) with anchor
ā1
t ≡ 1.
Since successes outside GI,r

i only affect j’s expected effort via the leaf agents, and the
solution of (72) is monotone in ar−1, the so-defined functions indeed bound expected effort,
art < AI,rt ,A∗t < ārt . Moreover, the monotonicity of (72) together with a1 ≡ 0 implies that
ar increases in r and so converges to some a∞ = {a∞t (τ)}t which must then solve (19), so
a∞t (τ) = A∗t (τ) for all t. Similarly, ār(τ)→ A∗(τ). Since art (τ), ārt (τ),A∗t (τ) are all increasing
and equi-Lipschitz in τ , the convergence is uniform in τ ∈ [0, τ̄ ], so we have proven (70).

Proof of parts (a) and (c). The only difference is the number of neighbors in (71) and (72).
For n-regular directed network, we define GI,r

i as the event that i has n neighbors, n2 second
neighbors, ..., and nr agents with distance r. Since i’s neighbor j has n additional neighbors
k, (72) becomes ȧr = (nar−1 − ar)(1 − ar) with boundary condition arτ = 1 − e−nτ , so as
r →∞, we obtain (16).

For triangular networks, i’s neighbor j shares one more, triangular neighbor j′ with i, as
well as n− 2 other neighbors k with distance two from i. Thus, (71) becomes

1− art =
Pri(t < Tj, Tj′ , t < Tk∀k ∈ Nj\{i, j′})

Pri(t < Tj, Tj′)
=

exp
(
−nτ −

∫ t
τ
((n− 2)ar−1

s + ars)ds
)

exp
(
−2τ − 2

∫ t
τ
arsds

) .

To understand the integral in the numerator, after τ expected effort is 0 for j, ars for neighbor
j′, and ar−1

s for each of the n−2 second neighbors k. Thus, (72) becomes ȧr = ((n−2)ar−1−
ar)(1− ar) with boundary condition arτ = 1− e−(n−2)τ , so as r →∞, we obtain (20).
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