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Abstract

A group of agents with ex-ante independent and identically uncer-

tain quality compete for a prize, awarded by a principal. Agents may

possess evidence about the quality of those they share a social connec-

tion with (neighbours), and themselves. In one equilibrium, adversarial

disclosure of evidence leads the principal to statistically discriminate

between agents based on their number of neighbours (degree). We iden-

tify parameter values for which an agent’s ex-ante winning probability is

monotone in degree. All equilibria that satisfy some robustness criteria

lie between this adversarial disclosure equilibrium and a less informa-

tive one that features no snitching and no discrimination.
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1 Introduction

In a group of agents with indistinguishable productive ability, economic re-

wards often flow to those with more social connections. A common explana-

tion for such outcomes, especially those that make news, is taste-based dis-

crimination such as cronyism or nepotism. Social network theory highlights

other rationales in the labour market context. In Calvo-Armengol and Jackson

(2004), connections are valuable sources of information about job vacancies.

In Montgomery (1991), connections permit hiring via referrals.

In this paper, we present a novel equilibrium process through which bene-

fits get distributed unequally as a function of an agent’s number of connections

(degree), in an otherwise homogeneous group of agents. A principal crowd-

sources information from and about a group of ex-ante identical agents, in

order to assign a prize. The agents’ strategic revelation of information, in

equilibrium, leads the wholly unbiased and rational principal to reward the

agents unequally based on their degree. Key to this finding are the differ-

ent meanings rationally inferred by the principal from the lack of information

about two agents who differ in degree alone.

Our model involves a group of agents, each of whom could be good or

bad (own-type). An agent’s own-type is his private information and all agents

are ex-ante identical, in that they share the same, commonly known, i.i.d.

probability, γ, of being good. A principal wishes to award a prize to a good

agent only, but every agent wants the prize. Examples of such an environment

include a supervisor deciding which employee to promote, or a political party

selecting a member to run in an election.

The agents have social or professional connections among themselves. These

are described by a commonly known network, which limits the information
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agents may come to possess. In addition to knowing their own own-type,

agents may obtain hard information about themselves or any agent they are

connected to (neighbour). So, in particular, an agent can possess fully verifi-

able evidence about his own own-type and those of his neighbours. The former

may be in the form of client reviews of past work. Evidence about neighbours

can take the form of emails, shared work, documentation of performance in a

joint project, or photos. A key feature is that if the principal observes evidence

about an agent, she is certain of the latter’s own-type. An agent obtains evi-

dence about the own-type of any given neighbour of his, or himself, with i.i.d.

probability q, and this is his private information. This stochastic evidence

structure is essentially the same as in Dye (1985), and more recently, Hart,

Kremer and Perry (2017) and Ben-Porath, Dekel and Lipman (2019).

Following the arrival (or not) of evidence, the agents simultaneously decide

which evidence, if any, to reveal to the principal. The principal then uses this

revealed information to determine the prize winner. We study equilibrium

behaviour of this game in which an agent’s prize winning chances is determined

solely by the principal’s equilibrium belief about his own-type. So, for instance,

if the principal knew for sure that two different agents were both good, then

they would receive the prize with equal probability.1

We identify two distinct equilibria (Proposition 1). In one, the agents be-

have adversarially, revealing good evidence about themselves, bad evidence

about their neighbours and suppressing the rest. In the other equilibrium,

agents only reveal good evidence about themselves. In the latter, the princi-

pal interprets bad evidence from an agent about his neighbour as proof that

the agent himself is bad. In this “no-snitching” equilibrium, the ex-ante prob-

ability of receiving the prize is the same for all agents and independent of their

network position (Proposition 2). This is not true in the adversarial disclosure

equilibrium. We show that irrespective of the network, in the adversarial dis-

closure equilibrium agents with more connections receive the prize with higher

ex-ante probability if the probability of being good is sufficiently high and/or

1In particular, the discrimination we identify in our model is not due to the use of a
discriminatory tie-breaking rule by the principal.
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the probability of obtaining evidence is sufficiently low. This result does not

rely on extreme parameter values. For instance, an easy to parse sufficient con-

dition under which more connections lead to higher ex-ante reward probability

is
γ

1− γ
(1− q) > 1.

We also show that for any given level of γ, agents with fewer connections do

better ex-ante for sufficiently large q. In summary, the adversarial disclosure

equilibrium leads to discrimination based on degree (Proposition 3).

The direction of discrimination in the adversarial disclosure equilibrium is

decided by the interplay of two key forces. In equilibrium, when the principal

receives no evidence about two agents with different degrees, she rationally in-

fers that the one with the higher degree has a higher probability of being good.

This is simply a case of statistical discrimination that arises endogenously in

equilibrium due to the specific disclosure strategies used by the agents.2 This

force, therefore, favours agents with higher degrees. Conditional on being bad,

however, a higher degree increases the chances of being snitched upon. This

force favours agents with lower degrees. Which of these forces wins out at the

ex-ante stage depends on the two parameters of the model, and is the content

of our main result (Proposition 3).

The richness of the strategy space compared to the number of possible out-

comes makes agents indifferent across a number of strategy profiles. This can

be exploited to generate a multiplicity of equilibria that rely on fragile con-

structions. To avoid artificial equilibria we focus on sequential equilibria that

satisfy a robustness property introduced in Ben-Porath, Dekel and Lipman

(2019), and survive a further perturbation. In the latter, the agents believe,

with vanishing probability, that the principal follows a coarse strategy. The

“no-snitching” and adversarial disclosure equilibria, both satisfy these robust-

ness criteria (Proposition 5). Importantly, any sequential equilibrium that

satisfies these properties lies between these two equilibria, in that an agent’s

strategy never reveals less evidence than in the “no-snitching” equilibrium

2Therefore our results fall under the heading of equilibrium discrimination as opposed to
statistical discrimination.
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and never reveals more evidence than in the adversarial disclosure equilibrium

(Proposition 4 and 5).

The central finding of our paper contributes to the economics literature

on discrimination. Most of the latter builds on the theory of taste-based dis-

crimination, following Becker (1971) or statistical discrimination, following

Phelps (1972), in the context of race and the labour market. In taste-based

discrimination, interaction across different groups (races) generates disutility.

In statistical discrimination, employers obtain a noisy signal of an agent’s pro-

ductivity, which is correlated with the agent’s race, an observable attribute.

By contrast, in our model, degree is independent of own-type and therefore

payoff irrelevant. It is only in equilibrium that the distribution of evidence

about an agent anticipated by the principal ends up as a function of degree.

For this reason, our paper belongs in the equilibrium discrimination literature

that follows the lead of Arrow (1973). Typically in this literature the ob-

servable payoff-irrelevant dimension along which discrimination occurs is skin

colour or race.3 To the best of our knowledge, ours is the first paper wherein

discrimination occurs on the basis of degree. We position our work in this

literature in greater detail in section 6.

This paper also contributes to the literature that analyzes the strategic

disclosure of evidence to an uninformed principal. The vast majority of this

literature examines settings where individuals can disclose evidence about own

but not about competitors’ characteristics. In the seminal papers of Grossman

and Hart (1980), Grossman (1981), and Milgrom (1981), an unravelling result

obtains. Agents voluntarily disclose all relevant evidence in equilibrium. Dye

(1985) and Jung and Kwon (1988) consider a framework of stochastic evidence

in which the agent obtains, with some probability, fully revealing evidence, and

no evidence at all with the remaining probability. The unravelling result no

longer holds in this setting. In particular, the agents only disclose favourable

evidence. Recent work such as Kremer, Hart and Perry (2017), Ben-Porath,

Dekel and Lipman (2018, 2019) examine the import of this Dye-evidence in

a number of settings. A major concern in these studies is whether and when

3See, for instance, Eeckhout (2006) and Peski and Szentes (2013).
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the principal’s ability to commit is redundant. The disclosure game we study

also features Dye-evidence, but we are interested in the possibility and nature

of equilibrium discrimination, and to the best of our knowledge, the first to

do so. The novel feature in our setting is the ability of agents to disclose

evidence about others, which is constrained by their network position. This

structure is at the heart of the strategic considerations that lead to equilibrium

discrimination in our study.

The literature wherein individuals cannot only disclose evidence about own

but also others’ characteristics is sparse. Baumann (2018) is the first to anal-

yse a setting in which individuals disclose partially conclusive evidence about

themselves and their acquaintances. Ben-Porath, Dekel and Lipman (2018)

consider a competition between an incumbent and a challenger where each

might have evidence about the characteristics of the incumbent.

Recently, the literature on social and economic networks has started ex-

amining the design of peer evaluation mechanisms in which agents send infor-

mation about each other. Baumann (2018) proposes a robust peer evaluation

mechanism to identify the highest quality agent when agents disclose partially

verifiable information. Bloch and Olckers (2021; 2022) investigate the design

of an incentive-compatible mechanism to extract the entire quality ranking

of agents in a network. In their framework, agents are fully informed about

themselves and their neighbours but do not possess evidence, in that their

messages are non-verifiable. Bloch and Olckers (2022) provide necessary and

sufficient conditions for such a mechanism to exist.

The structure of the paper is as follows. We introduce the model in section

2. In section 3, we describe and prove the existence of the adversarial disclosure

and no-snitching equilibrium. Section 4 contains the key analysis of the ex-

ante award probabilities of agents in these two equilibria. The characterization

of sequential equilibria that survive certain robustness criteria is in section 5.

We discuss some implications of our findings in section 6.
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2 Model

There is a principal and a set of agents N = {1, ..., n} with n ≥ 2. An agent is

either good (G) or bad (B), and this is his private information. Formally, each

agent i has a privately known own-type ωi ∈ {G,B}. The commonly known

prior probability that agent i has good own-type is Pr(ωi = G) = γ ∈ (0, 1),

and is independent of the own-type realizations of other agents. The space of

own-type profiles is Ω = {G,B}n with generic profile ω ∈ Ω. Subsequently, for

any variable xi defined for agent i, the vector x will denote the corresponding

profile, i.e. x = (xi)i∈N , unless otherwise stated.

The principal has a single prize to award to an agent of her choosing and

may decide to withhold the award. She gets a payoff of vG > 0 and −vB < 0

from awarding the prize to a good own-type and a bad own-type, respectively.

Withholding the award brings 0. Agent i ∈ N receives utility v > 0 from

getting the prize and 0 from not.

Connections between agents are commonly known and captured by an undi-

rected network L. We write ij ∈ L if agents i and j are linked (neighbours),

and denote by Ni the set of all of agent i’s neighbours. Let di := |Ni| be the

number of agent i’s neighbours (degree). We assume that di ≥ 1 for all i.

In addition to knowing his own-type, each agent may or may not obtain

hard evidence about his own-type or that of his neighbours. Formally, given

own-type profile realization ω and any j ∈ Ñi ≡ Ni ∪ {i}, agent i privately

receives verifiable evidence about j’s own-type, eij = ωj, with probability

0 < q < 1 and no evidence, eij = ∅, with probability 1 − q. The evidence

realization eij is i.i.d. for all i ∈ N and j ∈ Ñi. The evidence vector obtained

by i is ei = (eij)j∈Ñi
and the set of all feasible evidence vectors for agent i

given own-type profile ω is Ei(ω) = {ei|eij ∈ {ωj, ∅} for all j ∈ Ñi}. Agent i’s
type, as in a standard Bayesian game framework, corresponds to an own-type-

evidence realization and is denoted by ti = (ωi, ei) and the set of all feasible

types by Ti = {(ωi, ei)|ω = (ωi, ω−i) ∈ Ω, ei ∈ Ei(ω)}. The set of all feasible

type profiles is therefore T = {(ω, e)|ω ∈ Ω and ∀i ∈ N, ei ∈ Ei(ω)} with

generic element t. Let Pr(t) denote the prior probability of type profile t.
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Given a type profile realization, t = (ω, e), agents simultaneously send

messages about themselves and their neighbours to the principal. Agent i

sends message mi = (mij)j∈Ñi
with statement mij ∈ {eij, ∅}. Notice that

upon obtaining evidence about j (i.e. eij = ωj), i can choose to disclose

the evidence, mij = ωj, or withhold it, mij = ∅. With no evidence about j

(i.e. eij = ∅), i must send mij = ∅. The set of feasible messages for agent

i, given ti, is Mi(ti) = {mi|mij ∈ {eij, ∅}}, with the set of feasible messages

Mi = ∪t∈TMi(ti). Let M = ∪t∈T (
∏

i∈N Mi(ti)) denote the set of feasible

message profiles, with generic profile m. A strategy for agent i, σi, assigns to

any type ti a probability distribution over the set of feasible messages, Mi(ti).

Formally, σi : Ti → ∆(Mi) such that σi(ti) ∈ ∆Mi(ti), where σi(mi|ti) is

the probability with which agent i sends message mi when his type is ti.
4

Denote by σij(mij|ti) :=
∑

mi=(mij ,·)∈Mi(ti)
σi(mi|ti) the probability with which

agent i with type ti sends message mij about agent j. Abusing notation, we

write σij(ti) = mij, σi(ti) = mi, and σ(t) = m in place of σij(mij|ti) = 1,

σi(mi|ti) = 1, and σi(mi|ti) = 1,∀i ∈ N , respectively, to represent the use of

pure strategies concisely. A strategy σi is completely mixed if σi(mi|ti) > 0

for all mi ∈ Mi(ti) and all ti ∈ Ti, and a profile σ is completely mixed if σi is

completely mixed for all i ∈ N .

Upon receiving message profile m, the principal updates her belief about

t (which includes ω). Let µi(ti|m,σ) be the principal’s belief that agent i’s

type is ti ∈ Ti after receiving message profile m, given agents’ strategy profile

σ. The corresponding belief profile is µ. The principal’s belief that ωi = G is

then given by βi(m) :=
∑

ti∈Ti|ωi=G µi(ti|m,σ).5

Given her belief, the principal chooses an award rule, r = (r1, ..., rn) with

ri ≥ 0 and
∑

i∈N ri ≤ 1, where ri is the probability with which agent i receives

the prize. Let R be the set of all award rules. The principal’s award strategy

is a function r̂ : M → R.

The agents’ strategy profile σ, the principal’s belief µ and award strategy

r̂ together constitute an assessment of the game. An assessment (σ, µ, r̂) is a

4For any finite set A, ∆(A) denotes the set of all probability distributions over A.
5The dependence of βi(m) on the belief µ is suppressed for notational convenience.
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sequential equilibrium if

1. (consistency) there is a sequence of strategy profiles and beliefs (σn, µn)∞n=1

that converges to (σ, µ) such that each strategy profile σn is completely

mixed and beliefs µn are derived from σn using Bayes’ rule, and

2. (sequential rationality) for each i ∈ N , σi maximizes agent i’s expected

payoff given (σ−i, r̂) and r̂ maximizes the principal’s expected payoff,

given her belief µ.

The goal of this paper is to show how discrimination may arise even when

the principal cares only about an agent’s own-type. To this end, we focus

on sequential equilibria in which the principal’s award strategy is anonymous.

This requires r̂i(m) = r̂j(m) if βi(m) = βj(m).

The function β captures the only part of the belief function µ that is rele-

vant for the principal’s choice, and therefore also the agents’ strategic consid-

erations. It is also easy to describe, unlike the full belief function µ. Therefore,

for expositional ease, we refer to (σ, β, r̂) as an assessment, with the under-

standing that (σ, µ, r̂) is an assessment for some µ, and β is derived from

µ.

The model concludes with the following assumption.

Assumption 1.

vG > vB
1− γ

γ(1− q)n
.

The assumption ensures that in all the scenarios relevant to our analysis, the

principal wishes to award the prize to agents she believes most likely to be

good, as long as that likelihood is positive. Notice that, independent of this

assumption, she strictly prefers not to award an agent she believes to be bad

with certainty.

3 Adversarial Disclosure and No Snitching

We start our analysis with some handy observations that hold true for all

sequential equilibria. In any sequential equilibrium if the principal receives
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evidence G about agent i, then she must be certain that agent i is good.

Similarly, evidence B about agent i convinces the principal that the agent is

bad. This simply follows from the evidence technology, wherein an evidence

of G (B) about agent i can realize only if ωi = G(B).

Given a sequential equilibrium (σ, β, r̂), and some message profile m ∈
M , let W (m) = {i|βi(m) = maxk βk(m)} capture the set of agents that the

principal believes most likely to be good. If the principal awards the prize

at all following the message m, then it is only to members of W (m), since

that alone maximizes her expected payoff
∑

i∈N ri(vGβi(m)− vB(1− βi(m))).

Anonymity ensures that in this case each member of W (m) gets the prize

with equal probability. It is also immediate that the principal never awards

the prize to an agent she is certain is bad. We collect these observations in

the following lemma.

Lemma 1. If (σ, β, r̂) is a sequential equilibrium, then

mki = G ⇒ βi(m) = 1

mki = B ⇒ βi(m) = 0

βi(m) = 0 ⇒ r̂i(m) = 0

r̂i(m) = 1/|W (m)|, if i ∈ W (m)

r̂i(m) = 0 otherwise.

}
if r̂j(m) > 0 for some j ∈ N.

The model allows for a rich set of strategic behaviour. Nevertheless, two

specific assessments turn out to be particularly salient. In the first, which we

label adversarial disclosure, the agents send good evidence about themselves,

bad evidence about their neighbours and withhold all else.

Construction 1 (adversarial disclosure).

σij(ti) =


G if i = j and eij = G

B if i ̸= j and eij = B

∅ otherwise
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βi(m) =
γ(1− q)

γ(1− q) + (1− γ)(1− q)di
if mki = ∅,∀k ∈ Ñi.

A key feature of this assessment is the principal’s belief about agent i in

the absence of any evidence about him. Given the strategy profile, the lack

of evidence suggests that either the agent is good and did not obtain evidence

to prove it or the agent is bad and none of his neighbours obtained evidence

to prove that. The expression is simply the conditional probability of the

former being true. This belief depends on agent i’s degree and therefore leads

the principal to interpret the lack of evidence about two different agents in

different ways, in turn leading to an award rule that discriminates in favour

of agents with greater or fewer connections, based on the parameters of the

model. This feature is at the heart of the main findings in this paper.

We label the second salient assessment no snitching. In it, agents send

good evidence about themselves and withhold all else. In the absence of any

evidence about agent i, the principal believes agent i to be bad with certainty,

if he sends bad evidence about anyone else.

Construction 2 (no snitching).

σij(ti) =

G if i = j and eij = G

∅ otherwise

βi(m) =


γ(1−q)

γ(1−q)+(1−γ)
if mki = ∅,mik ̸= B, ∀k ∈ Ñi

0 if mki = ∅, ∀k ∈ Ñi and mij = B for some j ∈ Ni.

The assessments described in constructions 1 and 2 are completed with the

specification in Lemma 1 and a reward rule r̂ such that

r̂i(m) =

1/|W (m)|, if i ∈ W (m),maxk βk(m) ≥ vB
vG+vB

0, otherwise.

The next lemma establishes an important property of both assessments

above. Following any message profile, the principal is either certain that all
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agents are bad, or the highest probability she assigns to some agent being good

exceeds a threshold. The proof is in the appendix.

Lemma 2. Suppose (σ, β, r̂) is either the no snitching or the adversarial dis-

closure assessment, and m = σ(t) for some t ∈ T . Then,

max
k

βk(m) > 0 ⇒ max
k

βk(m) ≥ vB
vG + vB

.

The lemma implies that in both assessments, either the principal receives bad

evidence about every agent and the prize is not awarded at all, or the prize

is awarded with equal odds to all agents that are most likely to be good. We

can now state our first result.

Proposition 1. Adversarial disclosure and no snitching are sequential equi-

libria for all values of the parameters γ, q.

Proof. For each of the two constructions, we need to show that there exists an

assessment (σ, µ, r̂) where σ, r̂ are as specified in the construction and β can be

derived from µ. Further, (σ, µ, r̂) must satisfy the requirements of consistency

and sequential rationality. We relegate the derivation of β from µ and the

proof of consistency to the appendix. Here, we establish sequential rationality,

for which the information in (σ, β, r̂) is sufficient.

The reward rule is indeed sequentially rational. In particular, the principal

would not award the prize at all, if doing so to the agent she believes most

likely to be good still brings her a negative expected payoff,

vG(max
k

βk(m))− vB(1−max
k

βk(m)) < 0 ⇔ max
k

βk(m) <
vB

vG + vB
.

If instead maxk βk(m) ≥ vB
vG+vB

, then she cannot do better than follow r̂ by

awarding the prize to members of the set W (m) with equal probability.

Now consider the adversarial disclosure profile. Given r̂ and σ−i, no agent

i has an incentive to deviate from σi: Suppose ωi = G. Then any message

m′
i ∈ Mi(ti) where m′

ii = ∅ if eii = G or m′
ij = ∅ if eij = B or m′

ij = G

if eij = G implies βi(m
′
i, σ−i(t−i)) ≤ βi(σ(t)) and βj(m

′
i, σ−i(t−i)) ≥ βj(σ(t))
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for j ̸= i and hence r̂i(m
′
i, σ−i(t−i)) ≤ r̂i(σ(t)). Suppose ωi = B. Then any

messagem′
i ∈ Mi(ti) wherem

′
ii = B if eii = B orm′

ij = ∅ if eij = B orm′
ij = G

if eij = G implies βi(m
′
i, σ−i(t−i)) ≤ βi(σ(t)) and βj(m

′
i, σ−i(t−i)) ≥ βj(σ(t))

for j ̸= i and hence r̂i(m
′
i, σ−i(t−i)) ≤ r̂i(σ(t)).

Consider next the no snitching profile, σ. Fix some t ∈ T , and suppose

σ(t) = m. It follows that maxk βk(m) > 0. Then by Lemma 2 we have

maxk βk(m) ≥ vB/(vG + vB). Now, agent i has only two ways to change

his payoff by deviating to m′
i. Either i ̸∈ W (m) and i ∈ W (m′

i,m−i) with

maxk βk(m
′
i,m−i) ≥ vB/(vG + vB) or i ∈ W (m) ∩ W (m′) and |W (m′)| <

|W (m)|, again with maxk βk(m
′
i,m−i) ≥ vB/(vG + vB). Notice if i ̸∈ W (m),

then it must be that mji ̸= G for all j ∈ Ñi. Deviating to sending good

evidence about some neighbour ensures that i ̸∈ W (m′). Sending bad evidence

about a neighbour, in turn, ensures that βi(m) = 0. So the first possibility of

profitable deviation is ruled out. Now suppose i ∈ W (m)∩W (m′). If βi(m) =

1, then under σ it must be that mii = G. But then it must be that mjj = G

for all j ∈ W (m). In this case, no matter what m′
i ∈ Mi(t) agent i sends

instead, j ∈ W (m) implies j ∈ W (m′
i,m−i). Therefore i ∈ W (m) ∩ W (m′)

and |W (m′)| < |W (m)| cannot be true. If βi(m) ̸= 1, then it must be that

mji ̸= G for all j ∈ Ñi. In this case, the only message m′
i that can lead

to |W (m′)| < |W (m)| must have m′
ij = B for some j ∈ W (m). But this

results in βi(m
′
i,m−i) = 0 and therefore rules out i ∈ W (m) ∩ W (m′) and

maxk βk(m
′
i,m−i) ≥ vB/(vG + vB).

The evidence disclosure strategy in the adversarial disclosure equilibrium

is more Blackwell-informative than that in the no snitching equilibrium, since

the latter is a garbling of the former. Therefore, by Blackwell (1951, 1953),

we obtain the following observation.

Observation 1. The principal has a higher ex-ante payoff in the adversarial

disclosure equilibrium than in the no snitching equilibrium.

Given a chance, therefore, the principal would opt for the adversarial disclosure

equilibrium. This raises a legitimate concern as to whether, beyond being an
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equilibrium, the no snitching profile has any compelling reason to prevail as a

norm. The next section finds one such rationale; the no snitching equilibrium,

unlike the adversarial disclosure equilibrium, does not permit discrimination.

4 Ex-ante award probabilities and discrimina-

tion

We now turn to the key object of our analysis, the probability with which an

agent expects to win the prize before his type is realized. We call this the

agent’s ex-ante award probability. The next result rules out discrimination in

the no snitching equilibrium.

Proposition 2. In the no snitching equilibrium the ex-ante award probability

is identical for all agents.

Proof. An agent wins the prize in this equilibrium in two different ways. In

the first, the principal receives no evidence about any agent. The probability

of winning this way is [(1 − γ) + γ(1 − q)]n/n. In the second way, the agent

provides good evidence about himself and obtains the prize with equal odds

with every other agent that also provides good evidence. The probability of

winning this way as part of a winning group of size k + 1 is simply

[(1− γ) + γ(1− q)]n−k−1[γq]k+1

k + 1

and there are
(
n−1
k

)
different k + 1 sized winning groups the agent could be a

part of. Therefore, agent i’s ex-ante award probability, Pi, satisfies

Pi =
[(1− γ) + γ(1− q)]n

n
+

n−1∑
k=0

(
n− 1

k

)
[(1− γ) + γ(1− q)]n−k−1[γq]k+1

k + 1
,

which is independent of i.

A similar direct computation of agents’ ex-ante award probabilities for the

adversarial disclosure equilibrium is unwieldy and therefore ill suited for our
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purpose. Instead, we proceed by establishing some partial findings that, taken

together, help us derive our main result.

Lemma 3. Fix i, j ∈ N . Consider the adversarial disclosure equilibrium

(σ, β, r̂) and m such that m = σ(t) for some t and mki = mlj = ∅ for all

k, l. Then, βi(m) > βj(m) if and only if di > dj.

Lemma 3 follows immediately from Construction 1 by comparing the beliefs

for agents with different degrees. The result implies that despite agents having

the same prior probability of being good, the principal prefers to award an

agent with a higher degree over one with a lower degree, conditional on not

receiving any evidence about either agent.

The intuition is simple. Recall that the absence of evidence about an agent

in the adversarial disclosure equilibrium arises either if the agent is good and

he does not obtain evidence for it, or if the agent is bad and his neighbours

obtain no evidence of the same. The probability of the former is independent

of the agent’s degree, but the latter is less likely the more neighbours the agent

has. As a result, the absence of evidence about an agent is a stronger signal

of the agent being good, the more neighbours he has.

The next lemma establishes that agents with the same degree have the

same ex-ante award probabilities. The proof is relegated to the appendix.

Partition the set of individuals in N according to their degree, {Di}Ki=1 such

that i, j ∈ Dk implies di = dj. Let d
i be the degree of any agent in group Di.

Let these K sets be ordered such that di > di+1. Abusing notation we will use

Di both as a set and its corresponding cardinality.

Lemma 4. In the adversarial disclosure equilibrium, if i, j ∈ Dk, then the

ex-ante award probabilities for i and j are the same.

We next compare ex-ante award probabilities across agents with different

degrees. Let the event that every agent is either bad, or good without evidence

about himself be denoted by E = {t | ωi = B or (ωi = G, eii = ∅) for each i ∈
N}. Let Ec denote the complement event, in that at least one agent is good

and has evidence about it.

15



Lemma 5. In the adversarial disclosure equilibrium, the probability of i win-

ning the award and Ec being true is identical for all i ∈ N .

The proof is in the appendix.

By contrast, in the event that no agent is proven good, E, the probability

of winning the award depends on the agent’s degree. This in turn yields our

main result on discrimination.

Proposition 3. In the adversarial disclosure equilibrium,

(a) for a given γ, agents with higher degrees have higher ex-ante award prob-

abilities for sufficiently small q,

(b) for a given q, agents with higher degrees have higher ex-ante award proba-

bilities for sufficiently high γ,

(c) for a given γ, agents with lower degrees have higher ex-ante probabilities

for sufficiently large q.

Proof. In the adversarial disclosure equilibrium, let P i be the ex-ante proba-

bility that event E occurs and someone in Di wins the prize. Then

P i = [(1− γ) + γ(1− q)]
N\

i⋃
j=1

Dj i−1∏
j=1

{
(1− γ)D

j

[1− (1− q)d
j

]D
j
}

{
[(1− γ) + γ(1− q)]D

i − (1− γ)D
i

[1− (1− q)d
i

]D
i
}
. (1)

The first in the product of three expressions above is the probability that all

agents with strictly lower degree than i’s do not have good evidence for their

own selves. The second expression is the probability that each agent with

strictly higher degree than i’s is bad and at least one neighbour of theirs has

evidence for it. The final expression is the probability that no agent in Di

has good evidence about himself and yet it is not true that each of them has

a neighbour with bad evidence about him. In summary, the product is the

probability of the event that all agents with higher degree than i are proven

bad, those with lower degree than i are not proven good and not every agent

in Di is proven bad.
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It follows that

P i/Di ≥ P i+1/Di+1

⇔

[{
[(1−γ)+γ(1−q)]

(1−γ)[1−(1−q)di ]

}Di

− 1

]
Di

≥

[
1−

{
(1−γ)[1−(1−q)d

i+1
]

[(1−γ)+γ(1−q)]

}Di+1
]

Di+1
. (2)

Observe that the right hand side is bounded above by 1. For any given γ, the

left hand side goes to ∞ as q → 0. Similarly, for any given q, the left hand

side goes to ∞ as γ → 1. Together with Lemma 4 and 5, this proves parts (a)

and (b) of the proposition.

Let a = [(1−γ)+γ(1−q)]

(1−γ)[1−(1−q)di ]
and b = (1−γ)[1−(1−q)d

i+1
]

[(1−γ)+γ(1−q)]
. The weak opposite of

inequality 2 can be written as

P i/Di ≤ P i+1/Di+1

⇔
[
aD

i − 1
]
/Di ≤

[
1− bD

i+1
]
/Di+1

⇔

[
(a− 1)(

i∑
j=1

aD
i−j

)

]
/Di ≤

[
(1− b)(

i∑
j=0

bD
i−j

)

]
/Di+1

⇔ a− 1

1− b
≤

∑i
j=0 b

Di−j∑i
j=1 a

Di−j

Di

Di+1

⇔ (1− γ)(1− q)d
i
+ γ(1− q)

(1− γ)(1− q)di+1 + γ(1− q)

(1− γ) + γ(1− q)

(1− γ)[1− (1− q)di ]
≤

∑i
j=0 b

Di−j∑i
j=1 a

Di−j

Di

Di+1

⇔ zl ≡ (1− γ)(1− q)d
i
+ γ(1− q)

(1− γ)(1− q)di+1 + γ(1− q)
≤ (1− γ)[1− (1− q)d

i
]

(1− γ) + γ(1− q)

∑i
j=0 b

Di−j∑i
j=1 a

Di−j

Di

Di+1
≡ zr

Now notice that limq→1 z
r = i+1

i
Di

Di+1 . On the other hand, limq→1 z
l takes the

indeterminate form 0
0
. Repeated use of l’Hospital’s rule gives

lim
q→1

zl = lim
q→1

(1− q)d
i−di+1 ∏di+1

j=0 (di − j)

di+1!
= 0.

Together with Lemma 4 and 5 this proves part (c) of the proposition.
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To see the intuition for this result, consider two agents with different de-

grees. There are three salient and jointly exhaustive outcome scenarios. In the

first, there is good evidence about some agent on the network. The absence

of good evidence is split into the second and third scenarios. In the second,

additionally there is no bad evidence about the two agents we consider, while

in the third there is bad evidence about at least one of the two.

The odds of winning in the first scenario is identical across all agents, by

Lemma 5. In the second scenario, it is better to have more neighbours, by

Lemma 3. The third scenario benefits the agent with fewer neighbours since

that lowers the risk of being snitched on.

Fixing γ, a lower chance of obtaining evidence (smaller q) increases the

probability of the second scenario at the expense of the other two, benefitting

the agent with more neighbours. Fixing q, increasing the prior probability

of an agent being good (higher γ) increases the probability of the first sce-

nario. Importantly, this also increases the odds of second scenario relative

to the third, since only bad evidence is transmitted by neighbours which in

turn requires the agent to be bad. This, too, benefits the agent with more

neighbours.

Fixing γ, better evidence technology (higher q) increases the probability of

the first scenario at the expense of the other two, but it also raises the relative

odds of the third scenario over the second, benefitting the agent with fewer

neighbours. The effect of lowering γ keeping q fixed is ambiguous, since it

raises the odds of both the second and third scenarios relative to the first.

5 Robustness

Agents in our model only care about winning the prize. Upon losing out, they

are indifferent about whether some other agent wins, and if so, which one. This

indifference permits a multiplicity of equilibria held together by uncompelling

strategies and beliefs. For instance, an agent with good evidence about a

neighbour and bad evidence about himself may choose to reveal both. The

equilibrium logic behind such behaviour is as follows. Suppose in the absence
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of any evidence about either the agent or his neighbour, the principal infers the

neighbour has a higher probability of being good (as can happen in the adverse

disclosure equilibrium). Knowing this, the agent realizes that he simply cannot

win. Since he is bad and his neighbour is good, the agent’s best hope is that

there is no evidence about either. But even then he loses out to his neighbour.

Consider a principal who responds to the agents’ messages in a coarse

manner. In particular, she continues to treat good or bad evidence about an

agent as conclusive but treats all agents she lacks evidence on identically. In

the absence of any good evidence, she awards the prize to members of the

latter group with equal odds. The indifference described above is broken with

even the smallest probability that the principal is of this coarser kind.

We now define this notion of coarse principal formally. For any feasible

message profile m ∈ M , let B(m) = {i ∈ N |mji = B for some j ∈ Ñi}
denote the set of all agents proven bad. Likewise let G(m) = {i ∈ N |mji =

G for some j ∈ Ñi} be the set of all agents proven good. Finally, let I(m) =

N \ (B(m) ∪ G(m)) be the set of agents about whom there is no evidence in

m.

Definition 1 (coarse principal). A principal is coarse if she uses the award

rule rc where

rci (m) =


0 if i ∈ B(m)

1/|G(m)| if i ∈ G(m)

1/|I(m)| if i ∈ I(m) and G(m) = ∅.

A principal is ϵ-coarse if with probability 1 − ϵ she is a standard principal as

described in section 2 and with probability ϵ she is coarse.

Definition 2 (sequential equilibrium with an ϵ-coarse principal). An assess-

ment (σ, µ, r̂) is a sequential equilibrium with an ϵ-coarse principal if

1. (consistency) there is a sequence of strategy profiles and beliefs (σn, µn)∞n=1

that converges to (σ, µ) such that each strategy profile σn is completely

mixed and beliefs µn are derived from σn using Bayes’ rule,
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2. (principal’s sequential rationality) r̂ maximizes the principal’s expected

payoff, given her belief µ,

3. (agents’ sequential rationality) for each i ∈ N , σi maximizes agent i’s

expected payoff given σ−i and the principal’s award strategy, which is r̂

with probability 1− ϵ and rc with probability ϵ,

for all small enough ϵ.

Notice that any sequential equilibrium would satisfy properties 1 and 2 above,

by definition. The stricter requirement only applies to the agents’ strategies,

which must now remain optimal when facing a principal who is coarse with

vanishing probability.

Finally, we import a notion of robustness used in Ben-Porath, Dekel, and

Lipman (2019). Let M−i(ti) = ∪(ti,·)∈T (
∏

j∈N\{i}Mj(tj)) denote the set of

feasible message profiles of agents N \ {i} given that agent i’s type is ti.

Definition 3 (robustness). A sequential equilibrium with an ϵ-coarse prin-

cipal, (σ, µ, r̂), is robust if, for all i ∈ N , ti ∈ Ti, σi(ti) maximizes agent i’s

expected payoff for any m−i ∈ M−i(ti), given that the principal plays r̂ with

probability 1− ϵ and rc with probability ϵ.

In other words, an agent’s strategy σi(ti) must be optimal for ti, given any

feasible message profile sent by other agents and the equilibrium strategy of

the ϵ-coarse principal. Robust equilibria are less demanding in terms of how

precisely an agent anticipates the strategies of other agents. Consequently,

they survive as equilibria in a range of related games, such as where the agents

send their messages sequentially with each agent observing the earlier reports.

Agents’ strategies in any such robust equilibrium share a number of features,

as we show below.

Proposition 4. Suppose (σ, µ, r̂) is a robust sequential equilibrium with an

ϵ-coarse principal. Then,

(a) agents do not reveal bad evidence about themselves, eii = B ⇒ σii(ti) = ∅,
(b) agents do not reveal good evidence about others, eij = G ⇒ σij(ti) = ∅ for
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i ̸= j, and

(c) agents (almost) always reveal good evidence about themselves,

eii = G ⇒ σii(ti) = G, unless Ñi = N and eij = B, ∀j ∈ Ni.

Proof. (a) Fix some i ∈ N and suppose eii = B. Take m−i ∈ M−i(ti) such

that mjk = ∅ for all k and j ̸= i and message mi with mii = B. Then

r̂i(mi,m−i) = rci (mi,m−i) = 0, by Lemma 1 and the definition of a coarse

principal. Now consider message m′
i with m′

ij = ∅ for all j ∈ Ñi. Then

r̂i(m
′
i,m−i) ≥ 0 and rci (m

′
i,m−i) = 1/n > 0. Message m′

i is strictly better for

agent i than mi given m−i. Therefore σii(B|ti) > 0 fails robustness.

(b) Fix some i ∈ N . Suppose first that ωi = G and mij = G for some

j ∈ Ni. Let m−i be such that mkk ̸= ∅ for all k ̸= j and mkj = ∅ for

all k ∈ Ñj \ {i}. Further, mli = G for some l ∈ Ni. Then r̂i(mi,m−i) =

rci (mi,m−i) = 1/ |G(mi,m−i)|. Now consider message m′
i with m′

ij = ∅
and m′

ik = mik for all k ̸= j. Then r̂i(m
′
i,m−i) ≥ 1/ |G(mi,m−i)| and

rci (m
′
i,m−i) = 1/(|G(mi,m−i)| − 1). Agent i is strictly better off sending

message m′
i instead of mi given m−i. Thus, σij(G|ti) > 0 with i ̸= j cannot

occur if ωi = G in a robust sequential equilibrium with an ϵ-coarse principal.

Now suppose that ωi = B and mij = G for some j ∈ Ni. Consider m−i

such that mkl = ∅ for all k, l. Notice that m = (mi,m−i) occurs on the equi-

librium path if σij(G|ti) > 0. Since the argument above rules out agent i of

own-type ωi = G from sending such an mi, it must be that βi(mi,m−i) = 0.

Thus r̂i(mi,m−i) = rci (mi,m−i) = 0. Consider instead the message m′
i such

that m′
ij = ∅ for all j. Then r̂i(m

′
i,m−i) ≥ 0 and rci (m

′
i,m−i) > 0. Since mes-

sage m′
i is strictly better for agent i than mi given m−i, in a robust sequential

equilibrium with an ϵ-coarse principal, σij(G|ti) > 0 with i ̸= j cannot occur

if ωi = B.

(c) Fix some i ∈ N . Suppose it is not true that Ñi = N and eij = B, ∀j ∈ Ni.

Let eii = G. Take m−i ∈ M−i(ti) such that mkk ̸= ∅ for all k ̸= i, mkk = G

for some k ̸= i and mki = ∅ for all k ∈ Ni. Note that such m−i exists because

Ñi ̸= N or eij ̸= B for some j ∈ Ni, by assumption.
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Consider any message mi with mii = ∅. Then

r̂i(mi,m−i) ≤ 1/(|G(mi,m−i)|+ 1)

because r̂ randomizes uniformly over at least all agents about whom the prin-

cipal receives evidence G. Moreover, rci (mi,m−i) = 0.

Now consider message m′
i with m′

ii = G and m′
ij = mij for all j ̸= i. Then

r̂i(m
′
i,m−i) = 1/(|G(mi,m−i)| + 1) = rci (m

′
i,m−i) where the first equality

follows from m′
ii = G and mkk ̸= ∅ for all k ̸= i. Message m′

i is strictly better

for agent i than mi given m−i. Therefore for (σ, µ, r̂) to be a robust sequential

equilibrium with an ϵ-coarse principal, it follows that eii = G ⇒ σii(ti) = G.

It is easy to verify that the agents’ strategies in both the adversarial dis-

closure and no snitching equilibria satisfy the three properties in Proposition

4. The next result shows that both equilibria indeed satisfy the robustness

criteria.

Proposition 5. Adversarial disclosure and no snitching are both robust se-

quential equilibria with an ϵ-coarse principal.

Proof. Consider the adversarial disclosure profile. The argument used to es-

tablish Proposition 1 can be generalized to show that given r̂, no agent i

has an incentive to deviate from σi, no matter the messages sent by the

other agents. Suppose ωi = G. Then any message m′
i ∈ Mi(ti) where

m′
ii = ∅ if eii = G or m′

ij = ∅ if eij = B or m′
ij = G if eij = G implies

βi(m
′
i,m−i) ≤ βi(σi(ti),m−i) and βj(m

′
i,m−i) ≥ βj(σi(ti),m−i) for j ̸= i and

hence r̂i(m
′
i,m−i) ≤ r̂i(σi(ti),m−i) for any m−i ∈ M−i(ti). Suppose ωi = B.

Then any message m′
i ∈ Mi(ti) where m′

ii = B if eii = B or m′
ij = ∅ if

eij = B or m′
ij = G if eij = G implies βi(m

′
i,m−i) ≤ βi(σi(ti),m−i) and

βj(m
′
i,m−i) ≥ βj(σi(ti),m−i) for j ̸= i and hence r̂i(m

′
i,m−i) ≤ r̂i(σi(ti),m−i)

for any m−i ∈ M−i(ti). It is easy to verify that for any ti ∈ Ti and m′
i ∈ Mi(ti),

rci (m
′
i,m−i) ≤ rci (σi(ti),m−i) for any m−i ∈ M−i(ti). Therefore the adversarial

disclosure profile satisfies our robustness criteria.
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Now consider the no-snitching profile. Fix i ∈ N , ti ∈ Ti and some

m−i ∈ M−i(ti). Suppose mji = B for some j ∈ Ni. Then r̂i(σi(ti),m−i) =

rci (σi(ti),m−i) = r̂i(m
′
i,m−i) = rci (m

′
i,m−i) = 0 for any m′

i ∈ Mi(ti). Suppose

instead that mji = G for some j ∈ Ñi. Then r̂i(σi(ti),m−i) = rci (σi(ti),m−i) =

1/|G(σi(ti),m−i)|. Further, for any m′
i ∈ Mi(ti), both

r̂i(m
′
i,m−i) ≤ 1/|G(σi(ti),m−i)| and rci (m

′
i,m−i) ≤ 1/|G(σi(ti),m−i)|

must be true since the set of other agents proven good to the principal cannot

be shrunk by any feasible message from agent i.

Finally suppose i ∈ I(σi(ti),m−i). If G(σi(ti),m−i) ̸= ∅, then again

r̂i(σi(ti),m−i) = rci (σi(ti),m−i) = r̂i(m
′
i,m−i) = rci (m

′
i,m−i) = 0 for any m′

i ∈
Mi(ti). Suppose instead that G(σi(ti),m−i) = ∅. In this case r̂i(σi(ti),m−i) =

rci (σi(ti),m−i) = 1/|I(σi(ti),m−i)|. Agent i stands to gain here with the coarse

principal by revealing bad evidence, if he possessed it, about some neighbour of

his in the set I(σi(ti),m−i). Such a deviation would deliver rci (m
′
i,m−i) ≤ 1.

Any such deviation would also mean r̂i(m
′
i,m−i) = 0. So a maximum gain

of 1 − 1/|I(σi(ti),m−i)| which occurs with probability ϵ comes with a loss of

1/|I(σi(ti),m−i)| with probability 1−ϵ. For small enough ϵ, agent i is worse off

from such a deviation. This completes the argument for why the no snitching

profile satisfies our robustness criteria.

Proposition 4 and 5, taken together, deliver a useful characterization of all

robust sequential equilibria with an ϵ-coarse principal. Any such equilibrium

lies between the no snitching and adversarial disclosure equilibria in the fol-

lowing sense. Firstly, in equilibrium the evidence revealed by agents is never

less than that in the no snitching equilibrium, in that good evidence about

self is always revealed. Secondly, in equilibrium the revealed evidence never

exceeds that in the adversarial disclosure equilibrium, in that bad evidence

about self and good evidence about others are never revealed.
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6 Discussion

A central feature in theories of equilibrium discrimination is that different

groups behave differently in equilibrium. These disparate choices remain self

enforcing due to the beliefs of the principal (e.g., employer), but it is neverthe-

less this very difference in action that permits discrimination. For instance, in

Arrow (1973), black workers invest less in human capital than white workers.6

By contrast, all agents in the adversarial disclosure equilibrium follow the same

disclosure norm. This overt homogeneity in behaviour interacts with the het-

erogeneous network positions of agents to yield discrimination in equilibrium.

In this sense, our results better fit the notion of institutional discrimination, as

discussed in Small and Pager (2020). In the latter, institutional practices that

seem neutral end up discriminating based on some payoff irrelevant dimension.

An institutional description of our model and specifically the adversarial

disclosure equilibrium would include the principal’s award rule. Our assump-

tion of anonymity requires the award rule to solely depend on the principal’s

belief about an agent’s own-type. On the face of it, this is a neutral institu-

tional practice. Indeed, it rules out discrimination that may arise simply due

to the principal breaking ties in a way that favours some agent along a payoff-

irrelevant dimension.7 There are often a variety of legal constraints that rule

out such behaviour.8 However, one may ask whether non-anonymous award

rules could ameliorate the discrimination that arises in the more informative

adversarial disclosure equilibrium. For parameter values that favour the better

connected, the principal upon receiving good evidence about multiple agents

could award the prize with a higher probability to those with lower degree.

This is similar to a common recommendation by diversity, equity and inclusion

practices in hiring, wherein employers rank candidates in coarse categories and

6See also Coate and Loury (1993), and more recently Onuchic rO Ray (forthcoming). For
a survey on recent theoretical contributions to the economics of discrimination see Onuchic
(2022).

7Consider the modification of the no snitching equilibrium under which upon observing
good evidence about multiple agents the principal awards the prize to those with higher
degree with strictly higher probability.

8See, for instance, Canadian Human Rights Act, Part 1, 3(1).
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then break ties in the highest category in favour of marginalized groups.

We have strived to keep our model simple in order to describe our main

finding in a transparent manner. A particular feature is worth highlighting.

The competition we impose in our model is of an extreme nature, with all

agents competing for a single prize. While this does correspond to a number

economic settings of interest, it would be valuable to understand the implica-

tion of multiple prizes. We leave that for future work.
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Appendix

Proof for Lemma 2. The premise of maxk βk(m) > 0 implies that there exists

i ∈ N such that mji ̸= B for all j ∈ Ñi. If mji = G for some i, j, then

maxk βk(m) = 1 and the implication follows. So it only remains to show that

if there is no evidence about some agents and no good evidence at all, then

in either assessment the highest probability of being good assigned to some

agent is sufficiently high. This probability, maxk βk(m), in the no snitching

equilibrium is

γ(1− q)

γ(1− q) + (1− γ)(1− q)
≥ γ(1− q)n

γ(1− q) + (1− γ)(1− q)n

≥ vB
vG + vB

where the second inequality follows from Assumption 1. In the adversarial

disclosure equilibrium, we have

max
k

βk(m) = max
i

γ(1− q)

γ(1− q) + (1− γ)(1− q)di
≥ γ(1− q)

γ(1− q) + (1− γ)(1− q)
.

Proof for Lemma 4. For all type profiles t ∈ T such that both i and j win the

award with positive probability, this probability is identical given r̂. Likewise

for type profiles in which neither wins the award the probability of winning is

identical (zero). So it suffices to show that in the event of only one of i and

j being part of W (m) and maxk βk(m) > 0, the probability of receiving the

prize is the same for i and j.

Let T ij be the set of all t ∈ T such that maxk βk(m) > 0 and |{i, j} ∩
W (m)| = 1 where m = σ(t). Consider a one-to-one mapping ρ : N → N .

ρ(k) = k ∀k ̸∈ Ñi ∪ Ñj,

ρ(i) = j,

ρ(j) = i,
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ρ(k) ∈ Ni if k ∈ Nj,

ρ(k) = ρ−1(k) ∈ Nj if k ∈ Ni.

Such a mapping exists since di = dj. Next consider the mapping t̃ : T ij → T ij

where t̃(ω, e) = (ω̃, ẽ) such that

ω̃−ij = ω−ij

ẽkl = ekl ∀l ̸= i, j

ẽρ(k)j = eki

ẽρ(k)i = ekj.

Let T i and T j be the subsets of T ij in which i and j win the prize with

positive probability, respectively. Consider t ∈ T i. Under the transformation

t̃(t), the own-types of i and j are interchanged as is the evidence profile about

the two. All else remains the same. This implies that βi(m) = βj(m
′) and

βj(m) = βi(m
′) where m = σ(t) and m′ = σ(t̃). But notice that messages

about all agents k ̸= i, j remain unchanged between t and t̃, and so for such k,

βk(m) = βk(m
′). Therefore, it must be that t ∈ T i ⇒ t̃(t) ∈ T j. Likewise t ∈

T j ⇒ t̃(t) ∈ T i. We also have |W (σ(t))| = |W (σ(t̃(t)))| and Pr(t) = Pr(t̃(t)).

Finally, by construction t = t̃(t̃(t)), and so t̃ induces a one-to-one mapping

from T i to T j. Therefore we have,

∑
t∈T i

Pr(t)
1

|W (σ(t))|
=

∑
t∈T i

Pr(t̃(t))
1

|W (σ(t̃(t)))|
=

∑
t∈T j

Pr(t)
1

|W (σ(t))|
.

Proof for Lemma 5. In the event Ec, agent i wins the award with positive

probability if and only if he has good evidence about himself. Then too, he

shares it with equal odds with every other agent who provides good evidence.

The probability of winning this way in a winning group of size k + 1 is

[(1− γ) + γ(1− q)]n−k−1[γq]k+1

k + 1
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and there are
(
n−1
k

)
different k + 1 sized winning groups the agent could be

a part of. Therefore agent i’s probability of winning the award and Ec being

true , PEc

i , satisfies

PEc

i =
n−1∑
k=0

(
n− 1

k

)
[(1− γ) + γ(1− q)]n−k−1[γq]k+1

k + 1
,

which is independent of i.

Construction of beliefs and proof of consistency for Propo-

sition 1

For greater expositional ease in the rest of this section, we abuse notation in

the following way. We use σ(A|B) to denote the probability with which the

event A occurs conditional on the event B under the strategy profile σ. So for

instance σ(m|t) =
∏

i∈N σi(mi|t).

Adversarial Disclosure

Let Mσ = {m ∈ M |σ(m|t) > 0, t ∈ T}. Recall that M is the set of all feasible

message profiles. Denote the set of type profiles that can generate message

profile m as T (m) ≡ {(ω, e) ∈ T |mij ̸= ∅ ⇒ eij = ωj = mij}. Consider the

following fully mixed strategy profile σϵ. For all ti ∈ Ti and i ∈ N ,

σϵ(mij|ti) i = j, eij = G i = j, eij = B i ̸= j, eij = G i ̸= j, eij = B
mij = G 1− ϵ ϵ
mij = ∅ ϵ 1− ϵ 1− ϵ ϵ
mij = B ϵ 1− ϵ

Notice that Mσϵ
= M , in that all feasible messages are realized with posi-

tive probability. The resulting conditional belief function, derived using Bayes’
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rule, and defined for all m ∈ M is denoted by

µ(t|m,σϵ) =
σϵ(m|t)Pr(t)∑

t′∈T (m)

σϵ(m|t′)Pr(t′)
.

Next,

µi(ti|m,σϵ) =
∑

(ti,·)∈T (m)

µ(t|m,σϵ)

=
1∑

t′∈T (m)

σϵ(m|t′)Pr(t′)
·

∑
(ti,t′′−i)∈T (m)

σϵ(m|(ti, t′′−i))Pr(ti, t
′′
−i).

The resulting belief about player i’s own-type is

βϵ
i (m) =

∑
t∈T (m)|ωi=G

µi(ti|m,σϵ)

=

∑
t′∈T (m)|ω′

i=G

σϵ(m|t′)Pr(t′)∑
t′∈T (m)|ω′

i=G

σϵ(m|t′)Pr(t′) +
∑

t′∈T (m)|ω′
i=B

σϵ(m|t′)Pr(t′)
.

For any t ∈ T and i ∈ N , define bti and bt−i such that bti = (ωi, (eji)j∈Ñi
)

and (bti, b
t
−i) = t. Under the strategy σϵ, conditional on type profile t the

probability with which a message mij is sent is independent of any other

message. Further the prior probability of t can be decomposed as a product

of the prior probabilities of bti and bt−i. As a result,

σϵ(m|t)Pr(t) =
∏
j∈Ñi

σϵ(mji|t)
∏
l ̸=i

σϵ(mkl|t)Pr(t)

=
∏
j∈Ñi

σϵ(mji|bti)Pr(bti)
∏
l ̸=i

σϵ(mkl|bt−i)Pr(bt−i)

Next note that if (bti, b
t
−i), (b

t̃
i, b

t̃
−i) ∈ T (m), then (bti, b

t̃
−i), (b

t̃
i, b

t
−i) ∈ T (m). As
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a result, we get∑
t′∈T (m)|ω′

i=G

σϵ(m|t′)Pr(t′) =
∑

bti|t∈T (m),ωi=G

∏
j∈Ñi

σϵ(mji|bti)Pr(bti)·
∑

bt̃−i|t̃∈T (m),ωi=G

∏
l ̸=i

σϵ(mkl|bt̃−i)Pr(bt̃−i).

Further, for any t′, t′′ ∈ T (m), we have {bt−i|(bt
′
i , b

t
−i) ∈ T (m)} = {bt−i|(bt

′′
i , b

t
−i) ∈

T (m)}. Therefore we obtain

βϵ
i (m) =

∑
bti|t∈T (m),ωi=G

∏
j∈Ñi

σϵ(mji|bti)Pr(bti)∑
bti|t∈T (m),ωi=G

∏
j∈Ñi

σϵ(mji|bti)Pr(bti) +
∑

bti|t∈T (m)&ωi=B

∏
j∈Ñi

σϵ(mji|bti)Pr(bti)
.

Hence, for any m where mki = ∅ for all k we have

βϵ
i (m) =

γ[(1− q) + qϵ][(1− q) + q(1− ϵ)]di

γ[(1− q) + qϵ][(1− q) + q(1− ϵ)]di + (1− γ)[(1− q) + q(1− ϵ)][(1− q) + qϵ]di
.

No-snitching

Consider the following fully mixed strategy profile, σϵ. For all ti ∈ Ti and

i ∈ N ,

i ̸= j, eij = B
σϵ(mij|ti) i = j, eij = G i = j, eij = B i ̸= j, eij = G ωi = G ωi = B
mij = G 1− ϵ ϵ
mij = ∅ ϵ 1− ϵ 1− ϵ 1− ϵ2 1− ϵ
mij = B ϵ ϵ2 ϵ

Since the strategy profile is fully mixed we have Mσϵ
= M . Again, set the

conditional belief function derived using Bayes’ rule as

µ(t|m,σϵ) =
σϵ(m|t)Pr(t)∑

t′∈T (m)

σϵ(m|t′)Pr(t′)
.
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As shown earlier this leads to

βϵ
i (m) =

∑
t′∈T (m)|ω′

i=G

σϵ(m|t′)Pr(t′)∑
t′∈T (m)|ω′

i=G

σϵ(m|t′)Pr(t′) +
∑

t′∈T (m)|ω′
i=B

σϵ(m|t′)Pr(t′)
.

For a given i ∈ N , consider the following mapping t̃i : T → T , with t̃i(ω, e) =

(ω̃, ẽ) such that

ω̃−i = ω−i,

ẽjk = ejk, for all k ̸= i,

ẽji = B ⇔ eji = G,

ẽji = G ⇔ eji = B,

ω̃i = G ⇔ ωi = B,

ω̃i = B ⇔ ωi = G.

Effectively, given a type profile t, t̃i(t) corresponds to the type profile that

switches agent i’s own-type, but leaves all other own-type and evidence realiza-

tions (modulo i’s own-type) the same. It follows from the definition that t̃i is a

bijection. Let t̃i−eii
: T−eii → T−eii be defined as t̃i−eii

(t−eii) = (t̃i(t−eii , eii))−eii .

The function t̃i−eii
is also a bijection that is well defined since for any given t

the vector (t̃i(t))−eii does not depend on the realized value of eii. Let M i∅ =

{m ∈ M |mji = ∅,∀j ∈ Ñi}. For any m ∈ M i∅, t̃iand t̃i−eii
remain bijections on

T (m) and T−eii(m). Importantly, Pr(t−eii|ωi = G) = Pr(t̃i−eii
(t−eii)|ωi = B).

Since own-type realizations are independent and conditional on an own-

type realization, evidence realizations are independent too, the specification

of σϵ yields the following. For any m ∈ M i∅,∑
t∈T (m)|ωi=G

σϵ(m|t)Pr(t) =
∑

eii∈{∅,G}

σϵ(mii = ∅|eii)Pr(eii|ωi = G)

Pr(ωi = G)
∑

t−eii |t∈T (m),ωi=G

σϵ(m−ii|t−eii)Pr(t−eii |ωi = G).
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We then obtain

βϵ
i (m) =

γ[(1− q) + qϵ]Aϵ(m)

γ[(1− q) + qϵ]Aϵ(m) + (1− γ)(1− q + q(1− ϵ))Bϵ(m)
.

where

Aϵ(m) =
∑

t−eii |t∈T (m),ωi=G

σϵ(m−ii|t−eii)Pr(t−eii |ωi = G)

and

Bϵ(m) =
∑

t−eii |t∈T (m),ωi=G

σϵ(m−ii|t̃i−eii
(t−eii))Pr(t̃i−eii

(t−eii)|ωi = B).

Fix i ∈ N , m ∈ M i∅ and some t ∈ T (m) such that ωi = G. Given the

specification of σϵ, the following holds.

σϵ(mkl|t−eii) = σϵ(mkl|t̃i−eii
(t−eii)) ∀k, l ̸= i

σϵ(mkl|t−eii) = 1 ⇒ σϵ(mkl|t̃i−eii
(t−eii)) = 1

σϵ(mkl|t−eii) ∈ {1− ϵ2, 1− ϵ} ⇒ σϵ(mkl|t̃i−eii
(t−eii)) ∈ {1− ϵ2, 1− ϵ}

σϵ(mkl|t−eii) ∈ {ϵ2, ϵ} ⇒ σϵ(mkl|t̃i−eii
(t−eii)) ∈ {ϵ2, ϵ}

 for k = i, l ∈ Ni or l = i, k ∈ Ni

Therefore for all k, l ∈ N , limϵ→0 σ
ϵ(mkl|t−eii) = limϵ→0 σ

ϵ(mkl|t̃i−eii
(t−eii)).

As a result, for such an m ∈ M i∅ we obtain limϵ→0A
ϵ(m) = limϵ→0B

ϵ(m).

This common limit is a non-zero finite number if m is additionally such that

mkl ̸= B for all k, l ∈ N and mkl ̸= G for all k ̸= l. For all such m ∈ M i∅ we

get

lim
ϵ→0

βϵ
i (m) =

γ(1− q)

γ(1− q) + (1− γ)
.

Let M i∅∅ = {m ∈ M i∅|mkk ̸= B,mkl = ∅,∀k ̸= i and l ∈ Ñk} be the set of

messages in which the only non-empty messages, if any, are those from player

i about some neighbour of his, or agents, other than i, revealing good evidence

about their own selves. For any m ∈ M i∅∅, let N̂G
i (m) = {j ∈ Ni|mij = G}

and N̂B
i (m) = {j ∈ Ni|mij = B}. Let ei∗ = (eii, (eij)j∈N̂B

i ∪N̂G
i
). Then, for any
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such m ∈ M i∅∅ we obtain

∑
t∈T (m)|ωi=G

σϵ(m|t)Pr(t) =

 ∑
eii∈{∅,G}

σϵ(mii = ∅|eii)Pr(eii|ωi = G)

 ϵ|N̂
G
i (m)|ϵ2|N̂

B
i (m)|

Pr(ωi = G)
∑

t−eii |t∈T (m),ωi=G

σϵ(m−ei∗|t−eii)Pr(t−eii |ωi = G)

and

∑
t∈T (m)|ωi=B

σϵ(m|t)Pr(t) =

 ∑
eii∈{∅,B}

σϵ(mii = ∅|eii)Pr(eii|ωi = B)

 ϵ|N̂
G
i (m)|ϵ|N̂

B
i (m)|

Pr(ωi = B)
∑

t−eii |t∈T (m)ωi=G

σϵ(m−ei∗|t̃i−eii
(t−eii))Pr(t̃i−eii

(t−eii)|ωi = B).

Therefore

βϵ
i (m) =

ϵ|N̂
G
i (m)|ϵ2|N̂

B
i (m)|Cϵ(m)

ϵ|N̂
G
i (m)|ϵ2|N̂

B
i (m)|Cϵ(m) + ϵ|N̂

G
i (m)|ϵ|N̂

B
i (m)|Dϵ(m)

where

Cϵ(m) =
∑

eii∈{∅,G}

σϵ(mii = ∅|eii)Pr(eii|ωi = G)

Pr(ωi = G)
∑

t−eii |t∈T (m),ωi=G

σϵ(m−ei∗|t−eii)Pr(t−eii|ωi = G)

and

Dϵ(m) =
∑

eii∈{∅,B}

σϵ(mii = ∅|eii)Pr(eii|ωi = B)

Pr(ωi = B)
∑

t−eii |t∈T (m)ωi=G

σϵ(m−ei∗|t̃i−eii
(t−eii))Pr(t̃i−eii

(t−eii)|ωi = B).
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Since Cϵ(m) and Dϵ(m) are both bounded away from 0 we obtain

βϵ
i (m) =

ϵ|N̂
B
i (m)|Cϵ(m)

ϵ|N̂
B
i (m)|Cϵ(m) +Dϵ(m)

.

It follows that for all such m ∈ M i∅∅,

lim
ϵ→0

βϵ
i (m) = 0.
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