THE MACROECONOMIC CONSEQUENCES OF EXCHANGE RATE DEPRECIATIONS

Masao Fukui¹ Emi Nakamura² Jón Steinsson²

¹Boston University

²UC Berkeley

April 2023

EXCHANGE RATES AND MACROECONOMY

- How does an exchange rate depreciation affect the economy?
- Surprisingly: It is not so clear!
 - Simple textbook logic suggests expansionary effect (Dornbusch 80, Obstfeld-Rogoff 96)
 - Long literature on contractionary depreciations
 (Diaz Alejandro 63, Cooper 69, Krugman-Taylor 78, Auclert et al. 21;
 Krugman 99, Aghion-Bacchetta-Banerjee 01)
 - Long literature on exchange rate disconnect (Meese-Rogoff 83, Baxter-Stockman 89, Flood-Rose 95, Obstfeld-Rogoff 00, Devereux-Engel 02, Itskhoki-Mukhin 21)
- Precious little consensus

THE CHALLENGE

- Exchange rates are endogenous
- For example: Bad domestic shock
 - Currency depreciates and economy does badly
 - Not evidence of contractionary effect of depreciation
 - Direct effect of the shock is a confound
- Hard to measure causal effect of exchange rate movements
- Is it even possible?

OUR APPROACH

- Compare USD pegs versus floats when USD exchange rate changes
- Example:
 - Egypt pegs to USD, South Africa floats versus USD
 - When USD depreciates, EGP depreciates versus ZAR
 - How does this event affect other macro outcomes in Egypt versus South Africa?
- "Regime-induced" exchange rate fluctuations
 - Not all the variation in EGP and ZAR
 - Component of exchange rate fluctuations that is caused by earlier choice of exchange rate regime

IDENTIFICATION

- Assumption: Pegs and floats are not differentially exposed to other shocks that are correlated with the USD
- Time fixed effects absorb direct effect of shocks driving USD (and indirect effects through other channels than exchange rate)
- Exclude exchange rate fluctuations coming from domestic shocks
 - We consider USD vs. 24 "advanced economies" excluded from analysis
- What is left? "Regime-induce" effect of foreign exchange rate change
- Most obvious concern goes against our findings

MAIN EMPIRICAL RESULTS

- Depreciation strongly expansionary:
 - 10% depreciation \rightarrow 5.5% increase in GDP (over 5 years)
- Net exports fall
 - Rules out export-led boom from expenditure switching
- Nominal interest rates rise
 - Rules out monetary policy induced boom
- Inconsistent with a large class of models

FINANCIALLY DRIVEN EXCHANGE RATES

- Show that a financially driven exchange rate model (FDX) can match our empirical results
 - UIP shocks make currency "cheap"
 - ullet Household/firms borrow from abroad o boom
- Also consistent with unconditional exchange rate disconnect,
 Backus-Smith fact, Mussa fact
 - Need two financial shocks to exchange rate
 - UIP shocks generate $Cor(E_t, Y_t) > 0$
 - Capital flight shocks generate $Cor(E_t, Y_t) < 0$
 - Pegging eliminates UIP shocks but effects of capital flight shocks worse

Empirical Setup

U.S. DOLLAR NOMINAL EFFECTIVE EXCHANGE RATE

- Annual data for period 1973-2019
- BIS Trade-weighted USD exchange rate relative to 24 countries:
 - Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, United Kingdom
- We exclude these countries from our pegger and floater samples

USD Nominal Effective Exchange Rate

High values are a more depreciated USD

EXCHANGE RATE REGIMES

FX classification based on Ilzetzki-Reinhart-Rogoff 19

- Pegs: Fine classification codes 1-8 with USD anchor
- Floats: Fine classification code 13 or with anchor other than USD
- This choice is based on comovement with USD:

$$\Delta e_{i,t} = \alpha_{r(i),t} + \sum_{k} \gamma_k \mathbb{I}_{i,t}(k) \times \Delta e_{USD,t} + \Gamma_h' \mathbf{X}_{i,t-1} + \epsilon_{i,t},$$

Many "floats" are countries that peg to euro

ARE PEGS REALLY MORE EXPOSED?

EXCHANGE RATE REGIMES

How Do Pegs Differ from Floats?

Variable	No control	Time FE	Region x Time FE
Log Population	-0.02	-0.09	0.74*
	(0.31)	(0.31)	(0.39)
Log Real GDP Per Capita	0.36	0.32	-0.17
	(0.22)	(0.22)	(0.23)
Export to GDP	-0.01	-0.01	0.00
	(0.04)	(0.04)	(0.04)
Import to GDP	-0.03	-0.03	-0.03
	(0.04)	(0.04)	(0.04)
Export Share to the US	0.04***	0.04***	-0.00
	(0.01)	(0.01)	(0.01)
Import Share to the US	0.05***	0.05***	0.00
	(0.01)	(0.01)	(0.00)
NFA to GDP	0.05	0.06	-0.10
	(0.18)	(0.19)	(0.26)
Inflation Rate (p.p.)	-0.89	-0.65	2.21***
	(1.51)	(1.41)	(0.69)
TBill Rate (p.p.)	1.01	0.89	2.86***
,	(0.84)	(0.90)	(0.96)
Commodity Exports to GDP	0.05*	0.06**	0.04
	(0.03)	(0.03)	(0.03)
Commodity Imports to GDP	0.01	0.01	-0.01
, ,	(0.02)	(0.02)	(0.02)

EMPIRICAL SPECIFICATION

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + \alpha_{r(i),t,h} + \beta_h \text{Peg}_{i,t} \times \Delta e_{USD,t} + \Gamma_h' \mathbf{X}_{i,t-1} + \gamma_h \text{Peg}_{i,t} + \epsilon_{i,t,h}$$

- Benchmark controls:
 - Lagged growth of y_{i,t}, real GDP, and treatment variable
- Standard errors are two-way clustered by country and time
- We drop top and bottom 0.5% of each outcome variable
- Drop year of and year after country switches exchange rate regime
- Regions: Europe, Americas, Africa, Asia-Oceania

DATA

Variable	Source	Observations	Countries
Nominal effective exchange rate	Darvas (2021)	5012	149
Real effective exchange rate	Darvas (2021)	4905	149
Exchange rate to USD	IFS	4997	150
GDP	WDI	4975	158
Consumption	WDI	3244	137
Investment	WDI	3220	136
Export	WDI	3319	142
Import	WDI	3319	142
Net Exports	Constructed	3319	142
Nominal Interest Rate	IFS	2409	98
CPI	IFS	4462	153
Ex-post Real Interest Rate	Constructed	2139	92
Export Unit Value	UNCTAD	3831	158
Import Unit Value	UNCTAD	3697	158
Terms of Trade	Constructed	3697	158
Manufacturing GDP	WDI	3773	146
Service GDP	WDI	3899	148
Agriculture GDP	WDI	4184	151
Mining, Construction, Energy GDP	WDI	3643	144

Empirical Results

DYNAMIC RESPONSE TO DEPRECIATION: BENCHMARK

NET EXPORTS AND NOMINAL INTEREST RATE

Investment, Exports, Imports

► Terms of Trade, CPI, Real Rate

DYNAMIC RESPONSE BY SECTOR

PLAZA ACCORD

- January 1985: James Baker becomes Treasury Secretary
- September 22, 1985: G5 jointly agreement to depreciate USD

ROBUSTNESS

- Time FE rather than region x time FE → Result
- No controls (except FE) → Result Two lags → Result
- Drop more outliers
- Classify 9-12 as Floats
- Classify 9-12 as Pegs
- GDP-weighted USD exchange rate ▶Result
- Control for interaction between peg and:
 - US GDP, inflation, and T-Bill rate
- Include 24 "advanced" economies

A Financially Driven Exchange Rate Model

THEORETICAL CHALLENGE

- How does an exchange rate depreciation stimulate the economy?
- Expenditure switching:
 - Home goods cheaper / foreign goods more expensive
 - Net exports should rise
 - In our results: net exports fall
- Monetary expansion:
 - Looser monetary policy decreciates the exchange rate and boosts output
 - Nominal interest rate should fall
 - In our results: nominal interest does not fall
- So, what is going on?

FINANCIALLY DRIVEN EXCHANGE RATES

- We propose a financially driven exchange rate (FDX) model to match our empirical results
- Builds on Itskhoki and Muhkin (2021)
- Two important additions:
 - Households and firms can borrow abroad subject to financial frictions
 - Two types of financial shocks
 - UIP shocks
 - 2. Capital flight (and flight to safety) shocks
- Having two shocks is important to match exchange rate disconnect,
 Backus-Smith fact, and Mussa fact.

STANDARD PARTS OF THE MODEL

- Three-region New Keynesian model
 - · Regions: US, Pegs, Floats
- Households with habit formation preferences
- Unions set sticky wages as in Erceg-Henderson-Levin 00 ► ■
- Firms with investment adjustment costs and Calvo-type sticky prices.

 Set prices in local currency (LCP) Firms

INTERNATIONAL FINANCIAL FRICTIONS

- No deep-pocketed investors that fully eliminate return differentials across countries
- Noise traders cause exogenous fluctuations in demand for curreny j
- International bond traders, households, and firms have limited capacity to arbitrage return differentials
- Noise traders cause UIP deviations (UIP shock)
- Later we will introduce a second financial shock (capital flight shock)

HOUSEHOLD AND FIRM PORTFOLIO CHOICE

- Households invest in domestic equity/bonds and foreign bonds
- Firms issue domestic equity/bonds and foreign bonds
- Real return on domestic equity/bonds is r_{it+1}
- Real return on foreign bonds is r_{ijt+1}

$$(1 + r_{ijt+1}) = (1 + r_{jt+1}) \frac{Q_{jit+1}}{Q_{jit}}$$

Importantly, in our model:

$$\mathbb{E}_t(1+r_{it+1})\neq\mathbb{E}_t(1+r_{ijt+1})$$

due to financial frictions.

HOUSEHOLD PORTFOLIO CHOICE

 Households seek to maximize the return on their portfolio net of adjustment costs:

$$\max_{\{s_{jit}^h\}} \mathbb{E}_t \left[\left(1 - \int_0^1 s_{ijt}^h dj \right) (1 + r_{it+1}) + \int_0^1 \left(s_{ijt}^h (1 + r_{ijt+1}) - \Phi_{ij}^h (s_{ijt}^h) \right) dj \right]$$

- s_{ijt}^h is portfolio share in country j bonds
- Adjustment cost:

$$\Phi^h_{ij}(s_{ijt}) = rac{\Gamma^h}{2ar{s}_{ij}}(s^h_{ijt} - ar{s}_{ij})^2$$

- \bar{s}_{ij} is steady state portfolio share
- Indeterminate to first order. We treat as free parameter and calibrate.

HOUSEHOLD PORTFOLIO CHOICE

Solution of portfolio problem yields

$$\mathbb{E}_{t}(1+r_{ijt+1})-\mathbb{E}_{t}(1+r_{it+1})=\frac{\Gamma^{h}}{\bar{s}_{ij}}(s_{ijt}^{h}-\bar{s}_{ij})$$

- ullet Households increase s_{ijt}^h when returns are high
- This trading is limited by adjustment costs
- Severity of adjustment costs governed by Γ^h
- Return differential remains in equilibrium

FIRM FUNDING CHOICE

 Firms seek to minimize their funding costs net of adjustment costs:

$$\min_{\{s_{ijt}^f\}} \mathbb{E}_t \left[\left(1 - \int_0^1 s_{ijt}^f dj \right) (1 + r_{it+1}) + \int_0^1 \left(s_{ijt}^f (1 + r_{ijt+1}) - \Phi_{ij}^f (s_{ijt}^f) \right) dj \right]$$

- s_{iit}^f is funding share in country j bonds
- Adjustment cost:

$$\Phi_{ij}^f(s_{ijt}) = rac{\Gamma^f}{2ar{s}_{ij}}(s_{ijt}^f - ar{s}_{ij})^2$$

- \bar{s}_{ii} is steady state funding share
- We assume country net foreign position is zero in steady state (firm liabilities equal household assets in steady state)

FIRM FUNDING CHOICE

Solution of funding problem yields

$$\mathbb{E}_t(1+r_{ijt+1})-\mathbb{E}_t(1+r_{it+1})=-\frac{\Gamma^f}{\bar{s}_{ij}}(s^f_{ijt}-\bar{s}_{ij})$$

- ullet Firms increase s_{ijt}^f when returns are low (cheap foreign financing)
- This trading is limited by adjustment costs
- Severity of adjustment costs governed by Γ^f
- Return differential remains in equilibrium

Noise Traders

- Noise traders sell US bonds and buy country j bonds
- Position in country j bonds is $n^{\psi}\psi_{jt}$

$$\psi_{jt} = \rho^{\psi}\psi_{jt-1} + \epsilon^{\psi}_{jt}$$

• ϵ_{jt}^{ψ} is the country j "UIP shock"

INTERNATIONAL BOND ARBITRAGEURS

- International bond arbitrageurs engage in carry trade
- Maximize CARA utility over real returns:

$$\max_{B_{Ujt}^{I}} - \mathbb{E}_{t} \frac{1}{\gamma} \exp \left(-\gamma \left[\frac{\tilde{R}_{Ujt+1}}{P_{Ut+1}} B_{Ujt}^{I} \right] \right)$$

- B_{Uit}^{I} is quantity invested (long currency j, short USD)
- Per dollar nominal return:

$$\tilde{R}_{Ujt+1} \equiv (1+i_{jt}) \frac{\mathcal{E}_{jUt+1}}{\mathcal{E}_{jUt}} - (1+i_{Ut})$$

INTERNATIONAL BOND ARBITRAGEURS

Solution to international bond arbitrageurs' problem:

$$B_{Ujt}^I = \frac{1}{\Gamma^B}[\ln(1+i_{jt}) - \ln(1+i_{Ut}) + \mathbb{E}_t\Delta \ln \mathcal{E}_{jUt+1}]$$

where
$$\Gamma^B \equiv \gamma \text{var}(\Delta \ln \mathcal{E}_{iU})$$

- Carry trade position proportional to expected return
- Carry trade position limited by risk aversion and risk (Γ^B)

UIP DEVIATIONS

- Noise trader asset demand creates UIP deviations
- Households, firms, and international bond arbitrageurs trade against the noise traders
- Limited arbitrage capacity implies UIP deviations not eliminated

UIP DEVIATIONS

• Adding up demand for currency $j \in F$ bonds yields (to 1st order)

$$(1+\textit{i}_{\textit{j},\textit{t}}) = \mathbb{E}_{\textit{t}}(1+\textit{i}_{\textit{U},\textit{t}}) \frac{\mathcal{E}_{\textit{jU},\textit{t}+1}}{\mathcal{E}_{\textit{jU},\textit{t}}} \exp(\Omega(\{\textit{NFA}_{\textit{kt}}\}_{\textit{k}},\psi_{\textit{jt}}))$$

where the UIP deviation is

$$\Omega(\{\textit{NFA}_{\textit{kt}}\}_{\textit{k}},\psi_{\textit{jt}}) \equiv -\Gamma\left[\left(1-\int \bar{\textbf{s}}_{\textit{ji}}\textit{di}\right)\textit{NFA}_{\textit{jt}} + \int \bar{\textbf{s}}_{\textit{ij}}\textit{NFA}_{\textit{it}}\textit{di} + \textit{n}^{\psi}\psi_{\textit{jt}}\right]$$

and

$$\Gamma \equiv 1/\left(\frac{1}{\Gamma^B} + \left[\frac{1}{\Gamma^h} + \frac{1}{\Gamma^f}\right] \frac{\bar{a}}{\beta} \int_{i \in \{P,U\}} (\bar{s}_{ji} + \bar{s}_{ij}) di \right)$$

UIP FOR PEGGERS

In contrast to floaters, UIP holds for peggers

$$(1+i_{jt}) = \mathbb{E}_t(1+i_{Ut}) \frac{\mathcal{E}_{jUt+1}}{\mathcal{E}_{jUt}} \quad \text{for } j \in P$$

- There is no exchange rate risk
- International bond arbitrageur willing to take large positions to offset noise traders
- Central bank also willing to take large positions (Peg assumed to be perfectly credible)

CALIBRATION

- Most parameters externally calibrated to standard values
- Regions sizes: |U| = 0.3, |F| = 0.5, |P| = 0.2
- Trade elasticity: $\eta = 1.5$
- Gross foreign asset positions: $\bar{s} = 0.52$ (Benetrix, Lane, Shambough 15)
- Choose $n^{\psi},$ $\Gamma,$ $\mathrm{var}(\epsilon^{\psi}_{it})$ so that effect of NFA on UIP deviations is small
- Choose slopes of price and wage Phillips curves $(\kappa_p \text{ and } \kappa_w)$ and habit parameter (h) to best fit our empirical responses

Regime-Driven Depreciations: Model vs. Data

RESPONSE TO A US DOLLAR UIP SHOCK

Comparison to Itskhoki-Muhkin 21 ($\bar{s} = 0$)

TABLE: Alternative Shocks Driving US Dollar

	Impact	Response	5Y Average Response		
	e	i	e	i	
Data	0.74	0.07	0.70	0.03	
Model					
US UIP Shock	0.74	0.04	0.65	0.05	
US Monetary Shock	0.74	-0.41	0.27	-0.14	
US Technology Shock	0.74	-0.23	0.19	-0.27	

ROBUSTNESS

- Large nominal rigidity necessary for fitting IRF
- Other pricing regimes (PCP and DCP) cannot fit NX and ToT
- Extension of the model to tradable and non-tradable sector
 - ⇒ bulk of GDP response from non-tradable (consistent with data) ► IF
- Results robust to introducing hand-to-mouth households

Exchange Rate Disconnect and Mussa Facts

CONDITIONAL VS. UNCONDITIONAL MOMENTS

Our model matches large conditional responses we estimate:

ullet 10% regime-induced depreciation o 5.5% increase in GDP

Does this mean it is inconsistent with disconnect / Mussa facts?

- Exchange rates are super volatile and barely correlated with other real variables (Exchange rate disconnect)
- Breakdown of Bretton Woods saw large increase in RER volatility, but scant effects on other real variables

CONDITIONAL VS. UNCONDITIONAL MOMENTS

Not necessarily:

- Multiple shocks drive exchange rate
- Regime-induced depreciations only a subset of shocks

Second shock: "capital flight" shock

- UIP shock: Noise traders spooked about currency
 (UIP shock ⇒ depreciation ⇒ boom)
- Capital flight shock: Everyone spooked about currency (Capital flight shock ⇒ depreciation & recession)

CAPITAL FLIGHT SHOCK

- Households and firms trade foreign bonds through banks
- Banks face stochastic borrowing constraints (Bianchi-Lorenzoni 21)
- Banks solve

$$\max_{b_{ijt}} (1 + r_{ijt+1}) b_{ijt} - (1 + r_{jt+1}) \frac{Q_{jit+1}}{Q_{jit}} b_{ijt}$$

subject to $b_{ijt} \leq \bar{b}_{it}$

- Here:
 - r_{ijt+1} is rate bank lends at domestically in currency j
 - $(1 + r_{it+1})Q_{iit+1}/Q_{iit}$ is rate it finances itself at
 - b_{iit} is net issuance of foreign currency bonds j in country i

CAPITAL FLIGHT SHOCK

Solution to bank's problem:

$$(1 + r_{ijt+1}) = (1 + r_{jt}) \frac{Q_{jit+1}}{Q_{jit}} (1 + \zeta_{it})$$

where ζ_{it} is the Lagrange multiplier on the bank's borrowing constraint

- ζ_{it} acts as an intermediation wedge
- We assume that:

$$\zeta_{it} = \rho^{\zeta} \zeta_{it-1} + \epsilon_{it}^{\zeta}$$

and call $\{\epsilon_{it}^{\zeta}\}$ a capital flight shock

UIP DEVIATIONS WITH CAPITAL FLIGHT SHOCKS

• Adding up demand for currency $j \in F$ bonds yields (to 1st order)

$$(\mathbf{1}+i_{j,t}) = \mathbb{E}_t(\mathbf{1}+i_{U,t}) \frac{\mathcal{E}_{jU,t+1}}{\mathcal{E}_{jU,t}} \exp(\Omega(\{\textit{NFA}_{kt}\}_k, \psi_{jt}, \{\zeta_{kt}\}_k))$$

where the UIP deviation is

$$\Omegaig(\{ extit{NFA}_{kt}\}_k,\psi_{jt},\{\zeta_{kt}\}_kig) \equiv -\Gamma \Big[ig(1-\int ar{\mathbf{s}}_{ji} diig) \, extit{NFA}_{jt} + \int ar{\mathbf{s}}_{ij} extit{NFA}_{it} di \\ + n^\psi \psi_{jt} + n^\zeta \, ig(-\int ar{\mathbf{s}}_{ji} di\zeta_{jt} + \int ar{\mathbf{s}}_{ij}\zeta_{it} diig)\Big]$$

 But capital flight shock also affects funding costs of households and firms directly (last slide)

RESPONSE TO UIP VS. CAPITAL FLIGHT SHOCKS

TWO FINANCIAL SHOCKS MODEL

- Consider case with both UIP and capital flight shocks
- Calibrate volatility of shocks to hit volatility of NER and GDP
- Calibrate n^ζ so as to match corr(ΔRER, ΔGDP)
 - n^{ζ} governs degree to which capital flight shocks affects UIP condition
 - Capital flight shock also affects funding rates of households and firms directly

EXCHANGE RATE DISCONNECT

	Data	Model					
		(1)	(2)	(3)	(4)	(5)	(6)
		(ψ,ζ)	(ψ, A)	ψ only	ζ only	A only	<i>m</i> only
A. Volatility							
$std(\Delta NER)$	0.114	0.114	0.114	0.169	0.082	0.021	0.158
$std(\Delta RER)$	0.091	0.111	0.110	0.163	0.082	0.021	0.157
$std(\Delta GDP)$	0.037	0.037	0.037	0.037	0.037	0.037	0.037
$std(\Delta C)$	0.042	0.039	0.022	0.029	0.042	0.014	0.017
$std(\Delta NX)$	0.032	0.021	0.019	0.014	0.024	0.022	0.006
3. Correlation							
$corr(\Delta RER, \Delta NER)$	0.712	0.992	0.987	0.989	0.996	0.868	1.000
$corr(\Delta RER, \Delta GDP)$	-0.068	-0.068	0.490	0.603	-0.603	0.882	0.689
$corr(\Delta RER, \Delta C)$	-0.137	-0.134	0.535	0.567	-0.544	0.597	0.676
$corr(\Delta RER, \Delta NX)$	0.213	0.126	-0.165	-0.589	0.481	0.955	-0.670

MUSSA FACTS

	(ψ, ζ)		ψ only		ζ only		(ψ, A)	
	Float	Peg	Float	Peg	Float	Peg	Float	Peg
std(∆ <i>NER</i>)	0.114	0.000	0.090	0.000	0.070	0.000	0.114	0.000
$std(\Delta RER)$	0.111	0.005	0.087	0.000	0.069	0.005	0.110	0.005
$std(\Delta GDP)$	0.037	0.053	0.020	0.000	0.031	0.053	0.037	0.020
$std(\Delta C)$	0.039	0.045	0.015	0.000	0.035	0.045	0.022	0.010
$std(\Delta NX)$	0.021	0.026	0.007	0.000	0.020	0.026	0.019	0.018

Pegging does two things:

- Eliminates UIP shocks → less volatility
- ullet No MP stabilization after capital flight shocks o more volatility

CONCLUSION

- Use "regime-induced" exchange rate variation to identify the causal effect of an exchange rate depreciation
- 10% depreciation \rightarrow 5.5% increase in GDP (over 5 years)
 - Net exports fall (not export led boom)
 - Interest rates rise (not MP led boom)
- Financially driven exchange rate (FDX) model can explain findings
- Also consistent with exchange rate disconnect / Mussa facts

Appendix

Fine	Coarse	
Code	Code	Description
1	1	No separate legal tender or currency union
2	1	Pre announced peg or currency board
3	1	Pre announced horizontal band that is narrower than or equal to $\pm 2\%$
4	1	De facto Peg
5	2	Pre announced crawling peg;
		de facto moving band narrower than or equal to $\pm 1\%$
6	2	Pre announced crawling band that is narrower than or equal to $\pm 2\%$
		or de facto horizontal band that is narrower than or equal to $\pm 2\%$
7	2	De facto crawling peg
8	2	De facto crawling band that is narrower than or equal to $\pm 2\%$
9	3	Pre announced crawling band that is wider than or equal to $\pm 2\%$
10	3	De facto crawling band that is narrower than or equal to $\pm 5\%$
11	3	Moving band that is narrower than or equal to $\pm 2\%$
12	3	De facto moving band $\pm 5\%$ / Managed floating
13	4	Freely floating
13.1		Other anchor and course classification 1 to that anchor
13.2		Other anchor and course classification 2 to that anchor
13.3		Other anchor and course classification 3 to that anchor

EXCHANGE RATE REGIMES

- Coarse classification: 6 categories
 - 1) Peg 2) Narrow band
 - 3) Broad band / managed float 4) Freely floating
 - 5) Freely falling 6) Dual market / missing data

(We drop freely falling and dual market / missing data)

Assign anchor currency. Mostly USD. But also EUR/GEM/FFR etc.

EXCHANGE RATE REGIMES BY REGION

DYNAMIC RESPONSE TO DEPRECIATION: NO CONTROLS

DYNAMIC RESPONSE TO DEVALUATION: TWO LAGS

DYNAMIC RESPONSE OF THE EXCHANGE RATE

INVESTMENT AND NET EXPORTS

DYNAMIC RESPONSE TO DEPRECIATION

HETEROGENEITY BY CA OPENNESS

ROBUSTNESS: TIME FE

ROBUSTNESS: NO CONTROLS (EXCEPT FOR FE)

ROBUSTNESS: TWO LAGS

ROBUSTNESS: DROP TOP AND BOTTOM 1%

CLASSIFY 9-12 AS FLOATS

CLASSIFY 9-12 AS PEGS

GDP-WEIGHTED USD EXCHANGE RATE

CONTROL PEG X US GDP, INFLATION, T-BILL

CONTROL PEG X COMMODITY PRICE INDEX CHANGE

NON-MISSING OBS. FOR ALL VARIABLES

INCLUDE 24 "ADVANCED" ECONOMIES

Households

Households maximize

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[u(C_{it} - hC_{it-1}) - \chi(n_{it}) \right]$$

where

$$u(C_{it} - hC_{it-1}) = \frac{(C_{it} - hC_{it-1})^{1-\sigma}}{1-\sigma} \qquad \chi(n_{it}) = \frac{n_{it}^{1+\nu}}{1+\nu}$$

and

$$C_{it} = \left((1-\alpha)^{1/\eta} (c_{iit})^{\frac{\eta-1}{\eta}} + \alpha^{1/\eta} \int_0^1 (c_{jit})^{\frac{\eta-1}{\eta}} dj \right)^{\frac{\eta}{\eta-1}},$$

and c_{jit} is a CES basket with elasticity of substitution $\epsilon_p > 1$

LABOR UNIONS AND STICKY WAGES

- Households supply labor through a continuum of unions which differentiate n_{it} into specialized types $N_{it}(\ell)$
- These enter firm production function through CES basket

$$N_{it} = \left(\int_0^1 (N_{it}(\ell))^{\frac{\epsilon_W - 1}{\epsilon_W}} d\ell\right)^{\frac{\epsilon_W}{\epsilon_W - 1}}$$

Firm cost minimization yields

$$\textit{N}_{\textit{it}}(\ell) = \left(\frac{\textit{W}_{\textit{it}}(\ell)}{\textit{W}_{\textit{it}}}\right)^{-\varepsilon_{\textit{w}}} \textit{N}_{\textit{it}}, \quad \text{where} \quad \textit{W}_{\textit{it}} = \left(\int_{0}^{1} \textit{W}_{\textit{it}}(\ell)^{1-\varepsilon_{\textit{w}}} d\ell\right)^{1/(1-\varepsilon_{\textit{w}})}$$

• Labor unions choose wage $W_{it}(\ell)$ to maximize household utility. Can reoptimize wage with probability $1 - \delta_W$.

FIRMS 1

- Two types of firms: production and price-setting
- Production firms produce country-specific good and sell it in a competitive country-specific wholesale market at price p_{it}^{mc}
- Production function:

$$Y_{it} = A_{it} (K_{it}^{\varkappa} N_{it}^{1-\varkappa})^{1-\omega} X_{it}^{\omega},$$

Productivity:

$$\ln A_{it} = \rho^A \ln A_{it-1} + \epsilon_{it}^A$$

Capital:

$$K_{it+1} = K_{it}(1 - \delta_k) + I_{it}$$

• Iit and Xit are same basket as Cit

FIRMS 2

 Production firms own a diversified portfolio of price-setting firms and face investment adjustment costs

$$S(I_{it}/I_{it-1}) = \frac{\phi_I}{2}(I_{it}/I_{it-1} - 1)^2$$

They maximize the value of their real earnings:

$$D_{it} = \frac{1}{P_{it}} \left[p_{it}^{mc} Y_{it} - P_{it} I_{it} \left(1 + S \left(\frac{I_{it}}{I_{it-1}} \right) \right) - W_{it} N_{it} - P_{it} X_{it} + \Pi_{it}^{p} \right],$$

FIRMS 3

- Price-setting firms purchase local goods at price $p_{it}^{mc}(1-\tau_i^p)$
- They differentiate them and sell their brand/variety as a monopolist
- They sell both domestically and abroad
- They price in local currency (LCP)
- ullet They reoptimize prices with probability 1 $-\delta_{
 m p}$

◆ Back

MONETARY POLICY

Central banks in US and F follow an interest rate rule:

$$\ln(1+i_{jt})=\ln\bar{R}+\rho^m\ln(1+i_{jt-1})+(1-\rho^m)\phi_\pi\pi_{jt}+\epsilon_{jt}^m$$
 for $j\in\{F,U\}$

Central bank in P fix nominal exchange rate to US dollar:

$$\mathcal{E}_{jUt} = \bar{\mathcal{E}}_{jU}$$

for
$$j \in P$$

CALIBRATION

BACK

Parameter	Description	Value	Notes & Targets
	Discount factor	0.96	Annual interest rate 4%
β			
$1/\sigma$	EIS	1	Standard
$1/\nu$	Frisch elasticity	0.5	Standard
ω	Intermediate inputs share	0.5	Itskhoki-Mukhin (2021)
α	Openness	0.2	Imports-to-GDP ratio 40%
×	Capital share in value-added	0.43	Investment-to-GDP ratio 22%
δ	Capital depreciation rate	0.04	Penn World Table 10.0
ϕ_I	Investment adjustment cost	2.5	Christiano et al. (2005)
ϕ_{π}	Taylor coefficient	1.5	Standard
ρ_{m}	Monetary policy inertia	0.43	Smets-Wouters (2007)
η	Trade elasticity	1.5	Standard
Š	Foreign currency assets & liabilities	0.52	Benetrix et al. (2015)
ρ	Shock persistence	0.89	Itskhoki-Mukhin (2021)
$\{\theta_{ij}^k\}$	Pricing regime	LCP	Itskhoki-Mukhin (2021)
Γ	Bond demand inverse elasticity	0.001	Itskhoki-Mukhin (2021)
Estimated Parameters			Standard error
κρ	Price Phillips curve slope	0.024	(0.006)
κ _w	Wage Phillips curve slope	0.010	(0.003)
h	Habit	0.819	(0.039)

RESPONSE TO US DOLAR UIP SHOCK

HALF NOMINAL RIGIDITY

DCP AND PCP

TRADABLE AND NON-TRADABLE SECTORS

HAND-TO-MOUTH AGENTS

CORRELATION OF RER AND NET EXPORTS

RER AND EXPORTS IMPORTS

