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Abstract

This paper investigates the identification and estimation of social inter-
actions with endogenous group formation. We characterize group formation
by a two-sided many-to-one matching model, where individuals choose among
groups according to their preferences, and a group ranks individuals based on
their qualifications and admits those with the highest qualifications until the
capacity is reached. Following Azevedo and Leshno (2016), we show that an
equilibrium in a finite market converges to a limit as the number of individuals
in the market grows large. Based on this limiting approximation, we derive
the selection bias as a group-specific nonparametric function of the group for-
mation indices. Assuming the unobservables are exchangeable across groups,
the peer effects can be identified by controlling for the selection bias as in a
sample selection model. The excluded variables in group formation also provide
instruments that can help resolve the reflection problem (Manski, 1993). We
propose a multi-stage distribution-free semiparametric estimator based on our
constructive identification results. The proposed estimator is

√
n consistent

and asymptotically normal and performs well in simulations.
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1 Introduction

Social interaction models are useful for investigating the interdependence of individ-
ual outcomes in a wide range of contexts such as educational attainment, teenage
smoking, and criminal activity. A salient feature of social interactions is that they
often take place among individuals who belong to a certain social or economic group.
For example, a student tends to interact with other students in her school or college
(e.g., Kremer et al., 2009; Argys and Rees, 2008; Carrell et al., 2008; Gaviria and
Raphael, 2001; Lavy and Schlosser, 2011; Sacerdote, 2011; Zimmerman, 2003). A
resident tends to interact with other residents in the same neighborhood (e.g., Bayer
et al., 2008; Damm and Dustmann, 2014; Åslund et al., 2011; Bobonis and Finan,
2009; Katz et al., 2001; Kling et al., 2005; Lewbel et al., 2021). It is evident that
entering such a social or economic group, for example, by being admitted to a col-
lege or moving into a neighborhood, can be selective, thereby posing a challenge in
quantifying the causal social effects among the group members (e.g., Ioannides and
Zabel, 2008; Bayer et al., 2007; Epple and Romano, 1998).

Most of the literature on social interactions assumes that peer relationships, repre-
sented by an adjacency matrix, are exogenous (See Blume et al., 2011, for a survey).
Several recent studies (e.g., Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee,
2016; Johnsson and Moon, 2021; Auerbach, 2022) relax this assumption by incorporat-
ing a network formation model and introducing unobserved individual heterogeneity
that affects both the link formation and individual outcome, thus leading to endo-
geneity in the peer relationships. The endogeneity of this kind can be resolved once
the individual heterogeneity is controlled for. Unlike these studies, we consider a more
empirically motivated setting where the endogeneity in peer relationships stems from
the selective entry into each group. For example, there is sizable empirical evidence
documenting that students may be sorted into schools/classes and the potential sort-
ing hinders the identification of the peer effects (Sacerdote, 2011; Epple and Romano,
2011; Friesen and Krauth, 2007). We develop a new framework to characterize the
endogenous entry into groups and identify and estimate the causal social effects.

Specifically, we discover that group formation can be equivalently characterized
by a two-sided many-to-one matching model, where the individuals who join a group
can be regarded as being “matched with” the group. To form the groups, individuals
choose among the groups based on their preferences and each group ranks the indi-
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viduals based on their qualifications and admits those with the highest qualifications
given the group capacity (Azevedo and Leshno, 2016; He et al., 2022). For example,
in college admissions, each student chooses among the colleges, and only those who
are admitted to a college can enter the college. The groups formed eventually are
determined as an equilibrium outcome. This two-sided group formation framework
covers one-sided group formation (e.g., neighborhood choice) as a special case, where
each group has an unbounded capacity and joining a group reduces to a simple multi-
national discrete choice problem. To the best of our knowledge, this is the first paper
that exploits a matching framework to characterize group formation.

Based on the group formation model, we show that the endogeneity in group for-
mation leads to a selection bias in the individual outcome. To derive this selection
bias, we follow the many-to-one matching literature and characterize an equilibrium
in group formation (i.e., stable groups) by group cutoffs, where the cutoff of a group
is the minimum qualification to join the group (Azevedo and Leshno, 2016; He et al.,
2022). Through the equilibrium cutoffs, the groups formed in an equilibrium depend
on the unobserved characteristics of all the individuals in the market, rendering it
difficult to represent the selection bias. To overcome this difficulty, we approximate
an equilibrium in a market with n individuals by the equilibrium in a limiting market
as n goes to infinity. The limiting equilibrium has the feature that the group that an
individual joins only depends on her own characteristics, thereby yielding a tractable
expression of the selection bias. The idea of limiting approximation has been exploited
in the matching literature (Menzel, 2015; Azevedo and Leshno, 2016; He et al., 2022).
As far as we know, our paper is the first to apply the limiting approximation to derive
the selection bias due to endogenous group formation. Under the limiting approxi-
mation, we can explicitly express the selection bias as a group-specific nonparametric
function of the preference and qualification indices in group formation.

The group-specific selection bias gives rise to a further challenge in the identifica-
tion of the social interaction effects, in both one-sided and two-sided group formation
settings. In the case where the adjacency matrix is given by group averages, the group-
level social effects can not be separately identified from the group-specific selection
bias. To conquer the challenge, we impose an assumption that the unobservables in
group formation are exchangeable across groups, so that the selection bias can be
represented using a group-invariant selection function, provided that the cutoffs and
group fixed effects are identified. We also provide constructive results on the identi-
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fication of the cutoffs and group fixed effects. By partialling out this version of the
selection bias, we can thus identify the exogenous social effect.

In a general setting with the presence of both exogenous and endogenous social
interactions, it is well known that the social effects may not be separately identifiable,
referred to as the reflection problem (Manski, 1993). The existing literature proposed
to achieve identification using the exogenous variation in group size (Lee, 2007; Dav-
ezies et al., 2009; Graham, 2008) or the observed characteristics of friends of friends
(Bramoullé et al., 2009). Brock and Durlauf (2001) pointed out that self-selection
into groups may aid in the identification of the social effects. In this paper, we follow
the insight of Brock and Durlauf (2001) and propose a new approach that exploits
the exogenous variation in the observed characteristics in group formation to resolve
the reflection problem. We discover that after the selection bias is partialled out, the
excluded variables in group formation can be used as instruments to identify the so-
cial effects. Such instruments are valid regardless of whether the adjacency matrix is
given by group averages as proposed in Manski (1993) or additional networks within
each group. To our knowledge, our paper is the first to use excluded variables in
group formation to resolve the reflection problem.

As for the estimation, we propose semiparametric methods to estimate the model
parameters, where the distribution of the unobservables is assumed to be nonparamet-
ric. We first develop a distribution-free semiparametric estimator for the parameters
in group formation. In particular, we propose a two-step kernel estimator for the
cutoffs and group fixed effects based on our constructive identification results. To the
best of our knowledge, this is the first paper that proposes a distribution-free esti-
mator for the cutoffs in a two-sided many-to-one matching model. We then propose
a semiparametric two-step GMM estimator for the parameters in social interactions,
where we first partial out the selection bias by sieve estimators, and then estimate
the social interaction parameters by GMM. The proposed estimators in both group
formation and social interactions are

√
n consistent and asymptotically normal.

The remainder of the paper is organized as follows. Section 2 introduces the
model. Section 3 derives the nonparametric selection bias. Section 4 investigates
the identification. Section 5 presents the estimation methods. Section 6 conducts a
simulation study. Section 7 concludes the paper. Additional results are presented in
the Online Appendix.

4



2 Model

2.1 Social Interactions

Consider a set of individuals N = {1, 2, . . . , n} who interact following the standard
linear-in-means social interaction model

yi =
n∑
j=1

wijyjγ1 +
n∑
j=1

wijx
′
jγ2 + x′iγ3 + εi. (2.1)

In this specification, yi ∈ R represents the outcome of interest (earnings, employment,
or education), xi ∈ Rdx is a vector of observed characteristics, εi ∈ R is an unobserved
shock, and wij ∈ R+ denotes the weight of peer j on individual i. We assume that i’s
outcome yi depends on

∑n
j=1wijyj and

∑n
j=1wijxj, the weighted averages of outcomes

and observed characteristics of i’s peers. Following the terminology in Manski (1993),
γ1 captures the endogenous social effect, and γ2 captures the exogenous/contextual
social effect. The parameter of interest is γ = (γ1, γ

′
2, γ
′
3)′ ∈ R2dx+1.

In this paper, we focus on a setting where the adjacency matrix w = (wij) ∈ Rn2
+

presents a group structure. Suppose there is a set of groups G = {1, . . . , G} that the
individuals can join. We assume that the number of groups G is finite and each group
g ∈ G has a predetermined capacity ng that is proportional to n. The groups are non-
overlapping (such as colleges and nursing homes), so one joins only one group. Let
gi ∈ G denote the group that i joins and g = (g1, . . . , gn)′ the n× 1 vector that stacks
gi. We assume that wij = 0 if gi 6= gj – an individual is influenced by her groupmates
only. A typical example is given by group averages where we set wij = 1

ngi
if gi = gj

and wij = 0 if gi 6= gj (Manski, 1993).1 We also allow wij to take a more general form
so long as the interactions occur within a group. For example, group members may
form additional friendships and only friends in the group can have an impact.

Let y denote the n× 1 vector that stacks yi, x the n× dx matrix that stacks the
row vectors x′i, and ε the n× 1 vector that stacks εi. Write (2.1) in a matrix form

y = wyγ1 +wxγ2 + xγ3 + ε. (2.2)

The literature on linear-in-means models typically assumes that the adjacency matrix
1This example assumes that all groups reach their full capacities.
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w is independent of the unobservables ε. We relax this assumption to accommodate
endogenous group formation. Specifically, we allow w to be endogenous, though the
endogeneity only occurs at the group level, as detailed in Assumption 1 below. In the
next section, we develop a model of group formation to account for the endogeneity
of groups.

2.2 Group Formation

Suppose that, prior to social interactions, the groups are established through two-
sided decisions. On one side, an individual chooses a group according to her pref-
erences over groups. On the other side, a group ranks individuals based on their
qualifications and admits those with the highest qualifications until its capacity is
reached.2 Two-sided group formation has various applications such as admissions to
colleges or schools, medical residency programs, and nursing homes. The framework
nests one-sided group formation as a special case, where each group has an infinite
capacity, and thus an individual unilaterally determines which group to enter.3

Two-sided group formation can be equivalently characterized as two-sided many-
to-one matching without transfers, where the individuals in a group are regarded as
being “matched with” the group. Therefore, we specify group formation following
the literature on two-sided many-to-one matching without transfers (Azevedo and
Leshno, 2016; He et al., 2022).

Utility For individual i ∈ N and group g ∈ G, let uig denote i’s utility of joining
group g

uig = z′iδ
u
g + ξig, (2.3)

and vgi denote i’s qualification for group g

vgi = z′iδ
v
g + ηgi, (2.4)

2For instance, in college admissions the qualifications of a student reflect colleges’ preferences over
the student; in school assignments, however, the qualifications may depend on (observed) priorities
of the student such as the district that the student lives in and whether the student has siblings
attending the school.

3Brock and Durlauf (2001; 2005) provided examples of one-sided group formation where individ-
uals unilaterally select into a group. In Brock and Durlauf (2001), an individual decides whether
to enter a potential group or not. In Brock and Durlauf (2005), an individual chooses one out of
multiple groups.
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where zi ∈ Rdz represents a vector of individual- or pair-specific observed character-
istics that affect the preferences and qualifications in group formation.4 The group-
specific coefficients δug , δvg ∈ Rdz allow the effect of zi to be heterogeneous across
groups. Note that zi may overlap with the observed characteristics in social interac-
tions xi.5 ξig ∈ R and ηgi ∈ R represent pair-specific unobserved utility and qualifica-
tion shocks of individual i for group g. Let ξi = (ξi1, . . . , ξiG)′ and ηi = (η1i, . . . , ηGi)′.
We assume that the joint distribution of εi, ξi, and ηi is nonparametric, which has
the advantage of allowing εi to have flexible dependence with ξi and ηi.6

It is worthy to point out that our model does not allow for peer effects in group
formation. In particular, the utility and qualification specified in equations (2.3)
and (2.4) do not depend on prospective group members. Nevertheless, if we have
additional information about the group members in the past (e.g., students enrolled
in a school in previous years), we can approximate the peer effects by including
in zi the outcome/characteristics of previous group members, provided that these
group-level measures do not vary over time. For example, assuming that the gender
composition in a school remains stable over time, we can use the fraction of female
in the previous year as a proxy for the gender peer effect.

Example 2.1 (College admissions). College admissions provide an example of two-
sided group formation, where students apply for colleges based on their utilities (uig),
and colleges admit students based on qualifications (vgi). In this example, ξi refers
to student i’s unobserved preferences for the colleges (family tradition), and ηi refers
to student i’s unobserved ability that affects her qualifications (extracurricular activ-
ities). zi represents a set of characteristics that affect the preferences of the student
or colleges, including student-specific characteristics (family income, parental educa-
tion, and SAT scores) and pair-specific characteristics (distance to a college and the
interaction between a student’s minority status and the fraction of minorities in a
college in the previous year).

4To illustrate that the specification in equations (2.3) and (2.4) covers both individual- and pair-
specific characteristics, suppose that there are two groups and we specify vgi = siδg,s +digδg,d + ηgi,
where si is an individual-specific variable and dig is a pair-specific variable (which can be an
individual-specific variable interacted with a group-specific variable). This example can be rep-
resented by equation (2.4) with zi = (si, di1, di2)′, δv1 = (δ1,s, δ1,d, 0)′, and δv2 = (δ2,s, 0, δ2,d)′.

5For the identification of γ, zi has to have at least two components that are excluded from xi.
See Section 4 for more details.

6The nonparametric specification implies that zi does not include a constant or group-specific
variables, because these group-level heterogeneity cannot be separated from ξi and ηi.
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Equilibrium Following the matching literature (Roth and Sotomayor, 1992), we
assume that the group formation outcome is stable.7 Azevedo and Leshno (2016)
showed that a stable matching exists and can be characterized by group cutoffs. Let
pg denote the cutoff of group g ∈ G. It is given by the lowest qualification among the
group members if the capacity constraint is binding; otherwise, the cutoff is set to
−∞. Namely,

pg =

infi:gi=g vgi, if ∑i∈N 1{gi = g} = ng,

−∞, if ∑i∈N 1{gi = g} < ng.

The cutoff of a group reflects how selective the group is.
Given the cutoffs p = (p1, . . . , pG)′, let Ci(p) = {g ∈ G : vgi > pg} ⊆ G denote

individual i′s choice set (i.e., the subset of groups that individual i qualifies for) .
Within Ci(p), i chooses the group that yields the highest utility

gi = arg max
g∈Ci(p)

uig.

This is a multinomial discrete choice problem with the choice set Ci(p) determined
endogenously by the cutoffs p. Individual i joins group g if (i) i qualifies for group g,
and (ii) for any other group h 6= g, either i prefers group g to group h, or i does not
qualify for group h.8 That is,

1{gi = g}

= 1{vgi ≥ pg} ·
∏
h6=g

1{uih < uig or vhi < ph}

= 1{ηgi ≥ pg − z′iδvg} ·
∏
h6=g

1{ξih − ξig < z′i(δug − δuh) or ηhi < ph − z′iδvh}. (2.5)

Equation (2.5) indicates that the group that individual i joins is a function of i’s
7In the context of college admissions, stability can be achieved through various means. One

way is for students to apply to all acceptable colleges and use a stable mechanism like the deferred
acceptance algorithm to determine the matching Gale and Shapley (1962). Even if students choose
not to apply to all acceptable colleges due to application costs Fack et al. (2019) or errors in the
application process Artemov et al. (2020), stability can still be achieved theoretically as long as
students know the criteria used by colleges to rank them.

8For simplicity of exposition, we assume that individuals always prefer to join a group. This can
be relaxed by assuming that the utility of not joining any group is ui0 = ξi0. Such relaxation does
not lead to substantive technical modifications of the results.
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observed and unobserved characteristics zi, ξi, ηi as well as the cutoffs p. We can
write gi = g(zi, ξi, ηi; p).

We remark that in one-sided group formation, the capacities are infinite and the
cutoffs pg are set to −∞. The choice set Ci(p) is simply G. The optimal decision
in equation (2.5) reduces to 1{gi = g} = ∏

k 6=g 1{uik < uig} = ∏
k 6=g 1{ξik − ξig <

z′i(δug − δuk )}, and we return to a standard multinomial discrete choice problem. The
group that individual i joins is a function of zi and ξi only, that is, gi = g(zi, ξi).

In a stable matching, the cutoffs p clear the supply of and demand for each group.9

Let z denote the n× dz matrix that stacks z′i, ξ the n×G vector that stacks ξi, and
η the n×G vector that stacks ηi. An equilibrium cutoff vector can be represented as
p(z, ξ,η).10 Given the equilibrium cutoffs, the groups are formed following equation
(2.5), and the equilibrium groups can be written as g(z, ξ,η; p(z, ξ,η)).

3 Selection Bias

In this section, we investigate the bias that results from selection into groups. Through-
out the paper, we maintain the following assumptions.

Assumption 1. The adjacency matrix w is independent of ε conditional on x, z,
and g.

Assumption 2. (i) xi, zi, εi, ξi, and ηi are i.i.d. for i = 1, . . . , n. (ii) The joint
cdf of εi, ξi, and ηi is continuously differentiable. (iii) For all i, εi, ξi, and ηi are
independent of xi and zi.

Assumption 1 requires that the selection only occurs at the group level. For an
adjacency matrix that represents group averages, this assumption is trivially satisfied.
For an adjacency matrix of a more general form, the assumption requires that w is
independent of ε given the group structure g – for example, conditional on group
memberships, how groupmates make friends is independent of ε. This assumption
ensures that we can focus on the formation of groups to deal with the endogeneity
of w. Assumption 2(i) imposes an i.i.d. assumption that is typical in social inter-
actions. Assumption 2(ii) imposes a smoothness assumption on the joint cdf of the

9The equilibrium cutoffs p satisfy the following market-clearing equations:∑
i∈N 1{g(zi, ξi, ηi; p) = g} ≤ ng and

∑
i∈N 1{g(zi, ξi, ηi; p) = g} = ng if pg > −∞, for all

g ∈ G.
10There may be multiple equilibrium cutoffs in a finite n economy.
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unobservables. It is to ensure that the conditional probability that individual i joins
group g is continuously differentiable. Assumption 2(iii) is a standard assumption
that the observables are exogenous.

3.1 The Presence of Selection Bias

The social interaction model in equation (2.1) presents a selection bias if

E[εi|x, z, g(z, ξ,η; p(z, ξ,η))] 6= 0. (3.1)

Under Assumption 2(i)(iii), this bias arises from the dependence between the outcome
shock εi and the unobservables in group formation ξi and ηi. The dependence causes
εi to be correlated with gi because gi is a function of ξi and ηi. Moreover, εi can be
correlated with the entire group structure g through the equilibrium cutoffs p(z, ξ,η),
as the latter depend on ξ and η which include ξi and ηi (the general equilibirum
effects). Below we give an example to illustrate how εi is dependent of ξi and ηi and
how the dependence leads to a selection bias.

Example 3.1 (Example 2.1 continued). In the context of college admissions, εi repre-
sents unobserved ability (IQ and motivation) that affects yi (labor market outcome).
If this ability also affects an student’s performance in high school, then εi is depen-
dent of ηi. Moreover, εi is dependent of ξi if, for example, students of high ability
prefer colleges of high (unobserved) quality. In the presence of the dependence, the
admission process will sort higher-ability students into more selective colleges. By
the same logic, if high SES increases a student’s qualifications in college applications
and stimulates preferences for colleges of high rankings, then students with higher
SES will be sorted into more selective colleges. Therefore, we will observe a positive
assortative matching between students and colleges in the sense that students who
attend more selective colleges are also of higher ability and SES. The sorting yields a
positive correlation between εi and the average characteristics/outcomes in a college.
Without correcting for this sorting effect, we will overestimate the peer effects.

Simulation Evidence To further illustrate the selection bias, we provide simula-
tion evidence using the design in Section 6. We consider both exogenous and endoge-
nous group formation, depending on whether εi is correlated with ηi or not. Using the
simulated data, we display in Figure 3.1 the correlation between the group average
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characteristic x̄gi = ∑
j wijxj and the unobserved shock εi for both exogenous and

endogenous groups.11 Under the specification that xi and zi are correlated in the
same direction as εi and ηi are correlated, we find that x̄gi is uncorrelated with εi

in exogenous groups, but positively correlated with εi in endogenous groups. In the
latter case, the OLS estimate of the coefficient of x̄gi will be upward biased.

Figure 3.1: Correlation Between Group Average Characteristic and Outcome Shock

Note: The figures plot the relationship between the residualized group average characteristic
x̄gi

and the residualized outcome shock εi, using one market in the simulated data in Section 6.
In exogenous group formation (left figure), εi is independent of ξi and ηi. In endogenous group
formation (right figure), εi is independent of ξi, but correlated with ηi. Other markets in the
simulated data show a similar pattern.

3.2 Limiting Approximation

Because equilibrium cutoffs depend on the (observed and unobserved) characteris-
tics of the n individuals in a market, the selection bias in equation (3.1) is a high-
dimensional function that involves the observed characteristics of all the n individuals.
To reduce its dimensionality, we propose a novel approach that exploits the limiting
approximation of the market as n approaches infinity. We find that the correlation
between εi and g through the equilibrium cutoffs becomes negligible as the market

11We control for the individual characteristic xi by regressing x̄gi
(resp. εi) on xi and taking the

residual of x̄gi
(resp. εi).
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grows large, thereby opening the door to reduce the dimensionality of the selection
bias.

To this end, let pn = (pn,1, . . . , pn,G)′ denote a vector of equilibrium cutoffs in a
market with n individuals. Azevedo and Leshno (2016) showed that there is a unique
stable matching in the limiting market as n→∞, which can be captured by a unique
vector of equilibrium cutoffs in the limiting market, denoted by p∗ = (p∗1, . . . , p∗G)′.
Unlike the finite-n cutoffs pn, the limiting cutoffs p∗ are non-stochastic because they
are determined by the distribution of the characteristics and each individual has a
negligible impact.

In the following proposition, we follow Azevedo and Leshno (2016) and show that
the equilibrium cutoffs in a finite-n market converge to the equilibrium cutoffs in the
limiting market as n → ∞. By continuous mapping, the selection bias in a finite-n
market also converges to the selection bias in the limiting market.

Proposition 3.1 (Limiting approximation). Under Assumption 2(i)-(ii), we have

E[εi|x, z, g(z, ξ,η; pn)] p→ E[εi|xi, zi, gi(zi, ξi, ηi; p∗)]. (3.2)

Proof. See Appendix A.2.1.

The proposition indicates that the selection bias in a finite-n market can be ap-
proximated by the selection bias in the limiting market. Because the limiting cutoffs
are non-stochastic, the selection bias of individual i in the limiting market depends
on i’s characteristics only. This reduces the dimensionality of the selection bias from
O(n) to a finite number.

In the subsequent analysis, we assume that the selection bias takes the limiting
form. Accounting for the sampling error due to the limiting approximation is left to
future research.

3.3 Nonparametric Form

Now we derive the selection bias. We start with a nonparametric form where the
selection function is group-specific. This group-specific selection, however, poses a
challenge in the identification of group-level peer effects. By imposing an additional
exchangeability assumption, we can represent the selection bias in an alternative form
where the selection function is group-invariant.
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3.3.1 Group-specific selection function

Under nonparametric unobservables, the selection bias is a nonparametric function
of the group formation indices. Specifically, let τi = (z′iδu1 , . . . , z′iδuG, z′iδv1 , . . . , z′iδvG)′ ∈
R2G denote a vector of preference and qualification indices of individual i.12 We can
represent the selection bias as a group-specific nonparametric function of τi.

Proposition 3.2 (Selection bias). Under Assumption 2, for any g ∈ G, there exists
a function λg : R2G → R such that E[εi|xi, zi, gi = g] = λg(τi).

Proof. See Appendix A.2.1.

Below we illustrate the selection function λg(·) in the case of two groups.

Example 3.2. Suppose that there are two groups (G = 2) and the group formation
indices are τi = (z′iδu1 , z′iδu2 , z′iδv1 , z′iδv2)′ ∈ R4. Denote ξi = (ξi1, ξi2)′ and ηi = (η1i, η2i)′.
Let f(εi, ξi, ηi) denote the joint pdf of εi, ξi, and ηi, and f(ξi, ηi) the joint pdf of ξi
and ηi. The selection bias of individual i if joining group 1 is

E[εi|xi, zi, gi = 1] = E[εi|η1i ≥ p1 − z′iδv1 , ξi2 − ξi1 < z′i(δu1 − δu2 ) or η2i < p2 − z′iδv2 ]

=
∫
R1(τi) εif(εi, ξi, ηi)dεidξidηi∫

R1(τi) f(ξi, ηi)dξidηi
=: λ1(τi),

where R1(τi) denotes the conditioning event R1(τi) = {(ξ′i, η′i)′ ∈ R4 : η1i ≥ p1−z′iδv1 ∩
(ξi2 − ξi1 < z′i(δu1 − δu2 ) ∪ η2i < p2 − z′iδv2)}. Similarly, the selection bias of individual
i if joining group 2 is

E[εi|xi, zi, gi = 2] = E[εi|η2i ≥ p2 − z′iδv2 , ξi1 − ξi2 < z′i(δu2 − δu1 ) or η1i < p1 − z′iδv1 ]

=
∫
R2(τi) εif(εi, ξi, ηi)dεidξidηi∫

R2(τi) f(ξi, ηi)dξidηi
=: λ2(τi),

where R2(τi) denotes the conditioning event R2(τi) = {(ξ′i, η′i)′ ∈ R4 : η2i ≥ p2−z′iδv2 ∩
(ξi1 − ξi2 < z′i(δu2 − δu1 ) ∪ η1i < p1 − z′iδv1)}.

The result in Proposition 3.2 extends the standard sample selection models (Heck-
man, 1979; Das et al., 2003) to social interaction models with endogenous group

12Note that the qualification index of a group matters only if the capacity of the group is binding,
If a group does not reach its capacity, then the qualification index of this group should be dropped
from τi. Specifically, let G ⊆ G denote the subset of groups whose capacity is binding and G the
cardinality of G. Then τi = (z′iδug , g ∈ G; z′iδvg , g ∈ G) ∈ RG+G.
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formation. Das et al. (2003) explored a standard sample selection model where the
model specification is fully nonparametric. They represented the selection bias as a
nonparametric function of the propensity scores of a multivariate selection rule. In
our setting, the propensity scores that correspond to the selection rules in equation
(2.5) are not available because we do not observe individuals’ rankings over the groups
or whether they qualify for each group. Instead, we impose an index structure on
the preferences and qualifications so that the selection bias can be represented as a
function of these group formation indices. Brock and Durlauf (2001, Section 3.6)
considered social interactions with endogenous one-sided group formation, where the
unobservables follow a parametric distribution. We extend Brock and Durlauf (2001)
to more general two-sided group formation with nonparametric unobservables.

Proposition 3.2 and Example 3.2 indicate that the selection function λg(·) is group-
specific for three reasons. First, the cutoffs are group-specific and are absorbed into
the selection function. Second, the distribution of the unobservables (ξig, ηgi) may
vary across groups. Third, the components of τi for group g and for the other groups
h 6= g play different roles in the selection function, through different selection rules
as shown in (2.5). The group-specific feature poses a challenge in the identification
of group-level peer effects. To see this, let wi denote the ith row of w. If both wiy
and wix are group averages that include i herself, they are invariant within a group.13

The effects of these group-level variables cannot be separately identified from a group-
specific nonparametric selection bias. This is similar to the case of panel data models,
where the effects of time-invariant variables cannot be separately identified from an
individual fixed effect.14 In the next section, we propose a novel idea to resolve the
problem of group-specific selection.

We remark that the selection bias is also individual-specific because it depends
on τi. While the selection occurs at the entry into a group, individuals with different
values of τi are subject to different selection biases. Therefore, we cannot correct for

13If wiy and wix are group averages that exclude i herself, they converge to including-oneself
group averages as the number of group members goes to infinity. Hence, the variation of wiy and
wix in a group vanishes to zero as the group size grows.

14If we have an additional network within each group, conditional on gi there may be individual-
level variation in wiy and wix because individuals in a group can have different friends. In this
case, we can partial out the group-specific selection bias by interacting the indices τi with group
dummies and exploit the within-group variation in wiy and wix to identify γ. This approach,
however, requires further restrictions on network structure as it exploits within-group variation in
wiy and wix for identification.
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the selection bias by simply introducing group fixed effects. An appropriate correction
requires us to exploit the information in τi.

3.3.2 Group-invariant selection function

Our idea to tackle the group-specific selection function is motivated by the observa-
tion that if the cutoffs are known, by ordering the components of τi appropriately,
the selection function becomes group-invariant so long as the distribution of the un-
observables does not vary across groups. To this end, we introduce group fixed effects
to account for group-level heterogeneity and assume that the remaining individual-
varying unobservables are exchangeable across groups. If the group fixed effects are
also known, we can establish an equivalent representation of the selection bias where
the selection function is group-invariant.

As the first step, rewrite the utility uig in equation (2.3) as

uig = αg + z′iδ
u
g + ξig, (3.3)

where αg denotes a group fixed effect. We may also include group fixed effects in
the qualification vgi, but they cannot be distinguished from the group-specific cutoffs
and thus are normalized to 0. Let α = (α1, . . . , αG)′ be a vector of group fixed
effects. They can capture vertical preferences over the groups. For example, in college
admissions, α may represent college quality, available resources, and reputation. We
assume that the individual-varying unobservables are exchangeable across groups.

Assumption 3 (Exchangeability). The joint pdf of εi, ξi, and ηi satisfies

f(εi, ξi1, . . . , ξiG, η1i, . . . , ηGi) = f(εi, ξik1 , . . . , ξikG , ηk1i, . . . , ηkGi),

for any permutation (k1, . . . , kG) of (1, . . . , G).

Assumption 3 assumes that the joint pdf of the unobservables is invariant under
the permutations of the group labels. In other words, the joint distribution of the
unobservables does not depend on the order of the groups. Exchangeability has
been used in various contexts such as differentiated product markets (Berry et al.,
1995; Gandhi and Houde, 2019), panel data (Altonji and Matzkin, 2005), matching
(Fox et al., 2018), and network formation (Menzel, 2021, 2022). In our setting, we
impose exchangeability so that the unobserved heterogeneity across groups is fully
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captured by group fixed effects. Note that Assumption 3 is less restrictive than an i.i.d.
assumption as it permits the unobservables (ξig, ηgi) to be dependent across groups,
provided the dependence is symmetric. In particular, it allows for an individual effect
in ξi and ηi.

Given the modified utility in equation (3.3), the selection bias in Proposition 3.2
can be rewritten as

E[εi|xi, zi, gi = g]

= E[εi|ηgi ≥ pg − z′iδvg , and ∀h 6= g

ξih − ξig < αg + z′iδ
u
g − αh − z′iδuh, or ηhi < ph − z′iδvh]

=: λe(τ ei (g)), (3.4)

where τ ei (g) = (τ e′ig , τ e′i,−g)′ ∈ R2G is a 2G × 1 vector, with the component τ eig =
(αg + z′iδ

u
g , pg − z′iδ

v
g)′ ∈ R2 representing the extended indices for group g, and the

component τ ei,−g = (τ e′ih,∀h 6= g)′ ∈ R2G−2 representing the extended indices for the
other G−1 groups.15 Because the cutoffs p and group fixed effects α are absorbed into
τ ei (g) and the components for group g are properly separated, under exchangeability
the selection function λe(·) is invariant across groups. In contrast to the expression
in Proposition 3.2, the selection bias in equation (3.4) leverages the arguments τ ei (g)
rather than the functional form λe(·) to capture the group-specific feature. This
representation utilizes the structure of the selection bias and yields a nonparametric
selection function that is group invariant.

As a remark, by exchangeability the order of the extended indices in τ ei,−g does
not matter – the selection function is symmetric in the extended indices τ eih and τ e

ih̃

for any distinct h, h̃ 6= g. This symmetry can further reduce the number of nuisance
parameters, which we will delve into further in Section 5.

4 Identification

Moving on to the identification of parameters, we start by discussing the identification
of the group formation indices. Then we examine the identification of the peer effects

15More accurately, we can define τei (g) as a (2G−1)×1 vector, where we drop the extended utility
index for group g and replace the extended utility index for group h 6= g by the extended utility
difference between h and g. In the estimation, we will use these utility differences to construct an
estimator for the selection bias. See Section 5.2 for more discussions.
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with the presence of the selection bias.

4.1 Identification of the Group Formation Indices

Let δ = (δu′1 , . . . , δ
u′
G , δ

v′
1 , . . . , δ

v′
G)′ collect the slope parameters in group formation

and θ = (δ′, p′, α′)′ all the group formation parameters. The identification of δ was
established in He et al. (2022).16 Hence, the raw indices τi = τ(zi, δ) are identified.
To identify the extended indices τ ei = τ e(zi, gi, θ), we need to identify p and α in
addition to δ, which we discuss below.

4.1.1 Identification of p and α

We start with the following assumption.

Assumption 4. (i) p1 = 0 and α1 = 0. (ii) The joint cdf of ξi and ηi is strictly
increasing.

Part (i) of the assumption is a location normalization because the joint distribu-
tion of ξi and ηi is fully nonparametric. Part (ii) guarantees a one-to-one relationship
between the conditional probability of joining a group and an extended group forma-
tion index. It is satisfied for a wide range of common distributions such as normal
distributions.

Proposition 4.1 (Identification of p and α). Suppose that δ is known. Under As-
sumptions 2-4, p and α are identified.

Proof. See Appendix A.2.2.

Proposition 4.1 exploits the idea that under exchangeability, the extended indices
for two distinct groups 1 and g have the same impact on the conditional probability
of joining a third group h 6= g, 1. Therefore, by monotonicity (Assumption 4(ii)) the
extended indices that lead to the same conditional probability of joining group h must

16A main challenge in identifying δ is that an individual’s choice set Ci(p) may be unobservable
to the researchers. To achieve identification, He et al. (2022) utilized excluded variables that act
as “demand shifters” and ”choice-set shifters”. These excluded variables trace out how utilities
and qualifications affect the conditional probability of joining each group, respectively. By taking
derivatives of the conditional probability of joining each group w.r.t. all the variables, excluded and
non-excluded, they derived a system of linear equations that that link the effects of variations in
demand and supply. This system of equations enables the nonparametric identification of the model
by ensuring the existence of a unique solution.
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be equal. We can then recover the difference between the cutoffs of groups 1 and g, and
thus identify pg under location normalization (Assumption 4(i)). The identification of
α follows similarly. He et al. (2022) studied a similar setting without exchangeability.
They relied on location normalization of the distribution of the unobservables and a
large support assumption, so that p and α can be identified by the variation within
groups. Our paper complements He et al. (2022) by leveraging the variation across
groups under exchangeability to identify p and α.

4.2 Identification of γ

4.2.1 The reflection problem

Define νi = εi − λe(τ ei ) to be the residual of εi after the selection bias is eliminated.
We write the ith equation in (2.2) as

yi = wiyγ1 + wixγ2 + x′iγ3 + λe(τ ei ) + νi, (4.1)

where wi denotes the ith row of the adjacency matrix w. Equation (4.1) is a partially
linear model (Robinson, 1988). Taking the expectation of equation (4.1) conditional
on τ ei and subtracting it from equation (4.1) we obtain

ỹi = w̃iyγ1 + w̃ixγ2 + x̃′iγ3 + νi. (4.2)

where ỹi = yi − E[yi|τ ei ] and similarly for other variables. The identification of γ
requires that the support of the regressors w̃iy, w̃ix, and x̃i is not contained in a
proper linear subspace of R2dx+1, which by Lemma 4.1 holds if and only if there is no
linear combination of wiy, wix, and xi that is a function of τ ei almost surely. This
rank condition prevents any element of wiy, wix, and xi being perfectly predictable
by τ ei (e.g., xi is a function of τ ei or contains a constant). Moreover, the rank condition
fails when wiy, wix, and xi are linearly dependent, a scenario widely referred to as
the reflection problem (Manski, 1993; Brock and Durlauf, 2001).

Lemma 4.1. Suppose that Xi is a d × 1 vector of variables. The support of Xi −
E[Xi|τ ei ] is contained in a proper linear subspace of Rd if and only if there is a d× 1
vector of constants k 6= 0 such that k′Xi is a function of τi with probability 1.

To investigate whether the reflection problem arises in our setting, we consider
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the social equilibrium in equation (4.1). Let λe := λe(τ e) = (λe(τ e1 ), . . . , λe(τ en))′ be
the n × 1 vector of selection biases, where τ e = (τ e′1 , . . . , τ

e′
n )′, and ν = (ν1, . . . , νn)′

be the n × 1 vector of residuals after the selection biases are subtracted. Equation
(4.1) can be written in a matrix form as

y = wyγ1 +wxγ2 + xγ3 + λe + ν.

Under the assumption that |γ1| < 1 and 9w9∞ = maxi∈N
∑n
j=1 |wij| = 1, the matrix

I − γ1w is invertible. The social equilibrium wy is given by

wy = (I − γ1w)−1(w2xγ2 +wxγ3 +wλe +wν)

= wxγ3 +
∞∑
k=0

γk1w
k+2x(γ1γ3 + γ2) +

∞∑
k=0

γk1w
k+1λe +

∞∑
k=0

γk1w
k+1ν. (4.3)

The ith equation in (4.3) gives

wiy = wixγ3 +
∞∑
k=0

γk1w
k+2
i x(γ1γ3 + γ2) +

∞∑
k=0

γk1w
k+1
i λe +

∞∑
k=0

γk1w
k+1
i ν, (4.4)

where wki denotes the ith row of the matrix wk. From equation (4.4), wiy, wix and xi
are linearly independent if (i) γ1γ3+γ2 6= 0 and the support of (xi, wix, w2

ix, w
3
ix, . . . )

is not contained in a proper linear subspace of R2dx+1, or (ii) the support of (xi, wix, wiλe, w2
iλ

e, . . . )
is not contained in a proper linear subspace of R2dx+1.

Existing literature on social interactions established numerous conditions for case
(i) to hold. For example, w2

ix, wix, and xi are linearly independent if there is a
network within each group and each network contains an intransitive triad (Bramoullé
et al., 2009). If wiy and wix represent group averages that exclude i herself and there
is variation in the group sizes, then w2

ix, wix, and xi are also linearly independent
(Lee, 2007). This source of identification fails, however, if wiy and wix represent
group averages that include i herself because w2 = w (Manski, 1993; Bramoullé
et al., 2009).

The presence of selection provides an alternative source of identification through
case (ii). It is evident from equation (4.4) that the rank condition for identification
holds if wiλe, wix, and xi are linearly independent and, in view of Lemma 4.1, wiλe

is not perfectly predictable by τ ei . This source of identification holds regardless of
whether there are within-group networks and whether group averages include oneself.
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The result is in accordance with the insight of Brock and Durlauf (2001, Section 3.6)
who discovered that identification can be achieved through self-selection so long as
the selection correction has within-neighborhood variation. Essentially, the selection
bias serves as an individual variable whose average is excluded from the contextual
effect.

Near multicollinearity Despite the theoretical prediction that wiy and wix are
linearly independent due to the presence of selection, in the case of group averages
that include oneself, we find in the simulation study that wiy and wix are nearly
multicollinear, though not perfectly multicollinear, when the number of groups is
small (e.g., G = 5). Note that because w2 = w, the social equilibrium wiy in this
case reduces to

wiy = wix
γ2 + γ3

1− γ1
+ wiλ

e 1
1− γ1

+ wiν
1

1− γ1
. (4.5)

The near multicollinearity results from the fact that both wiλe and wix are group-
level averages, so they appear to be highly correlated in data if they are allowed
to take only a small number of values. This near multicollinearity imposes an ill-
conditioned problem in the estimation of γ, thereby leading to a biased estimate. In
the next section, we propose an approach that may reduce the near multicollinearity
even if the number of groups is small.

4.2.2 Instrumental variables

Our idea is to use the excluded variables in group formation zi as an instrument
for wiy. The basic intuition is that zi affects the group that individual i joins and
thus the average outcome of her neighbors. Because zi is individual specific, it brings
in variation that is linearly independent of wix, which then helps alleviate the near
multicollinearity problem.

Instrument validity To justify that zi is a valid instrument, letXi = (wiy, wix, x′i)′

denote the vector of regressors and Zi = (z′i, wix, x′i)′ the vector of instruments.
Rewrite equation (4.2) as ỹi = X̃ ′iγ + νi. Because E[νi|x, z, g,w] = E[εi|x, z, g,w]−
λe(τ ei ) = 0, Zi satisfies the exclusion restriction E[Ziνi] = E[ZiE[νi|x, z, g,w]] = 0,
that is, Zi and νi are uncorrelated. The textbook literature on instrumental variables
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(e.g., Wooldridge, 2010) suggests that γ is identified if Assumption 5 is satisfied.

Assumption 5 (Rank). (i) The matrix E[Z̃iZ̃ ′i] has full rank. (ii) The matrix E[Z̃iX̃ ′i]
has full column rank.

Proposition 4.2 (Identification of γ). Suppose that δ is known. Under Assumptions
1-5, γ is identified.

Proof. Under Assumption 5, there is a unique γ that satisfies the exclusion restriction
E[Zi(ỹi − X̃ ′iγ)] = 0.

Assumption 5(i) is the standard assumption that requires the instruments to be
linearly independent. If some components of z̃i are linearly dependent (due to the
fact that τ ei consists of indices of zi), we can typically choose a subvector of zi to
make this assumption hold. Assumption 5(ii) is the standard rank condition for
identification. An immediate implication of this condition is that the support of X̃i is
not contained in a proper linear subspace of R2dx+1, the same as discussed in Section
4.2.1. Moreover, the rank condition requires that the linear projection of w̃iy on
Z̃i must have a nonzero coefficient for z̃i. In other words, conditional on the other
controls, the instrument z̃i must be correlated with w̃iy, the usual relevance condition
for an instrument to be valid. Note that because E[E[Zi|τ ei ]X̃ ′i] = 0, it is equivalent
to using zi and z̃i as the instrument.

It is evident that zi is correlated with wiy because zi affects the group that i joins
gi and thus the average outcome in her neighborhood wiy. What is less obvious is
that after controlling for the selection bias, there is still additional variation in zi

that can affect gi. In fact, under exchangeability the selection bias can be controlled
for without fixing the group that an individual joins. In Example 4.1, we provide
an illustration that an individual may join different groups under different values of
zi, but the selection bias does not change with the group that she joins, because τ ei
takes the same value regardless of which group she joins. Therefore, conditional on
τ ei , there is additional variation in zi that can affect the group that individual i joins
and thus wiy.

Example 4.1. Consider the case of two groups (G = 2). Suppose that the utilities
are ui1 = α1−zui1 +ξi1 and ui2 = α2−zui2 +ξi2 and the qualifications are v1i = zvi1 +η1i

and v2i = zvi2 + η2i. The group effects take the values α1 = 4 and α2 = 2, and the
cutoffs are p1 = 2 and p2 = 3. Consider an individual i with the following values of
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the observables: z = (zu1 , zu2 , zv1 , zv2) = (2, 1, 0, 2), and z̄ = (z̄u1 , z̄u2 , z̄v1 , z̄v2) = (5, 2, 1, 1).
If the unobservables (ξi1, ξi2, η1i, η2i) satisfy −1 < ξi2 − ξi1 < 1, and η1i, η2i > 2,
then individual i joins group 1 when zi = z and joins group 2 when zi = z̄. In
this case, individual i’s group formation indices for the two groups take the same
value (τ ei = τ̄ ei ) because τ ei = (p1 − zv1 , p2 − zv2 , α1 − zu1 − (α2 − zu2 )) = (2, 1, 1) and
τ̄ ei = (p2− z̄v2 , p1− z̄v1 , α2− z̄u2 −(α1− z̄u1 )) = (2, 1, 1). Conditional on τ ei , the additional
variation in zi can drive the individual to join different groups.

Example 4.1 demonstrates that there is variation in w̃iy that is driven by zi. For
the rank condition to hold, we further need that zi operates not just through w̃ix.
To verify this, let us take a look at equation (4.5). Partialling out τ ei from equation
(4.5) yields

w̃iy = w̃ix
γ2 + γ3

1− γ1
+ w̃iλ

e 1
1− γ1

+ wiν
1

1− γ1
. (4.6)

From the equation we can see that there are two channels for zi to affect the average
outcome w̃iy: via affecting the group that i joins, zi can affect both the average char-
acteristics w̃ix and the average selection w̃iλe in i’s group. Therefore, conditional on
w̃ix, zi can influence the average outcome through w̃iλe. Because there are different
levels of selection in each group, zi becomes a relevant instrument for w̃iy by varying
it through this additional channel.

Reducing near multicollinearity So far we have focused on the validity of zi
being an instrument. Below we show that using zi as an instrument brings individual-
level variation to the predicted value of wiy, thereby reducing the collinearity with
wix.

To gain insight into this approach, consider the matrix in Assumption 5(ii). De-
note Xi = (wiy, X ′2i)′, where X2i = (wix, x′i)′. We can write the matrix as

E[Z̃iX̃ ′i] =
(
E[Z̃iw̃iy] E[Z̃iX̃ ′2i]

)
(4.7)

where the first term on the right-hand side represents the first column of the matrix,
and the second term represents the remaining 2dx columns. Suppose that the linear
projection of w̃iy on Z̃i takes the form z̃′iβ1+X̃ ′2iβ2. By definition of a linear projection
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the first column of the matrix is given by

E[Z̃iw̃iy] = E[Z̃iz̃′i]β1 + E[Z̃iX̃ ′2i]β2 (4.8)

Note that the last term in equation (4.8) is a linear combination of the second term on
the right-hand side of (4.7). The relevance of the instrument implies that β1 6= 0, so
the first term on the right-hand side of (4.8) is present. This term involves individual-
specific z̃i, which is typically linearly independent of w̃ix. Due to the presence of this
term, the first column of the matrix (4.7) is therefore not likely to be collinear with
the remaining columns.

Simulation evidence We provide further evidence on the effectiveness of IV in
reducing multicollinearity using simulated data. We use the condition number of a
matrix to measure the magnitude of multicollinearity.17 Using our simulated samples,
we calculate the condition numbers of the matrix in equation (4.7) and its counterpart
for OLS E[X̃iX̃

′
i].18 Compared with the condition number of the matrix for OLS,

which is on average 844, the average condition number of the matrix for IV reduces
to 27. This result confirms that using zi as an instrument can effectively reduce the
near multicollinearity.

Remark 4.1. Motivated by equation (4.5), one may attempt to use the average ex-
cluded variables in group formation wiz as an instrument for w̃iy. In the case of group
averages that include oneself, however, because the instrument wiz is group-specific,
the predicted value of w̃iy is still highly correlated with w̃ix when the number of
groups is small. Using wiz as an instrument does not resolve the near multicollinear-
ity problem.

5 Estimation

In this section, we propose semiparametric methods to estimate the model parameters.
We first develop distribution-free estimators for the parameters in group formation.

17The condition number of a matrix A is the ratio of the maximal and minimal singular values of
A.

18To focus on the linear dependence between wiy and wix, we partial out xi and a sieve basis of
τei from wiy, wix, and zi, and calculate the condition number of a matrix constructed from their
residuals.
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Based on these estimators, we then propose a semiparametric two-step GMM esti-
mator for the parameters in social interactions, where we first estimate the selection
bias by sieve, and then estimate the social interaction parameters by GMM.

5.1 Estimating p and α in Group Formation

To construct the extended indices τ ei in the selection bias, we need to estimate the
group formation parameter θ = (δ′, p′, α′)′. In this section, we discuss how to estimate
the intercept parameters p and α. The estimation of the slope parameter δ follows
He et al. (2022).

We construct a distribution-free estimator for p and α based on the identification
results in Section 3.3.2. For simplicity, we discuss the estimation of p only. The
estimation of α can be established similarly. Suppose that we want to estimate the
cutoff pg for group g 6= 1. Consider the conditional choice probability of individual
i joining another group h 6= 1, g given her qualification index for group g, that is,
σh|g(τ vig) = P(gi = h|τ vig), where recall that τ vig = τ vig(δvg) = z′iδ

v
g denotes the qualifi-

cation index for group g. Proposition 4.1 showed that the cutoff pg can be obtained
from the difference τ vig − τ vj1 for any pair of i and j such that σh|g(τ vig) = σh|1(τ vj1) for
all h 6= 1, g. Consequently, we propose to estimate pg by a two-step kernel estimator.

Specifically, in the first step, we estimate σh|g(τ) for τ ∈ R using a kernel estimator

σ̂h|g(τ) =

n∑
i=1

1{gi = h}K1( τ−τ̂
v
ig

ζ1n
)

n∑
i=1
K1( τ−τ̂

v
ig

ζ1n
)

,

where τ̂ vig = z′iδ̂
v
g , δ̂vg is an estimator of δvg , K1(·) is a kernel function, and ζ1n is a

bandwidth. Let σ̂−{1,g}|g = (σ̂h|g, h 6= 1, g) denote the vector of estimated σh|g for all
h 6= 1, g.

In the second step, we estimate pg by a kernel estimator

p̂g = 1
n(n− 1)(G− 2)

n∑
i=1

n∑
j=1
j 6=i

G∑
h=2
h6=g

1
ζ2n

K2(
σ̂h|g(τ̂ vig)− σ̂h|1(τ̂ vj1)

ζ2n
)(τ̂ vig − τ̂ vj1),

where K2(·) is a kernel function, and ζ2n is a bandwidth. The kernel function is to
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approximate the criterion that a qualifying pair of i and j must satisfy σh|g(τ vig) =
σh|1(τ vj1) for all h 6= 1, g. The estimator is similar in spirit to a propensity-score
matching estimator.

To establish the asymptotic normality of p̂g, we impose the following regularity
conditions:

Assumption 6 (First-step kernel). (i)
∫
K1(t)dt = 1, and for a positive integer s1

and all j < s1,
∫
K1(t)tjdt = 0. (ii) K1(t) is twice continuously differentiable. (iii)

K1(t) is zero outside a bounded set.

Assumption 7 (Second-step kernel). (i)
∫
K2(t)dt = 1, and for a positive integer

s2 ≥ s1 and all j < s2,
∫
K2(t)tjdt = 0. (ii) K2(t) is twice continuously differentiable.

(iii) K2(t) is zero outside a bounded set.

Assumption 8. For any g ∈ G, (i) the pdf of τuig (τ vig) is bounded away from zero on
the support of τuig (τ vig). (ii) the pdf of τuig (τ vig) is (s2 +1)th continuously differentiable.
(iii) σh|g(τ) is (s2 + 2)th continuously differentiable.

Assumption 9 (Bandwidth). Define r0 = (lnn)1/2(nζ1n)−1/2+ζs1
1n and r1 = (lnn)1/2(nζ3

1n)−1/2+
ζs1

1n. The bandwidths ζ1n → 0 and ζ2n → 0 satisfy (i) n1/2ζ−3
2n r

2
0 → 0, (ii) ζ−3

2n r0 → 0
and ζ−2

2n r1 → 0, (iii) n1/2ζ1nζ
2
2n →∞, (iv) n1/2ζs1

1n → 0, (v) n1/2ζs2
2n → 0.

Assumption 10. (i) The parameter δ0 is an interior point in a compact space ∆.
(ii) δ̂ − δ = n−1∑n

i=1 ψ
δ(zi) + op(n−1/2), where E[ψδ(zi)] = 0.

Assumption 11 (Compactness). (i) The variable zi has a bounded support. (ii) The
variable xi has a bounded support.

Assumption 6 and 7 impose regular conditions on the kernel functions. Assump-
tion 9 guarantees that the bias introduced by the kernel estimators in both the first
and second steps are of smaller order than

√
n.19 Assumption 10 is satisfied when δv

is parametrically or semiparametrically estimated.20

The following proposition shows the asymptotic distribution of p̂g.
19Assumption 9 holds when, for example, s1 = 3, s2 = 5, ζ1n = O(n− 11

60 ), and ζ2n = O(n− 5
48 ).

20See He et al. (2022) for discussions on a semiparametric GMM estimator based on average
derivative estimators (Powell et al., 1989).
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Proposition 5.1 (Asymptotic distribution of p̂g). Under Assumptions 2-4, 6-10, and
11(i), we have

√
n(p̂g − pg) d→ N(0, Vg),

where Vg = Var[ψg(zi, gi)], where ψg(zi, gi) is defined in proof.

Proof. See Appendix A.2.3.

5.2 Estimating γ in Social Interactions

5.2.1 Symmetry of the selection correction

To estimate γ in equation (4.1), we need to partial out the selection bias λe(τ ei ). In
Section 3.3.2 we showed that the selection correction function λe(·) is symmetric in
the index pairs in τ ei,−gi . This symmetry property allows us to reduce the number of
nuisance parameters in the estimation and improve efficiency.

To account for the symmetry of the selection correction function, we consider
the elementary symmetric functions of the extended indices in τ ei,−gi , denoted by
τ si,−gi . Following Altonji and Matzkin (2005), τ si,−gi is a tuple that consists of (i)
the elementary symmetric functions of the extended utility indices τ e,uigi − τ e,uih for
h 6= gi up to order G − 1, that is, ∑h1 6=gi(τ

e,u
igi − τ

e,u
ih ), ∑(h1,h2) 6=gi(τ

e,u
igi − τ

e,u
ih1 )(τ

e,u
igi −

τ e,uih2 ),. . . ,
∑

(h1,...,hG−1) 6=gi
∏G−1
k=1 (τ e,uigi − τ e,uihk), and (ii) the elementary symmetric func-

tions of the extended qualification indices τ e,vih for h 6= gi up to order G − 1, that
is, ∑h1 6=gi τ

e,v
ih1 ,

∑
(h1,h2)6=gi τ

e,v
ih1τ

e,v
ih2 ,. . . ,

∑
(h1,...,hG−1) 6=gi

∏G−1
k=1 τ

e,v
ihk

, where ∑(h1,...,hk)6=gi de-
notes the summation over all combinations of distinct h1, h2, . . . , hk in G\{gi}. By
the fundamental theorem of symmetric functions and the Weierstrass approximation
theorem, any symmetric function can be approximated arbitrarily closely by a poly-
nomial function of the elementary symmetric functions (Altonji and Matzkin, 2005).
Therefore, there is a function λs such that λe(τ ei ) = λs(τ si ), where τ si = (τ e,vigi , τ si,−gi).

Using the symmetric representation of the selection bias can substantially reduce
the number of nuisance parameters in a sieve approximation. For example, if we
consider linear basis functions, the number of approximating functions in λe(τ ei ) is
2G−1, while the number of approximating functions in λs(τ si ) is only 3 – one functions
for group gi and the other two functions for the remaining G − 1 groups combined.
For basis functions of order two, the number of approximating functions in λe(τ ei ) is
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(G+ 1)(2G− 1) and 12 in λs(τ si ).21

5.2.2 Estimation of γ

Rewrite equation (4.1) using the symmetric representation of the selection bias λs(τ si ).
Partialing out the selection bias yields yi − E[yi|τ si ] = (Xi − E[Xi|τ si ])′γ + νi. From
the independence of Zi and νi, the true parameter γ0 satisfies the moment condition

0 = E[Zi(yi − E[yi|τ si ]− (Xi − E[Xi|τ si ])′γ)]

= E[(Zi − E[Zi|τ si ])(yi −X ′iγ)], (5.1)

where the last line follows from the law of iterated expectations.22

Based on the moment condition in equation (5.1), we propose a three-step semi-
parametric estimator for γ. In the first step, we estimate the group formation pa-
rameters θ0 = (δ′0, p∗′, α′0)′ by the estimator θ̂ = (δ̂′, p̂′, α̂′)′ as discussed in Section
5.1. Note that τ si can be represented as τ si = τ s(zi, gi, θ0). Denote its estimator by
τ̂ si = τ s(zi, gi, θ̂).

In the second step, we estimate the nuisance parameter µZ0 (τ si ) = E[Zi|τ si ] by a
sieve estimator µ̂Z(τ̂ si ). Specifically, define bK(τ si ) = (b1K(τ si ), . . . , bKK(τ si ))′ to be a
K × 1 vector of approximating functions, and let BK(τ s) = (bK(τ s1 ), . . . , bK(τ sn))′ be
the n×K matrix of approximating functions for all i. We estimate µZ0 (τ si ) by the pre-
dicted value from the regression of Z = (Z1, . . . , Zn)′ on the estimated approximating
functions B̂K = (bK(τ̂ s1 ), . . . , bK(τ̂ sn))′. That is,

µ̂Z(τ̂ si ) = Z ′B̂K(B̂′KB̂K)−1bK(τ̂ si ).

In the third step, we estimate the parameter γ by GMM. Let ωi = (yi, Xi, Zi) and
21For λe(τei ), there are G(2G−1) functions of order two: 2G−1 squared indices and (2G−1)(G−1)

interactions between indices. For λs(τsi ), we have 9 functions of order two: three terms that involve
τe,vig : (τe,vig )2, τe,vig

∑
h 6=g(τ

e,u
ih − τ

e,u
ig ), and τe,vig

∑
h6=g τ

e,v
ih , three monomial symmetric functions of the

form m(2, 0):
∑
h6=g(τ

e,u
ih − τ

e,u
ig )2,

∑
h6=g(τ

e,v
ih )2, and

∑
h6=g(τ

e,u
ih − τ

e,u
ig )τe,vih , and three monomial

symmetric functions of the form m(1, 1):
∑

(h,h′)6=g(τ
e,u
ih − τ

e,u
ig )(τe,uih′ − τe,uig ),

∑
(h,h′)6=g τ

e,v
ih τ

e,v
ih′ , and∑

(h,h′)6=g(τ
e,u
ih − τ

e,u
ig )τe,vih′ .

22Note that E[Zi(yi − E[yi|τsi ] − (Xi − E[Xi|τsi ])′γ] = E[Zi(yi − X ′iγ)] − E[ZiE[yi − X ′iγ|τsi ]] =
E[Zi(yi −X ′iγ)]− E[E[Zi|τsi ]E[yi −X ′iγ|τsi ]] = E[(Zi − E[Zi|τsi ])(yi −X ′iγ)].
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m(ωi, γ, µZ0 (τ si )) denote the (infeasible) moment function

m(ωi, γ, µZ0 (τ si )) = (Zi − µZ0 (τ si ))(yi −X ′iγ).

Define m0(γ, µZ) = E[m(ωi, γ, µZ(τ si ))] and m̂n(γ, µ̂Z) = 1
n

∑n
i=1m(ωi, γ, µ̂Z(τ̂ si )). Let

W be a dz × dz weighting matrix and Ŵ a consistent estimator of W . We obtain a
GMM estimator γ̂ by solving

min
γ∈Γ

m̂n(γ, µ̂Z)′Ŵ m̂n(γ, µ̂Z). (5.2)

To establish the asymptotic properties of the GMM estimator, we impose the
following assumptions:

Assumption 12. (i) The parameter θ0 is an interior point in a compact space Θ. (ii)
θ̂ − θ0 = n−1∑n

i=1 φθ(zi, θ0) + op(n−1/2), where E[φθ(zi, θ0)] = 0 and E[φθ(zi, θ0)2] <
∞.23

Assumption 13 (Sieve). Let K → ∞ and K/n → 0. The basis functions bK(τ) ∈
RK satisfy the following conditions. (i) E[bK(τ)bK(τ)′] = IK.24 (ii) There ex-
ist βZ and a constant a > 0 such that sup

τ
|µZ0 (τ) − bK(τ)′βZ | = O(K−a). (iii)

sup
τ
‖bK(τ)‖ ≤ %0(K) for a sequence of constants %0(K) such that %0(K)2K/n →

0. (iv) supτ ‖∂bK(τ)/∂τ ′‖ ≤ %1(K) for a sequence of constants %1(K) such that
%1(K)/

√
n→ 0.

Assumption 14 (Adjacency matrix). The adjacency matrix w = (wij) ∈ Rn2
+ satis-

fies the following conditions. (i) 9w9∞ = maxi∈N
∑n
j=1 |wij| = 1. (ii) E[‖w‖4

∞] =
O(n−4). (iii) There exist i.i.d. ςi, i ∈ N , such that (a) (x, z, g) is a function
of ς = (ςi, i ∈ N ), (b) E[νi|ς] = 0, and (c) w is independent of ν conditional
on ς. (iv) For hij = h(ςi, ςj) ∈ R such that maxi,j∈N |hij| < ∞ and t = 0, 1,

23This assumption is satisfied by Assumption 10 and Proposition 5.1.
24Assumption 13(i) is a normalization. In fact, we can assume alternatively that the smallest

eigenvalue of E[bK(τ)bK(τ)′] is bounded away from zero uniformly in K. Under this assumption,
denote Q0 = E[bK(τ)bK(τ)′] and let Q−1/2

0 be the symmetric square root of Q−1
0 . Then b̃K(τ) =

Q
−1/2
0 bK(τ) is a nonsingular transformation of bK(τ) that satisfies E[b̃K(τ)b̃K(τ)′] = IK . Note

that nonparametric series estimators are invariant w.r.t. nonsingular transformations of bK(τ) – let
β̃Z = Q

1/2
0 βZ then b̃K(τ)′β̃Z = bK(τ)′βZ . Further, b̃K(τ) satisfies Assumption 13(iii)(iv) if and

only if bK(τ) does. Thus, all parts of Assumption 13 hold with bK(τ) replaced by b̃K(τ) (Li and
Racine, 2007, p.480).
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maxr,r̃≥1 maxi,j,k.l∈N :{i,j}∩{k,l}=∅ |Cov(hij((wt)′wr)ij, hkl((wt)′wr̃)kl)| = o(n−2). (v) For
K that satisfies Assumption 13, maxi,j,k,l∈N :{i,j}∩{k,l}=∅ E[Cov(wij, wkl|ς)2] = o(n−4/K)
and maxi,j∈N E[(E[wij|ς]−E[wij|ςi, ςj])4] = o(n−4/K2). (vi) For {i, j} and {k, l} that
overlap in one element, maxi,j,k,l∈N :|{i,j}∩{k,l}|=1 E[Cov(wij, wkl|ς)2] = o(n−4).

Assumption 15 (GMM). (i) Ŵ p→ W . W is positive semi-definite and bounded,
and Wm0(γ, µZ0 ) 6= 0 for all γ 6= γ0. (ii) The parameter γ0 is an interior point in a
compact space Γ. (iii) M ′

nWMn is nonsingular for Mn = E[∂m̂n(γ,µZ0 )
∂γ′

].25

Assumption 16. (i) The unobservable εi has finite fourth moment. (ii) For any θ ∈
Θ, E[Zi|τ s(zi, gi, θ)] and E[εi|τ s(zi, gi, θ)] are continuously differentiable in τ s(zi, gi, θ).

We establish the asymptotics of γ̂ based on Newey (1994a) and Hahn and Ridder
(2013). The main challenge in deriving the asymptotics involves dependency of wix
and wiy due to the adjacency matrix w. Different from the literature that study de-
terministic w, we consider w to be random and correlated with the observables, with
its randomness originating from the randomness of the group links and within-group
networks. Assumption 14 imposes a set of sufficient conditions on a dense network
that ensure the correlation within the network vanishes as n grows large. Specifi-
cally, part (iv) of the assumption addresses the dependency of wiy by restricting the
covariance of higher-order adjacency matrices. Part (v) is necessary to establish the
consistency of the sieve estimator, while part (vi) is used for deriving the asymp-
totic distribution. Our proof of asymptotics generalize Lee (1990, Secion 3.7.5) for
weighted U-statistics to accommodate random weights.

Theorem 5.1 (Consistency of γ̂). Under Assumptions 1–5, 11–16, we have γ̂− γ0 =
op(1).

Proof. See Appendix A.2.3.

Theorem 5.2 (Asymptotic distribution of γ̂). Under Assumptions 1–5, 11–16, we
have

√
nΣ−1/2

n (γ̂ − γ0) d→ N(0, Idγ ), where the variance Σn is defined in the proof.

Proof. See Appendix A.2.3.
25Note that Mn = −n−1∑n

i=1 E[(Zi − µZ0 (τi))X ′i] does not depends on γ.
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6 Simulations

6.1 Setup

In this section, we conduct a simulation study to evaluate the performance of the
estimators. We generate a market with n = 2000 individuals. They form G =
5 groups following the model in Section 2, where the capacities of the groups are
{340, 320, 340, 320, 340}, implying a total of 1, 660 seats. After the groups are formed,
they interact according to the social interaction model

yi = γ1wiy + wixγ2 + xiγ3 + εi, (6.1)

where εi is i.i.d. N(0, 1), xi is i.i.d. N(5, 25), and the social interaction parameters are
γ = (γ1, γ2, γ3) = (0.5, 1, 1). We consider two scenarios of the adjacency matrix w: (i)
pure groups; and (ii) additional networks within groups. In the case of pure groups,
wiy and wix are group means. When there is an additional network within each
group, wiy and wix represent the averages among friends. We generate a network
as follows: for individuals i and j in a group, draw ζij from U [0, 1], and the link
ij is formed if and only if ζij ≥ 0.5. The weights wij in wi are given by wij = dij

di
,

where dij = 1{ζij ≥ 1/2}1{gi = gj}, and di =
∑
j 6=i
dij.

In group formation, we specify the utility and qualification of an individual i for
group g as follows

uig = αg + δu1z
u
1,ig + δu2z2,i + ξig

vgi = δv1z
v
1,ig + δv2z2,i + ηgi,

where α = (α1, α2, α3, α4, α5) = (9, 6, 4, 2, 0) are the group fixed effects, and the
group formation parameters are δ = (δu1 , δu2 , δv1 , δv2) = (−1, 1, 1, 1). Both zu1,ig and zv1,ig
are individual-and-group-specific characteristics that are i.i.d. across individuals and
groups with the distribution N(0, 9). z2,i denotes an individual-specific characteristic
that we allow to be correlated with xi. In particular, we assume that z2,i = log(xi +
qi + 20), where qi follows i.i.d. N(0, 4). Let zi = (zu1,ig, zv1,ig, z2,i). If an individual i
does not join any group, her utility is ξi0. The utility shocks ξig is i.i.d. across i and
g ∈ G ∪ {0} with the type I extreme value distribution . The preference shocks ηgi is
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i.i.d. with the distribution N(εi, 1), and thus is correlated with εi.
We simulate 200 markets independently. For each market, we calculate the group

formation outcomes using the individual-proposing Deferred-Acceptance algorithm.
The capacity constraint is binding for all groups. The estimation of group formation
parameters are discussed in Appendix O.A.

6.2 Results

Panel A of Table 6.1 presents the estimation results for the case of pure groups in
the absence of endogenous social interactions (i.e., γ1 = 0). The estimates of γ2 by
OLS (Column 1) and OLS with school fixed effects (Column 2) are upward biased,
though the latter is less biased. Controlling for school fixed effects tends to eliminate
some selection bias, but not all. In Column 3, we use a polynomial series of the
extended group formation indices to correct for the selection bias. To account for
the symmetry of the selection bias, we combine the indices for groups other than the
group an individual joins using the elementary symmetric functions. The sieve OLS
estimates of γ tend to be unbiased. This demonstrates that the control function we
construct performs well in approximating the selection bias.

Panel A of Table 6.2 presents the estimation results for the case of pure groups
when endogenous social interactions are present (i.e., γ1 6= 0). The OLS estimates
of γ1 and γ2 (Columns 1 and 2) are heavily biased due to the endogeneity in groups
and the reflection problem. In Column 3, we correct for the selection bias using the
polynomial series . The sieve OLS estimates are still biased as a result of the reflection
problem. In Columns 4 and 5, in addition to correcting for the selection bias as in
Column 3, we also instrument for w̃iy and estimate the parameters by sieve 2SLS.
Column 4 shows that using w̃iz (average z of group members, partialling out τ si ) as
instruments does not resolve the reflection problem – the estimates of γ2 and γ3 are
similar to those by sieve OLS. F test of w̃iz implies perfect multicolinearity between
w̃iy and w̃iz. Therefore, w̃iz contains exactly the same information as w̃iy, leading
to identical results between sieve OLS and sieve 2SLS using w̃iz as instruments. In
contrast, Column 5 shows that using z̃i (own z, partialling out τ si ) as instruments
performs well: the sieve 2SLS estimates of γ seem unbiased. This suggests that
using one’s own excluded variables in group formation as instruments can resolve the
reflection problem. Additionally, F test suggests that z̃i is strongly correlated with
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Table 6.1: Estimation Results: Without Endoge-
nous Interactions (γ1 = 0)

OLS OLS Sieve OLS

Panel A: Pure groups
γ2 bias 0.363 0.127 -0.004

sd 0.397 1.067 0.122
rmse 0.537 1.072 0.122

γ3 bias -0.005 -0.005 -0.001
sd 0.005 0.005 0.005
rmse 0.007 0.007 0.005

Panel B: Network
γ2 bias 0.166 0.046 -0.002

sd 0.140 0.106 0.058
rmse 0.217 0.115 0.058

γ3 bias -0.004 -0.005 -0.001
sd 0.005 0.005 0.005
rmse 0.007 0.007 0.005

Selection control? No Group FE Sieve

Note: This table presents estimates for the coefficients of
the social interactions model without endogenous social in-
teractions. The coefficients are estimated using 200 MC
samples, where each sample contains 5 groups and 1,660 in-
dividuals who join one of the groups. The basis functions
include a polynomial series (up to order 2) of the extended
qualification indices and differences in the extended prefer-
ence indices. We combine the indices for groups other than
the group an individual joins using the elementary symmet-
ric functions.
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Table 6.2: Estimation Results: With Endogenous Interactions (γ1 6= 0)

OLS OLS Sieve OLS Sieve 2SLS Sieve 2SLS

Panel A: Pure groups
γ1 bias 0.500 -0.358 0.059 0.059 -0.022

sd 0.000 2.799 0.118 0.118 0.236
rmse 0.500 2.815 0.131 0.131 0.236

γ2 bias -1.995 0.749 -0.267 -0.267 0.098
sd 0.005 18.300 0.560 0.560 1.115
rmse 1.995 18.270 0.619 0.619 1.116

γ3 bias -0.005 -0.005 -0.001 -0.001 -0.001
sd 0.005 0.005 0.005 0.005 0.005
rmse 0.007 0.007 0.005 0.005 0.005

F-stat of instruments Infa 74.973
p-value 0.000 0.000
Over-identification stat 2.353 9.572
p-value 0.959 0.521

Panel B: Network
γ1 bias 0.168 -0.812 0.003 0.010 -0.018

sd 0.060 0.416 0.041 0.041 0.084
rmse 0.178 0.912 0.041 0.042 0.085

γ2 bias -0.271 0.792 -0.013 -0.028 0.037
sd 0.131 0.414 0.106 0.106 0.194
rmse 0.301 0.894 0.106 0.109 0.196

γ3 bias -0.005 -0.005 -0.001 -0.001 -0.001
sd 0.005 0.005 0.005 0.005 0.005
rmse 0.008 0.007 0.005 0.005 0.005

F-stat of instruments 4835.600 49.192
p-value 0.000 0.000
Over-identification stat 10.424 8.721
p-value 0.468 0.580

Selection control? No Group FE Sieve Sieve Sieve
Instruments? No No No w̃iz z̃i

Note: This table presents estimates for the coefficients of the social interactions model with
endogenous social effects. The coefficients are estimated using 200 MC samples, where each
sample contains 5 groups and 1,660 individuals who join one of the groups. The basis functions
include a polynomial series (up to order 2) of the extended qualification indices and differences
in the extended preference indices. We combine the indices for groups other than the group
an individual joins using the elementary symmetric functions.
a. F statistic is infinity in 105 (out of 200) samples, while the mean of F statistic in the
remaining samples is 8× 1013. This is due to perfect multicolinearity between w̃iy and w̃iz.
In this case, the sieve 2sls using w̃iz reduces to sieve ols.

33



w̃iy, and the over-identification test indicates that we can not reject the exogeneity
of z̃i.

As a comparison, we repeat the exercises above for the case where there is an
additional network within each group. The estimation results are presented in Panel
B of Tables 6.1 and 6.2. Because the network within each group generates additional
individual-level variation in wiy and wix, the model does not suffer severely from the
reflection problem. In particular, sieve OLS, sieve 2SLS using w̃iz as instruments,
and sieve 2SLS using z̃i as instruments yield similar results. Moreover, F test and
over-identification indicate validity of both w̃iz and z̃i as instruments.

7 Conclusion

This paper considers social interaction models with endogenous non-overlapping group
formation. The endogeneity is due to the correlation between the unobservables in
the group formation and the unobservable in the outcome equation. In this paper,
we derive a tractable expression of the correction term by exploiting a many-to-one
matching framework to characterize group formation. We characterize the selection
bias as a nonparametric function of group formation indices. We show identification
results of the model and propose a multi-stage estimation strategy.

A Appendix

A.1 Adjacency Matrix: Examples

In this section, we verify Assumption 14 for several adjacency matrices that are widely
used in the literature.

Example A.1 (Group averages including oneself). Suppose that w represents group
averages that include oneself and the group capacities are binding. We can write
wij = ∑G

g=1
1
ng

1{gi = g}1{gj = g}. By construction, 9w9∞ = maxi∈N
∑n
j=1 |wij| = 1

and ‖w‖∞ = maxi,j∈N |wij| ≤ 1
ming∈G ng = 1

nming∈G rg , where rg = ng
n
> 0 for g ∈ G.

Hence, E[‖w‖4
∞] ≤ 1

n4 ming∈G r4
g

= O(n−4) and Assumption 14(i) and (ii) are satisfied.
Because ng is a constant, wij is a function of gi and gj – once we know the groups
that i and j join, we know wij. In this case, w is a function of ς = (x, z, g) and
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wij depends on ς only through ςi and ςj. Therefore, Assumption 14(iii), (v), and (vi)
are satisfied. Further, for group averages that include oneself we have w′ = w and
w2 = w.26 Because hijwij and hklwkl are independent for disjoint {i, j} and {k, l},
Assumption 14(iv) is satisfied.

Example A.2 (Group averages excluding oneself). Suppose that w represents group
averages that exclude oneself and the group capacities are binding. We have wij =∑G
g=1

1
ng−11{gi = g}1{gj = g} for i 6= j and wii = 0. By construction, 9w9∞ = 1 and

‖w‖∞ ≤ 1
nming∈G rg−1 . Hence, E[‖w‖4

∞] ≤ 1
(nming∈G rg−1)4 = O(n−4) and Assumption

14(i) and (ii) are satisfied. Similarly as in Example A.1, wij is a function of gi and
gj and Assumption 14(iii), (v) and (vi) are satisfied for ς = (x, z, g). For group
averages that exclude oneself, we have w′ = w and for r ≥ 1, the (i, j) element
of wr takes the form (wr)ij = ∑G

g=1 cij,g(r)1{gi = g}1{gj = g}, where cij,g(r) is a
constant that only depends on r and ng. For example, cij,g(2) = ng−2

(ng−1)2 for i 6= j and
cii,g(2) = 1

ng−1 . This structure suggests that (wr)ij is a function of gi and gj. Hence,
hij(wr)ij and hkl(wr̃)kl are independent for disjoint {i, j} and {k, l} and Assumption
14(iv) is satisfied.

Example A.3 (Dyadic networks). Suppose that individuals in a group form addi-
tional connections, for example, schoolmates make friends. Let dij,g denote an indica-
tor for whether individuals i and j are connected in group g and di,g = ∑n

j=1 dij,g1{gj =
g} the number of connections that i has in group g. Suppose that no individual is
isolated so di,gi > 0 for all i ∈ N . Typically, wij is specified as wij = ∑G

g=1
dij,g
di,g

1{gi =
g}1{gj = g} – if both i and j join group g, then the weight of j has on i depends on
whether j is connected to i, normalized by the number of connections that i has in
the group.

Following the literature on dyadic network formation with fixed effects (Graham,
2017; Johnsson and Moon, 2021), we specify dij,g as

dij,g = 1{fg(xi, xj, ai, aj) ≥ ψij}, ∀i 6= j, (A.1)

and dii,g = 0, where ai ∈ R and ψij ∈ R represent individual- and pair-specific un-
observed heterogeneity. Without loss of generality we normalize ψij ∼ U [0, 1] and

26For any i, j ∈ N , (w2)ij =
∑n
k=1 wikwkj =

∑n
k=1(

∑G
g=1

1
ng

1{gi = g}1{gk =
g})(

∑G
g=1

1
ng

1{gk = g}1{gj = g}) =
∑n
k=1

∑G
g=1

1
n2

g
1{gi = g}1{gj = g}1{gk = g} =

∑G
g=1

1
ng

1{gi =
g}1{gj = g} = wij , where we have used ng =

∑n
k=1 1{gk = g}.
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assume 0 ≤ fg ≤ 1. Denote a = (ai, i ∈ N ) and ψ = (ψij, i, j ∈ N ). Assume
that (a) both ai and ψij are i.i.d., (b) ψ is independent of (x, z, g,a), and (c) (a,ψ)
is independent of ε conditional on (x, z, g). The last is consistent with Assump-
tion 1 – conditional on (x, z, g), w is a function of (a,ψ) and is thus independent
of ε. Let ς = (x, z, g,a), where ςi = (xi, zi, gi, ai) is i.i.d. across i. Note that

1
n−1E[di,g|ςi] = 1

n−1
∑
j 6=i E[dij,g1{gj = g}|ςi] = E[fg(xi, xj, ai, aj)1{gj = g}|ςi]. We

assume that mini∈N ming∈G E[fg(xi, xj, ai, aj)1{gj = g}|ςi] ≥ c > 0.

Lemma A.1. For w in Example A.3, Assumption 14 is satisfied with ς = (x, z, g,a).

Proof. See Appendix A.2.4.

Example A.4 (Group averages, continued). Examples A.1 and A.2 assume that the
group capacities are binding. If the groups have infinite capacities as in one-sided
group formation or there is a group that does not reach its full capacity, then the
number of members in a group is determined endogenously. This setting can be
regarded as a special case of Example A.3, where we set dij,g = 1 for all i, j ∈ N (if
oneself is included in an average) or dij,g = 1 for all i 6= j and dii,g = 0 (if oneself is
excluded in an average). Following the proof of Lemma A.1, we can show that w in
this setting satisfies Assumption 14 with ς = (x, z, g).

Example A.5 (Strategic networks). Follow the setup in Example A.3. To account
for strategic network formation, we replace equation (A.1) with

dij,g = 1{fg(xi, xj, ai;x) ≥ ψij}, ∀i 6= j, (A.2)

and dii,g = 0, where ai and ψij are specified as in Example A.3. This specification
is motivated by strategic network formation under incomplete information (Leung,
2015; Ridder and Sheng, 2022), where we assume that x is publicly observed by all
the individuals, and ai and ψi = (ψij, j 6= i) are privately observed by individual
i. The presence of x is to capture the equilibrium effect that results from strategic
interactions. We impose the same assumptions on a and ψ as in Example A.3 and
set ς = (x, z, g,a). Note that E[di,g|ς] = ∑

j 6=i fg(xi, xj, ai;x)1{gj = g}. We assume
that mini,j∈N ming∈G fg(xi, xj, ai;x) ≥ c > 0.

Suppose that the equilibrium effect has a limiting approximation in the sense that
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for each g ∈ G,

max
i,j∈N

E[(fg(xi, xj, ai;x)− f ∗g (xi, xj, ai))4] = O(n−2), (A.3)

for some function 0 ≤ f ∗g (xi, xj, ai) ≤ 1 as n→∞, and mini,j∈N ming∈G f ∗g (xi, xj, ai) ≥
c∗ > 0.27

Lemma A.2. For w in Example A.5, Assumption 14 is satisfied with ς = (x, z, g,a).

Proof. See Appendix A.2.4.

A.2 Proofs

Notation We use ‖ · ‖ to denote the Euclidean norm. For an n× 1 vector x ∈ Rn

and an n× n matrix A ∈ Rn2 , we have ‖x‖ = (∑n
i=1 x

2
i )1/2 and ‖A‖ = (tr(AA′))1/2 =

(∑n
i=1

∑n
j=1 a

2
ij)1/2. For a function b(z) ∈ R and a nonnegative integer s, ‖b‖s denotes

the Sobolev norm of order s. Specifically, let ∂jb(z)
∂zj

denote the vector that consists of
all distinct jth-order partial derivatives of all elements of b(z), and let Z denote a set
that is contained in the support of z . We have ‖b‖s = maxj≤s supz∈Z ‖

∂jb(z)
∂zj
‖.

A.2.1 Proofs in Section 3

Proof of Proposition 3.1. Following Azevedo and Leshno (2016), we can show that
the cutoffs converge, that is, pn

p→ p∗ as n → ∞, and the limiting cutoffs p∗ are
non-stochastic.

For any p, the selection bias E[εi|x, z, g(z, ξ,η; p)] is continuous in p because the
cdf of the unobservables is continuous under Assumption 2(ii). Therefore, by the
continuous mapping theorem, we have

E[εi|x, z, g(z, ξ,η; pn)] p→ E[εi|x, z, g(z, ξ,η; p∗)]. (A.4)

Let x−i = (xj, j 6= i) and define z−i, g−i, ξ−i, η−i analogously. The selection bias
evaluated at the limiting cutoffs satisfies

E[εi|x, z, g(z, ξ,η; p∗)] = E[εi|xi,x−i, zi, z−i, gi(zi, ξi, ηi; p∗), g−i(z−i, ξ−i,η−i; p∗)]

= E[εi|xi, zi, gi(zi, ξi, ηi; p∗)], (A.5)
27Ridder and Sheng (2022, Section 5.2) demonstrated the existence of a limiting approximation.
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where the last equality holds because given the non-stochastic cutoffs, each gj in g−i
depends on individual j′s characteristics (zj, ξj, ηj) only and for all j 6= i, (xj, zj, ξj, ηj)
are independent of εi under Assumption 2(i). Combining equations (A.4) and (A.5)
completes the proof.

Proof of Proposition 3.2. The event that individual i joins group g can be represented
by the selection rules in equation (2.5). Hence, individual i’s selection bias from
joining group g is given by

E[εi|xi, zi, gi = g] = E[εi|zi, gi = g] = λg(τ oi ), (A.6)

where λg(τ oi ) := E[εi|ηgi ≥ pg − z′iδvg , and for all h 6= g, ξih− ξig < z′i(δug − δuh) or ηhi <
ph−z′iδvh]. The first equality follows from the exogeneity of xi (Assumption 2(iii)) and
the fact that gi is not a function of xi. The second equality follows from equation
(2.5) and the exogeneity of zi (Assumption 2(iii)).

A.2.2 Proofs in Section 4

Proof of Proposition 4.1. We focus on p in the proof and the identification of α can
be established similarly. Suppose that our goal is to identify the cutoff pg of group
g 6= 1. Take another group h 6= g, 1. Let σeh|g(pg − τ vig) := P(gi = h|pg − τ vig) = P(gi =
h|τ vig) denote the conditional probability that individual i joins group h given her
qualification index for group g. The last equality holds because pg is a constant, so
conditioning on pg−τ vig is the same as conditioning on τ vig. Similarly, let σeh|1(p1−τ vj1) :=
P(gj = h|p1 − τ vj1) = P(gj = h|τ vj1). By equation (2.5) and Assumption 3, σeh|g(·) and
σeh|1(·) have the same functional form, that is, σeh|g(·) = σeh|1(·) =: σeh(·). Moreover,
because the unobservables have a strictly increasing cdf (Assumption 4(ii)), σeh(·) is
strictly monotone. Therefore, for any i and j such that 0 < P(gi = h|τ vig) = P(gj =
h|τ vj1) < 1, because P(gi = h|τ vig) = σeh(pg − τ vig) and P(gj = h|τ vj1) = σeh(p1 − τ vj1),
we obtain pg − τ vig = p1 − τ vj1. This, together with Assumption 4(i), implies that
pg = τ vig − τ vj1 is identified.

Proof of Lemma 4.1. Suppose that the support of Xi − E[Xi|τ ei ] is contained in a
proper linear subspace of Rd. There is a d × 1 vector of constants k 6= 0 such that
k′(Xi−E[Xi|τ ei ]) = k′Xi−E[k′Xi|τ ei ] = 0 with probability 1. Because E[k′Xi|τ ei ] is a
function of τ ei , k′Xi is a function of τ ei with probability 1.

38



To show the reverse, let k 6= 0 be the d × 1 vector of constants such that k′Xi

is a function of τ ei with probability 1. This implies that with probability 1 we have
E[k′Xi|τ ei ] = k′Xi and thus k′(Xi − E[Xi|τ ei ]) = 0. Therefore, the support of Xi −
E[Xi|τ ei ] is contained in a proper linear subspace of Rd.

A.2.3 Proofs in Section 5

Proof of Proposition 5.1. Observe that p̂g = (G− 2)−1∑G
h=2,h 6=g p̂g,h, where

p̂g,h = 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

1
ζ2n

K2(
σ̂h|g(τ̂ vig)− σ̂h|1(τ̂ vj1)

ζ2n
)(τ̂ vig − τ̂ vj1)

for h 6= 1, g. To derive the asymptotic distribution of p̂g, we derive the influence
function of each p̂g,h, and take their average to obtain the influence function of p̂g.
Define τ̂ vi = (τ̂ vig, g ∈ G), σ̂h = (σ̂h|g, g ∈ G), and the function

hgn(τ̂ vi , τ̂ vj ; σ̂h) = 1
ζ2n

K2(
σ̂h|g(τ̂ vig)− σ̂h|1(τ̂ vj1)

ζ2n
)(τ̂ vig − τ̂ vj1). (A.7)

We can view p̂g,h as a V -statistic with the kernel hgn which is asymmetric in i and j.
We decompose

p̂g,h − pg = 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(hgn(τ̂ vi , τ̂ vj ; σ̂h)− hgn(τ vi , τ vj ;σh))

+ 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(hgn(τ vi , τ vj ;σh)− E[hgn(τ vi , τ vj ;σh)])

+E[hgn(τ vi , τ vj ;σh)]− pg
≡ T1n + T2n + T3n, (A.8)

where τ vi = (τ vig, g ∈ G) and σh = (σh|g, g ∈ G). The first term T1n captures the
estimation error due to the first-step estimators δ̂v and σ̂h, the second term T2n

captures the estimation error in the second step if properly centered, and the third
term T3n captures the bias due to kernel smoothing.

Lemmas O.B.1 and O.B.2 show that both T1n and T2n have an asymptotically
linear form, T1n = n−1∑n

i=1 ψg,h,1(zi, gi) + op(n−1/2) and T2n = n−1∑n
i=1 ψg,h,2(zi) +

op(n−1/2). Lemma O.B.3 shows that T3n = o(n−1/2) and is thus negligible. Averaging
over h 6= 1, g, we derive

√
n(p̂g−pg) = n−1/2∑n

i=1 ψg(zi, gi)+op(1), where ψg(zi, gi) =
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(G− 2)−1∑
h6=1,g(ψg,h,1(zi, gi) +ψg,h,2(zi)) and E[ψg(zi, gi)] = 0. By the Central Limit

Theorem, we have
√
n(p̂g − pg) d→ N(0, Vg), where Vg = Var(ψg(zi, gi)).

Proof of Theorem 5.1. Denote Q(γ, µZ) = m0(γ, µZ)′Wm0(γ, µZ) and Q̂n(γ, µZ) =
m̂n(γ, µZ)′Ŵ m̂n(γ, µZ). Fix δ > 0. Let Bδ(γ0) = {γ ∈ Γ : ‖γ − γ0‖ < δ} be an open
δ-ball centered at γ0. If Q(γ̂, µ̂Z) < infγ∈Γ\Bδ(γ0) Q(γ, µ̂Z), then γ̂ ∈ Bδ(γ0). Therefore,

Pr(‖γ − γ0‖ < δ) ≥ Pr(Q(γ̂, µ̂Z) < inf
γ∈Γ\Bδ(γ0)

Q(γ, µ̂Z)). (A.9)

From the triangle inequality and the optimality of γ̂, we obtain

Q(γ̂, µZ0 ) ≤ Q̂n(γ̂, µ̂Z) + |Q̂n(γ̂, µ̂Z)−Q(γ̂, µZ0 )| ≤ sup
γ∈Γ
|Q̂n(γ, µ̂Z)−Q(γ, µZ0 )|+ op(1).

The uniform convergence of the moment in Lemma O.C.1 together with Ŵ −W =
op(1) and the boundedness ofW and m0(γ, µZ) (Assumptions 11, 14(i), 15(i)) implies
that supγ∈Γ |Q̂n(γ, µ̂Z)−Q(γ, µZ0 )| = op(1), and hence Q(γ̂, µZ0 ) = op(1).

By Assumption 15(i),Wm0(γ, µZ) = 0 if and only if γ = γ0 and therefore Q(γ, µZ0 )
has a unique minimizer at γ = γ0. Hence, by the compactness of Γ \ Bδ(γ0) and the
continuity of Q(γ, µZ0 ), we have infγ∈Γ\Bδ(γ0) Q(γ, µZ0 ) = Q(γ̄, µZ0 ) > Q(γ0, µ

Z
0 ) = 0 for

some γ̄ ∈ Γ \ Bδ(γ0).
Combining the results we can see that the right-hand side of equation (A.9) goes

to 1, and the consistency of γ̂ is proved.

Proof of Theorem 5.2. For simplicity, we write τ si as τi. γ̂ satisfies the first-order
condition

∂m̂n(γ̂, µ̂Z)′
∂γ

Ŵm̂n(γ̂, µ̂Z) = 0. (A.10)

Expanding equation (A.10) around γ0 and solving for
√
n(γ̂ − γ0) gives

√
n(γ̂ − γ0) =−

(
∂m̂n(γ̂, µ̂Z)′

∂γ
Ŵ
∂m̂n(γ̄, µ̂Z)

∂γ′

)−1
∂m̂n(γ̂, µ̂Z)′

∂γ
Ŵ
√
nm̂n(γ0, µ̂

Z), (A.11)

where γ̄ is a mean value that lies between γ̂ and γ0.
Consider the derivatives in equation (A.11). We have

∂m̂n(γ, µ̂Z)
∂γ′

= 1
n

n∑
i=1

∂m(ωi, γ, µ̂Z(τ̂i))
∂γ′
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= − 1
n

n∑
i=1

(Zi − µ̂Z(τ̂i))X ′i

= − 1
n

n∑
i=1

(Zi − µZ0 (τi))X ′i + 1
n

n∑
i=1

(µ̂Z(τ̂i)− µZ0 (τi))X ′i

= − 1
n

n∑
i=1

(Zi − µZ0 (τi))X ′i + op(1),

where the last equality follows from Lemma O.C.2. By definitionMn = E[∂m̂n(γ,µZ0 )
∂γ′

] =
−n−1∑n

i=1 E[(Zi− µZ0 (τi))X ′i]. Lemma O.C.3 shows that n−1∑n
i=1((Zi− µZ0 (τi))X ′i −

E[(Zi − µZ0 (τi))X ′i]) = op(1). Therefore, ∂m̂n(γ,µ̂Z)
∂γ′

−Mn = op(1).
By Lemmas O.C.11 and O.C.12, the last term in equation (A.11) has the asymp-

totic distribution
√
nΩ−1/2

n m̂n(γ0, µ̂
Z) d→ N(0, IdZ ), where Ωn is defined in Lemma

O.C.12. By equation (A.11) and Slutsky’s theorem, we obtain
√
nΣ−1/2

n (γ̂ − γ0) d→
N(0, Idγ ), where Σn = (M ′

nWMn)−1M ′
nWΩnWMn(M ′

nWMn)−1.

A.2.4 Proofs in Appendix A.1

Proof of Lemma A.1. By construction, 9w9∞ = 1 and ‖w‖∞ ≤ 1
mini∈N ming∈G di,g .

Observe that 1
n−1(di,g − E[di,g|ςi]) = op(1) by the law of large numbers. Because

1
n−1E[di,g|ςi] > c for all i ∈ N and g ∈ G, we have E[ 1

mini∈N ming∈G( 1
n−1di,g)4 ] →

E[ 1
mini∈N ming∈G( 1

n−1E[di,g |ςi])4 ] < ∞ by dominated convergence and thus E[‖w‖4
∞] =

O(n−4). Conditional on (x, z, g), a is independent of ν, so we have E[νi|ς] =
E[νi|x, z, g] = 0. Moreover, conditional on ς, w is a function of ψ and is thus
independent of ν.28 Hence, Assumptions 14(i)–(iii) are satisfied.

To verify Assumptions 14(iv)–(vi), define wij,g = dij,g
di,g

, w̄ij,g = dij,g
E[di,g |ςi] , and eij,g =

wij,g − w̄ij,g. By Taylor expansion,

eij,g = − dij,g
E[di,g|ςi]2

(di,g − E[di,g|ςi]) + dij,g
E[di,g|ςi]3

(di,g − E[di,g|ςi])2 − · · · (A.12)

It suffices to consider the leading term in eij,g. Recall that di,g−E[di,g|ςi] = ∑
j 6=i rij,g,

where rij,g = dij,g1{gj = g}−E[dij,g1{gj = g}|ςi]. Note that |rij,g| ≤ 1 and E[rij,g|ςi] =
0. For any j 6= k, conditional on ςi, rij,g is a function of (xj, aj, ψij, gj) and rik,g is a

28Because (a,ψ) is independent of ν conditional on (x, z, g), we can show that ψ is independent
of ν conditional on ς.
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function of (xk, ak, ψik, gk), so rij,g and rik,g are independent. Therefore,

E[(di,g − E[di,g|ςi])4|ςi] =
∑

j,k,l,m 6=i
E[rij,grik,gril,grim,g|ςi]

=
∑
j 6=i

E[r4
ij,g|ςi] +

∑
j 6=k,j,k 6=i

E[r2
ij,gr

2
ik,g|ςi] ≤ O(n2).(A.13)

Combining equations (A.12) and (A.13) yields maxi,j∈N maxg∈G E[e4
ij,g] = O(n−6).

Further, summing over the groups we define w̄ij = ∑G
g=1 w̄ij,g1{gi = g}1{gj =

g} and eij = wij − w̄ij. From the previous results we obtain maxi,j∈N |w̄ij| ≤
1

mini∈N ming∈G E[di,g |ςi] ≤ O(n−1) and maxi,j∈N E[e4
ij] ≤ Gmaxi,j∈N maxg∈G E[e4

ij,g] =
O(n−6).

Assumption 14(v). For any disjoint {i, j} and {k, l}, we have Cov(wij, wkl|ς) =
Cov(wij, ekl|ς) = Cov(eij, ekl|ς). The first equality holds because conditional on ς,
wij is a function of (ψij̃, j̃ ∈ Ngi\{i}), where Ngi = {j : gj = gi}, and w̄kl is
a function of ψkl, so Cov(wij, w̄kl|ς) = 0. The second equality follows similarly
from Cov(w̄ij, ekl|ς) = 0. By Cauchy-Schwarz inequality and Jensen’s inequality,
E[Cov(eij, ekl|ς)2] ≤ CE[e4

ij]. Therefore, maxi,j,k,l∈N :{i,j}∩{k,l}=∅ E[Cov(wij, wkl|ς)2] =
O(n−6) = o(n−4/K) because K/n2 → 0.

Moreover, for any i, j ∈ N , E[wij|ς]− E[wij|ςi, ςj] = E[eij|ς]− E[eij|ςi, ςj] because
w̄ij depends on ς only through ςi and ςj and thus E[w̄ij|ς] = E[w̄ij|ςi, ςj]. We can bound
E[(E[eij|ς] − E[eij|ςi, ςj])4] ≤ CE[e4

ij]. Hence, maxi,j∈N E[(E[wij|ς] − E[wij|ςi, ςj])4] =
O(n−6) = o(n−4/K2) because K/n→ 0. Assumption 14(v) is satisfied.

Assumption 14(vi). For {i, j} and {k, l} that overlap in one element, w̄ij and
w̄kl are independent conditional on ς. Therefore, Cov(wij, wkl|ς) = Cov(eij, w̄kl|ς) +
Cov(w̄ij, ekl|ς) +Cov(eij, ekl|ς). By Cauchy-Schwarz inequality and Jensen’s inequal-
ity, we can bound E[Cov(eij, w̄kl|ς)2] ≤ C(E[e4

ij]E[w̄4
kl])1/2 = O(n−5) = o(n−4) uni-

formly. Assumption 14(vi) thus holds.
Assumption 14(iv). For any r ≥ 1, (wr)ij = ∑

(t0,...,tr):(t0,tr)=(i,j) ẇt0,...,tr , where
ẇt0,...,tr = ∏r−1

s=0 wtsts+1 and the sum is over tuples (t0, . . . , tr) with t0 = i and tr = j.
For any disjoint {i, j} and {k, l}, we can write

Cov(hij(wr)ij, hkl(wr̃)kl)

=
∑

(t0,...,tr,t̃0...,t̃r̃):(t0,tr,t̃0,t̃r̃)=(i,j,k,l),
{t0,...,tr}∩{t̃0...,t̃r̃}6=∅

Cov(hijẇt0,...,tr , hklẇt̃0,...,t̃r̃)
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+
∑

(t0,...,tr,t̃0...,t̃r̃):(t0,tr,t̃0,t̃r̃)=(i,j,k,l),
{t0,...,tr}∩{t̃0...,t̃r̃}=∅

Cov(hijẇt0,...,tr , hklẇt̃0,...,t̃r̃). (A.14)

The first sum in (A.14) consists of O(n(r+r̃)−3) terms, and each term can be bounded
uniformly by C(E[‖w‖r+r̃∞ ] + E[‖w‖r∞]E[‖w‖r̃∞]) = O(n−(r+r̃)). Hence, the first sum
in (A.14) is O(n(r+r̃)−3) · O(n−(r+r̃)) = o(n−2), uniformly in i, j, k, l, r, and r̃. The
second sum in (A.14) consists of O(n(r+r̃)−2) terms. To derive a uniform bound on
each term, for disjoint {t0, . . . , tr} and {t̃0, . . . , t̃r̃} with (t0, tr, t̃0, t̃r̃) = (i, j, k, l), we
write

Cov(hijẇt0,...,tr , hklẇt̃0,...,t̃r)

= E[hijhklCov(ẇt0,...,tr , ẇt̃0,...,t̃r |ς)] + Cov(hijE[ẇt0,...,tr |ς], hklE[ẇt̃0,...,t̃r |ς]).

Define ˙̄wt0,...,tr = ∏r−1
s=0 w̄tsts+1 and et0,...,tr = ẇt0,...,tr − ˙̄wt0,...,tr . For any t0, . . . , tr, by

continuous mapping and Slutsky’s theorem we can bound et0,...,tr uniformly by op(n−r).
Observe that Cov(ẇt0,...,tr , ẇt̃0,...,t̃r̃ |ς) = Cov(ẇt0,...,tr , et̃0,...,t̃r̃ |ς) = Cov(et0,...,tr , et̃0,...,t̃r̃ |ς).
The first equality holds because conditional on ς, ẇt0,...,tr is a function of (ψtsj, j ∈
Ngts\{ts}, s = 0, . . . , r − 1) and ˙̄wt̃0,...,t̃r̃ is a function of (ψt̃s t̃s+1 , s = 0, . . . , r̃ − 1),
and thus Cov(ẇt0,...,tr , ˙̄wt̃0,...,t̃r̃ |ς) = 0. The second equality follows similarly from
Cov( ˙̄wt0,...,tr , et̃0,...,t̃r̃ |ς) = 0. Therefore, from the boundedness of hij and dominated
convergence, we obtain that E[hijhklCov(ẇt0,...,tr , ẇt̃0,...,t̃r |ς)] has a uniform bound that
is of the rate of o(n−(r+r̃)).

Moreover, because ˙̄wt0,...,tr depends on ς only through ςt0 , . . . , ςtr , E[ ˙̄wt0,...,tr |ς] =
E[ ˙̄wt0,...,tr |ςt0 , . . . , ςtr ]. For disjoint {t0, . . . , tr} and {t̃0 . . . , t̃r̃} with (t0, tr, t̃0, t̃r̃) =
(i, j, k, l), hijE[ ˙̄wt0,...,tr |ςt0 , . . . , ςtr ] and hklE[ ˙̄wt̃0,...,t̃r̃ |ςt̃0 , . . . , ςt̃r̃ ] are independent. Hence,
Cov(hijE[ẇt0,...,tr |ς], hklE[ẇt̃0,...,t̃r |ς]) = Cov(hijE[ ˙̄wt0,...,tr |ςt0 , . . . , ςtr ]), hklE[et̃0,...,t̃r |ς])+
Cov(hijE[et0,...,tr |ς], hklE[ ˙̄wt̃0,...,t̃r |ςt̃0 , . . . , ςt̃r̃ ])+Cov(hijE[et0,...,tr |ς], hklE[et̃0,...,t̃r |ς]). Sim-
ilarly as before, we can derive that Cov(hijE[ẇt0,...,tr |ς], hklE[ẇt̃0,...,t̃r |ς]) has a uniform
bound that is o(n−(r+r̃)). Combining the results yields Assumption 14(iv).

Proof of Lemma A.2. For any j 6= k, conditional on ς, dij,g is a function of ψij and
dik,g is a function of ψik, so dij,g and dik,g are independent. Hence, we obtain E[(di,g−
E[di,g|ς])2] = O(n) and thus 1

n−1(di,g−E[di,g|ς]) = op(1). Note that c < 1
n−1E[di,g|ς] ≤

1 for all i ∈ N and g ∈ G. Following the argument in Lemma A.1, we can show that
Assumptions 14(i)–(iii) are satisfied.
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To verify Assumptions 14(iv)–(vi), modify w̄ij,g and eij,g in Lemma A.1 with w̄ij,g =
dij,g

E[di,g |ς] and eij,g = wij,g − w̄ij,g. Write di,g − E[di,g|ς] = ∑
j 6=i rij,g, where rij,g =

dij,g1{gj = g} − E[dij,g1{gj = g}|ς]. Observe that |rij,g| ≤ 1 and E[rij,g|ς] = 0. For
any j 6= k, rij,g and rik,g are independent conditional on ς. Therefore, we have

E[(di,g − E[di,g|ς])4|ς] =
∑

j,k,l,m 6=i
E[rij,grik,gril,grim,g|ς]

=
∑
j 6=i

E[r4
ij,g|ς] +

∑
j 6=k,j,k 6=i

E[r2
ij,gr

2
ik,g|ς] ≤ O(n2). (A.15)

Combining a modification of equation (A.12) where we replace E[di,g|ςi] with E[di,g|ς]
and equation (A.15) yields maxi,j∈N maxg∈G E[e4

ij,g] = O(n−6). Further, summing
over the groups we define w̄ij = ∑G

g=1 w̄ij,g1{gi = g}1{gj = g} and eij = wij − w̄ij.
From the previous results we obtain maxi,j∈N |w̄ij| ≤ 1

mini∈N ming∈G E[di,g |ς] ≤ O(n−1)
and maxi,j∈N E[e4

ij] ≤ Gmaxi,j∈N maxg∈G E[e4
ij,g] = O(n−6). Conditional on ς, w̄ij is

a function of ψij.
With the modified w̄ij, the rest of the proof in Lemma A.1 still holds, except

that w̄ij also depends on ςk, k 6= i, j, due to the presence of strategic interactions.
In fact, E[w̄ij|ς] = ∑G

g=1 E[w̄ij,g|ς]1{gi = g}1{gj = g} and E[w̄ij,g|ς] = E[dij,g |ς]
E[di,g |ς] =

fij,g∑
k 6=i fik,g1{gk=g} , where fij,g is shorthand for fg(xi, xj, ai;x). To overcome this prob-

lem, we exploit the limiting approximation in equation (A.3).
Define d∗ij,g = 1{f ∗ij,g ≥ ψij} for i 6= j, d∗ii,g = 0, and d∗i,g = ∑n

j=1 d
∗
ij,g1{gj = g},

where f ∗ij,g is shorthand for f ∗g (xi, xj, ai). Define w̄∗ij,g = d∗ij,g
E[d∗i,g |ςi]

, e∗ij,g = w̄ij,g − w̄∗ij,g,
w̄∗ij = ∑G

g=1 w̄
∗
ij,g1{gi = g}1{gj = g}, and e∗ij = w̄ij − w̄∗ij. Note that wij = eij +

e∗ij + w̄∗ij. Because E[w̄∗ij|ς] = E[w̄∗ij|ςi, ςj], we can write E[wij|ς] − E[wij|ςi, ςj] =
E[eij|ς]−E[eij|ςi, ςj]+E[e∗ij|ς]−E[e∗ij|ςi, ςj]. The proof in Lemma A.1 provides a bound
for E[eij|ς]−E[eij|ςi, ςj]. Here we derive a similar bound for E[e∗ij|ς]−E[e∗ij|ςi, ςj]. By
Taylor expansion,

e∗ij,g = 1
E[d∗i,g|ςi]

(dij,g − d∗ij,g)−
d∗ij,g

E[d∗i,g|ςi]2
(E[di,g|ς]− E[d∗i,g|ςi])

− 1
E[d∗i,g|ςi]2

(dij,g − d∗ij,g)(E[di,g|ς]− E[d∗i,g|ςi])

+
d∗ij,g

E[d∗i,g|ςi]3
(E[di,g|ς]− E[d∗i,g|ςi])2 − · · · (A.16)
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It suffices to consider the first two leading terms. By equation (A.3), we derive
E[E[dij,g − d∗ij,g|ς]4] = E[(fij,g − f ∗ij,g)4] = O(n−2) uniformly. Moreover, observe that
E[di,g|ς] = ∑

j 6=i fij,g1{gj = g}, E[d∗i,g|ς] = ∑
j 6=i f

∗
ij,g1{gj = g}, and E[d∗i,g|ςi] =∑

j 6=i E[f ∗ij,g1{gj = g}|ςi]. By Cauchy-Schwarz inequality and equation (A.3), we
can bound E[(E[di,g|ς] − E[d∗i,g|ς])4] ≤ (n − 1)4 maxi,j∈N maxg∈G E[(fij,g − f ∗ij,g)4] =
O(n2). Next, note that for any j 6= k, f ∗ij,g1{gj = g} and f ∗ik,g1{gk = g} are
independent conditional on ςi. Similarly as in equation (A.13), we can thus de-
rive E[(E[d∗i,g|ς] − E[d∗i,g|ςi])4] = O(n2) uniformly. Therefore, by (a + b)4 ≤ 8(a4 +
b4), we obtain E[(E[di,g|ς] − E[d∗i,g|ςi])4] = O(n2) uniformly. Combining these re-
sults with equation (A.16) yields maxi,j∈N maxg∈G E[E[e∗ij,g|ς]4] = O(n−6) and hence
maxi,j∈N E[E[e∗ij|ς]4] ≤ Gmaxi,j∈N maxg∈G E[E[e∗ij,g|ς]4] = O(n−6). By iterated expec-
tations and Jensen’s inequality E[E[e∗ij|ςi, ςj]4] ≤ E[E[e∗ij|ς]4], so we obtain the uniform
bound maxi,j∈N E[(E[e∗ij|ς] − E[e∗ij|ςi, ςj])4] ≤ C maxi,j∈N E[E[e∗ij|ς]4] = O(n−6). This
proves that Assumption 14(vi) is satisfied.

Assumption 14(v) can be justified by the same proof as in Lemma A.1. As for
Assumption 14(iv), the proof in Lemma A.1 remains valid except the last paragraph.
Define ˙̄w∗t0,...,tr = ∏r−1

s=0 w̄
∗
tsts+1 . Because ˙̄w∗t0,...,tr depends on ς only through ςt0 , . . . , ςtr ,

E[ ˙̄w∗t0,...,tr |ς] = E[ ˙̄w∗t0,...,tr |ςt0 , . . . , ςtr ]. For disjoint {t0, . . . , tr} and {t̃0 . . . , t̃r̃} with
(t0, tr, t̃0, t̃r̃) = (i, j, k, l), hijE[ ˙̄w∗t0,...,tr |ςt0 , . . . , ςtr ] and hklE[ ˙̄w∗t̃0,...,t̃r̃ |ςt̃0 , . . . , ςt̃r̃ ] are in-
dependent. Using a similar argument as in Lemma A.1 with ˙̄w∗t0,...,tr in place of
˙̄wt0,...,tr , we derive that Cov(hijE[ẇt0,...,tr |ς], hklE[ẇt̃0,...,t̃r |ς]) has a uniform bound that
is o(n−(r+r̃)). Assumption 14(iv) is thus satisfied.
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Online Appendix to

Social Interactions with Endogenous Group
Formation

Shuyang Sheng Xiaoting Sun

O.A Simulations: Group Formation Parameters

The parameters to be estimated include the group formation parameters δ, the group
fixed effects α, and the cutoffs p, a total of 14 parameters. We use maximum simulated
likelihood (MSL) for estimation. Let η(1)

i , . . . , η(R) be R draws from the multivariate
standard normal distribution. The simulated conditional probability for each g ∈ G
is

σ̌g(zi) = 1
R

R∑
r=1

exp
(
αg + δu1z

u
1,ig + δu2z2,i

)
· 1
(
δv1z

v
1,ig + δv2z2,i + η

(r)
gi ≥ pg

)
G∑
k=1

exp
(
αk + δu1z

u
1,ik + δu2z2,i

)
· 1
(
δv1z

v
1,ik + δv2z2,i + η

(r)
ki ≥ pk

)
+ 1

,

and for those who do not join any group,

σ̌0(zi) = 1
R

R∑
r=1

1
G∑
k=1

exp
(
αk + δu1z

u
1,ik + δu2z2,i

)
· 1
(
δv1z

v
1,ik + δv2z2,i + η

(r)
ki ≥ pk

)
+ 1

.

The MSL estimator (δ̂, α̂, p̂) maximizes

L(δ, α, p) = 1
n

n∑
i=1

G∑
g=0

1 (gi = g) log σ̌g(zi).

To mitigate the numerical difficulties caused by the nonsmoothness of the indica-
tor functions, we replace 1

(
δv1z

v
1,ig + δv2z2,i + η

(r)
gi ≥ pg

)
with a smoothed A-R simula-

tor(McFadden, 1989; Train, 2009) 1/(1 + exp(pg − (δv1zv1,ig + δv2z2,i + η
(r)
gi ))/κ), where
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κ > 0 is a scale factor which we specify as 0.05.29 The estimation results are presented
in Table O.A.1.

Table O.A.1: Estimation Results for Group Formation
Group formation parameters Group fixed effects Cutoffs

bias sd bias sd bias sd
δu1 0.026 0.073 α1 0.101 0.652 p1 0.048 0.142
δv1 0.025 0.196 α2 0.049 0.472 p2 0.014 0.163
δu2 -0.047 0.039 α3 -0.031 0.448 p3 0.002 0.163
δv2 -0.069 0.044 α4 -0.044 0.467 p4 -0.027 0.177

α5 -0.056 0.519 p5 0.004 0.226
Note: This table presents estimates for the coefficients of the group formation model. The
coefficients are estimated using 200 MC samples, where each sample contains 5 groups
and 2,000 individuals.

O.B Lemmas in the Asymptotic Analysis of p̂ and
α̂

Notation Define τ vi (δv) = (τ vig(δvg), g ∈ G). Then τ vi = τ vi (δv) and τ̂ vi = τ vi (δ̂v).
Similarly, for h 6= 1, g, define σh(δv) = (σh|g(τ vig(δvg)), σh|1(τ vi1(δv1))) and σ̂h(δv) =
(σ̂h|g(τ vig(δvg)), σ̂h|1(τ vi1(δv1))). We have σh = σh(δv) and σ̂h = σ̂h(δ̂v). For any g 6= h,
define πh|g,i = σh|g(τ vig) and π̂h|g,i = σ̂h|g(τ vig). Under Assumption 4(ii), the inverse
of σh|g(·) exists and hence τ vig = σ−1

h|g(πh|g,i).30 Let fπh|g denote the pdf of πh|g,i. Let
0 < C <∞ denote a universal constant.

Lemma O.B.1. The term T1n in equation (A.8) satisfies T1n = n−1∑n
i=1 ψg,h,1(zi, gi)+

op(n−1/2), where ψg,h,1(zi, gi) is defined in equation (O.B.10).

Proof. We decompose T1n as

T1n = 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(hgn(τ̂ vi , τ̂ vj ; σ̂h(δ̂v))− hgn(τ vi , τ vj ; σ̂h(δv)))

+ 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(hgn(τ vi , τ vj ; σ̂h(δv))− hgn(τ vi , τ vj ;σh))

29The smaller κ is, the better the simulator approximates the indicator function.
30Under Assumption 4(ii), we can show that σh|g(τ) is strictly monotone for all τ and thus its

inverse function σ−1
h|g(τ) exists.
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≡ T δ1n + T σ1n, (O.B.1)

where T δ1n captures the estimation error due to δ̂v, and T σ1n captures the estimation
error due to σ̂h.

Step 1: we start with T σ1n in equation (O.B.1). Define the remainder term

Rn,ij = 1
ζ2n

K2( π̂h|g,i − π̂h|1,j
ζ2n

)− 1
ζ2n

K2(πh|g,i − πh|1,j
ζ2n

)

− 1
ζ2

2n
K ′2(πh|g,i − πh|1,j

ζ2n
)((π̂h|g,i − πh|g,i)− (π̂h|1,j − πh|1,j))

= 1
2ζ
−3
2nK

′′
2 (4n,ij)((π̂h|g,i − πh|g,i)− (π̂h|1,j − πh|1,j))2,

where the last equality follows by Taylor expansion, with 4n,ij an intermediate value
between π̂h|g,i−π̂h|1,j

ζ2n
and πh|g,i−πh|1,j

ζ2n
. We can write

T σ1n = 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

1
ζ2

2n
K ′2(πh|g,i − πh|1,j

ζ2n
)(τ vig − τ vj1)

·((π̂h|g,i − πh|g,i)− (π̂h|1,j − πh|1,j))

+ 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

Rn,ij(τ vig − τ vj1).

For any g 6= h, write π̂h|g,i = b̂h|g(τ vig)/b̂g(τ vig), where b̂h|g(τ vig) = 1
nζ1n

∑n
k=1 1{gk =

h}K1( τ
v
ig−τ

v
kg

ζ1n
) and b̂g(τ vig) = 1

nζ1n

∑n
k=1K1( τ

v
ig−τ

v
kg

ζ1n
). Moreover, let bg(τ vig) denote the

pdf of τ vig, and define bh|g(τ vig) = πh|g,ibg(τ vig). We express π̂h|g,i − πh|g,i as a linear
functional of the kernel estimators b̂h|g and b̂g. Specifically, we follow Newey and
McFadden (1994, p.2204) and Newey (1994b, Lemma B.3)31 and derive

max
i
|π̂h|g,i − πh|g,i − 1/bg(τ vig)(b̂h|g(τ vig)− b̂g(τ vig)πh|g,i)|

≤ max
i

1/(|b̂g(τ vig)|bg(τ vig))(1 + πh|g,i)((b̂h|g(τ vig)− bh|g(τ vig))2 + (b̂g(τ vig)− bg(τ vig))2)

≤ Op(1) sup
τ

((b̂h|g(τ)− bh|g(τ))2 + (b̂g(τ)− bg(τ))2)

= Op(((lnn)1/2(nζ1n)−1/2 + ζs1
1n)2), (O.B.2)

31Lemma B.3 in Newey (1994b) holds by Assumptions 6, 8(ii)(iii), 10(i), 11(i), and n1/2ζ1n/ lnn→
∞. The last condition is implied by Assumption 9(ii). To see this, note that the second condition of
Assumption 9(ii) implies that nζ3

1n →∞, or ζ1n = cnn
−1/3 with cn →∞. Therefore, n1/2ζ1n/ lnn =

cnn
1/2/ lnn→∞, and Lemma B.3 in Newey (1994b) holds under the assumptions we impose here.
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where the second inequality holds because bg(·) is bounded away from zero under
Assumption 8(i) and b̂g(·) is uniformly close to bg(·). Under Assumption 9(i), we
can bound the linearization error as ζ−2

2n maxi |π̂h|g,i − πh|g,i − 1/bg(τ vig)(b̂h|g(τ vig) −
b̂g(τ vig)πh|g,i)| = op(n−1/2) and similarly ζ−2

2n maxi,j |π̂h|1,i − πh|1,i − 1/b1(τ vi1)(b̂h|1(τ vi1)−
b̂1(τ vi1)πh|1,i)| = op(n−1/2). Applying the boundedness of K ′2(·) and τ vig (Assumptions
7(ii)(iii), 10(i), and 11(i)) we can see that the overall linearization error is op(n−1/2).

Further, observe that maxi |1/bg(τ vig)(b̂h|g(τ vig) − b̂g(τ vig)πh|g,i)| ≤ C supτ (|b̂h|g(τ) −
bh|g(τ)|+|b̂g(τ)−bg(τ)|) = Op((lnn)1/2(nζ1n)−1/2+ζs1

1n) by Newey (1994b, Lemma B.3).
Combining this with equation (O.B.2) yields maxi |π̂h|g,i−πh|g,i| = Op((lnn)1/2(nζ1n)−1/2+
ζs1

1n) and similarly for π̂h|1,j−πh|1,j. Hence, by Assumptions 7(ii)(iii), Assumption 8(i),
9(i), 10(i), and 11(i), the remainder term is negligible, that is, 1

n(n−1)
∑n
i=1

∑n
j=1,j 6=i |Rn,ij(τ vig−

τ vj1)| = ζ−3
2n Op(((lnn)1/2(nζ1n)−1/2 + ζs1

1n)2) = op(n−1/2).
Overall, we obtain

T σ1n = 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

1
ζ2

2n
K ′2(πh|g,i − πh|1,j

ζ2n
)(τ vig − τ vj1)

·

 b̂h|g(τ vig)− b̂g(τ vig)πh|g,i
bg(τ vig)

−
b̂h|1(τ vj1)− b̂1(τ vj1)πh|1,j

b1(τ vj1)

+ op(n−1/2).(O.B.3)

Let ωi = (τ vi , gi). Plugging in the expressions of the kernel estimators, we can further
write

T σ1n = 1
n2(n− 1)

n∑
i=1

n∑
j=1

n∑
k=1

1{i 6= j}qn(ωi, ωj, ωk) + op(n−1/2)

= 1
n(n− 1)(n− 2)

n∑
i=1

n∑
j=1

n∑
k=1

1{i 6= j 6= k}qn(ωi, ωj, ωk) + op(n−1/2)

≡ Qn + op(n−1/2), (O.B.4)

where

qn(ωi, ωj, ωk)

= 1
ζ1nζ2

2n
K ′2(πh|g,i − πh|1,j

ζ2n
)(τ vig − τ vj1)

·
(
K1(

τ vig − τ vkg
ζ1n

)1{gk = h} − πh|g,i
bg(τ vig)

−K1(
τ vj1 − τ vk1

ζ1n
)1{gk = h} − πh|1,j

b1(τ vj1)

)
.
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The second equality in (O.B.4) follows because the terms with i = k or j = k are
negligible.32 Qn is a V -statistic of degree 3 with an asymmetric kernel function.

We derive an asymptotically linear representation of Qn using the idea of Ho-
effding projection (Hoeffding, 1948). Let I = (i1, i2, i3) with i1 6= i2 6= i3 and
ωI = (ωi : i ∈ I). We can write Qn = 1

n(n−1)(n−2)
∑
I qn(ωI). Define q∗n(ωi) =

1
(n−1)(n−2)

∑
I:i∈I E[qn(ωI)|ωi] and Q∗n = 1

n

∑n
i=1 q

∗
n(ωi) − 2E[qn(ωI)]. Observe that

E[q∗n(ωi)] = 3E[qn(ωI)] and thus E[Qn − Q∗n] = 0.33 By construction, we obtain
Cov(Qn, Q

∗
n) = n−1∑n

i=1 Cov(Qn, q
∗
n(ωi)) and for each i,

Cov(Qn, q
∗
n(ωi)) = 1

n(n− 1)(n− 2)
∑
I:i∈I

Cov(qn(ωI), q∗n(ωi))

= 1
n(n− 1)(n− 2)

∑
I:i∈I

Cov(E[qn(ωI)|ωi], q∗n(ωi))

= 1
n
Var(q∗n(ωi)),

where the first equality holds because for i /∈ I we have Cov(qn(ωI), q∗n(ωi)) = 0, and
the second equality holds by iterated expectations. It then follows that Cov(Qn, Q

∗
n) =

n−2∑n
i=1 Var(q∗n(ωi)) = Var(Q∗n) and hence E[(Qn −Q∗n)2] = Var(Qn)−Var(Q∗n). By

Markov inequality, we obtain Qn = Q∗n + op(n−1/2) if Var(Qn)− Var(Q∗n) = o(n−1).
To show the last result, note that qn(ωI) and qn(ωJ) are independent for disjoint

I and J . Therefore,

Var(Qn) = 1
(n(n− 1)(n− 2))2

∑
(I,J):|I∩J |=1

Cov(qn(ωI), qn(ωJ))

+ 1
(n(n− 1)(n− 2))2

∑
(I,J):|I∩J |>1

Cov(qn(ωI), qn(ωJ)). (O.B.5)

For comparison, because Var(Q∗n) = n−2∑n
i=1 Var(q∗n(ωi)) we can write

Var(Q∗n)

= 1
(n(n− 1)(n− 2))2

n∑
i=1

∑
(I,J):{i}=I∩J

Cov(E[qn(ωI)|ωi],E[qn(ωJ)|ωi])

32The terms with i = k are negligible because 1
n2(n−1)

∑n
i=1
∑n
j=1 1{i 6= j}qn(ωi, ωj , ωi) ≤

(nζ1nζ
2
2n)−1 supt |K1(t)| supt |K ′2(t)| 1

n(n−1)
∑n
i=1
∑n
j=1 1{i 6= j}|τvig − τvj1|(1/bg(τvig) + 1/b1(τvj1)) =

Op((nζ1nζ
2
2n)−1) = op(n−1/2) by Assumptions 6(ii)(iii), 7(ii)(iii), 8(i), 9(iii), 10(i), and 11(i). A

similar argument shows that the terms with j = k are negligible.
33The sum over I with i ∈ I consists of 3(n− 1)(n− 2) terms.
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+ 1
(n(n− 1)(n− 2))2

n∑
i=1

∑
(I,J):{i}(I∩J

Cov(E[qn(ωI)|ωi],E[qn(ωJ)|ωi]).(O.B.6)

For I and J such that {i} = I∩J , qn(ωI) and qn(ωJ) are independent conditional on ωi
and thus Cov(qn(ωI), qn(ωJ)) = Cov(E[qn(ωI)|ωi],E[qn(ωJ)|ωi]). This implies that the
first sum in Var(Qn) is equal to the first sum in Var(Q∗n). Moreover, the second sums
in both Var(Qn) and Var(Q∗n) consist of O(n4) terms. For any I and J , by Assump-
tions 6(ii)(iii), 7(ii)(iii), 8(i), 10(i), and 11(i), we can bound both Cov(qn(ωI), qn(ωJ))
and Cov(E[qn(ωI)|ωi],E[qn(ωJ)|ωi]) uniformly by O(ζ−2

1n ζ
−4
2n ). Therefore, the second

sums in Var(Qn) and Var(Q∗n) are both (n(n − 1)(n − 2))−2 · O(n4) · O(ζ−2
1n ζ

−4
2n ) =

O(n−2ζ−2
1n ζ

−4
2n ) = o(n−1) by Assumption 9(iii). Combining the results yields Var(Qn)−

Var(Q∗n) = o(n−1) and thus Qn = Q∗n + op(n−1/2).
Now we calculate the influence function of Q∗n. Because ωi = (τ vi , gi) are i.i.d.,

to calculate q∗n(ωi) it is sufficient to consider E[qn(ωI)|ωi] for the three cases where
i appears as the first, second, or third element of I. Fix i 6= j 6= k. We start
with the case where i appears as the third element (i.e., E[qn(ωj, ωk, ωi)|ωi]). Write
qn(ωj, ωk, ωi) = qgn(ωj, ωk, ωi) − q1n(ωj, ωk, ωi). Note that conditional on ωi, τ vig and
πh|g,i = σh|g(τ vig) are constants. By the change of variables t = ζ−1

2n (πh|g,j − πh|1,k) and
using τ vk1 = σ−1

h|1(πh|1,k), we obtain

E[qgn(ωj, ωk, ωi)|ωi, ωj] = 1
ζ1n

K1(
τ vjg − τ vig
ζ1n

)1{gi = h} − πh|g,j
bg(τ vjg)

·
∫ 1
ζ2n

K ′2(t)(σ−1
h|1(πh|g,j − tζ2n)− τ vjg)fπh|1(πh|g,j − tζ2n)dt.

Moreover, by Assumptions 7(i)(iii), 8(ii)(iii), 10(i), and 11(i),34 we obtain
∫ 1
ζ2n

K ′2(t)(σ−1
h|1(πh|g,j − tζ2n)− τ vjg)fπh|1(πh|g,j − tζ2n)dt

=
∫
K2(t)

∂((τ vjg − σ−1
h|1(πh|g,j − tζ2n))fπh|1(πh|g,j − tζ2n))

∂πh|g,j
dt

34For any g ∈ G, by definition πh|g,i = σh|g(τvig) and thus fπh|g
(πh|g,i) =

bg(σ−1
h|g(πh|g,i))|(σ

−1
h|g)
′(πh|g,i)| = bg(τvig)|(σ−1

h|g)
′(πh|g,i)|. By the chain rule, the (s2 + 2)th order con-

tinuous differentiability of σh|g(τ) (Assumption 8(iii)) implies that σ−1
h|g(τ) is (s2 + 2)th continuously

differentiable. Because bg is (s2 +1)th continuously differentiable (Assumption 8(ii)), we derive that
fπh|g

is (s2 + 1)th continuously differentiable. The boundedness of τvig (Assumptions 10(i) and 11(i))
then implies that the (s2 + 1)th derivative of fπh|g

is bounded.
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=
∂((τ vjg − σ−1

h|1(πh|g,j))fπh|1(πh|g,j))
∂πh|g,j

+ rgn(τ vjg),

with maxi,j |rgn(τ vjg)| ≤ Cζs2
2n and hence

E[qgn(ωj, ωk, ωi)|ωi]

= E[E[qgn(ωj, ωk, ωi)|ωi, ωj]|ωi]

=
∫
K1(t)(1{gi = h} − σh|g(τ vig + tζ1n))

·

∂(τ vig + tζ1n − σ−1
h|1(σh|g(τ vig + tζ1n)))fπh|1(σh|g(τ vig + tζ1n))

∂σh|g((τ vig + tζ1n)) + rgn(τ vig + tζ1n)
 dt

= (1{gi = h} − πh|g,i)
∂(τ vig − σ−1

h|1(πh|g,i))fπh|1(πh|g,i)
∂πh|g,i

+ rgn,i,

with maxi |rgn,i| ≤ C(ζs1
1n + ζs2

2n). The second equality follows from the change of
variables t = ζ−1

1n (τ vjg− τ vig),35 and the last equality follows from Taylor expansion and
Assumptions 6(i), 8(ii)(iii), 10(i), and 11(i). The form of E[q1n(ωj, ωk, ωi)|ωi] can be
derived similarly. Overall, we obtain E[qn(ωj, ωk, ωi)|ωi] = ψσg,h(ωi) + rn,i, where

ψσg,h(ωi) = (1{gi = h} − πh|g,i)
∂(τ vig − σ−1

h|1(πh|g,i))fπh|1(πh|g,i)
∂πh|g,i

−(1{gi = h} − πh|1,i)
∂(τ vi1 − σ−1

h|g(πh|1,i))fπh|g(πh|1,i)
∂πh|g,i

, (O.B.7)

and rn,i satisfies maxi |rn,i| ≤ C(ζs1
1n+ζs2

2n). Using similar arguments, we can show that
both maxi |E[qn(ωi, ωj, ωk)|ωi]| and maxi |E[qn(ωj, ωi, ωk)|ωi]| are bounded by Cζs1

1n.
We obtain q∗n(ωi) = E[qn(ωj, ωk, ωi)|ωi] + E[qn(ωi, ωj, ωk)|ωi] + E[qn(ωj, ωi, ωk)|ωi] =
ψσg,h(ωi) + r∗n,i, where maxi |r∗n,i| ≤ C(ζs1

1n + ζs2
2n).

Note that E[1{gi = h} − πh|g,i|τ vig] = 0, so E[ψσg,h(ωi)] = 0. This together with
maxi |r∗n,i| ≤ C(ζs1

1n + ζs2
2n) and Assumption 9(iv)(v) yields E[q∗n(ωi)] = o(n−1/2). It

follows that T σ1n = Q∗n + op(n−1/2) = 1
n

∑n
i=1 ψ

σ
g,h(ωi) + op(n−1/2).

Step 2: now we examine T δ1n in equation (O.B.1). Under Assumption 6(ii) σ̂h is
twice differentiable in δ, so by applying the Taylor expansion we obtain hgn(τ̂ vi , τ̂ vj ; σ̂h(δ̂v))−
hgn(τ vi , τ vj ; σ̂h(δv)) = ∂hgn(τvi ,τ

v
j ;σ̂h(δv))

∂δv′
(δ̂v − δv) + Op(‖δ̂v − δv‖2). Because δ̂v − δv =

n−1∑n
i=1 ψ

δv(zi)+op(n−1/2), where ψδv(zi) is the influence function of δ̂v with E[ψδv(zi)] =
35Recall that bg(τvjg) is the density of τvjg, so the two cancel out.
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0 (Assumption 10(ii)), we have

T δ1n = 1
n

n∑
k=1

 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

∂hgn(τ vi , τ vj ; σ̂h(δv))
∂δv′

ψδv(zk) + op(n−1/2).

The double sum term in parentheses is a V -statistic with a nested kernel estimator
σ̂h(δv).

Observe that ∂hgn(τvi ,τ
v
j ;σ̂h(δv))

∂δv′
= (∂hgn(τvi ,τ

v
j ;σ̂h(δv))

∂δv′1
, . . . ,

∂hgn(τvi ,τ
v
j ;σ̂h(δv))

∂δv′G
), where

∂hgn(τ vi , τ vj ; σ̂h(δv))
∂δv′1

= − 1
ζ2

2n
K ′2( π̂h|g,i − π̂h|1,j

ζ2n
)σ̂′h|1(τ vj1)(τ vig − τ vj1)z′j

− 1
ζ2n

K2( π̂h|g,i − π̂h|1,j
ζ2n

)z′j
∂hgn(τ vi , τ vj ; σ̂h(δv))

∂δv′g
= 1

ζ2
2n
K ′2( π̂h|g,i − π̂h|1,j

ζ2n
)σ̂′h|g(τ vig)(τ vig − τ vj1)z′i

+ 1
ζ2n

K2( π̂h|g,i − π̂h|1,j
ζ2n

)z′i,

and the remaining G − 2 subvectors equal to zero. We focus on the gth subvector,
and the first subvector can be analyzed similarly. Applying the mean-value theorem
(with 4n,ij an intermediate value), we obtain the bound

ζ−1
2n max

i,j

∣∣∣∣∣K2( π̂h|g,i − π̂h|1,j
ζ2n

)−K2(πh|g,i − πh|1,j
ζ2n

)
∣∣∣∣∣

≤ ζ−2
2n max

i,j
|K ′2(∆n,ij)||π̂h|g,i − πh|g,i − (π̂h|1,j − πh|1,j)|

= ζ−2
2n Op((lnn)1/2(nζ1n)−1/2 + ζs1

1n) = op(1)

by Assumptions 7(ii)(iii), 9(ii), and Newey (1994b, Lemma B.3). Similarly, we have

ζ−2
2n max

i,j

∣∣∣∣∣K ′2( π̂h|g,i − π̂h|1,j
ζ2n

)σ̂′h|g(τ vig)−K ′2(πh|g,i − πh|1,j
ζ2n

)σ′h|g(τ vig)
∣∣∣∣∣

≤ ζ−2
2n max

i,j

∣∣∣∣∣K ′2( π̂h|g,i − π̂h|1,j
ζ2n

)
∣∣∣∣∣ sup

τ
|σ̂′h|g(τ vig)− σ′h|g(τ vig)|

+ζ−2
2n max

i,j

∣∣∣∣∣K ′2( π̂h|g,i − π̂h|1,j
ζ2n

)−K ′2(πh|g,i − πh|1,j
ζ2n

)
∣∣∣∣∣ sup

τ
|σ′h|g(τ vig)|

= ζ−2
2n Op((lnn)1/2(nζ3

1n)−1/2 + ζs1
1n) + ζ−3

2n Op((lnn)1/2(nζ1n)−1/2 + ζs1
1n) = op(1).
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by Assumptions 7(ii)(iii), 8(i)(ii), 9(ii), 10(i), 11(i), Sun (2019, Lemma 3) and Newey
(1994b, Lemma B.3).Therefore, by the boundedness of τ vig and zi (Assumptions 10(i)
and 11(i)), we have the approximation

∥∥∥∥∥∥ 1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(
∂hgn(τ vi , τ vj ; σ̂h(δv))

∂δv′g
−
∂hgn(τ vi , τ vj ;σh)

∂δv′g
)

∥∥∥∥∥∥
≤ op(1) 1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(||(τ vig − τ vj1)zi‖+ ||zi‖) = op(1).

Following a standard argument for the Law of Large Number for U -statistics Serfling
(1980, p. 190), we can show

1
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

∂hgn(τ vi , τ vj ;σh)
∂δv′g

= E
[
∂hgn(τ vi , τ vj ;σh)

∂δv′g

]
+ op(1).

Now we derive the form of E[∂hgn(τ vi , τ vj ;σh)/∂δv′g ]. Recall that

∂hgn(τ vi , τ vj ;σh)
∂δv′g

= 1
ζ2

2n
K ′2(πh|g,i − πh|1,j

ζ2n
)σ′h|g(τ vig)(τ vig− τ vj1)z′i+

1
ζ1

2n
K2(πh|g,i − πh|1,j

ζ2n
)z′i.

By the change of variables t = ζ−1
2n (πh|g,i− πh|1,j), integration by parts, Taylor expan-

sion, and Assumption 2(i), 7(i)(iii), and 8(ii)(iii), 10(i), and 11(i), we have

|
∫
ζ−2

2nK
′
2(πh|g,i − πh|1,j

ζ2n
)fπh|1(πh|1,j)dπh|1,j + f ′πh|1(πh|g,i))| ≤ Cζs2

2n

|
∫
ζ−2

2nK
′
2(πh|g,i − πh|1,j

ζ2n
)τ vj1fπh|1(πh|1,j)dπh|1,j + (σ−1

h|1(πh|g,i)fπh|1(πh|g,i))′)| ≤ Cζs2
2n

|
∫
ζ−1

2nK2(πh|g,i − πh|1,j
ζ2n

)fπh|1(πh|1,j)dπh|1,j + fπh|1(πh|g,i)| ≤ Cζs2
2n.

Therefore, from Assumption 9(v) we derive E[∂hgn(τ vi , τ vj ;σh)/∂δv′g ] = D
δvg
g,h+o(n−1/2),

where

D
δvg
g,h = E[(((σ−1

h|1(πh|g,i)fπh|1(πh|g,i))′ − f ′πh|1(πh|g,i)τ vig)σ′h|g(τ vig) + fπh|1(πh|g,i))z′i].
(O.B.8)

Online Appendix 9



Similarly we can derive E[∂hgn(τ vi , τ vj ;σh)/∂δv′1 ] = D
δv1
g,h + o(n−1/2), where

D
δv1
g,h = E[(((σ−1

h|g(πh|1,i)fπh|g(πh|1,i))
′ − f ′πh|g(πh|1,i)τ

v
i1)σ′h|1(τ vi1) + fπh|g(πh|1,i))z

′
i].

(O.B.9)
Combining the results yields T δ1n = 1

n

∑n
i=1(Dδvg

g,hψ
δvg (zi)−D

δv1
g,hψ

δv1 (zi)) + op(n−1/2),
where ψδv1 (zi) and ψδ

v
g (zi) are the influence functions for δ̂v1 and δ̂vg , respectively. Define

ψg,h,1(zi, gi) = D
δvg
g,hψ

δvg (zi)−D
δv1
g,hψ

δv1 (zi) + ψσg,h(ωi). (O.B.10)

We thus have T1n = 1
n

∑n
i=1 ψg,h,1(zi, gi) + op(n−1/2).

Lemma O.B.2. The term T2n in equation (A.8) satisfies T2n = n−1∑n
i=1 ψg,h,2(zi) +

op(n−1/2), where ψg,h,2(zi) is defined in equation (O.B.12).

Proof. Recall that T2n is a V -statistic of degree 2 with an asymmetric kernel function
and E[T2n] = 0. Similarly as in Lemma O.B.1, we use the idea of Hoeffding projection
and derive an asymptotically linear representation of T2n. Let I = (i1, i2) with i1 6=
i2 and τ vI = (τ vi : i ∈ I). We can write T2n = 1

n(n−1)
∑
I(hgn(τ vI ) − E[hgn(τ vI )]).

Define h∗gn(τ vi ) = 1
n−1

∑
I:i∈I(E[hgn(τ vI )|τ vi ] − E[hgn(τ vI )]) and T ∗2n = 1

n

∑n
i=1 h

∗
gn(τ vi ).

Observe that E[T ∗2n] = 0. Following Lemma O.B.1, we can show that Cov(T2n, T
∗
2n) =

Var(T ∗2n)36 and hence E[(T2n − T ∗2n)2] = Var(T2n) − Var(T ∗2n). By Markov inequality,
we obtain T2n = T ∗2n + op(n−1/2) if Var(Qn)− Var(Q∗n) = o(n−1).

To show the last result, we express Var(T2n) and Var(T ∗2n) similarly as in equa-
tions (O.B.5) and (O.B.6). Follow the argument that compares the two equations
and note that for any I and J , by Assumptions 7(ii)(iii), 10(i), and 11(i), we can
bound both Cov(hgn(τ vI ), hgn(τ vJ )) and Cov(E[hgn(τ vI )|τ vi ],E[hgn(τ vJ )|τ vi ]) uniformly by
O(ζ−2

2n ). Therefore, Var(Qn)−Var(Q∗n) = (n(n−1))−2 ·O(n2) ·O(ζ−2
2n ) = O(n−2ζ−2

2n ) =
o(n−1) by Assumption 9(iii)37 and then T2n = T ∗2n + op(n−1/2) follows.

Next we calculate the influence function of T ∗2n. Conditional on τ vi , both τ vig and
πh|g,i = σh|g(τ vig) are constants. Under Assumption 2(i), we obtain

E[hgn(τ vi , τ vj ;σh)|τ vi ] =
∫ 1
ζ2n

K2(πh|g,i − πh|1,j
ζ2n

)(τ vig − σ−1
h|1(πh|1,j))fπh|1(πh|1,j)dπh|1,j

=
∫
K2(t)(τ vig − σ−1

h|1(πh|g,i − tζ2n))fπh|1(πh|g,i − tζ2n)dt

36This is because Cov(T2n, T
∗
2n) = 1

n

∑n
i=1 Cov(T2n, h

∗
gn(τvi )) and for each i, Cov(T2n, h

∗
gn(τvi )) =

1
n(n−1)

∑
I:i∈I Cov(hgn(τvI ), h∗gn(τvi )) = 1

nVar(h
∗
gn(τvi )).

37Assumption 9(iii) (i.e., n1/2ζ1nζ
2
2n →∞) implies n1/2ζ2n →∞.

Online Appendix 10



= (τ vig − σ−1
h|1(πh|g,i))fπh|1(πh|g,i) + r̃n,i, (O.B.11)

with maxi |r̃n,i| ≤ Cζs2
2n. The second equality follows from the change of variables

t = ζ−1
2n (πh|g,i − πh|1,j), and the third equality holds by Assumptions 7(i) and 8. Sim-

ilarly, we can derive |E[hgn(τ vj , τ vi ;σh)|τ vi ]− (σ−1
h|g(πh|1,i)− τ vi1)fπh|g(πh|1,i)| ≤ Cζs2

2n. By
Assumption 9(v), O(ζs2

2n) = o(n−1/2). All together, we obtain T ∗2n = 1
n

∑n
i=1 ψg,h,2(zi)+

op(n−1/2), where

ψg,h,2(zi) =(τ vig − σ−1
h|1(πh|g,i))fπh|1(πh|g,i) + (σ−1

h|g(πh|1,i)− τ
v
i1)fπh|g(πh|1,i)

− E[(τ vig − σ−1
h|1(πh|g,i))fπh|1(πh|g,i) + (σ−1

h|g(πh|1,i)− τ
v
i1)fπh|g(πh|1,i)].

(O.B.12)

Lemma O.B.3. The third term T3n in equation (A.8) satisfies T3n = o(n−1/2).

Proof. Equation (O.B.11) implies

E[hgn(τ vi , τ vj ;σh)] =
∫

(σ−1
h|g(πh|g,i)− σ

−1
h|1(πh|g,i))fπh|1(πh|g,i)fπh|g(πh|g,i)dπh|g,i +O(ζs2

2n).

From the identification result in Section 4, we can represent pg as

pg = E[1{πh|g,i = πh|1,j}(τ vig − τ vj1)]

=
∫

[σ−1
h|g(πh|g,i)− σ

−1
h|1(πh|g,i)]fπh|g(πh|g,i)fπh|1(πh|g,i)dπh|g,i.

Hence, T3n = E[hgn(τ vi , τ vj ;σh)]− pg = O(ζs2
2n) = o(n−1/2) by Assumption 9(v).

O.C Lemmas in the Asymptotic Analysis of γ̂

Notation Let A = (aij) ∈ Rn2 denote an n× n matrix and x = (x1, . . . , xn)′ ∈ Rn

denote an n × 1 vector. Denote by 9A9∞ = max1≤i≤n
∑n
j=1 |aij| the maximum row

sum norm and 9A91 = max1≤j≤n
∑n
i=1 |aij| the maximum column sum norm. Note

that 9A′9∞ = 9A91 and 9A′91 = 9A9∞. Denote by ‖ · ‖∞ and ‖ · ‖1 the l∞ and l1
norms. That is, ‖A‖∞ = max1≤i,j≤n |aij|, ‖A‖1 = ∑n

i,j=1 |aij|, ‖x‖∞ = max1≤i≤n |xi|,
and ‖x‖1 = ∑n

i=1 |xi|. For n×n matrices A and B and n× 1 vectors x and y, we can
show ‖AB‖∞ ≤ 9A 9∞ ‖B‖∞, ‖AB‖1 ≤ 9A 91 ‖B‖1, ‖Ax‖∞ ≤ 9A 9∞ ‖x‖∞, and
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‖Ax‖1 ≤ 9A91 ‖x‖1. Moreover, |x′Ay| ≤ 9A9∞ ‖x‖∞‖y‖1 ≤ n9A9∞ ‖x‖∞‖y‖∞.38

Let 0 < C < ∞ denote a universal constant. For simplicity, we write τ si as τi
throughout this section.

O.C.1 Consistency of γ̂

Lemma O.C.1 (ULLN of the moment). supγ∈Γ ‖m̂n(γ, µ̂Z)−m0(γ, µZ0 )‖ = op(1).

Proof. Because yi −X ′iγ = yi −X ′iγ0 −X ′i(γ − γ0) = εi −X ′i(γ − γ0), we have

m̂n(γ, µ̂Z)−m0(γ, µZ0 )

= 1
n

n∑
i=1

(Zi − µ̂Z(τ̂i))(yi −X ′iγ)− E[(Zi − µZ0 (τi))(yi −X ′iγ)]

= − 1
n

n∑
i=1

(µ̂Z(τ̂i)− µZ0 (τi))εi + 1
n

n∑
i=1

(µ̂Z(τ̂i)− µZ0 (τi))X ′i(γ − γ0)

+ 1
n

n∑
i=1

((Zi − µZ0 (τi))εi − E[(Zi − µZ0 (τi))εi])

− 1
n

n∑
i=1

((Zi − µZ0 (τi))X ′i − E[(Zi − µZ0 (τi))X ′i])(γ − γ0).

In the last expression, the first two average terms are op(1) by Lemma O.C.2, and
the last two average terms are op(1) by Lemma O.C.3. By the compactness of Γ
(Assumption 15(ii)) we have supγ∈Γ ‖m̂n(γ, µ̂Z)−m0(γ, µZ0 )‖ = op(1).

Lemma O.C.2. For ti = (X ′i, εi)′, we have

1
n

n∑
i=1

(µ̂Z(τ̂i)− µZ0 (τi))t′i = op(1). (O.C.1)

Proof. Recall that Xi = (wiy, wix, x′i)′. Because ti ∈ R2dx+2 is finite dimensional, we
can prove equation (O.C.1) for each component of ti separately. For r = 1, . . . , 2dx+2,
let tir denote the rth component of ti, and tr = (t1r, . . . , tnr)′. By construction,
we have µ̂Z(τ̂i) = β̂Z(τ̂ )′bK(τ̂i) ∈ RdZ and µ̂Z(τi) = β̂Z(τ )′bK(τi) ∈ RdZ , where
β̂Z(τ̂ ) = (B̂′KB̂K)−1B̂′KZ and β̂Z(τ ) = (B′KBK)−1B′KZ, with B̂K = BK(τ̂ ) and
BK = BK(τ ). Denote µZ0 = (µZ0 (τ1), . . . , µZ0 (τn))′. The left-hand side of equation

38These results can be found in Horn and Johnson (1985, Section 5.6) or proved similarly.
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(O.C.1) for component tir satisfies

‖ 1
n

n∑
i=1

(µ̂Z(τ̂i)− µZ0 (τi))tir‖2 = n−2t′r(B̂K β̂
Z(τ̂ )− µZ0 )(B̂K β̂

Z(τ̂ )− µZ0 )′tr

≤ n−2‖B̂K β̂
Z(τ̂ )− µZ0 ‖2t′rtr,

where the inequality follows because we can bound the largest eigenvalue of the matrix
(B̂K β̂

Z(τ̂ )− µZ0 )(B̂K β̂
Z(τ̂ )− µZ0 )′ by ‖B̂K β̂

Z(τ̂ )− µZ0 ‖2.
For tir that represents a component of wix or xi, we have maxi |tir| <∞ (Assump-

tions 11(ii), 14(i)). Therefore, n−1t′rtr = n−1∑n
i=1 t

2
ir ≤ maxi t2ir < ∞. For tir = εi,

because εi is i.i.d., by the law of large numbers and Assumption 16(i) n−1t′rtr =
n−1∑n

i=1 ε
2
i = E[ε2i ] + op(1) = Op(1). For tir = wiy, we have n−1(wy)′wy = Op(1) by

Lemma O.C.4. We conclude that n−1t′rtr = Op(1).
By the triangle inequality and (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

n−1‖B̂K β̂
Z(τ̂ )− µZ0 ‖2

≤ n−1(‖(B̂K −BK)β̂Z(τ̂ )‖+ ‖BK(β̂Z(τ̂ )− βZ)‖+ ‖BKβ
Z − µZ0 ‖)2

≤ 3n−1(‖B̂K −BK‖2‖β̂Z(τ̂ )‖2 + ‖BK(β̂Z(τ̂ )− βZ)‖2 + ‖BKβ
Z − µZ0 ‖2).

It suffices to show that the last three terms are op(1).
By equation (O.C.5), n−1‖B̂K −BK‖2 = Op(%1(K)2/n). Moreover,

‖β̂Z(τ̂ )‖2 = tr(Z ′B̂K(B̂′KB̂K)−2B̂′KZ)

≤ Op(n−1)tr(Z ′B̂K(B̂′KB̂K)−1B̂′KZ)

≤ Op(n−1)tr(Z ′Z) = Op(1). (O.C.2)

The first inequality follows from Lemmas O.C.5 and O.C.6.39 The second inequality
follows because B̂K(B̂′KB̂K)−1B̂′K is idempotent and thus B̂K(B̂′KB̂K)−1B̂′K ≤ IK .
The last equality holds because n−1tr(Z ′Z) = n−1∑n

i=1 ‖Zi‖2 <∞ by the bounded-
ness of Zi. We conclude that n−1‖B̂K −BK‖2‖β̂Z(τ̂ )‖2 = op(1).

Observe that n−1‖BK(β̂Z(τ̂ )−βZ)‖2 = n−1‖BK(β̂Z(τ̂ )−βZ)‖2 = n−1tr((β̂Z(τ̂ )−
βZ)′B′KBK(β̂Z(τ̂ )− βZ)) ≤ Op(1)‖β̂Z(τ̂ )− βZ‖2, where the inequality holds because
by Lemma O.C.5 B′KBK/n ≤ CIK with probability approaching one. By the triangle

39By Lemmas O.C.5 and O.C.6, the smallest eigenvalue of Q̂K = B̂′KB̂K/n converges to one in
probability and hence (B̂′KB̂K/n)−1 ≤ CIK with probability approaching one.
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inequality, ‖β̂Z(τ̂ )− βZ‖ ≤ ‖β̂Z(τ̂ )− β̂Z(τ )‖+ ‖β̂Z(τ )− βZ‖. Lemma O.C.7 shows
that ‖β̂Z(τ̂ )− β̂Z(τ )‖ = Op(%1(K)/

√
n). Moreover, by Lemma 15.3 in Li and Racine

(2007) for xi and zi in Zi and Lemma O.C.8 for wix in Zi, we have ‖β̂Z(τ )− βZ‖ =
op(1). Combining these results yields n−1‖BK(β̂Z(τ̂ )− βZ)‖2 = op(1).

Finally, n−1‖BKβ
Z − µZ0 ‖2 = n−1∑n

i=1 ‖βZ′bK(τi)− µZ0 (τi)‖2 ≤ supτ ‖βZ′bK(τ)−
µZ0 (τ)‖2 = O(K−2a) by Assumption 13(ii).

Lemma O.C.3. For ti = (X ′i, εi)′, we have

1
n

n∑
i=1

((Zi − µZ0 (τi))t′i − E[(Zi − µZ0 (τi))t′i]) = op(1). (O.C.3)

Proof. Recall that Zi = (wix, x′i, z′i)′ and Xi = (wiy, wix, x′i)′. Because both Zi and ti
are finite dimensional, we can prove equation (O.C.3) component by component. For
simplicity, we assume that both zi and xi are scalars. Depending on which components
of Zi and ti under consideration, we divide the proof into six cases (Table O.C.1).

Table O.C.1: The Six Cases in Lemma O.C.3
Component of ti

xi, εi wix wiy

Component of Zi
xi, zi Case (a) Case (c) Case (e)
wix Case (b) Case (d) Case (f)

Case (a): Because (xi, zi, εi) is i.i.d., the result follows by the law of large numbers.
Case (b): Take xi in ti as an example and εi in ti can be proved similarly.

n−1
n∑
i=1

((wix− µwix0 (τi))xi − E[(wix− µwix0 (τi))xi])

= n−1
n∑
i=1

(wixxi − E[wixxi])− n−1
n∑
i=1

(µwix0 (τi)xi − E[µwix0 (τi)xi]).

Because µwix0 (τi)xi is independent across i, the second term on the right-hand side
is op(1) by the law of large numbers. Write the first term on the right-hand side as
n−1(x′wx − E[x′wx]). Applying Lemma O.C.9 with a = b = x and q = w yields
n−1(x′wx− E[x′wx]) = op(1). Equation (O.C.3) thus holds for case (b).

Case (c): Without loss of generality we take zi in Zi as an example. Denote
z̃i = zi − µz0(τi) and z̃ = (z̃1, . . . , z̃n)′. Write n−1∑n

i=1((zi − µz0(τi))wix − E[(zi −
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µz0(τi))wix]) = n−1(z̃′wx − E[z̃′wx]). Applying Lemma O.C.9 with a = z̃, b = x,
and q = w, we prove equation (O.C.3) for case (c).

Case (d): Write

n−1
n∑
i=1

((wix− µwix0 (τi))wix− E[(wix− µwix0 (τi))wix])

= n−1
n∑
i=1

(wixwix− E[wixwix])− n−1
n∑
i=1

(µwix0 (τi)wix− E[µwix0 (τi)wix])

= n−1(x′w′wx− E[x′w′wx])− n−1(µwx0 (τ )′wx− E[µwx0 (τ )′wx]),

where µwx0 (τ ) = (µw1x
0 (τ1), . . . , µwnx0 (τn))′. Applying Lemma O.C.9 twice, one with

a = b = x and q = w′w, and the other with a = µwx0 (τ ), b = x and q = w, we
obtain that the last two terms are both op(1). Equation (O.C.3) holds for case (d).

Case (e): Recall that y = s(wxγ2 + xγ3 + ε), where s = (In − γ1w)−1, and
λ = λ(τ ) is short for λs(τ s). Take zi in Zi as an example. Write

n−1
n∑
i=1

((zi − µz0(τi))wiy − E[(zi − µz0(τi))wiy])

= n−1(z̃′wswx− E[z̃′wswx])γ2 + n−1(z̃′wsx− E[z̃′wsx])γ3

+n−1(z̃′wsε− E[z̃′wsε]).

Applying Lemma O.C.9 to each term in the last line proves equation (O.C.3) for case
(e).

Case (f): Write

n−1
n∑
i=1

((wix− µwix0 (τi))wiy − E[(wix− µwix0 (τi))wiy])

= n−1
n∑
i=1

(wixwiy − E[wixwiy])− n−1
n∑
i=1

(µwix0 (τi)wiy − E[µwix0 (τi)wiy])

= n−1(x′w′wswx− E[x′w′wswx])γ2 + n−1(x′w′wsx− E[x′w′wsx])γ3

+n−1(x′w′wsε− E[x′w′wsε])− n−1(µwx0 (τ )′wswx− E[µwx0 (τ )′wswx])γ2

−n−1(µwx0 (τ )′wsx− E[µwx0 (τ )′wsx])γ3 − n−1(µwx0 (τ )′wsε− E[µwx0 (τ )′wsε]).

Applying Lemma O.C.9 to each term in the last line proves equation (O.C.3).

Lemma O.C.4 (Boundness of wy). n−1(wy)′wy = Op(1).
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Proof. Let T = w2xγ2 +wxγ3 be an n× 1 vector, and recall that wy = s(w2xγ2 +
wxγ3 +wε) = s(T +wε). We can write

n−1(wy)′wy = n−1(T +wε)′s′s(T +wε)

= n−1T ′s′sT + 2n−1T ′s′swε+ n−1ε′w′s′swε. (O.C.4)

We show that w and s are uniformly bounded in both row and column sums.40 In
fact, under Assumption 14(i), we have 9w9∞ = 1 and thus 9s9∞ ≤

∑∞
r=0 |γ1|r 9

w9r
∞ < ∞. For any r ≥ 1, we can bound ‖wr‖∞ ≤ 9w 9r−1

∞ ‖w‖∞ = ‖w‖∞.
Therefore, 9wr91 = maxj∈N

∑n
i=1 |(wr)ij| ≤ n‖wr‖∞ ≤ n‖w‖∞ and thus 9s91 ≤∑∞

r=0 |γ1|r 9wr91 ≤
∑∞
r=0 |γ1|rn‖w‖∞ = Op(1).

By the boundedness of xi and γ, we can bound ‖T‖∞ ≤ 9w92
∞ ‖xγ2‖∞+9w9∞

‖xγ3‖∞ < ∞. Therefore, the first term in the last line of (O.C.4) is n−1T ′s′sT ≤
9s′s 9∞ ‖T‖2

∞ ≤ 9s 91 9s 9∞ ‖T‖2
∞ = Op(1). The second to last term in equation

(O.C.4) satisfies n−1|T ′s′swε| ≤ 9s′sw 9∞ ‖T‖∞‖ε/n‖1 = Op(1), because ‖ε/n‖1 =
n−1∑ |εi| = E[|εi|] + op(1) = Op(1) by the law of large numbers and Assumption
16(i) and 9s′sw9∞ ≤ 9s 91 9s 9∞ 9w9∞ = Op(1). Finally, the last term in
(O.C.4) satisfies n−1ε′w′s′swε ≤ n−1λmax(w′s′sw)ε′ε = Op(1), because n−1ε′ε =
n−1∑n

i=1 ε
2
i = E[ε2i ] + op(1) = Op(1) and λmax(w′s′sw) ≤ 9w′s′sw9∞ ≤ 9w 91

9s91 9s9∞9w9∞ = Op(1). Combining the three terms, we complete the proof.

Lemma O.C.5. Let QK = B′KBK/n. Then ‖QK − IK‖ = Op(%0(K)
√
K/n).

Proof. The result follows from Lemma 15.2 in Li and Racine (2007, p.481).

Lemma O.C.6. Let Q̂K = B̂′KB̂K/n. Then ‖Q̂K −QK‖ = Op(%1(K)/
√
n).

Proof. Because B̂′KB̂K−B′KBK = (B̂K−BK)2 +B′K(B̂K−BK)+(B̂K−BK)′BK , we
have ‖Q̂K −QK‖ = ‖B̂′KB̂K −B′KBK‖/n ≤ ‖B̂K −BK‖2/n+ 2‖(B̂K −BK)′BK‖/n.
The

√
n-consistency of θ̂ and boundedness of z (Assumptions 11(i) and 12(ii)) imply

that maxi ‖τ̂i − τi‖ = Op(n−1/2). Therefore,

‖B̂K −BK‖ = (
n∑
i=1
‖bK(τ̂i)− bK(τi)‖2)1/2 ≤ n1/2%1(K) max

i
‖τ̂i − τi‖ = Op(%1(K)),

(O.C.5)
40See Lee (2002, Lemma 1) for similar results.
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by the mean-value theorem and Assumption 13(iv). Moreover,

‖(B̂K −BK)′BK‖/n = tr((B̂K −BK)′BKB
′
K(B̂K −BK))1/2/n

≤ Op(1)tr((B̂K −BK)′BK(B′KBK)−1B′K(B̂K −BK))1/2/
√
n

≤ Op(1)‖B̂K −BK‖/
√
n = Op(%1(K)/

√
n).

The first inequality above holds because by Lemma O.C.5 IK ≤ C(B′KBK/n)−1

with probability approaching one. The second inequality follows by BK(B′KBK)−1B′K

idempotent. The last equality follows from equation (O.C.5). We conclude that
‖Q̂K −QK‖ ≤ Op(%1(K)2/n) +Op(%1(K)/

√
n) = Op(%1(K)/

√
n).

Lemma O.C.7. ‖β̂Z(τ̂ )− β̂Z(τ )‖ = Op(%1(K)/
√
n).

Proof. Recall that β̂Z(τ̂ ) = Q̂−1
K B̂′KZ/n and β̂Z(τ ) = Q−1

K B′KZ/n. We have

‖β̂Z(τ̂ )− β̂Z(τ )‖ = tr(Z ′(Q̂−1
K B̂′K −Q−1

K B′K)′(Q̂−1
K B̂′K −Q−1

K B′K)Z/n2)1/2

≤ ‖(Q̂−1
K B̂′K −Q−1

K B′K)/
√
n‖tr(Z ′Z/n)1/2.

By the boundedness of Zi, tr(Z ′Z/n) = n−1∑n
i=1 ‖Zi‖2 <∞. Moreover, ‖(Q̂−1

K B̂′K −
Q−1
K B′K)/

√
n‖ ≤ ‖(Q̂−1

K −Q−1
K )B̂′K/

√
n‖+ ‖Q−1

K (B̂K −BK)′/
√
n‖. Observe

‖(Q̂−1
K −Q−1

K )B̂′K/
√
n‖ = tr((Q̂−1

K −Q−1
K )B̂′KB̂K(Q̂−1

K −Q−1
K )/n)1/2

= tr(Q−1
K (QK − Q̂K)Q̂−1

K (QK − Q̂K)Q−1
K )1/2

≤ Op(1)tr((QK − Q̂K)Q−2
K (QK − Q̂K))1/2

≤ Op(1)‖QK − Q̂K‖ = Op(%1(K)/
√
n),

where the inequalities follow from Lemmas O.C.5 and O.C.6.41 The last equality
follows from Lemma O.C.6. As for the second term, we have

‖Q−1
K (B̂K −BK)′/

√
n‖ = tr((B̂K −BK)Q−2

K (B̂K −BK)′/n)1/2

≤ Op(1)‖(B̂K −BK)/
√
n‖ = Op(%1(K)/

√
n).

where the last equality holds by equation (O.C.5).
41By Lemmas O.C.5 and O.C.6, the smallest eigenvalue of Q̂K converges to one in probability

and hence the largest eigenvalue of Q̂−1
K is bounded with probability approaching one. Similarly, by

Lemma O.C.5, the largest eigenvalue of Q−2
K is bounded with probability approaching one.
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Lemma O.C.8. ‖β̂wx(τ )− βwx‖ = op(1).

Proof. Recall that β̂wx(τ ) = Q−1
K B′Kwx/n. We can write β̂wx(τ )−βwx = Q−1

K B′K(wx−
BKβ

wx)/n. Observe that

‖β̂wx(τ )− βwx‖ = tr((wx−BKβ
wx)′BKQ

−2
K B′K(wx−BKβ

wx)/n2)1/2

≤ Op(1)‖B′K(wx−BKβ
wx)/n‖,

where we used that the largest eigenvalue of Q−2
K is bounded with probability ap-

proaching one. Write wx−BKβ
wx = (wx− µwx0 ) + (µwx0 −BKβ

wx). We derive

‖B′K(µwx0 −BKβ
wx)/n‖

= tr((µwx0 −BKβ
wx)′BKB

′
K(µwx0 −BKβ

wx)/n2)1/2

≤ Op(1)tr((µwx0 −BKβ
wx)′BK(B′KBK)−1B′K(µwx0 −BKβ

wx)/n)1/2

≤ Op(1)‖(µwx0 −BKβ
wx)/
√
n‖ = Op(K−a),

where the first inequality holds by Lemma O.C.5,42 the second inequality follows by
BK(B′KBK)−1B′K idempotent, and the last equality follows by Assumption 13(ii).43

If we can show ‖B′K(wx−µwx0 )/n‖ = op(1), then combining the results completes the
proof. Because xi is finite dimensional, we can prove the equation for each component
of xi separately. For simplicity, assume that xi is a scalar.

Write B′K(wx− µwx0 )/n = n−1∑
i

∑
j b

K(τi)(wijxj − E[wijxj|τi]) = n−1∑
i

∑
j rij,

where rij = bK(τi)(wijxj − E[wijxj|τi]). Because E[rij|τi] = 0, we have E[rij] = 0. By
construction,

E‖B′K(wx− µwx0 )/n‖2 = n−2 ∑
(i,j)

∑
(k,l):{i,j}∩{k,l}6=∅

E[r′ijrkl]

+n−2 ∑
(i,j)

∑
(k,l):{i,j}∩{k,l}=∅

E[r′ijrkl]. (O.C.6)

For any i, j, k, l ∈ N , we have |E[r′ijrkl]| ≤ E|bK(τi)′bK(τk)(wijxj−E[wijxj|τi])(wklxl−
E[wklxl|τk])| ≤ O(n−2)(E[(bK(τi)′bK(τk))2])1/2 = O(n−2

√
K). The second inequality

42By Lemma O.C.5, the largest eigenvalue of QK = B′KBK/n converges to one in probability and
hence CIK ≤ (B′KBK/n)−1 with probability approaching one.

43Under Assumption 13(ii), we have ‖(µwx
0 − BKβ

wx)/
√
n‖ = (n−1∑n

i=1 ‖µwx
0 (τi) −

βwx′bK(τi)‖2)1/2 ≤ supτ ‖µwx
0 (τ)− βwx′bK(τ)‖ = O(K−a).
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follows from Assumptions 11(ii) and 14(ii),44 and the last equality follows because
by Assumptions 2(i) and 13(i), E[(bK(τi)′bK(τk))2] = E[bK(τi)′bK(τk)bK(τk)′bK(τi)] =
E[tr(bK(τi)bK(τi)′bK(τk)bK(τk)′)] = tr(E[bK(τi)bK(τi)′]E[bK(τk)bK(τk)′]) = tr(IK) =
K. The sum over overlapping {i, j} and {k, l} contains O(n3) terms. Therefore, the
first term in equation (O.C.6) is n−2 ·O(n3) ·O(n−2

√
K) = O(

√
K/n).

Further, for disjoint {i, j} and {k, l}, we have

E[r′ijrkl|ς] = bK(τi)′bK(τk)E[(wijxj − E[wijxj|τi])(wklxl − E[wklxl|τk])|ς]

= bK(τi)′bK(τk)(Cov(wij, wkl|ς)xjxl
+(E[wij|ς]xj − E[wijxj|τi])(E[wkl|ς]xl − E[wklxl|τk]))

= bK(τi)′bK(τk)(E[wij|ςi, ςj]xj − E[wijxj|τi])(E[wkl|ςk, ςl]xl − E[wklxl|τk])

+bK(τi)′bK(τk)eij,kl,

where eij,kl = Cov(wij, wkl|ς)xjxl+(E[wij|ς]−E[wij|ςi, ςj])xj(E[wkl|ς]xl−E[wklxl|τk])+
(E[wkl|ς]−E[wkl|ςk, ςl])xl(E[wij|ςi, ςj]xj−E[wijxj|τi]). By Assumptions 11(ii), 14(ii)(v),
and Cauchy-Schwarz inequality, we derive E[(eij,kl)2] ≤ o(n−4/K). Observe that
the terms bK(τi)(E[wij|ςi, ςj]xj − E[wijxj|τi]) and bK(τk)(E[wkl|ςk, ςl]xl − E[wklxl|τk])
are independent, both with mean zero. Therefore, we have the uniform bound
|E[r′ijrkl]| ≤ (E[(bK(τi)′bK(τk))2])1/2(E[(eij,kl)2])1/2 =

√
K ·o(n−2/

√
K) = o(n−2). The

sum over disjoint {i, j} and {k, l} contains O(n4) terms. Hence, the second term in
(O.C.6) can be bounded by n−2 · O(n4) · o(n−2) = o(1). Combining the results we
prove E‖B′K(wx− µwx0 )/n‖2 = o(1) and thus ‖B′K(wx− µwx0 )/n‖ = op(1).

Lemma O.C.9. Suppose that a = (a1, . . . , an)′ and b = (b1, . . . , bn)′ are n × 1
vectors in Rn such that (i) (ai, bi) is independent across i; (ii) a is a function of
ς with maxi∈N |ai| < ∞; (iii) b is either a function of ς with maxi∈N |bi| < ∞ or
independent of w conditional on ς with maxi∈N |E[bi|ςi]| <∞. Let q be a matrix that
takes the form of (a) w, (b) w′w, (c) wswt, t = 0, 1, or (d) w′wswt, t = 0, 1, where
s = (In − γ1w)−1. Then n−1(a′qb− E[a′qb]) = op(1).

Proof. ByMarkov’s inequality, it suffices to show that the second moment of n−1(a′qb−
44By Cauchy-Schwarz inequality, (a + b)4 ≤ 8(a4 + b4), Jensen’s inequality, and it-

erated expectations, we have (E[(wijxj − E[wijxj |τi])2(wklxl − E[wklxl|τk])2])1/2 ≤
(E[(wijxj − E[wijxj |τi])4])1/4(E[(wklxl − E[wklxl|τk])4])1/4 ≤ 4(E[(wijxj)4])1/4(E[(wklxl)4])1/4 ≤
CE[‖w‖4

∞]1/2 = O(n−2).

Online Appendix 19



E[a′qb]) is o(1). The second moment is

n−2E(a′qb− E[a′qb])2 = n−2Cov
 n∑
i=1

n∑
j=1

aibjqij,
n∑
i=1

n∑
j=1

aibjqij


= n−2 ∑

(i,j,k,l):{i,j}∩{k,l}6=∅
Cov(aibjqij, akblqkl)

+n−2 ∑
(i,j,k,l):{i,j}∩{k,l}=∅

Cov(aibjqij, akblqkl).(O.C.7)

In the last expression, the first term sums over all the indices i, j, k, and l such that
{i, j} and {k, l} have at least one common element, and the second term sums over
all the indices i, j, k, and l such that {i, j} and {k, l} do not overlap.

Because a is a function of ς and q is a function of w, if b is independent of w
conditional on ς, we can write the covariance as

Cov(aibjqij, akblqkl)

= E[aiakE[bj|ςj]E[bl|ςl]E[qijqkl|ς]]− E[aiE[bj|ςj]E[qij|ς]]E[akE[bl|ςl]E[qkl|ς]]

= E[aiakE[bj|ςj]E[bl|ςl]qijqkl]− E[aiE[bj|ςj]qij]E[akE[bl|ςl]qkl]

= Cov(aiE[bj|ςj]qij, akE[bl|ςl]qkl),

where in the first equality we used E[bjbl|ς] = E[bj|ςj]E[bl|ςl] and E[bj|ς] = E[bj|ςj]
because (bi, ςi) is i.i.d.. Let hij = aibj (if b is a function of ς) or hij = aiE[bj|ςj] (if b
is independent of w conditional on ς). The boundedness assumptions in conditions
(ii) and (iii) then imply that maxi,j∈N |hij| <∞.

The first sum in (O.C.7) consists of O(n3) terms. By Lemma O.C.10(i), each co-
variance term can be bounded by O(n−2) uniformly in i, j, k, and l. Hence, the first
sum is n−2 ·O(n3)·O(n−2) = o(1). The second sum in (O.C.7) consists of O(n4) terms.
Applying Lemma O.C.10(ii) yields maxi,j,k,l∈N :{i,j}∩{k,l}=∅ |Cov(aibjqij, akblqkl)| = o(n−2).
Hence, the last sum in equation (O.C.7) is n−2 ·O(n4) · o(n−2) = o(1).

Lemma O.C.10. Let q be a matrix that takes the form of (a) w, (b) w′w, (c) wswt,
t = 0, 1, or (d) w′wswt, r = 0, 1, where s = (In − γ1w)−1. For hij = h(ςi, ςj) ∈ R
such that maxi,j∈N |hij| <∞, q satisfies (i) maxi,j,k,l∈N |Cov(hijqij, hklqkl)| = O(n−2)
and (ii) maxi,j,k,l∈N :{i,j}∩{k,l}=∅ |Cov(hijqij, hklqkl)| = o(n−2).

Proof. Part (i). Write Cov(hijqij, hklqkl) = E[hijhklqijqkl] − E[hijqij]E[hklqkl]. By
the boundedness of hij and Cauchy-Schwarz inequality, it is sufficient to show that
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E[‖q‖2
∞] = O(n−2). For case (a) with q = w, the result follows immediately from

Assumption 14(ii). For case (b) with q = w′w, we can bound ‖q‖∞ ≤ 9w91‖w‖∞ ≤
n‖w‖2

∞. Hence, E[‖q‖2
∞] ≤ n2E[‖w‖4

∞] = O(n−2) by Assumption 14(ii). For case
(c), because s = (In− γ1w)−1 = ∑∞

r=0 γ
r
1w

r, we have q = wswt = ∑∞
r=t+1 γ

r−(t+1)
1 wr

and (qij)2 = ∑∞
r=t+1

∑∞
r̃=t+1 γ

r+r̃−2(t+1)
1 (wr)ij(wr̃)ij, t = 0, 1. For any r ≥ 1, we have

‖wr‖∞ ≤ 9w 9∞ ‖wr−1‖∞ ≤ · · · ≤ 9w 9r−1
∞ ‖w‖∞ = ‖w‖∞. Therefore, E[‖q‖2

∞] ≤∑∞
r=t+1

∑∞
r̃=t+1 γ

r+r̃−2(t+1)
1 E[‖w‖2

∞] = O(n−2) by Assumption 14(ii). Similarly as in
cases (b)(c), we can show that the result holds for case (d).

Part (ii). For case (a) with q = w and case (b) with q = w′w, the statement
follows immediately from Assumption 14(iv). For case (c), consider i, j, k, l ∈ N such
that {i, j} ∩ {k, l} = ∅. We have

Cov(hijqij, hklqkl) =
∞∑

r=t+1

∞∑
r̃=t+1

γ
r+r̃−2(t+1)
1 Cov(hij(wr)ij, hkl(wr̃)kl).

By Assumption 14(iv), each term in the sum has an uniform bound o(n−2) that does
not depend on i, j, k, l, r, and r̃. The statement is thus satisfied for case (c). Case
(d) can be proved similarly.

O.C.2 Asymptotic Distribution of γ̂

Lemma O.C.11 (Asymptotically linear representation of the moment). We have

1√
n

n∑
i=1

m(ωi, γ0, µ̂
Z(τ̂i)) = 1√

n

n∑
i=1

((Zi − µZ0 (τi))νi +Mθφθ(zi, θ0)) + op(1), (O.C.8)

where Mθ = −E[(E[Zi|zi]− µZ0 (τi))∂λ0(τi)
∂τ

∂τ(zi,gi,θ0)
∂θ

].

Proof. Consider the decomposition

1√
n

n∑
i=1

m(ωi, γ0, µ̂
Z(τ̂i))

= 1√
n

n∑
i=1

m(ωi, γ0, µ
Z
0 (τi)) +

√
n
∫
D(εi, µ̂Z(τ̂i)− µZ(τ̂i))dF (zi, gi, εi)

+
√
n
∫
D(εi, µZ(τ̂i)− µZ0 (τi))dF (zi, gi, εi)

+ 1√
n

n∑
i=1

(D(εi, µ̂Z(τ̂i)− µZ0 (τi))−
∫
D(εi, µ̂Z(τ̂i)− µZ0 (τi))dF (zi, gi, εi)), (O.C.9)
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where D(εi, µ) = −µεi for any µ ∈ RdZ , µZ(τ̂i) = E[Zi|τ(zi, gi, θ̂)], and F (zi, gi, εi)
denotes the cdf of (zi, gi, εi). The first term is a leading term. The second term is to
adjust for the estimation of µZ0 , and the third term is to adjust for the estimation of
θ0 (Hahn and Ridder, 2013), Both terms contribute to the asymptotic distribution of
γ̂. The last term is op(1) by Lemma O.C.14.

The second term in (O.C.9) can be analyzed following Newey (1994a). Observe
that for an arbitrary mean square integrable function µ(τ(zi, gi, θ)) ∈ RdZ that is con-
tinuously differentiable in τ , by iterated expectations we have E[D(εi, µ(τ(zi, gi, θ))] =
−E[µ(τ(zi, gi, θ))µε(τ(zi, gi, θ))], where µε(τ(zi, gi, θ)) = E[εi|τ(zi, gi, θ)]. Hence, the
correction term in Newey (1994a, Proposition 4) takes the form αZ(ωi, τ(zi, gi, θ)) =
−(Zi−µZ(τ(zi, gi, θ)))µε(τ(zi, gi, θ)) and thus

√
n
∫
D(εi, µ̂Z(τ̂i)−µZ(τ̂i))dF (zi, gi, εi) =

n−1/2∑n
i=1 α

Z
0 (ωi, τ̂i). Moreover, recall that τ̂i = τ(zi, gi, θ̂) and τi = τ(zi, gi, θ0). De-

fine αZ0 (ωi, τi) = −(Zi−µZ0 (τi))λ0(τi). Under Assumption 16(ii), expanding αZ(ωi, τ̂i)
around θ0 yields αZ(ωi, τ̂i) = αZ0 (ωi, τi) + ∂αZ(ωi,τi)

∂θ′
(θ̂− θ0) + op(‖θ̂− θ0‖). By Lemma

O.C.15 and Assumption 12(ii), n−1∑n
i=1

∂αZ(ωi,τi)
∂θ′

= op(1) and
√
n(θ̂ − θ0) = Op(1).

Therefore, we can represent
√
n
∫
D(εi, µ̂Z(τ̂i)−µZ(τ̂i))dF (zi, gi, εi) = n−1/2∑n

i=1 α
Z
0 (ωi, τi)+

op(1).
The third term in (O.C.9) can be analyzed following Hahn and Ridder (2013).

Observe that ∂D(εi,µZ0 (τi))
∂µZ

= −εi and E[∂D(εi,µZ0 (τi))
∂µZ

|τi = τ ] = −λ0(τ). The first term in
Hahn and Ridder (2013, Theorem 4) takes the form −E[(εi−λ0(τi))∂µ

Z
0 (τi)
∂τ

∂τ(zi,gi,θ0)
∂θ

] =
0,where we used εi − λ0(τi) = νi and E[νi|zi, gi] = 0. Therefore, by Hahn and Ridder
(2013, Theorem 4),

√
n
∫
D(εi, µZ(τ̂i)− µZ0 (τi))dF (zi, gi, εi)

= −E
[
(E[Zi|zi]− µZ0 (τi))

∂λ0(τi)
∂τ

∂τ(zi, gi, θ0)
∂θ

]
√
n(θ̂ − θ0) = Mθ

√
n(θ̂ − θ0).

Because
√
n(θ̂−θ0) = 1√

n

∑n
i=1 φθ(zi, θ0)+op(1), we can represent

√
n
∫
D(εi, µZ(τ̂i)−

µZ0 (τi))dF (zi, gi, εi) = n−1/2∑n
i=1Mθφθ(zi, θ0) + op(1). Note that m(ωi, γ0, µ

Z
0 (τi)) +

αZ(ωi, τi) = (Zi − µZ0 (τi))νi. Combining the results we obtain (O.C.8).

Lemma O.C.12 (CLT of the moment). Let Φn = n−1/2∑n
i=1((Zi − µZ0 (τi))νi +

Mθφθ(zi, θ0)). Then Ω−1/2
n Φn

d→ N(0, IdZ ), where ϕn(xi, zi, νi) ∈ RdZ is defined in
equation (O.C.10), Ωn = n−1∑n

i=1 E[ϕn(xi, zi, νi)ϕn(xi, zi, νi)′], and IdZ is the dZ×dZ
identity matrix.
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Proof. Recall that Zi = (wix, x′i, z′i)′. While xi and zi are i.i.d., wix are correlated
across i. Lemma O.C.13 establishes the Hoeffding projection n−1/2∑n

i=1(wix)′νi =
n−1/2∑n

i=1 h
∗
n(xi, νi)+op(1), where h∗n(xi, νi) = ∑

j(E[wijxjνi|xi, νi]+E[wjiνjxi|xi, νi]) ∈
Rdx . Define the function ϕn(xi, zi, νi) ∈ RdZ by

ϕn(xi, zi, νi) = n−1/2((h∗n(xi, νi)′ − E[(wix)′|τi]νi, (x′i − E[x′i|τi])νi, (z′i − E[z′i|τi])νi)′

+Mθφθ(zi, θ0)). (O.C.10)

Then Φn = ∑n
i=1 ϕn(xi, zi, νi) + op(1). Because E[h∗n(xi, νi)] = 0, E[νi|ς] = 0, and

E[φθ(zi, θ0)] = 0, we obtain E[ϕn(xi, zi, νi)] = 0.
Write ϕni = ϕn(xi, zi, νi). Observe that {ϕni, i = 1, . . . , n} forms a triangular

array. We apply the Lindeberg-Feller CLT to derive the asymptotic distribution of∑n
i=1 ϕni. By the Cramer-Wold device it suffices to show that a′∑n

i=1 ϕni satisfies
the Lindeberg condition for any dZ × 1 vector of constants a ∈ RdZ . The Lindeberg
condition is that for any κ > 0, limn→∞

∑n
i=1 E[ (a′ϕni)2

a′Ωna 1{|a′ϕni| ≥ κ
√
a′Ωna}] = 0.

The sum is bounded by E[∑i
(a′ϕni)2

a′Ωna 1{maxi |a′ϕni| ≥ κ
√
a′Ωna}], where the random

variable ∑i
(a′ϕni)2

a′Ωna has a finite expectation and is therefore Op(1). Moreover, we can
derive maxi |a′ϕni| = op(1),45 and therefore ∑i

(a′ϕni)2

a′Ωna 1{maxi |a′ϕni| ≥ κ
√
a′Ωna} =

Op(1)op(1) = op(1). This random variable is bounded by ∑i
(a′ϕni)2

a′Ωna which has a finite
expectation. We conclude that by dominated convergence the Lindeberg condition
is satisfied. By Lindeberg-Feller CLT, Ω−1/2

n Φn = Ω−1/2
n

∑n
i=1 ϕn(xi, zi, νi) + op(1) d→

N(0, IdZ ).

Lemma O.C.13 (Hoeffding projection). Let Wn = n−1/2∑
i

∑
j wijxjνi. Define

W ∗
n = n−1/2∑

i h
∗
n(xi, νi), where h∗n(xi, νi) = ∑

j(E[wijxjνi|xi, νi] + E[wjixiνj|xi, νi]).
Then ‖Wn −W ∗

n‖ = op(1).

Proof. Our proof is based on Lee (1990, Secion 3.7.5) for weighted U -statistics. The
idea is to generalize the Hoeffding projection to allow for weights. What differs from
Lee (1990, Secion 3.7.5) is that Lee assumed a constant weight wij, while we allow
wij to be a random variable that is correlated with x.

Let I = {i1, i2} be an ordered 2-subset of N and ti = (xi, νi). Define wI = wi1i2

and h(tI) = h(ti1 , ti2) = xi2νi1 . We can write Wn = n−1/2∑
I wIh(tI) and h∗n(xi, νi) =

h∗n(ti) = ∑
I:i∈I E[wIh(tI)|ti]. Because w is independent of ν conditional on ς and

45Because xi and zi are bounded, E[‖w‖4
∞] = O(n−4), and E[ν4

i ] < ∞, we can bound
E[maxi(a′ϕni)2] ≤ ‖a‖2E[maxi ‖ϕni‖2] ≤ O(n−1) = o(1).
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E[νi|ς] = 0 (Assumption 14(iii)), we have E[wIh(tI)] = E[E[wI |ς]E[h(tI)|ς]] = 0
and E[h∗n(ti)] = ∑

I:i∈I E[wIh(tI)] = 0. By Markov’s inequality, it suffices to show
E‖Wn −W ∗

n‖2 = o(1).
By definition, E[W ′

nW
∗
n ] = n−1/2∑

i E[W ′
nh
∗
n(ti)], and for each i, E[W ′

nh
∗
n(ti)] =

n−1/2∑
I:i∈I E[wIh(tI)′h∗n(ti)] = n−1/2E[h∗n(ti)′h∗n(ti)], where the first equality holds

because for i /∈ I, E[wIh(tI)′h∗n(ti)] = E[E[wI |ς]E[h(tI)′h∗n(ti)|ς]] = 0 under Assump-
tion 14(iii), and the second equality follows by iterated expectations. It then fol-
lows that E[W ′

nW
∗
n ] = n−1∑

i E[h∗n(ti)′h∗n(ti)] = E‖W ∗
n‖2 and thus E‖Wn −W ∗

n‖2 =
E‖Wn‖2 − E‖W ∗

n‖2. It remains to show that E‖Wn‖2 − E‖W ∗
n‖2 = o(1).

To show the last result, note that for disjoint I and J , we have E[wIwJh(tI)′h(tJ)] =
E[E[wIwJ |ς]E[h(tI)′h(tJ)|ς]] = 0, where the first equality holds by Assumption 14(iii),
and the last equality follows from E[h(tI)′h(tJ)|ς] = 0 because (νi, ςi) is i.i.d.. Hence,

E‖Wn‖2 = n−1 ∑
(I,J):|I∩J |=1

E[wIwJh(tI)′h(tJ)]

+n−1 ∑
(I,J):|I∩J |=2

E[wIwJh(tI)′h(tJ)].

For comparison, because E‖W ∗
n‖2 = n−1∑n

i=1 E‖h∗n(ti)‖2 we can write

E‖W ∗
n‖2 = n−1

n∑
i=1

∑
(I,J):{i}=I∩J

E[E[wIh(tI)′|ti]E[wJh(tJ)|ti]]

+n−1
n∑
i=1

∑
(I,J):{i}(I∩J

E[E[wIh(tI)′|ti]E[wJh(tJ)|ti]].

The first sums in E‖Wn‖2 and E‖W ∗
n‖2 consist of the same number of terms. Consider

I and J such that |I ∩ J | = 1. Because w and ν are independent conditional on ς,

E[wIwJh(tI)′h(tJ)] = E[E[wIwJ |ς,ν]h(tI)′h(tJ)]

= E[E[wIwJ |ς]h(tI)′h(tJ)]

= E[(Cov(wI , wJ |ς) + E[wI |ς]E[wJ |ς])h(tI)′h(tJ)]

= E[E[wI |ςI ]E[wJ |ςJ ]h(tI)′h(tJ)] + o(n−2), (O.C.11)

where the o(n−2) term does not depend on I and J . To see the last equality, note
that h(tI)′h(tJ) is square integrable by the boundedness of x and E[ν4

i ] < ∞ un-
der Assumption 11(i) and 16(i). The last equality then follows from Assumption
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14(ii)(v)(vi).46 Similarly, we can derive

E[E[wIh(tI)′|ti]E[wJh(tJ)|ti]] = E(E[E[wI |ς,ν]h(tI)′|ti]E[E[wJ |ς,ν]h(tJ)|ti]]

= E(E[E[wI |ς]h(tI)′|ti]E[E[wJ |ς]h(tJ)|ti]]

= E[E[E[wI |ςI ]h(tI)′|ti]E[E[wJ |ςJ ]h(tJ)|ti]] + o(n−2)

= E[E[wI |ςI ]E[wJ |ςJ ]h(tI)′h(tJ)] + o(n−2), (O.C.12)

where the last equality follows because for I and J with {i} = I∩J , E[wI |ςI ]h(tI) and
E[wJ |ςJ ]h(tJ) are independent conditional on ti. Comparing (O.C.11) with (O.C.12)
we can see that the two covariances differ by o(n−2) uniformly in I and J . Because
the first sums in E‖Wn‖2 and E‖W ∗

n‖2 consist of O(n3) terms, they differ by n−1 ·
O(n3) · o(n−2) = o(1).

The second sums in E‖Wn‖2 and E‖W ∗
n‖2 consist of O(n2) terms. For any I and J ,

both E[wIwJh(tI)′h(tJ)] and E[E[wIh(tI)′|ti]E[wJh(tJ)|ti]] can be uniformly bounded
by O(n−2) (Assumption 14(ii)). Therefore, the second sums in E‖Wn‖2 and E‖W ∗

n‖2

are both n−1 ·O(n2)·O(n−2) = o(1). We conclude that E‖Wn‖2−E‖W ∗
n‖2 = o(1).

Lemma O.C.14.

1√
n

n∑
i=1

(D(εi, µ̂Z(τ̂i)− µZ0 (τi))−
∫
D(εi, µ̂Z(τ̂i)− µZ0 (τi))dF (zi, gi, εi)) = op(1).

(O.C.13)

Proof. Let µ = µ(τ(zi, gi, θ)) ∈ RdZ be a function of τ(zi, gi, θ). Define the empirical
process Gn(µ) = 1√

n

∑
i(D(εi, µ) − E[D(εi, µ)]) indexed by µ. We can represent the

left-hand side of equation (O.C.13) as Gn(µ̂Z(τ̂ ))−Gn(µZ0 (τ )).
Observe that D(εi, µ) = −µεi is linear in µ. This together with the boundedness of

Zi and E[ε2i ] <∞ (Assumptions 11, 14(i), and 16(i)) implies that the empirical process
Gn(µ) is stochastically equicontinuous under L2 norm (Andrews, 1994, Theorems 1-
2). It remains to show that

∫
‖µ̂Z(τ̂i) − µZ0 (τi))‖2dF (zi, gi) = op(1), where F (zi, gi)

denotes the cdf of (zi, gi). We prove it following Newey (1997, Theorem 1).
By the triangle inequality and (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we derive

∫
‖µ̂Z(τ̂i)− µZ0 (τi))‖2dF (zi, gi)

46Observe that Assumption 14(v) implies that maxI⊆N E[(E[wI |ς] − E[wI |ςI ])4] = o(n−4/K2) ≤
o(n−4).
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≤ 3
∫

(‖β̂Z(τ̂ )′(bK(τ̂i)− bK(τi))‖2 + ‖(β̂Z(τ̂ )− βZ)′bK(τi)‖2

‖βZ′bK(τi)− µZ0 (τi)‖2)dF (zi, gi). (O.C.14)

Consider the three terms in the last equation. The first term satisfies
∫
‖β̂Z(τ̂ )′(bK(τ̂i)− bK(τi))‖2dF (zi, gi)

≤ Op(%1(K)2)
∫

max
1≤i≤n

‖τ̂i − τi‖2dF (zi, gi) = Op(%1(K)2/n),

where the inequality holds by equation (O.C.2), the mean-value theorem and Assump-
tion 13(iv), and the equality holds because the

√
n-consistency of θ̂ and boundedness

of z imply that max1≤i≤n ‖τ̂i − τi‖ = Op(n−1/2). As for the second term in (O.C.14),
by E[bK(τi)bK′(τi)] = IK we obtain

∫
‖(β̂Z(τ̂ )− βZ)′bK(τi)‖2dF (zi, gi)

= tr((β̂Z(τ̂ )− βZ)′
∫
bK(τi)bK′(τi)dF (zi, gi)(β̂Z(τ̂ )− βZ))

= ‖β̂Z(τ̂ )− βZ‖2 = Op(%1(K)2/n) + op(1),

where the last equality follows from ‖β̂Z(τ̂ )−βZ‖2 ≤ 2(‖β̂Z(τ̂ )− β̂Z(τ )‖2 +‖β̂Z(τ )−
βZ‖2), Lemmas O.C.7 and O.C.8, and Li and Racine (2007, Lemma 15.3). The third
term in (O.C.14) has the bound

∫
‖βZ′bK(τi)−µZ0 (τi)‖2dF (zi, gi) ≤ supτ ‖βZ′bK(τ)−

µZ0 (τ)‖ = O(K−2a) by Assumption 13(ii). Combining the results yields
∫
‖µ̂Z(τ̂i) −

µZ0 (τi))‖2dF (zi, gi) = op(1) and Gn(µ̂Z(τ̂ ))−Gn(µZ0 (τ )) = op(1).

Lemma O.C.15. 1
n

∑n
i=1

∂αZ(ωi,τi)
∂θ′

= op(1).

Proof. Recall that αZ(ωi, τ(zi, gi, θ)) = −(Zi − µZ(τ(zi, gi, θ)))µε(τ(zi, gi, θ)), where
µZ(τ(zi, gi, θ)) = E[Zi|τ(zi, gi, θ)] and µε(τ(zi, gi, θ)) = E[εi|τ(zi, gi, θ)]. By the law
of iterated expectations we have E[αZ(ωi, τ(zi, gi, θ))] = 0, so E[∂αZ(ωi, τi)/∂θ′] =
∂E[αZ(ωi, τ(zi, gi, θ))]/∂θ′ = 0.

Differentiating αZ(ωi, τ(zi, gi, θ)) with respect to θ at θ0 yields

∂αZ(ωi, τi)
∂θ′

=
(
∂µZ(τi)
∂τi

µε(τi)− (Zi − µZ0 (τi))
∂µε(τi)
∂τi

)
∂τ(zi, gi, θ0)

∂θ′
.

Because τi = τ(zi, gi, θ0) is bounded and µZ(τi) and µε(τi) are continuously differen-
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tiable in τi (Assumptions 11(i), 12(i), and 16(ii)), µZ(τi), µε(τi), ∂µZ(τi)
∂τi

, and ∂µε(τi)
∂τi

are bounded. Observe that (zi, τi) is i.i.d.. By the law of large numbers, we have

1
n

n∑
i=1

(
∂µZ(τi)
∂τi

µε(τi)
∂τ(zi, gi, θ0)

∂θ′
− E

[
∂µZ(τi)
∂τi

µε(τi)
∂τ(zi, gi, θ0)

∂θ′

])
= op(1).

(O.C.15)
Moreover, following Lemma O.C.3 we can show that

1
n

n∑
i=1

(
(Zi − µZ0 (τi))

∂µε(τi)
∂τi

∂τ(zi, gi, θ0)
∂θ′

− E
[
(Zi − µZ0 (τi))

∂µε(τi)
∂τi

∂τ(zi, gi, θ0)
∂θ′

])
= op(1).

(O.C.16)
Combining (O.C.15) and (O.C.16) proves the lemma.
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