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Abstract

How should the government respond to automation? We study this question
in a heterogeneous agent model that takes worker displacement seriously. We
recognize that displaced workers face two frictions in practice: reallocation is
slow and borrowing is limited. We analyze a second best problem where the
government can tax automation but lacks redistributive tools to fully alleviate
borrowing frictions. The equilibrium is (constrained) inefficient and automa-
tion is excessive. The reason is that there is a conflict between how firms and
displaced workers value the effects of automation over time. The government
finds it optimal to tax automation on efficiency grounds, even when it does not
value equity. Slowing down automation increases aggregate consumption and
redistributes early on during the transition, precisely when displaced workers
value it more. Using a quantitative version of our model, we find that the op-
timal speed of automation is considerably lower than at the laissez-faire. The
optimal policy improves efficiency and achieves substantial welfare gains.
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1 Introduction

Automation technologies raise productivity but disrupt labor markets, displacing
workers and lowering their earnings (Humlum, 2019; Acemoglu and Restrepo,
2022). The increasing adoption of automation has fueled an active debate about
appropriate policy interventions (Lohr, 2022). Despite the growing public interest
in this question, the literature has yet to produce optimal policy results that take
into account the frictions that workers face in practice when they are displaced by
automation.

The existing literature that justifies taxing automation assumes that worker re-
allocation is frictionless or absent altogether. First, recent work shows that a gov-
ernment that has a preference for redistribution should tax automation to mitigate
its distributional consequences (see Guerreiro et al., 2022 and subsequent work by
Costinot and Werning 2022; Korinek and Stiglitz 2020). This literature assumes that
automation and labor reallocation are instrinsically efficient, and that the govern-
ment is willing to sacrifice efficiency for equity. Second, a large literature finds that
taxing capital in the long-run — and automation, by extension — might improve
efficiency in economies with incomplete markets (Aiyagari, 1995; Conesa et al.,
2009). This literature abstracts from worker displacement and labor reallocation.

In this paper, we take worker displacement seriously and study how a govern-
ment should respond to automation. In particular, we recognize that workers face
two important frictions when they reallocate or experience earnings losses. First,
reallocation is slow: workers face barriers to mobility and may go through unem-
ployment or retraining spells before finding a new job (Jacobson et al., 2005; Lee
and Wolpin, 2006). Second, credit markets are imperfect: workers have a limited
ability to borrow against future incomes (Jappelli and Pistaferri, 2017), especially
when moving between jobs (Chetty, 2008).

We show that these frictions result in inefficient automation. A government
should tax automation — even if it does not value equity — when it lacks redis-
tributive instruments to fully alleviate borrowing frictions. The optimal policy
slows down automation while workers reallocate but does not tax it in the long-run.
Quantitatively, we find important welfare gains from slowing down automation.

We incorporate reallocation and borrowing frictions in a dynamic model with
endogenous automation and heterogeneous agents. Occupations use labor as an
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input. Firms invest in automation to expand their productive capacity. Automated
occupations become less labor intensive, which displaces workers but increases
output as labor reallocates to non-automated occupations. Displaced workers face
reallocation frictions: they receive random opportunites to move between occupa-
tions, experience a temporary period of unemployment or retraining when they do
so (Alvarez and Shimer, 2011), and incur a productivity loss due to the specificity
of their skills (Adão et al., 2020). Workers also face financial frictions: they are
not insured against the risk that their occupation is automated and face borrowing
constraints (Huggett, 1993; Aiyagari, 1994). This baseline model has the minimal
elements needed to study our question. We enrich it for our quantitative analysis.

Displaced workers experience earnings losses when their occupation is auto-
mated, but expect their income to increase as they slowly reallocate and find a new
job. This creates a motive for borrowing to smooth consumption during this tran-
sition. When borrowing and reallocation frictions are sufficiently severe, displaced
workers are pushed against their borrowing constraints.1 Their consumption pro-
files are steeper than those of unconstrained workers who price the firms’ equity.
That is, automated workers are effectively more impatient than firms. Thus, there
is a conflict between how firms and displaced workers value the effects of automa-
tion over time. This creates a motive for policy intervention on efficiency grounds.

In principle, the government could implement a first best if it was able to fully
alleviate borrowing constraints using redistributive transfers. This is unlikely in
practice, which motivates us to study second best interventions.2 In particular, we
analyze the constrained Ramsey problem of a government that can tax automation
and implement active labor market interventions but is unable to fully alleviate
the borrowing constraints of displaced workers by redistributing income.3

1 This is consistent with the evidence. The earnings of displaced workers fall but later partially
recover (Jacobson et al., 1993); including for those exposed to technological change (Braxton and
Taska, 2023). Moreover, workers who loose their job indeed attempt to borrow (Sullivan, 2008),
but are often unable to fully smooth consumption (Landais and Spinnewijn, 2021) or finance their
retraining (Humlum et al., 2022) while unemployed.

2 Governments often do not have have access to such rich instruments, which is precisely what
motivates the public finance literature (Piketty and Saez, 2013). Moreover, the taxes required to
pay for the transfers could tighten constraints for other workers (Aiyagari and McGrattan, 1998)
and carry large dead-weight losses (Guner et al., 2021), and the take-up of transfers could be low
(Schochet et al., 2012). We allow for various forms of social insurance in our quantitative model.

3 These instruments are already used in many countries. For example, US taxes vary by type of
capital and in fact favor automation (Acemoglu et al., 2020). South Korea reduced tax credits on
automation investments, Nevada imposed an excise tax on autonomous vehicles, and the Grand
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We have two main theoretical results. Our first result shows that the equilib-
rium is generically constrained inefficient, as defined by Geanakoplos and Pole-
marchakis (1985). Firms fail to internalize the aggregate and distributional effects
of automation over time on displaced workers who are borrowing constrained.
Taxing automation and implementing active labor market interventions makes au-
tomated workers strictly better off and leaves non-automated workers indifferent
— a Pareto improvement. The policy increases aggregate consumption and redis-
tributes early on in the transition, precisely when displaced workers value it more.

Our second result characterizes optimal policy for a given set of Pareto weights.
To focus on the new efficiency rationale that we propose, we consider weights that
remove any equity motive. These weights ensure that the government would not
distort an efficient economy to redistribute.

We show that taxing automation is optimal on efficiency grounds alone. In
particular, the government should slow down automation while labor reallocation
takes place but should not intervene in the long-run. The optimal policy not
only improves efficiency but also equity when the government values it. There
is no trade-off, in contrast to the literature on the taxation of automation on eq-
uity grounds. As an extension, we also consider a third best problem where the
government can tax automation but cannot implement active labor market inter-
ventions. This is motivated by the fact that such interventions have mixed results
(Card et al., 2018) or unintended effects (Crépon and van den Berg, 2016). The
rationale for taxing automation on efficiency grounds is reinforced, as borrowing
constrained workers rely excessively on mobility to self-insure.

We conclude the paper with a quantitative exploration. Our goal is to evaluate
the efficiency and welfare gains from slowing down automation, while allowing
for various redistributive instruments. Our theoretical analysis found that work-
ers’ consumption profiles are key for optimal policy. These profiles are determined
by reallocation frictions and the ability of workers to smooth consumption. Thus,
we enrich our baseline model to ensure it performs well along these dimensions.
First, we introduce idiosyncratic mobility shocks (Artuç et al., 2010), which leads
to a dynamic discrete choice for reallocation and gross flows across occupations
(Moscarini and Vella, 2008). Second, we add uninsured earnings risk (Floden and

Council of Geneva in Switzerland proposed to tax automated cashiers. See Kovacev (2020) for a
detailed review.
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Lindé, 2001), which produces a realistic distribution of savings. We also allow
for unemployment benefits (Krueger et al., 2016) and non-linear income taxation
(Heathcote et al., 2017) to account for existing insurance that helps workers. We
calibrate the model to match several key moments of the US economy. In particu-
lar, we match the dynamics of occupation-level wages since 1980 in Cortes (2016).

We find that the constrained planner slows down the speed of automation so
as to increase its half-life from 15 years at the laissez-faire to 22 years at the op-
timum. The optimal tax reduces investments in automation especially over the
first decade of the transition. The tax starts at roughly 5%, raises progressively
to 7% over a decade and then gradually declines, reaching roughly zero in year
25. Automated workers benefit substantially — their welfare increases by 0.80% in
consumption equivalent terms — whereas non-automated workers and new gen-
erations are worse off — their welfare falls by 0.19% and 0.08%, respectively. The
optimal policy offsets more than half of the gap in welfare between automated
and non-automated workers at the laissez-faire. Overall, the policy raises social
welfare by 0.20%.

We then consider several robustness checks and an alternative policy. First, we
target a narrower definition of liquid assets. Automated workers are more likely
to become borrowing constrained. They benefit more from slowing down automa-
tion and the total welfare gains increase. Second, we target a lower occupational
mobility rate to reflect its decline in recent decades. The consumption of auto-
mated workers is lower than in our benchmark as they reallocate less, but the slope
of their consumption profile is not meaningfully affected. Therefore, they benefit
more from the intervention but the total welfare gains are mostly unchanged. Fi-
nally, as an alternative policy, we allow the government to partially insure auto-
mated workers by providing wage supplements — similar to Trade Adjustment
Assistance for Workers (TAA) in the US. In present discounted terms, the gov-
ernment would need to give about $20,000 to the average automated worker to
deliver the same welfare gains to them as the optimal tax on automation. The
aggregate fiscal cost of this policy would be several orders of magnitude larger
than the amount currently budgeted for TAA. This suggests that slowing down
automation delivers welfare gains that would be costly to replicate with wage sup-
plements alone.

Our paper relates to several strands of the literature. We contribute to the liter-
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ature on the labor market impact of automation (Acemoglu and Restrepo, 2018;
Martinez, 2018; Humlum, 2019; Moll et al., 2021; Hémous and Olsen, 2022) by
studying optimal policy in an economy with frictions and quantifying the gains
from slowing down automation. Moreover, we show that taxing automation im-
proves both efficiency and equity, while there is a trade-off in the efficient economies
studied in the literature (Guerreiro et al., 2022; Costinot and Werning, 2022; Thuem-
mel, 2018; Korinek and Stiglitz, 2020).

The rationale we propose for taxing automation also complements a large liter-
ature on capital taxation due to equity considerations (Judd, 1985; Chamley, 1986),
dynamic inefficiency (Diamond, 1965; Aguiar et al., 2021), or pecuniary external-
ities when markets are incomplete (Conesa et al., 2009; Dávila et al., 2012; Dávila
and Korinek, 2018). Optimal policies in our model also address pecuniary exter-
nalities. However, these externalities are distinct from the type encountered in
the incomplete markets literature. They rely neither on the presence of uninsured
idiosyncratic risk, nor on endogenous borrowing constraints. In addition, the lit-
erature on pecuniary externalities has almost exclusively studied static (or two-
period) models or long-run stationary equilibria. The timing of these externalities
plays no role in optimal policy. In contrast, the rationale for intervention that we
propose applies during the transition to the long run, and the timing of externalities
is central to optimal policy.

The mechanism that we present applies to any changes in labor demand that
displace labor, including creative destruction (Caballero and Hammour, 1996) and
offshoring (Hummels et al., 2018). We show that slowing down the adoption of
automation technologies can improve efficiency when displaced workers are bor-
rowing constrained. As such, our paper complements a literature studying the op-
timal speed of structural reforms and trade liberalization (Aghion and Blanchard,
1994; Caballero and Hammour, 1996; Neary, 1982; Mussa, 1984).

Methodologically, our quantitative model combines two state-of-the-art frame-
works: (i) dynamic discrete choice models with mobility shocks (Artuç et al., 2010)
used for studying the impact of technologies and trade; and (ii) heterogeneous-
agent models (Huggett, 1993; Aiyagari, 1994) used for analyzing consumption and
insurance. Our analysis also contributes to the public finance literature studying
optimal taxation (Heathcote et al., 2017) and social insurance (Imrohoroglu et al.,
1995; Golosov and Tsyvinski, 2006) in dynamic models with heterogeneous agents.
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2 Model

Time is continuous and there is no aggregate uncertainty. Periods are indexed by
t ≥ 0. The economy consists of a representative firm producing a final good and
a continuum of workers with unit mass. We first describe the problem of the firm
which chooses automation and labor demands. We then describe the workers’
problem, including the assets they trade, the frictions they face and their sources
of income. Finally, we define a competitive equilibrium.

2.1 Firm

The firm produces the final good by combining the output of two occupations.
Both occupations use labor as an input. The first occupation can be automated
(e.g., a routine-intensive occupation) whereas the second cannot. At time t = 0,
the firm chooses the degree of automation α in the automatable occupation.4 We
denote automated and non-automated occupations by h = {A, N}. At time t ≥ 0,
the firm chooses labor demands

{
µA

t , µN
t
}

in both occupations.

Technology. Aggregate output is produced by combining the output yh
t of the two

occupations with a neoclassical technology

Yt = G
(

yA
t , yN

t

)
. (2.1)

The occupations’ outputs are

yh
t =

F
(
µA

t ; α
)

if automated (h = A)

F?
(
µN

t
)
= F

(
µN

t ; 0
)

otherwise (h = N)
, (2.2)

for some production function F (·) with (weakly) decreasing returns to scale in
labor. Automation is labor-displacing: it decreases the marginal product of labor
in the automated occupation.5 Moreover, occupations are (weak) complements, so

4 For now, automation is chosen once and for all. We introduce gradual investment later on. This
allows us to clarify that the optimal policy is to slow down automation while labor reallocates.

5 It should be noted that some forms of automation might complement labor within occupations
too. We focus on automation technologies that displace labor, such as industrial robots, certain
types of artificial intelligence, autonomous vehicles, automated cashiers, etc.
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automation increases the marginal product of the non-automated occupation. We
formalize these assumptions below.

Assumption 1 (Technology). The marginal product of labor ∂µF (µ; α) decreases with
automation α, and ∂2

A,NG
(
yA, yN) ≥ 0 so that occupations are complements.

Automation increases output and can improve aggregate labor productivity, but
it comes at a cost C (α).6 For example, the technology requires some continued
investment due to depreciation (as in our quantitative model). We define the ag-
gregate production function net of the cost of investing in automation

G?
(

µA, µN; α
)
≡ G

(
F
(

µA; α
)

, F
(

µN; 0
))
− C (α) . (2.3)

We refer to G? (·) as output in the following.

Example. We illustrate the production function (2.3) with an example based on the
model of Acemoglu and Restrepo (2018). There is a mass φ of automatable occu-
pations (h = A) and a mass 1− φ of non-automatable ones (h = N). Occupations
operate a technology where automation and labor are perfect substitutes

yA = F
(

µA; α
)
= α + µA and yN = F?

(
µN
)
= µN.

The aggregate production function is

G?
(

µA, µN; α
)
=

[
φ
(

α + µA
) ν−1

ν
+ (1− φ)

(
µN
) ν−1

ν

] ν
ν−1

− δα,

where ν < 1 is the elasticity of substitution across occupations and δ is the marginal
cost of automation.

Optimization. The firm chooses the degree of automation α and labor demands{
µh

t
}

to maximize the value of its equity

max
α≥0

∫ +∞

0
QtΠt (α) dt (2.4)

6 A larger α lowers the marginal product of labor within the automated occupation but can raise the
aggregate marginal product of labor (Appendix A.7). This is the case in the quantitative model.
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where {Qt} is the equilibrium stochastic discount factor, and

Πt (α) ≡ max
µA,µN≥0

G?
(

µA, µN; α
)
− µAwA

t − µNwN
t (2.5)

are profits given wages
{

wh
t
}

and the price of the final good (normalized to 1).
We impose a regularity condition that ensures that automation is positive and

finite in equilibrium. This is needed for a meaningful discussion of automation.

Assumption 2 (Interior solution). The production function G?
(
µA, µN; α

)
is concave

in α and satisfies ∂αG?
(
µA, µN; α

)∣∣
α=0 > 0 and limα→+∞ ∂αG?

(
µA, µN; α

)
= −∞ for

any 0 ≤ µA ≤ 1
2 and µN ≥ 1

2 .

2.2 Workers

Workers consume and save in financial assets. They supply inelastically one unit
of labor and choose to reallocate across occupations.

Preferences. Workers’ preferences over consumption flows {ct} are represented by

U = E0

[∫ +∞

0
exp (−ρt) u (ct) dt

]
(2.6)

for some discount rate ρ > 0 and some isoelastic utility u (c) ≡ c1−σ

1−σ with σ > 0.

Reallocation frictions. We assume that the process of labor reallocation is slow. At
time t = 0, workers are equally distributed across occupations, so there is a mass
1/2 in automated and non-automated occupations. Workers are given the op-
portunity to reallocate to a new occupation with intensity λ. If they do so, they
enter their new occupation with probability 1 − ι or a temporary state of non-
employment with probability i. Workers exit non-employment at rate κ > 0, at
which point they enter their new occupation. The non-employment state can be
interpreted either as unemployment due to search frictions or as temporary exit
from the labor force while workers retrain.7 Finally, we assume that workers in-

7 Workers’ mobility decision is purely time-dependent, which delivers tractable expressions. We
allow for state-dependent mobility in our quantitative model (Section 5). We also allow for one
other reason for slow labor reallocation (new generations gradually replacing older ones).
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cur a permanent productivity loss θ ∈ (0, 1] after they have reallocated. This loss
captures the lack of transferability of skills across occupations.

To retain tractability and abstract from idiosyncratic insurance considerations
at this point, we assume that workers initially employed in each occupation form a
large household.8 This allows them to achieve full risk sharing against the risks of
being allowed to reallocate (at rate λ), becoming unemployed (probability ι), and
exiting unemployment (at rate κ). In what follows, we refer to each large house-
hold as automated (h = A) or non-automated (h = N) workers.

Assets. We suppose that financial markets are incomplete: workers cannot trade
contingent securities against the risk that their initial occupation is automated.9

Workers trade bonds and the firm’s equity. Bonds are in zero net supply, and work-
ers have no bonds initially. There is a unit of equity, which is initially in the hands
of a competitive mutual fund that trades the same two assets.10 Workers hold an
equal and fixed share in this mutual fund, which rebates profits lump sum to them.

Budget constraint. A worker’s flow budget constraint is

dah
t =

(
Ŷh

t + Πt + rtah
t − ch

t

)
dt, (2.7)

where ah
t is bond holdings, Ŷh

t is labor income, Πt is the profits rebated by the
mutual fund, and rt ≥ 0 is the return on savings. To save on notation, the budget
constraint (2.7) implicitly assumes that workers only save in bonds. This is without
loss of generality, as workers will be indifferent between saving in bonds or equity

8 This assumption prevents an artificial dispersion in the distribution of assets and implies that a
worker’s reallocation history is irrelevant. We relax this assumption in our quantitative model.

9 We rule out complete markets for two reasons: financial markets participations is limited in prac-
tice (Mankiw and Zeldes, 1991); and workers’ equity holdings are typically not hedged against
their employment risk (Poterba, 2003). The absence of contingent securities is precisely what
motivates the literature on the regulation of automation. The equilibrium would be efficient if
workers could trade contingent securities before occupations become automated.

10 This assumption ensures that (displaced) workers cannot sell equity to self-insure when their
occupation is automated. In practice, almost all the firm equity in the US is held by the wealthiest
10% of households (Survey of Consumer Finances, 2022) — not the typical displaced worker.
Accordingly, an alternative approach would have been to introduce a third agent (i.e., a Ricardian
investor) who trades and holds equity but does not supply labor. We did not pursue this route
to avoid introducing an additional agent.
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in equilibrium.11 Labor income Ŷh
t is

Ŷh
t =

wA
t (1− ut − µ̃t) + (1− θ)wN

t µ̃t if h = A

wN
t if h = N,

(2.8)

where ut and µ̃t are the shares of automated workers who are unemployed or have
become employed in the non-automated occupation, respectively. Expression (2.8)
already uses the fact that, in equilibrium, non-automated workers do not reallo-
cate. The expression also assumes that unemployed workers earn no income.12

Borrowing friction. Workers are subject to a borrowing constraint

ah
t ≥ a (2.9)

where the borrowing limit is a ≤ 0.

Optimization. The households maximize utility (2.6) by choosing consumption ch
t ,

bonds ah
t , and reallocation mh

t , subject to the following constraints. First, they must
satisfy the budget constraint (2.7) and borrowing constraint (2.9). Second, their
labor income is given by (2.8). Third, workers’ labor supply across occupations is
consistent with their reallocation choice mh

t , given reallocation frictions. Since only
automated workers find it optimal to reallocate, in the following we use mt ≡ mA

t

and implicitly set mN
t = 0. The laws of motion for the share of automated workers

who are unemployed (ut) or employed in the non-automated occupation (µ̃t) are

dut = [λι (1− ut − µ̃t)mt − κut] dt (2.10)

dµ̃t = [λ (1− ι) (1− ut − µ̃t)mt + κut] dt, (2.11)

with u0 = µ̃0 = 0. Next, we impose a regularity condition on reallocation frictions
which ensures that reallocation takes place in equilibrium and output does not
decrease over time.

11 In equilibrium, there will be no arbitrage between bonds and equity — i.e., condition (2.14) holds.
The reason is that (i) both assets are traded, and (ii) the borrowing constraint (2.9) applies to the
sum of bond and equity holdings as in Werning (2015).

12 Our quantitative model has unemployment benefits and gross flows across occupations.
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Assumption 3 (Reallocation frictions). The productivity loss θ is sufficiently small and
the duration of unemployment 1/κ is sufficiently short that 1− (1− θ) (1− 1/κ) < Z?

for some Z? > 0 defined in Appendix A.5.

2.3 Equilibrium

Market clearing in the labor market requires

µA
t =

1
2
(1− ut − µ̃t) and µN

t =
1
2
(1 + (1− θ) µ̃t) (2.12)

for each occupation and all t ≥ 0. The aggregate resource constraint is

G∗
(

µA
t , µN

t ; α
)
=

1
2

(
cA

t + cN
t

)
. (2.13)

Finally, there is no arbitrage between bonds and equity, as workers and the (com-
petitive) mutual fund can trade both. Thus, the firm discounts future cash-flows
with the equilibrium interest rate rt. The stochastic discount factor in (2.4) is

Qt = exp
(
−
∫ t

0
rsds

)
. (2.14)

We define a competitive equilibrium below.

Definition 1 (Competitive equilibrium). A competitive equilibrium consists of a
degree of automation α, and sequences for labor demands

{
µh

t
}

, consumption and
savings choices

{
ch

t , ah
t
}

, reallocation choices
{

mh
t
}

, interest rate, stochastic dis-
count factor, wages, profits and incomes

{
rt, Qt, wh

t , Πt, Ŷh
t
}

such that: (i) automa-
tion and labor demands are consistent with the firm’s optimization; (ii) consump-
tion, savings, and worker reallocation are consistent with workers’ optimization;
and (iii) the labor market clearing condition (2.12), the resource constraint (2.13),
and the no arbitrage condition (2.14) are satisfied.

3 Equilibrium Characterization

We now characterize the laissez-faire equilibrium allocations. We begin with the
allocations of labor, and consumption and savings after automation has occurred.
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We then turn to the equilibrium degree of automation.

3.1 Labor Reallocation and Incomes

Firm optimization implies that wages equal the marginal products of labor

wh
t ≡ ∂hG?

(
µA

t , µN
t ; α

)
(3.1)

for each h = A, N. Automation is labor-displacing and decreases the wage of auto-
mated workers. This induces them to reallocate to the non-automated occupation.
As workers reallocate, the wedge between marginal products closes and output
increases over time. The following proposition shows that automated workers re-
allocate until a stopping time TLF when the marginal benefit of doing so is zero.

Lemma 1 (Equilibrium labor reallocation). The equilibrium reallocation of labor is
characterized by a stopping time TLF until which automated workers reallocate to non-
automated occupations. Formally, mt = 1 for all t ≤ TLF and mt = 0 otherwise. The
stopping time satisfies the smooth pasting condition

∫ +∞

TLF
exp (−ρt)

u′
(
cA

t
)

u′
(
cA

0
)∆tdt = 0 (3.2)

where
∆t ≡ (1− θ) [ι (1− exp (−κ (t− T))) + 1− ι]wN

t − wA
t (3.3)

for all t ≥ T denotes the output gains from labor reallocation when evaluated at T = TLF,
since wh

t = ∂hG?
(
µA

t , µN
t ; α

)
in equilibrium.

Proof. See Appendix A.1.

The flows ∆t capture the benefits and costs of reallocation. When an automated
worker reallocates, they forgo their wage wA

t and earn no income if they become
unemployed (probability ι) or (1− θ)wN

t if they enter the non-automated occupa-
tion (probability 1− ι) . As they exit unemployment at rate κ, they earn (1− θ)wN

t

too. The laissez-faire stopping time TLF trades off these benefits and costs.
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To complete the characterization, labor allocations across occupations are

µA
t =

1
2

exp (−λ min {t, T}) (3.4)

µN
t =

1
2
+

1
2
(1− θ) (1− exp (−λ min {t, T})) (3.5)

− 1
2
(1− θ) ι

λ

λ− κ
exp (−κt) (1− exp (− (λ− κ)min {t, T})) ,

evaluated at T = TLF, after solving the differential equations (2.10)–(2.11) and
using labor market clearing (2.12).

Turning to earnings, automation drives a wedge between the labor incomes of
automated and non-automated workers ŶA

t − ŶN
t < 0. In theory, this distribu-

tional effect could weaken or strenghten over time as labor reallocates, depend-
ing on third derivatives of the production function G? (·). Reallocation directly
weakens this distributional effect since fewer workers remain employed in the au-
tomated occupation. However, reallocation indirectly affects equilibrium wages
too. We next provide a sufficient condition for the direct effect to dominate. This
ensures that the effect of automation on the labor income gap ŶA

t − ŶN
t weakens

over time, which is intuitive. The assumption uses the fact that this gap is approxi-
mately equal to µ∂µG? (µ, 1− µ; α) at µ = µA

t when unemployment spells are short
(Assumption 3). We will only impose this assumption in Section 4.5.13

Assumption 4 (Labor income gap). The labor income gap µ∂µG? (µ, 1− µ; α) has de-
creasing differences in (α, µ) .

3.2 Consumption and Savings

We now show that the labor displacement induced by automation creates a motive
for borrowing and that workers become borrowing constrained when reallocation
and borrowing frictions are sufficiently severe.

Lemma 2 (Binding borrowing constraints). Workers initially employed in the auto-
mated occupation (h = A) borrow in equilibrium. They become borrowing constrained if
and only if reallocation frictions (λ, κ) and borrowing frictions (a) are sufficiently severe.

13 For instance, the example in Section 2.1 satisfies this assumption when evaluated in a symmetric
allocation yA = yN , and if φ > 1

2 and ν < 2 as in our quantitative model (Section 5).
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This is the case when the borrowing limit a ≤ 0 is sufficiently tight that a > a? (λ, κ) for
some threshold a? (·) defined in Appendix A.2. This threshold satisfies a? (λ, κ) < 0, i.e.,
borrowing constraints can bind, if and only if reallocation is slow (1/λ > 0 or 1/κ > 0).

Proof. See Appendix A.2.

To understand this result, the left panel of Figure 3.1 depicts the paths of the
labor incomes for workers initially employed in each occupation

Ŷh
t = wh

t︸︷︷︸
Initial wage

+1{h=A} × 2×
[ (

1
2
− µA

t

)
×
(
(1− θ)wN

t − wA
t

)
︸ ︷︷ ︸

Reallocation gains

−
(

1− µA
t − µN

t −
(

1
2
− µA

t

)
θ

)
× wN

t︸ ︷︷ ︸
Unemployment loss

]
. (3.6)

When reallocation is slow, automation decreases the income of workers displaced
by automation, both directly by lowering the wage wA

t = ∂AG? (·) in their initial
occupation and indirectly through unemployment

(
1− µA

t − µN
t
)
. This decrease

is not fully persistent though. Their income rises over time as they become em-
ployed in the non-automated occupation at a higher wage (1− θ)wN

t . Therefore,
automated workers wish to borrow while they slowly reallocate.

Remark 1. Workers displaced by automation expect their income to partially recover as
they slowly reallocate. This creates a motive for borrowing.

The right panel of the figure illustrates the second part of Lemma 2 in the space
of reallocation frictions (1/λ) and borrowing frictions (a) in the particular case
where unemployment spells are short (1/κ → 0). When the frictions are suffi-
ciently mild, workers are never borrowing constrained, i.e., the white region in the
figure. This region includes two limit cases in the literature. First, suppose that
labor reallocation is instantaneous (1/λ→ 0, 1/κ → 0) as in Costinot and Werning
(2022). In this case, there is no motive for borrowing, since income changes are
fully permanent, and borrowing frictions are irrelevant. That is, slow reallocation
is necessary for borrowing constraints to bind. Second, suppose that there are no
borrowing frictions (a→ −∞) as in Guerreiro et al. (2022).14 In this case, automa-
14 In Guerreiro et al. (2022), reallocation takes place (entirely) through new generations replacing

older ones. We introduce overlapping generations in Section 4.6.2 and in our quantitative model.

14



Figure 3.1: Laissez-faire: labor incomes and borrowing constraints
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tion still creates a motive for borrowing but workers are never constrained. As
reallocation and borrowing frictions become more severe, borrowing constraints
eventually bind a > a? (·), i.e., the colored region in the figure.15

Turning to consumption, automated workers are worse off and have a higher
marginal utility, i.e., u′

(
cA

t
)

> u′
(
cN

t
)
. Furthermore, binding borrowing con-

straints imply that automated workers have steeper consumption profiles, i.e.,
u′
(
cA

t
)

/u′
(
cA

0
)
< u′

(
cN

t
)

/u′
(
cN

0
)
= exp

(
−
∫ t

0 rsds
)

.

Evidence on displaced workers. The literature on the consequences of job loss has
documented that the earnings of displaced workers initially fall and later partially
recover (Jacobson et al., 1993), which is consistent with Remark 1. This holds in
particular for workers who switch occupations due to technological change (Brax-
ton and Taska, 2023). Moreover, workers who loose their job indeed attempt to
borrow (Sullivan, 2008) but often cannot fully smooth consumption due to bor-
rowing constraints (Landais and Spinnewijn, 2021). Humlum et al. (2022) find
that borrowing constraints affect the retraining decisions of unemployed workers.
While we abstract from ex-ante heterogeneity across workers, our mechanism is
more likely to be relevant when automation impacts workers with small liquidity
buffers. For example, industrial robots, automated cashiers, or autonomous vehi-
cles tend to displace low-to-middle income routine workers who are more likely to

15 It should be noted that the threshold a? (λ, κ) is non-monotonic in its arguments. In particular,
lim1/λ→+∞ a? (λ, κ) = 0 when workers cannot reallocate.
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be hand-to-mouth. In contrast, artificial intelligence for natural language process-
ing tends to affect higher income skilled workers who can borrow more easily.16

3.3 Automation

We now turn to the equilibrium automation choice.

Lemma 3 (Equilibrium automation). The degree of automation αLF is unique and inte-
rior, and satisfies

∫ +∞

0
exp

(
−
∫ t

0
rsds

)
∆?

t dt = 0 (3.7)

where
∆?

t ≡ ∂αG?
(

µA
t , µN

t ; α
)

for all t ≥ 0 (3.8)

denotes the output gains from automation, and

Qt = exp
(
−
∫ t

0
rsds

)
= exp (−ρt)

u′
(
cN

t
)

u′
(
cN

0
) (3.9)

is the equilibrium stochastic discount factor used by the firm. The output gains from au-
tomation ∆?

t increase over time in equilibrium.

Proof. See Appendix A.3.

The firm maximizes the present discounted value of output. No arbitrage be-
tween equity and bonds implies that the firm values cash-flows over time using the
interest rate exp

(
−
∫ t

0 rsds
)

, which equals the marginal rate of substitution over

time (MRS) of non-automated workers exp (−ρt) u′
(
cN

t
)

/u′
(
cN

0
)

in equilibrium
since they are not borrowing constrained.

The firm trades off the benefits and costs of automation over time, which are
captured in the output gains ∆?

t . These gains build up over time as labor real-
locates from the automated to the non-automated occupation. The reason is that

16 The mechanism might, in theory, also apply to increases in labor demand in an occupation or sec-
tor, as workers would borrow in anticipation of higher wages. However, this type of anticipatory
effect is likely to be weak (Poterba, 1988). Indeed, we find in our quantitative model that workers
borrow substantially more after a fall in their occupation’s wage compared to an increase in the
other occupation’s (result available upon request).
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the marginal product of the automated occupation increases, by concavity of the
technology and complementarity across occupations (Assumption 1).

4 Excessive Automation

In this section, we show that automation is excessive at the laissez-faire and charac-
terize optimal policy. We first specify the set of policy instruments available to the
government (Section 4.1). We then state the constrained Ramsey problem (Section
4.2), and discuss the aggregate and distributional effects from automation (Sec-
tion 4.3). Next, we show that the equilibrium is constrained inefficient and that
taxing automation Pareto improves upon the laissez-faire (Section 4.4). We then
show that the government finds it optimal to tax automation purely on efficiency
grounds (Section 4.5), even when it has no preference for redistribution. Finally, we
present various extensions (Section 4.6). For tractability and to obtain more com-
pact expressions, we assume in the following that workers cannot borrow a→ 0.

4.1 Policy Instruments

A government that has access to a sufficiently rich set of lump-sum transfers to
fully undo borrowing frictions could, in theory, implement a first best. For ex-
ample, the government could use targeted lump-sum transfers

{
Th

t
}

(indexed by
worker and time) to help displaced workers. In practice, such rich interventions
are unlikely. The literatures on optimal taxation (Piketty and Saez, 2013) and the
regulation of automation precisely rule out such transfers, in part due to their in-
formational requirements.17 This motivates us to study second best policy inter-
ventions.

We assume that the government has access to a simple set of instruments that
depend on calendar time alone: a linear tax on automation τα, and active labor
market interventions (Card et al., 2018) that tax or subsidize labor reallocation

17 Alternatively, the government could implement symmetric transfers {Tt} to effectively borrow
on behalf of the workers. However, the associated debt needs to be repaid later by taxing them.
This future tax burden could tighten borrowing constraints (Aiyagari and McGrattan, 1998) and
carry large distorsions (Guner et al., 2021), limiting or reversing the benefits of the transfers.
The transfers need to be generous enough to ensure that no worker is constrained — a scenario
that the literature on heterogeneous agents has not seriously considered. The size of transfers is
further limited by the fact that future higher taxes could push the poorest workers into default.
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{ςt}.18 These instruments are already used in many economies and do not require
the government to know which occupations are automated or which workers are
displaced. For instance, US taxes vary by type of capital (e.g., equipment, software,
structures) and industry (due to differential depreciation allowances), and seem to
be favoring automation instead of taxing it (Acemoglu et al., 2020). Concrete poli-
cies discriminating against automation technologies (Kovacev, 2020) include: (i)
South Korea’s reduction in the automation tax credit aimed at protecting workers
in high-tech manufacturing; (ii) Nevada’s excise tax on transportation companies
using autonomous vehicles that would displace human drivers; and (iii) the Swiss
canton of Geneva’s proposed tax on retail stores installing automated cashiers.
That said, identifying technologies that displace labor could be more challenging
in other instances (e.g., artificial intelligence algorithms).

4.2 The Constrained Ramsey Problem

We consider the problem of a government that values automated and non-automated
workers, and assigns them Pareto weights

{
ηA, ηN}. The government effectively

controls two choices with its tax on automation and active labor market interven-
tions: the degree of automation α; and the reallocation of workers, as governed by
the stopping time T.19 All other choices must be consistent with workers’ and the
firm’s optimality.

Lemma 4 (Primal problem). The government maximizes the social welfare function

U = ∑
h

ηh
∫ +∞

0
exp (−ρt) u

(
ch

t

)
dt (4.1)

by choosing
{

α, T, µA
t , µN

t , cA
t , cN

t
}

, subject to the laws of motion (3.4)–(3.5) for labor{
µA

t , µN
t
}

, and the consumption allocations ch
t = Ŷh

t + Πt for workers initiallly employed
in occupations h = {A, N}, where labor incomes Ŷh

t are given by (3.6) and profits Πt are
given by (2.5).

18 To abstract from income effects, we assume that the large families reimburse lump sum any
reallocation taxes or subsidies it perceives. The latter can take the form of credits for retraining
programs or unemployment insurance (when positive), or penalties such as imperfect vesting of
retirement funds (when negative).

19 Formally, the government would control reallocation choices
{

mh
t

}
. To save on notation, we

directly impose that the optimal reallocation policy is a stopping time T for automated workers.
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It is worth noting that the only difference between this constrained problem
and the unconstrained (first best) Ramsey problem lies in the set of implementable
consumption allocations. In the constrained problem, workers must consume their
income, since borrowing is not possible (a→ 0). In the first best problem, any
consumption allocation that satisfies the resource constraint (2.13) is feasible.

4.3 Aggregate vs. Distributional Effects

Consider the effect of a policy intervention {δα, δT} on the government’s objective
U starting from the laissez-faire. The change in welfare is

δU = ηN × u′
(

cN
0

)
×
∫ +∞

0
exp (−ρt)

u′
(
cN

t
)

u′
(
cN

0
)︸ ︷︷ ︸

=exp
(
−
∫ t

0 rsds
)

× δcN
t dt

+ ηA × u′
(

cA
0

)
×
∫ +∞

0
exp (−ρt)

u′
(
cA

t
)

u′
(
cA

0
)︸ ︷︷ ︸

How automated workers value flows

× δcA
t dt (4.2)

with
δch

t ≡ δα×
(

∆?
t + Σh,?

t

)
+ δT × 1t>T

(
∆t + Σh

t

)
, (4.3)

where the flows ∆?
t and ∆t are the aggregate output gains from automation (3.8)

and reallocation (3.3), and the flows Σh,(?)
t capture purely distributional effects of

automation and reallocation through its effect on the relative incomes of workers.
By definition, these distributional terms sum up to zero ΣA,(?)

t + ΣN,(?)
t = 0 at all

times.

No borrowing constraints. Consider first the case where borrowing constraints do
not bind. Decreasing automation δα < 0 has no first order aggregate effects on
welfare. The reasons is that the firm and workers agree on how to value the out-
put gains of automation ∆?

t over time. The workers’ MRS coincide with the equi-
librium interest rate exp (−ρt) u′

(
ch

t
)

/u′
(
ch

0
)
= exp

(
−
∫ t

0 rsds
)

for h = A, N and

the firm was already optimizing in equilibrium, i.e., equation (3.7) holds.20 How-
ever, decreasing automation has distributional consequences: it makes automated

20 A similar logic implies that varying reallocation δT has no aggregate effects on welfare either.

19



workers better-off relative to non-automated workers. Automated workers value
changes in consumption more since u′

(
cA

t
)
> u′

(
cN

t
)
. This provides a redistribu-

tive motive for taxing automation when the government values equity, e.g., when
it uses utilitarian weights ηh ≡ 1/2. This motive for intervention has been the fo-
cus of the exisiting literature (Guerreiro et al., 2022; Costinot and Werning, 2022).

Binding borrowing constraints. Suppose instead that reallocation and borrowing fric-
tions are sufficiently important that borrowing constraints bind (Lemma 2). Auto-
mated workers who are displaced are effectively more impatient than the firm,
since u′

(
cA

t
)

/u′
(
cA

0
)
< u′

(
cN

t
)

/u′
(
cN

0
)
. There is now a conflict between how the

firm and displaced workers value the effects of automation over time. As we show
in the next sections, this creates room for Pareto improvements and a new motive
for taxing automation on efficiency grounds.

4.4 Constrained Inefficiency

We now establish that the equilibrium is generically constrained inefficient in the
sense of Geanakoplos and Polemarchakis (1985). The government can implement
a Pareto improvement by varying automation (δα) and reallocation (δT). This is
the case in virtually any economy: if this happen not to be the case, then there
exists an arbitrarily small perturbation of the production function G? (·) that again
allows for a Pareto improvement.

Proposition 1 (Constrained inefficiency). Generically, there exists a variation {δα, δT}
starting from the laissez-faire which makes automated workers strictly better off

(
δUA > 0

)
and non-automated workers indifferent

(
δUN = 0

)
. The Pareto improvement requires tax-

ing automation (δα < 0).

Proof. See Appendix A.4.

To understand why taxing automation generates a Pareto improvement, we
reproduce the main steps of the proof. Consider a reduction in automation δα < 0.
Absent any change in reallocation, non-automated workers would be worse off.
To leave them indifferent δUN = 0, the government can always compensate them
by reducing the mass of workers who enter their occupation δT < 0, which lifts
their wage.
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This intervention {δα, δT} strictly improves the welfare of automated workers
δUA > 0 through both aggregate and distributional effects. The aggregate effect of
the intervention on automated workers is∫ +∞

0
exp (−ρt) u′

(
cA

t

)
{δα× ∆?

t + δT × 1t>T∆t} dt > 0. (4.4)

The output gains from automation ∆?
t take time to materialize (Lemma 3). The

cost is borne early on in the transition (the flows ∆?
t are initially negative) and

output increases gradually as workers reallocate (the flows ∆?
t become positive

later on). Automated workers are effectively more impatient than the firm since
they are borrowing constrained.21 They value the future output gains less, and the
early costs more. Thus, curbing automation δα < 0 benefits automated workers
by increasing aggregate consumption early on in the transition when they value it
more. The decrease in reallocation δT < 0 has no first order effects on their welfare,
since automated workers were already reallocating optimally (Lemma 1).

The distributional effect of the intervention on automated workers is∫ +∞

0
exp (−ρt) u′

(
cA

t

) {
δα× ΣA,?

t + δT × 1t>TΣA
t

}
dt > 0. (4.5)

Curbing automation always benefits automated workers relative to non-automated
workers δα× ΣA,?

t > 0. On the contrary, reducing reallocation makes them worse-
off δT × ΣA

t < 0. When automated workers are borrowing constrained, the net
effect (4.5) is positive. The reason is again that automated workers are effectively
more impatient than non-automated workers. They value more the immediate
gains δα × ΣA,?

t > 0 (for all t ≥ 0) compared to the losses δT × ΣA
t < 0 which

come further in the future after reallocation has stopped (only for t ≥ T). There-
fore, the intervention generates a Pareto improvement through both aggregate and
distributional effects.

Remark 2. Firms fail to internalize the effects of automation on displaced workers who
are borrowing constrained. Taxing automation increases aggregate consumption and re-
distributes precisely when displaced workers value it more.

The inefficiency that we document relies on the firm and displaced workers dis-

21 This would be the case even if the interest rate was fixed, e.g., if we introduced additional Ricar-
dian investors (domestic or international) with a constant MRS.
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agreeing on how they value the aggregate and redistributive effects of automa-
tion over time. In practice, the wealthiest 10% of households hold close to 90%
of firm equity in the US (Survey of Consumer Finances, 2022). The typical dis-
placed worker does not hold or trade equity. As a result, the incentives of a firm to
automate (say a car manufacturer) mostly reflect the incentives of its wealthy in-
vestors rather than those of the workers that it displaces (who may be borrowing
constrained). That said, our mechanism could be muted if workers were repre-
sented in the boardroom directly.

4.5 Optimal Policy Interventions

We now characterize the constrained efficient degree of automation for a given set
of Pareto weights. The optimal policy depends on how the government values
efficiency and equity.22 To see this, consider the social incentive to automate ∂αU
starting from the laissez-faire. It can be decomposed as

∂αU = ∑
h

ηh
∫ +∞

0
exp (−ρt) u′

(
ch

t

)
×
(

∆?
t + Σ̂h,?

t

)
dt︸ ︷︷ ︸

Taxing α on efficiency grounds

+ ∑
h

ηh
∫ +∞

0
exp (−ρt) u′

(
ch

t

)
dt×

∫ +∞

0
QtΣh,?

t dt︸ ︷︷ ︸
Taxing α on equity grounds

, (4.6)

where Σ̂h,?
t ≡ Σh,?

t −
∫ +∞

0 QsΣh,?
s ds. The efficiency component captures two effects:

the aggregate effect of curbing automation ∆?
t , and the change in the distribution of

consumptions over time Σ̂h,?
t fixing their present net discounted value. This compo-

nent is zero in any efficient economy where the MRS are equalized across workers.
In turn, the equity component captures how consumption is redistributed across
workers in present discounted value. This component depends on the differences
across workers in the average marginal utilities over time.

Efficiency motive. To focus on the new efficiency rationale that we propose, we
first consider a government that uses weights ηeffic,h = 1/

∫ +∞
0 exp (−ρt) u′

(
ch

t
)

dt

22 Bhandari et al. (2021) and Dávila and Schaab (2022) also provide decompositions of the welfare
effects of policy into efficiency and equity components.
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evaluated at the laissez-faire. These efficiency weights ensure that the government
does not intervene to improve equity.23 Proposition 2 below shows that taxing
automation is optimal on efficiency grounds alone.

Proposition 2 (Taxing automation on efficiency grounds). Suppose that the govern-
ment uses efficiency weights ηeffic,h = 1/

∫ +∞
0 exp (−ρt) u′

(
ch

t
)

dt. Then, taxing au-
tomation is optimal.

Proof. See Appendix A.5.

The intuition is similar to Proposition 1. The output gains from automation
∆?

t build up over time (Lemma 3). The distributional effects ΣA,?
t = −ΣN,?

t are
negative but weaken over time, as automated workers reallocate away from their
occupation (Assumption 4). Thefore, taxing automation is optimal (∂αU < 0) be-
cause it increases aggregate consumption and redistributes precisely at times when
the average worker in the economy (under weights ηeffic,h) values it more.

Finally, when the government’s problem (4.1) is convex, Proposition 2 implies
that the laissez-faire level of automation is excessive compared to its second best
counterpart αSB,effic < αLF. The reason is that there is a unique global optimum.
We will compute the optimum numerically in our quantitative model.

Equity motive. Taxing automation not only improves efficiency but also equity
when the government values it. There is no trade-off, in contrast to the litera-
ture on the taxation of automation on equity grounds. A utilitarian government(
ηutil,h = 1/2

)
that values equity would tax automation even more compared to

Proposition 2.

4.6 Extensions

We next consider a number of extensions to our analysis.

4.6.1 No Active Labor Market Interventions

In practice, ex post policies can be difficult to implement. Active labor market in-
terventions often produce mixed results (Card et al., 2018), or have unintended

23 In an efficient economy, the weights boil down to the standard inverse marginal utility weights
ηeffic,h = 1/u′

(
ch

0

)
and the government does not intervene at all.
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consequences for untargeted workers (Crépon and van den Berg, 2016). For in-
stance, this would be the case with gross flows between occupations, as in our
quantitative model. For this reason, we now consider a third best problem where
the government controls automation but is unable to control labor reallocation.
This implies that a Pareto improvement (Proposition 1) is no longer possible.

In addition to the direct effects in (4.6), the government now internalizes the
indirect effect of automation due to reallocation T (α). This indirect effect is24

T′ (α)× 1
2

λ exp (−λT)×
∫ +∞

T(α)
exp (−ρt)

{
ηNu′

(
cN

t

)
− ηAu′

(
cA

t

)}
×
(

∆t + ΣN
t

)
dt.

Taxing automation decreases reallocation since T′ (·) > 0. This indirect effect
can either reinforce or dampen the government’s incentives to tax automation,
depending on the Pareto weights. For instance, a utilitarian government would
tax automation less compared to Proposition 2, as this induces more reallocation
δT > 0 and redistributes towards automated workers. In contrast, one can show
that a government using efficiency weights (which does not value such redistribu-
tion) finds it optimal to tax automation more when unemployment spells are not
too long (as in Assumption 3).

4.6.2 Slowing Down Automation

An extensive literature argues that taxing capital might improve insurance (Conesa
et al., 2009; Dávila et al., 2012) or prevent capital overaccumulation (Aiyagari, 1995)
in economies with incomplete markets (or overlapping generations). These two
rationales share two features: they rely on the presence on uninsured idiosyncratic
risk and optimal policies affect investment in the long-run.

The rationale that we propose is conceptually distinct. First, we find that taxing
automation is optimal even absent idiosyncratic uncertainty. Second, our mecha-
nism implies that the government should slow down automation only while labor
reallocation takes place and displaced workers are borrowing constrained, but has
no reason to tax automation in the long-run. To clarify this last point, we extend
our model along two dimensions that are relevant for studying dynamics over long
horizons. Both dimensions are present in our quantitative model. First, we allow

24 This expression uses Lemma 1 and the fact that ΣA
t + ΣN

t = 0.
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for gradual investments in automation. We assume that the law of motion of au-
tomation is dαt = (xt − δαt) dt for some depreciation rate δ and gross investment
rate xt, and the cost of automation qt declines over time. Second, we assume that
there are overlapping generations of workers who are born (and die) at rate χ and
can choose any occupation at birth. We show below that the government has no
motive to intervene in the long-run.

Proposition 3 (No intervention in the long-run). In the long-run, the equilibrium
converges to a first best allocation. In particular, αLF

t /αFB
t → 1 as t → +∞, where αFB

t is
automation at the first best.

Proof. See Appendix A.6.

The government can improve neither efficiency nor equity in the long-run.
Once labor reallocation is complete, workers’ incomes are constant and they have
no incentive to borrow. The intertemporal MRS of all workers are identical. There-
fore, the firm’s automation choice is efficient since it values the returns to automa-
tion over time as workers do. Moreover, the entry of new generations equalizes
wages across occupations in the long-run. The marginal utilities of all workers are
identical, and there is no need for redistribution in the long-run as in Guerreiro
et al. (2022).

4.6.3 The Direction of Investments

So far, the firm could only invest in automation. Taxing it thus unequivocally
reduces total investment. We now allow investments in a Hicks-neutral technology.
We assume that aggregate output is

G̃
(

µA, µN; α, A
)
= AG

(
F
(

µA; α
)

, F
(

µN; 0
))
− C(α)−Φ(A)

and the firm chooses automation α and productivity A. Hicks-neutral investments
do not cause worker displacement. The adjustment is instantaneous and workers
are not borrowing constrained. Therefore, the optimal policy changes the direction
of investments: taxing automation but subsidizing Hicks-neutral investments.

It is also worth noting that our analysis abstracts from other reasons why the
government might want to subsidize investment, e.g., firm credit constraints, ex-
ternalities, etc. Therefore, our results do not necessarily imply that automation
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should be taxed on net. Rather, they suggest that automation should be taxed rela-
tive to other investments, e.g., through lower subsidies as in South Korea.

5 Quantitative Model

In the remaining of the paper, we quantitatively evaluate the efficiency rationale
for slowing down automation. To this end, we enrich our baseline model along
several dimensions that are important for the ability of workers to reallocate and
smooth consumption. In particular, we allow for gross flows across occupations,
uninsurable idiosyncratic earnings and mobility risks, and some forms of social
insurance. We also introduce gradual automation and overlapping generations of
workers (as in Section 4.6.2). Appendix B provides further details.

5.1 Firm

Production. There is a continuum of occupations of mass 1. A share φ are automat-
able (h = A) and a share 1− φ are not (h = N). Occupations use the technology

yA
t = AA

(
α + µA

)1−η
and yN

t = AN
(

µN
)1−η

(5.1)

where η ∈ (0, 1) is the span of control, and Ah > 0 are occupation-specific produc-
tivities.25 The firm’s final good technology is

G
(

yA
t , yN

t

)
=

[
φ
(

yA
t

) ν−1
ν
+ (1− φ)

(
yN

t

) ν−1
ν

] ν
ν−1

, (5.2)

where ν < 1 is the elasticity of substitution.

Investment. The firm invests in automation. The law of motion of automation is

dαt = (xt − δαt) dt, (5.3)

where δ is the rate of depreciation, and xt is the investment rate. The firm incurs a

25 We normalize the relative productivity of automation to 1. This is without loss of generality since
only the ratio between this productivity and the cost automation qt is relevant.
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resource cost qt per unit of investment xt. As in Guerreiro et al. (2022), we assume
that this cost falls over time qt = qfin + exp (−ψt)

(
qinit − qfin), where qinit and qfin

are the initial and final costs, and ψ > 0 is the convergence rate. The initial cost en-
sures that automation starts at α0 = 0. The government taxes automation linearly
at rate {τx

t } and rebates the proceedings to the firm.

Dividends. The firm smoothes dividends over time (Leary and Michaely, 2011)
and issues debt to finance investment early on.26 Dividends are given by Πdiv

t =

Πfin + exp (−ςt)
(
Πinit −Πfin) where Πinit and Πfin are profits at the initial and

final steady states. The convergence rate ς > 0 ensures that the firm repays its
debt

∫ +∞
0 exp

(
−
∫ t

0 rsds
) (

Πdiv
t −Πt

)
= 0.

5.2 Workers

There are overlapping generations of workers that are replaced at rate χ.27 A
worker is indexed by five states: their asset holdings (a); their occupation of em-
ployment (h); their employment status (e); their permanent productivity com-
ponent (ξ); and the mean-reverting component of their productivity (z). We let
x ≡ (a, h, e, ξ, z) be the workers’ states and π its measure.

Assets and constraints. The asset structure is the same as in our baseline model.28 In
addition, workers have access to annuities which allows them to self-insure against
survival risk. Financial markets are otherwise incomplete: workers cannot trade
contingent securities against the risk that their occupation becomes automated,
against the risk that they are not able to relocate, against unemployment risk, or
against idiosyncratic productivity risk. Workers now face the budget constraint

dat (x) =
[
Ynet

t (x) + (rt + χ) at (x)− ct (x)
]

dt (5.4)

26 Assuming that the firm smoothes dividends is conservative with respect to our mechanism. At
short horizons, the investment cost of automation exceeds revenues and profits are negative.
Disbursing negative dividends to workers would make them more likely to become borrowing
constrained, and strengthen the efficiency rationale for taxing automation. Our specification
ensures that the cost of investing in automation is smoothed over time and that dividends do not
fall, which firms seem to be reluctant to do in practice (Leary and Michaely, 2011).

27 We introduce overlapping generations because young cohorts account for a substantial share of
labor reallocation across occupations (Adão et al., 2020).

28 The mutual fund now rebates dividends Πdiv
t to workers, instead of profits.
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where Ynet
t (x) denotes net income and rt is the return on bonds. Workers still face

the borrowing constraint (2.9). They hold abirth (x) = 0 assets at birth.

Occupational choice. Workers choose their first occupation of employment at birth.
They supply labor and are given the opportunity to move between occupations
with intensity λ. Moreover, workers are subject to linearly additive taste shocks
when choosing between occupations. These taste shocks are independent over
time and distributed according to an Extreme Value Type-I distribution with mean
0 and scale parameter γ > 0, as is standard in the literature (Artuç et al., 2010). In
particular, workers choose a non-automated occupation with hazard

St (x) =
(1− φ) exp

(
VN

t (x′(N;x))
γ

)
∑h′ φ

h′ exp
(

Vh′
t (x′(h′;x))

γ

) , (5.5)

where Vh
t (·) denotes the continuation value associated to automated (h = A) and

non-automated (h = N) occupations, x′ captures the worker’s new state after they
choose an occupation, and the parameter γ governs the elasticity of labor supply.
Workers who reallocate go through unemployment spells which they exit at rate
κ. Upon entering their new occupation, workers experience a permanent produc-
tivity loss θ. They experience this loss only the first time they reallocate.

Income. Employed workers (e = E) earn gross labor income

Y labor
t (x) = ξ exp (z)wh

t , (5.6)

with the productivity consisting of a permanent component (ξ) and a mean-reverting
component (z). The permanent component switches from 1 to 1− θ the first time
a worker switches occupations. The mean-reverting component of productivity
evolves as

dzt = −ρzztdt + σzdWt (5.7)

with persistence ρ−1
z > 0 and volatility σz > 0. The employment status switches

to et = U upon reallocation and reverts to et = E upon exiting unemployment. All
workers are born with et = E. As in Krueger et al. (2016), unemployed workers
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(e = U) receive unemployment benefits that are proportional to the gross labor
income they would have earned in their previous occupation. The replacement
rate is b ∈ [0, 1]. Workers claim dividends in proportion to their idiosyncratic
(mean-reverting) productivity, as in Auclert et al. (2018).29 Workers net income is

Ynet
t (x) = Tt

(
Y labor

t (x) + exp (z)Πdiv
t

)
, (5.8)

where Tt (y) = ψ0y1−ψ1 captures non-linear taxation (Heathcote et al., 2017).

5.3 Policy and Equilibrium

The government’s flow budget constraint is

dBt = (Tt + rtBt −Ut − gt) dt (5.9)

where Bt is the government’s asset holdings, Tt is total tax revenues, Ut is total
unemployment benefits, and gt is government spending. The resource constraint
is now ∫

ct (x) dπt + gt + qtxt = G
(

yA
t , yN

t

)
(5.10)

The wages are still given by (3.1). A competitive equilibrium is defined as before.

6 Quantitative Evaluation

We now use the model to evaluate the importance of our mechanism and perform
policy experiments. Section 6.1 discusses the calibration. Section 6.2 describes the
laissez-faire transition. Section 6.3 discusses policy interventions. Finally, Appen-
dices B–E provide details about our numerical implementation.

6.1 Calibration

We parameterize the model using a mix of external and internal calibration. We
interpret our initial stationary equilibrium (before automation) as the year 1980.

29 This assumption implies that workers claim labor and profit income in proportion to their id-
iosyncratic (mean-reverting) productivity. It is the most neutral possible, as it ensures that the
government has no incentives to tax (or subsidize) automation to reduce workers’ income risk.
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Table 6.1 shows the parameterization.

External calibration. External parameters are borrowed from the literature. The
elasticity of substitution across occupations ν is 0.9 (Goos et al., 2014). The span
of control parameter η is 0.15 (Basu and Fernald, 1997; Atkeson and Kehoe, 2007).
The depreciation rate δ is 10%, as in Graetz and Michaels (2018). We choose an in-
verse elasticity of intertemporal substitution σ→ 1 as in Guerreiro et al. (2022). We
set the replacement rate χ to obtain an average active lifespan of 50 years (Nuño
and Moll, 2018). We pick the unemployment exit hazard parameter κ to match the
average unemployment duration in the U.S., as measured by Alvarez and Shimer
(2011). The productivity loss θ when moving between occupations is set to match
the earnings losses in Kambourov and Manovskii (2009). As in Auclert et al. (2018),
we rule out borrowing a = 0. We use the annual income process estimated by Flo-
den and Lindé (2001) using PSID data and choose the persistence ρ−1

z and volatility
σz in our continuous time model accordingly. The replacement rate when unem-
ployed b is 0.4, following Ganong et al. (2020). Government spending relative to
consumption gt/Ct is 50% at the initial steady state. The progressivity of the tax
schedule ψ1 is 0.181, as in Heathcote et al. (2017). We choose the intercept of the tax
schedule ψ0 so that the government can finance gt/Ct = 0.5 at the initial steady
state. Finally, the ratio of liquidity to GDP −Bt/Yt is 0.5 at the initial and final
steady states (Survey of Consumer Finances, 1980).30 During the transition, the
government adjusts liquidity Bt (and government spending gt accordingly) so that
the interest rate converges exponentially to its long-run level. The half-life is the
same as the one we target internally for the wage gap across occupations (15 years).

Internal calibration. We calibrate eight parameters internally: the discount rate
(ρ); the mobility hazard (λ); the scale parameter (γ); the two occupation-specific
productivities

(
Ah); the share of automated occupations (φ); the final cost of in-

vestment
(
qfin); and its convergence rate (ψ). We pick these to jointly match eight

moments. The discount rate targets an annual real interest rate of 2 percent. The
mobility hazard λ targets an occupational mobility rate of 10% per year at the ini-

30 We obtain this value by adding up checkable deposits, time and savings deposits, and money
market funds share (Table B.100, lines 11-13, year 1980) and divide by nominal GDP. This amount
of liquidity is almost twice as high as the one in Kaplan et al. (2018), which is conservative with
respect to our mechanism.

30



Table 6.1: Calibration

Parameter Description Calibration Target / Source

Workers
ρ Discount rate 0.040 2% real interest rate
σ EIS (inverse) 1 -
χ Death rate 1/50 Average working life of 50 years
a Borrowing limit 0 Auclert et al. (2018)

Technology
AA, AN Productivities (0.719, 1.710) Initial output (1) and symmetric wages
1− η Initial labor share 0.85 Span of control (Atkeson and Kehoe, 2007)
δ Depreciation rate 0.1 Graetz and Michaels (2018)
φ Share of automated occupations 0.537 Routine occs. employment share in 1980
qfin Final cost of investment 5.621 Final wage gap
ψ Convergence rate of cost 0.054 Half-life of wage gap
ν Elasticity of subst. across occs. 0.9 Goos et al. (2014)

Mobility frictions
λ Mobility hazard 0.364 Occupational mobility rate in 1980
1/κ Average unemployment duration 1/3.2 Alvarez and Shimer (2011)
θ Productivity loss from relocation 0.18 Kambourov and Manovskii (2009)
γ Scale parameter 0.0360 Elasticity of labor supply

Government
ψ0 Intercept of tax schedule 0.661 Gvt spending g/C (BEA)
ψ1 Elasticity of tax schedule 0.181 Heathcote et al. (2017)
−B/Y Liquidity / GDP 0.5 Liquid assets / GDP (SCF)

Income process
ρz Mean reversion 0.09 Floden and Lindé (2001)
σz Volatility 0.205 Floden and Lindé (2001)
b Replacement rate 0.4 Ganong et al. (2020)
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tial steady state, which roughly corresponds to the U.S. level in 1980 in Kambourov
and Manovskii (2008). The scale parameter γ targets an elasticity of labor supply of
1 for the stock of workers (i.e., all generations) which lies between the estimates of
Wiswall and Zafar (2015) and Hsieh et al. (2019).31 The occupations’ productivities{

Ah} are such that output is 1 and wages are identical across occupations at the
initial steady state. The mass of automated occupations φ targets an employment
share of 56% in routine occupations in 1980 (Bharadwaj and Dvorkin, 2019). We
choose the final cost of investment qfin to obtain a log wage gap of 0.45 between
occupations at the final steady state (Cortes, 2016). Similarly, the convergence rate
ψ targets a half-life of 15 years for the wage gap (Cortes, 2016).

Untargeted moments. The model matches well several untargeted moments (see
Appendix E for details). First, the share of hand-to-mouth workers is roughly 23%
at the initial steady state, which lies between the estimates of Kaplan et al. (2014)
and Aguiar et al. (2020). Second, the share of routine employment 40 years into
the transition (year 2020) is 39% compared to roughly 41% in the data (Bharadwaj
and Dvorkin, 2019). Third, we obtain that 67% of output in occupation h = A
is produced by automation at the final steady state. For comparison, the McKin-
sey (2017) report finds that roughly 70% of output previously produced by labor
could be automated in occupations most susceptible to automation (making up for
51% of initial employment, compared to 56% in our model). Fourth, the (partial
equilibrium) effects of automation on employment in our model are comparable
to the firm-level estimates in Bonfiglioli et al. (2022). They find that adopting au-
tomation changes employment by −0.54 log-points at the firm level, compared to
−0.66 in our model (see Appendix E for details). Finally, consumption increases by
only 5.3% over the first 40 years. This is consistent with the view that automation
delivers relatively small TFP gains (Acemoglu and Restrepo, 2019).

6.2 Laissez-Faire

We start by simulating the laissez-faire transition. The economy is initially at its
steady state with no automation (α0 = 0). In period t = 0, the cost of investing in

31 We compute this elasticity in our model by simulating a 10% wage increase in one of the occupa-
tions and leaving the other one unchanged.
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automation starts to fall and the economy converges gradually to its new steady
state with positive automation.

Figure 6.1 shows this transition (solid lines). The rise in automation displaces
workers and reallocates labor away from automated occupations. Despite this real-
location, wages decline gradually in automated occupations (red line) but increase
in non-automated occupations (blue line) since the two occupations are comple-
ments. The wage gap widens to 0.45 with a half-life of 15 years (both are targeted
moments). Finally, automated workers consume less and have steeper consump-
tion profiles — their MRS is lower — as they are more likely to become borrowing
constrained.32

6.3 Second Best and Welfare

We now solve for the optimal policy and quantify welfare gains. The government
maximizes

W (η) ≡
∫ +∞

−∞

∫
ηt (x)Vbirth

t (x) dπt (x) dt (6.1)

where Vbirth
t (x) is the value of a worker with state x born in period t, and ηt (x)

are Pareto weights. The government maximizes this objective by choosing taxes on
investment {τx

t } along the transition. The government uses efficiency weights ηt (x)
which are inversely related to workers’ marginal utility at birth. These weights
are the ones we described in our baseline model (Section 4.5) and ensure that the
government has no incentive to redistribute resources. Computational details are
provided in Appendix B.3.

Figure 6.1 illustrates the effects of the second best intervention (dashed lines).
The optimal policy slows down automation so as to increase its half-life from 15
years at the laissez-faire to 22 years at the optimum. The speed of automation is
especially slower over the first decade of the transition. There is less labor reallo-
cation over this period, and the wage gap opens up more slowly. As anticipated in
Remark 2, the optimal policy raises consumption and redistributes early on during
the transition when displaced workers value it more.

32 There are two forces at play. First, automated workers can reallocate across occupations and they
go through unemployment — which incentivizes them to borrow. Second, the wage in automated
occupations falls over time — which incentivizes automated workers to save. Only the first force
is present in our baseline model where automation happens once and for all. This forces domi-
nates in the quantitative model, which is consistent with the empirical evidence (Section 3.2).
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Figure 6.1: Allocations

Notes: Solid curves correspond to the laissez-faire and dashed curves to the second best. ‘Wages’
are skill prices in the two occupations, and ‘Consumption’ is the average consumption by workers
initially employed in a given occupation. Red and blue curves are used to denote automated and
non-automated occupations / workers, respectively. Wages and consumptions are normalized by
their initial steady state levels.

Table 6.2 reports the welfare gains (in consumption equivalent terms) from the
second best intervention. The first column corresponds to our benchmark calibra-
tion. Automated workers benefit substantially from slower automation (0.80%).
Non-automated workers are hurt by the intervention (−0.19%). Taxing automa-
tion goes a long way in improving the welfare of automated workers. At the sec-
ond best, they are only worse off by −0.60% relative to non-automated workers,
compared to −1.58% at the laissez-faire. The intervention lowers slightly the wel-
fare of new generations (−0.08%) since it reduces the value of the firm and hence
dividends. Overall, the policy raises social welfare by 0.20%.33 Figure D.1 in Ap-

33 These figures are comparable to the ones found in the heterogenous agent literature on optimal
taxation (e.g., Heathcote et al., 2017) or the literature on the taxation of automation (e.g., Guer-
reiro et al., 2022).
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Table 6.2: Welfare Gains ∆W from Second Best Interventions

Benchmark Less liquidity Less reallocation More complements

Automated 0.80% 0.91% 0.93% 0.78%

Non-autom. −0.19% −0.22% −0.35% −0.21%

New gener. −0.08% −0.11% −0.10% −0.08%

Total 0.20% 0.24% 0.20% 0.19%

Note: ‘Benchmark’ corresponds to the gains from the optimal taxation of automation under the
calibration described in Section 6.1. ‘Less liquidity’ and ‘Less reallocation’ denote alternative cali-
brations where we target a ratio of liquidity to GDP of 0.35 (instead of 0.5) and a separation rate of
7.2% (instead of 10%), respectively. ‘More complements’ denotes an alternative calibration where
the elasticity of substitution across occupations is 0.76 (instead of 0.9).

pendix D plots the tax on investments {τx
t } that implement this second best. The

optimal tax starts at roughly 5%, raises progressively to 7% over a decade, and
then gradually declines to zero in the long-run.

Robustness checks. We then consider additional calibrations to assess the robust-
ness of our results. First, we consider a narrower definition of liquid assets. We
now target a ratio −Bt/Yt of 35% (instead of 50%).34 All other parameters are re-
calibrated to match the moments described in Section 6.1. Automated workers are
more likely to become borrowing constrained, and their consumption profiles are
steeper. Therefore, they benefit more from slowing down automation and the total
welfare gains increase. Second, we recognize that occupational mobility has de-
creased in recent decades. We thus target an occupational mobility rate of 7.2%
(instead of 10%) following Moscarini and Vella (2002). This alternative calibration
lowers the consumption of automated workers (in levels) compared to our bench-
mark as they reallocate less, but does not affect meaningfully the slope of their
consumption profiles. Accordingly, automated workers benefit more from the in-
tervention but the total welfare gains are mostly unchanged. Third, there is some
uncertainty in the literature about the elasticity of substitution between occupa-
tions. We thus decrease it to 0.76 (instead of 0.9) based on Gregory et al. (2021) and

34 We obtain this value by substracting consumer credit and other loans excluding mortgages (Table
B.100, lines 34 and 36-37, year 1980) from our previous measure of liquidity (footnote 30).
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find very similar welfare gains to our benchmark. Finally, we increase the depreci-
ation rate to 20% (instead of 10%) to capture the fact that some forms of automation
like artificial intelligence software could depreciate faster than others like robots.
We also decrease the elasticity of labor supply across occupations to 0.4 (instead of
1) following Wiswall and Zafar (2015). We obtain total welfare gains of 0.19% and
0.29%, respectively.

Wage supplements. Government transfers that target automated workers could in
principle be an effective tool to respond to automation. In particular, the govern-
ment could provide wage supplements to automated workers — similar to Trade
Adjustment Assistance for Workers (TAA) in the US. This intervention would be
financed by taxing non-automated workers — a negative wage supplement. We
compute the wage supplements (along the transition) that would make workers
indifferent between these supplements and the tax on automation. In present dis-
counted terms, the government would need to give $19,126 to the average auto-
mated worker, and would tax $4,622 from the average non-automated worker.35

Assuming a workforce of 107 million in 1980, the wage supplements to automated
workers would cost roughly $1.1 trillion and leave a fiscal deficit (after taxing non-
automated workers) of roughly $924 billion. For comparison, the US Congress
budgeted $551 million for the TAA program in 2022, or $13.4 billion in present dis-
counted value in our model. These figures show that slowing down automation
delivers welfare gains that would be costly to replicate with wage supplements
alone.

7 Conclusion

We presented two novel results in economies where workers displaced by automa-
tion face reallocation and borrowing frictions. First, automation is inefficient when
these frictions are sufficiently severe because there is as conflict between how firms
and displaced workers value the effects of automation over time. Second, absent
redistributive tools that fully alleviate borrowing frictions, the government should
slow down automation while displaced workers reallocate but not tax it in the
long-run. The optimal policy raises aggregate consumption and redistributes early
35 Average earnings are $65k at the initial steady state.
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on in the transition precisely when displaced workers value it more. Quantita-
tively, we found that slowing down automation achieves important welfare gains.

To derive sharp results and clarify the mechanisms at play, our model neces-
sarily abstracted from many features. Some of these are worth discussing now.
Tax-codes often subsidize capital and R&D expenditures on the grounds that firms
face credit constraints or that there are externalities involved — features that our
analysis has ignored. Thus, our results do not necessarily imply that automation
technologies ought to be taxed on net, as is the case of autonomous vehicles used
by transportation companies in Nevada or as proposed for automated cashiers
in the Swiss canton of Geneva. Instead, they imply that subsidies on investment
in automation should be lowered temporarily while the economy adjusts and dis-
placed workers reallocate, which is similar to the lower tax credits for automation
in South Korea.

Our quantitative model points to two directions for future work. First, we
found that the optimal policy depends on how steep the consumption profiles of
workers displaced by automation are. It would be interesting to measure these
profiles and compare them to the estimates for the average US worker used in
our quantitative exercises. For instance, the profiles could be steeper if automated
workers are unemployed for longer while they reallocate. Second, the quantitative
model is rich enough to tackle other optimal policy questions where the dynam-
ics of labor reallocation and asset markets imperfections are relevant, such as how
governments should manage declining regions or the economy’s adjustment to
international trade.
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A Proofs and Derivations

A.1 Proof of Lemma 1

Fix some period T ≥ 0. Consider the decision of automated workers to reallocate,
i.e. the choice of {mt}. Using a standard variational argument, it is optimal to real-
locate for all workers who are able to (mt = 1) if and only if the present discounted
value of their labor income is higher in non-automated occupations

∫ +∞

T
exp (−ρ (t− T)) u′

(
cA

t

)
∆tdt > 0, (A.1)

where
∆t ≡ (1− θ) [ι (1− exp (−κ (t− T))) + 1− ι]wN

t − wA
t (A.2)

captures the marginal increase in output from reallocating an additional worker,
since wh

t = ∂hG?
(
µA, µN; α

)
in equilibrium. These workers do not reallocate (mt = 0)

if and only if the inequality (A.1) is reversed. Any mt ∈ [0, 1] is optimal otherwise.
In equilibrium, reallocation takes the following form. Workers reallocate until

TLF ≥ 0, i.e., mt = 1 for all t ∈
[
0, TLF), and they stop reallocating afterwards,

i.e., mt = 0 for all t ≥ TLF. The reason is that the wage in automated occupations
wA

t increases over time as workers leave this occupation (by decreasing returns),
and the wage in non-automated occupations wN

t decreases as workers enter this
occupation.

We next show that reallocation does take place in equilibrium, i.e., TLF > 0 . It
suffices to show that workers find it optimal to reallocate at t = 0. That is,

∫ +∞

0
(1− θ) [ι (1− exp (−κt)) + 1− ι]

exp (−ρt) u′
(
c̃A

t
)

w̃N
t∫ +∞

0 exp (−ρs) u′ (c̃A
s ) w̃A

s ds
dt > 1 (A.3)

where
{

c̃A
t
}

and
{

w̃h
t
}

are counterfactual sequences of consumption and wages
associated with T = 0 and α = αLF. Consumption and wages are constant over
time when T = 0, so the inequality (A.3) holds if and only if

(1− θ) (1− ι) ∂NG?
(

1
2 , 1

2 ; α
)

∂AG?
(

1
2 , 1

2 ; α
) ρ (1− ι) + κ

(1− ι) (ρ + κ)
> 1, (A.4)
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where α = αLF. This necessarily holds by Assumption 3 when Z? is sufficiently
small since ∂NG?

(
1
2 , 1

2 ; α
)
> ∂AG?

(
1
2 , 1

2 ; α
)

with automation α > 0 by Assump-
tion 1.

A.2 Proof of Lemma 2

We begin by showing that automated workers borrow and non-automated work-
ers save in equilibrium. We then show that automated workers become borrowing
constrained when borrowing and reallocation frictions are sufficiently severe, and
characterize the threshold a?(λ, κ). We focus on the case a < 0 since the statement
is obviously true in the case where a = 0.

Assets. It suffices to prove that daN
t ≥ daA

t for any period t where aN
t = aA

t with
strict inequality in period t = 0. The reason is that the equilibrium is continuous in
time t, so the sequence of assets of automated and non-automated would intersect
before the inequality reverses. This would imply that automated workers borrow
and non-automated workers save as aN

t + aA
t = 0 in equilibrium.

To derive a contradiction, suppose instead that daN
t < daA

t when aN
t = aA

t = 0.
Then, there exists some S > t such that aA

S > 0 and aN
S < 0 but all workers are

still unconstrained ah
S > a. In this case, workers’ consumptions satisfy the Euler

equation

ch
s = ch

t exp
(

1
σ

(∫ s

t
(rτ − ρ) dτ

))
(A.5)

for all s ∈ [t, S). Using the market clearing condition (2.13), it must also be that

exp
(

1
σ

(∫ s

t
(rτ − ρ) dτ

))
=

1
2

(
cA

s + cN
s
)

1
2

(
cA

t + cN
t
) =

Cs

Ct
≡

G?
(
µA

s , µN
s ; α

)
G?
(
µA

t , µN
t ; α

) , (A.6)

for all s ∈ [t, S). Using the budget constraint (2.7), consumption is

ch
t =

∫ S
t exp

(
−
∫ s

t rτdτ
) (
Ŷh

s + Πs
)

ds + ah
t − exp

(
−
∫ S

t rτdτ
)

ah
S∫ S

t exp
(
−
∫ s

t rτdτ
)

exp
(

1
σ

∫ s
t (rτ − ρ) dτ

)
ds

, (A.7)
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so assets accumulate according to

dah
t =

Ŷh
t + Πt −

∫ S
t exp

(
−
∫ s

t rτdτ
) (
Ŷh

s + Πs
)

ds∫ S
t exp

(
−
∫ s

t rτdτ
)

exp
(

1
σ

∫ s
t (rτ − ρ) dτ

)
ds

+Γt,Sah
t − Γ?

t,Sah
S

 dt (A.8)

for some Γt,S, Γ?
t,S > 0 that depend on the sequence of interest rates. Using (A.8),

d
(
aN

t − aA
t
)

Ct
=

zt −
∫ S

t exp
(
−
∫ s

t rτdτ
) Cs

Ct
zsds∫ S

t exp
(
−
∫ s

t rτdτ
)

exp
(

1
σ

∫ s
t (rτ − ρ) dτ

)
ds

dt

−Γ?
t,S

(
aN

S − aA
S

Ct

) dt (A.9)

when aN
t = aA

t = 0, with flows zt ≡
(
ŶN

t − ŶA
t
)

/Ct. Using (A.6),

d
(
aN

t − aA
t
)

Ct
=

(
zt −

∫ S

t
ψt,szsds− Γ?

t,S

(
aN

S − aA
S

Ct

))
dt, (A.10)

with weights

ψt,s ≡
exp (−ρ (s− t))

(
Cs
Ct

)1−σ

∫ S
t exp (−ρ (τ − t))

(
Cτ
Ct

)1−σ
dτ

> 0 (A.11)

that integrate to
∫ S

t ψt,sds = 1. As we will establish at the end of this appendix, {zs}
is positive and decreases over time. The reason is twofold. First, the labor income
of automated workers is lower than that of non-automated workers, and the for-
mer increases over time while the latter decreases. Second, aggregate consumption
grows over time too. Therefore, zt −

∫ S
t ψt,szsds > 0. Furthermore, aN

S < aA
S under

our postulate. It follows that d
(
aN

t − aA
t
)
> 0. This contradicts our postulate that

daN
t < daA

t . This establishes that daN
t ≥ daA

t when aN
t = aA

t = 0. Repeating the
steps above, the inequality is strict daN

t > daA
t after the shock t = 0. This shows

that automated workers borrow in equilibrium.
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Threshold a?(λ, κ). Integrating the budget constraint (2.7) over time and using (A.5)
gives the assets of automated workers if they were never to become borrowing
constrained

aA
t =

∫ t

0
exp

(∫ t

s
rτdτ

) [
ŶA

s + Πs − cA
0 exp

(
1
σ

∫ s

0
(rτ − ρ) dτ

)]
ds. (A.12)

The sequence
{

aA
t
}

depends on reallocation frictions (λ, κ) but not the borrowing
limit a. Let a? (λ, κ) ≡ inft aA

t be the lowest value attained by this sequence. If
the borrowing limit is sufficiently tight that a > a? (λ, κ), then automated workers
would become borrowing constrained in equilibrium. This shows that a > a?(λ, κ)

is a sufficient condition for borrowing constraints to bind. It is also a necessary con-
dition because, if borrowing constraints bind, then it must be that the borrowing
limit a is above inft aA

t . Non-automated workers never become borrowing con-
strained since they save in equilibrium.

Finally, we show that a? (λ, κ) < 0 (i.e., borrowing constraints can bind) if and
only if reallocation is slow (1/λ > 0 or 1/κ > 0). To prove sufficiency, note that
the model is static when reallocation is instantaneous (1/λ→ 0 and 1/κ → 0).
Then, all labor income and profit changes are permanent, automated workers
do not borrow, and therefore a? (λ, κ) ≡ inft aA

t → 0. To prove necessity, note
that automated workers borrow a? (λ, κ) ≡ inft aA

t < 0 when reallocation is slow
1/λ > 0 or 1/κ > 0. The reason is that {zs} is strictly positive and strictly de-
creasing over time so that automated workers borrow by (A.10). In this case, there
is always a (small) borrowing limit a > 0 such that automated workers become
borrowing constrained.

Assumption 3. We have supposed so far that the sequence zt ≡
(
ŶN

t − ŶA
t
)

/Ct

is positive and decreases over time. The fact that zt > 0 follows directly from
Assumption 2 and Lemma 1. That is, automation drives a wedge between the
marginal productivities of labor across occupations, and reallocation stops before
the wages are fully equalized. As we show below, a sufficient condition for zt to
decrease over time is that the expected unemployment duration 1/κ is sufficiently
short that output still increases over time despite workers becoming unemployed.
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Output increases over time when

∂tG?
(

µA
t , µN

t ; α
)
= ∂AG (·) ∂tµ

A
t + ∂NG (·) ∂tµ

N
t > 0, (A.13)

with ∂tµ
h
t given by the effective labor supplies (3.4)–(3.5). The condition (A.13)

holds in the limit where the productivity loss of reallocation and the duration of
unemployment spells are sufficiently small 1− (1− θ) (1− 1/κ)→ 0 since ∂tµ

N
t =

−∂tµ
A
t > 0 in this case. Note that µA

t , µN
t and α are continuous in (θ, 1/κ) at the

laissez-faire. Therefore, there exists some threshold Z? > 0 such that (A.13) still
holds for all (θ, 1/κ) such that 1− (1− θ) (1− 1/κ) < Z?.

It remains to show that the sequence {zt} decreases over time when 1− (1− θ)×
(1− 1/κ) < Z?. It suffices to show that ∂t

(
ŶN

t − ŶA
t
)
< 0, as output and con-

sumption Ct increase over time when this condition holds. Using labor incomes
(2.8) and the effective labor supplies (3.4)–(3.5),

1
2

(
ŶN

t − ŶA
t

)
=− ∂AG (·) µA

t +
(

1− µN
t

)
∂NG (·) . (A.14)

Therefore,

1
2

∂t

(
ŶN

t − ŶA
t

)
=−

{
∂2

AAG (·) ∂tµ
A
t + ∂2

ANG (·) ∂tµ
N
t

}
µA

t − ∂AG (·) ∂tµ
A
t

+
(

1− µN
t

) {
∂2

NAG (·) ∂tµ
A
t + ∂2

NNG (·) ∂tµ
N
t

}
− ∂NG (·) ∂tµ

N
t . (A.15)

And so,
1
2

∂t

(
ŶN

t − ŶA
t

)
< −

{
∂AG (·) ∂tµ

A
t + ∂NG (·) ∂tµ

N
t

}
(A.16)

using ∂2
AAG (·) < 0 and ∂2

NNG (·) < 0 since G is neoclassical, ∂2
ANG (·) > 0 by As-

sumption 1, and ∂tµ
A
t < 0 and ∂tµ

N
t > 0 in equilibrium. Thus, ∂t

(
ŶN

t − ŶA
t
)
< 0

in the limit 1− (1− θ) (1− 1/κ) → 0 since ∂tµ
N
t = −∂tµ

A
t > 0 in this case, us-

ing the fact that ∂AG (·) < ∂NG (·) in equilibrium. By continuity of the equilib-
rium, we still have ∂t

(
ŶN

t − ŶA
t
)
< 0 when 1 − (1− θ) × (1− 1/κ) < Z? for

Z? small enough. Taken together, the inequalities (A.13) and (A.16) imply that
zt =

(
ŶN

t − ŶA
t
)

/Ct decreases over time, which completes the proof.
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A.3 Proof of Lemma 3

In equilibrium, there is no arbitrage between bonds and equity Qt = exp
(
−
∫ t

0 rsds
)

,
since workers can trade both. Appendix A.2 has shown that non-automated work-
ers are on their Euler equation exp (−ρt) u′

(
cN

t
)

/u′
(
cN

0
)
= exp

(
−
∫ t

0 rsds
)

. Next,
we show that the firm’s automation choice is interior and unique. Using a standard
variational argument, a necessary condition for an interior optimum is

∫ +∞

0
exp

(
−
∫ t

0
rsds

)
∂

∂α
Πt (α) dt = 0. (A.17)

Furthermore, the following envelope condition applies

d
dα

Πt (α) = ∂αG? (·) . (A.18)

Therefore, the following condition is necessary

∫ +∞

0
exp

(
−
∫ t

0
rsds

)
∂αG? (·) = 0. (A.19)

It is also sufficient by Assumption 2, and the solution is unique and interior.
Finally, we show that ∆?

t increases over time in equilibrium. By definition,

∆?
t ≡ ∂αG? (·) ≡ ∂AG

(
F
(

µA
t ; α

)
, F
(

µN
t ; 0

))
∂αF

(
µA

t ; α
)
− C ′ (α) . (A.20)

Therefore,

∂t∆?
t ≥ ∂2

ANG
(

F
(

µA
t ; α

)
, F
(

µN
t ; 0

))
∂µF

(
µN

t ; 0
)

∂αF
(

µA
t ; α

)
∂tµ

N
t , (A.21)

using ∂2
AAG (·) < 0 as G is neoclassical, ∂2

αµF (·) < 0 by Assumption 1, and ∂tµ
A
t <

0. It follows that ∂t∆?
t > 0 as ∂2

ANG (·) > 0 by Assumption 1 and ∂tµ
N
t > 0.

A.4 Proof of Proposition 1

The result consists of two parts. First, we prove that the equilibrium is generically
constrained inefficient by showing that there is a Pareto improvement. Second,
we show that the Pareto improvement involves taxing automation (δα < 0) when
unemployment spells are sufficiently short (Assumption 3).
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Part I (generic constrained inefficiency). The changes in welfare starting from the
laissez-faire are

δUh =δα×
∫ +∞

0
exp (−ρt) u′

(
ch

t

) (
∆?

t + Σh,?
t

)
dt

+ δT ×
∫ +∞

T
exp (−ρt) u′

(
ch

t

) (
∆t + Σh

t

)
dt,

for automated and non-automated workers h = A, N. Using the definition of
earnings (2.8) and profits (2.5), the distributional terms are36

∆?
t + ΣN,?

t = ŵN,?
t + ∆?

t −∑
h

µh
t ŵh,?

t (A.22)

∆?
t + ΣN,?

t = ŵN,?
t −∑

h
µh

t ŵh,?
t , (A.23)

for non-automated workers, where the sequences { ŵh
t } and { ŵh,?

t } are the vari-
ation of wages wh

t ≡ ∂hG (·) after a variation in T and α, respectively. The distri-
butional terms for automated workers follow from ΣA,(?)

t + ΣN,(?)
t = 0.

There exists a variation (δα, δT) with δα 6= 0 that results in δUN = 0 and δUA >

0 if and only if

∫ +∞

0
exp (−ρt) u′

(
cA

t

) (
∆?

t + ΣA,?
t

)
dt (A.24)

6=

∫ +∞
0 exp (−ρt) u′

(
cN

t
) (

∆?
t + ΣN,?

t

)
dt∫ +∞

T exp (−ρt) u′
(
cN

t
) (

∆t + ΣN
t
)

dt︸ ︷︷ ︸
δT/δα that leaves N worker indifferent

∫ +∞

T
exp (−ρt) u′

(
cA

t

) (
∆t + ΣA

t

)
.

Equivalently,

∫ +∞

0
exp (−ρt) u′

(
cA

t

) (
∆?

t + ΣA,?
t

)
dt (A.25)

6=
∫ +∞

T exp (−ρt) u′
(
cA

t
) (

∆t + ΣA
t
)

dt∫ +∞
T exp (−ρt) u′

(
cN

t
) (

∆t + ΣN
t
)

dt︸ ︷︷ ︸
≡Ω

∫ +∞

0
exp (−ρt) u′

(
cN

t

) (
∆?

t + ΣN,?
t

)
dt.

36 These expressions already use the fact that the firm chooses labor demand optimally.
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We now show that (A.25) holds with inequality generically. Suppose that the
expression does hold with equality. Then, there exists a perturbation of the pro-
duction function G?,′ = G (G?, ε) (with G (G?, ε) → G? uniformly as ε → 0) and
a threshold ε̄ > 0 such that the expression does not hold with equality in this
alternative economy, for all 0 < ε ≤ ε̄. One such perturbation is

G (G?, ε) = G? + εg
(

µA, µN; α
)

(A.26)

with
g
(

µA
t , µN

t ; α
)
≡
{

µA
t − z

} (
α− αLF

)
, (A.27)

where z is chosen so that∫ +∞

0
exp (−ρt) u′

(
cN

t

) (
µA

t − z
)

dt = 0. (A.28)

One can easily verify that all equilibrium conditions (Lemmas 1 and 3 and the
resource constraint) are still satisfied after a perturbation ε > 0 when evaluated
at the laissez-faire. Therefore, the laissez-faire allocation is unchanged. Moreover,
this perturbation ensures that (A.25) holds with inequality. To see that, note that
Ω in (A.25) is unchanged after the perturbation ε > 0. The reason is that the terms
in ∆t + Σh

t are unaffected since (A.23) depends on the second order derivatives of
G? with respect to labor

(
µA, µN), while the perturbation (A.26)–(A.27) is linear in

these variables.
Regarding the other terms on the left-hand and right-hand sides of (A.25), they

change differently after the perturbation. Let

Γh,? ≡ d
dε

∫ +∞

0
exp (−ρt) u′

(
ch

t

) (
∆?

t + Σh,?
t

)
dt. (A.29)

We have

ΓA,? =
∫ +∞

0
exp (−ρt) u′

(
cA

t

) {
2µA

t − z
}

dt > 0 (A.30)

ΓN,? = −
∫ +∞

0
exp (−ρt) u′

(
cN

t

)
zdt < 0, (A.31)

using (A.22), the fact that ΣA,?
t + ΣN,?

t = 0, and (A.28). To see why the inequality
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(A.30) holds, first note that

ΓA,? >
∫ +∞

0
exp (−ρt) u′

(
cA

t

) {
µA

t − z
}

dt. (A.32)

Then, let λh
t ≡ u′

(
ch

t
)

/u′
(
ch

0
)

and

ωh
t ≡

exp (−ρt) λh
t∫ +∞

0 exp (−ρs) λh
s ds

(A.33)

for each h = A, N. Note that the sequence {ωA
t − ωN

t } integrates to zero and
decreases over time. The reason is that the income (and thus consumption) of au-
tomated workers ŶA

t grows faster over time than that of non-automated workers
ŶN

t (Appendix A.2). Therefore,

∫ +∞

0
ωA

t

{
µA

t − z
}

dt >
∫ +∞

0
ωN

t

{
µA

t − z
}

dt = 0, (A.34)

since µA
t decreases over time by (3.4). This shows why the inequality (A.30) holds.

Taken together, the previous steps show that (A.24) holds with inequality for
virtually any economy, so that there exists a variation that improves the welfare
of automated workers δUA > 0 and leaves non-automated workers indifferent
δUN = 0. That is, the equilibrium is generically constrained inefficient.

Part II (taxing automation). We now prove that the Pareto improvement requires
taxing automation. The variation (δα, δT) with δα < 0 results in δUN = 0 and
δUA > 0 if and only if

∫ +∞

0
exp (−ρt) u′

(
cA

t

) (
∆?

t + ΣA,?
t

)
dt

<
(
1 + Ω̃

)
×
∫ +∞

0
exp (−ρt) u′

(
cN

t

) (
∆?

t + ΣA,?
t

)
dt, (A.35)

where

Ω̃ ≡
∫ +∞

T exp (−ρt) u′
(
cA

t
) (

ΣA
t − ∆t

)
dt∫ +∞

T exp (−ρt) u′
(
cN

t
) (

ΣA
t − ∆t

)
dt
− 1, (A.36)
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using Lemmas 1 and 3 and the fact that ΣA,(?) + ΣN,(?) = 0. First, note that

∫ +∞

0
exp (−ρt) u′

(
cA

t

) (
∆?

t + ΣA,?
t

)
dt

<
∫ +∞

0
exp (−ρt) u′

(
cN

t

) (
∆?

t + ΣA,?
t

)
dt (A.37)

since ∫ +∞

0
ωA

t ∆?
t dt <

∫ +∞

0
ωN

t ∆?
t dt = 0, (A.38)

as ∆?
t increases over time (Lemma 3) and

{
ωh

t
}

are given by (A.33). Moreover,
ΣA,?

t < 0 while u′
(
cA

t
)
> u′

(
cN

t
)
. Putting this together, the inequality (A.35) holds

when Ω̃ is sufficiently small. This is the case by Assumption 3 as we discuss at the
end of this proof. As a result, the Pareto improvement requires taxing automation
δα < 0.

Assumption 3. It remains to show that there exists a Z? > 0 such that Ω̃ is suf-
ficiently small. Note that Ω̃ → 0 in the limit where θ → 0 and 1/κ → 0 since
u′
(
cA

t
)
= u′

(
cN

t
)

once reallocation is over for t ≥ T. By continuity of the equilib-
rium in θ and 1/κ, there exists a Z? > 0 such that Ω̃ is sufficiently small for the
inequality (A.35) to hold when Assumption 3 is satisfied. Finally, the threshold
Z? > 0 in Assumption 3 is the minimum between this one and the ones identified
in Appendices A.1 and A.2.

A.5 Proof of Proposition 2

The first order condition of the constrained Ramsey problem with respect to au-
tomation is

∂αU = ∑
h

ηeffic,h
∫ +∞

0
exp (−ρt) u′

(
ch

t

)
×
(

∆?
t + Σ̂h,?

t

)
dt (A.39)

when using efficiency weights ηeffic,h = 1/
∫ +∞

0 exp (−ρt) u′
(
ch

t
)

dt. Note that

∑
h

∫ +∞

0
exp (−ρt) ηeffic,hu′

(
ch

t

)
× ∆?

t dt < 0 (A.40)
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using (A.38) and the definition of efficiency weights. Furthermore,

∑
h

ηeffic,h
∫ +∞

0
exp (−ρt) u′

(
ch

t

)
× Σ̂h,?

t dt

= ∑
h

∫ +∞

0

(
ωA

t −ωN
t

)
× Σ̂A,?

t dt (A.41)

using the definition of efficiency weights, the fact that ΣN.?
t = −ΣA.?

t , and that{
ωh

t
}

are given by (A.33). Proceeding as in Appendix A.4, the expression (A.41) is
negative as soon as Σ̂A,?

t increases over time; or, equivalently, as soon as ΣA,?
t does.

This is the case by Assumptions 3 and 4 as we discuss at the end of this proof.
Taken together, the previous steps imply that ∂αU < 0 so the government finds

it optimal to tax automation δα < 0 locally starting from the laissez-faire αLF. When
the government’s problem (4.1) is convex, this also implies that the laissez-faire au-
tomation is excessive compared to its second best counterpart αSB,effic < αLF.

Assumptions 3 and 4. It remains to show that ΣA,?
t increases over time for some

Z? > 0 in Assumption 3. Using (A.22) and the fact that wh
t = ∂hG?

(
µA

t , µN
t ; α

)
, we

have

ΣA,?
t =µA

t

(
∂2

AαG?
(

µA
t , µN

t ; α
)
− ∂2

NαG?
(

µA
t , µN

t ; α
))

+
(

µN
t + µA

t − 1
)

∂2
NαG?

(
µA

t , µN
t ; α

)
.

Absent productivity loss (θ → 0) or unemployment spells (1/κ → 0), we have
µN

t + µA
t → 1. Therefore,

∂tΣA,?
t → ∂tµ

A
t

(
∂2

AαG? (.)− ∂2
NαG? (.)

)
+ µA

t × ∂tµ
A
t

(
∂3

AAαG? (.) + ∂3
NNαG? (.)− 2∂3

ANαG? (.)
)

= ∂tµ
A
t︸︷︷︸

<0

∂2
µα

{
µ∂µG? (µ, 1− µ; α)

}
|µ=µA

t︸ ︷︷ ︸
<0

> 0,

using Assumption 4 and the fact that ∂tµ
A
t < 0 from (3.4). By continuity of the

equilibrium in θ and 1/κ, there exists a Z? > 0 such that ΣA,?
t increases over time.

Finally, the threshold Z? > 0 in Assumption 3 is the minimum between this one
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and the ones identified in Appendices A.1, A.2, and A.4.

A.6 Proof of Proposition 3

The law of motion of automation is dαt = (xt − δαt) dt for depreciation rate δ > 0,
and output (net of investment costs) is

Yt = G
(

µA
t , µN

t ; αt

)
− qtxt, (A.42)

where xt is gross investment. The cost of automation qt decreases over time and
converges to qt → q̄ as t → +∞. Generations are indexed by s, and are born and
die at rate χ. We show below that the equilibrium converges to a first best in the
long-run. We refer the interested reader to the working paper version Beraja and
Zorzi (2022) for a full description of the equilibrium with overlapping generations
and the first best planning problem. We will show that the laissez-faire coincides
with a particular first best allocation in the long-run.

Laissez-faire. We guess (and verify) that automation, the labor allocation and the
interest rate all converge to a long-run steady state with rLF

t → ρ as t → +∞. We
omit the time indices at the final steady state. If the labor allocation converges to
a steady state, i.e., µh,LF

t → µLF
t as t → +∞ in each h = A, N, then investment and

automation also converge to steady state levels, i.e., αLF
t → αLF and xLF

t → xLF as
t→ +∞ with

Gα

(
µA,LF, µN,LF; αLF

)
= (ρ + δ) q (A.43)

and xLF = δαLF. Conversely, if automation converges to a steady state level, so
does the labor allocation and wages converge to

wA,LF = G1

(
µLF, 1− µLF; αLF

)
= G2

(
µLF, 1− µLF; αLF

)
= wN,LF, (A.44)

as the entry of new generations implies that the marginal products of labor (and
so wages) must be equal across occupations in the long-run. Note that equations
(A.43)-(A.44) pin down the long-run labor allocation

{
µA,LF, µN,LF} =

{
µLF, 1− µLF},

12



automation αLF, and aggregate consumption

CLF = G
(

µLF, 1− µLF; αLF
)
− δαLF. (A.45)

Finally, all workers are hand-to-mouth (a→ 0) so cLF
s → CLF as t → +∞ for all

generations s.37 Therefore, u′
(
cLF

s,t+τ

)
/u′

(
cLF

s,t
)
→ 1 as t→ +∞ for all workers and

horizons τ ≥ 0. This confirms that the interest rate rLF
t → ρ as t → +∞, and the

guess is verified.

First best. Proceeding as above, we can show that any first best allocation also con-
verges to a steady state. We will show that this first best allocation is the same
as the one that prevails at the laissez-faire when the planner discounts genera-
tions with the subjective discount rate ρ, i.e., it uses weights ηh

s = exp (−ρs).38

The automation choice satisfies (A.43) in the long-run when the planner discounts
generations at rate ρ. Production efficiency requires that the marginal products of
labor must be equalized in a long-run, so equation (A.44) holds too. Therefore,
the aggregate allocation coincides with the laissez-faire in the long-run. It remains
to show that individual consumptions are equal at this allocation. Note that the
planner equalizes weighted marginal utilities across workers in each period t, so

ηh
s exp (−ρ (t− s)) u′

(
cFB

s,t
)

η
j
τ exp (−ρ (t− τ)) u′

(
cFB

τ,t

) = 1 (A.46)

for generations s, τ ≤ t. Thus, consumption is equalized across workers when the
planner discounts generations at rate ρ. Therefore, cFB

s,t → CFB = CLF for all s,t.
This completes the proof.

A.7 Example

Using our example from Section 2.1, we show that an increase in the degree au-
tomation α decreases the marginal productivity of labor (MPL) within the auto-
mated occupation, while potentially raising the aggregate MPL.

37 We do not index consumption by the worker’s initial industry of occupation. The reason is that
mass of surviving members of old generations (born in s < 0) vanishes asymptotically, and new
generations (born in s ≥ 0) can choose their initial occupation of employment.

38 All continuation values are evaluated at birth as in Calvo and Obstfeld (1988).
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The log-change in the MPL in the automated occupation is

d
dα

log
(

MPLA
)
= −1

ν

1
yA

(1− φ)
(
yN) ν−1

ν

φ (yA)
ν−1

ν + (1− φ) (yN)
ν−1

ν

< 0

since φ ∈ [0, 1]. Moreover,

d
dα

log
(

MPLN
)
=

1
ν

1
yA

φ
(
yA) ν−1

ν

φ (yA)
ν−1

ν + (1− φ) (yN)
ν−1

ν

≥ 0.

That is, the MPL declines in the automatable occupation but increases in non-
automatable occupation. The marginal productivity of labor at the aggregate level,
i.e., workers’ average wage rate, is

MPL ≡ φµA

φµA + (1− φ) µN MPLA +
(1− φ) µN

φµA + (1− φ) µN MPLN

can increase or decrease, depending on
(
µA, µN, φ, ν

)
.

B Quantitative Model

In this appendix, we describe our quantitative model in more detail. Section B.1
provides a recursive formulation of the workers’ problem. Section B.2 states and
characterizes the solution to the occupations’ problem. Section B.3 discusses the
second best.

B.1 Workers’ Problem

We discretize time into periods of constant length ∆ ≡ 1/N > 0, and solve the
workers’ problem in discrete time.39 The workers’ problem can be formulated

39 Alternatively, we could have formulated the workers’ problem in continuous time and solved
the associated partial differential equation using standard finite difference methods. However,
(semi-)implicit schemes are non-linear in our setting due to the discrete occupational choice. This
requires iterating on (B.1)–(B.5) to compute policy functions which limits the efficiency of these
schemes. We found that explicit schemes were unstable unless we use a particularly small time
step ∆ which again proves relatively inefficient. Formulating and solving the workers’ problem
in discrete time proves to be relatively fast.
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recursively:

Vh
t (a, e, ξ, z) = max

c,a′
u (c)∆ + exp (− (ρ + χ)∆)Vh,?

t+∆

(
a′, e, ξ, z

)
(B.1)

s.t. a′ = (Yt (x)− c)∆ +
1

1− χ∆
(1 + rt∆) a

a′ ≥ 0

for employed workers (e = E) and unemployed workers (e = U). The continua-
tion value V? before workers observe the mean-reverting component of their in-
come is given by

Vh,?
t (a, e, ξ, z) =

∫
V̂h

t
(
a, e, ξ, z′

)
P
(
dz′, z

)
, (B.2)

where V̂t (·) is the continuation value associated to the discrete occupational choice.
The continuation value for employed workers (e = E) associated to this discrete
chocie problem is40

V̂h
t (a, e, ξ, z) = (1− λ∆)Vh

t (a, e, ξ, z) +

λ∆γ log

(
∑
h′

φh′ exp

(
Vh′

t (a, e′ (h′, x) , ξ, z)
γ

))
, (B.3)

with e′ (·) = E if h′ = h and e′ (·) = U otherwise. The associated mobility hazard
across occupations is

St
(
h′; x

)
=

φh′ exp
(

Vh′
t (x′(h′;x))

γ

)
∑h′′ φ

h′′ exp
(

Vh′′
t (x′(h′′;x))

γ

) , (B.4)

where x′ (h′; x) is short for (a, e′ (h′, x) , ξ, z). In turn, the continuation value for
unemployed workers (e = U) is

V̂h (a, e, ξ, z) = (1− κ∆)Vh (a, e, ξ, z) + κ∆Vh (a, 1, ξ ′
(
h′, x

)
, z
)

, (B.5)

where S (·) ξ ′ (·) = (1− θ) ξ when the reallocation spell is complete. New gen-

40 See Artuç et al. (2010) for the derivation.

15



erations who enter the labor market draw a random productivity z from its sta-
tionary distribution and then choose their occupation with a hazard similar to the
employed workers’. The only difference is that they experience neither an unem-
ployment spell nor a productivity loss. Worker’s labor income is

Yt (x) =

ξ exp (z)wh
t if e = E

bYh′
t (a, E, ξ, z) otherwise

, (B.6)

with h′ 6= h denoting the previous occupation of employment. The permanent
component of workers’ income (ξ) is reduced by a factor (1− θ) whenever a worker
who exits unemployment enters her new occupation. Workers experience this pro-
ductivity loss at most once during their lifetime. Finally, the mean-reverting com-
ponent income (z) evolves as

z′ = (1 + (ρz − 1)∆) z + σz
√

∆W ′ with W ′ ∼ i.i.d.N (0, 1) . (B.7)

B.2 Firm’s Problem

We solve the firm’s problem in continuous time. It’s problem is

max
{xt,αt,µA

t µN
t }

∫ +∞

0
exp

(
−
∫ t

0
rsds

){
G
(

µA
t , µN

t ; αt

)
− φqtxt −∑

h
φhwh

t µh
t

}
dt

s.t. dαt = (xt − δαt) dt , α0 = 0 , xt ≥ 0 (B.8)

where αt is the stock of automation, xt is gross investment, µA
t and µN

t are (ef-
fective) labor demands, and qt is the resource cost per unit of investment.41 The
optimal degree of automation satisfies

(rt + δ) φqt =∂αG
(

µA
t , µN

t ; αt

)
+ φ∂tqt, (B.9)

41 For concision, we omit any distortionary tax on investment τx
t since it is isomorphic to the cost

of investment qt.
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together with the law of motion

dαt = (xt − δαt) dt, (B.10)

and the initial condition α0 = 0. Finally, the firm’s labor demands satisfy

wh
t = (1− η)

1
αh

t + µh
t

{
Ah (αh

t + µh
t
)(1−η)

} ν−1
ν

∑g φg
{

Ag
(
α

g
t + µ

g
t
)(1−η)

} ν−1
ν

G
({

αh
t , µh

t

})
, (B.11)

where
µh

t =
1

φh

∫
1{e=1,h′=h}ξdπt (B.12)

is the (effective) labor supplied in each occupation.

B.3 Second Best

In this appendix, we state the second best problem that we solve numerically and
discuss our choice of Pareto weights.

Objective. The government’s objective is

W ≡χ
∫ 0

−∞

∫
ηs (x) exp (− (ρ + χ) (0− s))Vold

0 (x)πold
s,0 (dx) ds

+ χ
∫ +∞

0
ηsVnew

s ds, (B.13)

for some Pareto weights η, where πold
s,0 is the initial distribution of idiosyncratic

states for existing generations born in s < 0 (conditional on survival). Following
Calvo and Obstfeld (1988), all continuation values are evaluated at birth. The value
exp (− (ρ + χ) (0− s))Vold

0 is the continuation utility of existing generations over
periods t ≥ 0. In turn, the value

Vnew
t ≡

∫
γ log

(
∑
h

φh exp

(
Vh

t (0, 1, 0, z)
γ

))
P? (dz) (B.14)

is the continuation utility for new generations born in period t = s ≥ 0, which
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reflects their occupational choice.42 Here, P? denotes the ergodic distribution of
the income process z′|z ∼ P (z), i.e., the distribution of productivities at birth.

Pareto weights. We use efficiency weights that capture the efficiency motive for pol-
icy intervention and ensure that the government has no incentive to redistribute
resources. These weights are the ones we described in our baseline model (Section
4.5). The government discounts generations using the subjective discount rate ρ as
in Itskhoki and Moll (2019) and Guerreiro et al. (2022). Therefore, the weights are

η0 (x) = exp (−ρs)× 1∫ +∞
0 exp (− (ρ + χ) t) u′

(
Cold,h

t

)
dt

for old generations employed in automated (h = A) and non-automated (h = N)

occupations, where Cold,h
t denotes average consumption over time for each of these

groups at the laissez-faire.43 The weights for new generations (indexed by s > 0)
are similar, except that they are not indexed by h since new generations are able to
choose their initial occupation of employment. They depend on the consumption
streams Cnew

s,t for all t ≥ s.
Summarizing, the government’s objective becomes

W ≡
∫ V0 (x)∫ +∞

0 exp (− (ρ + χ) t) u′
(

Cold,h
t

)
dt

π0 (dx) ds

+ χ
∫ +∞

0
exp (−ρs)

Vnew
s∫ +∞

s exp (− (ρ + χ) (t− s)) u′
(

Cnew
s,t

)
dt

ds, (B.15)

where
π0 (dx) ≡

∫ 0

−∞
χ exp (χs)πold

s,0 (dx) ds (B.16)

is the initial distribution of idiosyncratic states.

Policy tools and implementability. The government maximizes the objective (B.15) by

42 Members of a new generation are born with no assets a = 0, are employed e = 1, and have not
incurred the productivity cost associated to switching occupations ξ = 1.

43 An alternative approach would be to compute the expected marginal utility over time separately
for each initial state (x). This is computationally infeasible since our state space is too large.
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choosing an appropriate sequence of distortionary taxes on investment {τx
t } and

rebating the proceedings to the firm. The implementability constraints consist of
workers’ reallocation and consumption choices.

C Numerical Implementation

We discuss how we solve numerically for the equilibrium and the optimal policy.

Workers’ problem. We solve the worker’s problem (B.1) using the standard endoge-
nous grid method (Carroll, 2006). In theory, this problem could be non-convex
since it involves a discrete choice across occupations. However, we find that this
is not the case in our calibration. The variance of the taste shocks γ is suffi-
ciently large that the value function remains concave. We use Young (2010)’s non-
stochastic simulation method to iterate on the distribution. Finally, we discretize
the income process on a 7-point grid using the method of Rouwenhorst (1995).

Firm’s problem. Given a sequence for the cost of investment {qt} and the interest
rate {rt}, the optimal sequence of automation and investment can be solved using
(B.9)–(B.10) with initial condition α0 = 0. The initial cost of investment ensures
that automation is continuous in t = 0 at the laissez-faire

q0 =
1
φ

∂αG
(
µA

0 , µN
0 ; α0

)
+ ϕφq∞

r0 + δ + ϕ
, (C.1)

using qt = q∞ + exp (−ϕt) (q0 − q∞) where q∞ ≡ limt→+∞ qt is the long-run cost
of investment.

Policy. We adopt a primal approach as in our benchmark model. We assume
that the government can directly choose the wage gap across occupations ŵt ≡
log
(
wA

t
)
− log

(
wN

t
)
. For numerical reasons, we restrict our attention to paramet-

ric perturbations. Specifically, we consider policies of the form

ŵt = S (t; Θ) ŵLF
t (C.2)
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where ŵLF
t is the wage gap that prevails at the laissez-faire, and

S (t; Θ) ≡ min

{
max

{
3
(

t
Θ

)2

− 2
(

t
Θ

)3

, 0

}
, 1

}
(C.3)

is a smoothstep function with argument t and scale parameter Θ.44 We search for
the optimal Θ over a grid, computing welfare (B.15) for each point. The second
best intervention is the one that delivers the highest welfare.

We proceed as follows to recover the taxes on investment {τx
t } that implement

the second best. We define qSB
t ≡ (1 + τx

t ) qt, where qt is the laissez-faire cost.
Using (B.9),

(rt + δ) φqSB
t = ∂αG

(
µA,SB

t , µN,SB
t ; αSB

t

)
+ φ∂tqSB

t , (C.4)

where the allocations are evaluated at the second best. This expression defines a
differential equation for

{
qSB

t
}

with terminal condition limt→+∞ qSB
t /qt = 1 since

the second best allocation converges to its laissez-faire level. We solve this dif-
ferential equation using a standard shooting algorithm, and we recover the taxes
τx

t = qSB
t /qt − 1.

Welfare gains. We compute the welfare gains as the ratio between the certainty
equivalent consumptions that produce the same welfare as in the second best(
WSB) and the laissez-faire

(
WLF), respectively. These welfare gains are thus

given by
(
WSB/WLF) 1

1−σ , where σ > 0 is the inverse elasticity of intertemporal
substitution.

D Taxes on Automation

Figure D.1 plots the sequence of taxes on investment {τx
t } that implement the sec-

ond best allocation, for each of the four calibrations in Table 6.2. We discuss how
we solve for these taxes in Appendix C. By construction, taxes converge to zero in
the long-run (footnote 44).

44 Note that these policies constrain the government to intervene only along the transition. In the-
ory, the government might also want to interevene in the long-run due to uninsured idiosyncratic
risk (Dávila et al., 2012). By construction, allowing for such, more flexible, policy would produce
even higher welfare gains compared to Table 6.2. We chose to abstract from long-run taxation to
focus on the new motive for intervention that we highlight (Section 4.6.2).
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Figure D.1: Investment taxes at the second best

Notes: The four curves correspond to the calibrations in Table 6.2.

E Output Share and Employment

We argued that our model matches well the share of output produced by automa-
tion forecasted by McKinsey (2017), as well as the firm-level effects of automation
on employment estimated by Bonfiglioli et al. (2022). We now explain how we
compute the model analogs of these (untargeted) moments.

Output share. Exhibit E3 in McKinsey (2017) shows that 71% of the output previ-
ously produced by labor could be automated. This figure is obtained by taking
the weighted average of the time spent on automatable activities in the three most
susceptible activities 0.71 = (17× 64 + 16× 69 + 18× 81) / (17 + 16 + 18). In our
model, the share of output in occupation h = A that is produced by automation is
α/
(
α + µA), which is 67% when evaluated at the final steady state.

Employment. The percent change in employment of a firm that adopted automa-
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tion, relative to a firm that did not, can be computed by the ratio of the coefficients
in column (2) to column (5) in the first line of Table 2 of Bonfiglioli et al. (2022). This
gives -0.094/0.174 = −54%. In our model, labor demand from a “firm” producing
the output of an occupation as an intermediate good satisfies

A (1− η) (α + µ)−η =
w
p

, (E.1)

where w is wage and p is the price of the intermediate good produced in automated
occupations. Next, we consider the following partial equilibrium exercise. Let us
compare two intermediate goods firms facing the same wage and price. One has
automation α1 > 0 and the other has no automation α0 = 0. Then, it must be that

α1 + µ1 = µ0. (E.2)

So, the log-change in employment is

log (µ1)− log (µ0) = log
(

1− α1

µ0

)
= −0.66 (E.3)

using our calibration, where µ0 is the initial steady state employment in automated
occupations and α1 equals the stock of automation 20 years out in the transition,
which is the sample period in Table 2 of Bonfiglioli et al. (2022). Next, we consider
employment changes in general equilibrium across steady states. We find that
employment in automated occupations changes by −0.37 log points. Overall, our
partial and general equilibrium exercises deliver predictions that are comparable
but slightly smaller than the−0.54 log change that Bonfiglioli et al. (2022) estimate.
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