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Abstract. �is paper studies durable goods monopoly without commitment under
an informationally robust objective. A seller cannot commit to future prices and
does not know the information arrival process according to which a representative
buyer learns about her valuation. To avoid known conceptual di�culties associated
with formulating a dynamically-consistent maxmin objective, we posit the seller’s
uncertainty is resolved by an explicit player (nature) who chooses the information
arrival process adversarially and sequentially. Under a simple transformation of the
buyer’s value distribution, the solution (in the gap case) is payo�-equivalent to a
classic environment where the buyer knows her valuation at the beginning. �is
result immediately delivers a sharp characterization of the equilibrium price path.
Furthermore, we provide a (simple to check and frequently satis�ed) su�cient condi-
tion which guarantees that no arbitrary (even dynamically-inconsistent) information
arrival process can lower the seller’s pro�t against this equilibrium price path. We call
a price path with this property a reinforcing solution, and suggest this concept may be
of independent interest as a way of tractably analyzing limited commitment robust
objectives. We consider alternative ways of specifying the robust objective, and also
show that the analogy to known-values in the no-gap case need not hold in general.
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1. INTRODUCTION

Consider an interaction between a single seller and a single buyer of a durable good, where the
uninformed seller makes o�ers to the buyer over time and only has the ability to commit to the price
in the current period. �e large literature on the Coase conjecture gives sharp predictions about
what the equilibrium looks like when the buyer is perfectly informed regarding his willingness-to-
pay (or value), at least in the “gap case”:1 the seller should be expected to implement a declining
price path, with the market clearing in �nite time. Intuitively, the seller’s lack of commitment
implies that he is unable to keep the price constant over time and not cannibalize residual demand
when the opportunity arises. But as the buyer anticipates future price drops, she has an additional
incentive to delay purchase, which induces the seller to also lower the price in the initial period.
Provided that the players are su�ciently patient, the above mechanism unravels to the point
where the seller charges an initial price close to the lowest possible buyer value and obtains
arbitrarily low (expected discounted) pro�t in equilibrium, as Coase conjectured.

�e starting point for our paper is the observation that when the buyer learns about her value
over time, then the classic predictions regarding equilibrium price paths can lose all sharpness.
As an example, suppose that the seller is introducing a new TV, and that the buyer is completely
uninformed regarding its novelty or relative value over her current TV. Suppose further that this
buyer expects the seller to charge constant prices, but she reacts to a surprise deviation from the
seller by learning more about what makes this TV di�erent. We show in Proposition 2 below
that there exist equilibria of this form that completely undo the Coasian predictions. Even in the
gap case, we �nd a multiplicity of equilibria in which the seller uses a constant price path and
the market fails to clear in �nite time with probability one. �ese equilibria also support a broad
range of seller payo�s. Intuitively, these equilibria leverage buyer information as an additional
“punishment” that deters the seller from deviating. Of course, the complete reversal of Coasian
forces as described above may not emerge in every particular informational environment. But as
we discuss below in the literature review, past work on Coasian dynamics has pointed to similar
failures of the Coase conjecture in the presence of buyer learning.

In this paper, we do not specify an informational environment but instead study what happens
if the seller is completely ignorant about how the buyer learns her value. For instance, the buyer
may be perfectly informed initially, may only learn at some later date, may learn according to
the information arrival process in the previous paragraph, or each of these (or any arbitrary
information arrival process) with some probability. A standard way of modeling “complete
ignornace” is to assume that the seller seeks to maximize the worst-case pro�t guarantee across

1I.e., when the lowest possible buyer value is strictly above the seller’s cost of producing the good.
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all informational environments, as in the literature on robust mechanism design.2 We want to
understand how a seller with such a worst-case objective in mind would set prices – do non-
Coasian dynamics also arise when the seller is uncertain about the buyer’s learning process,
similar to the previously studied case where buyer learning is known?

To answer this question, we �rst introduce a novel framework for modeling a seller who does
not have commitment, but still wants to set prices with worst-case scenarios in mind. In the prior
literature, there does not appear to be any consensus way of doing robust mechanism design under
limited commitment. As Carroll (2019) notes, “trying to write dynamic models with non-Bayesian
decision makers leads to well-known problems of dynamic inconsistency, except in special cases
(e.g., Epstein and Schneider (2007)). �is may be one reason why there has been relatively li�le
work to date on robust mechanism design in dynamic se�ings.”3 To see how Carroll’s observation
relates to our se�ing, consider the following stylized scenario: Suppose that, when deciding on
a price to charge at time 2, the seller is concerned about the buyer perfectly learning her value
at time 10, which would induce substantial buyer delay. However, at time 10, complete learning
is never the worst case for the seller because those buyers with value slightly above the seller’s
price could be kept ignorant and dissuaded from purchase. In this example, if the seller maintains
his past conjecture about the worst case information structure that will arise in the future, then
he could depart from being a maxmin optimizer when the future arrives.

In this paper, we present a way of specifying the robust objective under limited commitment
whereby the worst-case is dynamically-consistent; i.e., the worst-case information that the seller
anticipates for tomorrow will still be the worst case when tomorrow arrives. Speci�cally, in our
benchmark model the seller sets prices assuming that at each point in the future, the buyer’s
information structure will be chosen to minimize the seller’s pro�t from that period on. We call
such an information arrival process sequentially worst-case.

To explain this benchmark, it may be helpful to imagine that the worst-case information
structures are chosen by an adversarial nature, who is also a player in this game. For the sake
of illustration, suppose that the seller and the buyer interact over a �nite horizon. �en our
benchmark model assumes that in the last period, nature chooses information for the buyer to
minimize the seller’s pro�t in that period. In the second-to-last period, nature takes as given
its last period choices (as well as those of the seller), and chooses information to minimize the
seller’s expected discounted pro�t in the last two periods. So on and so forth. Se�ing aside the
hypothetical “nature” that is helpful for exposition, what we assume in this model is that the seller
2A large part of the popularity of this informationally robust approach is due to the in�uence of the Wilson Critique,
which posited that the strong epistemic assumptions made by mechanism design have severely limited its applicability.

3Al-Najjar and Weinstein (2009) present a number of apparently behavioral anomalies which emerge under dynamic
maxmin models without dynamic consistency; however, Siniscalchi (2009) argues that several of these may be natural.
Our paper does not speak to this debate, but instead proposes a formulation that is dynamically consistent.
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optimizes against a worst-case information process, subject to the requirement that at any point
in the future, this process remains the worst case, and the seller’s future actions remain optimal
against this worst case.

We show that in the gap case, equilibrium behavior in this benchmark model coincides with
the unique equilibrium outcome in the classic “known-values” model, where the buyer knows
her value from the beginning, so long as the buyer’s value distribution is suitably transformed to
re�ect the worst-case objective. As a corollary, we conclude that non-Coasian dynamics do not
arise in the equilibrium of our model, when the seller faces knightian uncertainty about buyer
learning in a dynamically consistent manner. �is conclusion provides a surprising contrast to
our previous discussion and the existing literature (see more details below), which suggest that
non-Coasian dynamics may well arise when buyer learning is modeled in a Bayesian way.

To understand our result, one can begin by thinking about the one-period version of the
model. In this case, for any price that the seller sets, nature’s worst case information is to reveal
whether the buyer’s value is above or below some threshold, such that the expected value below
the threshold equals the price.4 When told that her value is below the threshold, the buyer breaks
indi�erence by not purchasing at the given price, thus minimizing the seller’s probability of
sale. Note that the minimal probability of sale at any price depends on the corresponding price-
dependent threshold. �us the equilibrium in our one-period model coincides with a known-values
model, where the value distribution is transformed to take into account the mapping from prices
to thresholds.

�e essence of our result says that with this transformation of the value distribution, the analogy
to the known-values environment continues to hold for longer horizons. �e key observation
underlying this result is that the one-period worse-case information structure described above has
the property that it leaves the buyer exactly the same expected surplus as if no information were
provided, because the buyer is indi�erent below the threshold. Anticipating this, the buyer in the
second-to-last period acts as if no information would be provided in the last period. �us, as in
the known-values model, this buyer purchases if and only if her current expected value exceeds a
cuto� type that depends on the current price and the last period price. But then nature’s problem
in the penultimate period also reduces to a static problem in which it seeks to minimize the
probability that the buyer’s expected value exceeds the cuto� type. �is returns to the one-period
model studied before, where the cuto� type takes the role of the price. As a result, nature should
again choose a “threshold information structure” to minimize the seller’s pro�t in the last two

4�is worst-case information structure involving a threshold was mentioned in Appendix B.5 of Bergemann et al.
(2017), as well as Footnote 3 of Du (2016). Our earlier paper Libgober and Mu (2021) built on this observation to
show that, since the worst-case threshold is monotone in the price, the one-period model here is payo�-equivalent
to a known-values model with a transformed value distribution.
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periods, and buyer surplus is again the same as if no information were provided. Iterating this
logic leads to a full characterization of the equilibrium in our model, which is therefore analogous
to a known-values model with the transformed value distribution.

Our benchmark model assumes that the information structure is reoptimized at every point
in time, just as the seller reoptimizes prices. To what extent is the resulting equilibrium a “true
worst case”? �at is, does the equilibrium information process we described above truly minimize
the seller’s ex-ante expected pro�t across all possible information processes, including those that
need not be worst-case in later periods? Our second main result is to give a positive answer to
this question under a simple assumption of the buyer’s value distribution, which roughly requires
there to be not too much mass toward the top of the support. Under this assumption, when the
seller charges the equilibrium prices, no information process leads to lower expected pro�t than
what the seller obtains in the equilibrium. We call an equilibrium with this property a reinforcing
solution, in the sense that even if the seller is misspeci�ed about how nature selects the buyer’s
information process, this misspeci�cation cannot possibly hurt. If the seller believed that nature
did not have commitment (as in our benchmark model), then his pro�t would not be lower against
any arbitrary information process. �is result is quite subtle, and is driven by the fact that the
seller does not react to the information arrival process as we consider richer information arrival
possibilities. By contrast, we show that there will generally exist information arrival processes
and equilibria whereby the seller does worse than our main benchmark—precisely because these
information arrival processes can induce the seller to take actions which lower pro�ts.

Turning to the no-gap case, classic work has shown that with known values, Coasian dynamics
need not emerge in every equilibrium (Ausubel and Deneckere (1989)). In our model with buyer
learning, we further show that the richness of these known-values equilibrium outcomes can be
used to sustain equilibria where the outcome is not analogous to any known-values environment.

In this paper we focus on the application of durable goods pricing, but we think that some of the
ideas here may be applied more generally in robust mechanism design under limited commitment.
Durable goods pricing is a natural �rst place to study for a couple of reasons: 1) it is perhaps
the most thoroughly studied se�ing with limited commitment but without robustness concerns,
and 2) our earlier paper Libgober and Mu (2021) solved the problem of durable goods pricing
with a robust seller having full commitment, so there is a meaningful comparison between the
results here and the commitment solution in that paper. Toward this end, we present an extensive
discussion in Section 6 which considers alternative ways one could have speci�ed the robust
objective, ultimately concluding that the one we posit leads to the most intuitive and tractable
solution in our se�ing. Clearly this conclusion need not be true in all se�ings. Our point is simply
that for our application, the dynamic consistency issues discussed above may be less severe than
past discussion suggests. It will be interesting to evaluate this possibility in di�erent applications.
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1.1. Related Literature

�e literature on robust mechanism design was motivated by the goal of relaxing strong common
knowledge assumptions implicit in Bayesian mechanism design (Bergemann and Morris (2005),
Chung and Ely (2007)). While early work focused on the known-values case, subsequent work
considered the case of unknown values where the designer also faces uncertainty about what the
agents know about their own preferences.5 Papers that deal with this la�er kind of “informational
uncertainty” include Bergemann et al. (2017), Du (2018), Brooks and Du (2021), Brooks and Du
(2020), Libgober and Mu (2021), and the current paper also belongs to this strand of the literature.

As far as we are aware of, there have been relatively few papers that study robust mechanism
design in dynamic se�ings, and none of them addressed limit commitment as we do here.6 �e
potential dynamic consistency issues we discussed in the introduction might be the primary
reason for the lack of such studies, but in this paper we show that such issues do not actually
arise for the problem of durable goods pricing with our version of the informationally robust
objective. We are inspired by the broader research agenda described in Bergemann and Valimaki
(2019), which points out the importance of moving away from strong assumptions of Bayesian
mechanism design in dynamic se�ings. �ose authors wrote that the literature on dynamic
mechanism design has so far involved “… Bayesian solutions and relied on a shared and common
prior of all participating players. Yet, this clearly is a strong assumption and a natural question
would be to what extent weaker informational assumptions, and corresponding solution concepts,
could provide new insights into the format of dynamic mechanisms.”7

Apart from relaxing commitment, some recent papers have extended the robust framework
in other directions. Bolte and Carroll (2020) study the problem of a principal who can choose
investment in the course of interacting with an agent, and show that this provides a foundation
for linear contracts, echoing an earlier result of Carroll (2015). Ocampo Diaz and Marku (2019)
also extend Carroll (2015), but they consider the case of competing principals in a common agency
game. Both of these papers address a similar conceptual issue, namely how the strategic choices
of the designer should interact with the maxmin objective. However, just like most of the existing
literature, the worst-case is only considered once in these papers.

5Lopomo et al. (2020) presents a generalization of the robust framework to accommodate more intermediate cases.
6A recent paper that relaxes commitment in a similar way to our paper is Ravid et al. (2020). �ey consider the
problem of buyer-optimal information (in a one-period model) when the choice of information is unobservable to the
seller. A di�erence is that they assume information is costly. However, relaxing commit to the information structure
as in Ravid et al. (2020) is similar to relaxing nature’s commitment to the information process as in our model.

7Also related is Pavan (2017), which states: “‘�e literature on limited commitment has made important progress
in recent years…. However, this literature assumes information is static, thus abstracting from the questions at
the heart of the dynamic mechanism design literature. I expect interesting new developments to come out from
combining the two literatures.” Our paper allows for such information dynamics, albeit using a robust approach.
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A less related literature considers mechanism design where agents (instead of the designers)
have non-Bayesian preferences, including the maxmin case (Bose and Renou (2014), Wolitzky
(2016), Di Tillio et al. (2017)). However, the motivation of this literature is to think about how the
designer should react to the presence of non-Bayesian buyers, which is quite di�erent from robust
mechanism design. Some papers in this literature explicitly consider dynamic formulations that
feature dynamic inconsistency issues, and demonstrate how a designer may be able to exploit this
feature (Bose et al. (2006), Bose and Daripa (2009)).

Lastly, we should mention that recent work has considered the sensitivity of the Coase
conjecture to the presence of information arrival. Under somewhat restrictive assumptions on
either the type distribution or the learning process, Lomys (2018), Duraj (2020) and Laiho and
Salmi (2020) study how the conclusion of the Coase conjecture may be in�uenced by the presence
of buyer learning. Departures can emerge because learning in�uences the direction and magnitude
of buyer selection, both of which are crucial for Coasian dynamics (see Tirole (2016)). As discussed
in the introduction, we also demonstrate failures of Coasian dynamics in our Proposition 2, when
buyer learning takes a speci�c form. But our main result is to show that when the seller is
uncertain about buyer learning and uses a robust objective, then in equilibrium there will not be
any non-Coasian forces, at least in the gap case.

2. MODEL

We present our model as follows: We �rst describe the basic primitives of the environment. �en,
we move onto the particular interaction between the buyer and seller—in so doing, describe
how information arrival works— and then de�ne strategies and beliefs. Our worst-case notion
is introduced in Section 2.4. We present a preliminary discussion of the model in Section 2.5,
highlighting the issues we are raising and clarifying some other assumptions; we defer a full-scale
discussion of alternative worst-case notions until Section 6, a�er all other results are presented.

2.1. Underlying Environment

A seller of a durable good interacts with a single buyer in discrete time until some terminal date T ,
where T ≤ ∞, though we will handle the case of T =∞ and T <∞ separately. �e buyer can
purchase the good at any time t = 1, . . . , T . �e buyer has unit demand for the seller’s product,
and obtains utility v from purchasing the product, where v is drawn from a continuous distribution
F which the buyer and seller commonly know. For most of the paper we will assume that the
support of F is an interval [v, v] with v > 0—the so-called “gap case”—only Section 5 is concerned
with the case of v = 0. Payo�s by both buyer and seller are discounted according to a discount
factor δ ∈ (0, 1).
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However, neither the buyer nor the seller know the realization of v itself. Instead, the buyer
will learn about v over time according to an information arrival process. We de�ne an information
structure to be a pair (S, I), where each s ∈ S denotes a possible signal and I : [v, v] → ∆(S)

determines the distribution over signals for every v ∈ [v, v]. We assume throughout the paper
that signals from any information structure are observed exclusively by the buyer, and not the
seller. We will allow the buyer to obtain signals according to di�erent information structures over
time, in a history dependent way we discuss in Section 2.2. For now, note that, given a set of
information structures (I1, . . . , It), signals (s1, . . . , st), and knowledge of F , the buyer is able to
form her posterior expectation,

E[v | I1, s1, . . . , It, st], (1)

via Bayesian updating (and with no other information).

2.2. Timing and Histories

In every period t, the timing is as follows:

• First, the seller chooses a price pt ∈ R+ according to a distribution γt ∈ ∆(R+). However,
while the seller has the ability to randomize, we assume that the buyer observes pt prior to
deciding whether or not to purchase.

• Having observed the price, the buyer obtains a signal drawn according to an information
structure. Denote this information structure It.

• �e buyer then decides whether or not to purchase the product at price pt. Let dt denote the
buyer’s decision, where dt = 1 denotes the event that the buyer buys and dt = 0 denotes
the event that the buyer does not buy. If the buyer purchases or t = T , the game is over.
Otherwise, the game continues to the next period.

We now explicitly de�ne the relevant histories for each of the players. Since the buyer only
decides whether to purchase or not, and since the game ends when the buyer purchases, in de�ning
histories we will assume that the buyer has not yet purchased. De�ne h1S = ∅, and for t ≥ 2 de�ne
the seller’s history until time t to be:

htS = (γ1, p1, I1, γ2, p2, I2, . . . , γt−1, pt−1, It−1).

�e buyer’s history until time t is de�ned as:
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htB = (p1, I1, s1, p2, I2, s2 . . . , pt−1, It−1, st−1, pt, It, st).

�is is similar to the seller’s history, but there are three key di�erences: First, the buyer also
observes all signals until time t. Second, the buyer also observes the price and information structure
in period t. And third, we assume the buyer does not observe the randomization itself, although
this assumption is not crucial.

We assume the history determining information at time t (using an N subscript to denote
“nature”) is the following:

htN = (γ1, p1, I1, s1γ2, p2, I2, s2 . . . , γt−1, pt−1, It−1, st−1, γt, pt).

�is coincides exactly with the buyer’s history, excluding only the time t information structure
and signal realization, and also allowing nature to condition on the seller’s randomization.

Let HB,HS,HN denote the set of all possible buyer histories, seller histories, and nature
histories (respectively). Let H∗ = HB ∪ HS ∪ HN . We say a pair of histories hti and hsj are
non-contradictory if they coincide with one another whenever possible (e.g., contain the same
pricing strategies, information structures, etc., at every time up to and including t).8 Given a
�xed (�nite) history h and a set of historiesH, letH|h denote the set of histories inH which are
non-contradictory with h. Note that so far, we have not yet speci�ed an information structure or
discussed how it is determined. Still, it is worth pausing and noting that so far the framework is
fairly standard; for instance, suppose I1 were perfectly informative—that is, I1(v) = v. In this case,
our model reduces to standard Coasian bargaining, as per Fudenberg et al. (1985), with one-sided
private information. �e only innovation, therefore, is to allow for the buyer to instead learn
about the value for the product over time.

2.3. De�ning Strategies and Beliefs

To complete the description of the model, we need to specify how the seller and buyer’s actions
are chosen. As discussed above, our interest is in formulating a robust objective for the seller in
this environment, which as discussed in the introduction, has proved elusive. We admit there is
no consensus way for how to do so.

To de�ne sequential rationality, we must also de�ne the beliefs each player holds. Let T =

{1, . . . , T,∞} denote the set of possible dates at which the buyer could purchase the good, where
T = ∞ corresponds to the event that the buyer does not purchase. Let T |h be the set of dates

8�is allows us to de�neHB |ht
S

to be the set of possible buyer histories non-contradictory with a given seller history,
even though ht

S is not contained inHB .
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consistent with the buyer not having purchased at history h (since the game ends whenever the
buyer purchases). A belief system is a function:

µ : H∗ → ∆([v, v]×H∗ × T ),

where, for every h, µ(h) [[v, v]×H∗|h×T |h] = 1; that is, at any history h for any player i, the
probability assigned to the histories non-contradictory with h is 1.9 We say a belief system
“satis�es Bayes rule where possible” if, for each player i, t < s and hti non-contradictory with hsi ,
µ(hsi ) can be derived from µ(hti) via Bayes rule.

We will require that the belief system satis�es a “no signalling what you don’t know” require-
ment (Fudenberg and Tirole (1991)): Speci�cally, we restrict µ such that, for every history htb,
the buyer’s belief about v does not depend on the price charged. �is assumption ensures that
when the seller deviates, this deviation does not lead the buyer to updating beliefs about his own
value.10 Simply put, (1) must hold even if the seller (or nature, for that ma�er) were to deviate.

Note that the belief system determines all the information required for all players to evaluate
their payo�s, as well as all the information required for players to form a conjecture about the
future play of the game. We will be particularly interested in the belief systems that are induced
by the strategies played. A buyer strategy is a function σ : HB → ∆({0, 1}); that is, given htB ,
σ(htB) is a probability distribution over (a) the event 0, corresponding to “not buying” and (b) the
event 1, corresponding to “buying.” A pricing strategy is a function γ : HS → ∆(R+); that is,
γ(hS) is a distribution over prices as a function of the seller’s history. A price path is a sequence
(p1, . . . , pt, . . .). An information arrival process is a function IS : HN → (P(X)\∅) × {I :

[v, v]→ ∆(X)}, where the �rst coordinate of IS(htN) is a set S ⊂ X , and the second coordinate
is restricted to be a function from [v, v] to ∆(S) ⊂ ∆(X) (so that IS(htN) is an information
structure). For technical reasons, we will take X to be �nite, and omit the formal details necessary
to allow for X with in�nite cardinality.11

Given buyer strategy σ, let σ|htB denote the corresponding function when restricted toHB|htB
(i.e., the buyer’s strategy a�er history htB). We similarly de�ne γ|htS and IS|htN . Let Σ denote the
set of all buyer strategies, Γ the set of all pricing strategies, and X the set of all information arrival
processes. We let Σ|h denote the set of all buyer strategies when restricted toHB|hB , where hB is

9Since this game is sequential move, with only one player choosing an action at a time, we do not need to distinguish
between the di�erent players when de�ning a belief system.

10Otherwise, one could construct equilibria whereby a deviation is detered by the buyer adopting a belief that v = v
with probability 1.

11Strictly speaking this rules out fully informative information structures; however, there are no conceptual issues
which arise with simply including one additional information structure into the set of possible choices, so this
is not essential. Note that the worst-case information structures we identify do involve a �nite number of signal
realizations.
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the longest buyer history non-contradictory with h, and similarly de�ne Γ|h and X|h.
Consider an arbitrary triple (σ, γ, IS). Note that, given an arbitrary history h, σ|h, γ|h, and

IS|h de�ne a probability distribution over [v, v]×H∗ × T . We call this probability distribution
the belief system is induced by the triple (σ, γ, IS).

2.4. Benchmark Equilibrium Assumptions

We can now specify our rationality notions. Fix an arbitrary triple (σ, γ, IS) and consider the
belief system µ induced by it. We say that the buyer’s strategy is sequentially rational given µ if,
for all t and htB , σ(htB) > 0 implies:

Ev∼F [v − pt | htB] ≥ Eµ
[

max
τ :t<τ≤T

δτEv∼F [v − pτ | hτB]

∣∣∣∣htB] .
and σ(htB) < 1 implies this inequality is �ipped. Note that the buyer can determine the le� hand
side of this inequality simply by observing htB ; the right hand side requires the buyer taking an
expectation over future (strategic) variables, which explains the µ(htB) subscript.

If the buyer purchases at some time s at a price of ps, then from the perspective of time t < s

the seller obtains payo� δs−tps. �us, the seller’s pricing strategy is sequentially rational given µ
if, for all t and htS , the seller chooses γt(htS) to maximize the expectation of:

ptPµ[dt = 1 | htS, γt, pt] + Eµ

[
T∑
k=t

δk−t+1pk+1Pµ[dk+1 = 1 | hk+1
S , γk+1, pk+1] | htS, γt, pt

]
, (2)

where we recall that dt ∈ {0, 1} denotes the buyer decision at time t. At this point, we pause
again and note that so far, all that ma�ers for determining the seller’s optimal choice at time t
is the distribution over hsS and hsB given htS , for s > t. To close the model, a Bayesian approach
would require us to specify a distribution over the information arrival process as a function of htS
and htB , subject to restrictions associated with update.

Instead, we impose the following requirement, the substance of our approach: We say an
information arrival process is sequentially worst-case given µ if, for all t, the following expression
is maximized over the choice of St(htN), It(h

t
N).

−ptPµ[dt = 1 | htN , St, It]−Eµ

[
T∑
k=t

δk−t+1pk+1P[dk+1 = 1 | hk+1
N , Sk+1, Ik+1] | htN , St, It

]
. (3)

Note that St(htN) and It(htN) in�uence this expression by in�uencing the probability distribution
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over hsB , for s ≥ t (as well as, of course, the corresponding decision that the buyer �nds optimal).
Note that, though nature maximizes the negative of the seller’s payo�, this is a three player
interaction (due to the presence of the buyer), and thus strictly speaking is not zero-sum.

As is standard in the literature on the Coase conjecture, we will impose one further restriction
on the equilibrium, namely that it satis�es a stationarity requirement: Note that, given a sequence
of information structures ISt = (I1, I2, . . . , It) and signal history st = (s1, . . . , st), we can
compute the conditional distribution over the buyer’s value, Fst ∈ ∆([v, v]), using this (and no
other) information. Furthermore, given an information arrival process, the seller’s belief over
possible Fst will be common knowledge (due to our assumption of public information). We will
say a candidate equilibrium pro�le is stationary if the price at time t depends only on the (public)
probability distribution over the buyer’s value distribution φ ∈ ∆(∆([v, v])), and if the buyer’s
acceptance decision depends only on φ, st and pt.

De�nition 1. Let σ, γ, IS denote strategies for the buyer, seller, and nature (respectively) and let µ
be a belief system induced by them satisfying the assumptions in Section 2.3. We say this quadruple
is worst-case time-consistent and correct if and only if:

• σ is sequentially rational for the buyer,

• γ is sequentially rational for the seller,

• IS is sequentially worst-case, and

Solving for such outcomes is the primary focus of this paper.

2.5. Discussion

While our in-depth discussion of the formulation of the limited commitment robust objective is
deferred to Section 6, we brie�y highlight some aspects of this formulation which may facilitate
appreciation of our results. Our model posits that IS is sequentially worst-case, evocative of an
interpretation where the seller thinks they are playing a game against nature, a player who lacks
commitment. �e explicit use of “nature” as a player is primarily expositional device to explain
why one might expect dynamic-consistency of the information structure to be maintained. In
subgame perfect equilibrium, actions are required to maximize payo�s, given that future actions
are determined according to the equilibrium pro�le (and in turn, these actions must satisfy the
same requirements). �us, when a player chooses an action, they do so (correctly) anticipating
future actions, and do not change their conjecture of future actions when the future arrives. �is
backwards induction logic will be important in our solution.
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As discussed above, we are not aware of any consensus approach on the appropriate way of
modelling informationally robust selling strategies when the seller chooses multiple actions over
time. �e decision theory literature has argued, however, that dynamic consistency is nevertheless
desireable in dynamic maxmin models. In the case a decisionmaker considers a worst-case belief
over a set of priors, Epstein and Schneider (2007) propose a “rectangularity” condition on the set of
priors which characterizes when the maxmin decision rule is dynamically consistent. In our case,
the seller considers the worst-case not over only a set of priors, but a set of information arrival
processes, so that strictly speaking their rectangularity condition does not directly apply for this
environment. �at said, we acknowledge that our exercise is in spirit similar to their proposal. We
simply �nd it more direct, in our se�ing, to impose dynamic consistency by relaxing assumptions
on nature’s commitment power, rather than on the set of information arrival processes directly.

One (in our view, not a priori obvious) point our analysis clari�es, however, is that the
solution to the “robust predictions exercise”—that is, �nding the worst possible seller equilibrium
payo� achievable under some information arrival process—will typically require a non-worst case
information structure to be chosen at some time s > t. �is point is important for appreciating
our model, but we discuss it more precisely later.

�e public information plays two roles; technically, it makes the requirement of stationarity
simpler to impose. More substantively, it implies the seller need not consider worst-case over past
information. �is issue is also discussed in Section 6.

Note that our framework is completely silent on how the buyer chooses strategies, whether to
help the seller or not. �at is, we will be interested in the set of possible outcomes which could
emerge given some assumption on buyer behavior; it turns out that this will not ma�er in the
�nite horizon or gap case, but will lead to multiplicity in the no-gap case with an in�nite horizon.

One issue that emerges more generally in dynamic models under a robust objective is how the
timing of nature’s moves interactions with the individual seeking robustness. While we allow
the seller to randomize in every period, we also allow the information structure in a given period
to depend on that price. In contrast to the commitment case, we view this price dependence as
uniquely more compelling than alternatives under limited commitment, for two reasons.12 First,
with commitment there is no notion for what it means for the seller to “deviate” from a prescribed
action, since the worst-case is conditional on strategy. With limited commitment, optimality
explicitly requires continuation play to be be�er on-path than following a deviation. Since whether
an action by the seller quali�es as a deviation depends on the price observed, distinguishing
between on-path and o�-path already imposes price dependence. �us, the conceptually simplest
case appears to us to be one where this price dependence is complete. Second, since we are
12Precisely because various assumptions could be equally compelling with commitment, Libgober and Mu (2021)

discusses several possible assumptions for price-dependent information.
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precisely interested in the no-commitment case, it also seems natural to focus on the case where
the seller cannot only not commit to future prices, but also cannot commit to randomization,
either. �e economic story for the seller being able to commit to randomization but not future
prices seems less immediate. By contrast, if the seller had as much commitment as possible, it
would be natural to allow the seller to commit to both future prices and randomization.

3. SOLUTION TO THE BASELINE MODEL

We now proceed to solve the previous model.13 When T = 1 case, the issue of non-commitment
does not arise, and the solution is exactly as articulated in Libgober and Mu (2021) (and further
analyzed in a related model by Xu and Yang (2022)). Intuitively, results from Bayesian persuasion
imply that the worst-case information structure takes a partitional form, where the partition
depends on the price charged by the seller. Using the mapping between prices and thresholds,
one can then derive a value distribution which, under an assumption of known values, gives an
identical solution to the seller’s problem. We review the de�nition of this corresponding value
distribution in these papers, dubbed the pressed-distribution:

De�nition 2 (See Libgober and Mu (2021), Xu and Yang (2022)). Given a continuous distribution F ,
its “pressed version” G is another distribution de�ned as follows. For y > v, let L(y) = E[v | v ≤ y]

denote the expected value (under F ) conditional on the value not exceeding y. �enG(·) = F (L−1(·))
is the distribution of L(y) when y is drawn according to F .

Note that Libgober and Mu (2021) showed by example that one should generally not expect
the pressed distribution to characterize the seller’s problem if a declining price path were used.
�e reason is that some information structures may lower the seller’s pro�t by revealing more
information to the buyer. �us, in dynamic environments, it is not immediately clear that one can
say that the seller’s problem is “as-if known values under the pressed distribution.” While that
paper does feature constant price paths as delivering the optimum, this feature should decidedly
not be the case here given that we are focused on the noncommitment case (where prices decline).

Our �rst result shows that those information structures are dynamically-inconsistent, in that
they rely upon giving the buyer more information than the worst-case at later times. If one forces
those information structures to also minimize the seller’s pro�t from that time on, then we again
recover the tight analogy:

13We brie�y mention that the same results apply in the no-gap case with a �nite horizon, though as is well-known
under known values, the �nite horizon assumption is more restrictive in the no-gap case than the gap case. See
Section 5 for more on the no-gap case.
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�eorem 1. When T <∞, the (worst-case time-consistent and correct) equilibrium payo�s in the
baseline game are unique. Furthermore, an equilibrium is given by the following:

• �e information structure is partitional.

• �e prices the seller charges coincide with the prices charged when the buyer’s value is drawn
according to the pressed version of F , and where the buyer knows his value.

�e key insight behind this result is as follows. For simplicity, suppose T = 2, and consider
nature’s strategy in the last period. Suppose the seller charged a price p2. �ere are two cases
to consider, given any signal s1 the buyer might have observed in the �rst period: It may be
that no second-period information structure would in�uence buyer behavior, or some can. In
the former case, we immediately obtain that nature’s choice in the last period does not in�uence
buyer surplus. So consider the la�er case, with the buyer’s belief over v being Fs1 , with p2 in the
interior of (the convex hull of) its support. �e crucial observation is that in this case, worst-case
information must induce indi�erence on the part of the buyer whenever she does not purchase.
More precisely, if the buyer starts the second period believing v ∼ Fs1 , if s2 is such that the buyer
does not purchase, then she will be indi�erent between purchasing and not. Intuitively, she must
at least weakly prefer to not purchase; but with a strictly preference, nature could �nd another
information structure lowering the probability of sale, making the buyer more optimistic about her
value whenever she does not purchase (by an amount small enough so that the optimal decision
does not change). �is indi�erence implies that buyer surplus will be exactly the same as if she
were to simply always purchase in the last period, for any equilibrium choice of nature.

Now consider the buyer’s problem in the �rst period, given an arbitrary �rst-period price,
say p1, and an arbitrary information structure, say I1 yielding signal s1. Suppose the equilibrium
speci�es p2(p1) is to be charged in the last period. Does the information nature might provide
in the last period ma�er for determining whether the buyer �nds it be�er to wait or not? While
it is clear the answer is no if nature’s strategy cannot in�uence buyer behavior, we have just
argued that the answer is still no even if it can. As a result, to calculate the buyer belief which is
indi�erent between purchasing and not, it is enough to assume no further information is provided
to the buyer in the last period.

�is property turns out to be exactly the condition needed in order for the pressed distribution
to characterize the equilibrium in the baseline game. At every time, nature chooses information
to minimize the seller’s total discounted payo� from that time on. Given this, in adjusting the
threshold above which purchase is recommended, nature knows that the next period choice of
threshold depends only on the price the seller is expected to charge in that period. As a result, a
small change in the threshold today would have no change in the threshold in the future, meaning
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that the optimal choice is simply to minimize the seller’s expected pro�t from that period on. Note
that a technical issue is that there may be multiple equilibria, as di�erent information structure
choices of nature might induce identical behavior from the buyer, as a function of the buyer’s true
value. However, we show that this possibility does not change the conclusion of the result. In
particular, choosing a di�erent information structure could only possibly change the resulting
price path if it were to improve the seller’s payo�, and will not change the indi�erence property
which is crucial for delivering the result.

�e key property driving this result is that the worst-case is time-consistent. In the last period,
say period T , the worst-case information structure involves a price-dependent threshold. In
the next-to-last period, the equilibrium determines what the last period price should be. �e
seller anticipates that the worst-case information will be of a threshold form, with the threshold
depending on this (anticipated) price. Crucially, the worst-case for IT is both the worst case when
period T begins, as well as at any t < T . �is same reasoning applies to earlier information
structures as well, although the thresholds for these information structures will depend on the
value at which the buyer would be indi�erent between purchasing and not, instead of the price.

Due to our focus on the gap case, we can also show the following:

Proposition 1. Suppose the distribution F involves v > 0 and satis�es the Lipschitz condition of
�eorem 4 of Ausubel et al. (2002).14 When T =∞, there exists some �nite period T̂ such that the
market clears by T̂ in any worst-case time-consistent and correct equilibrium; therefore, the same
conclusion from �eorem 1 holds when T =∞.

�is result uses the fact that the equilibrium outcome under known values features a �nite
horizon. In our problem, if the outcome were that of �eorem 1, then we would have the same
objective de�ning the seller’s objective. �e di�cult part is showing that this is in fact all that can
happen. �at the seller has no pro�table deviation, if information is chosen to minimize their total
discounted payo� at every period, is fairly straightforward, since this is true under known-values,
and hence true even if nature only uses partitional information arrival processes. �e argument
for nature is that, for any candidate equilibrium information structure, the best-case reaction
from buyers for the seller would be to assume no further information were received. �erefore, to
derive an upper bound on the seller’s equilibrium pro�t (i.e., ask “how badly can nature possibly
do?”), it is enough to assume that this is the inference the buyer would make following a deviation
of nature. �us, the highest pro�t the seller could obtain in a given period does not necessarily
depend on future information structure choices, allowing us to derive an upper bound on the
14In our notation, this requires that

F−1(q)− v ≤ Lq,

for some L and all q ∈ [0, 1].
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equilibrium pro�t. Noting that this coincides with the value function assuming the partitional
equilibrium, we then conclude the worst-case information structure is again essentially unique
(i.e., induces a unique response from the buyer).

�eorem 1 and Proposition 1 provide a sharp characterization of the equilibrium payo�s.
�e reason the outcome is not unique is due to the possibility that nature provides some richer
information structure to the buyers, which nevertheless induces the same behavior. However,
the result allows us to provide some sharp descriptions of the outcome in the worst-case. �is
sharpness should not be taken for granted. �e proof of Proposition 1 uses the result that under
known values, there are a �nite number of periods a�er which the market clears (stated in Ausubel
et al. (2002)). �is need not hold for an arbitrary (non-worst case) information arrival process.
�e issue more generally is that information arrival in principle can generate a gap between the
seller’s “on-path” payo� and the “o�-path” punishment payo�. �e existence of such a gap drives,
for instance, the folk theorem of Ausubel and Deneckere (1989). �is contrasts with stationary
equilibria, such as the one in �eorem 1, where even o�-path the strategy only depends on the
size of the remaining market. As an example, consider the following proposition, which stands in
stark contrast to the equilibrium outcomes in the known-values model:

Proposition 2. Fix F , δ and T . Suppose the equilibrium outcome under known values with distri-
bution F does not involve the market clearing at time 1. �en there exists an information structure,
optimal stopping time for the buyer and equilibrium price path for the seller such that:

• �e seller uses a constant price path.

• �e seller obtains continuation value of v∗ at every point in time, where v∗ is less than EF [v]

but larger than the minimax pro�t from �eorem 1 given any time horizon k ≤ T .

• �e market does not clear in any �nite time.

One could have a constant price path as the equilibrium outcome if the buyer were to, say, receive
no information about their value. �e clearer parts which highlight the non-Coasian possibilities
are (i) the possible equilibrium multiplicity for a �xed information arrival process, and (ii) the
lack of a �nite time horizon by which the market clears. A key result from the known-values
gap case is that such a uniform time at which the market clears can be found, under general
conditions, yielding a unique stationary outcome. We view this proposition as a proof of concept,
illustrating the di�culty of deriving analogies between the Coasian known-values se�ings and
those with information arrival in full generality. �is was alluded to in our introduction—if
arbitrary information arrival is possible, then arbitrarily severe departures from Coasian equilibria
can be obtained, as highlighted by Proposition 2. �is observation demonstrates our claim that
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the robust approach has an appealing property, in that it maintains analogies to the known-values
case, and that certain conclusions should not immediately be taken for granted when seeking to
accommodate information arrival into the Coasian se�ing without this approach.

Looking ahead, it turns out that when there is no gap, such equilibria may emerge even in our
baseline model (though restricting buyer behavior to minimize seller pro�t would rule them out).
As a result, the analogy to known-values requires the no-gap assumption. �is contrasts with the
case where the seller has commitment, where no such quali�ers emerge.

4. RICHER NATURE COMMITMENT

�eorem 1 provides a striking characterization of the solution to the baseline model—it coincides
with a certain known-values environment, which was previously identi�ed in the commitment
version of the same model. We have therefore identi�ed an environment where the value of
commitment under an informationally robust objective can be determined from the value of
commitment under known values.

A natural question this raises is whether this is in fact a “true-worst case.” To be more precise,
note that our game features a timing protocol whereby the seller moves �rst in each period, and
nature then responds. It is possible that, were nature able to pick their strategy before playing the
game (so that the need to best reply to the seller were eliminated), the seller could be forced to an
even lower pro�t. Can dropping the incentive constraints of nature hurt the seller even more?

�ere is a special case where it cannot, which is when the solution to the previous model
involves p2 = v; that is, where the seller clears the market at time 2. �is is straightforward to
show—in this case, nature’s choice does not in�uence behavior at time 2, and so its problem is
essentially static. In this case, the problem of nature is essentially a Bayesian Persuasion problem,
and in the environment we study the worst-case is known to take a threshold form, where the
threshold is chosen so that a buyer who does not purchase is indi�erent between actions.

More generally, the answer turns out to depend on what we assume about the seller’s view of
nature. Suppose we were to assume that the seller knew nature had such commitment power, and
therefore chose their strategy to best respond to this (commi�ed to) information arrival process.
�e proposition below shows that there does exist an information arrival process which delivers a
lower pro�t.

Proposition 3. Suppose the equilibrium outcome in �eorem 1 does not involve purchase by time 2
with probability 1. �en there exists an information arrival process and sequential equilibrium such
that the seller obtains a lower expected pro�t than in the unique equilibrium outlined in �eorem 1.

�e following example illustrates:
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Example 1. Suppose T = 2 and v ∼ U [0, 2]. Note that this implies the pressed distribution is
U [0, 1]. We can therefore compute (see the Appendix for details) that the equilibrium to the baseline
model involves the following as the solution for prices p1, p2 and seller pro�t, say π, as:

p1 =
(2− δ)2

8− 6δ
, p2 =

(2− δ)
8− 6δ

, π =
(2− δ)2

4(4− 3δ)
.

Moving back to the nature’s original problem, the information structure that nature chooses tells the
buyer at time 2 whether v is above or below 2p2; since, at time 1, a buyer with value 2p2 would be
indi�erent between purchasing and not, the time 1 threshold informs the buyer whether or not the
value is above or below 4p2.

We now exhibit the information structure which holds the seller down to a lower pro�t. Let π∗(ṽ)

denote the seller’s pro�t as a function of the �rst period threshold ṽ, above which consumers learn
their true value and purchase (i.e., ṽ is not the indi�erent value, but the partition threshold). Consider
the following second period outcome:

• In the second period, following any �rst period history, the seller charges price π∗(ṽ), nature
provides no information, and the buyer purchases.

• If the seller deviates in the second period, nature uses the worst-case partitional threshold.

By construction, the seller has no (strictly) pro�table second period deviation, no ma�er what
the �rst period price is. Furthermore, note that, since π∗(ṽ) < E[v | v < ṽ], the buyer is willing to
follow this strategy as well. �e calculation of the resulting optimal �rst period price is now similar
to the previous case. �e di�erence is in the calculation of the indi�erent value in the �rst period,
since the buyer now obtains additional surplus from delay. We can show that if nature were to choose
an information structure of this form, then the seller could prevent all sale in the �rst period when
δ ≥ 4/5 (and in this case, the seller’s expected pro�t is δ/4, since the expected pro�t from the one
period problem is 1/4); otherwise, the seller’s pro�t is:

(4− 3δ)2

64(1− δ)
.

Figure 1 plots, as a function of δ, the pro�t the seller obtains in the equilibrium of the baseline
model (blue line) to the pro�t the seller obtains in the equilibrium under this di�erent information
structure (orange line). We have that this is uniformly lower, except for when δ = 0 and when δ = 1,
in which case the seller’s problem is essentially static (with only the �rst period ma�ering in the
former case and all sale happening in the second period in the la�er case).

�e proof of the proposition essentially generalizes the example to any se�ing where the
market does not clear at time 2. �e key point is that the solution to the baseline model leaves
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Figure 1: Comparison of seller pro�t between equilibrium of the baseline model vs. �eorem 2,
for Example 1

additional scope to transfer surplus to the buyer in order to induce additional delay. In the
information structure nature chooses, the seller obtains the exact same continuation pro�t as
in the baseline model, but the ine�ciency entailed disappears. Instead, the buyer obtains more
surplus, which makes them more willing to delay, thus hurting the seller’s pro�t.

�is result suggests that perhaps the solution to the previous model is not a “true worst-case.”
However, one criticism of the benchmark where nature has full commitment is that it requires
extreme con�dence from the seller regarding nature’s choice of information structure. It seems
reasonable to ask where this con�dence would come from.

To analyze this question, we consider the following criterion on price paths:

De�nition 3. An optimal pricing strategy from the baseline model is a reinforcing solution if the
seller’s anticipated equilibrium pro�t is equal to the worst-case pro�t guarantee over the set of all
dynamic information arrival processes.

We are not aware of any similar concept being studied elsewhere in the robust mechanism
design literature, though we view it as very natural. To maintain focus, we only de�ne reinforcing
solutions for the model at hand, though it seems straightforward to extend this to other robust
objectives in dynamic se�ings with limited commitment. �is de�nition could re�ect, for in-
stance, some misspeci�cation about the commitment power of nature, with the seller believing
information to be sequentially worst-case, whether or not it actually is. One can then ask how
much (expected discounted) pro�t the seller is guaranteed when information can be arbitrary. In
a reinforcing solution, even if nature could commit to arbitrary information arrival processes, this
extra commitment cannot hurt the seller. �e seller’s payo� would be unchanged.

In our exercise, we �nd reinforcing solutions intuitively appealing as the solution to the
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following exercise:

• A seller chooses a model of how buyers learn about their values, doing so in an optimistic
way in order to maximize their own pro�ts.

• Upon making this choice, however, the seller becomes pessimistic and reconsiders; the
worry is that perhaps they were wrong, and they also lack con�dence in their understanding
of the environment. �e seller abandons a model if there were some information arrival
process the buyer could have which would deliver lower expected pro�t.

A reinforcing solution—and in particular, the one we highlight—resolves the “optimism–pessimism”
tradeo� highlighted by this thought experiment. An optimistic seller may assume an information
structure that delivers high pro�ts, but would reconsider this given their lack of understanding of
the environment. By contrast, an overly pessimistic seller may doubt their reasons for being so
pessimistic. If a price path satis�es the reinforcing criterion, a seller may think that they might as
well use it, and can then rest assured that their pro�t guarantee would not change if in fact they
were wrong—no ma�er how pessimistic they are.

�e condition we need for the solution we highlighted to be a reinforcing one is the following:

De�nition 4. We say that a distribution F satis�es pressed-ratio monotonicity if v
F−1(G(v))

is
weakly decreasing in v.

�is assumption is satis�ed for many distributions (for instance, all uniform distributions). Intu-
itively, the de�nition rules out cases where too much mass is located at the top of the distribution
(see also Proposition 4). In this case, a small increase threshold used in order to induce the buyer
to delay leads to a larger change in the expectation of E[v | v ≤ y].

Under the assumption of pressed-ratio monotonicity, we can show the following:

�eorem 2. Suppose the value distribution satis�es pressed-ratio monotonicity. �en the equilibrium
outcome in �eorem 1 is a reinforcing solution—that is, if the seller uses the outlined strategy, then
there is no information arrival process which leads to lower expected payo� for the seller.

�e �eorem explicitly solves for nature’s information structure under the assumption of
pressed-ratio monotonicity, and shows that this involves the same information structure choice
as in �eorem 1. �e �rst step to prove this theorem is to note that the worst-case information
structure is partitional. One may expect that this means the result is immediate; however, this is
incorrect, as Libgober and Mu (2021) showed via example that this property does not imply the
worst-case information structure is the one identi�ed in �eorem 1. �at is, nature’s optimal choice
of information structure against a given price path may involve the buyer strictly preferring to
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delay purchase. Even when restricting to partitional information structures, nature’s optimization
problem still involves a non-trivial choice of a threshold for each time period, subject to satisfying
the obedience conditions of the buyer.

We get around this issue by identifying a particular adjustment of the partition thresholds
which leads to a decrease in pro�t whenever some threshold does not induce exact indi�erence
when given the recommendation to not buy. While lowering the threshold induces more sale in that
period, we require nature to adjust the previous period’s threshold so that the buyer’s indi�erence
condition is maintained. In the Appendix, we verify that under pressed-ratio monotonicity, this
will always lead to a loss of pro�t for the seller.

While the pressed-ratio monotonicity condition appears restrictive, we note that it will always
hold in some neighborhood of the lower bound of the value distribution:

Proposition 4. For any continuous distribution v ∼ f in the gap case, there exists some y∗ > v

such that the distribution of v conditional on being less than y∗ satis�es pressed-ratio monotonicity.

As a corollary of this proposition, all equilibria are reinforcing solutions if the initial threshold is
su�ciently close to v. Alternatively, the equilibria are eventually reinforcing (i.e., a�er su�ciently
many periods) if the threshold values approach v, which happens whenever price discrimination
becomes su�ciently �ne in the limit as δ → 1.

5. THE NO-GAP CASE

Our analysis so far has assumed that v > 0, which past work has shown is a key assumption to
deliver the Coase conjecture under known values. We note that, in the case of a �nite horizon,
identical results apply to the no-gap case as well. However, with an in�nite horizon, the story
is di�erent. On the one hand, Ausubel and Deneckere (1989) show that in the no-gap case, an
equilibrium exists ensuring that the monopolist obtains arbitrarily low levels of pro�t as the time
between o�ers shrinks to 0. �ough trade does not occur with probability 1 by any �nite time, this
equilibrium is otherwise Coasian, as the market anticipates that the monopolist will cannibalize
future demand. Using this equilibrium, however, they derive a folk theorem which ensures that
the monopolist obtains a pro�t level very close to what would be obtained under commitment.
�e idea is simple: A monopolist is deterred from lowering prices too much, at every point in time,
via a punishment which reverts to the Coasian equilibrium where pro�t levels are arbitrarily low.

�e lack of a gap does not prevent the stationary equilibrium we identi�ed from being an
equilibrium. Intuitively, this follows from continuity taking T →∞, as the proof of �eorem 1 did
not assume a gap.15 On the other hand, we should not expect a uniqueness result to obtain here,
15�e di�culties the in�nite horizon related primarily to uniqueness, rather than showing the stated strategies formed
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since one does not obtain under known-values, and so the question is whether there are equilibria
in our baseline game which do not resemble any known-values equilibrium. In fact, since the folk
theorem of Ausubel and Deneckere (1989) shows a range of possible outcomes for the seller, we
can use their constructions to not only discipline the behavior of the seller, but nature as well.

Using this, we can show that not only does multiplicity enable the possibility of indeterminacy
in the seller’s payo�, but also that the corresponding outcome may be qualitatively di�erent from
any known-values equilibrium, dramatically breaking the analogy between the two se�ings.

Proposition 5. Suppose v = 0, and that the distributions F and G satisfy De�nition 5.1 of Ausubel
and Deneckere (1989). �en the information structure from Proposition 2 can emerge as an equilibrium
outcome.

�e proposition is noteworthy because not only does it demonstrate that in the gap case we
may have a failure of the Coase conjecture, but also a failure of the analogy to known-values. �e
equilibrium described in Proposition 2 is unlike any that emerge without the buyer learning over
time (e.g., under known-values), since (a) the buyer obtains zero surplus and yet (b) the market
never clears. It is worth noting that subtleties such as these fail to emerge in the commitment case.
�ere, the uniqueness is much more immediate, since the seller essentially faces a decision problem,
only taking an action once before anyone else. However, the fact that the limited commitment
se�ing is necessarily a game means such uniqueness can no longer be taken for granted; and
indeed, once uniqueness fails, so too might the analogy to known values.

If the equilibrium selection were chosen to minimize the seller’s pro�t, then these issues would
not arise and the equilibrium would still feature Coasian dynamics. Nevertheless, it is worth
noting that in our se�ing, whether the equilibrium is chosen to minimize or maximize the seller’s
pro�t plays a role, as static se�ings (where some form of the minmax theorem typically holds) do
not feature such dramatic discontinuities (see Brooks and Du (2020)).16

6. OTHER MAXMIN BENCHMARKS?

While we hope the analysis in this paper will be useful more generally, as we exposited our model
in terms of the behavior of a decisionmaker who plays a game against nature, it is perhaps helpful
to clarify exactly the set of possible assumptions we could have made. In doing so, we hope to
deliver some appreciation regarding of our main benchmark, while also clarifying the challenges
which may emerge in future work.

one equilibrium.
16Note that, since information is speci�ed to depend on the price in the single-period model, the outcome does not

depend on if the seller moves �rst or nature moves �rst, provided this “richer” action space for nature is still allowed.
Without this added richness, randomization may be necessary.
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Despite our focus, we only advocate that the solution concept in De�nition 1 is most meaningful
in our se�ing. We are agnostic about this more generally. �e assumption was useful here due to
the analogy to the known values outcome obtained via appealing to the pressed distribution. In this
section, we articulate some alternative benchmarks, and describe why these are less compelling
in the informationally robust dynamic durable goods se�ing. But in other applications, such
analogies may not be natural, alternatives may be more tractable, naiveté might be economically
justi�able, and so on. �us, it is worth clarifying what some alternative approaches could be.

Fully articulating each benchmark formally would take us too far a�eld; instead, we use
examples or simpli�cations to clarify why each one would have in�uenced the analysis, thus
providing intuition for what the impact of our modelling choices were. �roughout this section,
we focus again exclusively on the gap case, otherwise we fully maintain the basic structure of the
game we analyze; therefore, Sections 2.1, 2.2 and 2.3 should be understood as applying in their
entirety. Instead, we will consider alternative solution notions di�erent from De�nition 1.

6.1. Naiveté over Future Actions

In Section 2, we showed that there generally exists an information arrival process and equilibrium
under which the seller’s pro�t is lower than in the main model. �erefore, considering the worst
case over the “set of all possible information arrival processes and equilibria” requires the seller to
no longer choose a maxmin optimal price at time 2.

An alternative way to approach this, however, would be to insist that the seller does consider
the worst-case over all information arrival processes, but does not realize that this worst-case will
change over time, and correspondingly, does not realize that his future choices will be di�erent.
�is amounts to changing both (a) the “Bayesian updating whenever possible” requirement, and (b)
the requirement that information is sequentially-worst case; that is, in considering the worst-case
information arrival process, the seller anticipates choosing an action in the future which he does
not realize he would not actually choose were the opportunity to arise.

Speci�cally, suppose the seller chooses the prices as follows:

• At time t, the seller observes all choices of nature and the buyer at time t = 1, 2, . . ..

• �e seller then chooses a price pt subject to the condition of maximizing pro�t against all
possible information arrival processes, and sequential equilibria (i.e., seller pricing strategies
and buyer purchasing strategies) under any particular information arrival processes.

In this formulation, the seller displays naivité, in the sense that he simply expects himself to take
certain actions in the future, and considers a worst-case with respect to those actions, failing to
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realize that such actions would not be worst-case in the future. �e fact that this may not be a
sensible model for a “su�ciently introspective” seller is immediate, since calculating the optimal
action in the future would reveal that these are not maxmin optimal.

In fact, the following example illustrates a more dramatic peculiarity:

Example 2. Take T =∞ and (as with Example 1) v ∼ U [0, 2], so that the pressed distribution is
U [0, 1]. For �xed δ, the solution in the Coasian equilibrium in the known values case with v ∼ U [0, 1]

is present in Gul et al. (1986) and Stokey (1981) (reviewed in Ausubel et al. (2002)); while other
equilibria exist, we have note that the unique outcome for a �xed δ with v ∼ U [ε, 1] converges to this
solution as ε→ 0, and for our purposes the same point would remain by considering a su�ciently
small ε. In the known-values case with v ∼ U [0, 1], the seller’s pro�t when ṽ is the highest buyer
value remaining is given by:

π∗(ṽ) =
1

2

(
1− 1

δ
+

1

δ

√
1− δ

)
ṽ2

One can verify that limδ→1 π
∗(1) = 0, as predicted by the Coase conjecture. Note that, as above, the

worst-case information structure in the �rst period is partitional, and induces trade with probability 1
in the second period, using the same argument as in example 1.

What does this yield for a seller that is fully-maxmin and naive about his future actions? Suppose
the information structure informs the buyer whether or not v is above or below v∗. A buyer will be
made indi�erent between delaying and not if:

v∗

2
− p1 = δ

(
v∗

2
− π∗(v∗/2)

)
;

In particular, the seller’s pro�t when the buyer knows v < v∗ coincides with the pro�t under known
values, truncated at v∗/2.

Assume for the moment that this equality were to hold. In this case, the seller’s problem could be
wri�en as optimizing over the choice of v∗ instead of p1, yielding seller pro�t as:

v∗

8
(4(1− δ)− v∗(1− δ −

√
1− δ))(1− v∗

2
) + δπ∗(ṽ/2).

Optimizing over v∗ (using the formula for π∗(ṽ)) gives a solution; however, note that a constraint is
that v∗ ≤ 2. One can check that this constraint does not bind if and only if δ ≤ 8/9. If δ > 8/9, it
follows that trade does not occur in the �rst period.

�is example is similar to Example 1, where, when δ ≥ 4/5, trade does not occur in the �rst
period. �e only di�erence is that now the horizon is in�nite. As a result, the seller’s problem at
time 2 looks identical to the time 1, whenever sale occurs with probability 0 at time 1.
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So suppose the seller were to consider the true worst-case information arrival process, being
naive over future actions. In this case, the seller would never induce a sale. A�er waiting one period,
the seller would “reset” the worst-case. As this behavior does not emerge in any Bayesian Coase
conjecture environment (where the seller at least tries to sell), we note that despite doing even
worse than the Coase conjecture presents, the resulting equilibrium is non-Coasian.

While the above behavior appears suspicious, we view this as an indictment of the model
of the fully-pessimal-and-naive benchmark. It seems hard to imagine that the seller, capable
of computing their discounted payo�s, would not further realize their strategy would involve
“never-selling.” Indeed, if v > 0, then the seller can always choose some price where every buyer
would wish to buy, for any value of v. A seller realizing this might instead opt to adopt such a
safe strategy instead of following the predictions of this benchmark.

6.2. Sophistication

While the previous section shows that the worst-case information structure for the seller at t = 1

will generally induce an equilibrium where the seller does not optimize against the worst-case
at time t = 2, one might instead insist on maintaining that the seller maximizes against the
worst-case information arrival process, but acknowledges that this may change over time. Such a
seller is dynamically inconsistent, but aware of this.

To be precise, this alternative induces the following assumption regarding the objectives of
each of the players is as follows:

• At time 1, the seller anticipates the choice p2(p1) that he would make at time 2, and chooses
the price p1 to maximize pro�t against the worst-case information arrival process, given p1
and p2(p1).

• Nature then chooses an information structure, I1 for the buyer, to minimize the seller’s
total discounted pro�t at time 1, assuming the worst-case choice of I2 given p2(p1). �e
choice of I1 is observed by the time 2 seller (and the buyer).

• At time 1, the buyer decides whether to purchase or not as a function of the worst-case
information arrival process the seller expects at time 1.

• At time 2, the seller maximizes pro�t assuming the worst case information structure at time
2, holding �xed I1. �is determines p2(p1).

• At time 2, the buyer decides whether to purchase depending on whether or not his expected
value is above the price, breaking indi�erence against the seller.
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�is model is substantially more complicated than the benchmark model, because it requires
us to solve for an information arrival process at every time the seller acts. Rather than solving a
single information design problem, as in our benchmark model, this version requires us to solve as
many information design problems as time periods, and for the seller to optimize over all of these.

We make two comments on this alternative. First, this alternative benchmark provides a new
way of interpreting �eorem 2: Under pressed-ratio monotonicity, the price path chosen by a
sophisticated maxmin seller will coincide with the price path from the main model. �e reason is
simple: �e full worst-case information structure in the second bulletpoint always coincides with
the no-commitment worst case. Under pressed-ratio monotonicity, a dynamically consistent and
correct seller is also “sophisticated and fully-worst-case.”

In general, however, the sophisticated benchmark di�ers from the one in this model. We
present an example of this in the appendix, and one that features discrete values, where the
worst-case information structure is not the one necessary to induce the outcome described in
�eorem 1.17 We are not able to say much more than this. Solving for the equilibrium price paths
for this alternative, even in simple examples, is beyond the scope of our existing techniques we are
aware of, and thus for now we leave it as an open problem.18 While we expect the resulting price
paths to be qualitatively similar, for our purposes the key point is the following: the resulting
equilibrium can be interpreted as displaying non-Coasian forces, since both our model and this
alternative induce identical single-period problems (and importantly, same corresponding “as-if
known values” distribution), but di�erent dynamic solutions. �us, insofar as the analogy to the
known-values case is an aesthetically appealing property of our main benchmark, it is worth
noting that this alternative does not necessarily induce equilibria where this analogy is meaningful.

6.3. Worse Past Information

We have assumed that the seller posits all past actions of nature as “sunk.” Since we assume that
the choices of nature are observed, the seller who chooses a price at time t does not consider the
worst-case information structure at time s < t—that is, this information structure is assumed to
be known. However, without this observability assumption, it becomes necessary to consider the

17In the Appendix, we discuss why the assumption of discrete values not change the analysis relative to the continuous
value distribution, and also why the continuous distributions which approximate discrete ones will typically violated
pressed-ratio monotonicity.

18For instance, the approach of Auster et al. (2022), who derive an HJB representation for a sophisticated maxmin
decision maker, does not work in our se�ing, at least not immediately, since it is not clear which state variable one
could use. �e natural choice (and the choice in Auster et al. (2022)) would be the set the seller has uncertainty
over at time t; but the set of possible nature choices from time t on does not pin down the seller’s payo�, since
past information structures will in�uence which buyers have already purchased or remain in the market, and thus
ma�er for the seller’s continuation value.
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worst-case over past information as well.
Speci�cally, assume the following, and for simplicity19 take T = 2.

• At time 1, the timing protocol is exactly as in the main model.

• At time 2, the seller chooses a price to maximize the pro�t guarantee, taken over all I1, I2,
and conditional on the buyer not having purchased at time 1.

To obtain a coherent statement while avoiding conceptual di�culties, in the following proposition,
we treat the buyer as a completely passive player and do not consider their incentives, taking
p̂2(p1) as a primitive. �is allows us to focus on the solution to nature’s problem at time T = 2,
when its choice is over the buyer’s information at both times 1 and 2:

Proposition 6. Suppose T = 2, and suppose that the seller seeks to maximize the pro�t guarantee
at time 2 over both the information in both periods. Suppose that, at time 2, the seller conjectures
that the buyer conjectured the second period price to be p̂2(p1) (or, more generally, a random variable
with mean p̂2(p1)). Let v∗ = p1−δp̂2(p1)

1−δ , and suppose that v∗ > EF [v]. �en given a price of p1, the
worst-case information structure in period 1 is characterized by a threshold y∗ where the buyer learns
whether v > y∗ or not, and y∗ is either equal to v or characterized by:

E[v | v > y∗] =
p1 − δp̂2(p1)

1− δ
.

�us, the indi�erence condition that pins down the period 1 threshold changes from inducing the
lowest probability of sale (as shown in Section 3) to the highest probability of sale. Intuitively,
this is because nature can, in this alternative, condition on the fact that the buyer has not bought
when choosing the information structure at time 1. �is is still restricted, since the buyer would
need to have been willing to purchase given the conjecture. However, choosing the information
in this way suggests that the buyers who remain are the lowest possible value. �us, if nature
can also optimize over past information, the solution would entail past information having been
chosen as favorably as possible—intuitively, because then all remaining buyers are less favorable.

�ere are two reasons we stop short of a full characterization of equilibrium. First, to do this
formally requires more details than the above description provides, since one needs to specify how
the seller resolves his time inconsistency, in addition to how the seller believes the buyer believes
the seller resolves his time inconsistency. At time 1, the problem appears to the seller exactly
as in the baseline model, but at time 2 the problem seems very di�erent; thus we have (at least)
19While there is no conceptual di�culty in considering the general time horizon case, doing so formally requires

spelling out more technical details regarding the de�nition of equilibrium.
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two possible candidates for p̂2(p1), and so without an assumption on (the seller’s belief of) buyer
equilibrium behavior, we cannot specify which �rst-period indi�erence threshold is relevant.

Second, characterizing the full equilibrium would require us to drop the assumption that
v∗ > EF [v], since this is an assumption on endogenous objects. �e problem is that without this
assumption, the seller would think the buyer should have bought at time 1 with probability 1. �e
seller would then believe himself at a probability 0 event whenever the game continues to time 2.
While one could discipline beliefs here in various ways, we do not wish to take a stand on this.

In any case, added conceptual di�culties aside, Proposition 6 clari�es the kind of dynamic
inconsistency issues that emerge if the seller also considers the worst-case over past information.
�is alternative seems suspicious, as it suggests the seller always believes the past information
was chosen favorably while future information was chosen unfavorably. We leave our analysis of
this alternative to this observation.

7. CONCLUSION

In this paper, we propose a new approach to modelling a designer who has limited commitment
and (re)optimizes a dynamic worst-case objective. By treating the adversarial nature as another
player in the dynamic game, we obtain a dynamically consistent worst-case objective for the
designer. We feel that our particular se�ing of durable goods sales is a natural laboratory for this
exercise, for two reasons: First, there is a vast literature on the Coase conjecture, so in our analysis
we can o�en appeal to the known forces that drive equilibria in this se�ing. Second, the need to
accommodate information arrival into durable goods pricing has already been recognized by the
literature, and in this paper we �ll this gap with our proposed dynamic robust approach.

In the context of durable goods pricing, the main takeaway of the paper is that when a seller
is aware of the possibility of buyer learning but uncertain about it, he should nonetheless set
prices as if the buyer knew her value to begin with (thus no learning). �is analogy, between
our unknown-values environment and the classic known values environment, holds so long as
the seller applies a suitable transformation to the buyer’s value distribution to take into account
his robust objective. As we discussed in the paper, Coasian dynamics o�en fail under alternative
models of buyer learning. �us we are able to restore the Coase conjecture using a robust approach.

Going beyond our particular se�ing, we hope that the paper has provided a template that can
be used to extend the reach of the robust approach to dynamic interactions. �e “as-if known
values” solution in �eorem 1 illustrates that equilibrium can be fairly tractable if the seller
is only concerned about dynamically-consistent information processes. While one may argue
that focusing on this restricted worst-case is at odds with the robust objective, we also showed
that this criticism o�en turns out to have no bite in our se�ing. By introducing the notion of a
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reinforcing solution, we hope that other researchers will be able to derive tractable solutions to
similar dynamic robustness models, and plausibly argue that such solutions do not compromise
the motivation for adopting the robust approach in the �rst place.
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A. PROOFS FOR SECTION 3

Proof of �eorem 1. To analyze this game, we �rst note that the buyer’s problem is relatively
simple. Since the buyer’s decision has no e�ect on future prices and information (which are
anyways conditional on her not purchasing), she faces an optimal stopping problem given any
history.

Using the fact that we have a �nite horizon, we can then turn to nature’s problem and apply
backwards induction. In the �nal period, given (pt)

T−1
t=1 , (It)T−1t=1 , nature chooses an information

structure IT : V × ST−1 → ∆(ST ) to minimize the seller’s pro�t. Our �rst goal below is to show
that IT can be taken to be the worst-case threshold information structure for p2, without a�ecting
the equilibrium outcome.

Let s = (s1, . . . , sT−1) be a generic signal history up until time T . Each signal history induces
a posterior distribution of v, denoted Fs. First suppose s is such that the buyer does not purchase
before the �nal period, according to the equilibrium strategy (given the price history and history
of information structure, as well as the expectations of the �nal period prices and information).
�en sequential rationality requires nature to minimize pro�t from this buyer type in the �nal
period, implying that IT (s) must be a worst-case information structure for the distribution Fs
and price pT . Denote the minimum value in Fs by vs, and its expected value by E[Fs]. �ere are
three cases:

1. If pT < vs or pT > E[Fs], nature’s problem is trivial and it is without loss to assume nature
provides no information in period T .

2. If pT ∈ (vs, E[Fs]], then for each ε > 0, nature could reveal the worst-case threshold for
pT − ε. �is would lead to pro�t pT · (1− Gs(pT − ε)) in period T , so equilibrium pro�t
must be bounded above by pT · (1−Gs(pT )) by taking ε→ 0 (note that G is continuous at
pT when pT > vs). On the other hand, we know that equilibrium pro�t cannot be lower
regardless of what nature and buyer do. Hence we can without loss assume that nature
provides the worst-case threshold information structure for pT , and that the buyer breaks
indi�erence against the seller.

3. �e remaining possibility is pT = vs. If Fs does not have a mass point at its lowest value,
then the same argument applies since Gs is still continuous at pT . But if Fs has a mass point
ofm = Gs(pT ) at pT , then any pro�t level in the interval [pT (1−m), pT ] may be supported
in equilibrium, depending on how the buyer breaks ties.20 In this case it is without loss to

20For now we ignore the seller’s optimization in the �nal period, and whether nature would induce such a distribution
Fs in period 1. �ese considerations may imply that such a scenario only occurs o�-path.
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assume that nature reveals whether v = pT or not, and that the buyer breaks indi�erence in
some way. Note that in this case, the seller’s pro�t is hemicontinuous in pT ; as there is a set
of possible pro�t levels at pT = vs, and a unique (and continuous) pro�t level at pT < vs
and pT > vs.

Suppose instead that the signal realization s is such that the buyer purchases before the �nal
period. In this case, we may assume nature uses the worst-case threshold information structure
in the last period, which minimizes the buyer’s option value (since the buyer is made indi�erent
between purchasing and not according to this information structure), and ensures that the buyer
still purchases before the �nal period.

We now suppose that we have shown that nature will use a partitional information structure
for all periods a�er the �rst period. We now turn to nature’s decision in period 1, showing that
nature will again seek to do this in the �rst period. Given any price p1 in period 1, nature expects
the possibly random price p2 = p̂2(p1) in period 2. De�ne the binding cuto�s w1, w2 by

w1 − p1 = δ · E
[
(w1 − p2)+

]
;

w2 = min{w1, p2}.

First note that given the previous analysis, nature’s information choice in period 2 leaves the
buyer with the same surplus as if no information were provided in that period. Knowing this, the
buyer’s purchase decision in period 1 depends entirely on whether E[Fs1 ] is bigger or smaller
than w1. For now, ties may be broken arbitrarily when indi�erent, although we will see shortly
that equilibrium requires breaking ties against the seller.

Note that, by assumption, the prior distribution F is continuous, and therefore does not
have a mass point at its lowest value. We will show that nature’s choice of I1 must be outcome-
equivalent to the worst-case threshold information structure for w1, and that the buyer must break
indi�erence against the seller. On the one hand, for each ε > 0 nature could provide the threshold
information structure for w1 − ε. Given what happens in period 2, and taking ε su�ciently small
so that this does not in�uence the decision at any time a�er the second period, this would lead to
total pro�t

p1(1−G(w1− ε))+δ ·E[p2 · (G(w1− ε)−G(w2))
+]+

T−2∑
s=0

δ2ps+2E[ps+2 · (G(ws+1)−G(ws+2)
+)]

Le�ing ε → 0, we know that equilibrium pro�t following the price p1 satis�es (taking the
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convention that G(w0) = 1:

Π ≤
T∑
t=0

pt+1δ
tE[pt(G(wt)−G(wt+1))].

On the other hand, we will show that the right hand side of this expression is also a lower
bound for pro�t, for any choice of I1 and any tie-breaking rule. Indeed, if w1 ≤ v then every type
of the buyer purchases in period 1, and the result holds. Suppose w1 > v, we �rst show that
every realization of p2 satis�es p2 ≤ w1. Recall that in period 2, any buyer who remains has
expected value at most w1. Knowing this, a price greater than w1 leads to zero pro�t for the seller
in period 2. �is can only be optimal if the seller expects nature’s equilibrium choice of Î1 to
clear the market in period 1. We claim that this cannot occur in equilibrium. Indeed, instead of
making everybody purchase, nature could reveal whether v ∈ [v, w1), making this interval of
buyers delay until period 2. �e e�ect on pro�t is a loss of p1 in period 1, and a gain of at most
δ · P(p2 < w1) · E[p2 | p2 < w1] in period 2, since these buyers purchase at p2 only if p2 < w1.
From the de�nition of w1 above, we have

w1 − p1 = δ · P(p2 < w1) · E[w1 − p2 | p2 < w1].

Rearranging yields p1 − δ · P(p2 < w1) · E[p2 | p2 < w1] = w1 − δ · P(p2 < w1) · w1 > 0. Hence
this deviation would lower the seller’s pro�t.

Now that we know p2 ≤ w1 almost surely, the de�nition of w1 further gives w1 − p1 =

δ · E[w1 − p2]. It follows that
p1 > δ · E[p2],

which will be useful below.
We claim that in order to minimize the seller’s pro�t, the buyer should break ties against the

seller. Indeed, the e�ect of delay on pro�t is a loss of p1 in period 1, and a gain of at most δ · E[p2]

in period 2, resulting in a net decrease in pro�t. Next, it is without to assume nature provides only
two signal realizations s1 and s1, which lead to buyer expected values> w1 and≤ w1, respectively.
�is is because any extra information in period 1 that does not change the buyer’s action can be
deferred to period 2. Moreover, s1 occurs with positive probability, since otherwise the market is
cleared in period 1, in which case nature could deviate to lower the seller’s pro�t as shown above.

Additionally, if s1 also occurs with positive probability, then s1 must lead to expected value
exactly w1. Otherwise, nature could mix a small fraction of s1 with s1, making this fraction of s1
no longer purchase in period 1. Suppose also that in period 2 nature separates this fraction of s1
from the s1 buyers and reveal the worst-case threshold for each group (which may not be optimal
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in period 2, but allows for easy comparison of pro�t). �en even if the fraction of s1 buyers always
purchases in period 2, the pro�t gain is bounded above by δ · E[p2]. �is is less than p1, proving
that the deviation would be pro�table.

We can now show that the seller’s pro�t is minimized when nature reveals the worst-case
threshold forw1 (and the buyer breaks indi�erence against the seller). Ifw1 ≥ E[v], then whenever
s1 occurs the other signal s1 must lead to expected value less than w1. �is contradicts optimality
as shown above. �us in this case nature optimally only provides a single signal s1, corresponding
to no information.

If instead w1 < E[v], then s1 must occur with positive probability. So s1 leads to expected
value exactly w1. We claim that s1 must correspond to all the buyer types below the worst-case
threshold for w1. Suppose this is not the case, then we can �nd v′ in the support of Fs1 and v′′ in
the support of Fs1 such that v′ > v′′. If nature were to “swap” v′ and v′′ with small probability,
then the expected value following the modi�ed s1 would still exceed w1, leading to the same buyer
action. Moreover, the entire posterior distribution following the modi�ed s1 is shi�ed down in the
FOSD sense, so pro�t is weakly decreased. Now since the expected value following the modi�ed
s1 is strictly less than w1, there is room for further reducing the pro�t as described above. Hence
the desired contradiction.

In fact, we know from this analysis that in equilibrium, nature must minimize the probability
of purchase at w1, and the buyer must break indi�erence against the seller. We are not done,
however, since in period 1 nature could potentially provide more information than the worst-case
threshold (for example making the buyer’s posterior distribution supported on only two values).
�is would a�ect the seller’s belief about the buyer’s value distribution in period 2, and in�uence
the optimal price p2.

To address this issue, we are going to show that the price p2 would remain optimal if nature
were to simply provide the worst-case threshold information structure for w1 in period 1. To
this end, note that in this equilibrium, any realization of p2 must be maxmin optimal against a
buyer who knows her value to be in the lowest G(w1)-percentile and potentially knows more.
Moreover, as calculated above, the maxmin optimal pro�t in period 2 must be p2(G(w1)−G(w2))

(which must be the same number for all realizations of p2). Now, against a less informed buyer
who only knows her value to be below the G(w1)-percentile, the maximal optimal pro�t can only
decrease. But charging price p2 against such a buyer guarantees p2(G(w1)−G(w2)), so it remains
the seller’s best response.

Hence, we have shown that every equilibrium is outcome-equivalent to an equilibrium in
which nature provides threshold information structures, where the threshold is chosen so that
conditional on having value below the threshold, the buyer is indi�erent between purchasing
in the current period or delaying until the future (without further information). Moreover, the
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seller thinks the buyer always breaks indi�erence against him (even though this is not necessarily
true in period 2, if nature has deviated in period 1). �erefore, given any equilibrium price path
shaping expectations, the seller’s probability of sale in each period under any deviation strategy is
the same as the known-values case, with G replacing F as the value distribution. It follows that
any equilibrium in our model is equivalent to an equilibrium in the known-values case with the
transformed value distribution G.

Proof of Proposition 1. Suppose the seller chooses price p1 in period 1, and suppose a candidate
equilibrium required nature to choose information structure I1. To deter a deviation from nature,
we suppose that the continuation play following nature’s deviation is as good as possible from
the seller. �erefore, if (p̂2, p̂3, . . . , ) is the conjectured price path the buyer would imagine the
seller would use, following this deviation, then we can de�ne ŵ(p1) to be the expected value of
the buyer which would be indi�erent between buying and not, assuming no further information:

ŵ(p1)− p1 = max
τ

δτ (ŵ(p1)− p̂τ )

Note that if the buyer were to receive information in future periods, then this would make
delay more a�ractive, therefore making the buyer strictly prefer delay to purchase. On the other
hand, since p1 > δE[p2] in any equilibrium (as argued in the Proof of �eorem 1).

So, let w∗(p1) = inf(p̂2,p̂3,...) ŵ(p1). Consider deviations of nature from I1 where the buyer is
told whether v is above or below F−1(G(w∗(p1)))− ε, for ε→ 0. �en if v is below this threshold,
there is no conjecture the buyer could make about the seller’s future behavior which would lead
them to want to purchase, by the de�nition of w∗(p1). On the other hand, above this threshold,
for ε small, we will have E[v | v ≥ F−1(G(w∗(p1)))− ε] > w∗(p1) and therefore the buyer will
buy, given this conjecture.

So, by deviating in this way, nature has the ability to ensure the seller only obtains p1(1 −
G(w∗(p1))) in period 1. With this in mind, let vt be the highest consumer value that has not
purchased by time t, and y(p1) thecorresponding choice of nature. We then have the following
recursive formulation for an upper bound of the seller’s pro�t, for every p1:

V (vt) = p1(1−G(w∗(p1))) + δV (y(p1))

�is is precisely the value function in the known values case of �eorem 4 of Ausubel et al.
(2002), when the buyer’s value is distributed according to G. While we emphasize that the above
expression has a less direct interpretation—namely, as an upper bound on the equilibrium pro�t—
nevertheless the result immediately implies that the equilibrium values of Vt must be equal to v at
some t.
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�erefore, the following pair of claims will deliver the proposition:
Claim 1: If Vt = v, then the market is cleared in �nite time.
Proof of Claim 1: Note that there exists a range of choices of p for the seller, say [v, p∗], such

that the seller optimally clears the market in the next period a�er charging a price of p. Indeed,
since nature can always choose the threshold F−1(G(p)), then there exists a range where, if the
seller were to charge a price in this range, nature could ensure this price lead to a total payo�
of less than v (since this holds under known values). �erefore, were we to have an equilibrium
with Vt = v for in�nitely many periods, then we must also have ps → p∗∗ for some p∗∗ ≥ p∗, and
the seller obtaining a total discounted payo� of ps under the information structure. On the other
hand, for any distribution of expected values of the buyer, the previous proof shows that if the
seller chooses the Coasian price path, the worst-case the seller can obtain is strictly larger than v.
�erefore, the seller would have a pro�table deviation in any such equilibrium.

Claim 2: If F satis�es the Lipschitz condition of �eorem 4 of Ausubel et al. (2002), then so
does G.

Proof of Claim 2: Note that, for every quantile q, the pressed distribution satis�esG−1(1− q) <
F−1(1−q), but the bo�om of the support is the same for each. �erefore, we haveG−1(1−q)−v <
F−1(1− q)− v, so that if F satis�es the Lipschitz condition—i.e., F−1(q)− v ≤ Lq for all q and
some L—then so does G.21

Finishing the proof: Claim 2 shows that the upper bound derived above does indeed ensure
that Vt = v in �nite time, since this result holds given any distribution under known values
satisfying the Lipschitz condition. Claim 1 therefore shows that, since Vt = v in every equilibrium,
and with an upper bound existing on the number of periods this takes, it therefore follows that
there exists an upper bound by which the market has cleared. �is shows that in the case of a gap,
the in�nite horizon game coincides with the outcome of a su�ciently long �nite horizon game,
completing the proof.

Proof of Proposition 2. We consider two cases for this proof; in the �rst case we take T =∞ and
in the second case we take T <∞. �e idea behind the construction in both cases is the following:

• On-path, the seller seller chooses a price equal to the buyer’s expected value, and no
information is provided.

• Meanwhile, the buyer randomizes purchase so that the seller has incentives to follow the
equilibrium strategy.

21�e Ausubel et al. (2002) is stated slightly di�erently, namely that v(q) − v(1) ≤ L(1 − q) for all q and some L.
Here, v(q) is a decreasing function, representing the value of the buyer at the 1− q quantile (so that v(1) is the
value of the buyer at the 0th quantile, i.e., v). In our notation, F (v) is the probability the buyer’s value is below v,
so that F (v) = 1− q. Our de�nition therefore replaces q with 1− q and v with F−1.
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• If the seller deviates, the equilibrium reverts to the worst-case outcome outlined in �eorem
1.

We emphasize that there is no choice of nature to consider, as this is simply exhibiting some
information structure where there is no bound on the market clearing time.

We now walk through the details more precisely. Take the strategy exactly as above. We
already know that following a deviation, buyer’s strategy forms an equilibrium. Indeed, since
the buyer’s purchasing decision does not depend on their value, the on-path distribution of v
conditional on not having purchased at time t is simply F . �us, the buyer’s problem is completely
unchanged relative to the case considered in �eorem 1. �e seller’s continuation strategy
following a deviation also forms an equilibrium, by construction. Note that, since we assume the
buyer randomizes, note that it is not possible for them to deviate, since all actions occur with
positive probability on-path.

�erefore, le�ing π∗(G) denote the pro�t achieved in the equilibrium from �eorem 1, the
seller obtains at most π∗(G) following a deviation. Suppose we seek an equilibrium where the
seller’s continuation value is v at every point in time, for v∗ > π∗(G). In this case, the buyer
purchases with probability ρ at every point in time, where ρ satis�es:

v∗ = ρEF [v] + (1− ρ)δv∗ ⇒ ρ =
v∗(1− δ)

EF [v]− δv∗
,

where ρ ∈ (0, 1) whenever v ∈ (π∗(G),Ev∼F [v]

�us, by charging EF [v], the seller obtains a higher payo� than what they could obtain from
deviating. We thus verify the conditions are satis�ed in the proposition: First, the seller uses a
constant price path. Second, the pro�t obtains is the arbitrary v∗ ∈ (π∗(G),Ev∼F [v]). And lastly,
the market does not clear by any �nite time; since ρ is constant, the probability the buyer has not
bought at or before time K is (1− ρ)K > 0.

In the case of a �nite horizon, the proof is identical except in the last period, we assume the
buyer purchases with probability v/EF [v]; here, we note that the seller’s minmax continuation
payo� following a deviation is time dependent, although no ma�er what the time horizon is it
is always strictly bounded away from EF [v] (indeed, it is always lower than the seller’s static
monopoly pro�t, which is lower than EF [v]). Accommodating this is straightforward and thus
omi�ed.

B. OTHER PROOFS

Details for Example 1. We perform the familiar calculation for the equilibrium price path by
backwards induction using this known values distribution, using the fact that the equilibrium is
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of a threshold form. First, note that given an arbitrary �rst period indi�erence threshold v under
known values, we have the seller’s second period price must maximize p2(1− p2

v
), implying that

p2 = v
2
. Anticipating this and observing a �rst period price of p1, the buyer is indi�erent if:

v − p1 = δ

(
v − v

2

)
⇒ v =

2p1
2− δ

.

�erefore, the seller at time 1 choose p1 to maximize:

p1

(
1− 2p1

2− δ

)
+ δ

p1
2− δ

(
p1

2− δ

)
⇒ 1− 4p1

2− δ
+

δ2p1
(2− δ)2

= 0⇒ p1 =
(2− δ)2

8− 6δ
.

Substituting this in gives that pro�t is:

(2− δ)2

8− 6δ

(
1− 2− δ

4− 3δ

)
+ δ

(2− δ)2

(8− 6δ)2
=

(2− δ)2

8− 6δ

(
1− 2− δ

4− 3δ
+

δ

8− 6δ

)
=

(2− δ)2

8− 6δ

(
4− 3δ

8− 6δ

)
=

(2− δ)2

4(4− 3δ)
.

Now we compute the pro�t under the information structure speci�ed in Proposition 3. First,
recall that π∗(ṽ) = ṽ

8
. Since E[v | v < ṽ] = ṽ/2, the buyer obtains 3ṽ

8
in the second period.

�erefore, the buyer’s continuation value, given ṽ, solves:

ṽ

2
− p1 = δ

3ṽ

8
⇒ ṽ =

8p1
4− 3δ

.

Suppose that nature, in the �rst period, tells the buyer whether her value is above or below
8p1
4−3δ . Given this information structure (as well as understanding that the seller will follow the
equilibrium strategy), the buyer will delay if told her value is below the threshold and not if it is
above the threshold. Let us assume for the moment that this solution involves purchase in each
period with positive probability, handling the case where this does not occur separately. Since the
probability the buyer’s value is above the �rst period threshold is 1− 4p1

4−3δ (since v ∼ U [0, 2]), the
seller’s pro�t can be wri�en:

p1

(
1− 4p1

4− 3δ

)
+ δ

4p1
4− 3δ

p1
4− 3δ

⇒ 1− 8p1
4− 3δ

+
8p1δ

(4− 3δ)2
= 0⇒ p1 =

(4− 3δ)2

32(1− δ)
.

Pro�t at this price is:
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(4− 3δ)2

32(1− δ)

(
1− 4(4− 3δ)

32(1− δ)

)
+δ

4(4− 3δ)2

(32(1− δ))2
=

(4− 3δ)2(32(1− δ)− 4(4− 3δ) + 4δ)

(32(1− δ))2
=

(4− 3δ)2

64(1− δ)

Unlike with the previous case, however, we need to check that this solution does indeed involve
sale at both periods. Given p1, we have ṽ = 2 if:

1− (4− 3δ)2

32(1− δ)
= δ

3

4
⇒ δ = 4/5.

So, if δ < 4/5, this scheme involves pro�t exactly as above. If δ ≥ 4/5, all buyers delay to the
second period and no sale occurs in the �rst period, meaning the total pro�t is δ/4.

Proof of Proposition 3. Let p1 > p2 > . . . > pt∗ = v be a solution to the baseline model, with
corresponding thresholds y1 > y2 > · · · > yt∗ = v. Let U2 denote the buyer’s expected
continuation surplus in this equilibrium starting at the second period, and let Π2 denote the
seller’s continuation pro�t. Note that:∫ y2

v

wf(w)dw > U2 + Π2,

since by assumption the baseline model does not involve the market clearing by time two. �e
idea is to use the fact that there is ine�ciency to transfer additional surplus to the buyer in order
to induce additional delay.

We do this by considering the following classes of information structures for nature:

• In period 1, nature chooses a threshold ỹ1 as a function of the �rst period price, the seller
charges.

• In the second period, if the seller chooses some �xed p2 = Π̃, then nature reveals no
information to the buyer, and reveals no information to the buyer in the future.

• If the seller uses some other price, nature uses the worst-case descending partitional infor-
mation structure outlined in the proof of �eorem 1.

We will in particular focus on the case where Π̃ is the seller’s continuation pro�t follow some
�rst period threshold of y1, which we denote Π2(y1). Note that in this case, the seller has a
best reply to choose p2 = Π2(y1), since by construction deviating cannot lead to a higher pro�t
(otherwise, there would be some other strategy yielding higher pro�t in the baseline model).
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Now, nature choosing some information structure of this form may induce the seller to choose
a price such that the market would clear at time 1 or time 2. However, the seller also had the
ability to charge one of these prices in the baseline model, and did not, meaning that this will hurt
the seller.

On the other hand, for any other price, we have that the threshold y1 such that the buyer
is willing to not purchase whenever informed that their value is below the threshold satis�es
y1 > F−1(G(p1)), since, by the previous, their continuation surplus increases. It follows that
under this class of information structures, the seller sells less in the �rst period relative to the
case without nature commitment, and obtains the same continuation pro�t, and therefore obtains
lower discounted expected pro�t, as desired.

Proof of �eorem 2. We �x an arbitrary declining price path p1, . . . , pt∗ with pt∗ = v. We note
that in the gap case, such a t∗ exists for every equilibrium price path whenever δ < 1 under a
known value distribution. �erefore, using the previous result, such a t∗ can be always be found
in any equilibrium of the game without nature commitment. Furthermore, by Proposition 3 in
Libgober and Mu (2021), the worst-case information structure against an arbitrary declining price
path is a threshold process. It follows that nature’s choice of information structure is determined
by thresholds y1 > y2 > · · · > yt∗ = v, with the buyer purchasing at the �rst time t satisfying
v > yt.

We �rst note that the buyer always purchases at or before period t∗. �e theorem will follow
from showing that each threshold yt should be as low as possible, for all t < t∗. For the �rst part
of the proof, we consider any information structure with y1 > y2 > · · · > yt∗ ; we address the case
where equality might hold separately. �at is, we show that a buyer who does not purchase at
some time t must be indi�erent between purchasing and continuing in any worst case information
structure. �is is immediate for y1; In this case, increasing y1 while holding all other thresholds
�xed simply trades o� between sale at time 1 and time 2; so, if y1 could be raised without changing
the buyer’s incentive conditions, since p1 > δp2, this hurts the seller.

Suppose we have that yt is set so that the buyer is indi�erent between purchasing and contin-
uing when given the recommendation to not purchase. �is gives us the following indi�erence
condition, given our threshold sequence:

∫ yt

v

(v − pt)f(v)dv =
t∗∑

s=t+1

δs−t
(∫ ys−1

ys

(v − ps)f(v)dv

)
. (4)

In addition, we have the following expression for the seller’s pro�t, using the convention that
F (y0) = v:
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t∗∑
s=1

ps(F (ys−1)− F (ys)). (5)

We will prove that, under the assumption of pressed-ratio monotonicity, if yt+1 does not induce
the buyer to be indi�erent between purchasing and continuing at time t + 1 (i.e., if the buyer
strictly prefers to continue), then the thresholds can be adjusted to lower the seller’s pro�t.22 In
particular, we will show that if nature adjusts yt to maintain the buyer’s indi�erence at time t
between purchasing and continuing, then lowering yt will increase pro�t.

Under this particular perturbation, we can di�erentiate (5) with respect to yt+1, using (4) to
implicitly di�erentiate yt(yt+1). �e derivative of the right hand side of (5) with respect to yt+1,
holding �xed ys for s > t+ 1, is:

δ(−(yt+1 − pt+1) + δ(yt+1 − pt+2))f(y2).

Let (1− δ)vt+1 = pt+1 − δpt+1, so that vt+1 is indi�erent between purchasing and continuing
at time t+ 1, and rewrite the derivative of the right hand side as:

δ(1− δ)(vt+1 − yt+1)f(y2).

We note that this derivative is negative as long as yt+1 > vt+1. Hence decreasing yt+1 increases
the value of the right hand side, whenever yt+1 is above the indi�erent value. We now di�erentiate
the indi�erence condition with respect to yt, a�er the term on the right hand side of (4) involving
yt is added to the le� hand side:

(yt − pt)f(yt)− δ(yt − pt+1)f(yt) = (1− δ)(yt − vt)f(yt),

with vt de�ned analogously. �us, our previous work together with chain rule implies:

δ(vt+1 − yt)f(yt+1) = (yt − vt)f(yt)y
′
t(yt+1). (6)

Note that since yt+1 > vt+1 and yt > vt, we have y′t(yt+1) < 0; thus lowering the time t + 1

threshold decreases the probability of sale at time t. �e observation that y′t(yt+1) < 0 will be
useful later in the proof.

We are now ready to di�erentiate (4). Under the particular perturbation listed, since only yt
and yt+1 adjust, we have it su�ces to di�erentiate:

22To emphasize, by itself, decreasing yt+1 will increase the seller’s pro�t, by inducing more sale at time t + 1, as
opposed to late times where the seller obtains less.
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pt(1− F (yt(yt+1))) + δpt+1(F (yt(yt+1))− F (yt+1)) + δ2pt+2F (yt+1),

as all other terms are constant. Di�erentiating yields:

−ptf(yt(yt+1))y
′
t(yt+1) + δpt+1(f(yt(yt+1))y

′
t(yt+1)− f(yt+1)) + δ2pt+2f(yt+1).

Now, multiply through by (yt − vt) (which we recall is positive), and use (6) to eliminate the
right hand side wherever it appears in the derivative of pro�t with respect to yt+1; doing this and
factoring out terms, we have that the derivative of pro�t with respect to yt+1 is proportional to:

δf(yt+1) · (−(pt − δpt+1)(vt+1 − yt+1)− (pt+1 − δpt+2)(yt − vt)).

To �nd the change in pro�t from lowering yt+1 (as opposed to raising it), we must multiply this
by −1. Doing this, and substituting in for vt and vt+1, we have the change in pro�t from lowering
the yt+1 threshold (and hence departing from the “known but pressed” outcome) is proportional
to:

vt(vt+1 − yt+1) + vt+1(yt − vt) = −vtyt+1 + vt+1yt. (7)

Note that, by the pressed-ratio monotonicty assumption, this expression is positive when yt+1

satis�es E[v | v ≤ yt+1] = vt+1 (i.e., the value corresponding to the pressed threshold), which is
exactly when yt+1 is as large as possible. It follows that, when yt is chosen so that this equation
holds with equality, pro�t is locally increasing if yt is lowered.

On the other hand, suppose yt+1 is lower than the threshold inducing the pressed distribution.
Note that nowhere in the above derivation, except when we signed the derivative, did we use that
yt+1 was set to be the threshold corresponding to the pressed distribution. Now, notice that if we
multiply the right hand side of (7) by −1 and di�erentiate, we have:

vt − vt+1y
′
t(yt+1) > 0.

�is implies that the right hand side of (7) is actually smallest when yt+1 is as large as possible.
Since it is positive at this value, this means that it is positive everywhere. While this does not
imply pro�t is convex in yt (since pro�t depends on δf(yt+1), which we have dropped), it does
imply that (7) is positive for all choices of yt+1 in the relevant range. In other words, this shows
that nature can always decrease pro�t by increasing yt+1 according to this perturbation.

We have therefore shown that any partitional information structure with thresholds y1 >
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y2 > · · · > yt∗ can be made worse for the seller if there is some period where the buyer strictly
prefers to delay purchase, given the anticipated price path. It remains to consider the case where
some thresholds may hold with equality. Suppose ys = ys+1 = · · · = ys+k. �ere are two cases to
consider:

• Lowering all thresholds simultaneously does not lead to a violation of the obedience con-
straint. In this case, the argument is identical, simply by collapsing all periods where trade
does not occur into a single period.

• Lowering all thresholds simultaneously leads to the obedience constraint being violated
for period s. In that case, the same argument implies keeping the thresholds at time
s+ 1, . . . , s+ k holding with equality while rising the threshold at time s would lower the
seller’s pro�t.

�at these are the only two cases to consider follows from the fact that the thresholds are declining
over time. �is proves the theorem.

Proof of Proposition 4. We consider the derivative of v
F−1(G(v))

:

d

dv

v

F−1(G(v))
∝ F−1(G(v))− v d

dv
F−1(G(v)).

Also recall that F−1(G(v)) = L−1(v), where L(y) = E[v | v ≤ y]. By the inverse function
theorem, we di�erentiate L−1 as follows:

d

dv
F−1(G(v))

∣∣∣∣
v=ṽ

=
1

L′(y)
,

where y is the threshold that leads to E[v | v ≤ y] = ṽ. As will become important later, we note
that limṽ→v L

−1(ṽ) = v.
Since L(y) =

∫ y
v wf(w)dw

F (y)
, we can di�erentiate the function L(y) as follows:

L′(y) =
f(y)

(
yF (y)−

(∫ y
v
wf(w)dw

))
F (y)2

.

We note that this function shares the same di�erentiability properties as F whenever y > v.
In order to prove the proposition, we study the limit of this expression as y → v. Notice that
in the limit as y → v, both the numerator and the denominator approach 0. By L’Hopital’s rule,
however, to evaluate this limit, we can di�erentiate the numerator and the denominator twice to
obtain:
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lim
y→v

L−1(y) = lim
y→v

(f(y))2 + 2F (y)f ′(y) + (yF (y)−
∫ y
v
wf(w)dw)f ′′(y)

2(f(y)2 + F (y)f ′(y))
.

However, since F (v) = 0, we have that this limit reduces very simply to 1
2
.

Returning to the original limit, and recalling that limṽ→v F
−1(G(v)) = ṽ, we therefore put

this together to obtain the following:

lim
ṽ→v

d

dv

v

F−1(G(v))

∣∣∣∣
v=ṽ

= v − v 1

1/2
= −v < 0.

Using the di�erentiability properties of the distribution, we therefore have that pressed-ratio
monotonicity condition is satis�ed in some neighborhood of v, as desired.

Proof of Proposition 5. We �rst describe the set of equilibria delivering the Ausubel and Deneckere
(1989) folk theorem under the pressed distribution G. In fact, for reasons that will become clear in
the course of the proof, we will do this assuming the buyer obtains an arbitrary initial signal I0.
Note that in this case, we can de�ne a distribution G̃I0 via the following:

First, let s denote an arbitrary signal realization under I0, and let Fs denote the distribution
of the buyer’s value conditional on observing s, and let Gs denote the pressed version of the
distribution Fs. We de�ne

G̃I0(x) = Es∼I0 [Gs(x)].

Note that, if the buyer were to observe I0, then conditional on the signal observed, the worst-case
information structure conditional on s would be a partitional threshold at F−1s (Gs(p)). �erefore,
G̃I0(p) de�nes a distribution such that the probability of sale in the worst-case information
structure following a price of p is 1− G̃I0(p), if the buyer were to have I0 before purchase. Note
further that, since nature could always provide the signal I0, by construction we have that the
optimal pro�t following I0 is weakly higher than the optimal pro�t following no information, for
any candidate equilibrium path.

In fact, given an arbitrary price path for the seller, p1, . . . , pn, . . ., the value which is indi�erent
between purchasing and not assuming no further information does not directly depend on the
signal observed, since this indi�erence condition only depends on the price path, the expected
value of the buyer, and δ. �erefore, the seller’s pro�t from such a price path coincides with the
known-values pro�t under distribution G̃I0(x). In the dynamic threshold information structure,
where the buyer’s expected value conditional on not purchasing is exactly this indi�erent value,
as long as the buyer follows the recommendations of nature, we again have the seller’s pro�t is
the known values pro�t. Together with the argument from the �rst part of the proof, this implies
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that the equilibria of the “known-values-under-the-transformed-value distribution” games also
determine the seller’s pro�t in the game against nature.

We now show that the conditions for the folk theorem of Ausubel and Deneckere (1989) hold,
meaning that, via the above argument, their speci�cation for the equilibrium price path delivers
the same pro�t under that price path in the known values benchmark where the buyer’s value
is distributed according to G̃I0(p). �eir condition stated for the known value case is that there
exists L,M such that, for all q:

Mqα ≤ F−1(q) ≤ Lqα

Our claim will follow from the assumption that this condition holds for the pressed distribution
and:

G−1(q) ≤ G̃−1I0 (q) ≤ F−1(q).

In that case, we can ensure that, uniformly over the set of information structures I0, if M is
taken from G−1(q) and L is taken from F−1(q), then Mqα ≤ G̃−1I0 (q) ≤ Lqα. �is claim, in
turn, immediately follows from the de�nition of G and G̃I0 as the solution to the worst-case
information structure construction from the static case. Indeed, consider the seller choosing
quantiles instead of prices, so that the seller’s pro�t in the one period problem, facing distribution
F̃ , is given by F̃−1(q) · (1− q). Decreasing the quantile given the price decreases the pro�t; and
since nature always has the option of giving I0 in addition to the threshold, we therefore have
G−1(q) ≤ G̃−1I0 (q). Since nature has the option of giving full information instead of the worst-case
thresholds following I0, we have G̃−1I0 (q) ≤ F−1(q).

For the subsequent part of this proof, we let πδ denote the lowest payo� from the above
construction (assuming no initial information to the buyer), and we let πδ(I0) denote the highest
possible payo� given an information structure I0 from the above construction. We note that
πδ → 0 and πδ(I0) converges to the monopoly pro�t under the “modi�ed” pressed distribution
described above, which is weakly larger than the monopoly pro�t under the pressed distribution.

We now turn to the speci�cation of the equilibrium from Proposition 2. Speci�cally we assume
that in every period:

• �e seller chooses price p∗ = E[v];

• Nature provides no information;

• �e buyer randomizes between purchasing and not with probability ρ.
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As in the proof of Proposition 2, we note that there is no possible deviation for the buyer since all
purchase times occur with positive probability (and at all of them, the payo� obtained is 0).

We consider equilibria where a deviation by nature leads to the best possible continuation
equilibrium for the seller, πδ(I0), given some information structure I0, and where a deivation
by the seller leads to his worst possible equilibrium, πδ—both under the Ausubel and Deneckere
(1989) equilibria from above. Note that on path, the seller obtains E[v]ρ

1−δ+ρδ . �us we restrict ρ (as
a function of δ) so that this expression is strictly between 0 and the monopoly pro�t under the
pressed distribution.

�at there is no pro�table deviation for the seller is immediate; in this case, the equilibrium
immediately shi�s to one where the monopolist’s payo� is no more than πδ , which by construction
is lower than what the seller obtains on-path.

For nature, note that the best case for the seller is that the buyer purchases at price E[v], since
this is an upper bound on the surplus the seller could obtain in any equilibrium. �erefore, a
lower bound on the seller’s pro�t is achieved by assuming no buyers purchase in that period. In
that case, the seller obtains δπδ(I0), which for su�ciently large δ is large than the on-path payo�
(since on path, the seller obtains strictly less than the single-period monopoly pro�t under G,
whereas as δ → 1, δπδ(I0) converges to this amount). �erefore, nature does not want to deviate
from the prescribed equilibrium, either, completing the proof.

Example of SophsticatedMaxmin Di�ering from the Baseline Model Consider the discrete distribution
where v = 1 with probability 1/2 and v = 0 with complementary probability. Libgober and
Mu (2021) descirbes how to de�ne pressed distributions for discrete distributions; brie�y, we
simply note that the concavi�cation arguments from Kamenica and Gentzkow (2011) immediately
imply that the worst-case makes the buyer indi�erent between purchasing and not whenever
recommended to purchase, and therefore in the static problem we have that given a price of p, the
information structure recommends purchase with probability r satisfying:

p =
(1− r)q

(1− r)q + 1− q
⇒ r =

q − p
q(1− p)

,

where q is the prior that v = 1. When q = 1/2, we have the pressed distribution for this value
distribution is G(v) = 1 − 1−2v

1−v , yielding optimal static price of 1
2
(2 −

√
2) and optimal static

pro�t of ≈ .1718. While our baseline model assumed a continuous value distribution, this was
not essential to deliver �eorem 1; in the second period, nature will induce expectation p2, which
induces no additional option value, and in the �rst period, nature will induce expectation w(p1),
the indi�erent value for a consumer following price p1. Note that, given w(p1), the second period
price will maximize:
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p2

(
w(p1)− p2
w(p1)(1− p2)

)
,

since w is also the probability that v = 1 in the second period. Maximizing this over p2, we see
that p2 = 1−

√
1− w. Using this, we can solve for w(p1), using the identity that w(p1)− p1 =

δ(w(p1) − p2). Given a solution for w(p1), and assuming it is interior, we therefore have p1 is
chosen to maximize:

p1

(
1/2− w(p1)

(1/2)(1− w(p1))

)
+ δp2(p1)

(
w(p1)− p2(p1)
w(p1)(1− p2)

)
.

�is expression can be maximized numerically; doing so for δ = 3/4 yields the following
solution:

p1 ≈ 0.2620, w(p1) ≈ 0.3904, p2 ≈ 0.2192, Pro�t ≈ 0.1533.

For this price path, it is straightforward to show that the resulting solution is not reinforcing, and
thus that the sophisticated fully-maxmin seller would use a di�erent pricing strategy than we
outlined. Suppose to that the seller charged prices p1 and p2 as above, and suppose nature used an
information structure which perfectly revealed the value to the buyer in the second period. In this
case, the buyer would �nd it optimal to delay as a result, since when δ = 3/4:

(1/2)− 0.2620 < (3/4)(1/2)(1− 0.2192).

�us, the fully worst-case information structure is not the one identi�ed.
While pressed-ratio monotonicity is only de�ned for continuous distributions, we note that

it will be violated for continuous distributions which approximate this discrete distribution—
for instance, taking n even and su�ciently large and considering f(v) = (v − 1/2)n(1 + n)2n.
Intuitively, for moderate values of v—say, in the range [1/4, 1/3]—for n very large, the threshold
F−1(G(v)) will be very close to 1 for all values in this range. As a result, over this range, F−1(G(v))

will increase only slightly as v increases, even for large changes of v. Hence the ratio v
F−1(G(v))

will increase as well.

Proof of Proposition 6. To prove the proposition, we solve a nested information design problem.
�e argument from �eorem 1 shows that the second-period information structure is characterized
by a (possibly signal dependent) threshold such that the buyer purchases if and only if v is above
this threshold. Furthermore, this threshold makes the buyer indi�erent between purchase and not.

Consider the time 1 problem. Given an arbitrary information structure from nature, we can
without loss assume all signals are collapsed to action recommendations, via a revelation argument.
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�us it su�ces to show that the recommendation to not buyer .
�e argument then follows from two claims:

Claim 1: For general distributions Ht, where Ht is FOSD decreasing in t, the seller’s optimal pro�t
maxp p(1−Ht(p)) is decreasing in t. �is argument is standard and thus omi�ed.

Claim 2: �e FOSD minimal distribution Fs that can be induced in nature’s problem for the time
1 information structure is partitional. Note that, given a quantile q and signals s, s′ in a binary
information structure, we must have:

P[v ≤ F (x)] = P[v ≤ F (x) | s]P[s] + P[v ≤ F (x) | s′]P[s′]

Since by assumption Ev∼F [v] < p̂1−δp̂2
1−δ , the information structure which provides no informa-

tion to the buyer does not solve the constraint that the buyer must be willing to delay purchase if
recommended to not buy. �e above equation, however, implies immediately that the maximum
value for Fs(x), given x, is F (x). But recall that H2 FOSD dominates H1 if H1(x) ≥ H2(x) for all
x. �us, the only candidate for FOSD minimizing distributions are such that Fs(x) = F (x) for all
x < x∗ for some x∗, since any other distributions inducing a given expectation FOSD dominate
some distribution in this class (i.e., simply choose x∗ so that the mean is the same).

Given the previous argument reduces the candidate information structures to being a threshold,
it su�ces to �nd the optimal threshold. Indeed, the FOSD minimal one within this class is as low
as possible, and therefore induces indi�erence when the information recommends that the buyer
purchase. �e result follows.
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