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to continuous-time job search models. We propose a novel framework that in-
corporates preference shocks into search models, resulting in a tight connection
between value functions and conditional choice probabilities. Including prefer-
ence shocks allows us to establish constructive identification of all the model
parameters. Our method also makes it possible to estimate rich nonstationary
job search models in a simple and tractable way, without having to solve any
differential equations. We apply our framework to rich longitudinal data from
Hungarian administrative records, allowing for nonstationarities in offer arrival
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1 Introduction

This paper applies some of the key insights from the dynamic discrete choice litera-
ture to continuous-time job search models. The main idea of our approach is to adapt
conditional choice probabilities (henceforth CCP) to a continuous-time job search en-
vironment. To do so, we incorporate preference shocks into the search framework,
resulting in a tight connection between value functions and conditional choice prob-
abilities. These preference shocks represent the relative attractiveness of a new job
compared to the current state of the individual (employed or unemployed), and af-
fect the instantaneous utility associated with that particular job. As a result, and
consistent with recent empirical evidence that workers tend to accept particular job
offers with probabilities that are significantly different from zero or one (Krueger and
Mueller, 2016), future job offers associated with particular wages will only be accepted
probabilistically from the perspective of the worker.

Our approach has two key advantages. The first one is related to identification.
We consider a class of nonstationary job search models that incorporate on-the-job
search, non-pecuniary job attributes, and involuntary wage transitions. We establish
constructive identification of all of the model parameters, up to the discount rate.
In particular, and in contrast with the well-known non-identification result of Flinn
and Heckman (1982), we are able to separately identify the offered wage distribution
both from employment and unemployment—the latter allowed to vary over the course
of unemployment—without having to assume recoverability of the underlying distri-
bution. Central to our identification strategy is the existence of preference shocks
that allow us to trace out the full offered wage distribution from the observed job-
to-job transitions, and express the employment and unemployment value functions
as functions of the conditional probabilities of accepting particular job offers. Under
this framework, we are able to derive closed-form expressions for most of the model
parameters where the expressions depend on the hazard rates associated with the
different types of labor market transitions.

The second advantage is computational. While the empirical labor search literature
has been rapidly growing over the last few years, structural estimation of these mod-
els often remains challenging. This is particularly true for models in nonstationary
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environments, which tend to be the norm rather than the exception in the context
of job search (van den Berg, 1990, 2001, Cahuc, Carcillo, and Zylberberg, 2014). We
provide in this paper a novel empirical framework that makes it possible to estimate
nonstationary job search models in a simple, tractable, and transparent way.

We apply our method using rich longitudinal administrative data from Hungary. The
dataset consists of half of the population, i.e., 4.6 million individuals, who are linked
across 900 thousand firms. An important feature of the Hungarian data is that indi-
viduals are observed on a monthly basis, making it possible to follow the labor force
transitions at a high frequency.1 In practice we consider a flexible parametric spec-
ification that allows for unobserved heterogeneity through worker types, and devise
a novel sequential estimation procedure that adapts the insights of Arcidiacono and
Miller (2011) to a continuous-time search environment.

The data reveal sharp decreases over time in accepted wages out of unemployment.
Among those who find a job before benefit expiration, job seekers with the shortest
25% of unemployment durations were a little over half as likely to exit to a minimum
wage job than those with the longest 25% of unemployment durations. Estimates of
the model show that this, in part, is the result of the wage offer distribution shifting to
the left as unemployment duration increases. With the offer arrival rate also declin-
ing over the course of unemployment, job seekers become increasingly less selective in
which jobs they are willing to accept. The decline in accepted wages is then a result
both of facing worse wage offer distributions but also changes in the job acceptance
rate. An important takeaway from these results is that nonstationarities along mul-
tiple dimensions play a central role in accounting for the job search environment over
the course of unemployment.

This paper fits into several literatures. First, it contributes to the literature on the
identification and estimation of dynamic discrete choice models using conditional
choice probabilities. Since the seminal articles of Hotz and Miller (1993) and Magnac
and Thesmar (2002), CCP methods have been increasingly used as a way to identify,
and estimate complex dynamic discrete choice models at a limited computational cost
(see surveys by Aguirregabiria and Mira, 2010 and Arcidiacono and Ellickson, 2011).

1A substantial share of job-to-job transitions in our data involve a wage decrease, which our model
rationalizes with preference shocks.
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While CCP methods have been used a variety of settings, they have been mostly
used in a discrete time environment. Exceptions are Arcidiacono, Bayer, Blevins,
and Ellickson (2016), Agarwal, Ashlagi, Rees, Somaini, and Waldinger (2021) and
work in progress by Llull and Miller (2018), who apply CCP methods to estimate
continuous-time dynamic equilibrium models of market competition, an equilibrium
model of kidney allocations, and a stationary dynamic model of job and location
choices in the context of internal migration in Spain, respectively. In discrete-time
setups, CCP methods are also generally used to estimate dynamic discrete choice
models in the absence of search frictions, an exception being recent work by Ransom
(2022). We contribute to this literature by exploring the use of CCP methods to
constructively identify and estimate job search models in continuous time.

This paper also contributes to the empirical job search literature. Since the semi-
nal work of Flinn and Heckman (1982), a large number of papers have structurally
estimated various types of job search models (see Eckstein and van den Berg, 2007
for a survey, and French and Taber, 2011 for an overview of the identification of
job search models). In this literature, structural parameters are generally estimated
via maximum likelihood or indirect inference methods, where the full model needs
to be solved within the estimation procedure, and are often based on a strict job
acceptance cutoff based on whether the offer exceeds the reservation wage. Nonsta-
tionarity in job search, which arises in particular when the level of unemployment
benefits varies over the unemployment spell, is an important case where the compu-
tational demands are especially high. Since the seminal work of van den Berg (1990)
who structurally estimated a continuous-time nonstationary search model,2 examples
of structural estimates of nonstationary job search models remain scarce. Important
exceptions include Cockx, Dejemeppe, Launov, and Van der Linden (2018), Launov
and Walde (2013), Robin (2011), Lollivier and Rioux (2010), Paserman (2008), and
Frijters and van der Klaauw (2006).

We contribute to this literature by providing a novel empirical framework, based
on a constructive identification strategy, that makes it possible to estimate a rich
class of nonstationary job search models in a simple and tractable way. Key to our

2See also Wolpin (1987), which is the first study to estimate a (discrete time) nonstationary search
model.
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identification strategy is the existence of preference shocks and, in that sense, our
approach is similar in spirit to Sorkin (2018). Our paper also complements recent
work by Sullivan and To (2014) and Taber and Vejlin (2020) who consider the iden-
tification of search models that allow for non-pecuniary job attributes. In contrast
to these papers, we consider a nonstationary environment and establish constructive
identification of the model parameters, most of them being obtained as closed-form
expressions of the underlying hazard rates. However, an important difference with
Taber and Vejlin (2020) is that they consider an equilibrium search framework, while
our framework is set in partial equilibrium.

Finally, our application fits into the vast empirical literature that investigates the
impact of unemployment benefit levels and duration on labor supply (see, e.g., John-
ston and Mas, 2018, Nekoei and Weber, 2017, Le Barbanchon, Rathelot, and Roulet,
2017, Lollivier and Rioux, 2010, Card, Chetty, and Weber, 2007, van den Berg, 1990,
and Schmieder and von Wachter, 2016 and Krueger and Meyer, 2002 for overviews of
this literature). Consistent with many of these earlier studies, our estimation results
provide evidence that nonstationarity plays an important role in describing the search
environment over the course of the unemployment spell. A central and distinctive
feature of our empirical strategy is that it leverages the direct links that exist between
reduced form hazard rates from unemployment to employment, or from one job to
another, and the structural parameters of the model. Beyond the specific application
we consider in this paper, a similar approach can be readily used to identify and
estimate a wide range of search models (see Gyetvai, 2021, for a recent application
to occupational mobility).

The rest of the paper is structured as follows. In Section 2, we introduce and discuss
the general setup of the nonstationary search model we consider throughout the paper.
Section 3 establishes identification of the model parameters. In Section 4 we discuss
the data used to estimate the model. Section 5 presents our estimation procedure,
with Section 6 discussing the estimation results. Section 7 concludes.
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2 Model

2.1 The environment

Consider an economy in continuous time with infinitely lived workers, who discount
the future at a rate ρ > 0. Both employed and unemployed workers engage in job
search. Job offers are characterized by a wage, w, and a job type, s. Job types
capture non-wage characteristics such as firm, occupation, industry, or any particular
non-monetary job attribute. The distribution of wages and job types are assumed to
be discrete with a finite number of support points, denoted by W and S respectively.
The support for wages and job types is given by Ωw = {w, . . . , w} and Ωs = {s, . . . , s}.
Conditional on receiving an offer from a particular job type s, the offered wage distri-
butions depend on whether or not one is currently employed and, if not employed, the
duration of unemployment, which we denote by t. The probability mass functions
(pmf) of the wage offer distributions evaluated at wage w are given by f sw for the
employed, and gsw(t) for the unemployed at unemployment duration t.

We model job offer arrivals from the different job types as Poisson processes, and allow
employed and unemployed workers to sample job offers at different frequencies. While
working at a job of type s, the offer arrival rate for jobs of type s′ is given by λss′ . The
offer arrival rate for the unemployed for type-s jobs may vary with the duration of the
unemployment spell, and is given by λs(t). Unemployed workers also receive benefits
that depend on the duration of the spell.3 The wage offer distribution (gsw(t)), the
unemployed offer arrival rates (λs(t)), and the flow payoff of unemployment (b(t)) are
the three sources of nonstationarity in this setup.

While this model shares many of the features of the continuous-time job search mod-
els that have been estimated in the literature, a key distinction is that it incorporates
preference shocks into the search framework. This feature is instrumental to our
approach as it allows us to connect the value functions of unemployment and em-
ployment to the conditional choice probabilities of accepting particular job offers.
Specifically, any given job offer is associated with a wage and a job type, but also
with a preference shock. This preference shock, ε, is drawn independently whenever

3In practice, following much of the empirical search literature, we treat unemployment and non-
participation as a single state.
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a new job offer arrives. The preference shock represents the relative attractiveness of
a new job compared to the current state of the individual (employed or unemployed),
and affects the instantaneous utility. Our model also incorporates job switching costs,
which in our application play an important role in fitting the observed job mobility
flows.4

2.2 Value of employment

The flow payoff of employment is assumed to be the sum of two parts: the utility of
the wage paid, uw, and the non-pecuniary payoff of working in a job of type s, φs.
Without loss of generality, we normalize φ1 = 0. Workers employed in a job (w, s)
can experience three different types of transitions. First, they may be laid off and
become unemployed, which happens at a rate δs0.5 Second, within the same firm, they
may exogenously transition to a different wage w′ and job type s′. These involuntary
within-firm changes occur at a rate δss′ww′ , with the convention that δssww = 0. Third,
workers may receive an offer from another firm for a job of type s′ at a rate λss′

and then decide whether to accept it or stay with their current job. These voluntary
transitions are associated with an instantaneous cost of switching jobs, css′ , where we
assume that the switching costs are symmetric (i.e. css

′ = cs
′s for all s, s′). These

cross-firm transitions occur both between (s′ 6= s) and within (s′ = s) job types.

We now turn to the value of employment. The Bellman equation for the value of
employment V s

w associated with a job (w, s) writes as follows:
(
ρ+ δs0 +

∑
w′

∑
s′
δss
′

ww′ +
∑
s′
λss

′
)
V s
w = uw + φs + δs0V0(0) +

∑
w′

∑
s′
δss
′

ww′V
s′

w′ (2.1)

+
∑
w′

∑
s′
λss

′
f s
′

w′Eε max
{
V s′

w′ − css
′ + ε, V s

w

}

where V0(0) is the value of unemployment immediately upon entering an unemploy-
ment spell (t = 0). Following McFadden (1978) and Arcidiacono and Miller (2011),
4Preference shocks have an alternative, isomorphic interpretation as the stochastic component of
job switching costs.

5Our identification strategy would also readily apply to a more general setup where transitions to
unemployment are allowed to be wage-specific. For simplicity, we focus on the case where these
transition rates depend on job types only.
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we can re-express Equation (2.1) such that some of the value functions on the right-
hand side are eliminated. Namely, assuming that the shocks ε are drawn from a
standard logistic distribution, we can rewrite the Bellman equation as:

(
ρ+ δs0 +

∑
w′

∑
s′
δss
′

ww′

)
V s
w = uw + φs + δs0V0(0) +

∑
w′

∑
s′
δss
′

ww′V
s′

w′

−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

)
(2.2)

where pss′ww′ denotes the probability of accepting a new job offer of type s′ at wage w′

given the current job type s and wage rate w.

Prior to the realization of ε, the probability of a job of type s′ paying w′ being accepted
given current job type s paying w is then:

pss
′

ww′ =
exp

(
V s′
w′ − css

′
)

exp (V s
w) + exp

(
V s′
w′ − css

′
) (2.3)

2.3 Value of unemployment

We now write the problem of the unemployed individuals. Indexing by t time spent
unemployed, we first write the Bellman equation for the unemployment value function
V0(t) in discrete time:6

V0(t) = b(t)∆t+ ∆t
1 + ρ∆t

∑
w

∑
s

λs(t)gsw(t+ ∆t)Eε max {V s
w + ε, V0(t+ ∆t)}

+1−∑s λ
s(t)∆t

1 + ρ∆t V0(t+ ∆t)

where ∆t denotes the discrete time unit and where the equation can be rewritten as:

ρV0(t) = b(t)(1 + ρ∆t) +
∑
w

∑
s

λs(t)gsw(t+ ∆t)Eε max {V s
w − V0(t+ ∆t) + ε, 0}

+V0(t+ ∆t)− V0(t)
∆t

Next, letting ∆t → 0, and denoting by V̇0(t) the derivative of V0(t) (with respect to
6Note that we implicitly normalize to zero the switching cost from unemployment to employment,
which in our setup is not separately identified from the value of unemployment.
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unemployment duration) and by psw(t) the probability of accepting a job offer of type
s and wage w at time t, we obtain the following differential equation in V0(·):

ρV0(t) = b(t)−
∑
w

∑
s

λs(t)gsw(t) ln (1− psw(t)) + V̇0(t) (2.4)

A couple of remarks are in order. First, Equation (2.4) now involves the time deriva-
tive of the value of unemployment. This term represents the change in the option
value of job search due to variation over time in the value of unemployment. In the
particular case where nonstationarity arises as a result of over-time changes in the
level of unemployment benefits, the option value of searching for a job will decrease
as job seekers get closer to the unemployment benefit expiration date.

Second, Equation (2.4) is a simple linear first-order differential equation in V0(·),
which admits under standard regularity conditions an exact analytical solution as a
function of the structural parameters and the conditional choice probabilities psw(t).7

In the absence of preference shocks, V0(t) would satisfy instead the following nonlinear
differential equation:

ρV0(t) = b(t) +
∑
s

∑
w

λs(t)gsw(t) max {V s
w − V0(t), 0}+ V̇0(t)

This type of nonlinear differential equation would need to be solved numerically,
similar to van den Berg (1990) in a simpler context without on-the-job search.

3 Identification

We have shown in the previous section that the unemployment and employment value
functions can be expressed as a function of the structural parameters of the model,
the wage offer distributions, and the conditional job acceptance probabilities. There
are two fundamental differences compared to a Hotz-Miller type CCP-based approach
for dynamic discrete choice models. First, in a search environment, choices (i.e., job
offer acceptance or rejection) are partially unobserved by the analyst. Second, wage

7Sufficient regularity conditions are the continuity of the functions t 7→ λs(t), t 7→ gs
w(t) and t 7→

ps
w(t). As we discuss in the section below, V0(t) and V̇0(t) can be directly identified (and estimated)

from the log-odds ratios out of unemployment, without having to solve any differential equation.
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offers are generally unobserved as well. Nonetheless, we provide in the following a
simple and constructive identification strategy for the parameters of the job search
model introduced in Section 2. These identification results hold in an empirical setting
where one has access to longitudinal data on (i) across-firm job-to-job transitions, (ii)
within-firm transitions, (iii) transitions from unemployment to employment, and (iv)
transitions from employment to unemployment.

Recall that we assume that wages are drawn from a discrete distribution with finite
support. This distribution can be thought of as a discrete approximation to an
underlying continuous wage distribution. We maintain this assumption throughout
our analysis for simplicity, but note that our identification strategy readily applies to
the case of continuous wage distributions.8

3.1 Assumptions

We first introduce four assumptions that relate to the types of transitions that are
observed in the data. Namely, we denote by A1, A2, A3 and A4, respectively, the
assumptions that the following hazard rates are identified from the data:

A1 hss
′

ww′ , the hazard rate of moving from a job with wage w and type s to a job
with wage w′ and type s′ (in a different firm);

A2 hsw(t), the hazard rate out of unemployment at time t to a job that pays w and
is of type s (assumed to be continuously differentiable);

A3 δss
′

ww′ , the hazard rate of within-firm wage (w to w′) and type (s to s′) changes;

A4 δs0, the hazard rate from a type-s job to unemployment.

As is standard for this class of models, we also maintain the assumption that the
discount rate ρ is known.

We next show that these hazard rates can be used to recover closed-form solutions for
the employed and unemployed wage offer distributions (f sw and gsw(t)); the pecuniary
8Specifically, a key observation here is that, for any given pair of wages (w,w′), the hazard rates
associated with the transitions to wage w′ conditional on current wage w are directly identified
from the data. Such hazard rates are also known in the statistical literature as the conditional
mark-specific hazard function (see, e.g., Sun et al., 2009, Equation (1) p.395).
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and non-pecuniary payoffs of the job (uw and φs) each up to a constant; the cost
of switching jobs (css′); the job offer arrival rates for those who are employed and
unemployed (λss′ and λs(t)); and the flow payoff of unemployment (b(t)). All of our
identification results are subject to the model specification given in Section 2.

3.2 Employed-side parameters

We begin by showing identification of the employed wage offer distributions for each
job type, f sw, which we establish in the following lemma:

Lemma 1 Assume that Assumption A1 holds. Then f sw is identified and can be
written as follows:

f sw = hssww∑
w′ h

ss
w′w′

(3.1)

To prove this result, first note that the hazard hss′ww′ can be expressed as the product
of (i) the arrival rate of offers to job type s′ given the current job type is s (λss′),
(ii) the pmf. of w′ for offered wages in job type s′ (f s′w′), and (iii) the probability of
accepting a job of type s′ paying wage w′ given current job type s and wage w′ (pss′ww′):

hss
′

ww′ = λss
′
f s
′

w′p
ss′

ww′ (3.2)

Now consider the hazard rate of a transition to a job that is of the same type and
pays the same amount as the current job (hssww). From Equation (2.3), the probability
of accepting a job in this case does not depend on w: pssww = pssw′w′ = exp(−css)

1+exp(−css) for
all (w,w′) ∈ Ω2

w. That is, since for these transitions the wage and job type is held
fixed, so too is the value function. Hence when the transitions are to same-type and
same-pay jobs, the ratio of the hazards for two different initial wages is the ratio of
the pmfs for the two wages:

f sw
f sw′

= hssww
hssw′w′

Summing over w′ then gives the result:

f sw = hssww∑
w′ h

ss
w′w′
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Next, we consider in Lemma 2 below the identification of the on-the-job offer arrival
rates (λss′), which then immediately leads to identification of the conditional choice
probabilities and switching costs.

Lemma 2 (i) Assume that Assumption A1 holds and that there exists a triple
(w,w′, w̃) ∈ Ω3

w such that f sw̃hssww′hssw′w 6= f sw′h
ss
w̃wh

ss
ww̃. Then λss, pssww′ and css

are identified.

(ii) For x ∈ {w′, w̃} and s 6= s′, let Ax = f s
′
x f

s
xh

ss′
wwh

s′s
ww − f s

′
w f

s
wh

ss′
xxh

s′s
xx , Bx =

f s
′
x h

s′s
xxh

ss′
wwh

s′s
ww−f s

′
w h

s′s
wwh

ss′
xxh

s′s
xx , and Cx = f swh

ss′
xxh

ss′
wwh

s′s
ww−f swhss

′
wwh

ss′
xxh

s′s
xx . Assume

that Assumption A1 holds and that there exists a triple (w,w′, w̃) ∈ Ω3
w such

that the following conditions hold:

(a) Aw′ 6= 0

(b) Bw′Aw̃ −Bw̃Aw′ 6= 0

(c) Aw′Cw̃ − Aw̃Cw′ 6= 0

then λss′, pss′ww′, css
′ and V s′

w′−V s
w are identified (the latter two under the symmetry

assumption css′ = cs
′s).

Further, when the conditions stated in (i) and (ii) are met, there are closed-form
expressions for λss′, css′, pss′ww′ and V s′

w′ − V s
w, for all (w,w′, s, s′) ∈ Ω2

w × Ω2
s, as a

function of the underlying hazard rates.

We show identification and the closed-form expression for λss in the text with the
corresponding proof for λss′ given in Appendix A.1.1. To begin, note that the distri-
butional assumption on the preference shocks ε yields a simple relationship between
probabilities of accepting a new job offer, the employment value functions, and the
switching cost:9

ln
(

pssww′

1− pssww′

)
= V s

w′ − css − V s
w (3.3)

implying:

ln
(

pssww′

1− pssww′

)
+ ln

(
pssw′w

1− pssw′w

)
= −2css (3.4)

9Recall that the preference shocks are assumed to follow a standard logistic distribution. Note in
particular that the scale parameter of the shocks distribution would not be separately identified
from the flow utility of wages and unemployment.
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Solving Equation (3.2) for pssww′ ,

pssww′ = hssww′

λssf sw′
(3.5)

it then follows that, for any given triple (w,w′, w̃) ∈ Ω3
w:

ln
(

hssww′

λssf sw′ − hssww′

)
+ ln

(
hssw′w

λssf sw − hssw′w

)
= ln

(
hssww̃

λssf sw̃ − hssww̃

)
+ ln

(
hssw̃w

λssf sw − hssw̃w

)

Solving for λss under the assumption that f sw̃hssww′hssw′w 6= f sw′h
ss
ww̃h

ss
w̃w—a condition

that can be verified in the data—gives the result:

λss = (f swhssww̃ + f sw̃h
ss
w̃w)hssww′hssw′w + (f swhssww′ + f sw′h

ss
w′w)hssww̃hssw̃w

f swf
s
w̃h

ss
ww′h

ss
w′w − f swf sw′hssww̃hssw̃w

Given the expressions of f sw′ and λss, closed-form expressions for pssww′ and css then
immediately result from Equations (3.5) and (3.4), as does the difference in value
functions V s

w′ − V s
w from Equation (3.3).

Lemma 3 below states our main identification result for the remaining set of employed-
side parameters, namely the utility of wages, uw, and the non-pecuniary payoff of
working in a job of type s, φs.

Lemma 3 Given Assumptions A1, A3, and A4:

(i) uw is identified up to a constant and has a closed-form expression.

(ii) When workers have CRRA preferences so that uw = αw1−θ

1−θ , both α and the risk
aversion parameter θ are identified.

(iii) Given the normalization φ1 = 0, the non-pecuniary payoffs φs are a known
linear function of V0(0).

We prove part (i) of Lemma 3 in the text with proofs of the remaining parts in
Appendix A.1.2. We begin by eliminating the employment value functions on the
right hand side of Equation (2.2). To do this, note that we can use the log-odds ratio
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to express V s′
w′ as a linear function of V s

w, the switching cost css′ , and the conditional
choice probabilities pss′ww′ :

V s′

w′ = V s
w + css

′ + ln
(
pss
′

ww′

)
− ln

(
1− pss′ww′

)
(3.6)

Equation (2.2) can then be written as:

V s
w =

(
uw + φs + δs0V0(0) +

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]
−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) )/
(ρ+ δs0) (3.7)

Normalizing the flow payoff of employment in the lowest-paying job, uw, to zero, it
follows that we can express ln(pssww/(1− pssww)) as:

ln
(

pssww
1− pssww

)
= V s

w − V s
w − css

=
uw −

∑
w′
∑
s′ λ

ss′f s
′
w′

[
ln
(
1− pss′ww′

)
− ln

(
1− pss′ww′

)]
ρ+ δs0

(3.8)

+
∑
w̃∈{w,w}

∑
w′
∑
s′ (−1)w̃=w δss

′
w̃w′

[
css
′ + ln

(
pss
′

w̃w′

)
− ln

(
1− pss′w̃w′

)]
ρ+ δs0

− css

As the only unknown in Equation (3.8) is uw, solving for uw gives the result.10

3.3 Unemployed-side parameters and main identification re-
sult

We now turn to the identification of the parameters governing the transitions out of
unemployment. As with the employed-side parameters, we begin by recovering the
wage offer distributions, gsw(t), which is allowed to vary over the course of unemploy-
ment.

Lemma 4 Given Assumptions A1 through A4 and W ≥ 3, the unemployed wage
offer distribution for job type s at time t, gsw(t), satisfies a generally overdetermined

10Note that the expression substantially simplifies when there are no within-job involuntary changes
(δss′

ww′ = 0), which is the case we will consider in our application.
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linear system of W −1 unknowns and W (W−1)
2 −1 equations. A unique solution exists

when the system is of full rank.

To prove Lemma 4, we note that, for job type s, the difference in the log odds from
accepting a job that pays w and accepting a job that pays w′ can be written as the
difference in the employment value functions:

ln
(

psw(t)
1− psw(t)

)
− ln

(
psw′(t)

1− psw′(t)

)
= V s

w − V s
w′ (3.9)

It follows that the difference in the log odds of accepting any two wage offers out
of unemployment depends on the (identified) difference in the employment value
functions associated with these two wages only. As such, it does not vary over the
course of unemployment.

The conditional choice probabilities for accepting a job at time t (psw(t)) on the left
hand side of Equation (3.9) can then be expressed as a function of the hazard out
of unemployment (hsw(t)), the arrival rate (λs(t)), and the probability that the offer
pays w (gsw(t)):

psw(t) = hsw(t)
λs(t)gsw(t) (3.10)

Denote the differenced value function V s
w − V s

w′ as κssww′ . Recall that κssww′ is known
from Equation (3.3). Using Equations 3.9 and 3.10, we can then express λs(t) as:

λs(t) = hsw(t)hsw′(t)(exp(κssww′ − 1))
gsw(t)hsw′(t) exp(κsww′)− gsw′(t)hsw(t) (3.11)

Evaluating the right hand side of Equation (3.11) for an alternative pair of wages,
(w̃, w̃′), and differencing yields:

hsw(t)hsw′(t)(exp(κssww′ − 1))
gsw(t)hsw′(t) exp(κssww′)− gsw′(t)hsw(t)−

hsw̃(t)hsw̃′(t)(exp(κssw̃w̃′ − 1))
gsw̃(t)hsw̃′(t) exp(κssw̃w̃′)− gsw̃′(t)hsw̃(t) = 0 (3.12)

Denote the numerators of the two terms as Asww′(t) and Asw̃w̃′(t). These can be cal-
culated from the unemployment hazards and the previously identified differences in
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employment value functions. Rearranging the terms yields:

0 = Asw̃w̃′(t)hsw′(t) exp(κssww′)gsw(t)− Asw̃w̃′(t)hsw(t)gsw′(t)

−Asww′(t)hsw̃′(t) exp(κssw̃w̃′)gsw̃(t) + Asww′(t)hsw̃(t)gsw̃′(t) (3.13)

This is a simple linear equation in its unknowns, the wage offer distribution terms.
Excluding, for any given job type s and unemployment duration t, redundant equa-
tions by evaluating Equation (3.13) at the following set of wage tuples:

{(w,w′, w̃, w̃′) : w = 1, w′ = 2, w̃ < w̃′, (w̃, w̃′) 6= (1, 2)}

and noting that gsw(t) = 1−∑w<w g
s
w(t) yields a linear system with W − 1 unknowns

and W (W−1)
2 −1 equations. When this generally overdetermined system is of full rank,

there exists a unique (closed-form) least squares solution for (gsw(t))w∈Ωw .

Identification of the remaining unemployed-side parameters directly proceeds from
the earlier steps:

Lemma 5 Given Assumptions A1-A4, the offer arrival rates λs(t), the conditional
choice probabilities psw(t), the flow payoff of unemployment b(t), the value function of
unemployment and its derivative, V0(t) and V̇0(t), are identified.

An important implication of Lemma 5 is that the non-pecuniary payoffs φs, which
from Lemma 3 were only known up to V0(0), are also identified (up to the normal-
ization φ1 = 0).

Identification of λs(t) follows directly from Equation (3.11) as all the terms on the
right hand side are either directly identified from the data (hsw(t)) or identified from a
previous step (κssww′ and gsw(t)). Identification of psw(t) then follows immediately from
Equation (3.10).

To recover the unemployment value function, we express the following log odds by
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normalizing the future value of working relative to staying at the same job:

ln
(

psw(t)
1− psw(t)

)
= V s

w − V0(t)

=
(
uw + φs + δs0V0(0) +

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]
−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) )/
(ρ+ δs0)− V0(t) (3.14)

where the second equality follows directly from Equation (3.7).

Evaluating the previous equation at the start of the unemployment spell (t = 0) and
solving for V0(0) yields:

V0(0) = 1
ρ

[
uw + φs +

∑
w′

∑
s′
δss
′

ww′

[
css
′ + ln

(
pss
′

ww′

)
− ln

(
1− pss′ww′

)]

−
∑
w′

∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) ]
− ρ+ δs0

ρ
ln
(

psw(0)
1− psw(0)

)
(3.15)

Note that at this stage everything on the right hand side is known, so that this
equality identifies V0(0). Plugging V0(0) into Equation (3.14) then identifies V0(t)
(for all t ≥ 0), and thus also V̇0(t). It follows that one can directly identify the flow
payoff of unemployment b(t) from the Bellman equation (2.4):

b(t) = ρV0(t) +
∑
w

∑
s

λs(t)gsw(t) ln (1− psw(t))− V̇0(t) (3.16)

A remarkable implication of these results is that, by exploiting the tight connection
between value functions and conditional choice probabilities, we are able to recover
the structural parameters of this nonstationary job search model without solving any
differential equation.

Finally, our main identification result follows from Lemmas 1 through 5:

Theorem 1 Given Assumptions A1-A4, all of the employed and unemployed-side
parameters are identified subject to a normalization of one uw and one φs, and subject
to the rank conditions given in Lemmas 2 and 4.
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Our identification strategy can be extended to more general search models. In partic-
ular, one can allow for aggregate shocks to the economy. Namely, we assume that the
economy is in one of K states, k ∈ {1, . . . , K}, with the transition rate from state k
to k′ denoted by qkk′ . Different states of the economy then affect the job destruction
rates, δsk, the within-employer type and wage transitions, δss′ww′k, the offer arrival rates,
λss

′
k , and the offer distributions, f swk. Appendix A.2 shows that constructive identifica-

tion holds in this case as well, under the assumption that the econometrician observes
the market state, and therefore identifies qkk′ and the hazards in A1 through A4, but
now conditional on market state. The key insight is that, on the employed side, the
introduction of market states has no effect on the identification proof for the offered
wage distribution, offer arrival rates, conditional choice probabilities, and switching
costs. Given that, identification of the remaining parameters follows trivially.

4 Application to job search in Hungary: back-
ground and data

4.1 Setup

We apply our method to a special case of the job search model described in Section 2,
in which there is one job type only (S = 1) and no involuntary wage transitions
(δss′ww′ = 0, for all (s, s′, w, w′)). While this model shares the key features of nonsta-
tionary job search models that have been estimated in the literature (see, in particular,
van den Berg, 1990, Lollivier and Rioux, 2010), an important distinction is that it
incorporates preference shocks into the search framework.

4.2 Institutional background

Our analysis focuses on the period from January 2003 to October 2005. During this
period, Hungary had a two-tier unemployment insurance system. Only those were
eligible for second-tier benefits who had a sufficiently long work history, and benefit
payments in the second tier were lower than in the first. Those who exhausted benefits
in both tiers were eligible for social assistance. Tier 1 benefits expired in 270 days and
Tier 2 benefits expired in an additional 90 days. We focus on unemployed workers
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leaving unemployment in Tier 1, because Tier 2 benefits were low ($114 per month on
average over our period of interest) and very similar to the amount of social assistance
that anyone is eligible for, regardless of prior work history. As such, Tier 2 benefits
likely did not provide significant further incentive to remain in unemployment.11

4.3 Data

We estimate the model using matched employer-employee data from Hungarian ad-
ministrative records, provided by the Center for Economic and Regional Studies at
the Hungarian Academy of Sciences (CERS-HAS). The dataset used in this analysis
combines data from five administrative sources: (i) the National Health Insurance
Fund of Hungary; (ii) the Central Administration of National Pension Insurance; (iii)
the National Tax and Customs Administration of Hungary; (iv) the Public Employ-
ment Service National Labor Office; and (v) the Educational Authority. This dataset
has been used in several recent papers, including DellaVigna, Lindner, Reizer, and
Schmieder (2017), Harasztosi and Lindner (2019), and Verner and Gyöngyösi (2020).

The sample consists of half of the population, i.e., 4.6 million individuals, linked
across 900 thousand firms. On the individual side, a de facto 50% random sample
of the Hungarian population is observed; every Hungarian citizen born on January
1, 1927 and every second day thereafter are included. A key distinctive feature of
the Hungarian data is their frequency: job spells are observed on a monthly basis,
and unemployment spells are observed at a daily frequency. When working, one
individual can be present in at most two work arrangements: labor market measures,
such as wages and days worked, are observed separately for each one of them. We
also have information on demographics, total earnings and days worked, as well as,
for job seekers, unemployment benefit payments. On the firm side, all firms are
included at which any sampled individuals are observed to have worked for at least
one month. From these data, we can infer the length of the employment spells, as
well as job-to-job transitions from changes in firm identifiers.

We estimate the model using a sample of employment spells over the period January
11In practice, we choose to censor durations at 269 days as a disproportionally large number of
workers are recorded as claiming Tier 1 benefits up until exactly 270 days. This suggests that
some of these workers might actually have started working before that point.
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2003 to October 2005, and unemployment spells from January 2004 to October 2005.12

We focus on males who were older than 18 in the beginning of our sample and younger
than 40 at the end: we drop females from our sample to abstract from differential
labor market flows resulting in part from childbearing decisions.13 Furthermore, we
drop older males to abstract from differential search behavior as retirement nears,
with a retirement age of 43 for males in certain occupations.14

Because of some recoding of jobs around the first day of the year, for job-to-job
transitions we treat employment spells that go past December 31st of a particular year
as right-censored. Given that the employed data set tracks where the individuals are
employed on the 15th of the month, there can be issues with distinguishing whether
there was a job-to-job transition versus a short break between two jobs. As a result,
we further right censor jobs at October 31st in each year to allow for a consistent
coding of job-to-job transitions within a month. Appendix B describes our data
cleaning process.

Table 1 shows summary statistics for the employment spells. In a given year, eleven
percent of workers have two or more employment spells. Eighty percent of employ-
ment spells are right-censored. Among those that are not right-censored, 28% end in a
transition to another job, with the remaining entailing transitions to unemployment.

For the purposes of estimation, we discretize wages into fifty bins. The first bin con-
tains wages around the minimum wage (namely between 75 and 107% of the effective
minimum wage in a given year), with the remaining bins set to be evenly distributed
based on the distribution of current wages in each calendar year.15 Whenever we use
wage levels in a given bin (e.g., for the utility of wages), we take the mean wage in
each bin of the distribution of current wages in 2004, except for the first bin where
we use the 2004 minimum wage. For the purposes of describing the data below, we
follow a similar procedure but discretize wages into ten bins.

Table 2 shows the number of employment-to-employment transitions to particular
wage bins given the current wage bin. Excluding transitions to the first bin, the most
12Unemployment data is only available from January 2004 onwards.
13The female labor force participation rate in Hungary was 54.0 percent in 2004, 5.8 percentage
points lower than the OECD average in the same time period.

14Our final sample consists of 1,314,384 employment and 15,454 unemployment spells.
15See Appendix B.3 for additional details on the wage discretization process.
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Table 1: Summary statistics, employment spells

Number of spells per year
1 2 3 4 5 6

In whole history (%) 16.8 15.6 48.9 14.1 3.6 0.9
In a given year (%) 88.9 10.4 0.7 0.0 0.0 0.0

Destination
EE EU RC

Share (%) 5.7 14.4 79.9

Mean Percentiles
10 25 50 75 90

Duration (year) 0.621 0.148 0.380 0.833 0.833 0.833
Current wage (HUF) 3,681 1,726 1,874 2,536 4,238 7,025

Notes: The top panel shows the share of individuals with a given number of employment spells in
their history, as well as the share of individual-years with a given number of employment spells.
Durations are right-censored at October 31st each year. The middle panel shows the fraction of
employment spells that end in an employment-to-employment, employment-to-unemployment tran-
sition, or are censored. The bottom panel shows summary statistics of the duration and current
daily wage of employment spells. 200 HUF ≈ 1 USD in 2004.
Source: CERS-HAS, authors’ own calculations.

Table 2: Employment-to-employment transition counts by wage bins

Accepted wage
1 2 3 4 5 6 7 8 9 10

C
ur
re
nt

w
ag
e

1 13,711 2,116 1,269 1,368 1,184 992 1,045 1,025 660 480
2 2,677 1,378 646 604 498 357 388 387 213 133
3 1,247 672 831 625 429 350 351 278 150 82
4 1,324 540 574 1,228 868 584 494 392 216 115
5 1,145 319 325 594 963 741 625 464 263 119
6 823 232 234 333 595 925 858 593 324 169
7 798 248 218 273 357 544 1,236 1,048 520 217
8 760 201 160 213 301 354 573 1,536 1,057 471
9 474 134 74 129 165 181 275 538 1,408 1,088
10 367 68 78 91 101 150 206 356 604 3,612

Notes: For exposition’s sake, the table uses 10 wage bins instead of 50 as in our empirical illustration.
The first bin contains wages between 75 and 107% of the effective minimum wage. Subsequent bins
are equally sized percentiles of the distribution of current wages.
Source: CERS-HAS, authors’ own calculations.
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populous cells are those that involve within-bin transitions, the second most populous
cells are ones involving a transition to one bin higher, and the third most populous
cells are ones involving a transition to one bin lower.16 There are also a number of
transitions involving substantial wages changes in both directions.

Table 3: Summary statistics, employment-to-employment transitions

Overall By wage change
Less than −5% −5 to 5% More than 5%

Share (%)
All E spells 5.7 30.6 28.3 41.1
Cur. wage is min. 3.2 – 54.1 45.9
Cur. wage above min. 6.3 34.8 24.8 40.4

Mean wage change (%)
All E spells 18.8 −30.3 −0.3 68.6
Cur. wage is min. 38.6 – 0.5 83.4
Cur. wage above min. 16.1 −30.3 −0.5 66.3

Notes: The top panel shows the distribution of EE spells. The “Overall” column shows the share
of EE spells within all E spells/within E spells with a current wage being equal to vs. higher than
the minimum wage. Within each row, the columns titled “By wage change” show the conditional
distribution of EE spells by wage change. The bottom panel shows the mean wage change within
each category. Current and accepted wages are recoded as w = max(w,wmin).
Source: CERS-HAS, authors’ own calculations.

Table 3 takes this analysis one step further by looking at how often a job-to-job
transition resulted in wage increases or decreases of particular levels. Over 30% of
job-to-job changes involve a wage decrease of more than 5%; this number rises to
35% excluding jobs at the minimum wage level. Over 41% of job-to-job transitions
entail a wage increase of more than 5%; 28% of job-to-job transitions result in a more
incremental wage change, between negative five and plus five percent.

Taken together, the descriptives reported in Tables 2 and 3 provide support both
for and against the model described in Section 2. On the one hand, there is clear
evidence of individuals moving to jobs that involve significant wage cuts. This is
consistent with a search model where individuals value more than just the wage. On
the other hand, the large number of transitions along the diagonal in Table 2 strongly

16The sole exception is current wage bin 3, with 8% more transitions to one bin lower than higher.
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suggests that the current wage may affect what wages are offered. This motivates the
specification in our empirical application, where we allow for the possibility that the
current wage affects the wage offer distribution.

Figure 1: Unemployment durations
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(b) Hazard of exiting to employment
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Notes: Panel (a) shows the distribution of unemployment spells that end in exiting to employment.
Spells are censored from the right at 269 days. Panel (b) shows the unconditional hazard rate of
exiting unemployment. We calculate the hazard as the kernel-smoothed density of exiting unem-
ployment to a job, divided by the kernel-smoothed survivor function. We use Gaussian kernels with
optimal bandwidth selection and reflection for boundary correction.
Source: CERS-HAS, authors’ own calculations.

Table 4: Summary statistics, unemployment-to-employment transitions

Overall By unemployment duration (days)
1–30 31–60 61–90 91–180 181–269

Mean U duration (days) 108.3 20.7 45.8 75.5 130.4 220.0
Mean acc. wage (HUF) 3,042 3,356 3,229 3,080 2,975 2,727
Share w (%) 32.8 23.8 24.7 32.2 35.4 43.2

Notes: The table shows summary statistics of spells that end in an unemployment-to-employment
transition. Accepted wages are recoded as w = max(w,wmin). The last row shows the share of UE
transitions to the lowest wage bin (75 to 107% of the minimum wage). Wage rates are daily; 200
HUF ≈ 1 USD in 2004.
Source: CERS-HAS, authors’ own calculations.

Turning to the unemployment side, almost 43% of unemployment spells end in em-
ployment; most of the remaining spells are right-censored. Panel (a) of Figure 1 shows
the distribution of unemployment durations for those who exited unemployment dur-
ing our observation window; the mean duration is 108.3 days. Panel (b) of Figure
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1 shows that the hazard rate of exiting unemployment to employment is downward-
sloping, consistent with the existence of negative duration dependence. Next, we
divide those who exited unemployment to a job into five categories based on their
unemployment duration. Summary statistics for accepted wages for those who exited
unemployment in each of these durations are presented in Table 4. Consistent with
unemployed workers willing to accept lower wage offers over time, longer durations
are associated with lower accepted wages and higher probabilities of accepting a job
at the minimum wage. In particular, those whose unemployment durations were less
than 30 days were a little over half as likely to exit to a job paying the minimum
wage as those whose durations were in the top quartile.

5 Estimation procedure

For estimation, we specify uw = α ln(w) and set ρ = 0.05. Motivated by the job-to-job
transition patterns discussed in Section 4.3, we further allow current wages to affect
the on-the-job wage offer distribution. We use a flexible parametric specification for
the employed and unemployed wage offer distributions as well as for the offer arrival
rates out of unemployment, the latter two of which are time-dependent. We do this
for two main reasons. First, the model is heavily over-identified. This parametric
specification allows us to incorporate all of the relevant information in a disciplined
fashion. Second, the model requires data on job-to-job transitions conditional on the
current wage and unemployed-to-job transitions to specific wages at each moment
in time. These conditional transition rates are inherently noisy, and our flexible
parametric specification yields substantial precision gains.

Consider a workforce populated by N individuals, indexed by i. Workers may face
different wage offer distributions, job offer arrival and destruction rates, as well as
different flow payoffs of unemployment in ways that are unobserved to the econo-
metrician. We allow for unobserved heterogeneity in the following manner. Each
individual belongs to one of R unobserved types with probability qir; the population
probability of type r is given by πr. We set R = 2 in our application. Each individual
experiences Si employment spells indexed by s and S̃i unemployment spells indexed
by s̃. The corresponding likelihoods for these spells for individual i of type r are
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given by LEisr(θEr ) and LUis̃r(θEr , θUr ), respectively, where θEr denote the employed-side
parameters and θUr the unemployed-side parameters. Note that the employed-side
parameters enter the likelihood for the unemployment spells but the reverse is not
true. We will exploit this sequential likelihood property in our estimation procedure.

To apply our identification arguments in the case with unobserved heterogeneity re-
quires identifying the type-specific hazard functions, along with the distribution of
heterogeneity types. One can apply in an initial step the identification results from
Heckman and Singer (1984) for duration models with unobserved heterogeneity but
without covariates to identify the distribution of unobserved types along with the
type-specific hazards associated with the job-to-job transitions. One can identify in a
second step the distribution of the type-specific hazards out of unemployment, taking
as given the distribution of heterogeneity types. The identification arguments from
Section 3 then still apply, yielding identification of the structural parameters that are
now allowed to vary by unobserved heterogeneity type. In practice, we estimate a
specification where the offer arrival rates, job destruction rates, wage offer distribu-
tions, and flow payoff of unemployment are allowed to be type-specific. Denoting by
fww′r the probability to receive a wage offer w′ conditional on current wage w and
type r, θEr = (δ0r, λr, (fww′r)w,w′ , (uw)w, c)′ and θUr = ((λr(t))t, (gwr(t))w,t, (br(t))t)′.

For estimation, the unobserved type must be integrated out of the likelihood function.
Note that there is an an initial conditions problem here as the initial wage may be
affected by the type. These initial conditions, described in more detail in the next
subsection, are indexed by a vector of parameters θIr . We denote by LIir(θIr) the
probability of observing i’s initial wage conditional on being of type r. Assuming spells
are independent across individuals and, conditional on heterogeneity type, within
individuals, the log-likelihood for the initial wage, employment and unemployment
spells data is then:

∑
i

ln
∑

r

πrLIir(θIr)
Si∏
s=1
LEisr(θEr )

S̃i∏
s̃=1
LUis̃r(θEr , θUr )

 (5.1)

We estimate the model parameters using a three-step estimation procedure. Following
Arcidiacono and Jones (2003) and Arcidiacono and Miller (2011), we implement an
adaptation of the Expectation-Maximization (EM) algorithm that restores the addi-
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tive separability of the log-likelihood function (5.1). In particular, the EM algorithm
treats the unobserved type as known at the maximization stage and weights the log-
likelihoods of each individual i by the posterior probability of i being of unobserved
type r, qir.

We build on Arcidiacono and Miller (2011) and use in a first step a reduced-form
approximation of the employment duration models to estimate θIr and the qir’s. The
posterior probabilities obtained at this stage follow directly from Bayes’ rule:

qir = πrLIir(θIr)
∏Si
s=1 L̃Eisr(θ̃Er )∑

r πrLIir(θIr)
∏Si
s=1 L̃Eisr(θ̃Er )

(5.2)

where L̃Eisr(θ̃Er ) denotes the reduced-form likelihood associated with employment spell
s. Given the qir’s, we then estimate θEr and θUr (holding θEr fixed) in two sequential
maximization steps.

5.1 Step 1: posterior type distributions

We use the initial wage and the job-to-job transitions to estimate the conditional
probabilities of being each unobserved type, qir. We specify the job-to-job transitions
between jobs that pay w to jobs that pay w′ as the product between the hazard rate
out of a job that pays w and the probability that the accepted wage is w′ given that
the current wage is w. The exact specification is given in Appendix C.1.

We specify the likelihood of the initial wage as following a tobit structure. Denote wIi
as individual i’s initial wage level, and XI

i a set of observed characteristics that may
affect this initial wage.17 Denoting by Φ(.) and φ(.) the cdf and pdf of a standard
normal distribution, the likelihood contribution of initial wages is then

LIir(θIr) =
[
Φ
(

ln(w)−XI
i θ

I
xr

σIr

)]
1{wIi=w}

·
[

1
σIr
φ

(
ln(wIi )−XI

i θ
I
xr

σIr

)]
1{wIi>w}

(5.3)

where θIr =
(
θIxr, σ

I
r

)′
. We specify XI

i as a function of the individual’s type and year

17We use the first recorded wage in each individual’s work history. Similarly, for the job-to-job
transitions we use the observed wages in each spell; see Appendix C.1.
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indicators where the effects of the year indicators are fixed across types:

XI
i θ

I
xr = θI1r + θI21{yi = 2004}+ θI31{yi = 2005} (5.4)

Given these parameters and the reduced form parameters θ̃Er governing the job-to-job
transitions, we can estimate the qir’s.

5.2 Step 2: employed-side parameters

With the estimated conditional type probabilities (the qir’s) in hand, we now pro-
ceed with the estimation of the employed-side parameters. Estimation proceeds as
it would without unobserved heterogeneity but where the qir’s are used as weights.
For each employment spell s, we observe its duration, tis, and the wage, wis. Let
wis+1 = 0 when individual i transitions to unemployment during their sth employ-
ment spell. Estimation of the type-r job separation rate δ0r then directly follows as
the weighted number of transitions to unemployment divided by the weighted time
spent in employment:

δ̂0r =
∑N
i=1 qir

∑Si
s=1 1{wis+1 = 0}∑N

i=1 qir
∑Si
s=1 tis

(5.5)

We estimate the other employed-side parameters via maximum likelihood. We express
the type-r hazard from moving from a job that pays w to one that pays w′ as follows:

hww′r = λrfww′rpww′r (5.6)

The wage offer distribution, fww′r, is parameterized using an ordered logit that de-
pends on current wages. First, we specify the wage cutoffs as having the following
recursive structure:

φw =


θφ1 for w = w

φw− + exp(θφ2 + θφ3 ln(w) + θφ4 ln(w)2) for w > w
(5.7)

where w− denotes the preceding support point of the wage distribution. These cutoffs
specify how large the latent index needs to be to reach a particular wage bin.
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We then define the distribution of offered wages using the wage cutoffs as well as
current wages w:

fww′r =


Λ(φw +Xfθfr ) for w′ = w

Λ(φw′ +Xfθfr )− Λ(φw′− +Xfθfr ) for w < w′ < w

1− Λ(φw− +Xfθfr ) for w′ = w

(5.8)

Xfθfr = θf1 ln(w) + θf21{w = w}+ θf3r (5.9)

where Λ(·) denotes the logistic function. The log of the current wage then shifts the
latent index and the unobserved types affect the offered wage distribution through
the location shift θf3r.

Finally, given the logistic distribution assumption on the instantaneous shock ε, the
conditional choice probabilities that enter Equation (5.6) can be written as:

pww′r = exp (Vw′r − Vwr − c)
1 + exp (Vw′r − Vwr − c)

(5.10)

In practice, we use the Bellman equation for the value function of employment and
solve for a fixed point in the differenced value functions that appears in Equation
(5.10), for all the states.

We collect the employed-side parameters that remain to be estimated in θE2r ≡
(λr, θφ, θfr , α, c)′. It follows that the likelihood contribution of a job spell s for a
type-r worker i is given by

LEisr(δ0r, θ
E
2r) =

∏
w,w′

[
(hww′r)1{wis=w,wis+1=w′} exp(−hww′rtis)

]
1{wis=w} (5.11)

We then estimate these parameters by maximizing the expected complete log-likelihood
with respect to θE2r:

max
θE2r

N∑
i=1

2∑
r=1

Si∑
s=1

qir ln
(
LEisr(δ̂0r, θ

E
2r)
)

(5.12)
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5.3 Step 3: unemployed-side parameters

In the third and final step, we estimate the distribution of offered wages out of
unemployment, gwr(t), and the offer arrival rates, λr(t), using maximum likelihood.
We then rely on our constructive identification strategy to estimate the flow payoff
of unemployment.

Note that the type-r hazard of leaving unemployment at duration t to wage w is given
by:

hwr(t) = λr(t)gwr(t)pwr(t) (5.13)

In the next subsections, we show how each of these terms are specified.

5.3.1 Specification of pwr(t)

We focus first on expressing pwr(t) in a way consistent with the structure of the model.
We introduce κww′r ≡ Vwr − Vw′r, so that exp(κww′r) = exp(Vwr)/ exp(Vw′r). Using
this identity, we can express the ratio of the conditional choice probabilities out of
unemployment as:

pwr(t)
pw′r(t)

= exp(Vwr)/[exp(V0r(t)) + exp(Vwr)]
exp(Vw′r)/[exp(V0r(t)) + exp(Vw′r)]

= exp(κww′r) [1− pwr(t){1− exp(−κww′r)}] (5.14)

We can therefore express all conditional choice probabilities relative to one other
conditional choice probability, say the one associated with the minimum wage pwr(t),
and the corresponding κwwr terms:

pwr(t) = pwr(t) exp(κwwr)
1− pwr(t)

[
1− exp(κwwr)

] (5.15)

Furthermore, we express the CCPs of accepting an offer from the first wage bin in
terms of a parameterized hazard rate out of unemployment to the first bin:

pwr(t) = hwr(t)
λr(t)gwr(t)

(5.16)
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where18

hwr(t) = exp(Xhθhr ) with (5.17)

Xh =
[
1 t−1 t−1 ln(t) t2 t3

]
(5.18)

It follows that we can express the CCPs as

pwr(t) =


hwr(t)

λr(t) gwr(t) for w = w

hwr(t) exp(κwwr)
λr(t) gwr(t)−hwr(t)[1−exp(κwwr)] for w > w

(5.19)

5.3.2 Specification of λr(t)

We parametrize the offer arrival rates λr(t) as

λr(t) = exp(Xλθλνλr + ψλr ) where (5.20)

Xλ =
[
1 t t2 t3

]
(5.21)

νλ1 = 1 and ψλ1 = 0 (5.22)

The type-specific parameters (νλr , ψλr ) provide a parsimonious scale and location shift
of the common Type 1 profile.

5.3.3 Specification of gwr(t)

Finally, we parameterize the offered wages gwr(t) using a similar ordered logit struc-
ture to that used in the employed offer distribution. We take the wage cutoffs φ as
given from the employed side in Equation (5.7), and add a type-specific variance-scale
parameter βr, a level shifter, γ1r, and a duration shifter, γ2r, specifying the wage offer

18We chose this polynomial because it fits the nonparametric Nelson–Aalen hazard estimates the
best.
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distribution out of unemployment as:

gwr(t) =


Λ
(
βrφw + γ1r + γ2r ln(t)

)
for w = w

Λ (βrφw + γ1r + γ2r ln(t))− Λ
(
βrφw− + γ1r + γ2r ln(t)

)
for w < w < w

1− Λ
(
βrφw− + γ1r + γ2r ln(t)

)
for w = w

(5.23)

Note that the only (type-specific) parameters to estimate are βr, γ1r, and γ2r.

5.3.4 Estimation of pwr(t), λr(t), and gwr(t)

Putting the three components together, the structural hazards are given by

hwr(t) =


hwr(t) for w = w

hwr(t) gwr(t)
gwr(t)

exp(κwwr)
λr(t) gwr(t)−hwr(t)[1−exp(κwwr)] for w > w

(5.24)

We estimate these structural parameters in a maximum likelihood procedure, strat-
ified by types. First, we estimate the parameters θU1 = (θλ, θh1 , β1, γ11, γ21)′ for
Type 1 individuals. Then, given these estimates we estimate the parameters θU2 =
(νλ2 , ψλ2 , θh2 , β2, γ12, γ22)′ for the second type. In both cases, we impose that the CCPs
are non-decreasing in t.19

The likelihood contribution of a type-r individual i’s spell s̃ is

LUis̃r(θUr ) =
∏
w

{
[hwr(tis̃)]1{wis̃=w} exp

(
−
∫ tis̃

0
hwr(u) du

)}
(5.25)

We first estimate the parameters θU1 as follows:

max
θU1

N∑
i=1
qi1

S̃i∑
s̃=1

ln
(
LUis̃1(θU1 )

)
(5.26)

s.t. pw1(t) ≤ pw1(t+ 1) for 1 ≤ t < T − 1 (5.27)

pw1(1) ≥ ε (5.28)

pw1(T ) ≤ 1− ε (5.29)

19Appendices C.2.1 and C.2.2 show how these constraints simplify.
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for some small ε and where T = 269 denotes the end of our time window.20

Taking the shape of the offer arrival process as given, we then estimate the remaining
type r = 2 parameters as follows:

max
θU2

N∑
i=1
qi2

S̃i∑
s̃=1

ln
(
LUis̃2(θU2 )

)
(5.30)

s.t. pw2(t) ≤ pw2(t+ 1) for 1 ≤ t < T − 1, (5.31)

pw2(1) ≥ ε (5.32)

pw2(T ) ≤ 1− ε (5.33)

5.3.5 Estimation of flow payoff of unemployment br(t)

For the last remaining parameters, we first need to calculate the value function and
its first derivative. Given the estimates of the employed and unemployed parameters,
we calculate V0r(t) pointwise at each duration t using21

V0r(t) =


α ln(w)−

∑
w′ λrfww′r ln(1−pww′r)

ρ
− δ0r+ρ

ρ
ln
(

pwr(t)
1−pwr(t)

)
for t = 0

α ln(w)−
∑

w′ λrfww′r ln(1−pww′r)+δ0rV0r(0)
δ0r+ρ − ln

(
pwr(t)

1−pwr(t)

)
for t > 0

(5.34)

From the time trajectory of the value function, we estimate its first derivative as

V̇0r(t) = V0r(t+ ∆τ)− V0r(t)
∆τ (5.35)

where ∆τ is an arbitrarily small time interval.22

We finally calculate the flow payoff of unemployment using the expression

br(t) = ρV0r(t) +
∑
w

λr(t)gwr(t) ln(1− pwr(t))− V̇0r(t) (5.36)

where ρ = 0.05 and all of the other right-hand side parameters have been estimated
in previous steps.
20In practice we set ε = 5× 10−4.
21This expression would appear as though V0r(t) is heavily overidentified as the expression holds for
all wages w. However, we have already imposed the structure of the model prior to this stage so
that all values of w lead to the same value of V0r(t).

22We set ∆τ = 10−5 in our application.
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6 Results

We now discuss our estimation results. We begin with the employed-side parameters,
showing substantial permanent heterogeneity (through the unobserved types) as well
as showing the importance of current wages on future wage offers. We then turn
to the unemployed side where the nonstationarities lie. Duration dependence affects
both the rate at which offers are received as well as the size of the wage offers, both
of which decline over time. As a result, workers become more willing to accept lower
wage offers over time.

6.1 Employed-side results

Table 5 below shows the estimates of the employed-side parameters with the exception
of the initial conditions and the wage offer distribution. Most workers (87%) are
classified as Type 1. Relative to Type 2 workers, these workers receive offers at a lower
rate and have higher job destruction rates. Type 1 workers expect to receive a job offer
once in every 2.9 years (0.349 annually) and have a 25.9% chance of separating from
their current job per annum; Type 2 workers receive offers slightly more frequently
(one in every 2.5 years or 0.408 per annum) and separate from their jobs substantially
less frequently (8.3% probability per annum). It follows that the index of search
frictions, which corresponds to the average number of job offers received during any
given employment spell (Ridder and van den Berg, 2003), is substantially higher for
this group of individuals (4.9 vs. 1.3 for Type 1 individuals) who also tend to have
higher initial wages. The mean index of search frictions across types is equal to 1.8,
a value which fits in the range of the estimates based on the joint distribution of job
durations and wages for French labor force survey data, but substantially lower than
those for CPS data in the US (Ridder and van den Berg, 2003).

The estimated parameter associated with the flow utility of log wages is equal to 0.323,
which is about a third in magnitude of the cost of switching jobs. The switching cost
translates directly into the probability of switching to a job that pays the same wage,
resulting in the probability of acceptance of a same-wage job of 27%.23 The flow

23The probability of switching to a same-wage job conditional on receiving a same wage offer is
exp(−c)/(1 + exp(−c)) = exp(−.986)/(1 + exp(−.986)) = 0.27.
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utility parameter is sufficiently large as to produce substantial heterogeneity in the
probability of accepting a job given the current and offered wage. For example, Type
2’s employed in the highest wage bin who receive an offer from the lowest wage bin
have an acceptance probability of less than 1%; those in the lowest wage bin who
receive an offer from the highest wage bin have an acceptance probability of 96%.

Table 5: Structural parameter estimates, employed side

Parameter Estimate
Type 1 Type 2

λ Offer arrival rate 0.349 0.408
[0.294, 0.421] [0.363, 0.495]

δ Job separation rate 0.259 0.083
[0.258, 0.261] [0.082, 0.085]

λ/δ Search friction index 1.345 4.888
[1.137, 1.610] [4.345, 5.878]

α Flow utility of log wages 0.323
[0.287, 0.370]

c Job switching cost 0.986
[0.730, 1.243]

π Type probability 0.867 0.133
[0.864, 0.871] [0.129, 0.136]

Notes: The offer arrival rate λ and the job separation rate δ are yearly rates. The flow utility of log
wages α and the job switching cost c are fixed across heterogeneity types. 95% bootstrap confidence
intervals in brackets (500 replications).
Source: CERS-HAS, authors’ own calculations.

As wage offers are allowed to depend on the wage in the current job, Figure 2 shows
the offer distributions for workers currently in wage bin 1, 10, 20, 30, 40, and 50.
At any current wage, Type 1’s face a worse wage offer distribution than Type 2’s.
However, as the current wage rises, the distribution of offered wages shifts to the right
for both types. Hence a Type 1 worker currently working in the 40th wage bin faces a
better offer distribution than a Type 2 worker currently making the minimum wage.
As shown in Table 10 in Appendix D, Type 1 workers also have lower initial wages.
Virtually all (over 99%) of workers in each of the first ten initial wage bins are Type
1 compared to less than 2% in the top initial wage bin.
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Figure 2: Wage offer distribution, employed side
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Notes: Distributions are conditional on the current wage bin. The probability mass of bin 1 offers
are represented on the secondary vertical axis (right). Error bars represent 95% bootstrap confidence
intervals (500 replications).
Source: CERS-HAS, authors’ own calculations.

6.2 Unemployed-side results

We now turn to the unemployed-side results. Our model allows for nonstationarities
along multiple dimensions. Figure 3 shows one of these dimensions, revealing how
unemployed offer arrival rates evolve over time. For both types, increased unemploy-
ment durations are associated with fewer offers. For Type 1’s, offers come in at a rate
of 2.9 per year at the beginning of the unemployment spell but fall to a rate of 1 per
year by the end of the time window. Type 2’s, who already have better prospects on
the employed side, receive offers at a much higher rate, beginning at a rate of 6.1 per
year but falling to the same rate as Type 1 individuals by benefit expiration.
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Figure 3: Offer arrival rates out of unemployment
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Notes: Annual rates. Shaded regions represent 95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.

A second source of nonstationarity, illustrated in Figure 4, is in the offered wage
distribution for unemployed workers. Panels (a) and (b) show stark differences in the
offer distributions between offers at the start of unemployment (t = 1) and at the end
of our time window (t = T = 269 days). At t = 1, Type 2’s face a much better offer
distribution that Type 1’s. However, this advantage vanishes near benefit expiration.
As unemployment duration increases, the offer distributions for both types become
substantially worse. Notably, Panel (c) shows that this deterioration of the offered
wage distribution is larger than the initial wage offer differences across types: Type
1’s at t = 1 face a better wage offer distribution than Type 2’s at t = 269.

A third and last source of nonstationarity is the flow payoff of unemployment. The
evolution of these are displayed in Figure 9 in Appendix D. The flow payoff drops
sharply upon entering unemployment and then remains relatively flat. However, for
both types of individuals, the flow value decreases again close to benefit expiration.
In Figures 10 and 11 we show how these three sources of nonstationarity combined—
offer arrival wages, wage offers, and the flow payoff of unemployment—affect the
unemployment-to-job transitions and the value function of unemployment, respec-
tively. As unemployment duration increases, the value function for unemployment
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Figure 4: Wage offer distribution, unemployed side

(a) t = 1

0

1

2

3

4

0

20

40

1 10 20 30 40 50
Wage bin

P
ro

ba
bi

lit
y 

m
as

s 
(%

)

P
robability m

ass (bin 1, %
)

Type 1 2

(b) t = T

0

1

2

3

4

0

20

40

1 10 20 30 40 50
Wage bin

P
ro

ba
bi

lit
y 

m
as

s 
(%

)

P
robability m

ass (bin 1, %
)

Type 1 2
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(d) Bin 1 mass over time
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contrasts the Type 1 distribution at duration t = 1 to the Type 2 distribution at duration t = T .
Panel (d) compares the evolution of the probability mass of wage offers from the first bin across
types. Error bars represent 95% bootstrap confidence intervals (500 replications).
Source: CERS-HAS, authors’ own calculations.

falls. Correspondingly, the job acceptance probabilities rise sharply over the course
of unemployment (see Figure 12 in Appendix D).

With job acceptance probabilities rising, the ratio of average accepted wages to aver-
age offered wages falls over time. This is displayed in Figure 5 below. Like with the
flow payoff of unemployment, we see a sharp drop in the accepted/offered wage ra-
tio immediately after entering unemployment. As unemployment duration increases,
workers gradually become less and less selective over which jobs they accept. By the
time benefits are about to expire, job seekers find almost all jobs acceptable.

Finally, the combined effects of these different sources of nonstationarities are dis-
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Figure 5: Offered vs. accepted wages out of unemployment
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Source: CERS-HAS, authors’ own calculations.

played in Table 6. The first row points to a dynamic selection pattern whereby
the relative share of Type 2 individuals declines over the course of unemployment.
Namely, because Type 2’s receive offers at a much higher rate than Type 1’s, Type
2’s exit unemployment faster than their Type 1 counterparts, making up to 12% of
those who leave in the shortest durations but only 8.4% of those who leave in the
longest durations. As shown in the first column, this translates to Type 2 individuals
who exit to a job having unemployment durations that are on average eleven days
shorter than their Type 1 counterparts.

Averaging across heterogeneity types illustrates how well our model matches the pat-
terns displayed in Table 4 in Section 4.1. The model slightly underpredicts average
unemployment duration. Importantly though, it matches the key patterns of declin-
ing accepted wages out of unemployment as duration of unemployment increases,
both in terms of the mean accepted wage and the share of accepted job offers at the
minimum wage.

Taken together, our estimation results provide evidence that nonstationarity in the of-
fer arrival rates, the wage offer distribution, as well as the flow payoff of unemployment
are central features of the job search environment over the course of unemployment.
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Table 6: Summary statistics by type, unemployment-to-employment transitions

Overall By unemployment duration (days)
1–30 31–60 61–90 91–180 181–269

Pop. prob. of Type 2 (%) 10.0 12.0 11.4 10.3 8.7 8.4
Unconditional on type
Mean U duration (days) 100.6 17.1 44.9 74.9 131.1 221.4
Mean acc. wage (HUF) 3,102 3,532 3,242 3,126 2,960 2,708
Share w (%) 30.9 21.7 27.1 30.1 34.0 40.5
Type 1
Mean U duration (days) 101.7 17.1 44.9 74.9 131.2 221.2
Mean acc. wage (HUF) 2,892 3,227 2,988 2,905 2,789 2,605
Share w (%) 32.8 23.5 29.1 32.1 35.8 42.0
Type 2
Mean U duration (days) 90.8 16.9 44.6 74.7 129.4 222.6
Mean acc. wage (HUF) 4,990 5,761 5,208 5,044 4,744 3,836
Share w (%) 13.9 8.3 11.4 13.2 15.5 24.0

Notes: The table shows summary statistics of simulated UE transitions, based on model estimates.
The last row shows the share of UE transitions to the lowest wage bin (75 to 107% of the minimum
wage). Accepted wages recoded as w = max(w,wmin). Summary statistics are weighted by type
probabilities. Accepted wages are daily wage levels reported in Hungarian forints (200 HUF ≈ 1
USD in 2004).
Source: CERS-HAS, authors’ own calculations.

Our findings also highlight the importance of allowing for worker-level unobserved
heterogeneity. In particular, workers differ markedly in the wage offer distribution
and job offer arrival rates they face, which constitutes a source of spurious duration
dependence.

7 Conclusion

In this paper, we extend the canonical continuous-time job search model with on-
the-job search to allow for preference shocks. Incorporating preference shocks and
using the insights from conditional choice probability methods results in constructive
identification of the model parameters, even in rich nonstationary settings. In terms
of estimation, nonstationary search models typically require solving a nonlinear dif-
ferential equation within the maximization routine. But in our setting no differential
equation needs to be solved to estimate the parameters of the model. As a result,
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the computational costs are small for the class of nonstationary search models we
consider.

We apply our methods to administrative data from Hungary. Nonstationarities when
unemployed operate through three sources: the offered wage distribution, the offer
arrival rates, and the flow payoff of unemployment. Our model estimates show that
the wage offer distribution becomes worse and offer arrivals slow substantially as the
duration of unemployment increases. Job seekers then become less selective in the
jobs they are willing to accept over the course of unemployment, implying that the
gap between accepted and offered wages shrinks with unemployment duration.

Beyond this particular application, our framework can be applied to a broad class
of job search models which may include heterogeneous job types, involuntary wage
changes, as well as aggregate labor market shocks. Our approach can also be extended
in several other directions. Notably, a natural research avenue would be to extend the
class of job search models considered in this paper to accommodate more general forms
of nonstationarity. For instance, it would be interesting to explore the identification
of a model where both the value of unemployment and the value of employment are
allowed to vary as a function of calendar time, as a more flexible way to capture
aggregate fluctuations. We leave this analysis for future research.
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Online Appendix

A Mathematical appendix

A.1 Proof of Theorem 1

A.1.1 Proof of Lemma 2 (ii)

Akin to Equation (3.2), for any triple (w,w′, w̃) ∈ Ω3
w:ln

(
hss
′

ww

λss′fs′w −hss
′

ww

)
+ ln

(
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′s
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)
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s′s
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(A.1)

Note that now we exploit transitions across job types s and s′, thus we are able to
use the same wage in the old and new jobs. This nonlinear system of two equations
and two unknowns—λss

′ and λs′s—can be rewritten as follows:Bw′λ
ss′ + Cw′λ

s′s − Aw′λss
′
λs
′s

Bw̃λ
ss′ + Cw̃λ

s′s − Aw̃λss
′
λs
′s

 =
0

0

 (A.2)

where the A, B, C coefficients are defined in Lemma 2 (ii). Assuming Aw′ 6= 0
(Condition (a) from Lemma 2 (ii)) and replacing λss′λs′s in the second equation by
its expression from the first equation identifies the ratio of the arrival rates, with:

λs
′s =

(
Bw′Aw̃ −Bw̃Aw′

Aw′Cw̃ − Aw̃Cw′

)
λss

′

where Aw′Cw̃ − Aw̃Cw′ 6= 0 from Condition (c). Finally, substituting for λs′s in the
first equation identifies, under Condition (b), λss′ and then λs

′s, which admit the
following closed-form expressions:

λss
′ = Bw′Cw̃ −Bw̃Cw′

Bw′Aw̃ −Bw̃Aw′
and λs

′s = Bw′Cw̃ −Bw̃Cw′

Aw′Cw̃ − Aw̃Cw′
(A.3)

Having identified the arrival rates λss′ and the wage offer distribution f sw, identification
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of the CCPs pss′ww′ follows. Then, we can identify css
′ + cs

′s, and together with the
assumption that switching costs are symmetric (i.e., css′ = cs

′s), css′ is identified.

A.1.2 Proof of Lemma 3 (ii)–(iii)

(ii) Identification of CRRA preferences. We assume that workers are endowed
with CRRA preferences, such that:

u(w) = α
w1−θ

1− θ
From the prior identification result in Lemma 3 such that uw is identified up to a
constant, it follows that for w̃ > w′ > w, the following ratio is identified:

uw′ − uw
uw̃ − uw

= w′1−θ − w1−θ

w̃1−θ − w1−θ (A.4)

In order to establish identification of the risk aversion parameter θ, we show that the
function θ 7→ y1−θ−x1−θ

z1−θ−y1−θ , where z > y > x > 0, is monotonically increasing on (0,∞).

f(θ) = y1−θ − x1−θ

z1−θ − y1−θ (A.5)

f ′(θ) =
(
z1−θ − y1−θ

)−2
·
[(
x1−θ ln x− y1−θ ln y

) (
zθ − yθ

)
−
(
y1−θ − x1−θ

) (
y1−θ ln y − z1−θ ln z

)]
(A.6)

f ′(θ) > 0 (A.7)

⇔
(
x1−θ ln x− x1−θ ln y

) (
z1−θ − y1−θ

)
+
(
x1−θ ln y − y1−θ ln y

) (
z1−θ − y1−θ

)
>
(
z1−θ ln y − z1−θ ln z

) (
y1−θ − x1−θ

)
+
(
y1−θ ln y − z1−θ ln y

) (
y1−θ − x1−θ

)
(A.8)

⇔
[
x1−θ ln(x/y)

] (
z1−θ − y1−θ

)
>
[
z1−θ ln(y/z)

] (
y1−θ − x1−θ

)
(A.9)

⇔ ln(y/x)
[
1− (y/z)1−θ

]
< ln(z/y)

[
(y/x)1−θ − 1

]
(A.10)

⇔ (y/x)1−θ ln(z/y) + ln(y/x)(y/z)1−θ > ln(y/x) + ln(z/y) (A.11)
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The above condition holds if and only if g(θ) > g(1), where, for all θ > 0, g(θ) ≡
(y/x)1−θ ln(z/y) + (y/z)1−θ ln(y/x). The derivative of g(·) is given by:

g′(θ) = ln(y/x) ln(z/y)[(y/z)1−θ − (y/x)1−θ]

It follows that g′(θ) < 0 on (0, 1) and g′(θ) > 0 on (1,∞). Identification of θ follows.

Having identified θ, it follows that the utility coefficient α is identified and given by
the following closed-form expression:

α = uw̃ − uw
w̃1−θ − w1−θ (A.12)

which yields full identification of the flow utility of wages.

(iii) Identification of φs up to V0(0). We can express the log odds ratio in terms
of the structural parameters using Equation (3.7):

ln
(

pss̃ww̃
1− pss̃ww̃

)
= V s̃

w̃ − css̃ − V s
w

=
(
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[
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′
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)
− ln
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1− ps̃s′w̃w′

)]
−
∑
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∑
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′
f s
′

w′ ln
(
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) )/
(ρ+ δs̃0)

−
(
uw + φs + δs0V0(0)−

∑
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∑
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′

ww′

[
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′ + ln

(
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′

ww′

)
− ln
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)]
+
∑
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∑
s′
λss

′
f s
′

w′ ln
(
1− pss′ww′

) )/
(ρ+ δs0)− css̃ (A.13)

Collecting all known terms on the left hand side, the equation can be rearranged as:

κss̃ww̃ = 1
ρ+ δs̃0

φs̃ − 1
ρ+ δs0

φs +
(

δs̃0
ρ+ δs̃0

− δs0
ρ+ δs0

)
V0(0) (A.14)
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where

κss̃ww̃ = ln
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1− pss̃ww̃

)
+ css̃
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(A.15)

Now, since φ1 = 0, writing Equation (A.14) for s = 1 yields:

κ̃1s̃
ww̃ = 1

ρ+ δs̃0
φs̃ +

(
δs̃0

ρ+ δs̃0
− δ1

0
ρ+ δ1

0

)
V0(0) (A.16)

Thus, we can write φs̃ as a known linear function of V0(0). Furthermore, note that
when the job destruction rates are not specific to job types, i.e., δs0 = δ0 for all s, the
non-pecuniary payoffs φs are directly identified from Equation (A.16).

A.2 Extension: aggregate shocks

One can extend our identification strategy to accommodate aggregate shocks. Specif-
ically, consider the case where the market economy can be in one of K different states,
where the job offer arrival rates, the job destruction rates, the rates of involuntary
wage mobility, the offered wage distributions, and the flow payoff of unemployment
are allowed to depend on the state of the economy. We further assume that the
econometrician perfectly observes the state of the economy. We denote the rate at
which the economy transitions from state k to k′ by qkk′ , which is identified from the
observed transition rates across market states.

On the employment side, identification of the state-specific offer arrival rates, destruc-
tion and involuntary wage mobility rates, offered wage distribution and conditional
choice probabilities, along with the switching cost all follow directly from the baseline
case, leaving the flow payoff of employment as the only unknown parameters. The
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value function of employment V s
wk is given by:
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w′k − V s

wk = ln
(
pss
′

ww′k

)
− ln

(
1− pss′ww′k

)
+ css

′ .

Subtracting off the corresponding expression for V s
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(A.18)

where the difference in value functions on the left and right-hand sides are given by the
sum of the log odds ratio and the switching cost. This identifies the wage component
of the flow payoff up to a constant. Identification of the non-pecuniary components
φs then proceeds in a similar fashion, using instead the job-to-job transitions across
job types.

Identification of the unemployment-side parameters then follows from similar argu-
ments as in Section 3.3. The same strategy applies to a context with aggregate shocks,
after conditioning the hazard rates out of unemployment on the (observed) states of
the economy.

B Data appendix

B.1 Sample creation

We define our analysis sample as follows:

1. Flip primary and secondary work arrangements (PWAs, SWAs)

• In the raw data, PWA is defined as the arrangement with the highest
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earnings in the month. This setup may result in PWAs and SWAs flipping
in the raw data, e.g. when a worker works only a few days in their PWA.

• Solution: Looping through all worker-months, we flip variables related to
PWAs and SWAs as follows:

month firmid1 var1 firmid2 var2 month firmid1 var1 firmid2 var2
t− 1 A xt−1 B yt−1  t− 1 A xt−1 B yt−1
t B xt A yt t A yt B xt

2. Calculate durations

(a) Employed: we calculate or infer spell-year durations in PWA. See Ap-
pendix B.2 for details.

(b) Unemployed: we observe daily unemployment durations in the raw data.
For spells that end after October 2005 (the end date of our sample), we flag
spells as right-censored and shorten their durations by the out-of-sample
portion. Therefore, our analysis sample includes U spells that are censored
earlier than 269 days.

3. Define EE, EU, UE, EN, NE transitions

4. Calculate wages

(a) Calculate counterfactual minimum wage earnings: how much the worker
would have earned in a day working full time in a minimum-wage job

(b) Calculate daily wages as total earnings in a spell-year, divided by spell-year
durations

(c) Discretize wages: see Appendix B.3 for details

(d) Calculate accepted wages

5. Define covariates for population probabilities

6. Save analysis sample
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B.2 Correcting employment spell durations

The raw data on employment spells are recorded at a monthly frequency. In each
month, the total number of days worked (days) and total earnings are known. Fur-
thermore, days worked and earnings at PWAs and SWAs (days_1, days_2) are known
if the arrangement was ongoing on the 15th of the month. We focus on PWAs only.
Table 7 summarizes the possible ways in which EE transitions show up in the raw
data when observations on PWAs are not missing. When days equals days_1, we
know with certainty that the transition happened on the boundary of the month: we
label this as a clean EE transition (see Panel a). When days does not equal days_1,
we need to make some assumptions about the uncovered days: Panels b-d illustrate
these cases that we label fuzzy. The bottom tables summarize our assumptions on
the number of days worked in each PWA.

Table 7: EE scenarios in raw data, no missing PWAs
(a) Clean EE

days days_1 firmid1
31 31 A
30 30 A
31 31 B

⇓
no assumption needed

(b) Fuzzy EE 1

days days_1 firmid1
31 31 A
30 16 A
31 31 B

⇓
31 A
16 A
14 B
31 B

(c) Fuzzy EE 2

days days_1 firmid1
31 31 A
30 16 B
31 31 B

⇓
31 A
14 A
16 B
31 B

(d) Fuzzy EE 3

days days_1 firmid1
31 31 A
30 16 B
31 31 C

⇓
31 A

a < 14 A
16 B

30− 16− a C
31 C

Table 8 summarizes our assumptions when PWA data are missing.

Table 8: EE scenarios in raw data, missing PWAs
(a)

days days_1 firmid1
31 31 A
25 . .
31 31 A

⇓
31 A
25 A
31 A

(b)

days days_1 firmid1
31 31 A
25 . .
31 31 B

⇓
31 A

d < 15 A
25− d B
31 B

(c)

days days_1 firmid1
31 31 A
10 . .
7 . .
30 30 B

⇓
31 A
10 A
7 B
31 B

(d)

days days_1 firmid1
31 31 A
20 . .
25 . .
31 31 B

⇓
31 A

a < 15 A
20− a+ 25− b X

b < 15 B
31 B
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Furthermore, we censor spells that spill over calendar years. We do so in order to
track yearly wage changes observed in the raw data. Additionally, we censor spells
at October 31st due to data limitations, as mentioned in the text. As an example, a
continuous E spell from March 2003 until May 2005 that pays wage w and is followed
by a EE transition to a job paying w′ is represented as a right-censored spell of 8
months in w, a right-censored spell of 10 months in w, and a spell of 5 months with
a EE transition from w to w′.

B.3 Discretizing wages

We discretize the continuously observed wages in the data into W bins, with W = 50
for our main results. First, we calculate the average daily wage for each worker
in a given year across all months spent in employment. Then we categorize these
continuous wages into discrete bins. The first bin contains wages between 75 and 107
percent of the effective minimum wage.24 We drop wage observations below 75 percent
of the effective minimum wage because we cannot distinguish between full-time and
part-time earners in the data. Furthermore, we add a 7 percent padding to the right
cutoff of the first bin to ensure that we include all minimum wage earners in the
first bin. We then split the other wage observations, censored at the 99th percentile,
evenly across the remaining W −1 bins. We repeat the same discretization procedure
for each calendar year: Figure 6 demonstrates our discretization method for 2004 for
various groups.

Figure 7 plots the resulting discrete distribution of current wages. Current wages
for employment spells that lead to a job-to-job transition, on the left panel, have a
mean of 3,428 HUF (percentiles: 25th 1,738 HUF; 50th 2,347 HUF; 75th 3,685 HUF).
Current wages for all employment spells, on the right panel, have a mean of 3,670 HUF
(percentiles: 25th 1,738 HUF; 50th 2,557 HUF; 75th 4,249 HUF). Similarly, Figure
8 plots the discrete distribution of accepted wages for job-to-job and unemployment-
to-employment transitions. Accepted wages for job-to-job transitions have a mean
of 3,657 HUF (percentiles: 25th 1,738 HUF; 50th 2,516 HUF; 75th 4,056 HUF).
Accepted wages out of unemployment are more right-tailed than those for job-to-job

24During our sampling period, Hungary had a simple minimum wage policy: 50,000 HUF in 2003,
53,000 HUF in 2004, and 57,000 HUF in 2005 (200 HUF ≈ 1 USD in 2004).
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Figure 6: Discretizing observed wages
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Notes: Histograms of daily wage rates in 2004 with 50 HUF bin width, truncated at the 95th
percentile (200 HUF ≈ 1 USD in 2004). Vertical lines denote selected wage bin cutoffs. Panel
(a): current daily wages for employment spells that lead to an EE transition. Panel (b): accepted
daily wages for employment spells after an EE transition. Panel (c): accepted daily wages for
unemployment spells after a UE transition.
Source: CERS-HAS, authors’ own calculations.
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Figure 7: Discrete distribution of current wages
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Notes: Panel (a): discrete distribution of current wages for employment spells that lead to an EE
transition. Panel (b): discrete distribution of current wages for all employment spells.
Source: CERS-HAS, authors’ own calculations.

Figure 8: Discrete distribution of accepted wages
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Notes: Panel (a): discrete distribution of accepted wages for employment spells that lead to an EE
transition. Panel (b): discrete distribution of accepted wages for unemployment spells that lead to
an employment spell.
Source: CERS-HAS, authors’ own calculations.
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transitions, with a mean of 3,021 HUF (percentiles: 25th 1,802 HUF; 50th 2,427
HUF; 75th 3,543 HUF), in line with the notion that the unemployed tend to move to
lower-paying jobs.

C Estimation appendix

This appendix details our estimation procedure, outlined in Section 5.

C.1 Posterior type distribution

Rather than imposing the structure of the model when classifying types, we instead
choose a flexible functional form for the likelihood of job-to-job transitions. In par-
ticular, we obtain estimates of θIr by maximizing an alternative objective function:

∑
i

ln
∑

r

πrLIir(θIr)
Si∏
s=1
L̃Eisr(θ̃Er )

 (C.1)

where LIir(θIr) was defined in Equation (5.3) and we specify the reduced-form likeli-
hood associated with employment spell s below.

We break the hazard of going from w to w′ into two parts: (i) the hazard of leaving
w-paying job for any other job, and (ii) the probability that the accepted job pays
w′. These two parts are associated with the parameters θ̃hr and θ̃wr , respectively. We
specify the reduced-form hazard of leaving a w-paying job given the individual is of
type-r as:

h̃wsr = exp(θ̃h1r + θ̃h2r ln(ws) + θ̃h3r1{ws = w}+ θ̃h4r1{ys = 2004}+ θ̃h5r1{ys = 2005})
(C.2)

where ys refers to the calendar year of spell s.

Conditional on moving to a new job, for the reduced form we model the accepted
wage as a tobit like in Equation (5.3) but where one of the conditioning variables is
the log of the current wage. Note that here we use the actual observed wage level
in a given spell (unlike for the utility of wages where we use the mean wage in each
bin). L̃Eisr(θ̃Er ) is then given by:
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L̃Eisr(θ̃Er ) =
[∏
w

h̃wsr exp(−h̃wsrts)
]
1{ws=w}

(C.3)

×
[
Φ
(

ln(w)− X̃w
s θ̃

w
xr

σ̃wr

)]1{ws+1=w}

·
[

1
σ̃wr
φ

(
ln(ws+1)− X̃w

s θ̃
w
xr

σ̃wr

)]1{ws+1>w}

with θ̃Er =
(
θ̃hr , θ̃

w
xr, σ̃

w
r

)′
, where X̃w

s θ̃
w
xr is given by:

X̃w
s θ̃

w
xr = θ̃w1r + θ̃w2 ln(ws) + θ̃w3 1{ys = 2004}+ θ̃w4 1{ys = 2005} (C.4)

We then estimate the parameters
(
θIr , θ̃

E
r

)
using:

max
θIr ,θ̃

E
r

∑
i

ln
∑

r

πrLIir(θIr)
Si∏
s=1
L̃Eisr(θ̃Er )

 (C.5)

and recover the conditional type probabilities using:

qir = πrLIir(θIr)
∏Si
s=1 L̃Eisr(θ̃Er )∑

r πrLIir(θIr)
∏Si
s=1 L̃Eisr(θ̃Er )

(C.6)
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C.2 Unemployed-side structural parameters

C.2.1 Optimization constraints for Type 1

The first set of constraints in Equation (5.27) simplify to the following nonlinear
constraints:

pw1(t) ≤ pw1(t+ 1) (C.7)
hw1(t)

λ1(t) gw1(t) ≤
hw1(t+ 1)

λ1(t+ 1) gw1(t+ 1) (C.8)

exp(Xλ
t+1θ

λ)
exp(Xλ

t θλ)
Λ
(
β1φw + γ11 + γ21 ln(t+ 1)

)
Λ
(
β1φw + γ11 + γ21 ln(t)

) ≤
exp(Xh

t+1θ
h
1 )

exp(Xh
t θ

h
1 ) (C.9)

(
Xλ
t+1 −Xλ

t

)
θλ −

(
Xh
t+1 −Xh

t

)
θh1

+ ln
[
1 + exp

(
−β1φw − γ11 − γ21 ln(t)

)]
− ln

[
1 + exp

(
−β1φw − γ11 − γ21 ln(t+ 1)

)]
≤ 0 (C.10)

The second constraint simplifies to the following nonlinear constraint:

pw1(1) ≥ ε (C.11)
hw1(1)

λ1(1) gw1(1) ≥ ε (C.12)

exp(Xh
1 θ

h
1 )

exp(Xλ
1 θ

λ)
1

Λ
(
β1φw + γ11

) ≥ ε (C.13)

Xh
1 θ

h
1 −Xλ

1 θ
λ − ln

[
1 + exp(−β1φw − γ11)

]
≥ ln(ε) (C.14)
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The third constraint simplifies as follows:

pw1(T ) ≤ 1− ε (C.15)
hw1(T ) exp(−κww1)

λ1(T ) gw1(T )− hw1(T )[1− exp(−κww1)] ≤ 1− ε (C.16)

exp(Xh
T θ

h
1 )
[
1 + ε

1− ε exp(−κww1)
]
≤ exp(Xλ

T θ
λ) Λ

(
β1φw + γ11 + γ21 ln(T )

)
(C.17)

Xh
T θ

h
1 + ln

[
1 + ε

1− ε exp(−κww1)
]
≤ Xλ

T θ
λ − ln[1 + exp(−β1φw − γ11 − γ21 ln(T ))]

(C.18)

C.2.2 Optimization constraints for Type r = 2

The first set of constraints in Equation (5.31) simplify to the following nonlinear
constraints:

pw2(t) ≤ pw2(t+ 1) (C.19)
hw2(t)

λ2(t) gw2(t) ≤
hw2(t+ 1)

λ2(t+ 1) gw2(t+ 1) (C.20)

exp(Xλ
t+1θ

λνλ2 + ψλ2 )
exp(Xλ

t θλν
λ
2 + ψλ2 )

Λ
(
β2φw + γ12 + γ22 ln(t+ 1)

)
Λ
(
β2φw + γ12 + γ22 ln(t)

) ≤
exp(Xh

t+1θ
h
2 )

exp(Xh
t θ

h
2 ) (C.21)

(
Xλ
t+1 −Xλ

t

)
θλνλ2 −

(
Xh
t+1 −Xh

t

)
θh2

+ ln
[
1 + exp

(
−β2φw − γ12 − γ22 ln(t)

)]
− ln

[
1 + exp

(
−β2φw − γ12 − γ22 ln(t+ 1)

)]
≤ 0 (C.22)

The second constraint simplifies as follows:

pw2(1) ≥ ε (C.23)
hw2(1)

λ2(1) gw2(1) ≥ ε (C.24)

exp(Xh
1 θ

h
2 )

exp(Xλ
1 θ

λνλ2 + ψλ2 )
1

Λ
(
β2φw + γ12

) ≥ ε (C.25)

Xh
1 θ

h
2 −Xλ

1 θ
λνλ2 − ψλ2 − ln

[
1 + exp(−β2φw − γ12)

]
≥ ln(ε) (C.26)
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The third constraint which ensures that the CCPs are less than one simplifies to the
following nonlinear constraint:

pw2(T ) ≤ 1− ε (C.27)
hw2(T ) exp(−κww2)

λ2(T ) gw2(T )− hw2(T )[1− exp(−κww2)] ≤ 1− ε (C.28)

exp(Xh
T θ

h
2 )
[
1 + ε

1− ε exp(−κww2)
]
≤ exp(Xλ

T θ
λνλ2 + ψλ2 ) Λ

(
β2φw + γ12 + γ22 ln(T )

)
(C.29)

Xh
T θ

h
2 + ln

[
1 + ε

1− ε exp(−κww2)
]
≤ Xλ

T θ
λνλ2 + ψλ2 − ln[1+ exp(−β2φw − γ12 − γ22 ln(T ))]

(C.30)

Table 9: Computation time

Step Elapsed time
Estimate posterior probabilities 24.13 min
Estimate job-to-job structural parameters 12.34 min
Estimate unemployment-to-job structural parameters 7.87 sec
Total 36.77 min

Notes: Computation time of the full three-step estimation procedure, using a random perturbation
around the baseline estimates as starting values. Total includes, on top of the three estimation steps,
reading in the data and estimating nonparametric unemployment-to-employment hazards. Bench-
marked on a 32-core Intel® Xeon® Gold 6134 3.20GHz CPU with 96GB RAM, running MathWorks®
MATLAB® R2018b (9.5.0.1033004).
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D Additional results

Table 10: Type probabilities

Initial wage bin Type probability
Type 1 Type 2

1 99.8% 0.2%
[99.8%, 99.8%] [ 0.2%, 0.2%]

10 99.0% 1.0%
[98.9%, 99.0%] [ 1.0%, 1.1%]

20 96.2% 3.8%
[95.9%, 96.4%] [ 3.6%, 4.1%]

30 87.4% 12.6%
[86.7%, 88.1%] [11.9%, 13.3%]

40 61.8% 38.2%
[60.0%, 63.0%] [37.0%, 40.0%]

50 1.5% 98.5%
[ 1.3%, 1.7%] [98.3%, 98.7%]

Notes: 95% bootstrap confidence intervals in brackets (500 replications).
Source: CERS-HAS, authors’ own calculations.

Figure 9: Flow payoff of unemployment (normalized)
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Notes: Flow payoff normalized w.r.t. t = 0 for each type. Shaded regions represent 95% bootstrap
confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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Figure 10: Structural unemployment-to-employment hazards
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Notes: Annual hazard rates, conditional on exiting to a given wage bin. Shaded regions represent
95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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Figure 11: Value function of unemployment (normalized)
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Notes: Value function normalized w.r.t. the value of unemployment at t = 0 for each type. Shaded
regions represent 95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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Figure 12: CCPs, unemployment-to-employment transitions
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Notes: Shaded regions represent 95% bootstrap confidence band (500 replications).
Source: CERS-HAS, authors’ own calculations.
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