
Assessing Omitted Variable Bias

when the Controls are Endogenous∗

Paul Diegert† Matthew A. Masten‡ Alexandre Poirier§

July 6, 2022

Abstract

Omitted variables are one of the most important threats to the identification of causal effects. Several
widely used methods, including Oster (2019), have been developed to assess the impact of omitted
variables on empirical conclusions. These methods all require an exogenous controls assumption: the
omitted variables must be uncorrelated with the included controls. This is often considered a strong and
implausible assumption. We provide a new approach to sensitivity analysis that allows for endogenous
controls, while still letting researchers calibrate sensitivity parameters by comparing the magnitude of
selection on observables with the magnitude of selection on unobservables. We illustrate our results in
an empirical study of the effect of historical American frontier life on modern cultural beliefs. Finally,
we implement these methods in the companion Stata module regsensitivity for easy use in practice.

JEL classification: C18; C21; C51

Keywords: Treatment Effects, Sensitivity Analysis, Unconfoundedness

∗This paper was presented at Northwestern, Duke, Oxford, Brown, Texas A&M, the joint Bonn-Mannheim seminar, and
the SEA 2021 conference. We thank audiences at those seminars and conferences for helpful conversations and comments. We
thank Hongchang Guo for excellent research assistance. Masten thanks the National Science Foundation for research support
under Grant 1943138.

†Department of Economics, Duke University, paul.diegert@duke.edu
‡Department of Economics, Duke University, matt.masten@duke.edu
§Department of Economics, Georgetown University, alexandre.poirier@georgetown.edu

1

ar
X

iv
:2

20
6.

02
30

3v
2 

 [
ec

on
.E

M
] 

 6
 J

ul
 2

02
2



1 Introduction

Angrist and Pischke (2015, page 74) argue that “careful reasoning about OVB [omitted variables bias] is an

essential part of the ’metrics game.” Largely for this reason, researchers have eagerly adopted new tools that

let them quantitatively assess the impact of omitted variables on their results. In particular, researchers now

widely use the sensitivity analysis methods developed in Altonji, Elder, and Taber (2005) and Oster (2019).

These methods have been extremely influential, with about 3660 and 2560 Google Scholar citations as of

July 2022, respectively. Looking beyond citations, researchers are actively using these methods. Every top 5

journal in economics is now regularly publishing papers which use the methods in Oster (2019). Aggregating

across these five journals, from the three year period starting when Oster (2019) was published, 2019–2021,

33 published papers have used these methods, and often quite prominently.

These methods, however, rely on an assumption called exogenous controls. This assumption states that

the omitted variables of concern are uncorrelated with all included covariates. For example, consider a classic

regression of wages on education and controls like parental education. Typically we are worried that the

coefficient on education in this regression is a biased measure of the returns to schooling because unobserved

ability is omitted. To apply Oster’s (2019) method for assessing the importance of this unobserved variable,

we must assume that unobserved ability is uncorrelated with parent’s education, along with all other included

controls.1

Such exogeneity assumptions on the control variables are usually thought to be very strong and implau-

sible. For example, Angrist and Pischke (2017) discuss how

“The modern distinction between causal and control variables on the right-hand side of a regres-

sion equation requires more nuanced assumptions than the blanket statement of regressor-error

orthogonality that’s emblematic of the traditional econometric presentation of regression.” (page

129)

Put differently: We usually do not expect the included control variables to be uncorrelated with the omitted

variables; instead we merely hope that the treatment variable is uncorrelated with the omitted variables after

adjusting for the included controls. These control variables are therefore usually thought to be endogenous.

In this paper we provide a new approach to sensitivity analysis that allows the included control variables to

be endogenous, unlike Altonji et al. (2005) and Oster (2019). Like these previous papers, however, we measure

the importance of unobserved variables by comparing them to the included covariates. Thus researchers can

still measure how strong selection on unobservables must be relative to selection on observables in order to

overturn their baseline findings.

Overview of Our Approach

In section 2 we describe the baseline model. The parameter of interest is βlong, the coefficient on a treatment

variable X in a long OLS regression of an outcome variable Y on a constant, treatment X, the observed

covariates W1, and some unobserved covariates W2. In section 4 we discuss three causal models which allow

us to interpret this parameter causally, based on three different identification strategies: unconfoundedness,

difference-in-differences, and instrumental variables. Since W2 is unobserved, we cannot compute the long

regression of Y on (1, X,W1,W2) in the data. Instead, we can only compute the medium regression of Y

1Appendix A.1 in Oster (2019) briefly describes one approach to relaxing the exogenous controls assumption in her setting.
We show that this approach changes the interpretation of her sensitivity parameter in a way that may change researchers’
conclusions about the robustness of their results. We discuss this in detail in our appendix A.
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on (1, X,W1). We begin by considering a baseline model with a no selection on unobservables assumption,

which implies that the coefficients on X in the long and medium regressions are the same. Importantly,

this baseline model does not assume the controls W1 are exogenous. They are included solely to aid in

identification of the coefficient on X in the long regression.

We then move to assess the importance of the no selection on unobservables assumption. In section

3 we develop a sensitivity analysis that does not rely on the exogenous controls assumption, while still

allowing researchers to compare the magnitude of selection on observables with the magnitude of selection

on unobservables. Our results use either one, two, or three sensitivity parameters; not all of our results require

all three parameters. The first sensitivity parameter compares the relative magnitude of the coefficients on

the observed and unobserved covariates in a treatment selection equation. This parameter thus measures

the magnitude of selection on unobservables by comparing it with the magnitude of selection on observables.

The second sensitivity parameter compares the relative magnitude of the coefficients on the observed and

unobserved covariates in the outcome equation. The third sensitivity parameter controls the relationship

between the observed and the unobserved covariates; this parameter thus measures the magnitude of control

endogeneity.

We provide three main identification results. Our first result (Theorem 2) characterizes the identified

set for βlong, the coefficient on treatment in the long regression of the outcome on the treatment and the

observed and unobserved covariates. This theorem only requires that researchers make an assumption about

a single sensitivity parameter—the relative magnitudes of selection on observables and unobservables. In

contrast, Oster (2019) requires that researchers reason about two different sensitivity parameters. Moreover,

our result allows for arbitrarily endogenous controls, unlike existing results in the literature. We provide

a closed form, analytical expression for the identified set, which makes this result easy to use in practice.

Using this result, we show how to do breakdown analysis: To find the largest magnitude of selection on

unobservables relative to observables needed to overturn a specific baseline finding. This value is called a

breakdown point, and can be used to measure the robustness of one’s baseline results. We provide a simple

expression for the breakdown point and recommend that researchers report estimates of it along with their

baseline estimates. This estimated breakdown point provides a scalar summary of a study’s robustness to

selection on unobservables while allowing for arbitrarily endogenous controls.

If researchers are willing to partially restrict the magnitude of control endogeneity, then their results will

be more robust to selection on unobservables. Our second result (Theorem 3) therefore characterizes the

identified set for βlong when researchers make an assumption about two sensitivity parameters: the relative

magnitude of selection on unobservables and the magnitude of control endogeneity. We again provide a

simple closed form expression for the identified set, and then show how to use this result to do breakdown

analysis. Finally, if researchers are willing to restrict the impact of unobservables on outcomes, then they

can again obtain results that are more robust to selection on unobservables. In this case, the identified set is

more difficult to characterize analytically (see Theorem 5 in the appendix). However, our third main result

(Theorem 4) shows that we can nonetheless easily numerically compute objects like breakdown points. We

also note that the identified set can be computed easily as well.

In section 5 we show how to use our results in empirical practice. We use data from Bazzi, Fiszbein,

and Gebresilasse (2020, Econometrica) who studied the effect of historical American frontier life on modern

cultural beliefs. Specifically, they test a well known conjecture that living on the American frontier cultivated

individualism and antipathy to government intervention. They heavily rely on Oster’s (2019) method to

argue against the importance of omitted variables. Using our results, we obtain more nuanced conclusions
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about robustness. In particular, when allowing for endogenous controls, we find that effects obtained from

questionnaire based outcomes are no longer robust, but effects from election and property tax outcomes

remain robust. This analysis highlights that previous empirical findings of robustness based on Oster (2019),

for example, may no longer be robust once the controls are allowed to be endogenous.

Related Literature

We conclude this section with a brief review of the literature. We focus on two literatures: The literature

on endogenous controls and the literature on sensitivity analysis in linear or parametric models.

The idea that the treatment variable and the control variables should be treated asymmetrically in the

assumptions goes back to at least Barnow, Cain, and Goldberger (1980). They developed the “linear control

function estimator”, which is based on an early parametric version of the now standard unconfoundedness

assumption. Heckman and Robb (1985, page 190), Heckman and Hotz (1989), and Heckman and Vytlacil

(2007, page 5035) all provide detailed discussions of this estimator. It was also one of the main estimators

used in LaLonde (1986). Stock and Watson (2011) provide a textbook description of it on pages 230–233 and

pages 250–251. Angrist and Pischke (2009) also discuss it at the end of their section 3.2.1. Also see Frölich

(2008). Note that this earlier analysis was based on mean independence assumptions, while the analysis

in our paper only uses linear projections. We do this so that our baseline model is not falsifiable, which

allows us to avoid complications that arise in falsifiable models (e.g., see Masten and Poirier 2021). More

recently, Hünermund and Louw (2020) remind researchers that most control variables are likely endogenous

and hence their coefficients should not be interpreted as causal.

Although control variables are often thought to be endogenous, the literature on sensitivity analysis

generally assumes the controls are exogenous. As mentioned earlier, this includes Altonji, Elder, and Taber

(2005, 2008) and Oster (2019). However, Appendix A.1 of Oster (2019) describes one approach for relaxing

the exogenous controls assumption by redefining her sensitivity parameter δ. We discuss this approach in

detail in appendix A. There we show that such a redefinition implies that δ = 1 is no longer a natural

reference point. In particular, we show that this redefinition can change researchers’ conclusions about

the robustness of their results. This follows because, under endogenous controls, δ does not solely measure

selection on unobservables when the controls are endogenous. Krauth (2016) explicitly allows for endogenous

controls, but he relies on a similar redefinition approach as Oster (2019), which has similar drawbacks. See

Appendix A.3 for more discussion. Cinelli and Hazlett (2020) develop an alternative to Oster (2019) that

allows researchers to compare the relative strength of the observed and unobserved covariates on outcomes

and on treatment selection. Their approach to calibration also imposes the exogenous controls assumption

(see the last paragraph of their page 53, in their section 4.4). Like Oster (2019) and Krauth (2016), they also

briefly mention a redefinition approach to allow for endogenous controls; in Appendix A.3 we show that it

too has similar drawbacks as Oster’s (2019) redefinition approach. Imbens (2003) starts from the standard

unconfoundedness assumption which allows endogenous controls, but in his parametric assumptions (see his

likelihood equation on page 128) he assumes that the unobserved omitted variable is independent of the

observed covariates. Altonji, Conley, Elder, and Taber (2019) propose an approach to allow for endogenous

controls based on imposing a factor model on all covariates, observable and unobservable. Their approach

and ours are not nested; in particular, their results require the number of covariates to go to infinity,

while we suppose the number of covariates is fixed. This difference arises because they explicitly model the

covariate selection process. We instead take the covariates as given and impose assumptions directly on these

covariates, rather than deriving such assumptions from a model of covariate selection. Our results also allow
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researchers to be fully agnostic about the relationship between the observed and unobserved covariates.

There are several other related papers on sensitivity analysis. The sensitivity parameters we use are

defined based on the relative magnitude of different coefficients. That is similar to previous work by Chalak

(2019), who shows how to use relative magnitude constraints to assess sensitivity to omitted variables when

a proxy for the omitted variable is observed. Zhang, Cinelli, Chen, and Pearl (2021, section 7.3) discuss a

sensitivity analysis that uses constraints on the relative magnitude of coefficients in a setting with exogenous

controls. Finally, note that the standard unconfoundedness assumption (for example, chapter 12 in Imbens

and Rubin 2015) allows for endogenous controls. For this reason, several papers that assess sensitivity

to unconfoundedness also allow for endogenous controls. This includes Rosenbaum (1995, 2002), Masten

and Poirier (2018), and Masten, Poirier, and Zhang (2021). These methods, however, do not provide formal

results for calibrating their sensitivity parameters based on comparing selection on observables with selection

on unobservables. These methods also focus on binary or discrete treatments, whereas the analysis in our

paper can be used for continuous treatments as well.

Notation Remark

For random vectors A and B, let cov(A,B) be the dim(A) × dim(B) matrix whose (i, j)th element is

cov(Ai, Bj). Define A⊥B = A − [var(B)−1 cov(B,A)]′B. This is the sum of the residual from a linear

projection of A onto (1, B) and the intercept in that projection. Many of our equations therefore do not

include intercepts because they are absorbed into A⊥B by definition. Note also that A⊥B is uncorrelated

with each component of B, by definition. Let R2
A∼B•C denote the R-squared from a regression of A⊥C on

(1, B⊥C). This is sometimes called the partial R-squared.

2 The Baseline Model

Let Y and X be observed scalar variables. Let W1 be a vector of observed covariates of dimension d1. Let

W2 be an unobserved scalar covariate; we discuss vector W2 in appendix B. Let W = (W1,W2). Consider

the OLS estimand of Y on (1, X,W1,W2). Let (βlong, γ1, γ2) denote the coefficients on (X,W1,W2). The

following assumption ensures these coefficients and other OLS estimands we consider are well defined.

Assumption A1. The variance matrix of (Y,X,W1,W2) is finite and positive definite.

We can write

Y = βlongX + γ′1W1 + γ2W2 + Y ⊥X,W (1)

where Y ⊥X,W is defined to be the OLS residual plus the intercept term, and hence is uncorrelated with each

component of (X,W ) by construction. Suppose our parameter of interest is βlong. In section 4 we discuss

three causal models that lead to this specific OLS estimand as the parameter of interest, using either uncon-

foundedness, difference-in-differences, or instrumental variables as an identification strategy. Alternatively,

it may be that we are simply interested in βlong as a descriptive statistic. The specific motivation for interest

in βlong does not affect our technical analysis.

Next consider the OLS estimand of X on (1,W1,W2). Let (π1, π2) denote the coefficients on (W1,W2).

Then we can write

X = π′1W1 + π2W2 +X⊥W (2)
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where X⊥W is defined to be the OLS residual plus the intercept term, and hence is uncorrelated with each

component of W by construction. Although equation (2) is not necessarily causal, we can think of the

value of π1 as representing “selection on observables” while π2 represents “selection on unobservables.” The

following is thus a natural baseline assumption.

Assumption A2 (No selection on unobservables). π2 = 0.

Let βmed denote the coefficient on X in the OLS estimand of Y on (1, X,W1). With no selection on

unobservables, we have the following result.

Theorem 1. Suppose the joint distribution of (Y,X,W1) is known. Suppose A1 and A2 hold. Then the

following hold.

1. βlong = βmed. Consequently, βlong is point identified.

2. The identified set for γ1 is Rd1 .

This result allows for endogenous controls, in the sense that the observed covariates W1 can be arbitrarily

correlated with the unobserved covariate W2. But it restricts the relationship between (X,W1,W2) in such a

way that we can still point identify βlong even though W1 and W2 are arbitrarily correlated. The coefficient

γ1 on the observed controls, however, is completely unidentified. The difference between the roles of X and

W1 in Theorem 1 reflects the sentiment of Angrist and Pischke (2017) that we discussed in the introduction.

In practice, we are often worried that the no selection on unobservables assumption A2 does not hold.

In section 3 we develop a new approach to assess the importance of this assumption.

3 Sensitivity Analysis

We have argued that, in practice, most controls are endogenous in the sense that they are potentially

correlated with the omitted variables of concern. Consequently, methods for assessing the sensitivity of

identifying assumptions for the treatment variable of interest should allow for the controls to be endogenous

to some extent. In this section, we develop such a method. In section 3.1 we first describe the three sensitivity

parameters that we use; note that we do not use all of these parameters in all of our results. In section 3.2 we

then state our main identification results. In section 3.3 we make several remarks regarding interpretation

of the sensitivity parameters. Finally, in section 3.4 we briefly discuss estimation and inference.

3.1 The Sensitivity Parameters

Recall from section 2 that our parameter of interest is βlong, the OLS coefficient on X in the long regression

of Y on (1, X,W1,W2). Since W2 is not observed, we cannot compute this regression from the data. Instead,

we can compute βmed, the OLS coefficient on X in the medium regression of (1, X,W1). The difference

between these two regression coefficients is given by the classic omitted variable bias formula. We can write

this formula as a function of the coefficient γ2 on W2 in the long regression outcome equation (1) and the

coefficient π2 on W2 in the selection equation (2) as follows:

βmed − βlong =
γ2π2(1−R2

W2∼W1
)

var(X⊥W1)
(3)
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where R2
W2∼W1

denotes the population R2 in a linear regression of the unobservable W2 on the observables

(1,W1). This bias is a function of the coefficient π2. Hence π2 is a natural sensitivity parameter. Using π2

as a sensitivity parameter, however, would require researchers to make judgment calls about the absolute

magnitude of this coefficient. This may be difficult. So, similar to the definition of Oster’s δ (which we

review in appendix A.2), we instead define a relative sensitivity parameter. Specifically, let ‖ · ‖Σobs
denote

the weighted Euclidean norm on Rd1 : ‖a‖Σobs
= (a′Σobsa)

1/2
where Σobs ≡ var(W1).

We then consider the following assumption.

Assumption A3. |π2| ≤ r̄X‖π1‖Σobs
for a known value of r̄X ≥ 0.

To interpret assumption A3, we first normalize the variance of the unobserved W2 to 1.

Assumption A4. var(W2) = 1.

Using this normalization A4, assumption A3 can be written as√
var(π2W2) ≤ r̄X ·

√
var(π′1W1).

So assumption A3 says that the association between treatment X and a one standard deviation increase in the

index of unobservables is at most r̄X times the association between treatment and a one standard deviation

increase in the index of observables. Note that ‖π1‖Σobs
is invariant to invertible linear transformations of

W1, including rescalings, since the index π′1W1 is invariant with respect to invertible linear transformations.

This invariance ensures that r̄X is a unit-free sensitivity parameter. We also explain how r̄X is related to

Oster’s δ in Proposition 4 in appendix A.2.

The baseline model of section 2 corresponds to the case r̄X = 0, since it implies π2 = 0. We relax the

baseline model by considering values r̄X > 0. Our first main result (Theorem 2) describes the identified set

using only A3. Researchers may also be willing to make additional restrictions so we consider two additional

sensitivity parameters as well. These parameters are also motivated by the omitted variables bias formula

in equation (3). The bias is a function of γ2 so it is natural to also consider assumptions that restrict this

parameter. Like our assumption on π2, we consider a restriction on the relative magnitudes of γ1 and γ2,

the coefficients of W1 and W2 in the outcome equation (1).

Assumption A5. |γ2| ≤ r̄Y ‖γ1‖Σobs
for a known value of r̄Y ≥ 0.

Maintaining the normalization A4, A5 has a similar interpretation as A3: It says that the association

between the outcome and a one standard deviation increase in the index of unobservables is at most r̄Y

times the association between the outcome and a one standard deviation increase in the index of observables.

‖γ1‖Σobs
is also invariant to invertible linear transformations of W1 and hence r̄Y is also a unit-free sensitivity

parameter.

Finally, the omitted variable bias in equation (3) is a function of R2
W2∼W1

. So we also consider restrictions

directly on the relationship between the observed and unobserved covariates.

Assumption A6. RW2∼W1 ≤ c̄ for a known value of c̄ ∈ [0, 1].

Assumption A6 allows researchers to constrain the magnitude of control endogeneity. In particular, the

exogenous controls assumption is equivalent to RW2∼W1
= 0 and hence can be obtained by setting c̄ = 0.

Values c̄ > 0 allow for partially endogenous controls. Note that RW2∼W1
is invariant to invertible linear

transformations of W1 as well as to the normalization on W2. Finally, it will sometimes be useful to note
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that R2
W2∼W1

= ‖ cov(W1,W2)‖2
Σ−1

obs

. For interested readers, in remark 2 on page 76, we discuss the more

general assumption RW2∼W1
∈ [c, c] for known c and c satisfying 0 ≤ c ≤ c ≤ 1 and show how to generalize

our identification results to accommodate this assumption.

3.2 Identification

In this section we state our main results. For simplicity, we first normalize the treatment variable so that

var(X) = 1 and the covariates so that var(W1) = I. All of the results below can be rewritten without these

normalizations, at the cost of additional notation. With these normalizations, ‖ · ‖Σ−1
obs

= ‖ · ‖Σobs
. We use

‖ · ‖ to refer to this norm throughout.

Identification Using the r̄X Restriction Only

Let BI(r̄X) denote the identified set for βlong under the positive definite variance assumption A1, the nor-

malization assumption A4, and the restriction A3 on π2. In particular, this identified set does not impose

the restriction A5 on γ2 or the restriction A6 on R2
W2∼W1

. Let

B(r̄X) = inf BI(r̄X) and B(r̄X) = supBI(r̄X)

denote its greatest lower bound and least upper bound. Our first main result, Theorem 2 below, provides

simple, closed form expressions for these sharp bounds. Similarly, let BI(r̄X , c̄) denote the identified set for

βlong if we also impose A6. Let

B(r̄X , c̄) = inf BI(r̄X , c̄) and B(r̄X , c̄) = supBI(r̄X , c̄)

denote its greatest lower bound and least upper bound. Our second main result, Theorem 3 below, similarly

provides simple, closed form expressions for these sharp bounds.

Let

k0 = var(X⊥W1) > 0, k1 = cov(Y,X⊥W1), and k2 = var(Y ⊥W1) > 0.

The inequalities here follow from A1, positive definiteness of var(Y,X,W1). (k0, k1, k2) are the elements

of the covariance matrix var(Y ⊥W1 , X⊥W1). Moreover, note that the coefficient on X in the medium OLS

regression of Y on (1, X,W1) can be written as βmed = k1/k0 by the FWL theorem. Below we will see that,

after normalizing treatment and the covariates, the bounds only depend on the medium regression coefficient

and the variance in outcomes and treatment after projecting out the observable covariates.

Before formally stating our first main result, we give a sketch derivation. We start by observing that

having a known bound r̄X on selection on unobservables relative to observables in A3 is equivalent to the

existence of an rX ∈ Rd1 such that π2 = π′1rX with ‖rX‖ ≤ r̄X (Lemma 1 in appendix D). If we knew this

rX along with c = cov(W1,W2), then the observed first stage relationship cov(X,W1) would be enough to

point identify π2 as

π2 =
r′X cov(W1, X)

1 + r′Xc
.

Define

zX(rX , c) =
r′X cov(W1, X)

1 + r′Xc
·
√

1− ‖c‖2

as a scaled version of this point identified value of π2. Then we can write the omitted variables bias equation
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(3) as

(βmed − βlong)2 =
zX(rX , c)

2γ2
2(1− ‖c‖2)

k2
0

where we squared both sides to simplify derivations. We then note that the residual variance of outcomes

constrains the second two terms in the numerator:

k2 ≡ var(Y ⊥W1)

= γ2
2(1− ‖c‖2) + 2βlongk1 − β2

longk0 + var(Y ⊥X,W )

and hence

γ2
2(1− ‖c‖2) ≤ k2 − 2βlongk1 + β2

longk0

since var(Y ⊥X,W ) ≥ 0. Substituting this expression into the omitted variable bias formula gives

(βmed − βlong)2 ≤
zX(rX , c)

2(k2 − 2βlongk1 + β2
longk0)

k2
0

.

Using βmed = k1/k0 we can then rearrange this inequality to obtain

(βmed − βlong)2 ≤
zX(rX , c)

2
(
k2

k0
− β2

med

)
k0 − zX(rX , c)2

.

The right hand side depends on the unknown values of rX and c, but it is monotonically increasing in

zX(rX , c), so we can obtain bounds by maximizing this function over all (rX , c) with ‖rX‖ ≤ r̄X and

‖c‖ ≤ c̄. This maximum value is

z̄X(r̄X) =


r̄X√

1− r̄2
X

√
1− k0 if r̄X < 1

+∞ if r̄X ≥ 1.

Considering the first case, r̄X < 1, we obtain

(βmed − βlong)2 ≤ dev(r̄X)2

where we defined

dev(r̄X) =

√
z̄X(r̄X)2(k2

k0
− β2

med)

k0 − z̄X(r̄X)2
.

And note that we need z̄X(r̄X)2 < k0 to avoid division by zero. Theorem 2 below formalizes these derivations.

Our full proof is in appendix E, including our sharpness proof. For this theorem, we also use the following

assumption.

Assumption A7. cov(W1, Y ) 6= cov(W1, X) cov(X,Y ) and cov(W1, X) 6= 0.

This assumption is not necessary, but it simplifies the proofs. A sufficient condition for A7 is βshort 6=
βmed, where βshort is the coefficient on X in the short OLS regression of Y on (1, X). This follows from

βmed − βshort = cov(W1, X)′(cov(W1, Y )− cov(W1, X) cov(X,Y )). We can now state our first main result.

Theorem 2. Suppose the joint distribution of (Y,X,W1) is known. Suppose A1, A3, A4, and A7 hold.
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Normalize var(X) = 1 and var(W1) = I. If z̄X(r̄X)2 < k0, then

B(r̄X) = βmed − dev(r̄X) and B(r̄X) = βmed + dev(r̄X).

Otherwise, B(r̄X) = −∞ and B(r̄X) = +∞.

Theorem 2 characterizes the largest and smallest possible values of βlong when some selection on unob-

servables is allowed, the observed covariates are allowed to be arbitrarily correlated with the unobserved

covariate, and we make no restrictions on the coefficients in the outcome equation. In fact, we prove that,

with the exception of at most three singletons, the interval [B(r̄X), B(r̄X)] is the identified set for βlong under

these assumptions. Here we focus on the smallest and largest elements to avoid technical digressions that

are unimportant for applications.

There are two important features of Theorem 2: First, it only requires researchers to reason about one

sensitivity parameter, unlike some existing approaches, including Oster (2019). Second, and also unlike those

results, it allows for arbitrarily endogenous controls. So this result allows researchers to examine the impact

of selection on unobservables on their baseline results without also having to reason about the magnitude of

endogenous controls.

Since Theorem 2 provides explicit expressions for the bounds, we can immediately derive a few of their

properties. First, when r̄X = 0, the bounds collapse to βmed, the point estimand from the baseline model

with no selection on unobservables. So we recover the baseline model as a special case. For small values of

r̄X > 0, the bounds are no longer a singleton, but their length increases continuously as r̄X increases away

from zero. After normalizing treatment and the observed covariates, the rate at which they increase depends

on just a few features of the data: The three elements of var(Y ⊥W1 , X⊥W1). We also see that the bounds

are symmetric around βmed. Finally, the bounds can only be finite if r̄X < 1. We discuss interpretation of

the magnitude of r̄X in detail in section 3.3.

In practice, researchers often ask:

How strong does selection on unobservables have to be relative to selection on observables in

order to overturn our baseline findings?

We can use Theorem 2 to answer this question. Suppose in the baseline model we find βmed ≥ 0. We

are concerned, however, that βlong ≤ 0, in which case our positive finding is driven solely by selection on

unobservables. Define

r̄bp
X = sup{r̄X ≥ 0 : b ≥ 0 for all b ∈ BI(r̄X)}.

This value is called a breakdown point. It is the largest amount of selection on unobservables we can allow

for while still concluding that βlong is nonnegative. Note that the breakdown point when βmed ≤ 0 can be

defined analogously.

Corollary 1. Suppose the assumptions of Theorem 2 hold. Then

r̄bp
X =

 R2
Y∼X•W1

R2
X∼W1

1−R2
X∼W1

+R2
Y∼X•W1


1/2

.

The breakdown point described in Corollary 1 characterizes the magnitude of selection on unobservables

relative to selection on observables needed to overturn one’s baseline findings. One of our main recommenda-
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tions is that researchers present estimates of this point as a scalar measure of the robustness of their results.

We illustrate this recommendation in our empirical application in section 5.

Corollary 1 explicitly shows that this breakdown point depends on just two features of the observed

data: The relationship between treatment and the outcome, after adjusting for the observed covariates, and

the first stage relationship between treatment and the observed covariates. In particular, as the covariate

adjusted relationship between outcomes and treatment strengthens, the breakdown point increases too. In

contrast, as the relationship between treatment and covariates strengthens, the breakdown point decreases.

This follows since we are using effects of the observed covariates to calibrate the magnitude of selection on

unobservables. So when these observed covariates are strongly related to treatment, we need relatively less

selection on unobservables to overturn our baseline findings. We discuss this point more in section 3.3.

Identification Using the r̄X and c̄ Restrictions

In some applications, the bounds in Theorem 2 may be quite large, even for small values of r̄X . In this

case, researchers may be willing to restrict the relationship between the observed covariates and the omitted

variable. So next we present a similar result, but now imposing A6. Let

z̄X(r̄X , c̄) =


r̄X
√

1−min{c̄, r̄X}2
1− r̄X min{c̄, r̄X}

√
1− k0 if r̄X c̄ < 1

+∞ if r̄X c̄ ≥ 1.

Note that for c̄ = 1, z̄X(r̄X , 1) = z̄X(r̄X) for all r̄X ≥ 0. Also, z̄X(r̄X , c̄) = z̄X(r̄X) when r̄X ≤ c̄. As before,

the sensitivity parameters will only affect the bounds via this function.

Theorem 3. Suppose the joint distribution of (Y,X,W1) is known. Suppose A1, A3, A4, A6, and A7 hold.

Normalize var(X) = 1 and var(W1) = I. If z̄X(r̄X , c̄)
2 < k0, then

B(r̄X , c̄) = βmed − dev(r̄X , c̄) and B(r̄X , c̄) = βmed + dev(r̄X , c̄)

where

dev(r̄X , c̄) =

√√√√ z̄X(r̄X , c̄)2
(
k2

k0
− β2

med

)
k0 − z̄X(r̄X , c̄)2

.

Otherwise, B(r̄X , c̄) = −∞ and B(r̄X , c̄) = +∞.

The interpretation of Theorem 3 is similar to our earlier result Theorem 2. It characterizes the largest

and smallest possible values of βlong when some selection on unobservables is allowed and the controls are

allowed to be partially but not arbitrarily endogenous. We also make no restrictions on the coefficients in the

outcome equation. As before, with the exception of at most three singletons, the interval [B(r̄X , c̄), B(r̄X , c̄)]

is the identified set for βlong under these assumptions.

Earlier we saw that r̄X < 1 is necessary for the bounds of Theorem 2 to be finite. Theorem 3 shows that,

if we are willing to restrict the value of c̄, then we can allow for r̄X > 1 while still obtaining finite bounds.

Thus there is a trade-off between (i) the magnitude of selection on unobservables we can allow for and (ii)

the magnitude of control endogeneity. One way to summarize this trade-off is to use breakdown frontiers

(Masten and Poirier 2020). Specifically, when βmed ≥ 0, define

r̄bf
X(c̄) = sup{r̄X ≥ 0 : b ≥ 0 for all b ∈ BI(r̄X , c̄)}.

11



For any fixed c̄, r̄bf
X(c̄) is a breakdown point: It is the largest magnitude of selection on unobservables

relative to selection on observables that we can allow for while still concluding that our parameter of interest

is nonnegative. As we vary c̄, this breakdown point changes: It increases as c̄ gets smaller, because we can

allow for more selection on unobservables if we impose stronger restrictions on exogeneity of the observed

covariates. Conversely, it decreases as c̄ gets larger, because we can allow for less selection on unobservables

if we allow for more endogeneity of the observed covariates. In particular, r̄bf
X(1) = r̄bp

X , the breakdown point

of Corollary 1. Like that corollary, we can derive an analytical characterization of the function r̄bf
X(·), but

we omit this for brevity.

Identification Using the r̄X , c̄, and r̄Y Restrictions

Finally, in some empirical settings the results may not be robust even if we impose exogenous controls (c̄ = 0).

In these cases, we might be willing to restrict the impact of unobservables on outcomes; that is, we may

be willing to impose A5. Let BI(r̄X , r̄Y , c̄) denote the identified set for βlong under A1 and A3–A6. Unlike

the two identified sets we considered above, this set is less analytically tractable. We provide a precise

characterization in appendix D. Here we instead use our characterization to show how to do breakdown

analysis. We also briefly explain how to easily compute BI(r̄X , r̄Y , c̄) numerically.

Suppose we are interested in the robustness of the conclusion that βlong ≥ b for some known scalar b. For

example, b = 0. Define the function

r̄bf
Y (r̄X , c̄, b) = sup{r̄Y ≥ 0 : b ≥ b for all b ∈ BI(r̄X , c̄, r̄Y )}.

This is a three-dimensional breakdown frontier. In particular, we can use it to define the set

RR = {(r̄X , r̄Y , c̄) ∈ R2
≥0 × [0, 1] : r̄Y ≤ r̄bf

Y (r̄X , c̄, b)}.

Masten and Poirier (2020) call this the robust region because the conclusion of interest, βlong ≥ b, holds for

any combination of sensitivity parameters in this region. The size of this region is therefore a measure of

the robustness of our baseline conclusion.

Although we do not have a closed form expression for the smallest and largest elements of BI(r̄X , c̄, r̄Y ),

our next main result shows that we can still easily compute the breakdown frontier numerically. To state

the result, we first define some additional notation. For any random vectors A and B, let σA,B = cov(A,B).

Define the sets

D = R× {c ∈ Rd1 : ‖c‖ < 1} × R

D0 = {(z, c, b) ∈ D : z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − k0b)c 6= 0}
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and define the functions

devsq(z) =
z2(k2/k0 − β2

med)

k0 − z2

rY (z, c, b) =


0 if b = βmed

|k1 − k0b|
‖z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − k0b)c‖
if (z, c, b) ∈ D0 and b 6= βmed

+∞ otherwise

p(z, c; r̄X) = r̄2
X‖σW1,X

√
1− ‖c‖2 − cz‖2 − z2.

We can now state our last main result.

Theorem 4. Suppose the joint distribution of (Y,X,W1) is known. Suppose A1, A4, and A7 hold. Normalize

var(X) = 1 and var(W1) = I. Suppose σW1,Y and σW1,X are linearly independent. Suppose d1 ≥ 2. Let

b ∈ R, c ∈ [0, 1), and r̄X , r̄Y ≥ 0.

1. If b ≥ βmed then r̄bf
Y (r̄X , c̄, b) = 0.

2. If B(r̄X , c̄) > b, then r̄bf
Y (r̄X , c̄, b) = +∞.

3. If B(r̄X , c̄) ≤ b < βmed, then

r̄bf
Y (r̄X , c̄, b) = min

(z,c1,c2,b)∈(−
√
k0,
√
k0)×R×R×(−∞,b]

rY (z, c1σW1,Y + c2σW1,X , b)

subject to p(z, c1σW1,Y + c2σW1,X ; r̄X) ≥ 0

(b− βmed)2 < devsq(z)

‖c1σW1,Y + c2σW1,X‖ ≤ c̄.

Theorem 4 shows that the three dimensional breakdown frontier can be computed as the solution to

a smooth optimization problem. Importantly, this problem only requires searching over a 4-dimensional

space. In particular, this dimension does not depend on the dimension of the covariates W1. Consequently,

it remains computationally feasible even with a large number of observed covariates, as is often the case in

empirical practice. For example, the results for our empirical application take about 15 seconds to compute.

Theorem 4 makes several minor technical assumptions. In particular, it assumes σW1,Y and σW1,X

are linearly independent for simplicity. Moreover, the theorem assumes d1 ≥ 2: there are at least two

observed covariates in W1. This is not restrictive since the purpose of this result is primarily to show that

the optimization problem does depend on the dimension of W1. If d1 = 1 then the breakdown frontier

can instead be easily computed using equation (34) in the appendix, which only requires searching over a

3-dimensional space.

We conclude this subsection by noting that the identified set BI(r̄X , r̄Y , c̄) can also be easily computed.

Specifically, using derivations similar to the proof of Theorem 4, the sharp upper bound on this identified
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set is

max
(z,c1,c2,b)∈(−

√
k0,
√
k0)×R×R×R

b subject to rY (z, c1σW1,Y + c2σW1,X , b) ≤ r̄Y

p(z, c1σW1,Y + c2σW1,X ; r̄X) ≥ 0

(b− βmed)2 < devsq(z)

‖c1σW1,Y + c2σW1,X‖ ≤ c̄.

The sharp lower bound is obtained by replacing max with min.

3.3 Interpreting the Sensitivity Parameters

Thus far we have introduced the sensitivity parameters (section 3.1) and described their implications for

identification (section 3.2). Next we make several remarks regarding how to interpret the magnitudes of

these parameters.

Which Covariates to Calibrate Against?

As we discuss below, one of the main benefits of using relative sensitivity parameters like r̄X is that r̄X = 1

is a natural reference point of “equal selection.” However, the interpretation of this reference point depends

on the choice of covariates that we calibrate against. Put differently, when we say that we compare “selection

on unobservables to selection on observables,” which observables do we mean?

To answer this, we split the observed covariates into two groups: (1) The control covariates, which we

label W0, and (2) The calibration covariates, which we continue to label W1. Write equation (1) as

Y = βlongX + γ′0W0 + γ′1W1 + γ2W2 + Y ⊥X,W (1′)

where W = (W0,W1,W2). Likewise, write equation (2) as

X = π′0W0 + π′1W1 + π2W2 +X⊥W . (2′)

The key difference from our earlier analysis is that, like in assumption A3, we will continue to only compare

π1 with π2. That is, we only compare the omitted variable to the observed variables in W1; we do not use

W0 for calibration. A similar remark applies to A5.

This distinction between control and calibration covariates is useful because in many applications we do

not necessarily think the omitted variables have similar explanatory power as all of the observed covariates

included in the model. For example, in our empirical application in section 5, we include state fixed effects

as control covariates, but we do not use them for calibration.

We next briefly describe how to generalize our results in section 3.2 to account for this distinction. By the

FWL theorem, a linear projection of Y onto (1, X⊥W0 ,W⊥W0
1 ,W⊥W0

2 ) has the same coefficients as equation

(1). Likewise for a linear projection of X onto (1,W⊥W0
1 ,W⊥W0

2 ). Hence we can write

Y = βlongX
⊥W0 + γ′1W

⊥W0
1 + γ2W

⊥W0
2 + Ũ

X = π′1W
⊥W0
1 + π2W

⊥W0
2 + Ṽ
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where

Ũ = Y ⊥X
⊥W0 ,W

⊥W0
1 ,W

⊥W0
2 and Ṽ = X⊥W

⊥W0
1 ,W

⊥W0
2 .

By construction, Ũ has zero covariance with (X⊥W0 ,W⊥W0
1 ,W⊥W0

2 ) and Ṽ has zero covariance with (W⊥W0
1 ,

W⊥W0
2 ). Therefore our earlier results continue to hold when (X,W1,W2) are replaced with (X⊥W0 ,W⊥W0

1 ,

W⊥W0
2 ). Finally, this change implies that c̄ should be interpreted as an upper bound on RW2∼W1•W0

, the

square root of the R-squared from the regression of W2 on W1 after partialling out W0.

What is a Robust Result?

How should researchers determine what values of r̄X and r̄Y are large and what values are small? Like in

Altonji et al. (2005) and Oster (2019), these are relative sensitivity parameters. Consequently, the values

r̄X = 1 and r̄Y = 1 are natural reference points. Specifically, when r̄X < 1, the magnitude of the coefficient

on the unobservable W2 in equation (2) is smaller than the magnitude of the coefficient on the observable

controls W1 in the outcome equation. This is one way to formalize the idea that “selection on unobservables

is smaller than selection on observables.” Likewise, when r̄X > 1, we can think of this as formalizing the idea

that “selection on unobservables is larger than selection on observables.” A similar interpretation applies

to r̄Y . These interpretations do not, however, imply that the value 1 should be thought of as a universal,

context independent cutoff between “small” and “large” values of these two sensitivity parameters.

Why? As we described above, researchers must choose which of their observed covariates should be

used to calibrate against. Consequently, the choice of W0 (and hence W1) affects the interpretation of the

magnitude of r̄X . One way in which this choice manifests itself is via its impact on the breakdown point:

Including more relevant variables in W1 will tend to will tend to decrease the breakdown point r̄bp
X , because

the explanatory power of the observables we’re calibrating against increases when we move variables from W0

to W1—see corollary 1. This observation does not necessarily imply that the result is becoming less robust,

but rather that the standard by which we are measuring sensitivity is changing. If the calibration variables

W1 have a large amount of explanatory power, then even an apparently small value of r̄bp
X like 0.3 could

be considered to be robust. Conversely, when the calibration variables W1 do not have much explanatory

power, then even an apparently large value of r̄bp
X like 3 could be considered sensitive.

This discussion can be summarized by the following relationship:

Selection on Unobservables = r · (Selection on Observables). (4)

The left hand side is the absolute magnitude of selection on unobservables, while the right hand side is the

proportion r of the absolute magnitude of selection on observables. r̄bp
X is a bound on r. Our discussion

above merely states that even if the bound r̄bp
X on r seems small, the magnitude of selection on unobservables

allowed for can be very large if the magnitude of selection on observables is large. And conversely, even if

r̄bp
X seems large, the amount of unobserved selection allowed for must be small if the magnitude of selection

on observables is also small.

Overall, the value of using relative sensitivity parameters like r̄X is not that they allow us to obtain a

universal threshold for what is or is not a robust result. Instead, it gives researchers a unit free measurement

of sensitivity that is interpretable in terms of the effects of observed variables. Finally, note that the issues

we’ve raised in this discussion equally apply to the existing methods in the literature as well, including Oster

(2019); they are not unique to our analysis.
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Assessing Exogenous Controls

Thus far we have discussed the interpretation of r̄X and r̄Y . Next consider c̄. This is a constraint on the

covariance between the observed calibration covariates and the unobserved covariate. In particular, recall

that it is a bound on RW2∼W1•W0 . So what values of this parameter should be considered large, and what

values should be considered small? One way to calibrate this parameter is to compute

ck = RW1k∼W1,−k•W0

for each covariate k in W1. That is, compute the square root of the population R-squared from the regression

of W1k on the rest of the calibration covariates W1,−k, after partialling out the control covariates W0. These

numbers tell us two things. First, if many of these values are nonzero and large, we may worry that the

exogenous controls assumption fails. That is, if W2 is in some way similar to the observed covariates W1, then

we might expect that RW2∼W1•W0
is similar to some of the ck’s. So this gives us one method for assessing

the plausibility of exogenous controls. Second, we can use the magnitudes of these values to calibrate our

choice of c̄, in analysis based on Theorems 3 or 4. For example, you could choose the largest value of ck. A

less conservative approach would be to select the median value.

3.4 Estimation and Inference

Thus far we have described population level identification results. In practice, we only observe finite sample

data. Our identification results depend on the observables (Y,X,W1) solely through their covariance matrix.

In our empirical analysis in section 5, we apply our identification results by using sample analog estimators

that replace var(Y,X,W1) with a consistent estimator v̂ar(Y,X,W1). For example, we let β̂med denote the

OLS estimator of βmed, the coefficient on X in the medium regression of Y on (1, X,W1). We expect the

corresponding asymptotic theory for estimation and inference on the bound functions to be straightforward,

but for brevity we do not develop it in this paper. Inference on the breakdown points and frontiers could

also be done as in Masten and Poirier (2020).

4 Causal Models

In this section we describe three different causal models in which the parameter βlong in equation (1) has a

causal interpretation. These models are based on three different kinds of identification strategies: Uncon-

foundedness, difference-in-differences, and instrumental variables. Here we focus on simple models, but our

analysis can be used anytime the causal parameter of interest can be written as the coefficient on a treatment

variable in a long regression of the form in equation (1).

4.1 Unconfoundedness

Recall that Y denotes the realized outcome, X denotes treatment, W1 denotes the observed covariates,

and W2 denotes the unobserved variables of concern. Let Y (x) denote potential outcomes, where x is any

logically possible value of treatment. Assume this potential outcome has the following form:

Y (x) = βcx+ γ′1W1 + γ2W2 + U (5)
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where (βc, γ1, γ2) are unknown constants. The parameter of interest is βc, the causal effect of treatment

on the outcome. U is an unobserved random variable. Suppose the realized outcome satisfies Y = Y (X).

Consider the following assumption.

Linear Latent Unconfoundedness: corr(X⊥W1,W2 , U⊥W1,W2) = 0.

This assumption says that, after partialling out the observed covariates W1 and the unobserved variables

W2, treatment is uncorrelated with the unobserved variable U . This model has two unobservables, which

are treated differently via this assumption. We call W2 the confounders and U the non-confounders. W2

are the unobserved variables which, when omitted, may cause bias. In contrast, as long as we adjust for

(W1,W2), omitting U does not cause bias. Note that, given equation (5), linear latent unconfoundedness

can be equivalently written as corr(X⊥W1,W2 , Y (x)⊥W1,W2) = 0 for all logically possible values of treatment

x.

Linear latent unconfoundedness is a linear parametric version of the nonparametric latent unconfound-

edness assumption

Y (x)⊥⊥X | (W1,W2) (6)

for all logically possible values of x. In particular, with the linear potential outcomes assumption of equation

(5), nonparametric latent unconfoundedness (equation (6)) implies linear latent unconfoundedness. We use

the linear parametric version to avoid overidentifying restrictions that can arise from the combination of

linearity and statistical independence.

The following result shows that, in this model, the causal effect of X on Y can be obtained from βlong,

the coefficient on X in the long regression described in equation (1).

Proposition 1. Consider the linear potential outcomes model (5). Suppose linear latent unconfoundedness

holds. Suppose A1 holds. Then βc = βlong.

Since W2 is unobserved, however, this result cannot be used to identify βc. Instead, suppose we believe

the no selection on unobservables assumption A2. Recall that this assumption says that π2 = 0, where π2

is the coefficient on W2 in the OLS estimand of X on (1,W1,W2). Under this assumption, we obtain the

following result. Recall that βmed denotes the coefficient on X in the medium regression of Y on (1, X,W1).

Corollary 2. Suppose the assumptions of Proposition 1 hold. Suppose A2 holds (π2 = 0). Then βc = βmed.

The selection on observables assumption A2 is usually thought to be quite strong, however. Nonetheless,

since βc = βlong, our results in section 3 can be used to assess sensitivity to selection on unobservables.

4.2 Difference-in-differences

Let Yt(xt) denote potential outcomes at time t, where xt is a logically possible value of treatment. For

simplicity we do not consider models with dynamic effects of treatment or of covariates. Also suppose W2t

is a scalar for simplicity. Suppose

Yt(xt) = βcxt + γ′1W1t + γ2W2t + Vt (7)

where Vt is an unobserved random variable and (βc, γ1, γ2) are unknown parameters that are constant across

units. The classical two way fixed effects model is a special case where

Vt = A+ δt + Ut. (8)
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where A is an unobserved random variable that is constant over time, δt is an unobserved constant, and Ut

is an unobserved random variable.

Suppose there are two time periods, t ∈ {1, 2}. Let Yt = Yt(Xt) denote the observed outcome at time t.

For any time varying random variable like Yt, let ∆Y = Y2−Y1. Then taking first differences of the observed

outcomes yields

∆Y = βc∆X + γ′1∆W1 + γ2∆W2 + ∆V.

Let βlong denote the OLS coefficient on ∆X from the long regression of ∆Y on (1,∆X,∆W1,∆W2).

Proposition 2. Consider the linear potential outcome model (7). Suppose the following exogeneity as-

sumption holds:

• cov(∆X,∆V ) = 0, cov(∆W2,∆V ) = 0, and cov(∆W1,∆V ) = 0.

Then βc = βlong.

The exogeneity assumption in Proposition 2 says that ∆V is uncorrelated with all components of

(∆X,∆W1,∆W2). A sufficient condition for this is the two way fixed effects assumption (8) combined

with the assumption that the Ut are uncorrelated with (Xs,W1s,W2s) for all t and s. Given this exogeneity

assumption, the only possible identification problem is that ∆W2 is unobserved. Hence we cannot adjust for

this trend variable. If we assume, however, that treatment trends ∆X are not related to the unobserved trend

∆W2, then we can point identify βc. Specifically, consider the linear projection of ∆X onto (1,∆W1,∆W2):

∆X = π′1(∆W1) + π2(∆W2) + (∆X)⊥∆W1,∆W2 .

Using this equation to define π2, we now have the following result. Here we let βmed denote the coefficient

on ∆X in the medium regression of ∆Y on (1,∆X,∆W1).

Corollary 3. Suppose the assumptions of Proposition 2 hold. Suppose A2 holds (π2 = 0). Then βc = βmed.

This result implies that βc is point identified when π2 = 0. This assumption is a version of common

trends, because it says that the unobserved trend ∆W2 is not related to the trend in treatments, ∆X. Our

results in section 3 allow us to analyze the impacts of failure of this common trends assumption on conclusions

about the causal effect of X on Y , βc. In particular, our results allow researchers to assess the failure of

common trends by comparing the impact of observed time varying covariates with the impact of unobserved

time varying confounders. In this context, allowing for endogenous controls means allowing for the trend in

observed covariates to correlate with the trend in the unobserved covariates. Finally, note that this approach

allows researchers to assess sensitivity to common trends even when it is not possible to examine pre-trends;

that is, even when there are not multiple time periods where all units are untreated.

4.3 Instrumental variables

Let Z be an observed variable that we want to use as an instrument. Let Y (z) denote potential outcomes,

where z is any logical value of the instrument. Assume

Y (z) = βcz + γ′1W1 + γ2W2 + U

where U is an unobserved scalar random variable and (βc, γ1, γ2) are unknown constants. Thus βc is the

causal effect of Z on Y . In an instrumental variables analysis, this is typically called the reduced form
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causal effect, and Y (z) are reduced form potential outcomes. Suppose cov(Z,U) = 0, cov(W2, U) = 0, and

cov(W1, U) = 0. Then βc equals the OLS coefficient on Z from the long regression of Y on (1, Z,W1,W2).

In this model, Theorem 1 implies that βc is also obtained as the coefficient on Z in the medium regression

of Y on (1, Z,W1), and thus is point identified. In this case, assumption A2 is an instrument exogeneity

assumption. Our results in section 3 thus allow us to analyze the impacts of instrument exogeneity failure

on conclusions about the reduced form causal effect of Z on Y , βc.

In a typical instrumental variable analysis, the reduced form causal effect of the instrument on outcomes

is not the main effect of interest. Instead, we usually care about the causal effect of a treatment variable on

outcomes. The reduced form is often just an intermediate tool for learning about that causal effect. Our

analysis in this paper can be used to assess the sensitivity of conclusions about this causal effect to failures

of instrument exclusion or exogeneity too. This analysis is somewhat more complicated, however, and so

we leave it for a separate paper. Nonetheless, empirical researchers do sometimes examine the reduced form

directly to study the impact of instrument exogeneity failure. For example, see section D7 and table D15 of

Tabellini (2020).

5 Empirical Application: The Frontier Experience and Culture

Where does culture come from? Bazzi et al. (2020) study the origins of people’s preferences for or against

government redistribution, intervention, and regulation. They provide the first systematic empirical anal-

ysis of a famous conjecture that living on the American frontier cultivated individualism and antipathy to

government intervention. The idea is that life on the frontier was hard and dangerous, had little to no in-

frastructure, and required independence and self-reliance to survive. It was far from the federal government.

And it was an opportunity for upward mobility through effort, rather than luck. These features then create

cultural change, in particular, leading to “more pervasive individualism and opposition to redistribution”.

Overall, Bazzi et al. (2020) find evidence supporting this frontier life conjecture.

The main results in Bazzi et al. (2020) are based on an unconfoundedness identification strategy and

use linear models. They note that “the main threat to causal identification of β lies in omitted variables”

and hence they strongly rely on Oster’s (2019) method to “show that unobservables are unlikely to drive

our results” (page 2344). As we have discussed, however, this approach is based on the exogenous controls

assumption. In this section, we apply our methods to examine the impact of allowing for endogenous controls

on Bazzi et al.’s empirical conclusions. Overall, we come to a more nuanced conclusion about robustness:

While they found that all of their analyses were robust to the presence of omitted variables, we find that

their analysis using questionnaire based outcomes is quite sensitive, but their analysis using property tax

levels and voting patterns is robust. We also find suggestive evidence that the controls are endogenous,

which highlights the value of sensitivity analysis methods that allow for endogenous controls. We discuss all

of these findings in more detail below.

5.1 Data

We first describe the variables and data sources. The main units of analysis are counties in the U.S., although

we will also use some individual level data. The treatment X is the “total frontier experience” (TFE). This

is defined as the number of years between 1790 and 1890 a country spent “on the frontier”, divided by 10. A

county is “on the frontier” if it had a population density less than 6 people per square mile and was within

100 km of the “frontier line”. The frontier line is a line that divides sparse counties (less than or equal to
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2 people per square mile) from less sparse counties. By definition, the frontier line changed over time in

response to population patterns, but it did so unevenly, resulting in some counties being “on the frontier”

for longer than others. Figure 3 in Bazzi et al. (2020) shows the spatial distribution of treatment.

The outcome variable Y is a measure of modern culture. They consider 8 different outcome variables.

Since data is not publicly available for all of them, we only look at 5 of these. They can be classified into

two groups. The first are questionnaire based outcomes:

1. Cut spending on the poor. This variable comes from the 1992 and 1996 waves of the American National

Election Study (ANES), a nationally representative survey. In those waves, it asked

“Should federal spending be increased, decreased, or kept about the same on poor people?”

Let Y1i = 1 if individual i answered “decreased” and 0 otherwise.

2. Cut welfare spending. This variable comes from the Cooperative Congressional Election Study (CCES),

waves 2014 and 2016. In those waves, it asked

“State legislatures must make choices when making spending decisions on important state pro-

grams. Would you like your legislature to increase or decrease spending on Welfare? 1. Greatly

Increase 2. Slightly Increase 3. Maintain 4. Slightly Decrease 5. Greatly Decrease.”

Let Y2i = 1 if individual i answered “slightly decrease” or “greatly decrease” and 0 otherwise.

3. Reduce debt by cutting spending. This variable also comes from the CCES, waves 2000–2014 (biannual).

It asked

“The federal budget deficit is approximately [$ year specific amount] this year. If the Congress

were to balance the budget it would have to consider cutting defense spending, cutting domestic

spending (such as Medicare and Social Security), or raising taxes to cover the deficit. Please rank

the options below from what would you most prefer that Congress do to what you would least

prefer they do: Cut Defense Spending; Cut Domestic Spending; Raise Taxes.”

Let Y3i = 1 if individual i chooses “cut domestic spending” as a first priority, and 0 otherwise.

These surveys also collected data on individual demographics, specifically age, gender, and race. The second

group of outcome variables are based on behavior rather than questionnaire responses:

4. Y4i is the average effective property tax rate in county i, based on data from 2010 to 2014 from

the National Association of Home Builders (NAHB) data, which itself uses data from the American

Community Survey (ACS) waves 2010–2014.

5. Y5i is the average Republican vote share over the five presidential elections from 2000 to 2016 in county

i, using data from Leip’s Atlas of U.S. Presidential Elections.

Next we describe the observed covariates. We partition these covariates into W1 and W0 by following

the implementation of Oster’s (2019) approach in Bazzi et al. (2020). W1, the calibration covariates which

are used to calibrate selection on unobservables, is a set of geographic and climate controls: Centroid Lat-

itude, Centroid Longitude, Land area, Average rainfall, Average temperature, Elevation, Average potential

agricultural yield, and Distance from the centroid to rivers, lakes, and the coast. W0, the control covariates

which are not used to calibrate selection on unobservables, includes state fixed effects. The questionnaire
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Table 1: The Effect of Frontier Life on Opposition to Government Intervention and Redistribution.

Prefers Cut
Public

Spending on
Poor

Prefers Cut
Public

Spending on
Welfare

Prefers Reduce
Debt by

Spending Cuts

County
Property Tax

Rate

Republican
Presidential
Vote Share

(1) (2) (3) (4) (5)

Panel A. Baseline Results

Total Frontier Exp. 0.010 0.007 0.014 -0.034 2.055
(0.004) (0.003) (0.002) (0.007) (0.349)

Mean of Dep Variable 0.09 0.40 0.41 1.02 60.04
Number of Individuals 2322 53,472 111,853 - -
Number of Counties 95 1863 1963 2029 2036

Controls:

Survey Wave FEs X X X - -
Ind. Demographics X X X - -
State Fixed Effects X X X X X
Geographic/Climate X X X X X

Panel B. Sensitivity Analysis (Exogenous Controls; Oster 2019)

δbp (wrong) 16.01 3.1 5.9 -27.4 -8.5
δbp (correct) 2.28 3.05 2.58 90.7 -23.3

Panel C. Sensitivity Analysis (Endogenous Controls)

r̄bp
X (×100) 2.83 3.05 5.85 72.0 80.4

Note: Panel A and the first row of Panel B replicate columns 1, 2, 4, 6, and 7 of table 3 in Bazzi, Fiszbein, and Gebresilasse
(2020), while the second row of Panel B and Panel C are new. As in Bazzi et al. (2020), Panel B uses Oster’s rule of
thumb choice R2

long = 1.3R2
med.

based outcomes use individual level data. For those analyses, we also include age, age-squared, gender, race,

and survey wave fixed effects in W0. In Bazzi et al. (2020), they were included in W1. We instead include

them in W0 to keep the set of calibration covariates W1 constant across the five main specifications. This

allows us to directly compare the robustness of our baseline results across different specifications.

5.2 Baseline Model Results

Bazzi et al. (2020) has a variety of analyses. We focus on the subset of their main results for which replication

data is publicly available. These are columns 1, 2, 4, 6, and 7 of their table 3. Panel A in our table 1 replicates

those results. From columns (1)–(3) we see that individuals who live in counties with more exposure to the

frontier prefer cutting spending on the poor, on welfare, and to reduce debt by spending cuts. Moreover,

these point estimates are statistically significant at conventional levels. From columns (4) and (5), we see

that counties with more exposure to the frontier have lower property taxes and are more likely to vote

for Republicans. As Bazzi et al. (2020) argue, these baseline results therefore support the conjecture that

frontier life led to opposition to government intervention and redistribution.

5.3 Assessing Selection on Observables

The baseline results in table 1 rely on a selection on observables assumption, that treatment X is exogenous

after adjusting for the observed covariates (W0,W1). How plausible is this assumption? Bazzi et al. (2020)
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say

“The main threat to causal identification of β lies in omitted variables correlated with both contem-

porary culture and TFE. We address this concern in four ways. First, we rule out confounding effects

of modern population density. Second, we augment [the covariates] to remove cultural variation high-

lighted in prior work. Third, we show that unobservables are unlikely to drive our results. Finally, we

use an IV strategy that isolates exogenous variation in TFE due to changes in national immigration

flows over time.” (page 2344, emphasis added)

Their first two approaches continue to rely on selection on observables, and consist of including additional

control variables. We focus on their third strategy: to use a formal econometric method to assess the

importance of omitted variables.

Sensitivity Analysis Assuming Exogenous Controls

We start by summarizing the sensitivity analysis based on Oster (2019) (hereafter Oster), as used in Bazzi

et al. (2020). Oster’s analysis uses two sensitivity parameters: (i) δ, which we define in equation (9) in

appendix A.2 and (ii) R2
long, the R-squared from the long regression of Y on (1, X,W0,W1,W2), including

the omitted variable of concern W2. For any choice of (δ,R2
long), Oster’s Proposition 2 derives the identified

set for βlong. Oster’s Proposition 3 derives the breakdown point for δ, as a function of R2
long, for the conclusion

that the identified set does not contain zero. Denote this point by δbp(R2
long). This is the smallest value of

δ such that the identified set contains zero. Put differently: For any δ < δbp(R2
long), the true value of βlong

cannot be zero.

The second row of Panel B of table 1 shows sample analog estimates of this breakdown point, which

is commonly referred to as Oster’s delta. As in Bazzi et al. (2020), we use Oster’s rule of thumb choice

R2
long = 1.3R2

med. R2
med is the R-squared from the medium regression of Y ⊥W0 on (1, X⊥W0 ,W⊥W0

1 ), which

can be estimated from the data. Thus the table shows estimates of δbp(1.3R2
med). The first row of Panel

B shows the values of Oster’s delta as reported in table 2 of Bazzi et al. (2020). These were incorrectly

computed. It appears to us that, rather than using the correct expression in Proposition 3 of Oster (2019),

they set the first displayed equation on page 193 of that paper equal to zero and solved for δ. That does

not give the correct breakdown point. Note that we noticed this same mistake in several papers published

in top 5 economics journals.

Bazzi et al. (2020) conclude:

“Oster (2019) suggests |δ| > 1 leaves limited scope for unobservables to explain the results” and

therefore, based on their δbp estimates, “unobservables are unlikely to drive our results” (page 2344)

This conclusion remains unchanged if the same rule is applied to the correctly computed δbp estimates.

Assessing Exogenous Controls

As we have discussed, Oster’s method combined with the δ = 1 cutoff rule relies on the exogenous controls

assumption. Is exogenous controls plausible in this application? The answer depends on which omitted

variables W2 we are concerned about. Bazzi et al. (2020) does not specifically describe the unmeasured

omitted variables of concern, nor do they discuss the plausibility of exogenous controls. However, in their

extra robustness checks they consider the variables listed in table 2.
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Table 2: Additional Covariates Included by Bazzi et al. (2020) as Robustness Checks.

Contemporary population density Sex ratio
Conflict with Native Americans Rainfall risk
Employment share in manufacturing Portage sites
Mineral resources Prevalence of slavery
Immigrant share Scotch-Irish settlement
Timing of railroad access Birthplace diversity
Ruggedness

The additional omitted variables of concern might therefore be similar to these variables. Thus the ques-

tion is: Are all of the geographic/climate variables in W1 uncorrelated with variables like these? This seems

unlikely, especially since many of these additional variables are also geographic/climate type variables. More-

over, although this assumption is not falsifiable—since W2 is unobserved—we can assess its plausibility by

examining the correlation structure of the observed covariates. Specifically, we compute the parameters ck

defined in section 3.3. These are square roots of R-squareds from regressing each element of W1 on the other

elements, after partialling out W0. Table 3 shows sample analog estimates of these ck’s.

The estimates in table 3 show a substantial range of correlation between the observed covariates in W1.

Recall that the exogenous controls assumption says that each element of W1 is uncorrelated with W2, after

partialling out W0. Thus if W2 was included in this table it would have a value of zero. Therefore, if W2 is

a variable similar to the components of W1 then we would expect exogenous controls to fail. This suggests

that it is important to use sensitivity analysis methods that allow for endogenous controls.

Table 3: Correlations Between Observed Covariates.

W1k R̂W1k∼W1,−k•W0

Average temperature 0.945
Centroid Latitude 0.936
Elevation 0.825
Average potential agricultural yield 0.805
Average rainfall 0.748
Distance from centroid to the coast 0.698
Centroid Longitude 0.659
Distance from centroid to rivers 0.367
Distance from centroid to lakes 0.316
Land area 0.313

Sensitivity Analysis Allowing For Endogenous Controls

Next we present the findings from the sensitivity analysis that we developed in section 3, which allows for

endogenous controls. We begin with our simplest result, Theorem 2, that only uses a single sensitivity

parameter r̄X . Panel C of table 1 reports sample analog estimates of the breakdown point r̄bp
X described

in Corollary 1. This is the largest amount of selection on unobservables, as a percentage of selection on

observables, allowed for until we can no longer conclude that βlong is nonzero. Recall that, since this result

allows for arbitrarily endogenous controls, Theorem 2 implies that r̄bp
X < 1. As discussed in section 3.3,

however, this does not imply that these results should always be considered non-robust. Instead, when the

calibration covariates W1 are a set of variables that are important for treatment selection, researchers should
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Figure 1: Sensitivity Analysis for Average Republican Vote Share. See body text for discussion.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
rX

1

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
rX

1

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rbp X

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
rX

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

r Y

consider large values of r̄bp
X to indicate the robustness of their baseline results. For example, in columns

(4) and (5) of Panel C we see that the breakdown point estimates for the two behavior based outcomes are

72% and 80.4%. For example, for the average Republication vote share outcome, we can conclude βlong > 0

as long as selection on unobservables is at most 80.4% as large as selection on observables. In contrast,

the breakdown point estimates in columns (1)–(3) are substantially smaller: between about 3% and 6%.

For these outcomes, we therefore only need selection on unobservables to be at least 3 to 6% as large as

selection on observables to overturn our conclusion that βlong > 0. Thus, unlike the conclusions based on

Oster’s method, we find that the analysis using questionnaire based outcomes is highly sensitive to selection

on unobservables. In contrast, the analysis using behavior based outcomes is quite robust to selection on

unobservables. This contrast continues to hold after considering restrictions on the magnitude of endogenous

controls and the impact of unobservables on outcomes too. We present these analyses next.

For brevity we discuss just one questionnaire based outcome, cut spending on the poor, and one behavior

based outcome, average Republican vote share. Figure 1 shows the results for average Republican vote

share. The top left plot shows the estimated identified set βlong as a function of r̄X , allowing for arbitrarily

endogenous controls and no restrictions on the outcome equation. This is the set described by Theorem 2.
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Figure 2: Sensitivity Analysis for Cut Spending on Poor. See body text for discussion.
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The horizontal intercept is the breakdown point r̄bp
X = 80.4%, as reported in Panel C, column (5) of table 1.

This result allows for arbitrarily endogenous controls.

If we are willing to somewhat restrict the magnitude of control endogeneity, we can allow for more selection

on unobservables. The top right figure shows a sequence of estimated identified sets for βlong as a function

of r̄X on the horizontal axis, as described in Theorem 3. It starts at the darkest line, c̄ = 1 (arbitrarily

endogenous controls), and then as the shading of the bound functions becomes lighter, we get closer to

exogenous controls (c̄ = 0). Put differently: For any fixed value of r̄X , imposing stronger assumptions on

exogeneity of the controls results in a smaller identified set. The bottom left picture shows the impact of

assuming partially exogenous controls on the breakdown point for selection on unobservables. Specifically,

this plot shows the estimated breakdown frontier r̄bf
X(c̄). This function shows the horizontal intercept in the

top right figure, as a function of c̄. At c̄ = 1, we recover the breakdown point 80.4% that allows for arbitrarily

endogenous controls. If we impose exogenous controls, however, and set c̄ = 0, we obtain a breakdown point

around 135%. That is, under exogenous controls, we can allow for selection on unobservables of up to 135%

as large as selection on observables before our baseline results break down. In fact, we only need c̄ less than

or equal to about 0.3 to obtain a breakdown point at or above 100%.

All of the analysis thus far has left the impact of unobservables on outcomes unrestricted. So in our final

analysis we also consider the effect of restricting the impact of unobservables on outcomes. The bottom right

plot in figure 1 shows the three-dimensional breakdown frontiers r̄bf
Y (r̄X , c̄) described in Theorem 4. Any

combination of sensitivity parameters (r̄X , r̄Y , c̄) below this three-dimensional function lead to an identified

set that allows us to conclude βlong > 0. This includes, for example, r̄X = r̄Y = 110% and c̄ = 0.7. Note

that 0.7 is around the middle of the distribution of ck values in table 3, and hence might be considered a

moderate or slightly conservative value of the magnitude of control endogeneity. For this value, our baseline

finding is robust to omitted variables that have up to 110% of the effect on treatment and outcomes as the

observables. If we impose exogenous controls (c̄ = 0) then we can allow the impact of the omitted variable

on outcomes to be 200% as large as the observables and the impact of the omitted variable on treatment to

be up to about 240% as large as the observables, and yet still conclude that βlong > 0.
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Figure 3: Effect of Calibration Covariates on Analysis For Republican Vote Share. See body text for
discussion.
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These findings suggest that the empirical conclusions for average Republican vote share are quite robust

to failures of the selection on observables assumption. In contrast, we next consider the analysis for the cut

spending on the poor outcome. Figure 2 shows the results. The left plot shows the estimated identified sets

for βlong as a function of r̄X on the horizontal axis, as described in Theorem 3. For c̄ = 1, the horizontal

intercept gives an estimated value for r̄bp
X of 2.83%, as reported in Panel C, column (1) of table 1. Moreover,

as shown in the figure, even if we impose exogenous controls, c̄ = 0, the identified sets do not change much,

and hence the breakdown point does not change much. The breakdown frontier r̄bf
X(c̄) is essentially flat and

hence we do not report it. These conclusions do not change substantially if we also impose restrictions on

how omitted variables affect the outcomes. The right plot in figure 2 shows the estimated three-dimensional

breakdown frontier. It shows that we can allow for larger amounts of selection on unobservables if we are

willing to greatly restrict the impact of unobservables on outcomes. For example, if we allow for arbitrarily

endogenous controls (c̄ = 1) then we can allow for the effect of omitted variables on the treatment and

outcomes to be as much as 50% that of the effect of the observables while still concluding that βlong > 0.

Alternatively, if we restrict the effect of omitted variables on outcomes to be at most 25% that of observables,

then we can allow the omitted variables to affect treatment by more than 100% of the effect of the observables

while still concluding that βlong > 0.

Overall, we see that there are some cases where the results for cutting spending on the poor could be

considered robust. But there are also many cases where these results could be considered sensitive. In

contrast, the results for average Republican vote share are robust across a wide range of relaxations of the

baseline model. Similar findings hold for the other three outcome variables: The three results using the

questionnaire based outcomes tend to be much more sensitive than the two results using behavior based

outcomes.

The Effect of the Choice of Calibration Covariates

In section 3.3 we discussed the importance of choosing which variables to calibrate against (the variables in

W1) versus which variables to use as controls only (the variables in W0). We next briefly illustrate this in our

empirical application. The results in table 1 and figures 1 and 2 all include state fixed effects as controls, but
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do not use them for calibration; that is, these variables are in W0. Next we consider the impact of instead

putting them into W1 and calibrating the magnitude of selection on unobservables against them, in addition

to the geographic and climate controls already in W1.

Figure 3 shows figures corresponding to the top right and bottom right plots in figure 1, but now also

using state fixed effects for calibration. We first see that the identified sets for βlong (left plot) are larger,

for any fixed r̄X . This makes sense because the meaning of r̄X has changed with the change in calibration

controls. In particular, the breakdown point r̄bp
X is now about 30%, whereas previously it was about 80%.

This change can be understood as a consequence of equation (4). By including state fixed effects—which

have a large amount of explanatory power—in our calibration controls, we have increased the magnitude of

selection on observables. Holding selection on unobservables fixed, this implies that r must decrease. This

discussion reiterates the point that the magnitude of r̄X must always be interpreted as dependent on the

set of calibration controls. For example, our finding in figure 3 that the estimated r̄bp
X is about 30% should

not be interpreted as saying that the results are sensitive; in fact, an effect about 30% as large as these

calibration covariates is substantially large, and so it may be that we do not expect the omitted variable to

have such a large additional impact.

The right plot in figure 3 shows the estimated three-dimensional breakdown frontiers. The frontiers

have all shifted inward, compared to the bottom right plot of figure 1 which did not use state fixed effects

for calibration. Consequently, a superficial reading of this plot may suggest that the results for average

Republican vote share are no longer robust. However, as we just emphasized in our discussion of the left

plot, by including state fixed effects in the calibration covariates W1, we are changing the meaning of all three

sensitivity parameters. Since the expanded set of calibration covariates has substantial explanatory power,

even a relaxation like (r̄Y , r̄X , c̄) = (50%, 50%, 1)—which is below the breakdown frontier and hence allows

us to conclude that βlong is positive—could be considered to be a large impact of omitted variables. So these

figures do not change our overall conclusions about the robustness of the analysis for average Republican

vote share.

Finally, as we emphasized in section 3.3, our discussion about the choice of calibration covariates are

not unique to our analysis; they apply equally to all other methods that use covariates to calibrate the

magnitudes of sensitivity parameters in some way.

5.4 Empirical Conclusions

Overall, a sensitivity analysis based on our new methods leads to a more nuanced empirical conclusion than

originally obtained by Bazzi et al. (2020). We found that their analysis using questionnaire based outcomes

is quite sensitive to the presence of omitted variables, while their analysis using property tax levels and

voting patterns is robust. This has several empirical implications.

First, the questionnaire based outcomes are the most easily interpretable as measures of opposition to

redistribution, regulation, and preferences for small government. In contrast, it is less clear that property

taxes and Republican presidential vote share alone should be interpreted as direct measures of opposition

to redistribution. So the fact that the questionnaire based outcomes are sensitive to the presence of omitted

variables suggests that Bazzi et al.’s overall conclusion in support of the “frontier thesis” should be consid-

ered more tentative than previously stated. Second, it suggests that the impact of frontier life may occur

primarily through broader behavior based channels like elections, rather than individuals’ more specific pol-

icy preferences and behavior in their personal lives. It may be useful to explore this difference in future

empirical work.
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Finally, note that Bazzi et al. (2020) perform a wide variety of additional supporting analyses that we

have not examined here. It would be interesting to apply our methods to these additional analyses, to see

whether allowing for endogenous controls affects the sensitivity of these other analyses. In particular, their

figure 5 considers another set of outcome variables: Republican vote share in each election from 1900 to 2016.

In contrast, our analysis above looked only at one election outcome: the average Republican vote share over

the five elections from 2000 to 2016. They use these additional baseline estimates along with a qualitative

discussion of the evolution of Republican party policies over time to argue that the average Republican vote

share outcome between 2000–2016 can be interpreted as a measure of opposition to redistribution. It would

be interesting to see how these supporting results hold up to a sensitivity analysis that allows for endogenous

controls.

6 Conclusion

As Angrist and Pischke (2017) emphasize, most researchers do not expect to identify causal effects for many

variables at the same time. Instead, we target a single variable, called the treatment, while the other variables

are called controls, and are included solely to aid identification of causal effects for the treatment variable.

These control variables are therefore usually thought to be endogenous. And yet most of the available

methods for doing sensitivity analysis rely on an assumption that these controls are exogenous. This raises

the question of whether these methods for assessing sensitivity are themselves sensitive to allowing the

controls to be endogenous. In this paper we provide a new approach to assessing the sensitivity of selection

on observables assumptions in linear models. Our results have two key features that distinguish them from

existing methods: First, they allow the controls to be endogenous. Second, our first main result only requires

researchers to pick a single sensitivity parameter. In contrast, several existing methods rely on exogenous

controls and require researchers to pick or reason about at least two different sensitivity parameters. Our

results are also simple to implement in practice, via an accompanying Stata package regsensitivity.

Finally, in our empirical application to Bazzi et al.’s (2020) study of the impact of frontier life on modern

culture, we showed that allowing for endogenous controls does matter in practice, leading to more nuanced

empirical conclusions than those obtained in Bazzi et al. (2020).

Internal and External Calibrations of Sensitivity Parameters

Our analysis raises several open questions for the broader literature on sensitivity analysis. A typical method

specifies continuous relaxations or deviations from one’s baseline assumptions and then asks: How much can

we relax or deviate from our baseline assumptions until our conclusions breakdown? Answering this question

requires calibrating the sensitivity parameters: How do we know when these sensitivity parameters are ‘large’

in some sense? A key insight of Altonji, Elder, and Taber (2005) was that we could answer this question

by performing an internal calibration, by comparing the magnitude of the sensitivity parameters to the

magnitude other parameters in the model. However, as we have discussed in this paper, the value of such

internal calibrations is to provide (1) a unit free sensitivity parameter which (2) can be interpreted in terms

of the effects of observed variables. It does not provide a single universal threshold for what is or is not a

robust result. In particular, the choice of which observed variables to calibrate against will change the scale

and interpretation of the sensitivity parameter. Consequently, the value 1 should be considered a unit free

reference point, not a threshold for robustness.

28



This observation leads to several questions: How should researchers choose the covariates against which

they calibrate? And for any given choice of covariates, if 1 is not the threshold for robustness, what is

the threshold? The difficulty of answering these questions speaks to the difficulty of using a single dataset

to assess sensitivity and to calibrate those sensitivity parameters. An alternative approach is external

calibration, where a secondary dataset is used to calibrate the sensitivity parameters. This approach uses

sensitivity parameters that are not defined relative to other parameters in the model, and does not require

researchers to pick a set of covariates to calibrate against. Such absolute sensitivity parameters are common in

the literature on nonparametric sensitivity analysis (e.g., Rosenbaum 1995, 2002 or Masten and Poirier 2018).

This external calibration approach is also common in the literature on measurement error or missing data,

where secondary datasets are used to assess the extent of measurement error or the strength of violations

of missing at random assumptions. It is possible that some combination of both internal and external

calibration approaches will lead to the most robust set of methods for assessing the role of selection on

unobservables in empirical work.
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A The Residualization Approach to Endogenous Controls

In this appendix we discuss an alternative approach to allowing for endogenous controls that has been
suggested by several papers. This approach is based on redefining the sensitivity parameter so that it
simultaneously measures the magnitude of endogenous controls as well as the magnitude of selection on
unobservables. We argue that this approach substantially limits its usefulness, because it changes the scale
of the sensitivity parameter. For Oster’s (2019) analysis (hereafter Oster), we show this scale change implies
that δ = 1 is no longer a natural reference point. That is a concern because an important aspect of
Oster’s overall analysis centers on comparing certain values of δ with 1. For example, Oster’s Proposition
1, Proposition 2, and Corollary 1 all assume that δ equals 1. Oster’s Proposition 3 derives a breakdown
point type value of δ, which is then compared to 1. Values larger than 1 are viewed as ‘large’ while values
smaller than 1 are viewed as ‘small’. Such comparisons are also how empirical researchers routinely use
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Oster’s results, like in the example we study in section 5. To correctly interpret these comparisons of δ with
1 as statements about whether selection on unobservables is larger or smaller than selection on observables,
researchers must therefore make the exogenous controls assumption.

In section A.1 we first give a simple example where redefinition does not address an underlying identifica-
tion problem. The purpose of this example is to show that redefinition is not always an appropriate method
to relax an assumption, in a much simpler setting than the regression sensitivity analysis considered by
Oster. In section A.2 we then discuss Oster’s redefinition approach to allowing for endogenous controls. In
section A.3 we briefly show that Krauth’s (2016) and Cinelli and Hazlett’s (2020) residualization approaches
to endogenous controls have similar drawbacks as Oster’s.

A.1 Projecting Unobservables, “Normalizations,” and Interpreting Parameters

We say the controls W1 are endogenous when they are correlated with the omitted variables of concern, W2.
These variables W2, however, are not observed. Since they are unobserved, why is it not without loss of
generality to simply assume that they are uncorrelated with W1, cov(W1,W2) = 0? Is this not simply a
“normalization”? We answer this question in section A.2. To build intuition, first consider a simple model
where potential outcomes satisfy

Y (x) = βcx+ U,

where U is unobservable, X is a treatment variable, and Y = Y (X). The parameter of interest is βc. Similar
to how δ = 1 is a special value of Oster’s parameter, βc = 0 is often a special value of interest here. As we
describe in section A.2 below, Oster (2019, Appendix A.1) suggests projecting W2 onto (1,W1), obtaining
the residual W⊥W1

2 , and then replacing W2 with W⊥W1
2 everywhere. Thus, even though cov(W1,W2) is not

necessarily zero, cov(W1,W
⊥W1
2 ) = 0. The analogous procedure here is to project U onto (1, X), obtain the

residual U⊥X , and then replace U with U⊥X everywhere. So even though cov(X,U) is not necessarily zero,
cov(X,U⊥X) = 0.

This procedure, however, is not without loss of generality. In particular, we can write

Y = βcX + (ρX + U⊥X)

= (βc + ρ)X + U⊥X

where ρ = cov(U,X)/ var(X) and U⊥X = U − ρX. This implies that OLS of Y on (1, X) gives βc + ρ
as the coefficient on X. Consequently, the interpretation of the OLS estimand depends substantially on
whether we believe X is uncorrelated with the true unobservable U—in which case we learn the causal effect
βc from OLS—or whether we think the unobservable is really just a projection residual U⊥X that is only
uncorrelated with X by construction—in which case OLS only gives us the non-causal projection coefficient.
In the first case, 0 is a special value of interest, representing no causal effect. But in the second case, 0 is
not necessarily a relevant reference point.

In this context, we see that “normalizing” cov(X,U) = 0 is not typically considered to be a solution to
the problem that cov(X,U) may be nonzero since the composite parameter βc + ρ does not have a causal
interpretation when the true U is correlated with X. This observation motivates alternative identification
strategies like instrumental variable methods, which explicitly allow for cov(X,U) 6= 0. In our discussion of
redefinition and “normalizations” in the context of sensitivity analysis below, we will make a similar claim:
Redefining the parameters to allow for nonzero correlations between W1 and W2 changes the interpretation
of the sensitivity parameter substantially. In particular, 1 is no longer a relevant reference point after this
redefinition. This observation therefore motivates the alternative sensitivity analysis that we develop in
section 3.

A.2 Oster (2019)

Shortly after stating the exogenous controls assumption, Oster (2019) says

“As in AET [Altonji, Elder, and Taber (2005)], the orthogonality of W1 and W2 is central to
deriving the results and may be somewhat at odds with the intuition that the observables and
the unobservables are “related.” In practice, the weight of this assumption is in how we think
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about the proportionality condition. In Appendix A.1, I show formally that if we begin with a
case in which the elements of W1 are correlated with W2 we can always redefine W2 such that
the results hold under some value of δ.” (page 192, emphasis added)

Here Oster explains that the main implication of her approach to removing the exogenous controls assumption
is that it changes the interpretation of δ. In this section we argue that this reinterpretation substantially
limits the usefulness of Oster’s results. For example, we show that it can lead researchers to find that their
conclusions are robust even when an analysis based on the original δ shows non-robustness, or vice versa.

A Brief Review of Oster’s δ

First we briefly define and discuss Oster’s sensitivity parameter. Here we continue to use the same notation
as in our analysis in sections 2 and 3. We also continue to assume W2 is a scalar, for simplicity. Following
the analysis of Altonji et al. (2005), Oster (2019) recommends that we measure the magnitude of selection
on unobservables via the parameter

δorig =
cov(X, γ2W2)

var(γ2W2)

/
cov(X, γ′1W1)

var(γ′1W1)
, (9)

which is commonly called Oster’s δ. We denote it by δorig to distinguish it by the redefined version we discuss
later. This parameter depends on two terms:

1. (“Selection on unobservables”) In the numerator we regress X on (1, γ2W2) and get the coefficient on
the index γ2W2.

2. (“Selection on observables”) In the denominator we regress X on (1, γ′1W1) and get the coefficient on
the index γ′1W1.

δorig is the ratio of these two regression coefficients. δorig is not known from the data since it depends on W2,
which is not observed. It also depends on (γ1, γ2) which are also not generally known. Finally, for reference,
we formally define the exogenous controls assumption as follows.

Assumption A8 (Exogenous controls). cov(W1k,W2) = 0 for all components W1k of W1.

Formal Analysis of Oster’s Redefinition Approach

Oster derives all of her results using the sensitivity parameter δorig combined with assumption A8. To remove
this assumption, she suggests replacing δorig with a different sensitivity parameter. We discuss this approach
next.

For simplicity, suppose W1 is scalar. W2 in Oster’s notation is equivalent to γ2W2 in our notation. For
the discussion below we’ll assume γ2 = 1. This is not required, but it implies that Oster’s W2 and ours
are the same, which makes the derivations and comparisons clearer. With these simplifying assumptions,
equation (9) becomes

δorig =
cov(X,W2)

var(W2)

/
cov(X, γ1W1)

var(γ1W1)
.

In her Appendix A.1, Oster notes that if W1 and W2 are correlated, we can consider the linear projection of
W2 onto (1,W1):

W2 = ρW1 +W⊥W1
2 .

Here cov(W1,W
⊥W1
2 ) = 0 by construction, and ρ = cov(W2,W1)/ var(W1). Hence we could instead define δ

based on the residuals W⊥W1
2 rather than the original covariate W2:

δ̃ =
cov(X,W⊥W1

2 )

var(W⊥W1
2 )

/
cov(X, γ1W1)

var(γ1W1)
.
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Oster defines this δ̃ in her Appendix A.1 and then suggests that all of the previous analysis can proceed as
before, using δ̃ instead of δorig. This is slightly incorrect, however, because the coefficient on W1 needs to be
adjusted. For example, without this adjustment, which we describe below, Oster’s Proposition 1 does not
hold if we replace W2 with W⊥W1

2 and δorig with δ̃.
To see the issue, we can write the outcome equation as

Y = βlongX + γ1W1 +W2 + Y ⊥X,W1,W2

= βlongX + γ1W1 + (ρW1 +W⊥W1
2 ) + Y ⊥X,W1,W2

= βlongX + (γ1 + ρ)W1 +W⊥W1
2 + Y ⊥X,W1,W2 .

This is the correct version of the outcome equation after residualizing the unobserved covariates. In par-
ticular, the ρW1 term cannot be absorbed into the residual because then the residual would no longer be
uncorrelated with W1. Applying equation (9) to this equation yields

δresid =
cov(X,W⊥W1

2 )

var(W⊥W1
2 )

/
cov(X, (γ1 + ρ)W1)

var((γ1 + ρ)W1)
. (10)

This version of the sensitivity parameters matches the outcome equation, and thus all of Oster’s results
go through if we replace W2 with W⊥W1

2 and δorig with δresid. Next we discuss the implications of this
substitution. We provide two formal results: Proposition 3 relates δresid to the original sensitivity parameter
δorig. Proposition 4 shows how to interpret δresid in terms of the three sensitivity parameters we use in our
section 3 analysis.

First we compare Oster’s redefined and original sensitivity parameters.

Proposition 3. Suppose var(W1) = 1 and var(W2) = 1. Suppose γ1 6= 0, γ2 = 1, and |ρ| 6= 1. The following
holds:

δresid =

(
1 +

ρ

γ1

)
δorig − ργ1

1− ρ2
.

Here we assume var(W1) = 1, γ2 = 1, and γ1 6= 0 for simplicity only, since the purpose of this proposition
is solely to help clarify the difference between the two definitions of δ. Proposition 3 shows that the δ
based on the residualized W2 is a scaled version δorig, the δ based on the original unobserved covariate W2.
Moreover, the scale term depends on ρ, which measures of the endogeneity of the observed control W1. We
see that if ρ = 0, so that W1 is an exogenous control, then the two versions of δ are the same. If ρ 6= 0,
however, the two versions of δ can be very different.

Proposition 3 has several implications. First, consider a researcher who wants to compute the identified
set for βlong by applying Oster’s Proposition 2. For example, this set could be used to present bias adjusted
coefficient estimates. Suppose this researcher prefers to make statements about δorig. Without the exogenous
controls assumption, Oster’s Proposition 2 requires that they instead make statements about δresid. So to
use that result, this researcher must first apply our Proposition 3 to translate a statement about δorig into
a statement about δresid. In particular, to perform this translation, this researcher must also select specific
values of the unknowns γ1 and ρ (and, more generally, γ2, although we have assumed it is 1 for simplicity
here).

Second, consider a researcher who has used Oster’s Proposition 3 to compute a breakdown point. This
is the most common way that researchers use Oster’s results. Without the exogenous controls assumption,
Oster’s Proposition 3 delivers a breakdown point on the δresid scale; denote it by δbp

resid. Suppose the researcher
wants to translate this breakdown point result into a result about δorig, which is a statement about selection
on observables versus unobservables in terms of the original covariates. To perform this translation, the
researcher can invert our result in Proposition 3 to get

δorig = δresid
γ1(1− ρ2)

γ1 + ρ
+ ργ1. (11)

So once again, the translation from δresid depends on the specific unknowns γ1 and ρ (and, more generally,
γ2). Moreover, equation (11) has several further implications about researchers’ findings of robustness. As
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Figure 4: The relationship between robustness conclusions drawn based on |δresid| and those drawn based
on |δorig|. Left: Regions where the two parameters yield either the same or different conclusions about
robustness. Middle: Under exogenous controls, the two parameters are the same and always yield the same
conclusions. Right: With endogenous controls, the two parameters can be very different and therefore yield
different conclusions. This plot shows three values of (ρ, γ1): (0.9, 0.7)–solid line, (0.3, 5)–dashed line, and
(0.05, 8)–dotted line. See body text for further discussion.
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mentioned earlier, an important aspect of Oster’s overall analysis is that there is a very special value of δ: 1.
Like in our empirical application in section 5, empirical researchers commonly compare the absolute value
of Oster’s breakdown point to 1 to assess whether their study is robust to selection on unobservables. If
researchers are instead interested in using δorig to assess sensitivity, then the breakdown point δbp

resid must be
translated using equation (11). Let

δbp
orig = δbp

resid

γ1(1− ρ2)

γ1 + ρ
+ ργ1 (12)

denote the translated value of the breakdown point. From this equation we immediately see that, when
exogenous controls fails (ρ 6= 0), it is possible for |δbp

resid| > 1 even though |δbp
orig| < 1. That is, researchers

might conclude that their results are robust based on the residualized variables even though they would conclude
their results are not robust based on the original variables.

Figure 4 illustrates this property. All three figures plot the value of |δresid| on the horizontal axis and |δorig|
on the vertical axis. These plots can be thought of as taking the plot of δorig versus δresid on the 2D plane and
folding all four quadrants onto the positive quadrant. The left plot divides the area into two kinds of regions.
The first region is where δbp

orig and δbp
resid lead to the same conclusion, based on Oster’s recommendation of

comparing them with the value 1. This happens when both are less than one in absolute value, or both are
greater than one in absolute value. The second region is where they lead to different conclusions. The middle
plot shows equation (11) when ρ = 0, so exogenous controls holds. In this case, δorig = δresid. Consequently,
they always lead to the same conclusion about robustness. Here the shaded areas are where they lead to
different conclusions. Since the two parameters are the same under exogenous controls, the line relating the
two is the 45 degree line, which never passes through the shaded regions. The right plot shows the case with
endogenous controls. Here we plot equation (11) for three different choices of (γ1, ρ) with ρ 6= 0, showing
the wide variety of possible relationships between δorig and δresid. With endogenous controls, we see that for
many dgps, the lines cross the shaded region, and hence the two parameters can lead to different conclusions
about robustness.

Thus far we have emphasized that researchers’ conclusions about robustness depend greatly on whether
they intend on measuring sensitivity using residualized variables or the original variables. Put differently:
If researchers think that δorig = 1 is a reasonable reference point, then by Proposition 3, δresid = 1 is not
the relevant reference point. Instead, researchers must translate between the two versions of the sensitivity
parameter, and this translation requires thinking about both the coefficient on W1 in the outcome equation
and the magnitude of the relationship between W1 and W2.
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More generally, as can be seen from equation (10), the statement “δresid = 1” is an assumption on three
different underlying relationships:

1. The relationship between W1 and W2, as measured by ρ.

2. The relationship between outcomes and (W1,W2), as measured by γ1 and γ2.

3. The relationship between X and (W1,W2), as measured by cov(X,W1) and cov(X,W2).

Only the third relationship is actually about treatment selection on covariates, however. Our next result
provides another way to see that δresid measures three different underlying relationships simultaneously. Let

c = corr(W1,W2), rY =
γ2σ2

γ1σ1
, and rX =

π2σ2

π1σ1
.

Here (γ1, γ2, π1, π2) are defined as in section 2, σ1 =
√

var(W1), and σ2 =
√

var(W2). Note that c = ρ if
var(W1) = 1 and var(W2) = 1. Our sensitivity analysis in section 3 considers bounds r̄X on |rX |, r̄Y on |rY |,
and c̄ on |c|. The following result therefore relates Oster’s sensitivity parameter to these three underlying
measures that our analysis makes assumptions about.

Proposition 4. Suppose γ1 and π1 are nonzero, so that δresid is well defined. Suppose rY (1 + rXc) is
nonzero. Then

δresid =
rX(1 + rY c)

rY (1 + rXc)
.

Proposition 4 generalizes the derivations in section 6.3 of Cinelli and Hazlett (2020), who looked at the
special case where the controls are exogenous, cov(W1,W2) = 0, and showed

δorig =
rX
rY
.

This follows by setting c = 0 in Proposition 4 and then applying Proposition 3. They emphasized that,
under the exogenous controls assumption, Oster’s parameter is a double ratio: It compares the relative
effect selection on unobservables to observables (rX) relative to the relative effect of unobservables versus
observables on outcomes (rY ). Thus a large value of δorig is consistent with a small amount of selection on
unobservables (small rX) so long as the unobservables matter less for outcomes than the observables (smaller
rY ). They write that Oster “asks users to reason about a quantity that is very difficult to understand” (page
63). They focused on the fact that γ1 and γ2 appear in the definition of δorig. They continued to assume
exogenous controls, however. Here we point out that if you also allow for endogenous controls, then the
interpretation of Oster’s sensitivity parameter δresid becomes even more delicate.

Empirical Illustration

Thus far we have shown theoretically how the interpretation of δresid depends on more than just selection on
unobservables versus observables. Next we discuss the implications of this interpretation in the context of a
simple empirical example: Assessing the impact of omitted ability when measuring the returns to education.

Suppose the outcome Y is log wages, treatment X is education, the observable W1 is parents’ education,
and the omitted variable of concern W2 is ability. Suppose for simplicity that we normalize the variance of
W1 and W2 to 1. First we discuss how to interpret the sensitivity parameters we use in section 3. r̄X is the
maximum effect of a one standard deviation increase in ability on the amount of education received relative
to the effect of a one standard deviation increase of parent’s education on the amount of education received.
r̄Y is defined similarly, but swapping education for the outcome, log wages. c̄ is the maximum correlation
between parents’ education and the child’s ability. In this setting, the exogenous controls assumption (c̄ = 0)
is unlikely to hold, since we typically expect parents with higher education to have children with higher
unobserved ability.

Oster’s original sensitivity parameter δorig equals the ratio λ2/λ1 of two regression coefficients:

1. λ2, the coefficient from OLS of education on a constant and γ2 × ability.
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2. λ1, the coefficient from OLS of education on a constant and γ1 × parents’ education.

And recall that γ2 is the coefficient on ability in OLS of log wages on a constant, child’s education, parents’
education, and ability. γ1 is the coefficient on parent’s education in that same regression. This ratio λ2/λ1

is arguably a straightforward sensitivity parameter to interpret. However, to use Oster’s results along with
this specific interpretation, we must assume exogenous controls, cov(W1,W2) = 0. That is, we must assume
child’s ability and parents’ education are uncorrelated.

To avoid this exogenous controls assumption, we can instead use Oster’s redefined sensitivity parameter,
δresid. This parameter is also a ratio λ∗2/λ

∗
1 of two regression coefficients:

1. λ∗2, the coefficient from OLS of education on a constant and γ2×residualized ability, where residualized
ability is the residual from a projection of ability onto parents’ education.

2. λ∗1, the coefficient from OLS of education on a constant and

γ1 × parents’ education + corr(ability,parents’ education)× γ2 × parents’ education.

These two parameters λ∗2 and λ∗1 are arguably substantially more difficult to interpret than the original
parameters λ2 and λ1. In particular, notice that ability now explicitly enters both parameters.

The motivation of Oster’s original sensitivity parameter δorig is to compare the effect of γ2 × ability on
treatment X, relative to the effect of γ1 × parents’ education on treatment X. We could then interpret δorig

substantively. For example, one could argue that a large δorig is unlikely since it would mean that ability is
much more important than parents’ education in determining the level of education that the child receives.
This kind of discussion is not valid when using δresid, however. That is because the comparison is now
between γ2 times residualized ability and the complicated composite variable

γ1 × parents’ education + corr(ability,parents’ education)× γ2 × parents’ education.

In particular, if child’s ability and parents’ education are strongly correlated (ρ far from zero), then these two
new variables, γ2(W2− ρW1) and (γ1 + ργ2)W1, are very different from the original variables (γ2W2, γ1W1).
Consequently, statements like “we think parents’ education is much more important than ability in deter-
mining the level of education that the child receives” are no longer helpful when attempting to interpret
the magnitude of δresid. Put differently: The original goal was to interpret the separate impacts of observ-
ables from unobservables, but using δresid now requires us to make comparisons of variables that mix both
observables and unobservables.

Summary

Overall, we have shown that relaxing exogenous controls by replacing δorig with δresid implies that statements
about δresid are not statements that compare the magnitude of selection on unobservables with the magni-
tude of selection on observables. Instead, it also requires researchers to make an implicit judgment about
endogeneity of the control variables. This undermines the argument that δresid = 1 is a natural reference
point. Moreover, it implies that researchers may conclude that their results are robust based on examining
δresid, whereas a translation to δorig may instead show that their results are not robust.

In contrast, our analysis in section 3 allows researchers to reason about all three relevant relationships
separately: the endogeneity of the controls via c̄, the relative magnitudes of selection on unobservables versus
on observables via r̄X , and the relative effects of the covariates on outcomes via r̄Y . Moreover, our first main
result (Theorem 2) does not require any assumptions on c̄ or r̄Y at all, thus allowing researchers to isolate
the impact of selection on unobservables alone on the sensitivity of their findings.

A.3 Other Papers

In this section we briefly show that Krauth’s (2016) and Cinelli and Hazlett’s (2020) analyses have similar
drawbacks as Oster’s (2019). To ease comparisons, here we translate their definitions into our notation.
Suppose for simplicity that W1 and W2 are scalars and that there are no control covariates W0. First
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consider Krauth (2016). As in section A.2, consider the linear projection of W2 onto (1,W1):

W2 = ρW1 +W⊥W1
2 .

Also as in section A.2, the outcome equation can be written as

Y = βlongX + (γ1 + γ2ρ)W1 + γ2W
⊥W1
2 + Y ⊥X,W1,W2 .

Krauth defines the sensitivity parameter

λ =
corr(X, γ2W

⊥W1
2 )

corr(X, (γ1 + γ2ρ)W1)
. (13)

Here we explicitly include the projection of W2 onto W1 in the definition of this sensitivity parameter.
Krauth does this implicitly in his notation; see his footnote 1 on page 119. Compare equation (13) with
equation (10) for Oster’s δresid. Like Oster’s parameter, Krauth’s λ is a composite sensitivity parameter that
depends on three different underlying relationships. Our discussion of the difficulties of interpreting Oster’s
δresid therefore apply similarly to Krauth’s λ.

Next consider Cinelli and Hazlett (2020). In their section 4.4, they formally assume exogenous controls
and work with two ratio type sensitivity parameters (their equation (21)),

kX,orig =
R2
X∼W2

R2
X∼W1

and kY,orig =
R2
Y∼W2•X

R2
Y∼W1•X

.

Like Oster (2019) and Krauth (2016), they also suggest that endogenous controls can be allowed by redefining
their sensitivity parameters. Specifically, define

kX,resid =
R2

X∼W⊥W1
2

R2
X∼W1

and kY,resid =
R2

Y∼W⊥W1
2 •X

R2
Y∼W1•X

.

They suggest that their theoretical results of section 4.4 derived under the exogenous controls assumption
continue to hold when the controls are endogenous, so long as we replace W2 with W⊥W1

2 and (kX,orig, kY,orig)
with (kX,resid, kY,resid). For brevity, we focus on the interpretation of kX,resid, although similar remarks apply
to kY,resid. The following result shows how the original and residualized sensitivity parameters of Cinelli and
Hazlett (2020) are related and is analogous to our Proposition 3 above in our analysis of Oster (2019). Recall
that c = corr(W1,W2).

Proposition 5. Suppose var(W1) = 1 and var(W2) = 1. Suppose corr(X,W1) 6= 0 and corr(W1,W2) 6= 1.
Then

kX,resid =
1

1− c2

(
corr(X,W2)

corr(X,W1)
− c
)2

.

Proposition 5 shows how to write the residualized sensitivity parameter as a function of the ratio of
the correlation between treatment and the original unobserved covariate W2 and the correlation between
treatment and the observed covariate W1. Note that

kX,orig =

(
corr(X,W2)

corr(X,W1)

)2

is just the square of this ratio, and hence Proposition 5 relates kX,resid to kX,orig. An immediate corollary of
Proposition 5 is that when exogenous controls holds (c = 0), kX,resid = kX,orig. However, under endogenous
controls (c 6= 0), these two sensitivity parameters are generally not the same. Indeed, they can be very
different. In particular, like Oster (2019), Cinelli and Hazlett (2020) discuss using the value 1 as a cutoff for
determining robustness. Hence we could use Proposition 5 to draw a similar figure to 4 relating these two
sensitivity parameters. This implies that, for many dgps with endogenous controls, these two parameters
can lead to different conclusions about robustness.
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Overall, in this subsection we have shown that the residualized versions of Krauth’s (2016) and Cinelli
and Hazlett’s (2020) sensitivity parameters have similar drawbacks as Oster’s (2019). Unlike these three
papers, our analysis in section 3 uses three distinct sensitivity parameters to measure the three relevant
relationships that affect the magnitude of omitted variable bias: the relationship between Y and (W1,W2),
the relationship between treatment X and (W1,W2), and the magnitude of control endogeneity. Our results
therefore allow users to both reason about and vary these relationships separately rather than simultaneously.

A.4 Proofs

Proof of Proposition 3. We have

δresid =
cov(X,W⊥W1

2 )

var(W⊥W1
2 )

/
cov(X, (γ1 + ρ)W1)

var((γ1 + ρ)W1)

= (γ1 + ρ)
cov(X,W⊥W1

2 )

var(W⊥W1
2 )

/
cov(X,W1)

var(W1)

=
γ1 + ρ

γ1

cov(X,W⊥W1
2 )

var(W⊥W1
2 )

/
cov(X, γ1W1)

var(γ1W1)

=

(
1 +

ρ

γ1

)
δ̃.

Next note that
var(W⊥W1

2 ) = 1− ρ2

since var(W1) = 1 and var(W2) = 1. Also,

cov(X,W⊥W1
2 ) = cov(X,W2)− ρ

γ1
cov(X, γ1W1).

So

δ̃ =
cov(X,W2)− ρ

γ1
cov(X, γ1W1)

cov(X, γ1W1)

var(γ1W1)

var(W⊥W1
2 )

= δorig
var(W2)

var(W⊥W1
2 )

− ρ

γ1

var(γ1W1)

var(W⊥W1
2 )

=
δorig − ργ1

1− ρ2
.

Proof of Proposition 4. Let σ12 = cov(W1,W2). Recall that ρ = σ12/σ
2
1 . We have

δresid =
cov(X, γ2W

⊥W1
2 )

var(γ2W
⊥W1
2 )

/
cov(X, (γ1 + γ2ρ)W1)

var((γ1 + γ2ρ)W1)

=
(γ1 + γ2ρ)

γ2

cov(X,W⊥W1
2 )

var(W⊥W1
2 )

/
cov(X,W1)

var(W1)

=
(γ1 + γ2σ12/σ

2
1)

γ2

cov(X,W⊥W1
2 )

cov(X,W1)

σ2
1

var(W⊥W1
2 )

=
γ1σ

2
1 + γ2σ12

γ2

cov(X,W⊥W1
2 )

cov(X,W1)

1

var(W⊥W1
2 )

= σ1σ2(r−1
Y + c)

cov(X,W⊥W1
2 )

cov(X,W1)

1

var(W⊥W1
2 )

.
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Next we have

cov(X,W1) = cov(π1W1 + π2W2 +X⊥W1,W2 ,W1)

= π1 var(W1) + π2 cov(W1,W2)

= π1σ
2
1 + π2σ12

= π1σ
2
1 + π2σ2

σ12

σ2

= π1σ
2
1 (1 + rXc)

and

cov(X,W2) = π1 cov(W1,W2) + π2 var(W2)

= π1σ12 + π2σ
2
2

= σ1σ2

(
π1

σ12

σ1σ2
+
π2σ2

σ1

)
= π1σ1σ2(c+ rX).

So

cov(X,W⊥W1
2 ) = cov(X,W2)− ρ cov(X,W1)

= π1σ1σ2(c+ rX)− σ12

σ2
1

π1σ
2
1 (1 + rXc)

= π1σ1σ2(c+ rX − c− rXc2)

= π1σ1σ2rX(1− c2)

and

var(W⊥W1
2 ) = var(W2 − ρW1)

= var(W2) + ρ2 var(W1)− 2 cov(ρW1,W2)

= σ2
2(1− c2).

Hence

δresid = σ1σ2(r−1
Y + c)

cov(X,W⊥W1
2 )

cov(X,W1)

1

var(W⊥W1
2 )

= σ1σ2(r−1
Y + c)

π1σ1σ2rX(1− c2)

π1σ2
1 (1 + rXc)

1

σ2
2(1− c2)

=
rX(1 + rY c)

rY (1 + rXc)
.

Proof of Proposition 5. We have

R
X∼W⊥W1

2

= | corr(X,W⊥W1
2 )|

=

∣∣∣∣∣∣ cov(X,W⊥W1
2 )√

var(X)
√

var(W⊥W1
2 )

∣∣∣∣∣∣
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=
1√

var(X)
√

var(W⊥W1
2 )

|cov(X,W2)− c cov(X,W1)|

=
1√

var(X)
√

var(W⊥W1
2 )

∣∣∣corr(X,W2)
√

var(X)
√

var(W2)− c · corr(X,W1)
√

varX
√

var(W1)
∣∣∣

=
1√

var(W⊥W1
2 )

| corr(X,W2)− c · corr(X,W1)|.

Note also that

var(W⊥W1
2 ) = var(W2 − cW1)

= 1− c2

given the normalizations. Using this and dividing through by RX∼W1
= | corr(X,W1)| gives

R
X∼W⊥W1

2

RX∼W1

=
1√

1− c2

∣∣∣∣corr(X,W2)

corr(X,W1)
− c
∣∣∣∣ .

Squaring both sides gives the desired result.

B Generalization to a Vector of Unobserved Covariates

In sections 2 and 3 we assumed W2 was a scalar. In this section we show how to generalize our analysis to
allow for a vector of unobservable covariates. Our approach in this section is similar to how Altonji et al.
(2005) and Oster (2019) allow for vector unobservables.

Let W̃2 denote the vector of unobservables. Replace equation (2) with

X = π′1W1 + π̃′2W̃2 +X⊥W1,W̃2 .

Write

π̃′2W̃2 =

√
var(π̃′2W̃2) · π̃′2W̃2√

var(π̃′2W̃2)

≡ π2 ·W2.

Thus we define π2 to be the standard deviation of the index π̃′2W̃2 and define W2 to be the standardized
version of this index. All of our technical analysis now applies using this definition of W2. Importantly,
researchers do not need to specify whether they think W2 is a vector or not a priori; the same technical
results hold in both cases. That said, there are a few important points to keep in mind.

1. By construction, var(W2) = 1. So the normalization assumption A4 continues to hold.

2. Next we’ll show that this generalization is consistent with our analysis of the scalar W2 case. Specifi-
cally, suppose W̃2 is scalar. Then

π2 =

√
var(π̃2W̃2)

= |π̃2|
√

var(W̃2)

and

W2 =
W̃2√

var(W̃2)

.
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Thus W2 is the standardized version of the original unobserved covariate and π2 is the standardized
version of its coefficient. This is precisely the meaning behind our original normalization assumption
A4.

3. Consider A3. Using the above definition of W2, it is equivalent to√
var(π̃′2W̃2) ≤ r̄X ·

√
var(π′1W1).

Thus the interpretation of this assumption does not change when the unobservables are a vector.

4. Next consider A6, the assumption that ‖ cov(W1,W2)‖Σ−1
obs
≤ c̄. In the vector unobservable case, W2 is

the standardized index variable. So A6 can be interpreted as a restriction on the relationship between
each observed variable with this standardized index variable. In particular, we can still write

‖ cov(W1,W2)‖Σ−1
obs

=
√
R2
π̃′2W̃2∼W1

,

the square root of the R-squared from the regression of the index of unobservables π̃′2W̃2 on the vector
of observables W1.

5. Consider the following two regressions:

(a) OLS of Y on (1, X,W1, W̃2). Denote the coefficient on X by βlong,vec. Let (γ1,vec, γ2,vec) denote

the coefficients on (W1, W̃2).

(b) OLS of Y on (1, X,W1, π̃
′
2W̃2). Denote the coefficient on X by βlong,index. Let (γ1,index, γ2,index)

denote the coefficients on (W1, π̃
′
2W̃2).

Then we have βlong,vec = βlong,index. To see this, by definition of (π1, π̃2) as linear projection coefficients,
we have

X = π′1W1 + π̃′2W̃2 +X⊥W1,W̃2 .

Consequently, the coefficients on (W1, π̃
′
2W̃2) from a linear projection of X on (1,W1, π̃

′
2W̃2) are (π1, 1).

That is, we can write

X = π′1W1 + 1 · (π̃′2W̃2) +X⊥W1,π̃
′
2W̃2 .

This implies that X⊥W1,W̃2 = X⊥W1,π̃
′
2W̃2 . Hence, by the FWL theorem,

βlong,vec =
cov(Y,X⊥W1,W̃2)

var(X⊥W1,W̃2)
=

cov(Y,X⊥W1,π̃
′
2W̃2)

var(X⊥W1,π̃′2W̃2)
= βlong,index.

This shows that the definition of the parameter of interest, βlong, does not depend on whether W2 is a
vector or a scalar.

6. Finally, we discuss the interpretation of A5. Unlike the previous result, it is generally the case that√
var(γ′2,vecW̃2) 6=

√
var(γ2,indexW2) and

√
var(γ′1,vecW1) 6=

√
var(γ′1,indexW1).

Hence it is important to keep in mind that A5 is an assumption on the index version of the regression.
That is, this assumption says√

var(γ2,indexW2) ≤ r̄X ·
√

var(γ′1,indexW1).

So it is a comparison of the impact of the index W2 on outcomes relative to the vector of covariates
W1. Note that this point only applies when using the sensitivity parameter r̄Y . It is not relevant when
applying our first two main results, Theorems 2 and 3.
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Overall, our approach to allowing for a vector of unobservables does not change how researchers use our
technical results. Instead, it only requires a slight adjustment to the interpretation of assumptions A5 and
A6.

C Proofs for Section 2

In the following proofs, let L(A | B) denote the linear projection of the scalar random variable A on the
random column vector B, defined as

L(A | B) = E(AB′)E(BB′)−1B.

Also note that
L(A | 1, B) = cov(A,B) var(B)−1B + k

where k = E(A)− cov(A,B) var(B)−1E(B) is a constant. Finally, recall that we define

A⊥B = A− cov(A,B) var(B)−1B

as the random component of this projection. This allows us to decompose A = ρ′B + A⊥B where ρ′ =
cov(A,B) var(B)−1, and where A⊥B is uncorrelated with all components of B.

Proof of Theorem 1. Part 1. We first show that βlong = βmed. By the FWL theorem,

βmed =
cov(Y,X⊥W1)

var(X⊥W1)
.

By the no selection on unobservables assumption A2 (π2 = 0) and hence

X = π′1W1 +X⊥W .

From this equation we have cov(X,W1) = π′1 var(W1). Hence

X⊥W1 = X − cov(X,W1) var(W1)−1W1

= X − π′1W1

= X⊥W .

Next, write

Y = βlongX + γ′1W1 + γ2W2 + Y ⊥X,W

= βlong(π′1W1 +X⊥W ) + γ′1W1 + γ2W2 + Y ⊥X,W .

So

cov(Y,X⊥W1) = cov(Y,X⊥W )

= cov(βlong(π′1W1 +X⊥W ) + γ′1W1 + γ2W2 + Y ⊥X,W , X⊥W )

= βlong var(X⊥W ) + cov(Y ⊥X,W , X⊥W )

= βlong var(X⊥W1) + cov(Y ⊥X,W , X − π′1W1)

= βlong var(X⊥W1).

Thus

βlong =
cov(Y,X⊥W1)

var(X⊥W1)

as desired.
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Part 2. Next we’ll show that the identified set for γ1 is Rd1 . To show this, fix g1 ∈ Rd1 . We will construct
a joint distribution of (W2,W1, X, Y ) that is consistent with (a) the population distribution of observables
(Y,X,W1), (b) assumptions A1 and A2, and (c) equation (1) holding with γ1 = g1.

Part 2(i): Construction of (W2,W1, X, Y ) joint distribution.

First we derive some useful expressions that we often use below. Under A1 and A2, we have

π1 = var(W1)−1 cov(W1, X)

and

βlong =
cov(Y,X⊥W1)

var(X⊥W1)

=
cov(Y,X)− cov(Y,W1)π1

var(X)− cov(X,W1)π1
.

where the last line follows by substituting X⊥W1 = X − π′1W1.
Next, since we want to ensure that equation (1) holds with γ1 = g1 for our constructed joint distribution

of (W2,W1, X, Y ), we start by finding values g2 ∈ R and c ∈ Rd1 such that

cov(W1, Y ) = βlong cov(W1, X) + var(W1)g1 + g2c. (14)

This equation is the covariance of W1 with equation (1) where the coefficients are (βlong, g1, g2) and where
c = cov(W1,W2). For any fixed g1, equation (14) has multiple solutions (g2, c). Note that g2 6= 0 by
assumption A1. We will select specific solutions (g2, c) below.

For any choice of (g2, c), define the (1 + d1 + 2)× (1 + d1 + 2) matrix

Σ(g2, c) =


1 c′ π′1c βlongπ

′
1c+ g′1c+ g2

c var(W1) cov(W1, X) cov(W1, Y )
π′1c cov(X,W1) var(X) cov(X,Y )

βlongπ
′
1c+ g′1c+ g2 cov(Y,W1) cov(Y,X) var(Y )

 .

Note that the bottom right (d1 +2)× (d1 +2) block corresponds to var(W1, X, Y ) ∈ R(d1+2)×(d1+2), a known
variance matrix. The top row of Σ(g2, c) corresponds to W2. Overall, we will think of this matrix as a
covariance matrix for (W2,W1, X, Y ). Specifically, we will show that for a fixed g1 ∈ Rd1 , and for a pair of
values (g∗2 , c

∗) that satisfy equation (14), the matrix Σ(g∗2 , c
∗) is positive definite. Then we show how to use

this matrix to construct W2 in a way that is consistent with the above equations and assumptions.
To check whether a matrix is positive definite, we use Sylvester’s criterion. It states that a matrix is

positive definite if and only if all its leading principal minors have positive determinants. First, we show
that the (1 + d1)× (1 + d1) matrix

Σ2(c) =

(
1 c′

c var(W1)

)
is positive definite. By symmetry, Σ2(c) is positive definite if and only if(

var(W1) c
c′ 1

)
is positive definite. By A1, var(W1) is positive definite. By another application of Sylvester’s criterion we
then know that (

var(W1) c
c′ 1

)
is positive definite if and only if its determinant is positive. By the determinant formula for partitioned
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matrices, this determinant equals

det

(
var(W1) c

c′ 1

)
= det(var(W1)) ·

(
1− c′ var(W1)−1c

)
.

Notice that 1 = var(W2) and c′ var(W1)−1 will be the coefficient cov(W2,W1) var(W1)−1 in L(W2 | 1,W1)
for the (W2,W1) distribution we are constructing. det(var(W1)) > 0 by A1. Next consider the term in
parentheses. By equation (14), it is positive if

c′ var(W1)−1c =
1

g2
2

(cov(Y,W1)− βlong cov(X,W1)− g′1 var(W1))

· var(W1)−1 (cov(W1, Y )− βlong cov(W1, X)− var(W1)g1)

< 1

or, equivalently, if

g2
2 > (cov(Y,W1)− βlong cov(X,W1)− g′1 var(W1))

var(W1)−1 (cov(W1, Y )− βlong cov(W1, X)− var(W1)g1)

≡ L(g1).

Thus the first (1 + d1) leading principal minors are positive definite when g2
2 > L(g1).

Second, define the (2 + d1)× (2 + d1) matrix

Σ3(c) =

 1 c′ π′1c
c var(W1) cov(W1, X)
π′1c cov(X,W1) var(X)

 .

This is the next leading principal minor of Σ(g2, c). We will show its determinant is also positive when
g2

2 > L(g1). By the partitioned matrix determinant formula,

det(Σ3(c)) = det(Σ2(c)) ·
(

var(X)−
(
π′1c cov(X,W1)

)
Σ2(c)−1

(
π′1c

cov(X,W1)

))
.

Note that (
π′1c cov(X,W1)

)
Σ2(c)−1

will be the coefficient
(
cov(X,W2) cov(X,W1)

)
var(W2,W1)−1 in L(X | 1,W1,W2) for the distribution of

(X,W1,W2) we are constructing. We have already shown that det(Σ2(c)) > 0 when g2
2 > L(g1). So consider

the term in parentheses:

var(X)−
(
π′1c cov(X,W1)

)
Σ2(c)−1

(
π′1c

cov(X,W1)

)
= var(X)− 1

1− c′ var(W1)−1c

(
π′1c cov(X,W1)

)
·
(

1 −c′ var(W1)−1

− var(W1)−1c var(W1)−1(1− c′ var(W1)−1c) + var(W1)−1cc′ var(W1)−1

)
·
(

π′1c
cov(W1, X)

)
= var(X)− 1

1− c′ var(W1)−1c

(
π′1c cov(X,W1)

)
·
(

π′1c− π′1c
−(π′1c) var(W1)−1c+ (1− c′ var(W1)−1c)π1 + var(W1)−1cc′π1

)
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= var(X)− 1

1− c′ var(W1)−1c

(
π′1c cov(X,W1)

)( 0
(1− c′ var(W1)−1c)π1

)
= var(X)− cov(X,W1) var(W1)−1 cov(W1, X)

= var(X⊥W1)

> 0.

The first line follows by the partitioned inverse formula and by g2
2 > L(g1) (which we showed is equivalent

to c′ var(W1)−1c < 1). The second and fourth lines follow by the definition of π1. The last line follows by
A1.

Finally, we compute the determinant of Σ(g2, c) itself. By the partitioned matrix determinant formula,
it equals

det(Σ(g2, c))

= det(Σ3(c))

·

var(Y )−
(
βlongπ

′
1c+ g′1c+ g2 cov(Y,W1) cov(Y,X)

)
Σ3(c)−1

βlongπ
′
1c+ g′1c+ g2

cov(W1, Y )
cov(Y,X)

 .

Note that (
βlongπ

′
1c+ g′1c+ g2 cov(Y,W1) cov(Y,X)

)
Σ3(c)−1

will be the coefficient (
cov(Y,W2) cov(Y,W1) cov(Y,X)

)
Σ3(c)−1

in L(Y | 1,W2,W1, X) for the distribution of (Y,W2,W1, X) we are constructing. We have already shown
that det(Σ3(c)) > 0 when g2

2 > L(g1). We finish by showing that the second term in the expression for
det(Σ(g2, c)) is positive so long as (g1, g2) satisfies one additional constraint. Specifically, we compute

var(Y )−
(
βlongπ

′
1c+ g′1c+ g2 cov(Y,X) cov(Y,W1)

)
Σ3(c)−1

βlongπ
′
1c+ g′1c+ g2

cov(Y,X)
cov(W1, Y )


= var(Y )− β2

long var(X) + g′1 var(W1)g1 + 2βlongg
′
1 cov(W1, X)

− 2βlongπ
′
1 cov(W1, Y )− 2g′1 cov(W1, Y ) + 2β2

longπ
′
1 cov(W1, X)− g2

2 (15)

≡ U(g1)− g2
2 .

For details on how to obtain equation (15), see Appendix G. Thus this determinant is positive if g2
2 < U(g1).

Putting all of these results together, by Sylvester’s criterion, we have shown that Σ(g2, c) is positive
definite whenever g2 satisfies L(g1) < g2

2 < U(g1). To show there exists such a g2 ∈ R, we show that
0 ≤ L(g1) < U(g1) for all g1 ∈ R. To see this, first note that L(g1) is a quadratic and var(W1) is positive
definite, so that L(g1) ≥ 0 for all g1 ∈ R. To see that L(g1) < U(g1) for all g1 ∈ R, note that

U(g1)− L(g1)

= var(Y )− β2
long var(X) + g′1 var(W1)g1 + 2βlongg

′
1 cov(W1, X)

− 2βlongπ
′
1 cov(W1, Y )− 2g′1 cov(W1, Y ) + 2β2

longπ
′
1 cov(W1, X)

− (cov(Y,W1)− βlong cov(X,W1)− g′1 var(W1)) var(W1)−1 (cov(W1, Y )− βlong cov(W1, X)− var(W1)g1)

= var(Y )− β2
long var(X) + g′1 var(W1)g1 + 2βlongg

′
1 cov(W1, X)

− 2βlongπ
′
1 cov(W1, Y )− 2g′1 cov(W1, Y ) + 2β2

longπ
′
1 cov(W1, X)

− cov(Y,W1) var(W1)−1 cov(W1, Y )− β2
longπ

′
1 cov(W1, X)− g′1 var(W1)g1

+ 2βlong cov(Y,W1)π1 + 2 cov(Y,W1)g1 − 2βlong cov(X,W1)g1
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= var(Y )− β2
long var(X) + β2

longπ
′
1 cov(W1, X)− cov(Y,W1) var(W1)−1 cov(W1, Y )

= var(Y ) +

(
cov(Y,X)− cov(Y,W1)π1

var(X)− cov(X,W1)π1

)2

(π′1 cov(W1, X)− var(X))− cov(Y,W1) var(W1)−1 cov(W1, Y )

= var(Y )− cov(Y,X⊥W1)2

var(X⊥W1)
− cov(Y,W1) var(W1)−1 cov(W1, Y )

=
1

var(X⊥W1)

(
var(Y ) var(X⊥W1)− cov(Y,X⊥W1)2 − cov(Y,W1) var(W1)−1 cov(W1, Y ) var(X⊥W1)

)
=

1

var(X⊥W1)

(
var(Y ⊥W1) var(X⊥W1)− cov(Y,X⊥W1)2

)
=

1

var(X⊥W1)

(
var(Y ⊥W1) var(X⊥W1)− cov(Y ⊥W1 , X⊥W1)2

)
> 0.

The second line follows by distributing terms and using our equation for π1. The last inequality follows
from the Cauchy-Schwarz inequality and A1, which ensures that the inequality is strict. Also note that
var(X⊥W1) > 0 by A1.

Therefore, let g∗2 satisfy g∗22 ∈ (L(g1), U(g1)) and

c∗ =
cov(W1, Y )− βlong cov(W1, X)− var(W1)g1

g∗2
.

Then Σ(g∗2 , c
∗) is positive definite and hence a valid covariance matrix.

We next use this matrix to construct the unobservable W2. Here and below we use the following nota-
tion: For any symmetric positive definite matrix A, let A = Chol(A)Chol(A)′ denote its unique Cholesky
decomposition, where Chol(A) is a lower triangular matrix. Returning to our problem, letW̃1

X̃

Ỹ

 = Chol(var(W1, X, Y )−1)′

W1

X
Y


denote the whitened vector of observables (W1, X, Y ). Note that var(W̃1, X̃, Ỹ ) = I. Next, let W̃2 be a unit

variance random variable that is uncorrelated with (W̃1, X̃, Ỹ ). Then we define
W2

W1

X
Y

 = Chol(Σ(g∗2 , c
∗))′


W̃2

W̃1

X̃

Ỹ

 ,

which undoes the whitening. That is, var(W2,W1, X, Y ) = Σ(g∗2 , c
∗). Thus we have constructed a joint

distribution of (W2,W1, X, Y ). Finally, we can use this distribution to define the residuals

Y ⊥X,W = Y − βlongX + g′1W1 + g∗2W2 and X⊥W = X − π′1W1.

Part 2(ii): This distribution is consistent with the distribution of (Y,X,W1).

By definition, the marginal distribution of (W1, X, Y ) from the joint distribution of (W2,W1, X, Y ) that
we have constructed equals the marginal distribution of the observed (W1, X, Y ). This follows since our
construction leaves (W1, X, Y ) unchanged due to the lower triangular structure of Chol(Σ(g∗2 , c

∗)) and
Chol(var(W1, X, Y )−1).

Part 2(iii): This distribution is consistent with A1 and A2 and with equation (1) where γ1 = g1.
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Checking A1. By definition, the covariance matrix of (W2,W1, X, Y ) is Σ(g∗2 , c
∗), which is positive definite.

Therefore A1 holds.

Checking that equation (1) holds with γ1 = g1. By construction, equation (14) holds at (g1, g
∗
2 , c
∗):

cov(W1, Y ) = βlong cov(W1, X) + var(W1)g1 + g∗2c
∗.

Using our expression for βlong, we have that that

cov(Y,X) = βlong var(X⊥W1) + cov(Y,W1)π1

= βlong var(X⊥W1) + π′1(βlong cov(W1, X) + var(W1)g1 + g∗2c
∗)

= βlong var(X) + g′1 var(W1)π1 + g∗2π
′
1c
∗.

Directly from Σ(g∗2 , c
∗), we have that cov(Y,W2) = βlongπ

′
1c
∗ + g′1c

∗ + g∗2 . We use these to calculate

L(Y | 1, X,W )

=
(
cov(Y,W2) cov(Y,X) cov(Y,W1)

) 1 π′1c
∗ c∗′

π′1c
∗ var(X) cov(X,W1)

c∗ cov(W1, X) var(W1)

−1W2

X
W1

+ const.

=
(
βlongπ

′
1c
∗ + g′1c

∗ + g∗2 βlong var(X) + g′1 var(W1)π1 + g∗2π
′
1c
∗ βlongπ

′
1 var(W1) + g′1 var(W1) + g∗2c

∗′)
·

 1 π′1c
∗ c∗′

π′1c
∗ var(X) cov(X,W1)

c∗ cov(W1, X) var(W1)

−1W2

X
W1

+ const.

= βlongX + g′1W1 + g∗2W2 + const. (16)

We give a full derivation of equation (16) in Appendix G.

Checking A2. From the definition of Σ(g∗2 , c
∗), we have that cov(X,W2) = π′1c

∗. Using this, we we next
show that π2 = 0. We have

L(X | 1,W )

=
(
cov(X,W2) cov(X,W1)

)( 1 c∗′

c∗ var(W1)

)−1(
W2

W1

)
+ const.

=
(
π′1c
∗ π′1 var(W1)

) 1

1− c∗′ var(W1)−1c∗

·
(

1 −c∗′ var(W1)−1

− var(W1)−1c∗ var(W1)−1(1− c∗′ var(W1)−1c∗) + var(W1)−1c∗c∗′ var(W1)−1

)(
W2

W1

)
+ const.

= 0 ·W2 + π′1W1 + const.

Thus we see that equation (2) holds with π2 = 0. This concludes the proof.

D The Identified Set For βlong With Fixed (r̄X , r̄Y , c̄)

In this appendix we characterize the identified set for βlong, the coefficient on X in the long regression of
Y on (1, X,W1,W2), under assumptions A3–A6 hold. That is, we use information from all three sensitivity
parameters to learn about βlong (Theorem 5 below). This is an important preliminary step in deriving our
main results in section 3.2.
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D.1 Statement of the Result

Before stating the result, we define some notation. Let

A(rX , rY , c, π1) =

(
var(X) cov(X,W1)

(var(W1) + cr′X + rY c
′ + rY r

′
X)π1 var(W1) + rY c

′

)
and

Π1(rX , c) = {p1 ∈ Rd1 : cov(X,W1) = p′1 (var(W1) + rXc
′)}.

Define

B(rX , rY , c) = {b ∈ R : Equations (18)–(21) hold for some p1 ∈ Π1(rX , c) and some g1 ∈ Rd1} (17)

where these equations are

cov
(
Y, (X,W1)

)
=
(
b g′1

)
A(rX , rY , c, p1) (18)

var(Y ) > b2 var(X) + g′1 (var(W1) + rY r
′
Y + 2rY c

′) g1 (19)

+ 2bp′1(var(W1) + rXc
′ + cr′Y + rXr

′
Y )g1

var(X) > p′1(var(W1) + 2rXc
′ + rXr

′
X)p1 (20)

1 > c′ var(W1)−1c. (21)

We can now state the result.

Theorem 5. Suppose the joint distribution of (Y,X,W1) is known. Suppose A1 holds. Suppose A3–A6
hold. Then the identified set for βlong is

BI(r̄X , r̄Y , c̄) =
⋃

(rX ,rY ,c):‖rX‖Σ−1
obs
≤r̄X ,‖rY ‖Σ−1

obs
≤r̄Y ,‖c‖Σ−1

obs
≤c̄

B(rX , rY , c). (22)

Remark 1. The following alternative characterization of the set B(rX , rY , c) will sometimes be useful:

B(rX , rY , c) = {b ∈ R : the below six equations hold for some (p1, g1) ∈ R2d1}

where

cov(Y,X) = b var(X) + g′1(var(W1) + cr′X + rY c
′ + rY r

′
X)p1

cov(Y,W1) = b cov(X,W1) + g′1(var(W1) + rY c
′)

cov(X,W1) = p′1(var(W1) + rXc
′)

var(Y ) > b2 var(X) + g′1 (var(W1) + rY r
′
Y + 2rY c

′) g1 + 2b(cov(Y,X)− b var(X))

var(X) > p′1(var(W1) + 2rXc
′ + rXr

′
X)p1

1 > c′ var(W1)−1c.

D.2 Proofs

We use the following lemma to prove Theorem 5.

Lemma 1.

1. A3 is equivalent to the following statement: There exists an rX ∈ Rd1 such that π2 = r′Xπ1 and
‖rX‖Σ−1

obs
≤ r̄X .
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2. A5 is equivalent to the following statement: There exists an rY ∈ Rd1 such that γ2 = r′Y γ1 and
‖rY ‖Σ−1

obs
≤ r̄Y .

Proof of Lemma 1. We start with part 1. First, suppose A3 holds. If π1 = 0, then this trivially holds by
setting rX = 0. Suppose π1 6= 0. Then let

rX =
π2

‖π1‖2Σobs

Σobsπ1.

We can see that

r′Xπ1 =
π2

‖π1‖2Σobs

π′1Σobsπ1

=
π2

‖π1‖2Σobs

· ‖π1‖2Σobs

= π2.

Also,

‖rX‖Σ−1
obs

=

∣∣∣∣∣ π2

‖π1‖2Σobs

∣∣∣∣∣ · ‖Σobsπ1‖Σ−1
obs

=

∣∣∣∣∣ π2

‖π1‖2Σobs

∣∣∣∣∣
√
π′1ΣobsΣ

−1
obsΣobsπ1

=
|π2|

‖π1‖Σobs

≤ r̄X .

The first line follows by the definition of rX . The last line follows by A3. Hence A3 implies the first statement
in the lemma.

Next assume the first statement in the lemma holds. Recall that for any symmetric positive definite
matrix A, we let A = Chol(A)Chol(A)′ denote its unique Cholesky decomposition, where Chol(A) is a lower
triangular matrix. Then

|π2| = |r′Xπ1|
= |r′XChol(Σobs)

−1Chol(Σobs)π1|
≤ ‖r′XChol(Σobs)

−1‖ · ‖Chol(Σobs)π1‖
= ‖rX‖Σ−1

obs
‖π1‖Σobs

≤ r̄X‖π1‖Σobs
.

The first inequality follows from the Cauchy Schwarz ienquality. The second inequality is assumed in the
first statement of the lemma. Therefore A3 holds.

The proof of part 2 is analogous to the proof of part 1.

Proof of Theorem 5. We prove this result in two parts. First we show that the true value of βlong is in
BI(r̄X , r̄Y , c̄). Second we show sharpness: Any b in BI(r̄X , r̄Y , c̄) is consistent with the distribution of the
observables and the model assumptions.

Part 1 (Outer set). By A3 and A5, Lemma 1 implies that there exists rX , rY ∈ Rd1 such that π2 = r′Xπ1

and γ2 = r′Y γ1 with ‖rX‖Σ−1
obs
≤ r̄X and ‖rY ‖Σ−1

obs
≤ r̄Y . Let c = cov(W1,W2) denote the true covariance

between the observed covariates and the unobserved covariate W2. Note that ‖c‖Σ−1
obs
≤ c̄ holds by A6.

By the definition of BI(r̄X , r̄Y , c̄), it therefore suffices to show that βlong ∈ B(rX , rY , c) for these values of
(rX , rY , c).
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We have

cov(X,W1)
(1×d1)

= cov(π′1W1 + π2W2 +X⊥W ,W1)

= π′1 var(W1) + π2 cov(W1,W2)′

= π′1 var(W1) + (π′1rX)c′

= π′1(var(W1) + rXc
′).

Thus π1 ∈ Π1(rX , c). Similarly,

cov(X,W2) = cov(π′1W1 + π2W2 +X⊥W ,W2)

= π′1 cov(W1,W2) + π2 var(W2)

= π′1c+ π′1rX

= π′1(c+ rX).

We used var(W2) = 1 in the third line. Next consider

cov(Y,X) = cov(βlongX + γ′1W1 + γ2W2 + Y ⊥X,W , X)

= βlong var(X) + γ′1 cov(W1, X) + γ2 cov(W2, X)

= βlong var(X) + γ′1(var(W1) + cr′X)π1 + γ′1rY (c+ rX)′π1

= βlong var(X) + γ′1(var(W1) + cr′X + rY c
′ + rY r

′
X)π1

and

cov(Y,W1)
(1×d1)

= cov(βlongX + γ′1W1 + γ2W2 + Y ⊥X,W ,W1)

= βlong cov(X,W1) + γ′1 var(W1) + γ2 cov(W2,W1)

= βlong cov(X,W1) + γ′1 var(W1) + (γ′1rY )c′

= βlong cov(X,W1) + γ′1(var(W1) + rY c
′).

These two results imply that

cov(Y, (X,W1)) =
(
βlong γ′1

)
A(rX , rY , c, π1).

So equation (18) holds at the true βlong with (p1, g1) = (π1, γ1). Next we verify that the inequalities in
equations (19), (20), and (21) also hold at the true βlong with (p1, g1) = (π1, γ1).

1. Consider inequality (19). By A1, var(Y ⊥X,W ) > 0. By equation (1), L(Y | 1, X,W1,W2) = Xβlong +
γ′1W1 + γ2W2 + const., since Y ⊥X,W is uncorrelated with (X,W ). Therefore,

var(Y ) = var(L(Y | 1, X,W1,W2)) + var(Y ⊥X,W )

> var(L(Y | 1, X,W1,W2))

= var(Xβlong + γ′1W1 + γ2W2)

= β2
long var(X) + γ′1 var(W1)γ1 + γ2

2

+ 2βlongγ
′
1 cov(W1, X) + 2βlongγ2 cov(X,W2) + 2γ′1 cov(W1,W2)γ2

= β2
long var(X) + γ′1 var(W1)γ1 + (r′Y γ1)2

+ 2βlongγ
′
1(var(W1) + cr′X)π1 + 2βlong(r′Y γ1)π′1(c+ rX) + 2γ′1cr

′
Y γ1

= β2
long var(X) + γ′1 (var(W1) + rY r

′
Y + 2cr′Y ) γ1 + 2βlongπ

′
1(var(W1) + rXc

′ + (c+ rX)r′Y )γ1

Hence inequality (19) holds.
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2. Consider inequality (20). By A1, var(X⊥W ) > 0. By equation (2), L(X | 1,W1,W2) = π′1W1 +π2W2 +
const., since X⊥W is uncorrelated with W . Therefore,

var(X) > var(L(X | 1,W1,W2))

= var(π′1W1 + π2W2)

= π′1 var(W1) + 2π′1cπ2 + π2
2

= π′1 var(W1) + 2π′1cr
′
Xπ1 + (π′1rX)(r′Xπ1)

= π′1(var(W1) + 2cr′X + rXr
′
X)π1.

Hence inequality (20) holds.

3. Consider inequality (21). We have

c′ var(W1)−1c = cov(W2,W1) var(W1)−1 cov(W1,W2)

= R2
W2∼W1

< 1.

The last line follows by A1. Hence inequality (21) holds.

Putting all of these results together we have shown that βlong ∈ B(rX , rY , c) and therefore βlong ∈ BI(r̄X , r̄Y , c̄).

Part 2 (Sharpness). Let b ∈ BI(r̄X , r̄Y , c̄). We will construct a joint distribution for (Y,X,W1,W2)
for which βlong = b and which is consistent with all of our assumptions and the observed distribution of
(Y,X,W1).

Part 1: Constructing a covariance matrix. Since b ∈ BI(r̄X , r̄Y , c̄), let (rX , rY , c) be such that
b ∈ B(rX , rY , c), ‖rX‖Σ−1

obs
≤ r̄X , ‖rY ‖Σ−1

obs
≤ r̄Y , and ‖c‖Σ−1

obs
≤ c̄. Using the definition of B(rX , rY , c), let

(p1, g1) ∈ Π1(rX , c)× Rd1 be such that

cov(Y, (X,W1)) =
(
b g′1

)
A(rX , rY , c, p1).

Define γ1 = g1, π1 = p1, γ2 = r′Y γ1, and π2 = r′Xπ1. By Lemma 1, this implies that A3 and A5 hold.
Next we construct a random variable W2 together with (W1, X, Y ) such that A1, A4, and A6 hold, and

such that equations (1) and (2) hold. To do so, define the matrix

Σ =


1 c′ p′1(c+ rX) bp′1(c+ rX) + g′1(c+ rY )
c var(W1) cov(W1, X) cov(W1, Y )

p′1(c+ rX) cov(X,W1) var(X) cov(X,Y )
bp′1(c+ rX) + g′1(c+ rY ) cov(Y,W1) cov(Y,X) var(Y )

 .

Note that the bottom right (d1 + 2)× (d1 + 2) block is var(W1, X, Y ), the variance matrix of (W1, X, Y ). We
next show that Σ is positive definite. To do this, we apply Sylvester’s criterion as in the proof of Theorem
1. First, we show that (1 + d1)× (1 + d1) matrix

Σ2 =

(
1 c′

c var(W1)

)
is positive definite. Repeating the arguments from part 2(i) of the proof of Theorem 1, Σ2 is positive definite
if and only if c′ var(W1)−1c < 1. This inequality holds by equation (21).

Next consider the (1 + d1 + 1) × (1 + d1 + 1) leading principal minor of Σ. Denote it by Σ3. By the
formula for determinants of partitioned matrices, it has determinant equal to

det(Σ3) = det

 1 c′ (c+ rX)′p1

c var(W1) (var(W1) + cr′X)p1

p′1(c+ rX) p′1(var(W1) + rXc
′) var(X)
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= det(Σ2) ·
(

var(X)−
(
p′1(c+ rX) p′1(var(W1) + rXc

′)
)

Σ−1
2

(
(c+ rX)′p1

(var(W1) + cr′X)p1

))
= det(Σ2) ·

(
var(X)−

(
p′1rX p′1

)( (c+ rX)′p1

(var(W1) + cr′X)p1

))
= det(Σ2) · (var(X)− p′1 (rXr

′
X + rXc

′ + cr′X + var(W1)) p1)

= det(Σ2) · (var(X)− p′1 (rXr
′
X + 2rXc

′ + var(W1)) p1)

> 0.

In the first line we used the formula for cov(X,W1) that we derived earlier. In the third line we used

Σ−1
2 =

1

1− c′ var(W1)−1c

(
1 −c′ var(W1)−1

− var(W1)−1c var(W1)−1(1− c′ var(W1)−1c) + var(W1)−1cc′ var(W1)−1

)
and

1

1− c′ var(W1)−1c

(
p′1(c+ rX) p′1(var(W1) + rXc

′)
)

·
(

−c′ var(W1)−1

var(W1)−1(1− c′ var(W1)−1c) + var(W1)−1cc′ var(W1)−1

)
= p′1.

The fifth line uses p′1(cr′X)p1 = p′1(rXc
′)p1. The last line follows since we already showed that det(Σ2) > 0,

and from inequality (20), assumed in the definition of B(rX , rY , c).
Finally, the determinant of the entire matrix is

det(Σ) = det(Σ3) ·

var(Y )−

 bp′1(c+ rX) + g′1(c+ rY )
b cov(X,W1) + g′1(var(W1) + rY c

′)
b var(X) + g′1(var(W1) + cr′X + rY c

′ + rY r
′
X)p1

′
 1 c′ (c+ rX)′p1

c var(W1) (var(W1) + cr′X)p1

p′1(c+ rX) p′1(var(W1) + rXc
′) var(X)

−1

 b(c+ rX)′p1 + (c+ rY )′g1

b cov(W1, X) + (var(W1) + cr′Y )g1

b var(X) + g′1(var(W1) + cr′X + rY c
′ + rY r

′
X)p1



= det(Σ3) ·

var(Y )−
(
g′1rY g′1 b

) b(c+ rX)′p1 + (c+ rY )′g1

b(var(W1) + cr′X)p1 + (var(W1) + cr′Y )g1

b var(X) + g′1(var(W1) + cr′X + rY c
′ + rY r

′
X)p1


= det(Σ3) ·

(
var(Y )− (b2 var(X) + g′1 var(W1)g1

+ 2bp′1(var(W1) + rXc
′)g1 + (g′1rY )2 + 2bg′1rY p

′
1(c+ rX) + 2g′1rY g

′
1c)
)

> 0.

The first line follows since Σ3 is invertible and by the determinant formula for partitioned matrices. The
second line follows by similar calculations as earlier. The last line follows since we have already shown that
det(Σ3) > 0, and from inequality (19) in the definition of B(rX , rY , c). Thus the matrix Σ is positive definite
by Sylvester’s Criterion.
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Part 2: Constructing the joint distribution of (Y,X,W1,W2). LetW̃1

X̃

Ỹ

 = Chol(var(W1, X, Y )−1)′

W1

X
Y


denote the whitened vector of observables (W1, X, Y ). Let W̃2 be a random variable that has unit variance

and is uncorrelated with (W̃1, X̃, Ỹ ). Define
W2

W1

X
Y

 = Chol(Σ)′


W̃2

W̃1

X̃

Ỹ

 ,

which undoes the whitening. This equation defines a joint vector of random variables (W2,W1, X, Y ).

Part 3: Verifying consistency with the data. This random vector has variance matrix Σ. More-
over, it leaves (W1, X, Y ) unchanged due to the triangular structure of Chol(Σ) and Chol(var(W1, X, Y )−1).
Therefore the (W1, X, Y ) marginal distribution is the same as the observed data.

Part 4: Verifying consistency with the assumptions. We already showed that A3 and A5 hold. A4
holds by definition of W2. Next note that the constructed (W2,W1, X, Y ) are not perfectly multicollinear as
their variance matrix is positive definite. Therefore A1 holds. A6 holds by cov(W1,W2) = c and ‖c‖Σ−1

obs
≤ c̄.

Finally, we show that this distribution of (W2,W1, X, Y ) together with (b, p1, g1, rX , rY , c) imply a dis-
tribution for (Y ⊥X,W , X⊥W ) such that equations (1) and (2) hold with the correct coefficients. Specifically,
let

Y ⊥X,W = Y − bX − g′1W1 − r′Y g1W2

and
X⊥W = X − p′1W1 − r′Xp1W2.

We next verify that Y ⊥X,W and X⊥W are uncorrelated with (X,W1,W2) and (W1,W2) respectively. We
start by calculating the covariances of Y ⊥X,W and (X,W1,W2). First,

cov(Y ⊥X,W , X) = cov(Y − bX − g′1W1 − γ2W2, X)

= cov(Y,X)− b var(X)− cov(X,W1)g1 − r′Y g1p
′
1(rX + c)

= (b var(X) + g′1(var(W1) + cr′X + rY c
′ + rY r

′
X)p1)

− b var(X)− g′1(var(W1) + cr′X)p1 − g′1(rY r
′
X + rY c

′)p1

= 0.

The third equality follows from the equation cov(Y, (X,W1)) =
(
b g′1

)
A(rX , rY , c, p1).

Next,

cov(Y ⊥X,W ,W1) = cov(Y − bX − g′1W1 − γ2W2,W1)

= cov(Y,W1)− b cov(X,W1)− g′1 var(W1)− r′Y g1c
′

= (b cov(X,W1) + g′1(var(W1) + rY c
′))− b cov(X,W1)− g′1 var(W1)− g′1rY c′

= 0.

The third equality also follows from the equation cov(Y, (X,W1)) =
(
b g′1

)
A(rX , rY , c, p1). Similarly,

cov(Y ⊥X,W ,W2) = cov(Y − bX − g1W1 − γ2W2,W2)

= cov(Y,W2)− b cov(X,W2)− g′1c− r′Y g1

= (bp′1(c+ rX) + g′1(c+ rY ))− bp′1(c+ rX)− g′1c− g′1rY
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= 0.

The second line uses var(W2) = 1. The third line substitutes the values of cov(Y,W2) and cov(X,W2) from
Σ, the variance matrix for our constructed distribution of (W2,W1, X, Y ).

As for X⊥W , we can see that

cov(X⊥W ,W1) = cov(X,W1)− p′1 var(W1)− r′Xp1c
′

= p′1(var(W1) + rXc
′)− p′1 var(W1)− p′1rXc′

= 0

cov(X⊥W ,W2) = cov(X,W2)− p′1c− r′Xp1

= p′1(rX + c)− p′1c− p′1rX
= 0.

Here we used cov(X,W1) = p′1(var(W1) + rXc
′) (part of the definition of B(rX , rY , c)), and cov(X,W2) =

p′1(rX + c), which follows from the construction of (W2,W1, X, Y ) to have variance matrix Σ.

Overall, we have constructed a joint distribution of (W2,W1, X, Y ) that is consistent with the assump-
tions, the observed data, and for which βlong = b. In particular, assumptions A1 and A3–A6 hold, and
equations (1) and (2) hold for this distribution of (W2,W1, X, Y ), the residuals Y ⊥X,W and X⊥W , and
the corresponding coefficients (b, p1, π2, g1, γ2, rX , rY , c). It follows that the set BI(r̄X , r̄Y , c̄) is sharp and
therefore the proof is complete.

E Proofs for Section 3

Proof of equation (3). By the FWL theorem,

βmed =
cov(Y,X⊥W1)

var(X⊥W1)
.

Next,

cov(Y,X⊥W1) = cov(Xβlong + γ′1W1 + γ2W2 + Y ⊥X,W , X⊥W1)

= βlong var(X⊥W1) + γ2 cov(W2, X
⊥W1)

and

cov(W2, X
⊥W1) = cov(W2, X − cov(X,W1) var(W1)−1W1)

= cov(W2, X)− cov(X,W1) var(W1)−1 cov(W1,W2)

= π′1 cov(W1,W2) + π2 − (π′1 var(W1) + π2 cov(W2,W1)) var(W1)−1 cov(W1,W2)

= π2 − π2 cov(W2,W1) var(W1)−1 cov(W1,W2)

= π2(1−R2
W2∼W1

).

Putting these together gives the desired result.

E.1 Useful Definitions and Lemmas

Before proving the main results of section 3.2, we first define some useful notation and state and prove some
useful lemmas. Recall from remark 1 that equation (18) can be written as the following two equalities:

σX,Y − b = p′1(I + rXc
′ + cr′Y + rXr

′
Y )g1 (23)

(I + cr′Y )g1 = σW1,Y − bσW1,X . (24)
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Here we have imposed the normalizations var(X) = 1 and var(W1) = I. We maintain these normalizations
throughout this section. We also use the notation σA,B = cov(A,B).

Lemma 2. Let var(Y,X,W1) be positive definite. Then k2k0 > k2
1.

Proof of Lemma 2. By the determinant formula for partitioned matrices,

det

 σ2
Y σX,Y σ′W1,Y

σX,Y 1 σ′W1,X

σW1,Y σW1,X I

 = det(I) · det

((
σ2
Y σX,Y

σX,Y 1

)
−
(
σ′W1,Y

σ′W1,X

)
I−1

(
σW1,Y σW1,X

))

= det

((
σ2
Y σX,Y

σX,Y 1

)
−
(
‖σW1,Y ‖2 σ′W1,Y

σW1,X

σ′W1,Y
σW1,X ‖σW1,X‖2

))
= det

(
σ2
Y − ‖σW1,Y ‖2 σX,Y − σ′W1,Y

σW1,X

σX,Y − σ′W1,Y
σW1,X 1− ‖σW1,X‖2

)
= det

(
k2 k1

k1 k0

)
= k2k0 − k2

1.

The fourth line follows by definition of these constants. By assumption, the variance matrix of (Y,X,W1) is
positive definite. Therefore k2k0 − k2

1 > 0.

The next lemma provides a useful way of rewriting certain quadratic forms that arise in the characteri-
zation of B(rX , rY , c).

Lemma 3. Let (I + cr′1)w1 = v1 and (I + cr′2)w2 = v2. Then

w′1(I + r1c
′ + cr′2 + r1r

′
2)w2 = v′1v2 + (w′1r1)(w′2r2)(1− ‖c‖2).

Proof of Lemma 3. Note that I + r1c
′ + cr′2 + r1r

′
2 = (I + r1c

′)(I + cr′2) + (1− ‖c‖2)r1r
′
2. Therefore

w′1(I + r1c
′ + cr′2 + r1r

′
2)w2 = w′1(I + r1c

′)(I + cr′2)w2 + (1− ‖c‖2)(w′1r1)(r′2w2)

= v′1v2 + (1− ‖c‖2)(w′1r1)(r′2w2).

We next use the previous lemma to provide a simplified characterization of the set B(rX , rY , c).

Lemma 4. Let var(Y,X,W1) be positive definite. Then b ∈ B(rX , rY , c) if and only if the following six
equations hold for some (p1, g1) ∈ Rd1 × Rd1 :

(I + cr′X)p1 = σW1,X

(I + cr′Y )g1 = σW1,Y − bσW1,X

(p′1rX)(g′1rY )(1− ‖c‖2) = k1 − bk0 (25)

(p′1rX)2(1− ‖c‖2) < k0 (26)

(g′1rY )2(1− ‖c‖2) < k0(βmed − b)2 + k0

(
k2

k0
− β2

med

)
(27)

‖c‖2 < 1. (28)

Proof of Lemma 4. By the definition of B(rX , rY , c), b ∈ B(rX , rY , c) if and only if there exists (p1, g1) ∈
Rd1 × Rd1 such that (I + cr′X)p1 = σW1,X , (I + cr′Y )g1 = σW1,Y − bσW1,X , and equations (19), (20), (21),
and (23) hold. We will show that each of these four equations is equivalent to one of the four numbered
equations in the lemma.

Part 1: (23) is equivalent to (25). Since (I + cr′X)p1 = σW1,X and (I + cr′Y )g1 = σW1,Y − bσW1,X , the
conditions of Lemma 3 hold with (r1, r2) = (rX , rY ), (w1, w2) = (p1, g1), and (v1, v2) = (σW1,X , σW1,Y −

55



bσW1,X). The lemma therefore gives

p′1(I + rXc
′ + cr′Y + rXr

′
Y )g1 = σ′W1,Y σW1,X − b‖σW1,X‖2 + (p′1rX)(g′1rY )(1− ‖c‖2).

Hence (23) can be written as

σXY − b = p′1(I + rXc
′ + cr′Y + rXr

′
Y )g1

= σ′W1,Y σW1,X − b‖σW1,X‖2 + (p′1rX)(g′1rY )(1− ‖c‖2)

or, equivalently, as
k1 − bk0 = (p′1rX)(g′1rY )(1− ‖c‖2).

Part 2: (20) is equivalent to (26). Apply Lemma 3 with r1 = r2 = rX , w1 = w2 = p1, v1 = v2 = σW1,X

to obtain

p′1(I + rXr
′
X + 2cr′X)p1 = p′1(I + rXr

′
X + cr′X + rXc

′)p1

= ‖σW1,X‖2 + (p′1rX)2(1− ‖c‖2).

Therefore (20) is equivalent to

1 > p′1(I + rXr
′
X + 2cr′X)p1

= ‖σW1,X‖2 + (p′1rX)2(1− ‖c‖2)

which is equivalent to
k0 > (p′1rX)2(1− ‖c‖2).

Part 3: (19) is equivalent to (27). Apply Lemma 3 with r1 = r2 = rY , w1 = w2 = g1, v1 = v2 =
σW1,Y − bσW1,X to find that

g′1(I + rY r
′
Y + 2cr′Y )g1 = ‖σW1,Y − bσW1,X‖2 + (g′1rY )2(1− ‖c‖2).

Therefore

σ2
Y > b2 + g′1(I + rY rY + 2cr′Y )g1 + 2bp′1(I + rXc

′ + cr′Y + rXr
′
Y )g1

= b2 + ‖σW1,Y − bσW1,X‖2 + (g′1rY )2(1− ‖c‖2) + 2b(σX,Y − b)
= b2 + ‖σW1,Y ‖2 + b2‖σW1,X‖2 − 2bσ′W1,XσW1,Y + (g′1rY )2(1− ‖c‖2) + 2b(σX,Y − b).

The second line uses our application of Lemma 3 as well as equation (23). This inequality is equivalent to

(g′1rY )2(1− ‖c‖2) < b2k0 − 2bk1 + k2

= k0(b2 − 2b(k1/k0) + k2/k0)

= k0(b2 − 2bβmed + β2
med + k2/k0 − β2

med)

= k0(b− βmed)2 + k0(k2/k0 − β2
med).

The third line uses k1/k0 = βmed.

Part 4: (21) is equivalent to (28). This follows from the normalization var(W1) = I.

Our previous lemma characterized B(rX , rY , c). The next lemma characterizes every element of this set
which is not equal to βmed. By treating the element βmed separately, we obtain an even simpler characteri-
zation of the elements in B(rX , rY , c).

Lemma 5. Let var(Y,X,W1) be positive definite. Let b 6= βmed. Then b ∈ B(rX , rY , c) if and only if there
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exists z ∈ R \ {0} such that the following hold:

k1 − bk0 = r′Y

(
z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − bk0)c
)

(29)

z = r′X

(√
1− ‖c‖2σW1,X − cz

)
(30)

z2 < k0 (31)

(b− βmed)2 < devsq(z) (32)

‖c‖2 < 1. (33)

Proof of Lemma 5. Throughout the proof, keep in mind that the lemma assumes b 6= βmed.

Step 1 (⇒). First we show that b ∈ B(rX , rY , c) implies (29)–(33) hold for some z ∈ R \ {0}.

By Lemma 4, b ∈ B(rX , rY , c) is equivalent to the existence of (p1, g1) ∈ Rd1 × Rd1 such that (I +
cr′X)p1 = σW1,X , (I + cr′Y )g1 = σW1,Y − bσW1,X , and equations (25), (26), (27), and (28) hold. Fix such
(p1, g1) ∈ Rd1 × Rd1 and let

z = p′1rX
√

1− ‖c‖2.

First we show that z 6= 0. To see this, note that z = 0 implies p′1rX = 0 since ‖c‖2 < 1. Equation (25) then
implies that k1 − bk0 = 0. This is a contradiction since βmed = k1/k0 and we assumed b 6= βmed. Therefore
z 6= 0.

Second, we show that (25) implies (29). Multiplying both sides of (25) by (1 + r′Y c), we have that

(k1 − bk0)(1 + r′Y c) = (p′1rX)(1− ‖c‖2)(r′Y g1)(1 + r′Y c)

= (p′1rX)(1− ‖c‖2)r′Y (I + cr′Y )g1

= (p′1rX)(1− ‖c‖2)r′Y (σW1,Y − bσW1,X)

= r′Y

(
(p′1rX)

√
1− ‖c‖2(σW1,Y − bσW1,X)

√
1− ‖c‖2

)
= r′Y (σW1,Y − bσW1,X)z

√
1− ‖c‖2.

The fifth line follows by the definition of z. Rearranging the last equality yields (29).
Third, we show that (30) holds for this choice of z. Note that p1 = σW1,X − c(p′1rX). Thus

z = r′Xp1

√
1− ‖c‖2

= r′X

(
σW1,X

√
1− ‖c‖2 − c(p′1rX

√
1− ‖c‖2)

)
= r′X(σW1,X

√
1− ‖c‖2 − cz).

Fourth, we show that (26) implies (31). Substituting p′1rX
√

1− ‖c‖2 = z into (26) gives z2 < k0, which
is equation (31).

Fifth, we show that equations (25) and (27) imply equation (32). Dividing both sides of (25) by
p′1rX

√
1− ‖c‖2 gives

g′1rY
√

1− ‖c‖2 =
k1 − bk0

p′1rX
√

1− ‖c‖2
.

Substitute this into (27) to get

k0(βmed − b)2 + k0

(
k2

k0
− β2

med

)
> (g′1rY )2(1− ‖c‖2)

=
(k1 − bk0)2

(p′1rX)2(1− ‖c‖2)

=
k2

0(βmed − b)2

z2
.
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Rearranging this inequality and recalling that k0 − z2 > 0, we obtain

(βmed − b)2 <
z2
(
k2

k0
− β2

med

)
k0 − z2

.

Therefore equation (32) holds. Finally, note that equations (28) and (33) are identical.

Step 2 (⇐). Next we show that if equations (29)–(33) hold for some z ∈ R \ {0} then b ∈ B(rX , rY , c).

Let

p1 = σW1,X − c
z√

1− ‖c‖2

g1 = σW1,Y − bσW1,X − c
k1 − bk0

z
√

1− ‖c‖2
.

First, we verify that (I + cr′X)p1 = σW1,X :

(I + cr′X)p1 = (I + cr′X)

(
σW1,X − c

z√
1− ‖c‖2

)

= σW1,X + c(r′XσW1,X)− c (1 + r′Xc)z√
1− ‖c‖2

= σW1,X + c(r′XσW1,X)− c(r′XσW1,X)

= σW1,X .

The third line follows by (30).
Second, we verify that (I + cr′Y )g1 = σW1,Y − bσW1,X :

(I + cr′Y )g1 = (I + cr′Y )

(
σW1,Y − bσW1,X − c

k1 − bk0

z
√

1− ‖c‖2

)

= σW1,Y − bσW1,X + c ((σW1,Y − bσW1,X)′rY )− c (1 + r′Y c)(k1 − bk0)

z
√

1− ‖c‖2

= σW1,Y − bσW1,X + c ((σW1,Y − bσW1,X)′rY )− c
(
r′Y (σW1,Y − bσW1,X)

)
= σW1,Y − bσW1,X .

The third line follows by (29).
Third, note that by the definition of p1 and equation (30),

p′1rX
√

1− ‖c‖2 = z.

Similarly, by the definition of g1 and equation (29),

g′1rY
√

1− ‖c‖2 =
k1 − bk0

z
.

Multiplying these two equations together gives

(p′1rX)(g′1rY )(1− ‖c‖2) = z · k1 − bk0

z
= k1 − bk0,

Hence equation (25) holds. Fourth, we see that

(p′1rX)2(1− ‖c‖2) = z2
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< k0

by equation (31). Therefore inequality (26) holds. Finally, since z2 < k0 by inequality (31), inequality (32),

(βmed − b)2 <
z2(k2/k0 − β2

med)

k0 − z2

is equivalent to
(k1 − bk0)2(k0 − z2) < z2(k2k0 − k2

1)

and to
(k1 − bk0)2k0 < z2(k1 − bk0)2 + z2(k2k0 − k2

1).

Using this inequality we find that

(g′1rY )2(1− ‖c‖2) =
k0(k1 − bk0)2

k0z2

<
1

k0z2
·
(
z2(k1 − bk0)2 + z2(k2k0 − k2

1)
)

=
(k1 − bk0)2

k0
+
k2k0 − k2

1

k0

= k0(b− βmed)2 + k0(k2/k0 − β2
med).

Therefore inequality (27) holds. Finally, note that equations (28) and (33) are identical.

We have shown that equations (25), (26), (27), and (28) hold, as well as (I + cr′Y )g1 = σW1,Y − bσW1,X

and (I + cr′X)p1 = σW1,X . Hence Lemma 4 implies that b ∈ B(rX , rY , c).

For the next several lemmas, we use the function

zX(rX , c) =
r′XσW1,X

√
1− ‖c‖2

1 + r′Xc
.

This function is well defined for all (rX , c) such that r′Xc 6= −1. When r′Xc 6= −1, equation (30) is equivalent
to z = zX(rX , c).

The following lemma examines the set B(rX , rY , c) when rY = 0. It characterizes when this set is the
singleton containing βmed. We use this result to handle the value βmed separately from the other elements
of B(rX , rY , c).

Lemma 6. Let var(Y,X,W1) be positive definite. Let ‖c‖ < 1. Then

B(rX , 0, c) = {βmed}

if and only if there exists a p1 ∈ Rd1 such that (I + cr′X)p1 = σW1,X and (26) holds. In particular,
B(rX , 0, c) = {βmed} for all (rX , c) such that r′Xc 6= −1 and zX(rX , c)

2 < k0.

Proof of Lemma 6. (⇒) Suppose B(rX , 0, c) = {βmed}. By Lemma 4, there exists a p1 ∈ Rd1 such that
(I + cr′X)p1 = σW1,X and equation (26) holds.

(⇐) Conversely, suppose there exists a p1 ∈ Rd1 such that (I + cr′X)p1 = σW1,X and equation (26) holds.

1. First we show that βmed ∈ B(rX , 0, c). We do this by setting g1 = σW1,Y − βmedσW1,X and then using
the characterization of B(rX , rY , c) given in Lemma 4.

By assumption, equations (26) and (28) hold, as well as the first displayed equation in Lemma 4,
(I+cr′X)p1 = σW1,X . The second displayed equation also holds since our specific choice of g1 combined
with rY = 0 gives (I + cr′Y )g1 = g1 = σW1,Y − βmedσW1,X . Equation (25) holds immediately from
setting rY = 0 and b = βmed.
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All that remains is to verify inequality (27). Substitute b = βmed and rY = 0 into this inequality to
get

0 < k0

(
k2

k0
− β2

med

)
or, equivalently,

0 <
k2k0 − k2

1

k0
.

This inequality holds by k0 > 0 and by Lemma 2. Thus we have verified that all of the conditions in
Lemma 4 hold. Hence the lemma shows that βmed ∈ B(rX , 0, c).

2. Next we show that {βmed} ⊇ B(rX , 0, c). Let b ∈ B(rX , 0, c). Then equation (25) holds with rY = 0.
That is, 0 = k1 − bk0. Hence b = βmed.

Putting these two steps together gives {βmed} = B(rX , 0, c).

We conclude by proving the final sentence of the lemma. Suppose (rX , c) are such that r′Xc 6= −1 and
zX(rX , c)

2 < k0. Then, since I + rXc
′ is invertible when r′Xc 6= −1 (Abadir and Magnus 2005, exercise 4.28

with A = I), we can let p1 = (I + cr′X)−1σW1,X . Then r′XσW1,X = r′X(I + cr′X)p1 = r′Xp1(1 + c′rX), and

therefore r′Xp1 =
r′XσW1,X

1+c′rX
. Thus

(r′Xp1)2(1− ‖c‖2) =
(r′XσW1,X)2(1− ‖c‖2)

(1 + c′rX)2

= zX(rX , c)
2

< k0.

Hence equation (26) holds. By the first part of the proof we therefore have B(rX , 0, c) = {βmed}.

Let

A(r̄X , c̄) = {(rX , c, b, z) ∈ Rd1 × Rd1 × R× R \ {0} : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, (30)–(33) hold}.

This is the set of (rX , c, b, z) that satisfies four of the five equations in the characterization of B(rX , rY , c)
given in Lemma 5. Our next lemma provides an analytical characterization of the smallest value of ‖rY ‖
such that the fifth and final equation (numbered (29)) in the characterization of Lemma 5 holds for that rY .
Recall that the function rY (z, c, b) is defined just prior to the statement of Theorem 4 in section 3.2.

Lemma 7. Let var(Y,X,W1) be positive definite. Fix (rX , c, b, z) ∈ A(r̄X , c̄). Then

inf
{
‖rY ‖ : rY ∈ Rd1 , k1 − bk0 = r′Y

(
z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − bk0)c
)}

= rY (z, c, b).

Proof of Lemma 7. First we recall a few equations and definitions. The fifth equation in the characterization
of Lemma 5, equation (29), is

k1 − bk0 = r′Y

(
z
√

1− ‖c‖2(σW1,Y − bσW1,X)− c(k1 − bk0)
)
. (29)

We then have the sets
D = R× {c ∈ Rd1 : ‖c‖ < 1} × R

and
D0 = {(z, c, b) ∈ D : z

√
1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − k0b)c 6= 0}.

The set D is the set of feasible values of (z, c, b), while D0 is the subset of (z, c, b) values such that the
coefficient on rY in equation (29) is nonzero.

We compute the infimum in the lemma by considering a three different cases. The proof concludes by
combining all three of these cases into the definition of rY (z, c, b).
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Case 1. We show that inf
{
‖rY ‖ : rY ∈ Rd1 , (29) holds for (rY , c, b, z)

}
= 0 if b = βmed.

When b = βmed, equation (29) is

0 = r′Y

(
z
√

1− ‖c‖2(σW1,Y − βmedσW1,X)− c(k1 − βmedk0)
)
.

For all (z, c), this equation holds for rY = 0. Hence

inf{‖rY ‖ : b ∈ B(rX , rY , c), rY ∈ Rd1} = 0.

Case 2. We show that inf
{
‖rY ‖ : rY ∈ Rd1 , (29) holds for (rY , c, b, z)

}
= +∞ when b 6= βmed and

(z, c, b) ∈ D \ D0.

Suppose (z, c, b) are such that b 6= βmed. Since (z, c, b) /∈ D0, the coefficient on rY in equation (29) must
be zero for these values:

z
√

1− ‖c‖2(σW1,Y − bσW1,X)− c(k1 − bk0) = 0.

But since b 6= βmed, the left hand side of equation (29) is nonzero. Hence there does not exist an rY such
that (29) holds.

Case 3. We show that

inf
{
‖rY ‖ : rY ∈ Rd1 , (29) holds for (rY , c, b, z)

}
=

|k1 − k0b|
‖z
√

1− ‖c‖2(σW1,Y − bσW1,X) + (k1 − k0b)c‖

if b 6= βmed and (z, c, b) ∈ D0.

Applying the Cauchy Schwarz inequality to equation (29), we find that for any rY such that b ∈
B(rX , rY , c) \ {βmed},

|k1 − bk0| =
∣∣∣r′Y (z√1− ‖c‖2(σW1,Y − bσW1,X)− c(k1 − bk0)

)∣∣∣
≤ ‖rY ‖

∥∥∥z√1− ‖c‖2(σW1,Y − bσW1,X)− c(k1 − bk0)
∥∥∥ .

Rearranging this inequality gives

‖rY ‖ ≥
|k1 − k0b|

‖z
√

1− ‖c‖2(σW1,Y − bσW1,X) + (k1 − k0b)c‖
,

where the denominator is non-zero since (z, c, b) ∈ D0. This lower bound is attained by letting rY = r∗Y (z, c, b)
where

r∗Y (z, c, b) = (k1 − bk0)
z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − bk0)c∥∥∥z√1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − bk0)c
∥∥∥2 .

By construction, equation (29) is satisfied with this choice of rY , since

r∗Y (z, c, b)′(z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − k0b)c) = k1 − bk0.

Since it attains the lower bound,

inf
{
‖rY ‖ : rY ∈ Rd1 , (29) holds for (rY , z, c, b)

}
= ‖r∗Y (z, c, b)‖

Finally, note that ‖r∗Y (z, c, b)‖ = rY (z, c, b).
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To the state the next lemma, define the following bounds for b:

b(z) = βmed −
√

devsq(z) and b(z) = βmed +
√

devsq(z).

Our next lemma characterizes the union of B(rX , rY , c) over all rY ∈ Rd1 . In particular, it shows that this
union is essentially an interval. This lemma is not quite our main result, however, because it is stated for rX
and c, rather than for r̄X and c̄. Nonetheless, our main results will show how to use this lemma to obtain a
characterization of BI(r̄X , c̄).

Lemma 8. Let var(Y,X,W1) be positive definite. Let σW1,Y 6= σX,Y σW1,X and ‖c‖ < 1. For any (rX , c)
such that r′Xc 6= −1 and 0 < zX(rX , c)

2 < k0, we have⋃
rY ∈Rd1

B(rX , rY , c) =
(
b(zX(rX , c)), b(zX(rX , c))

)
\ B0(zX(rX , c), c)

where B0(zX(rX , c), c) is a set containing at most one point.

Proof of Lemma 8. Recall that by Lemma 5, for b 6= βmed, b ∈ B(rX , rY , c) if and only if (29)–(33) hold for
some z ∈ R \ {0}. We’ll show two characterizations:

1. First, given r′Xc 6= −1, zX(rX , c)
2 < k0, and ‖c‖ < 1, (30) and (31) hold if and only if z = zX(rX , c).

To see this, when r′Xc 6= −1, (30) is equivalent to zX(rX , c) = z because

z = r′X(σW1,X

√
1− ‖c‖2 − zc) holds if and only if z =

r′XσW1,X

√
1− ‖c‖2

1 + r′Xc

and the far right hand side expression is precisely the definition of zX(rX , c). Furthermore, setting
z = zX(rX , c), zX(rX , c)

2 < k0 if and only if (31) holds. Hence, under our maintained assumptions,
(30) and (31) hold if and only if z = zX(rX , c).

2. Next, assuming z = zX(rX , c), (32) can be written as

(b− βmed)2 < devsq(zX(rX , c)).

This is equivalent to

βmed −
√

devsq(zX(rX , c)) < b < βmed +
√

devsq(zX(rX , c))

or
b ∈

(
b(zX(rX , c)), b(zX(rX , c))

)
.

These two equivalences show that for any b ∈
(
b(zX(rX , c)), b(zX(rX , c))

)
\{βmed}, (rX , c, b, zX(rX , c)) satisfy

(30), (31), and (32). Therefore,⋃
rY ∈Rd1

B(rX , rY , c)

= B(rX , 0, c) ∪

 ⋃
rY ∈Rd1

B(rX , rY , c)


= {βmed} ∪

 ⋃
rY ∈Rd1

B(rX , rY , c) \ {βmed}


= {βmed} ∪

 ⋃
rY ∈Rd1

{b ∈ R \ {βmed} : (29)–(33) hold for some z ∈ R \ {0}}
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= {βmed} ∪

 ⋃
rY ∈Rd1

{
b ∈ R \ {βmed} : (29) holds for z = zX(rX , c) and b ∈

(
b(zX(rX , c)), b(zX(rX , c))

)}
= {βmed} ∪

 ⋃
rY ∈Rd1

{
b ∈

(
b(zX(rX , c)), b(zX(rX , c))

)
\ {βmed} :

k1 − bk0 = r′Y

(
zX(rX , c)

√
1− ‖c‖2(σW1,Y − bσW1,X)− c(k1 − bk0)

)})
=
(
b(zX(rX , c)), b(zX(rX , c))

)
\{

b ∈ R \ {βmed} : k1 − bk0 6= r′Y

(
zX(rX , c)

√
1− ‖c‖2(σW1,Y − bσW1,X)− c(k1 − bk0)

)
for all rY ∈ Rd1

}
=
{
b ∈

(
b(zX(rX , c)), b(zX(rX , c))

)
: (zX(rX , c), c, b) ∈ D0

}
=
(
b(zX(rX , c)), b(zX(rX , c))

)
\ {b ∈ R : (zX(rX , c), c, b) ∈ D \ D0}

≡
(
b(zX(rX , c)), b(zX(rX , c))

)
\ B0(zX(rX , c), c).

The second equality follows by Lemma 6, which gives {βmed} = B(rX , 0, c) since r′Xc 6= −1 and zX(rX , c)
2 <

k0. The third equality follows by Lemma 5. The fourth equality follows by our derivations above. The fifth
equality follows by substituting in the definition of equation (29). In the sixth equality we used the fact that
zX(rX , c) > 0 and so

(
b(zX(rX , c)), b(zX(rX , c))

)
is a nonempty interval, which contains βmed by definition.

Moreover, βmed /∈ B0(zX(rX , c), c) for all (rX , c) because there always exists an rY ∈ Rd1 such that equation
(29) holds at b = βmed. Thus βmed is never removed when we subtract the set B0(zX(rX , c), c). The seventh
equality follows since, as we showed in the proof of Lemma 7, for any (rX , c, b, z) such that b 6= βmed and
such that (30), (31), (32), and (33) hold,

{rY ∈ Rd1 : (29) holds for (rY , c, b, z)} 6= ∅

if and only if (z, c, b) ∈ D0. In the last line we defined

B0(zX(rX , c), c) = {b ∈ R : (zX(rX , c), c, b) ∈ D \ D0}.

We complete the proof by showing that this set is either a singleton or empty.
Recall that (z, c, b) ∈ D \ D0 if and only if

0 = z
√

1− ‖c‖2(σW1,Y − bσW1,X)− (k1 − bk0)c

=
(
z
√

1− ‖c‖2σW1,Y − k1c
)
− b

(
z
√

1− ‖c‖2σW1,X − k0c
)

≡ A0(z, c)− bA1(z, c).

For a given (z, c) this is system of linear equations in b. So it has at most one solution unless the vectors
A0(z, c) and A1(z, c) satisfy A0(z, c) = A1(z, c) = 0. This happens if and only if

z
√

1− ‖c‖2σW1,Y = k1c

z
√

1− ‖c‖2σW1,X = k0c.

Since z 6= 0 in this set and ‖c‖ < 1, we have z
√

1− ‖c‖2 6= 0. So A0(z, c) = A1(z, c) = 0 if and only if
σW1,Y = (k1/k0)σW1,X . This equation is equivalent to

0 = k0σW1,Y − k1σW1,X

= (1− ‖σW1,X‖2)σW1,Y − (σX,Y − σ′W1,XσW1,Y )σW1,X

= σW1,Y − ‖σW1,X‖2σW1,Y − σX,Y σW1,X + (σ′W1,Y σW1,X)σW1,X

= σW1,Y − ‖σW1,X‖2(k1/k0)σW1,X − σX,Y σW1,X + (((k1/k0)σW1,X)′σW1,X)σW1,X
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= σW1,Y − σX,Y σW1,X .

But now we see that this equation does not hold by assumption. Consequently we know that A0(z, c) and
A1(z, c) are not both zero. This shows that there is at most one value b such that (zX(rX , c), c, b) ∈ D\D0.

Our next lemma shows that z̄X(·) is a bound for zX(·).

Lemma 9. Suppose σW1,X 6= 0. Then

sup{zX(rX , c)
2 : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, ‖c‖ 6= 1} = z̄X(r̄X , c̄)

2.

Proof of Lemma 9. Recall that, by definition,

|zX(rX , c)| =
|r′XσW1,X |

√
1− ‖c‖2

|1 + r′Xc|
.

We prove the result by considering two cases.

Case 1: Suppose c̄r̄X ≥ 1. In this case, by definition, z̄X(r̄X , c̄)
2 = +∞. It therefore suffices to show

that there exists a sequence {(r(n)
X , c(n)) : ‖r(n)

X ‖ ≤ r̄X , ‖c(n)‖ ≤ c̄, ‖c(n)‖ 6= 1} such that zX(rX , c)
2 diverges

to +∞ along this sequence. For n ≥ 1, define the sequence

r
(n)
X = −n− 1

n

1

c̄‖σW1,X‖
σW1,X and c(n) =

n− 1

n

c̄

‖σW1,X‖
σW1,X .

First we check that this sequence satisfies the norm constraints:

‖r(n)
X ‖ =

∥∥∥∥−n− 1

n

1

c̄‖σW1,X‖
σW1,X

∥∥∥∥ =
n− 1

nc̄
≤ (n− 1)r̄X

n
< r̄X

since c̄r̄X ≥ 1, and

‖c(n)‖ =

∥∥∥∥n− 1

n

c̄

‖σW1,X‖
σW1,X

∥∥∥∥ =
n− 1

n
· c̄ < c̄.

In particular, note that ‖c(n)‖ 6= 1. Next we evaluate the function |zX(·, ·)| along this sequence:

|zX(r
(n)
X , c(n))| =

|n−1
n

1
c̄‖σW1,X‖σ

′
W1,X

σW1,X |
√

1− ‖c(n)‖2∣∣∣1− (n−1
n

)2 1
c̄‖σW1,X‖σ

′
W1,X

c̄
‖σW1,X‖σW1,X

∣∣∣
=

n−1
n

‖σW1,X‖
c̄

√
1− c̄2

(
n−1
n

)2
1−

(
n−1
n

)2
=
‖σW1,X‖

c̄

√√√√(n(n− 1)

2n− 1

)2
(

1− c̄2
(
n− 1

n

)2
)

=
‖σW1,X‖

c̄

√
(n− 1)2(n2 − c̄2(n− 1)2)

(2n− 1)2
.

Since ‖σW1,X‖ 6= 0 by σW1,X 6= 0, this expression is nonzero for all n. The term inside the square root goes
to +∞ by L’Hospital’s rule. Thus

lim
n→∞

|zX(r
(n)
X , c(n))| = +∞.

Case 2: Suppose c̄r̄X < 1. Consider (rX , c) such that ‖rX‖ ≤ r̄X and ‖c‖ ≤ c̄. By the Cauchy Schwarz
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inequality, |r′XσW1,X | ≤ ‖rX‖‖σW1,X‖ and

r′Xc ∈
[
− ‖rX‖‖c‖, ‖rX‖‖c‖

]
⊆ (0, 1).

The inclusion in (0, 1) follows since c̄r̄X < 1. This implies

|1 + r′Xc| = 1 + r′Xc ≥ 1− ‖rX‖‖c‖ > 0.

Therefore

|zX(rX , c)| =
|r′XσW1,X |

√
1− ‖c‖2

|1 + r′Xc|

≤
‖rX‖‖σW1,X‖

√
1− ‖c‖2

1− ‖rX‖‖c‖
≡ f(‖rX‖, ‖c‖).

This implies that

sup{|zX(rX , c)| : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄} ≤ sup{f(‖rX‖, ‖c‖) : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄}
= sup{f(aX , ac) : (aX , ac) ∈ [0, r̄X ]× [0, c̄]}.

For now we omit the ‖c‖ 6= 1 constraint; below we show that it will not bind at the supremum. Next we
show that

sup{f(aX , ac) : (aX , ac) ∈ [0, r̄X ]× [0, c̄]} = z̄(r̄X , c̄).

To see this, first note that f(aX , ac) is continuous on [0, r̄X ]× [0, c̄], a compact set, by r̄X c̄ < 1. f(aX , ac) is
nondecreasing in aX for any ac ∈ [0, c̄]. Hence f(aX , ac) ≤ f(r̄X , ac) for any (aX , ac) ∈ [0, r̄X ]× [0, c̄].

To maximize f(r̄X , ac) over ac ∈ [0, c̄], consider the derivative of f(r̄X , ac) with respect to ac:

∂f(r̄X , ac)

∂ac
= r̄X‖σW1,X‖

−ac(1− r̄Xac) + r̄X(1− a2
c)√

1− a2
c(1− r̄Xac)2

=
r̄X‖σW1,X‖(r̄X − ac)√

1− a2
c(1− r̄Xac)2

.

Suppose r̄X > 0. Then this derivative is positive whenever ac < r̄X , zero when ac = r̄X , and negative when
ac > r̄X . So if r̄X ≤ c̄, ac = r̄X maximizes this function. Otherwise, f(r̄X , c̄) is maximized at the boundary
value ac = c̄. Hence argmax{f(r̄X , ac) : ac ∈ [0, c̄]} = min{r̄X , c̄}. If r̄X = 0, f(r̄X , ac) is constant and is
trivially maximized at ac = min{r̄X , c̄}.

Putting the previous few steps together gives

sup{|zX(rX , c)| : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄} ≤ sup{f(aX , ac) : (aX , ac) ∈ [0, r̄X ]× [0, c̄]}
= f(r̄X ,min{r̄X , c̄})

=
r̄X‖σW1,X‖

√
1−min{r̄X , c̄}2

1− r̄X min{r̄X , c̄}
= z̄X(r̄X , c̄).

The last line follows by the definition of z̄X .
We conclude the proof by showing that the inequality in fact holds with equality:

sup{|zX(rX , c)| : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄} = z̄X(r̄X , c̄).

We do this by finding (r∗X , c
∗) such that ‖r∗X‖ ≤ r̄X , ‖c∗‖ ≤ c̄, and such that |zX(r∗X , c

∗)| = z̄X(r̄X , c̄).
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Specifically, let

r∗X =
r̄X

‖σW1,X‖
σW1,X and c∗ = −min{r̄X , c̄}

‖σW1,X‖
σW1,X .

First note that ‖r∗X‖ = r̄X ≤ r̄X and ‖c∗‖ = min{r̄X , c̄} ≤ c̄. Moreover,

|zX(r∗X , c
∗)| =

|r∗′XσW1,X |
√

1− ‖c∗‖2
|1 + r∗′Xc

∗|

=

∣∣∣ r̄X
‖σW1,X‖‖σW1,X‖2

∣∣∣√1−min{r̄X , c̄}2∣∣∣1− r̄X min{r̄X ,c̄}‖σW1,X‖2
‖σW1,X‖2

∣∣∣
=
r̄X‖σW1,X‖

√
1−min{r̄X , c̄}2

1− r̄X min{r̄X , c̄}
= z̄X(r̄X , c̄).

Finally, note that min{r̄X , c̄} < 1 since r̄X c̄ < 1. Hence ‖c∗‖ 6= 1. This shows that adding the constraint
‖c‖ 6= 1 does not change the optimizer.

We use the next two lemmas to prove our third main result, Theorem 4. The first provides a simple
criterion for showing that (30) holds for some z ∈ R. Recall that this is one of the five equations in the
characterization of when some b 6= βmed is in B(rX , rY , c) given in Lemma 5. Recall that the function
p(z, c; r̄X) is defined just prior to the statement of Theorem 4 in section 3.2.

Lemma 10. Assume σW1,X 6= 0. For any (z, c, r̄X) with z2 < k0, ‖c‖ < 1, r̄X ≥ 0, there exists an rX ∈ Rd1

with ‖rX‖ ≤ r̄X such that

z = r′X(σW1,X

√
1− ‖c‖2 − cz) (30)

if and only if p(z, c; r̄X) ≥ 0.

Proof of Lemma 10. Let (z, c, r̄X) ∈ R× Rd1 × R≥0 be such that ‖c‖ < 1 and z2 < k0.

(⇒) Suppose there exists an rX such that ‖rX‖ ≤ r̄X and z = r′X(σW1,X

√
1− ‖c‖2 − cz). Then

p(z, c; r̄X) = r̄2
X‖σW1,X

√
1− ‖c‖2 − zc‖2 − z2

≥ ‖rX‖2‖σW1,X

√
1− ‖c‖2 − zc‖2 − z2

≥
(
r′X(σW1,X

√
1− ‖c‖2 − cz)

)2

− z2

= z2 − z2

= 0.

The first line follows by definition of p. The second line follows from ‖rX‖ ≤ r̄X . The third line follows by
the Cauchy Schwarz inequality. The fourth line follows by assumption.

(⇐) Suppose p(z, c; r̄X) ≥ 0. We will construct an rX ∈ Rd1 with ‖rX‖ ≤ r̄X and such that equation
(30) holds. We consider two cases.

1. Suppose z = 0. Let rX = 0 Then, ‖rX‖ = 0 ≤ r̄X and

z = r′X(σW1,X

√
1− ‖c‖2 − cz)

holds since both sides equal zero.

2. Suppose z 6= 0. Let

rX =
z

‖σW1,X

√
1− ‖c‖2 − zc‖2

(σW1,X

√
1− ‖c‖2 − zc).
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rX is well defined since

‖σW1,X

√
1− ‖c‖2 − zc‖2 =

p(z, c; r̄X)

r̄2
X

+
z2

r̄2
X

> 0

by z 6= 0 and p(z, c; r̄X) ≥ 0. Also note that p(z, c; r̄X) ≥ 0 and z 6= 0 together imply that r̄X > 0.
Next, ‖rX‖ ≤ r̄X follows from

‖rX‖2 − r̄2
X =

z2

‖σW1,X

√
1− ‖c‖2 − zc‖2

− r̄2
X

= ‖σW1,X

√
1− ‖c‖2 − zc‖−2

(
z2 − r̄2

X‖σW1,X

√
1− ‖c‖2 − zc‖2

)
= −‖σW1,X

√
1− ‖c‖2 − zc‖−2p(z, c; r̄X)

≤ 0.

Finally, we can verify that

r′X(σW1,X

√
1− ‖c‖2 − cz)

=
z

‖σW1,X

√
1− ‖c‖2 − zc‖2

(σW1,X

√
1− ‖c‖2 − zc)′(σW1,X

√
1− ‖c‖2 − zc)

= z.

The next lemma allows us to search over c ∈ span{σW1,X , σW1,Y } rather than Rd1 , reducing the dimension
of the minimization problem by d1 − 2.

Lemma 11. Suppose (σW1,X , σW1,X) are linearly independent and d1 ≥ 2. Let b 6= βmed, z ∈ R \ {0},
r̄X ∈ [0,∞), and c̄ ∈ [0, 1). Then

inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ Rd1 , ‖c‖ ≤ c̄}
= inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ span{σW1,X , σW1,Y }, ‖c‖ ≤ c̄}.

Proof of Lemma 11. If d1 = 2 the lemma follows immediately because Rd1 = span{σW1,X , σW1,Y }. So
suppose d1 > 2. We break this proof in two parts.

Part 1: We first show that for any a ∈ [0, c̄],

argmin{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ Rd1 , ‖c‖ = a} ⊆ span{σW1,X , σW1,Y }.

We prove this by contrapositive: We show that for any coutside /∈ span{σW1,X , σW1,Y }, coutside /∈ argmin{rY (z, c, b) :
p(z, c; r̄X) ≥ 0, c ∈ Rd1 , ‖c‖ = a}. So let coutside ∈ Rd1 \ span{σW1,X , σW1,Y }. Note that such a point exists
since d1 > 2 = dim(span{σW1,X , σW1,Y }). Let

B(a, z, r̄X) = {c ∈ Rd1 : p(z, c; r̄X) ≥ 0, ‖c‖ = a}

denote the constraint set. The result holds immediately if coutside /∈ B(a, z, r̄X), so suppose coutside ∈
B(a, z, r̄X). It therefore suffices to construct a cbetter ∈ span{σW1,X , σW1,Y } with cbetter ∈ B(a, z, r̄X) and
rY (z, cbetter, b) < rY (z, coutside, b).

By Gram-Schmidt orthogonalization, the vectors

v1 =
σW1,X

‖σW1,X‖
and v2 =

‖σW1,X‖2σW1,Y − (σ′W1,Y
σW1,X)σW1,X

‖σW1,X‖
√
‖σW1,Y ‖2 − (σ′W1,X

σW1,Y )2

form an orthonormal basis for the subspace span{σW1,X , σW1,Y }, since we assumed σW1,X and σW1,Y are
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linearly independent. Since we can write Rd1 = span{v1, v2} ⊕ span{v1, v2}⊥, coutside can be uniquely
represented as

coutside = a1v1 + a2v2 + a3v3

where (a1, a2, a3) are such that a2
1 + a2

2 + a2
3 = a2, v3 ∈ span{v1, v2}⊥, and ‖v3‖ = 1. Since coutside /∈

span{σW1,X , σW1,Y }, a3 6= 0.
Recall that our goal is to find an element cbetter inside span{v1, v2} = span{σW1,X , σW1,Y } that has norm

equal to a and which leads to a smaller value of the objective function than coutside. To this end, define

c+ = a1v1 +

(√
a2

2 + a2
3

)
v2 and c− = a1v1 −

(√
a2

2 + a2
3

)
v2.

These points satisfy the span and norm requirements: c+, c− ∈ span{σW1,X , σW1,Y } and ‖c+‖ = ‖c−‖ =
‖coutside‖ = a. In fact, we will show that one of c+ or c− is the desired point cbetter. To do this, we have to
show that (i) they are in the constraint set and (ii) at least one of them leads to a strictly smaller value of
the objective function.

Step (i). Here we show that c+ and c− are in the constraint set B(a, z, r̄X). We already showed that
their norm equals a. So we only need to show that p(z, c; r̄X) ≥ 0 for c equal to c+ or c−. To do this, write

p(z, c; r̄X) = r̄2
X‖σW1,X

√
1− ‖c‖2 − cz‖2 − z2

= z2(‖c‖2r̄2
X − 1)− 2zr̄2

X(σ′W1,Xc)
√

1− ‖c‖2 + r̄2
X‖σW1,X‖2(1− ‖c‖2).

The second line follows by expanding the norm. Since ‖c+‖ = ‖c−‖ = ‖coutside‖ = a, v′1σW1,X = ‖σW1,X‖,
and v′2σW1,X = v′3σW1,X = 0, evaluating this function at any of the three points coutside, c+, or c− gives the
same value:

p(z, coutside; r̄X) = z2(a2r̄2
X − 1)− 2a1zr̄

2
X‖σW1,X‖

√
1− a2 + r̄2

X‖σW1,X‖2(1− a2)

= p(z, c+; r̄X)

= p(z, c−; r̄X).

Since coutside ∈ B(a, z, r̄X), p(z, coutside; r̄X) ≥ 0. We therefore have p(z, c−; r̄X) ≥ 0 and p(z, c+; r̄X) ≥ 0.
Thus c+, c− ∈ B(a, z, r̄X).

Step (ii). Next we show that either rY (z, c+, b) < rY (z, coutside, b) or rY (z, c−, b) < rY (z, coutside, b).

First, we have
z
√

1− ‖coutside‖2(σW1,X − bσW1,Y )− (k1 − k0b)coutside 6= 0.

To see this, note that this quantity is a linear combination of (σW1,X , σW1,Y , coutside). Its coefficients are
nonzero because b 6= βmed, z 6= 0, and ‖coutside‖ = a ≤ c̄ < 1. Moreover, σW1,X and σW1,Y are linearly
independent, and coutside is not in span{σW1,X , σW1,Y }. This linear independence therefore implies that the
linear combination cannot be zero. Thus (z, coutside, b) ∈ D0 by definition of D0. By definition of rY (z, c, b),
we therefore have 0 < rY (z, coutside, b) <∞. Consequently, rY (z, coutside, b)

−1 is well defined.
For any c with ‖c‖ = a, expanding the norm in rY (z, c, b) gives

rY (z, c, b)−2 =
z2(1− a2)‖σW1,Y − bσW1,X‖2 − 2z ((σW1,Y − bσW1,X)′c)

√
1− a2(k1 − bk0) + a2(k1 − bk0)2

(k1 − bk0)2
.

Therefore

(k1 − bk0)2
(
rY (z, c+, b)−2 − rY (z, coutside, b)

−2
)

= 2z
√

1− a2(k1 − bk0)(σW1,Y − bσW1,X)′(coutside − c+)

= 2z
√

1− a2(k1 − bk0)(σW1,Y − bσW1,X)′(a2v2 + a3v3 −
√
a2

2 + a2
3v2)

= 2z
√

1− a2(k1 − bk0) ((σW1,Y − bσW1,X)′v2) (a2 −
√
a2

2 + a2
3).
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The last line follows since v3 ∈ span{σW1,X , σW1,Y }⊥. Likewise,

(k1 − bk0)2
(
rY (z, c−, b)−2 − rY (z, coutside, b)

−2
)

= 2
√

1− a2(k1 − bk0)z ((σW1,Y − bσW1,X)′v2) (a2 +
√
a2

2 + a2
3).

Recall that z 6= 0 by assumption, a2 < 1 by c̄ < 1, and k1 6= bk0 by b 6= βmed. Also,

(σW1,Y − bσW1,X)′v2 = σ′W1,Y v2 > 0.

The equality follows since v2 is orthogonal to σW1,X . The inequality follows from

σ′W1,Y v2 =
‖σW1,X‖2‖σW1,Y ‖2 − (σ′W1,Y

σW1,X)2

‖σW1,X‖
√
‖σW1,Y ‖2 − (σ′W1,X

σW1,Y )2

> 0,

which itself follows from the Cauchy-Schwarz inequality and linear independence of (σW1,X , σW1,Y ). More-
over, since a3 6= 0,

a2 −
√
a2

2 + a2
3 < 0 < a2 +

√
a2

2 + a2
3.

Therefore either
(k1 − bk0)2

(
rY (z, c−, b)−2 − rY (z, coutside, b)

−2
)
> 0

or
(k1 − bk0)2

(
rY (z, c+, b)−2 − rY (z, coutside, b)

−2
)
> 0.

Since k1 6= bk0 by b 6= βmed, this implies that either rY (z, c+, b) < rY (z, coutside, b) or rY (z, c−, b) <
rY (z, coutside, b).

Part 2: We finish the proof by showing that the result of Part 1 implies the lemma’s claim. We have

inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ Rd1 , ‖c‖ ≤ c̄}
= inf{inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ Rd1 , ‖c‖ = a} : a ∈ [0, c̄]}
= inf{inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ span{σW1,X , σW1,Y }, ‖c‖ = a} : a ∈ [0, c̄]}
= inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ span{σW1,X , σW1,Y }, ‖c‖ ≤ c̄}.

The first and third equality follow from a sequential minimization. The second equality follows from follows
from Part 1 of this proof.

E.2 Proofs of Main Results

We are now ready to prove our main results. Note that we can write

B(r̄X) = inf
⋃

(rX ,rY ,c):‖rX‖≤r̄X

B(rX , rY , c)

and
B(r̄X) = sup

⋃
(rX ,rY ,c):‖rX‖≤r̄X

B(rX , rY , c).

By Theorem 5, these are the infimums and supremums of BI(r̄X), the identified set for βlong when both rY
and c are not constrained. We can similarly write

B(r̄X , c̄) = inf
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c)
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B(r̄X , c̄) = sup
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c).

By Theorem 5, these are the infimums and supremums of BI(r̄X , c̄), the identified set for βlong when rY is
not constrained.

We prove Theorem 3 first since Theorem 2 will be shown as the special case where c̄ = 1.

Proof of Theorem 3. Let R(r̄X , c̄) = {(rX , c) ∈ Rd1 × Rd1 : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, ‖c‖ 6= 1}. First note that

BI(r̄X , c̄) =
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c)

=
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄,‖c‖6=1

B(rX , rY , c)

=
⋃

(rX ,c)∈R(r̄X ,c̄),rY ∈Rd1

B(rX , rY , c).

The first line holds by Theorem 5. The second line follows since ‖c‖ < 1 holds whenever b ∈ B(rX , rY , c),
by definition of B(rX , rY , c). The last line follows by definition of R(r̄X , c̄). Next we consider the two cases
specified in the theorem statement separately.

Case 1. z̄X(r̄X , c̄)
2 < k0.

By Lemma 9, for all (rX , c) ∈ R(r̄X , c̄):

zX(rX , c)
2 ≤ z̄X(r̄X , c̄)

2.

This result combined with z̄X(r̄X , c̄)
2 < k0 <∞ and the fact that the denominator of zX(rX , c)

2 is (1+r′Xc)
2

implies that r′Xc 6= −1 for all (rX , c) ∈ R(r̄X , c̄). Partition R(r̄X , c̄) = R=0(r̄X , c̄) ∪R 6=0(r̄X , c̄) where

R=0(r̄X , c̄) = {(rX , c) ∈ R(r̄X , c̄) : zX(rX , c) = 0}
R 6=0(r̄X , c̄) = {(rX , c) ∈ R(r̄X , c̄) : zX(rX , c) 6= 0}.

This partition lets us write

BI(r̄X , c̄) =

 ⋃
(rX ,c)∈R=0(r̄X ,c̄),rY ∈Rd1

B(rX , rY , c)

⋃
 ⋃

(rX ,c)∈R 6=0(r̄X ,c̄),rY ∈Rd1

B(rX , rY , c)

 .

Next we characterize each of these unions.

1. First let b be in the union on the left. Then there is a (rX , c) ∈ R=0(r̄X , c̄) and rY ∈ Rd1 such that
b ∈ B(rX , rY , c). Recall the definition of zX(rX , c):

zX(rX , c) =
r′XσW1,X

√
1− ‖c‖2

1 + r′Xc
.

By definition of R(r̄X , c̄), ‖c‖ < 1. Consequently, zX(rX , c) = 0 implies r′XσW1,X = 0. Since b ∈
B(rX , rY , c), there is a p1 ∈ Rd1 such that (I + cr′X)p1 = σW1,X holds, by Lemma 4. Since r′Xc 6= −1,
this equation implies that r′Xp1 = 0. Also by Lemma 4, there is a g1 ∈ Rd1 such that (p′1rX)(g′1rY )(1−
‖c‖2) = k1− bk0 holds. But since r′Xp1 = 0, we must have k1− bk0 = 0. Thus b = βmed. Thus we have
shown that any element in the union on the left must be βmed. All we have left here is to show that
this union is not empty, so that there does in fact exist one element in it. To see that it is non-empty,
note that b = βmed combined with the choices rY = 0, g1 = σW1,Y − βmedσW1,X , p1 = σW1,X , rX = 0,
and any c with ‖c‖ < 1 imply that b ∈ B(rX , rY , p) by Lemma 4 and that (rX , c) ∈ R=0(rX , c).
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Thus we conclude that  ⋃
(rX ,c)∈R=0(r̄X ,c̄),rY ∈Rd1

B(rX , rY , c)

 = {βmed}.

2. Next consider (rX , c) ∈ R 6=0(r̄X , c̄). By Lemma 9, 0 < zX(rX , c)
2 ≤ z̄X(r̄X , c̄)

2 < k0 for all (rX , c) ∈
R6=0(r̄X , c̄). So Lemma 8 shows that, for all (rX , c) ∈ R6=0(r̄X , c̄),⋃

rY ∈Rd1

B(rX , rY , c) =
(
b(zX(rX , c)), b(zX(rX , c))

)
\ B0(zX(rX , c), c).

Using these characterizations of the two partition sets gives

BI(r̄X , c̄) = {βmed} ∪
⋃

(rX ,c)∈R 6=0(r̄X ,c̄)

(
b(zX(rX , c)), b(zX(rX , c))

)
\ B0(zX(rX , c), c)

= {βmed} ∪
⋃

(rX ,c)∈R(r̄X ,c̄)

(
b(zX(rX , c)), b(zX(rX , c))

)
\ B0(zX(rX , c), c).

The second line follows since
(
b(zX(rX , c)), b(zX(rX , c))

)
= ∅ when zX(rX , c) = 0. We can now derive our

desired expression for B(r̄X , c̄) as follows:

B(r̄X , c̄) = inf BI(r̄X , c̄)

= inf

{βmed} ∪

 ⋃
(rX ,c)∈R(r̄X ,c̄)

(
b(zX(rX , c)), b(zX(rX , c))

)
\ B0(zX(rX , c), c)


= inf{b(zX(rX , c)) : (rX , c) ∈ R(r̄X , c̄)}

= βmed − sup
{√

devsq(zX(rX , c)) : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, ‖c‖ 6= 1
}
.

The first line follows by definition. The second line follows by our above derivations. In the third line we
used the fact that b(z) ≤ βmed for all z ≥ 0. The fourth line follows by the definition of b(·). Next, recall
that

devsq(z) =
z2
(
k2

k0
− β2

med

)
k0 − z2

.

By k2/k0 > β2
med (Lemma 2), devsq(z) is increasing in |z| over all z2 < k0. Therefore, since zX(rX , c)

2 < k0

for all (rX , c) ∈ R(r̄X , c̄), Lemma 9 implies that the infimum of b(zX(rX , c)) is attained at

B(r̄X , c̄) = βmed −
√

devsq(z̄X(r̄X , c̄)).

The analysis for B(r̄X , c̄) is analogous.

Case 2. z̄X(r̄X , c̄)
2 ≥ k0.

Let {r̄(n)
X } be a sequence such that r̄

(n)
X ≤ r̄X and z̄X(r̄

(n)
X , c̄)2 < k0 for all n ∈ N. Then for any n ∈ N,

B(r̄X , c̄) = sup
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c)

≥ sup
⋃

(rX ,rY ,c):‖rX‖≤r̄(n)
X ,‖c‖≤c̄

B(rX , rY , c)

= B(r̄
(n)
X , c̄)
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= βmed +

√√√√ z̄X(r̄
(n)
X , c̄)2(k2/k0 − β2

med)

k0 − z̄X(r̄
(n)
X , c̄)2

.

The first and third lines follow by definition. The second line follows from r̄
(n)
X ≤ r̄X . The fourth line follows

by our analysis in Case 1, since z̄X(r̄
(n)
X , c̄)2 < k0. Suppose z̄X(r̄

(n)
X , c̄)2 ↗ k0 as n→∞. Then

lim
n→∞

βmed +

√√√√ z̄X(r̄
(n)
X , c̄)2(k2/k0 − β2

med)

k0 − z̄X(r̄
(n)
X , c̄)2

 = +∞.

This follows from

lim
z2↗k0

z2

k0 − z2
= +∞,

since k0 > 0. This would be sufficient to obtain B(r̄X , c̄) = +∞.

So all that remains to be shown is that there exists such a sequence {r̄(n)
X } with r̄

(n)
X ≤ r̄X and

z̄X(r̄
(n)
X , c̄)2 ↗ k0 as n→∞. We consider two cases.

1. Suppose c̄ = 0. Then z̄X(r̄
(n)
X , c̄)2 = (r̄

(n)
X )2‖σW1,X‖2. This function is continuous in r̄

(n)
X . Moreover,

since ‖σW1,X‖ 6= 0 by A7, it has range [0,∞). Thus the desired sequence exists.

2. Suppose c̄ > 0. To ensure that z̄X(r̄
(n)
X , c̄)2 < k0 for all n ∈ N, we need at least r̄

(n)
X c̄ < 1; otherwise

we would have z̄X(r̄
(n)
X , c̄)2 = +∞ for some n. Thus our sequence must satisfy r̄

(n)
X < 1/c̄. Next notice

that z̄X(r̄
(n)
X , c̄)2 is continuous in r̄

(n)
X over the set [0, 1/c̄). Moreover, its range on this set is [0,∞).

This follows from continuity combined with the boundary values z̄X(0, c̄) = 0 and

lim
r̄X↗1/c̄

z̄X(r̄X , c̄) = lim
r̄X↗1/c̄

r̄X‖σW1,X‖
√

1−min{c̄, r̄X}2
1− r̄X min{r̄X , c̄}

= +∞.

To see the second equality, note that 1/c̄ ≥ 1 since c̄ = 1 is the logically largest possible value of
this parameter. Hence min{r̄X , c̄} → c̄ as r̄X ↗ 1/c̄. So 1 − r̄X c̄ → 0 along this sequence. So the
denominator term converges to zero. The numerator converges the constant (1/c̄)‖σW1,X‖

√
1− c̄2.

For c̄ < 1, putting these results together shows that the desired sequence r̄
(n)
X exists. For c̄ = 1, any

sequence r̄X ↗ 1 has min{r̄X , c̄} = r̄X and hence

z̄X(r̄X , c̄) =
r̄X√

1− r̄2
X

‖σW1,X‖,

which converges to +∞ as r̄X ↗ 1.

The proof of B(r̄X , c̄) = −∞ is analogous.

Proof of Theorem 2. This result follows as a corollary of Theorem 3 by setting c̄ = 1. Moreover, note that
z̄X(r̄X , 1) = z̄X(r̄X) for all r̄X .

Proof of Corollary 1. Note that we can equivalently write

r̄bp
X = inf{r̄X ≥ 0 : b ∈ BI(r̄X) for some b ≤ 0}.

If βmed ≥ 0, then

r̄bp
X = inf{r̄X ≥ 0 : b ∈ [B(r̄X), B(r̄X)] for some b ≤ 0}

= inf{r̄X ≥ 0 : dev(r̄X)2 = β2
med}.
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The second equality follows by the monotonicity and continuity of dev(r̄X). If βmed ≤ 0, the same equality
is obtained (and hence why we work with squares here).

We now show that r̄bp
X is the unique non-negative solution to β2

med = dev(r̄X)2. If r̄X is such that

k0 − z̄X(r̄X)2 ≤ 0, then r̄bp
X < r̄X since (B(r̄X), B(r̄X)) = (−∞,+∞). Therefore, assume that r̄X is such

that k0 − z̄X(r̄X)2 > 0. Then this equality can be written as

k2
1

k2
0

=
z̄X(r̄X)2

(
k2

k0
− k2

1

k2
0

)
k0 − z̄X(r̄X)2

=

r̄2
X(1−k0)

1−r̄2
X

k2k0−k2
1

k2
0

k0 −
r̄2
X(1−k0)

1−r̄2
X

=
r̄2
X(1− k0)(k2k0 − k2

1)

k3
0(1− r̄2

X)− k2
0 r̄

2
X(1− k0)

=
r̄2
X(1− k0)(k2k0 − k2

1)

k2
0(k0 − r̄2

X)
.

Rearranging, we obtain

k2
1

(
k0 − r̄2

X

)
= r̄2

X(1− k0)(k2k0 − k2
1).

Solving for r̄2
X we find that

(
r̄bp
X

)2
=

k0k
2
1

(1− k0)(k2k0 − k2
1) + k2

1

=
k2

1/k0k2

(1− k0)/k0 + k2
1/k0k2

.

Note that
k2

1

k0k2
=
k2

1

k2
0

k0

k2
=

var(βmedX
⊥W1)

var(Y ⊥W1)
= R2

Y∼X•W1

and

1− k0 = 1− var(X⊥W1)

var(X)
= R2

X∼W1

by var(X) = 1. Therefore (
r̄bp
X

)2
=

R2
Y∼X•W1

R2
X∼W1

1−R2
X∼W1

+R2
Y∼X•W1

.

Taking the positive square root gives

r̄bp
X =

 R2
Y∼X•W1

R2
X∼W1

1−R2
X∼W1

+R2
Y∼X•W1


1/2

.

Proof of Theorem 4. Note that we can equivalently write

r̄bf
Y (r̄X , c̄, b) = inf{r̄Y ≥ 0 : b ∈ BI(r̄X , c̄, r̄Y ) for some b ≤ b}.

We use this version in our proof. We will consider each case stated in the theorem separately.

Case 1 If b ≥ βmed, then r̄bf
Y (r̄X , c̄; b) = 0.
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By Lemma 6, βmed ∈ B(0, 0, 0). This implies

βmed ∈
⋃

(rX ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , 0, c) = BI(r̄X , 0, c̄).

We then have
inf{r̄Y ≥ 0 : b ∈ BI(r̄X , r̄Y , c̄) for some b ≤ b} = 0

by letting b = βmed ≤ b.

Case 2 If B(r̄X , c̄) > b, then r̄bf
Y (r̄X , c̄; b) = +∞.

Note that

BI(r̄X , r̄Y , c̄) =
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖rY ‖≤r̄Y ,‖c‖≤c̄

B(rX , rY , c)

⊆
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c).

Therefore,

{r̄Y ≥ 0 : b ∈ BI(r̄X , r̄Y , c̄) for some b ≤ b}

⊆

r̄Y ≥ 0 : b ∈
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c) for some b ≤ b


= ∅.

The last line follows by

B(r̄X , c̄) = inf
⋃

(rX ,rY ,c):‖rX‖≤r̄X ,‖c‖≤c̄

B(rX , rY , c) > b.

Hence
inf{r̄Y ≥ 0 : b ∈ BI(r̄X , r̄Y , c̄) for some b ≤ b} = +∞.

Case 3 If B(r̄X , c̄) ≤ b < βmed.

First, note that

r̄bf
Y (r̄X , c̄, b) = inf{r̄Y ≥ 0 : b ∈ BI(r̄X , r̄Y , c̄) for some b ≤ b}

= inf{r̄Y ≥ 0 : There is a (b, rX , rY , c) s.t. b ∈ B(rX , rY , c), ‖rX‖ ≤ r̄X , ‖rY ‖ ≤ r̄Y , ‖c‖ ≤ c̄, b ≤ b}
= inf{‖rY ‖ : There is a (b, rX , rY , c) s.t. b ∈ B(rX , rY , c), ‖rX‖ ≤ r̄X , rY ∈ Rd1 , ‖c‖ ≤ c̄, b ≤ b}

= inf

‖rY ‖ : rY ∈
⋃

‖rX‖≤r̄X ,‖c‖≤c̄,b≤b

{rY ∈ Rd1 : b ∈ B(rX , rY , c)}

 .

The second equality follows from the definition of BI(r̄X , r̄Y , c̄). The third holds because r̄Y ≥ ‖rY ‖, so it is
minimized by setting r̄Y = ‖rY ‖.

Next we can write⋃
‖rX‖≤r̄X ,‖c‖≤c̄,b≤b

{rY ∈ Rd1 : b ∈ B(rX , rY , c)}

=
⋃

‖rX‖≤r̄X ,‖c‖≤c̄,b≤b

{rY ∈ Rd1 : (29)–(33) hold for (rX , rY , c, b, z) and for some z ∈ R \ {0}}
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=
⋃

‖rX‖≤r̄X ,‖c‖≤c̄,b≤b

{rY ∈ Rd1 : (29) holds for (rX , rY , c, b, z) where (rX , c, b, z) ∈ A(r̄X , c̄), z ∈ R \ {0}}

=
⋃

(rX ,c,b,z)∈A(r̄X ,c̄),b≤b

{rY ∈ Rd1 : (29) holds for (rX , rY , c, b, z)}.

The first equality follows by Lemma 5, which we can apply since we consider b satisfying b ≤ b < βmed. The
second equality follows by definition of the set A(r̄X , c̄). The third equality follows since the inequalities
‖rX‖ ≤ r̄X and ‖c‖ ≤ c̄ are part of the definition of A(r̄X , c̄).

Thus

r̄bf
Y (r̄X , c̄, b) = inf

‖rY ‖ : rY ∈
⋃

(rX ,c,b,z)∈A(r̄X ,c̄),b≤b

{rY ∈ Rd1 : (29) holds for (rX , rY , c, b, z)}


= inf

{
inf
{
‖rY ‖ : rY ∈ Rd1 , (29) holds for (rX , rY , c, b, z)

}
: (rX , c, b, z) ∈ A(r̄X , c̄), b ≤ b

}
= inf {rY (z, c, b) : (rX , c, b, z) ∈ A(r̄X , c̄), b ≤ b} .

The last line follows by Lemma 7. We have just shown that r̄bf
Y (r̄X , c̄, b) can be computed as the solution to

a constrained minimization problem with objective function rY (z, c, b). We complete the proof by showing
that the constraints (rX , c, b, z) ∈ A(r̄X , c̄), b ≤ b here are equivalent to the constraints given in the statement
of the theorem.

The constraint set is

{(rX , c, b, z) ∈ A(r̄X , c̄) : b ≤ b}

= {(rX , c, b, z) : (30)–(32) hold, ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, b ≤ b, z ∈ R \ {0}}

= {(rX , c, b, z) : (b− βmed)2 < devsq(z), z2 < k0,

z = r′X(
√

1− ‖c‖2σW1,X − cz), ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, b ≤ b, z ∈ R \ {0}}

= {(rX , c, b, z) : (b− βmed)2 < devsq(z), 0 < z2 < k0,

z = r′X(
√

1− ‖c‖2σW1,X − cz), ‖rX‖ ≤ r̄X , ‖c‖ ≤ c̄, b ≤ b}

= {(rX , c, b, z) : (b− βmed)2 < devsq(z), 0 < z2 < k0, p(z, c; r̄X) ≥ 0, ‖c‖ ≤ c̄, b ≤ b, rX ∈ Rd1}.

The first equality follows by definition of A(r̄X , c̄). The second equality follows by definition of equations
(30)–(32). The third equality is just a slight simplification. The fourth equality follows from Lemma 10,
which shows that for any (z, c, r̄X) such that z2 < k0, ‖c‖ < 1, there exists a rX with ‖rX‖ ≤ r̄X and
z = r′X(σW1,X

√
1− ‖c‖2 − cz) if and only if p(z, c; r̄X) ≥ 0. Note that here we also use c̄ < 1.

Thus we have shown that

r̄bf
Y (r̄X , c̄, b) = inf{rY (z, c, b) : (b− βmed)2 < devsq(z), 0 < z2 < k0, p(z, c; r̄X) ≥ 0, ‖c‖ ≤ c̄, b ≤ b}. (34)

We can further write this as

r̄bf
Y (r̄X , c̄, b)

= inf{inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ Rd1 , ‖c‖ ≤ c̄} : (b− βmed)2 < devsq(z), 0 < z2 < k0, b ≤ b}
= inf{inf{rY (z, c, b) : p(z, c; r̄X) ≥ 0, c ∈ span{σW1,X , σW1,Y }, ‖c‖ ≤ c̄} :

(b− βmed)2 < devsq(z), 0 < z2 < k0, b ≤ b}
= inf{rY (z, c1σW1,Y + c2σW1,X , b) : (b− βmed)2 < devsq(z), 0 < z2 < k0,

p(z, c1σW1,Y + c2σW1,X ; r̄X) ≥ 0, ‖c1σW1,Y + c2σW1,X‖ ≤ c̄, (c1, c2) ∈ R2, b ≤ b}
= inf{rY (z, c1σW1,Y + c2σW1,X , b) : (b− βmed)2 < devsq(z), z2 < k0,
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p(z, c1σW1,Y + c2σW1,X ; r̄X) ≥ 0, ‖c1σW1,Y + c2σW1,X‖ ≤ c̄, (c1, c2) ∈ R2, b ≤ b}.

The second equality follows by Lemma 11, which uses the assumptions c̄ < 1, d1 ≥ 2, and (σW1,X , σW1,X) are
linearly independent. Moreover, note that the outer infimum constraint set implies that z 6= 0 and b 6= βmed

(since b < βmed), which are also needed to apply Lemma 11. The third equality follows by combining the
two infimums and using the definition of the span. The last equality follows from {b ∈ R : (b − βmed)2 <
devsq(0)} = ∅, since devsq(0) = 0, so that allowing z = 0 does not change this infimum.

Remark 2 (Extension to c ≤ RW2∼W1
≤ c). In this remark we briefly discuss how to extend our identification

results to the more general assumption RW2∼W1
∈ [c, c] for known c and c satisfying 0 ≤ c ≤ c ≤ 1. Recall

that letting c = cov(W1,W2), and given our normalization var(W1) = I, this assumption is equivalent to
c ≤ ‖c‖ ≤ c.

For brevity, we only consider Theorem 3, which is our identified set for βlong using the restrictions
‖rX‖ ≤ r̄X and ‖c‖ ≤ c. From the proof of Theorem 3 notice that the constraint on ‖c‖ is only used in the
very last step of case 1. That step invokes Lemma 9, which shows that

sup{zX(rX , c)
2 : ‖rX‖ ≤ r̄X , ‖c‖ ≤ c} = z̄X(r̄X , c)

2.

This lemma can easily be generalized to include the additional assumption c ≤ ‖c‖. To see this, notice that
in the proof of the lemma we use the function

f(‖rX‖, ‖c‖) =
‖rX‖‖σW1,X‖

√
1− ‖c‖2

1− ‖rX‖‖c‖
.

We first show this function is maximized at f(r̄X , ‖c‖) for any value of ‖c‖. Then we show that

∂f(r̄X , a)

∂a


> 0 if a < r̄X

= 0 if a = r̄X

< 0 if a > r̄X .

Note that a must be in the set [c, c]. Therefore this is a simple constrained optimization problem. The
solution is

a∗ =


c if r̄X < c

r̄X if r̄X ∈ [c, c]

c if r̄X > c

= min{max{r̄X , c}, c}.

Thus the maximized value of f is

f(r̄X ,min{max{r̄X , c}, c}) =
r̄X‖σW1,X‖

√
1−min{max{r̄X , c}, c}2

1− r̄X min{max{r̄X , c}, c}
≡ z̄X(r̄X , c, c).

Notice that z̄X(r̄X , 0, c) = z̄X(r̄X , c). To verify that this upper bound can be attained, modify c∗ to be

c∗ = −min{max{r̄X , c}, c}
‖σW1,X‖

σW1,X .

The rest of the proof of Lemma 9 continues to hold. In particular, the proof of case 1 continues to hold
without modification. Thus we have shown that

sup{zX(rX , c)
2 : ‖rX‖ ≤ r̄X , c ≤ ‖c‖ ≤ c} = z̄X(r̄X , c, c)

2.
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With this extension of the lemma, the generalization of Theorem 3 then uses the bounds

B(r̄X , c, c) = βmed −
√

devsq(z̄X(r̄X , c, c)) and B(r̄X , c, c) = βmed +
√

devsq(z̄X(r̄X , c, c)).

Finally, note that we assumed c̄ < 1 in this analysis, because our invertibility assumption A1 rules out
c = 1, perfect multicollinearity between W1 and W2. All of our analysis could be generalized to relax this
assumption and allow for c = 1, at the cost of additional technical derivations. In particular, note that when
c = c = 1 then βlong is point identified and equal to βmed. That is intuitive since, in this case, there are
no omitted variables since c = c = 1 implies that we know the unobservable W2 is an affine function of the
observables W1. Our analysis is consistent with this case since, by examining the z̄X(r̄X , c, c) function, we
see that for any fixed r̄X , z̄X(r̄X , c, c)→ 0 as c, c→ 1. Hence our bounds collapse to βmed as the correlation
between the observables and the unobservables is known to become arbitrarily close to one.

F Proofs for Section 4

Proof of Proposition 1. We have

cov(Y,X⊥W1,W2) = cov(βcX + γ′1W1 + γ′2W2 + U,X⊥W1,W2)

= βc cov(X,X⊥W1,W2) + cov(U,X⊥W1,W2)

= βc cov(X⊥W1,W2 , X⊥W1,W2) + cov(U⊥W1,W2 , X⊥W1,W2)

= βc var(X⊥W1,W2).

The first line follows by the linear potential outcomes assumption. The last line follows by linear latent
unconfoundedness. Thus

βc =
cov(Y,X⊥W1,W2)

var(X⊥W1,W2)
.

The term on the right equals βlong by the FWL theorem. Note that the denominator here is nonzero by
A1.

Proof of Corollary 2. Theorem 1 implies that βlong = βmed. Proposition 1 implies that βc = βlong.

Proof of Proposition 2. We have

cov(∆Y, (∆X)⊥∆W1,∆W2) = βc cov(∆X, (∆X)⊥∆W1,∆W2)) + cov(∆V, (∆X)⊥∆W1,∆W2)

= βc var
(
(∆X)⊥∆W1,∆W2

)
.

The first line follows by linear potential outcomes. The second line follows by exogeneity. The result then
follows by the FWL theorem.

Proof of Corollary 3. Theorem 1 implies that βlong = βmed. Proposition 2 implies that βc = βlong.

G Additional Details on the Derivation of Equations (15) and (16)

In this section, we provide detailed calculations that lead to equations (15) and (16). We begin with equation
(16) since we’ll use some of these derivations to show equation (15). As a preliminary step, we first compute

var(W2, X,W1)−1 =

 1 π′1c c′

π′1c var(X) cov(X,W1)
c cov(W1, X) var(W1)

−1

≡
(
A B
C D

)−1

where we defined

A =

(
1 π′1c
π′1c var(X)

)
, B = C ′ =

(
c′

cov(X,W1)

)
, and D = var(W1).
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Note that D = var(W1) is invertible. A−BD−1C is also invertible because

A−BD−1C =

(
1 π′1c
π′1c var(X)

)
−
(

c′

cov(X,W1)

)
var(W1)−1

(
c cov(W1, X)

)
=

(
1 π′1c
π′1c var(X)

)
−
(
c′ var(W1)−1c c′π1

π′1c π′1 cov(W1, X)

)
=

(
1− c′ var(W1)−1c 0

0 var(X⊥W1)

)
.

Recall that c in equation (16) is such that c′ var(W1)−1c < 1 and that var(X⊥W1) is invertible by A1.
Therefore we can use the following partitioned inverse formula to compute

 1 π′1c c′

π′1c var(X) cov(X,W1)
c cov(W1, X) var(W1)

−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)

=


(

(1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)
−
(

(1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)(
c′

cov(X,W1)

)
var(W1)−1

− var(W1)−1
(
c cov(W1, X)

)((1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)
var(W1)−1 + var(W1)−1

(
c cov(W1, X)

)((1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)(
c′

cov(X,W1)

)
var(W1)−1



=


(

(1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)
−
(

(1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)(
c′ var(W1)−1

π′1

)
−
(
var(W1)−1c π1

)((1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)
var(W1)−1 +

(
var(W1)−1c π1

)((1− c′ var(W1)−1c)−1 0
0 var(X⊥W1)−1

)(
c′ var(W1)−1

π′1

)


=

 (
(1− c′ var(W1)−1c)−1 0

0 var(X⊥W1)−1

)
−
(

(1− c′ var(W1)−1c)−1c′ var(W1)−1

var(X⊥W1)−1π′1

)
−
(
var(W1)−1c(1− c′ var(W1)−1c)−1 π1 var(X⊥W1)−1

)
var(W1)−1 + var(W1)−1cc′ var(W1)−1(1− c′ var(W1)−1c)−1 + π1π

′
1 var(X⊥W1)−1


=

 (1− c′ var(W1)−1c)−1 0 −(1− c′ var(W1)−1c)−1c′ var(W1)−1

0 var(X⊥W1)−1 − var(X⊥W1)−1π′1
− var(W1)−1c(1− c′ var(W1)−1c)−1 −π1 var(X⊥W1)−1 var(W1)−1 + var(W1)−1cc′ var(W1)−1(1− c′ var(W1)−1c)−1 + π1π

′
1 var(X⊥W1)−1

 .

Recall that here c = cov(W1,W2). Given this expression for var(W2, X,W1)−1, we now compute the non-
constant term in L(Y | 1,W2, X,W1):

(
cov(Y,W2) cov(Y,X) cov(Y,W1)

)
var(W2, X,W1)−1

W2

X
W1


=
(
βlongπ

′
1c+ g′1c+ g2 βlong var(X) + g′1 var(W1)π1 + g2π

′
1c βlongπ

′
1 var(W1) + g′1 var(W1) + g2c

′) 1 π′1c c′

π′1c var(X) cov(X,W1)
c cov(W1, X) var(W1)

−1W2

X
W1


=
(
βlongπ

′
1c+ g′1c+ g2 βlong var(X) + g′1 var(W1)π1 + g2π

′
1c βlongπ

′
1 var(W1) + g′1 var(W1) + g2c

′)
×

 (1− c′ var(W1)−1c)−1 0 −(1− c′ var(W1)−1c)−1c′ var(W1)−1

0 var(X⊥W1)−1 − var(X⊥W1)−1π′1
− var(W1)−1c(1− c′ var(W1)−1c)−1 −π1 var(X⊥W1)−1 var(W1)−1 + var(W1)−1cc′ var(W1)−1(1− c′ var(W1)−1c)−1 + π1π

′
1 var(X⊥W1)−1


×

W2

X
W1


≡ T1W2 + T2X + T ′3W1,

where we defined

T1 = (βlongπ
′
1c+ g′1c+ g2)(1− c′ var(W1)−1c)−1

+ (βlongπ
′
1 var(W1) + g′1 var(W1) + g2c

′)(− var(W1)−1c(1− c′ var(W1)−1c)−1)

= (βlongπ
′
1c+ g′1c+ g2)(1− c′ var(W1)−1c)−1 − βlongπ

′
1c(1− c′ var(W1)−1c)−1

− g′1c(1− c′ var(W1)−1c)−1 − g2c
′ var(W1)−1c(1− c′ var(W1)−1c)−1

= g2(1− c′ var(W1)−1c)−1 − g2c
′ var(W1)−1c(1− c′ var(W1)−1c)−1

= g2
1− c′ var(W1)−1c

1− c′ var(W1)−1c

= g2
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T2 = (βlong var(X) + g′1 var(W1)π1 + g2π
′
1c) var(X⊥W1)−1

− (βlongπ
′
1 var(W1) + g′1 var(W1) + g2c

′)π1 var(X⊥W1)−1

= βlong var(X⊥W1)−1(var(X)− π′1 var(W1)π1)

+ g′1(var(W1)π1 − var(W1)π1) var(X⊥W1)−1 + g2(π′1c− c′π1) var(X⊥W1)−1

= βlong

T ′3 = −(βlongπ
′
1c+ g′1c+ g2)(1− c′ var(W1)−1c)−1c′ var(W1)−1

− (βlong var(X) + g′1 var(W1)π1 + g2π
′
1c) var(X⊥W1)−1π′1

+ (βlongπ
′
1 var(W1) + g′1 var(W1) + g2c

′)×
(var(W1)−1 + var(W1)−1cc′ var(W1)−1(1− c′ var(W1)−1c)−1 + π1π

′
1 var(X⊥W1)−1)

≡ βlongT31 + g′1T32 + g2T33.

In the expression for T ′3 we defined

T31 = −π′1c(1− c′ var(W1)−1c)−1c′ var(W1)−1 − var(X) var(X⊥W1)−1π′1

+ π′1 var(W1)(var(W1)−1 + var(W1)−1cc′ var(W1)−1(1− c′ var(W1)−1c)−1 + π1π
′
1 var(X⊥W1)−1)

=
−π′1cc′ var(W1)−1

1− c′ var(W1)−1c
− var(X) var(X⊥W1)−1π′1 + π′1

+
π′1cc

′ var(W1)−1

1− c′ var(W1)−1c
+ π′1 var(W1)π1π

′
1 var(X⊥W1)−1

= − var(X) var(X⊥W1)−1π′1 + π′1 + π′1 var(W1)π1π
′
1 var(X⊥W1)−1

=
1

var(X⊥W1)

(
− var(X) + var(X⊥W1) + π′1 var(W1)π1

)
π′1

=
1

var(X⊥W1)

(
var(X⊥W1)− var(X⊥W1)

)
π′1

= 0

T32 = − cc′ var(W1)−1

1− c′ var(W1)−1c
− var(W1)π1π

′
1 var(X⊥W1)−1 + I

+
cc′ var(W1)−1

1− c′ var(W1)−1c
+ var(W1)π1π

′
1 var(X⊥W1)−1

= I

T33 = − c′ var(W1)−1

1− c′ var(W1)−1c
− π′1cπ′1 var(X⊥W1)−1 + c′ var(W1)−1

+
c′ var(W1)−1cc′ var(W1)−1

1− c′ var(W1)−1c
+ c′π1π

′
1 var(X⊥W1)−1

= c′ var(W1)−1

(
−1

1− c′ var(W1)−1c
+ 1 +

c′ var(W1)−1c

1− c′ var(W1)−1c

)
+ π′1c

(
π′1 var(X⊥W1)−1 − π′1 var(X⊥W1)−1

)
= c′ var(W1)−1

(
−1 + 1− c′ var(W1)−1c+ c′ var(W1)−1c

) 1

1− c′ var(W1)−1c

= 0.
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Therefore T3 = g′1. Putting everything together gives

L(Y | 1, X,W1,W2) = βlongX + g′1W1 + g2W2 + const.

as desired.

To show that equation (15) holds, we have

var(Y )−
(
βlongπ

′
1c+ g′1c+ g2 cov(Y,X) cov(Y,W1)

)
× 1 π′1c c′

π′1c var(X) cov(X,W1)
c cov(W1, X) var(W1)

−1βlongπ
′
1c+ g′1c+ g2

cov(Y,X)
cov(W1, Y )



= var(Y )−
(
g2 βlong g′1

)βlongπ
′
1c+ g′1c+ g2

cov(Y,X)
cov(W1, Y )


= var(Y )−

(
g2 βlong g′1

) βlongπ
′
1c+ g′1c+ g2

βlong var(X) + g′1 cov(W1, X) + g2π
′
1c

βlong cov(W1, X) + var(W1)g1 + g2c


= var(Y )− β2

long var(X)− g′1 var(W1)g1 − g2
2

− 2βlong cov(X,W1)g1 − 2g′1 cov(W1,W2)g2 − 2βlongg2π
′
1 cov(W1,W2)

= var(Y )− β2
long var(X)− g′1 var(W1)g1 − g2

2 − 2βlongπ
′
1 var(W1)g1 − 2g′1cg2 − 2βlongg2π

′
1c

= var(Y )− β2
long var(X)− g′1 var(W1)g1 − g2

2 − 2βlongπ
′
1 var(W1)g1

− 2g′1(cov(W1, Y )− βlong cov(W1, X)− var(W1)g1)

− 2βlongπ
′
1(cov(W1, Y )− βlong cov(W1, X)− var(W1)g1)

= var(Y )− β2
long var(X)− g′1 var(W1)g1 − 2βlong cov(X,W1)g1

− 2g′1 cov(W1, Y ) + 2g′1βlong cov(W1, X) + 2g′1 var(W1)g1

− 2βlongπ
′
1 cov(W1, Y ) + 2β2

longπ
′
1 cov(W1, X) + 2βlongπ

′
1 var(W1)g1 − g2

2

= var(Y )− β2
long var(X) + g′1 var(W1)g1 − 2g′1 cov(W1, Y )

− 2βlongπ
′
1 cov(W1, Y ) + 2βlongg

′
1 cov(W1, X) + 2β2

longπ
′
1 cov(W1, X)− g2

2

= U(g1)− g2
2 .

The first equality follows by the same derivations as we used to show equation (16). The second equality
follows from two applications of equation (14): We directly use equation (14) to get an expression for
cov(W1, Y ). We also use it indirectly to get an expression for cov(Y,X). To see this, recall that equation
(14) is

g2c = cov(W1, Y )− βlong cov(W1, X)− var(W1)g1. (14)

Since

βlong =
cov(Y,X)− cov(Y,W1)π1

var(X)− cov(X,W1)π1

we can rearrange this equation and substitute in equation (14) to get

cov(Y,X) = βlong(var(X)− cov(X,W1)π1) + π′1 cov(W1, Y )

= βlong(var(X)− cov(X,W1)π1) + π′1(g2c+ βlong cov(W1, X) + var(W1)g1)

= βlong var(X) + g′1 cov(W1, X) + g2π
′
1c.

Thus the second equality above holds. The final equality above follows from the definition of U(g1).
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