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Abstract

We study how discounting and monitoring jointly determine whether cooperation

is possible in repeated games with imperfect (public or private) monitoring. Our main

result provides a simple bound on the strength of players’incentives as a function of
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1 Introduction

Supporting non-static Nash outcomes in long-run relationships requires two ingredients.

Players’actions must be monitored, so that future play can depend on current behavior.

And players must be patient, so that variation in future play can provide incentives. The

current paper asks how to measure these ingredients, and how much of each is required. We

find that if the ratio of the discount rate and the “detectability”of deviations is large, then

all repeated-game Nash outcomes are static ε-correlated equilibria (Theorem 1); and if the

ratio of discounting and detectability is small, then all payoff vectors that Pareto-dominate

static Nash payoffs can be attained as perfect equilibria in the repeated game (Theorem 2).

Our paper is in the tradition of the folk theorem for repeated games with imperfect public

monitoring (Fudenberg, Levine, and Maskin, 1994; henceforth FLM), but we allow arbitrary

(possibly private) monitoring and study the tradeoff between discounting and monitoring,

rather than the classical limit where discounting vanishes for fixed monitoring. A similar

tradeoff between discounting and monitoring arises in repeated games with frequent actions

(e.g., Abreu, Milgrom, and Pearce, 1991; Sannikov and Skrzypacz, 2010; henceforth SS),

but we do not parameterize the game by an underlying continuous-time signal process, and

instead view the frequent-action limit as a particular instance of a low-discounting/low-

monitoring double limit. Our results do have implications for games with frequent actions,

as well as for other applications that we consider in companion papers: these include games

with many players, where a large population of players are monitored by an aggregate signal;

and the rate of convergence of the equilibrium payoff set as discounting and monitoring vary.

We discuss these applications at the end of the paper.

Our negative result (Theorem 1) involves some new ideas. First, we focus on the amount

of information conveyed by a monitoring structure, rather than the distribution of informa-

tion among the players. We capture this notion by considering the blind game ΓB associated

to any repeated game Γ, where the signals that were observed by the players in Γ are instead

observed by a neutral mediator. We interpret ΓB as the repeated game where society has

the same amount of information as in Γ, but this information is distributed so as to support

a maximally wide range of equilibrium outcomes. Theorem 1 provides a necessary condition
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for cooperation in ΓB. A fortiori, the same condition applies for Γ itself, as well as for any

other repeated game where the same amount of information is distributed differently– that

is, for any repeated game with the same blind game.

Second, we measure the average strength of a player’s incentives over all histories that

arise in the course of the game. This notion is captured by a player’s maximum deviation

gain at the occupation measure over actions induced by an equilibrium. Here our approach

contrasts with earlier work that analyzes incentives history-by-history (Fudenberg, Levine,

and Pesendorfer, 1998; al-Najjar and Smorodinsky, 2000, 2001; Awaya and Krishna, 2016,

2019). It leads to sharper results, because sometimes an equilibrium can be constructed

that provides strong incentives in a particular period by letting continuation play depend

disproportionately on behavior in that period, but such a construction necessarily provides

weaker incentives at other histories.

Third, we measure the detectability of a deviation by the χ2-divergence– the variance

of the likelihood ratio difference– between the signal distribution under equilibrium play as

compared to that under the deviation. The χ2-divergence is a standard measure of statistical

distance. Several other well-known measures (e.g., total variation distance, Kullback-Leibler

divergence) are equivalent to χ2-divergence under our assumptions and hence are equally

valid for characterizing the asymptotic tradeoff between discounting and monitoring; how-

ever, our proofs rely on χ2-divergence, and our non-asymptotic results are strongest under

this measure.

In total, Theorem 1 may be summarized as stating that, for any repeated game Γ, any

equilibrium outcome in the associated blind game ΓB, and any possible deviation by any

player, we have

deviation gain ≤
√

δ

1− δ (detectability) (payoff variance),

where deviation gain, detectability (measured by χ2-divergence), and payoff variance are all

assessed at the equilibrium occupation measure. The proof is based on a simple but novel

variance decomposition argument. The idea is that, if deviating from non-static Nash play

is unprofitable, then signals must vary significantly with actions, and continuation payoffs
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must vary significantly with signals; and, moreover, this payoff variation must be delivered

relatively quickly due to discounting. We show that recursively decomposing the variance of a

player’s continuation payoffs yields a tight bound on the average strength of her incentives,

despite the well-known fact that the set of equilibrium payoffs with private strategies or

monitoring generally lacks a useful recursive structure (Kandori, 2002).

Our positive result (Theorem 2) is a partial converse to Theorem 1. Theorem 2 is an

extension of the folk theorems of FLM, Kandori and Matsushima (1998; henceforth KM), and

SS. It generalizes FLM and KM by letting discounting and monitoring vary simultaneously.

It generalizes SS by considering the general low-discounting/low-monitoring double limit,

rather than assuming that monitoring is parameterized by an underlying continuous-time

signal process.1

Like the folk theorems of FLM, KM, and SS, Theorem 2 assumes pairwise identifiability.

This is a standard assumption, but it makes it harder to directly compare Theorems 1 and

2, because Theorem 1 does not require this assumption. However, pairwise identifiability

is unnecessary if monitoring has a product structure. In this case, a direct comparison of

Theorems 1 and 2 is possible. This comparison (Corollary 1) confirms that Theorems 1 and

2 tightly characterize the asymptotic tradeoff between discounting and monitoring required

for cooperation, at least for games with public, product structure monitoring.2

The tradeoff we find between discounting and monitoring has a clear interpretation. In

probability theory, the sum of the conditional variances of a martingale’s increments is often

a useful measure of the “intrinsic time” experienced by the martingale (e.g., Dubins and

Savage, 1965; Freedman, 1975). Analogously, our results show precisely that repeated-game

equilibrium play is approximately myopic if players are impatient, and a folk theorem holds

if players are patient, where patience is measured relative to the intrinsic time experienced

by a martingale with likelihood ratio difference increments, rather than calendar time.

1We also allow any number of players, while SS considered two-player games.
2We conjecture that Theorem 2 holds even without pairwise identifiability, so that Theorems 1 and 2

characterize the asymptotic tradeoff between discounting and monitoring in general. However, proving this
result would involve complications beyond the scope of the current paper.
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2 Preliminaries

The Repeated Game. We consider discounted repeated games with imperfect monitoring.

A stage game G = (I, A, u) consists of a finite set of players I = {1, . . . , N}, a finite

product set of actions A = ×i∈IAi, and a payoff function ui : A → R for each i ∈ I.

Let ū > 0 denote an upper bound on the range and magnitude of any player’s stage-game

payoff: e.g., ū = maxi,a 2 |ui (a)|. We denote a (possibly correlated) distribution over action

profiles by α ∈ ∆ (A), and denote the set of such distributions resulting from independent

mixing by ∆∗ (A) = ×i∈I∆ (Ai). For any action profile distribution α ∈ ∆ (A), we let

ui (α) := Ea∼α [ui (a)] and Vi (α) := Vara∼α (ui (a)) denote the mean and variance of player

i’s payoff under α.

Amonitoring structure (Y, p) consists of a finite product set of possible signal realizations

Y = ×i∈IYi and a family of conditional probability distributions p (y|a), which we assume

have common support Ȳ ⊆ Y : that is, for each y, a, we have p (y|a) > 0 iff y ∈ Ȳ . This

non-moving support assumption excludes perfect monitoring (where yi = a with probability

1 for all i). Throughout, whenever we take a sum over signals y, this sum should be read as

being taken over Ȳ rather than Y , so that 0-probability signal profiles are excluded.

A repeated game Γ = (G, Y, p, δ) is described by a stage game, a monitoring structure,

and a discount factor δ ∈ (0, 1). In each period t = 1, 2, . . ., (i) the players take actions

(ai)i∈I , (ii) the signal y = (yi)i is drawn according to p ((yi)i | (ai)i), and (iii) each player

i observes yi. Players remember their own past actions, so a history for player i takes the

form hti = (ai,t′ , yi,t′)
t−1
t′=1, and a strategy σi for player i maps histories h

t
i to distributions over

actions ai,t. Players maximize discounted expected payoffs with discount factor δ.

An outcome µ of the repeated game is a distribution over paths of actions and signals,

(A× Y )∞. Each strategy profile σ induces a unique outcome µ.

The Blind Game. For any repeated game Γ, the set of outcomes µ that are induced

by any Nash equilibrium σ (or moreover by any communication equilibrium, as in Forges,

1986) is smaller than the set of outcomes that are induced by a Nash equilibrium in the

corresponding blind game. The blind game, which we denote by ΓB, is a variant of Γ where

(i) the players have access to a neutral mediator, (ii) at the beginning of each period, the
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mediator privately recommends an action ri ∈ Ai to each player i, and (iii) at the end of

each period, the mediator observes the signal y (which continues to be drawn according to

p ((yi)i | (ai)i)), while the players observe nothing. Players remember their own past actions,

while the mediator does not observe the players’actions. Thus, a history for player i in

the blind repeated game ΓB takes the form hti =
(
(ri,t′ , ai,t′)

t−1
t′=1 , ri,t

)
, and a history for

the mediator takes the form ht0 =
(
(ri,t′)i , (yi,t′)i

)t−1

t′=1
. A strategy σi for player i maps

histories hti to distributions over actions ai,t; a strategy σ0 for the mediator maps histories

ht0 to distributions over recommendation profiles (ri,t)i. By standard arguments (similar to

Forges, 1986), any outcome µ that is induced by a Nash or communication equilibrium in

Γ is also induced by a Nash equilibrium in ΓB. Our necessary conditions for cooperation

(Theorem 1) apply for ΓB, and hence apply a fortiori for Γ.

The Public Game. We also define another variant of a repeated game Γ: the corre-

sponding public game, denoted ΓP , where all players observe the entire signal vector y at

the end of a period. Note that ΓP is a repeated game with imperfect public monitoring, as

defined by FLM.3 A perfect public equilibrium (PPE) in such a game is a strategy profile

that forms a Nash equilibrium conditional on any public history ht = (yt′)
t−1
t′=1. For a given

stage game G, let E (Y, p, δ) denote the set of PPE payoff vectors in the repeated game ΓP .

Note that the set of Nash equilibrium payoffs in ΓP is smaller than that in ΓB, and the set

E (Y, p, δ) is smaller still. Our suffi cient conditions for cooperation (Theorem 2) apply for

E (Y, p, δ), and hence apply a fortiori for the set of Nash equilibrium payoffs in ΓB.

Occupation Measures. Given an outcome µ, let αµt ∈ ∆ (A) denote the marginal

distribution of period-t action profiles under µ, and define αµ ∈ ∆ (A), the occupation

measure over action profiles induced by µ, by

αµ (a) = (1− δ)
∞∑
t=1

δt−1αµt (a) for all a ∈ A.

The occupation measure αµ measures the “expected discounted fraction of periods”where

each action profile is played in the course of the repeated game. Note that the payoffs under

3However, we do not need to impose FLM’s assumption that a player’s payoff is determined by her own
action and the signal y.
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an outcome µ are determined by its occupation measure αµ, as

(1− δ)
∑
t

δt−1
∑
a

αµt (a)u (a) =
∑
a

(1− δ)
∑
t

δt−1αµt (a)u (a) =
∑
a

αµ (a)u (a) = u (αµ) .

In other words, the occupation measure is a suffi cient statistic for the players’payoffs.

Manipulations. A manipulation for a player i is a mapping si : Ai → ∆ (Ai). The

interpretation is that when player i is recommended action ai, she instead plays si (ai).

The gain from a manipulation si at an action profile distribution α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) .

Recall that, for any ε > 0, an action profile distribution α is a static ε-correlated equilibrium

if gi (si, α) ≤ ε for all i and si.

Next, for any α ∈ ∆ (A), let p (y|α) =
∑

a α (a) p (y|a). We define the detectability of a

manipulation si at an action profile distribution α as

χ2
i (si, α) =

∑
a,y

α (a) p (y|a)

(
p (y|si (ai) , a−i)− p (y|a)

p (y|a)

)2

.

When α (a) = 1 for some a ∈ A, our detectability measure is the χ2-divergence between the

probability distributions p (·|a) and p (·|si (ai) , a−i); the measure extends linearly for non-

degenerate α. The χ2-divergence is a standard measure of statistical distance. Note that it

is well-defined by our non-moving support assumption.4

We emphasize that manipulations, gain, and detectability are all “static” concepts, in

that they are defined relative to a single action profile distribution and (for detectability) a

single draw from the monitoring structure.

Remark 1 Why does χ2-divergence arises in our analysis? The χ2-divergence equals the

variance of the likelihood ratio difference between p (·|a) and p (·|si (ai) , a−i). The likelihood
4Recall that we have also assumed that Y is finite. Our main result (Theorem 1) goes through when Y

is infinite, provided that χ2i (si, α) is finite for all i, si, α.
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ratio difference (p (y|ãi, a−i)− p (y|a)) /p (y|a) determines the “strength of incentives” pro-

vided by rewards or punishments that are conditioned on the arrival of signal y (Mirrlees,

1975; Holmström, 1979). Since the expected likelihood ratio difference∑
y p (y|a) ((p (y|ãi, a−i)− p (y|a)) /p (y|a)) equals 0, the likelihood ratio difference is “often

large”– so the signal is a useful basis for incentives– if and only if its variance is large.5

More concretely, χ2-divergence arises in Theorem 1 by applying the Cauchy-Schwarz in-

equality to an expression similar to

∑
y

(p (y|si (ai) , a−i)− p (y|a))wi (y)

=
∑
y

p (y|a)

(
p (y|si (ai) , a−i)− p (y|a)

p (y|a)

)
(wi (y)− E [wi (y)]) ,

where wi (y) denotes player i’s continuation payoff following signal y. This expression cap-

tures the change in player i’s expected continuation payoff when she manipulates according

to si at action profile a. For the inner product 〈X, Y 〉 =
∑

y p (y|a)X (y)Y (y), Cauchy-

Schwarz upper-bounds this expression by

√
χ2
i (si, a) Var (wi (y)).

This observation shows that χ2-divergence and continuation payoff variance must both be

suffi ciently large to deter manipulations. It also suggests that, as we will see, χ2-divergence

is a useful metric for analysis based on decomposing the variance of continuation payoffs.

Conversely, χ2-divergence arises in Theorem 2 because this result requires that the Euclid-

ean distance between the (suitably normalized) vectors of signal probabilities (p (y|a))y∈Ȳ and

(p (y|si (ai) , a−i))y∈Ȳ is suffi ciently large, which we will see is equivalent to the χ2-divergence

being suffi ciently large. The Euclidean distance requirement in turn relates to quadratic ap-

proximation arguments in the spirit of FLM, KM, and SS.

5The χ2-divergence is closely related to the Fisher information. If ai were a continuous variable, the

Fisher information would be defined as
∑

y p (y|a)
(

∂
∂ai

p (y|ai, a−i) /p (y|a)
)2
, which is a local χ2-divergence.

It has previously been observed that the Fisher information arises in moral hazard problems with quadratic
utility (Jewitt, Kadan, and Swinkels, 2008; Hébert, 2018) or frequent actions (Sadzik and Stacchetti, 2015),
as well as in some career concerns models (Dewatripont, Jewitt, and Tirole, 1999, cf. their inequality 2.4).
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While our proofs rely on χ2-divergence and our non-asymptotic results are strongest under

this measure, our asymptotic results hold equally for other divergences (e.g., total variation

distance, Kullback-Leibler divergence) which are equivalent to χ2-divergence up to constant

factors under our assumptions. We discuss this point further in Section 4, following Corol-

lary 1.

3 Necessary Conditions for Cooperation

Our main result bounds a player’s gain from a manipulation as a function of the discount

factor, the detectability of the manipulation, and the variance of the player’s payoff, where

gain, detectability, and variance are all assessed at the equilibrium occupation measure. As

a consequence, every repeated-game equilibrium occupation measure is a static ε-correlated

equilibrium, and every repeated-game equilibrium payoff vector is a static ε-correlated equi-

librium payoff vector, for ε > 0 given by the bound.

Theorem 1 For any Nash equilibrium outcome µ in ΓB, any player i, and any manipulation

si, we have

gi (si, α
µ) ≤

√
δ

1− δχ
2
i (si, αµ)Vi (αµ). (1)

In particular, αµ is a static ε-correlated equilibrium (and hence payoffs under µ are static

ε-correlated equilibrium payoffs), for

ε = max
i,si

√
δ

1− δχ
2
i (si, αµ)Vi (αµ).

Theorem 1 precludes cooperation when players are too impatient, monitoring is too

imprecise, or on-path payoff variance is too small. It permits cooperation if δ → 1 for

any fixed detectability, consistent with FLM’s folk theorem. It also permits cooperation

with vanishing on-path payoff variance if detectability is high enough, consistent with folk

theorems under perfect monitoring (which we admit as a limit case).

An important feature of Theorem 1 is that the deviation gain is bounded by a multiple

of (1− δ)−1/2, rather than (1− δ)−1. This is somewhat surprising, as continuation payoffs
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are weighted by (1− δ)−1, and it is essential for the bound to be tight. The key idea behind

this property is bounding incentives on average, not at each history. In particular, the

proof of Theorem 1 shows that if (1) is violated, then there exists a period t such that it is

profitable for player i to follow the equilibrium until period t and then manipulate according

to si. However, this deviation may be profitable only for certain choices of t– it may be

unprofitable for a period t that gets disproportionate weight in determining continuation

payoffs. Put differently, an incentive bound of order (1− δ)−1 results when no restrictions

are placed on continuation payoffs beyond feasibility, while we instead recursively bound the

variance of continuation payoffs, which results in an incentive bound of order (1− δ)−1/2.

Some prior results bound incentives in repeated games as a function of discounting and

monitoring precision, but they do so history-by-history, and hence obtain bounds of order

(1− δ)−1 (e.g., Fudenberg, Levine, and Pesendorfer, 1998; al-Najjar and Smorodinsky, 2000,

2001; Pai, Roth, and Ullman, 2017). Awaya and Krishna (2016, 2019) derive a bound based

on deterring permanent deviations to a particular action, which is also of order (1− δ)−1.6

In our own prior work, (Sugaya and Wolitzky, 2017, 2018), we derived bounds that hold

independently of monitoring precision; these are again of order (1− δ)−1.

We illustrate Theorem 1 with some examples.

Example 1 (Prisoner’s Dilemma with Binary Product Structure Monitoring) Consider

the prisoner’s dilemma with payoff matrix

C D

C 1, 1 −1, 2

D 2,−1 0, 0

and symmetric product structure monitoring with precision π ∈ (1/2, 1), so that Y =

{C,D}×{C,D}, where each signal component equals the corresponding player’s action with

probability π, independently across players.
6See, e.g., Proposition 4.1 of Awaya and Krishna (2019). Unlike our bound, their incentive bound for

each player i depends only on the marginal of p on Y−i; so, formally, our bound and theirs are non-nested.
Their bound is tighter for monitoring structures where the impact of a player’s action on the distribution of
y is much greater than its impact on the distribution of y−i. These monitoring structures play an important
role in their analysis. However, it may be possible to use our techniques to tighten their bound; this is left
for future research.
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We bound the equilibrium probability of cooperation by applying (1) for the manipulation

that always defects. For any equilibrium outcome µ , the gain from this deviation evaluated

at the occupation measure αµ equals αµCC +αµCD, while its detectability evaluated at α
µ equals

(αµCC + αµCD)

(
π

(
(1− π)− π

π

)2

+ (1− π)

(
π − (1− π)

1− π

)2
)

+ (αµDC + αµDD) (0)

= (αµCC + αµCD)
(2π − 1)2

π (1− π)
.

Thus, (1) gives

αµCC + αµCD ≤
δ

1− δ
(2π − 1)2

π (1− π)
Vi (α

µ) ,

where Vi (αµ) = αµCC + 4αµDC + αµCD − (αµCC + 2αµDC − α
µ
CD)2. This simple bound applies for

any Nash equilibrium, whether the signals (y1, y2) are observed publicly or privately, by either

the players or a mediator.

Example 2 (Prisoner’s Dilemma with Poisson Product Structure Monitoring) Consider

the above prisoner’s dilemma payoff matrix with payoffs scaled by a positive number ∆ > 0,

let δ = e−r∆ for a constant r > 0, and let Y = {0, 1}×{0, 1}, where Pr (yi = 1|a) = ∆λai for

constants λC , λD ∈ [0, 1], independently across players. The interpretation is that the players

interact every ∆ units of time with a fixed real-time discount rate r and a fixed underlying

Poisson signal intensity.

Again, we bound the equilibrium probability of cooperation by applying (1) for the manip-

ulation that always defects. The gain from this deviation equals (αµCC + αµCD) ∆, while its

detectability equals

(αµCC + αµCD)

(
∆λC

(
∆λC −∆λD

∆λC

)2

+ (1−∆λC)

(
∆λC −∆λD

1−∆λC

)2
)

= (αµCC + αµCD)
∆ (λC − λD)2

λC (1−∆λC)
.

For ∆ suffi ciently small so that δ ≈ 1− r∆, (1) gives

αµCC + αµCD ≤
1

r

(λC − λD)2

min {λC , λD}
Vi (α

µ) ,
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where again Vi (α) = αCC + 4αDC + αCD − (αCC + 2αDC − αCD)2 (i.e., payoff variance

normalized by 1/∆2).

Notice that this bound is independent of the interaction frequency 1/∆. This might ap-

pear to contradict the observation of Abreu, Milgrom, and Pearce (1991) that taking ∆→ 0

destroys cooperation under “good news” Poisson signals (i.e., λC > λD). The resolution

is that Abreu, Milgrom, and Pearce consider a monitoring structure that violates pairwise

identifiability (a single Poisson signal, rather than a Poisson product structure) and, more

importantly, restrict attention to strongly symmetric equilibria. The bound implied by Theo-

rem 1 is not tight under these restrictions: that is, our converse result (Theorem 2) does not

apply.

There are three steps in the proof of Theorem 1. First, if manipulating according to si is

unprofitable in period t, then the conditional variance of player i’s period-t+ 1 continuation

payoff must be suffi ciently large compared to the gain from this manipulation in period t

and the (inverse of the) detectability of this manipulation in period t (equation (4) below).

Second, applying this lower bound on conditional variance recursively using the law of total

variance, we show that a discounted sum of the variances of player i’s stage-game payoffs

must exceed a discounted sum of the conditional variance bounds (equation (5)). Finally,

by Jensen’s inequality, this inequality relating a discounted sum of payoff variances and a

discounted sum of bounds that depend on the deviation gain and detectability of si in each

period implies a corresponding inequality relating the payoff variance, deviation gain, and

detectability evaluated at the equilibrium occupation measure, which simplifies to (1).

We also mention a tighter (but slightly more complicated) bound than that given in

Theorem 1, which applies for any communication equilibrium outcome µ in Γ (but not

necessarily for any equilibrium outcome in ΓB). This is the bound that results when the

mediator must rely on self-reported signals, so that detectability is now measured with

respect to a player’s opponents’signals and her own self-report. Specifically, a manipulation

for player i would now consist of a pair (si, ρi), where si : Ai → ∆ (Ai) describes the mixed

action si (ai) taken by player i when she is recommended ai, and ρi : Ai × Ai × Yi → Yi

describes the signal ρi (ai, âi, yi) reported by player i when she is recommended ai, takes âi,

and observes yi. One can then define the gain from a manipulation (si, ρi) as above (noting
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that this depends only on si), and define the detectability of a manipulation (si, ρi) at an

action profile distribution α as

χ̃i (si, ρi, α) =
∑
a

α (a)
∑
y

p (y|a)


(∑

y′i,âi
si (ai) [âi] p (y′i, y−i|âi, a−i) ρi (ai, âi, y′i) [yi]

)
− p (y|a)

p (y|a)

2

.

Note that

χi (si, α) ≥ χ̃i (si, α) := min
ρi

χ̃i (si, ρi, α) for all i, si, α,

as this inequality holds with equality when ρi (ai, âi, yi) = yi for all ai, âi, yi. Theorem 1 holds

for any communication equilibrium outcome µ in Γ with χ̃i (si, α
µ) in place of χi (si, α

µ), by

essentially the same proof.

3.1 Proof of Theorem 1

We first introduce some notation. Given a path of action profiles a∞ = (a1, a2, . . .), let

uti = ui (a
t), and denote player i’s continuation payoff at the beginning of period t by

wti = (1− δ)
∞∑
t′=t

δt
′−tut

′

i .

Denote a history of actions and signals at the beginning of period t by ht = (at, yt).

Fix a Nash equilibrium outcome µ in ΓB, a player i, and a manipulation si. Let H t

denote the set of period-t histories ht that are reached with positive probability under µ,

and define a H t-measurable random variable W t
i : H t → R by W t

i (ht) = E [wti|ht] for all

ht ∈ H t. By the law of total variance, we have

Var
(
W t+1
i

)
= Var

(
E
[
W t+1
i |ht

])
+ E

[
Var

(
W t+1
i |ht

)]
. (2)

Similarly, define U t
i : H t → R by U t

i (ht) = E [uti|ht] for all ht ∈ H t.

In what follows, we suppress the dependence of gi (si, α) and χ2
i (si, α) on si.
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Lemma 1 For each period t, we have

Var
(
E
[
W t+1
i |ht

])
≥ 1

δ
Var

(
W t
i

)
− 1− δ

δ
Var

(
U t
i

)
and (3)

E
[
Var(W t+1

i |ht)
]
≥

(
1− δ
δ

)2
gi (α

µ
t )2

χ2
i (αµt )

, (4)

where in (4) we follow the convention 0/0 = 0.

Proof. For (3), since wti = (1− δ)uti + δwt+1
i , for every history ht ∈ H t we have

W t
i

(
ht
)

= (1− δ)U t
i

(
ht
)

+ δE
[
W t+1
i |ht

]
⇐⇒ E

[
W t+1
i |ht

]
=

1

δ
W t
i

(
ht
)
− 1− δ

δ
U t
i

(
ht
)
.

Therefore,

Var
(
E
[
W t+1
i |ht

])
= Var

(
1

δ
W t
i −

1− δ
δ

U t
i

)
=

1

δ2 Var
(
W t
i

)
+

(
1− δ
δ

)2

Var
(
U t
i

)
− 2

1− δ
δ2 Cov

(
U t
i ,W

t
i

)
≥ 1

δ2 Var
(
W t
i

)
+

(
1− δ
δ

)2

Var
(
U t
i

)
− 1− δ

δ2 Var
(
U t
i

)
− 1− δ

δ2 Var
(
W t
i

)
=

1

δ
Var

(
W t
i

)
− 1− δ

δ
Var

(
U t
i

)
.

For (4), let µ (ht, a) denote the probability that history ht is reached in period t and then

action profile a is played. Since µ is an equilibrium outcome, we have

1− δ
δ

gi (α
µ
t ) ≤

∑
ht,a,y

µ
(
ht, a

)
(p (y|a)− p (y|si (ai) , a−i))W t

i

(
ht, a, y

)
.

This holds because, if she follows the equilibrium until period t and then manipulates accord-

ing to si– which is a feasible deviant strategy, albeit perhaps not an optimal one– player i

can guarantee an expected continuation payoffof
∑

ht,a,y µ (ht, a) p (y|si (ai) , a−i)W t
i (ht, a, y)

by following the mediator’s recommendations from period t + 1 onward. (In other words,

in the continuation game player i plays as if her period-t action were ai rather than si (ai).

This continuation play may not be optimal, but we are only giving a necessary condition.)

13



Therefore,

1− δ
δ

gi (α
µ
t ) ≤

∑
ht,a,y

µ
(
ht, a

)
(p (y|a)− p (y|si (ai) , a−i))W t

i

(
ht, a, y

)
=

∑
ht,a,y

µ
(
ht, a

)
p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)(
W t
i

(
ht, a, y

)
− E

[
W t+1
i |ht

])

≤

√∑
ht,a,y µ (ht, a) p (y|a)

(
p(y|a)−p(y|si(ai),a−i)

p(y|a)

)2

×
√∑

ht,a,y µ (ht, a) p (y|a)
(
W t
i (ht, a, y)− E

[
W t+1
i |ht

])2

=
√
χ2
i (αµt )

√
E
[
Var

(
W t+1
i |ht

)]
,

where the second inequality follows from Cauchy-Schwarz. Finally, if χ2
i (αµt ) > 0 then

squaring both sides and rearranging yields (4); if instead χ2
i (αµt ) = 0 then we have gi (α

µ
t ) =

0, and (4) reduces to E
[
Var(W t+1

i |ht)
]
≥ 0, which holds as variance is non-negative.

By (2), (3), and (4), for each period t, we have

Var
(
W t+1
i

)
≥ 1

δ
Var

(
W t
i

)
− 1− δ

δ
Var

(
U t
i

)
+

(
1− δ
δ

)2
gi (α

µ
t )2

χ2
i (αµt )

.

Recursively applying this inequality and using Var (W 1
i ) = 0, for each T ∈ N we have

δTVar
(
W T+1
i

)
≥ (1− δ)

T∑
t=1

δt−1

(
1− δ
δ

gi (α
µ
t )2

χ2
i (αµt )

− Var
(
U t
i

))
.

As payoffs are bounded, the left-hand side of this inequality converges to 0 as T →∞, while

(since χ2
i (αµt ) is also bounded) the right-hand side converges to

(1− δ)
∑
t

δt−1

(
1− δ
δ

gi (α
µ
t )2

χ2
i (αµt )

− Var
(
U t
i

))
.

Therefore,

δ
∑
t

δt−1Var
(
U t
i

)
≥ (1− δ)

∑
t

δt−1 gi (α
µ
t )2

χ2
i (αµt )

. (5)

At this point we are almost done, because inequality (5) actually implies the desired

inequality, (1). This observation relies on the following lemma.
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Lemma 2 The function fi : ∆ (A)→ R+ defined by

fi (α) =
gi (α)2

χ2
i (α)

for all α ∈ ∆ (A) ,

with convention 0/0 = 0, is convex.

Proof. Fix any α, α′ ∈ ∆ (A) and β ∈ [0, 1], and let

a = gi (α) , b = χ2
i (α) , c = gi (α

′) , d = χ2
i (α′) .

By linearity of gi and χ2
i , we have

βfi (α) + (1− β) fi (α
′)− fi (βα + (1− β)α′) = β

a2

b
+ (1− β)

c2

d
− (βa+ (1− β) c)2

βb+ (1− β) d
≥ 0,

so fi is convex. To see why the last inequality holds, note that if b = 0 then a2/b = 0 (by

a = 0 and the 0/0 = 0 convention), so the inequality is trivial, and similarly if d = 0. If

instead b and d are both strictly positive, then we have

β
a2

b
+ (1− β)

c2

d
− (βa+ (1− β) c)2

βb+ (1− β) d
=
β (1− β) (ad− bc)2

bd (βb+ (1− β) d)
≥ 0.

We also use the fact that

δ

1− δVi (α
µ) =

δ

1− δ
∑
a

(1− δ)
∑
t

δt−1αµt (a) (ui (a)− ui (αµ))2

= δ
∑
t

δt−1
∑
a

αµt (a) (ui (a)− ui (αµ))2

≥ δ
∑
t

δt−1
∑
a

αµt (a) (ui (a)− ui (αµt ))2

= δ
∑
t

δt−1Var
(
uti
)
≥ δ

∑
t

δt−1Var
(
U t
i

)
,

where the first inequality follows because E
[
(X − x)2] ≥ E [(X − E [X])2] for any random

variable X and number x, and the second inequality follows from the law of total variance.
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By (5), we thus have

δ

1− δVi (α
µ) ≥ (1− δ)

∑
t

δt−1 gi (α
µ
t )2

χ2
i (αµt )

≥
(
(1− δ)

∑
t δ

t−1gi (α
µ
t )
)2

(1− δ)
∑

t δ
t−1χ2

i (αµt )
=
gi (α

µ)2

χ2
i (αµ)

,

where the second inequality follows from Lemma 2 and Jensen’s inequality. Rearranging and

taking square roots yields (1).

4 Suffi cient Conditions for Cooperation

This section presents our second result (Theorem 2), which generalizes the classical folk the-

orems of FLM and KM by letting discounting and monitoring vary simultaneously. Theorem

2 (together with Corollary 1) shows that the tradeoff between discounting and monitoring

implied by Theorem 1 is tight in the low-discounting/low-monitoring double limit.

We impose the simplifying assumption that each player has a strict incentive to follow

an action profile that maximizes her own payoff.7

Assumption 1 For each player i, there exists an action profile ai ∈ argmaxa∈A ui (a) such

that ui (ai) > ui
(
ai, a

i
−i
)
for all ai 6= aii.

Assumption 1 holds for generic payoffs. Imposing this assumption and fixing such an ai

for each i, we let εu ∈ (0, ū) be such that ui (ai) > ui
(
ai, a

i
−i
)

+ εu for all i and ai 6= aii.

We require some notation. Let F = co
(
{u (a)}a∈A

)
⊆ RN denote the set of feasible

payoffs, and let F ∗ ⊆ F denote the set of feasible payoffs that weakly Pareto-dominate a

payoff which is a convex combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F and

there exist a collection of static Nash equilibria (αn) and non-negative weights (βn) such

that v ≥
∑

n βnu (αn) and
∑

n βn = 1.

For each i and a, let

p (a) =
(√

p (y|a)
)
y∈Ȳ

and Pi (a) =
⋃
a′i 6=ai

(
p (y|a′i, a−i)√

p (y|a)

)
y∈Ȳ

.

7This assumption is helpful because our construction involves continuation payoffs that lie slightly off
translated tangent hyperplanes, in contrast to FLM and KM.
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That is, p (a) is the vector of signal probabilities at action profile a, and Pi (a) is the set of

such vectors that can arise when player i deviates from ai while the remaining players take

a−i, where these probabilities are all normalized by
√
p (y|a). For any η ∈ [0, 1], we say

that monitoring satisfies η-pairwise identifiability if for any action profile a and any pair of

distinct players i and j, the following three conditions hold:

1. There exists a vector x ∈ R|Ȳ | such that ‖x‖ = 1 and

x · p (a) > x · p+
√
η for all p ∈ Pi (a) ∪ Pj (a) . (6)

2. There exists a vector x ∈ R|Ȳ | such that ‖x‖ = 1 and

x · pi −√η > x · p (a) > x · pj +
√
η for all pi ∈ Pi (a) and pj ∈ Pj (a) . (7)

3. We have

p (y|a) > η for all y ∈ Ȳ . (8)

When η = 0, our definition of pairwise identifiability coincides with KM’s assumptions

(A2) and (A3), which are weaker than FLM’s pairwise full rank condition.8 Thus, η-pairwise

identifiability says that KM’s assumptions hold with
√
η slack (after normalizing the signal

probabilities by
√
p (y|a)). We comment below on the role of (8); for now, note that this re-

quirement has force only together with the other conditions, because with public monitoring

one can always identify distinct signals to suitably coarsen the signal space (Kandori, 1992).

We can now state our “folk theorem.”

Theorem 2 Assume that dimF ∗ = N . For any v ∈ intF ∗, there exists c > 0 such that, for

any η > 0, any monitoring structure (Y, p) that satisfies η-pairwise identifiability, and any

δ > 1− cη, we have v ∈ E (Y, p, δ).

Theorem 2 extends Theorem 6.1 of FLM and Theorem 1 of KM by relating the minimum

discount factor required to conclude that v ∈ E (Y, p, δ) to the precision of monitoring. For
8When η = 0, (6) coincides with KM’s assumption (A2), and (7) coincides with KM’s assumption (A3).

KM do not normalize p (a) and Pi (a) by
√
p (y|a), but this immaterial since in KM the function x (y) can

be scaled by
√
p (y|a) to offset this normalization.
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comparison, a version of these earlier results would state that for any v ∈ intF ∗, any η > 0,

and any monitoring structure (Y, p) that satisfies η-pairwise identifiability, there exists c > 0

such that, for every δ > 1− c, we have v ∈ E (Y, p, δ). The current result is stronger because

c depends only on the target payoff v, rather than depending on both v and the monitoring

structure (Y, p) as in FLM and KM.9

Theorem 2 is also related to SS’s folk theorem for repeated games with frequent actions

(their Theorem 2). In their model, signals are parameterized by an underlying continuous-

time Lévy process (a mixture of Brownian and full-support Poisson signals), and players

interact every ∆ units of time, with real-time discount rate r (so δ = e−r∆). They define a

set M−, which under pairwise identifiability and individual full rank generically equals the

set of feasible and individually rational (FIR) payoffs (SS, Proposition 1; Appendix O-d),

and show that for any v ∈ M−, there exists ∆̄ and r̄ such that, for any ∆ < ∆̄ and r < r̄,

the payoff vector v arises in a PPE. Observe that for Brownian signals (with the space of

signal realizations partitioned into arbitrary fixed intervals) we have

p (y|a)− p (y|a′i, a−i)√
p (y|a)

≈ ∆1/2

1
= ∆1/2 and p (y|a) ≈ 1,

and for Poisson signals we have

p (y|a)− p (y|a′i, a−i)√
p (y|a)

≈ ∆

∆1/2
= ∆1/2 and p (y|a) ≈ ∆.

Hence, SS’s information structure satisfies ∆-pairwise identifiability. Moreover, for small ∆,

we have e−r∆ > 1− c∆ iff r < c, so Theorem 2 implies SS’s result, with the difference that

they support all FIR payoffs as PPE, rather than only those payoffs in F ∗. As we discuss

below, this difference arises because SS’s assumptions on the signal structure imply that

the likelihood ratio p (y|a′i, a−i) /p (y|a) is bounded, an assumption we do not impose. Our

proof builds on SS (as well as FLM and KM). Relative to their result, our main contribu-

tion is dispensing with their parameterization by an underlying Lévy process. That is, we

9On the other hand, FLM’s Theorem 6.1 requires pairwise identifiability only at certain action profiles,
and KM’s Theorem 1 is a minmax threat folk theorem. (FLM also proved a minmax folk theorem under
additional assumptions.) However, our theorem can be similarly extended, as we discuss below.
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prove a general folk theorem for discrete-time repeated games in the low-discounting/low-

monitoring double limit, which implies the folk theorem for repeated games with frequent

actions (which assumes an underlying continuous-time parameterization) as a special case.

Another significant difference is that SS assume that N = 2: this assumption seems impor-

tant for their proof, which relies on parameterizing the boundary of the equilibrium payoff

set as a 1-dimensional curve.10

To compare our Theorems 1 and 2, consider relaxing η-pairwise identifiability to η-

individual identifiability: the condition that, for any action profile a and player i, there

exists a vector x ∈ R|Ȳ | such that ‖x‖ = 1 and

x · p (a) > x · p+
√
η for all a and p ∈ Pi (a) , (9)

and p (y|a) > η for all y.11 Note that (9) is equivalent to d (p (a) , co (Pi (a))) >
√
η for all a

(where d (·, ·) denotes Euclidean distance), which in turn is equivalent to

χ2
i (si, a) > η for all a and all si with si (ai) [ai] = 0.

That is, (9) holds if and only if, at any action profile a, the detectability of a deviation to

any mixed action that puts zero weight on ai is at least η. Thus, Theorem 1 implies that

if the ratio of the discount rate 1 − δ and detectability is large for all manipulations, then

all equilibrium outcomes in the repeated game ΓB are static ε-correlated equilibria; while

Theorem 2 under η-individual identifiability would imply that if the ratio of discounting and

detectability is large for all manipulations, then all payoff vectors v ∈ intF ∗ are attainable

in PPE in the repeated game ΓP .

The comparison between Theorems 1 and 2 is tight in games with public, product struc-

ture monitoring, where the signal y is public and there exist a family of sets (Y i)i∈N and

conditional probability distributions (pi (·|ai))i∈N on (Y i)i∈N such that Y = ×i∈NY i and

10We also mention Fudenberg and Levine (2007), who establish (in)effi ciency results in a frequent-action
game with one patient player and a myopic opponent, in contrast to SS’s model with two patient players, or
our model with N patient players.
11We define a slightly more permissive version of η-individual identifiability in our companion paper

(Sugaya and Wolitzky, 2022a).
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p (y|a) =
∏

i∈N p
i (yi|ai) for all y, a.12 This result follows because individual identifiabil-

ity implies pairwise identifiability under product structure monitoring (but not in general).

More precisely, we have the following corollary of Theorems 1 and 2.

Corollary 1 Fix a stage game G satisfying dimF ∗ = N . For any ε > 0, there exists a

constant k > 0 such that the following hold:

1. For any public, product monitoring structure (Y, p) and any discount factor δ satisfying

maxi,si,a χ
2
i (si, a) < (1− δ) k, and for any Nash equilibrium outcome µ in the repeated

game Γ = (G, Y, p, δ), the induced occupation measure over actions αµ is a static ε-

correlated equilibrium.

2. For any public, product monitoring structure (Y, p) and any discount factor δ satisfying

mini,si,a:si(ai)[ai]=0 χ
2
i (si, a) > (1− δ) /k and p (y|a) > (1− δ) /k for all y, a, and for any

v ∈ intF ∗ such that the Euclidean distance between v and the boundary of F ∗ is greater

than ε, we have v ∈ E (Y, p, δ).

Proof. Part 1 is an immediate implication of Theorem 1. Indeed, Part 1 holds without the

assumption that dimF ∗ = N , without the restriction to public, product structure monitor-

ing, and with ΓB in place of Γ.

For Part 2, note that if mini,si,a:si(ai)[ai]=0 χ
2
i (si) > (1− δ) /k and p (y|a) > (1− δ) /k for

all y, a, then (1− δ) /k-individual identifiability holds. Thus, fixing any c > 0 and taking

k < c, we have that η-individual identifiability holds for η = (1− δ) /k, and δ > 1 − cη.

Next, note that η-individual identifiability implies (η/2)-pairwise identifiability under prod-

uct structure monitoring. This follows because, by η-individual identifiability and product

structure monitoring, for each player i there exists a vector xi ∈ R|Ȳ | that satisfies (9) as well

as xi (y) = xi (ỹ) for all y, ỹ such that y−i = ỹ−i, and taking x = xi/
√

2−xj/
√

2 satisfies (7)

with η/2 in place of η. To complete the proof, it remains to show that the constant c in the

statement of Theorem 2 can be chosen uniformly for all payoff vectors v at distance at least

ε from the boundary of F ∗. This last claim follows immediately from the proof of Theorem

12Thus, yi is a signal of player i’s action ai. This is not to be confused with the signal observed by player
i in a general monitoring structure, which we have denoted by yi.

20



2, where the constant c is explicitly constructed as a function of the distance between v and

the boundary of F ∗.

If the hypothesis that p (y|a) > (1− δ) /k in Part 2 of Corollary 1 is strengthened to a

uniform lower bound on p (y|a) (independent of δ), then the χ2-divergence can be replaced

with various other divergences in the statement of Corollary 1, as these divergences are all

equivalent when probabilities are bounded away from zero. For example, if p (y|a) ≥ ε for

all y, a, then the total variation distance TV satisfies χ2 ≥ 4TV 2 ≥ εχ2, and the Kullback-

Leibler divergence KL satisfies χ2 ≥ 2εKL ≥ ε2χ2.13

For general monitoring structures, there is a gap between Theorems 1 and 2, because we

prove Theorem 2 for public monitoring satisfying η-pairwise identifiability rather than private

monitoring satisfying η-individual identifiability. We believe that Theorem 2 likely remains

valid under η-individual identifiability for public monitoring or for private monitoring in the

presence of a mediator, but proving either of these results would involve complications similar

to those in the literature on the folk theorem with private monitoring (e.g., Sugaya, 2022).

These complications are orthogonal to the current paper’s focus on monitoring precision,

and would necessitate a much longer proof. We therefore content ourselves with the public

monitoring, pairwise identifiability version of Theorem 2.

We preview the key ideas of the proof of Theorem 2. Similarly to FLM and KM, the goal

is to show that for any v ∈ intF ∗, a suffi ciently small ball B around v is self-generating (cf.

Definition 1). In the δ → 1 limit considered by FLM and KM, this follows because payoff

vectors in B can be enforced with continuation payoff movements of magnitude O (1− δ),

so since the set B is smooth, requiring continuation payoffs to lie in B results in a vanishing

effi ciency loss. In contrast, when discounting and monitoring vary together and (1− δ) /η →

0 (but we may have η → 0 as well as δ → 1), conditions (6) and (7) imply that payoffs

vectors in B can be enforced with continuation payoffmovements of variance o (1− δ), while

condition (8) additionally implies that the continuation payoff movements can be taken to

have magnitude o (1) (but not necessarily O (1− δ)). A key lemma (Lemma 4) shows that

under these conditions, requiring continuation payoffs to lie in B again results in vanishing

effi ciency loss. The intuition is that forcing “large”payoffmovements (greater thanO (1− δ))
13For inequalities implying these bounds and many more, see, e.g. Sason and Verdú (2016).
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into B incurs a significant loss, but that since the continuation payoffmovement variance is

small, these large movements are infrequent enough that the ex ante expected loss is small.

We can also explain why we give a “Nash threat” rather than a “minmax threat” folk

theorem: that is, why we support only payoffs in F ∗ rather than the entire FIR set. If we try

to support payoffs below a Nash threat point, then the “significant loss”from forcing large

payoff movements into B mentioned above becomes a “significant gain” for those players

whose payoffs are being minimized at the target payoff vector. We just argued that these

large continuation payoff movements are infrequent in equilibrium, but they could become

much more frequent following a deviation. When a large continuation payoff movement

constitutes a gain for some players (e.g., when the target payoff is below a Nash threat

point) and in addition the likelihood ratio p (y|a′i, a−i) /p (y|a) is unbounded (so deviating

could make a large payoffmovement much more likely), such a deviation may be impossible

to deter. This issue is the only obstacle to extending our proof to cover payoff vectors below

a Nash threat point, so if we imposed the additional assumption that p (y|a′i, a−i) /p (y|a) is

bounded for all y, a, a′i, we could strengthen Theorem 2 to a minmax threat result.14

4.1 Proof of Theorem 2

Fix v ∈ intF ∗. Let εv > 0 denote the Euclidean distance between v and the boundary of F ∗,

and let ε = min {εu, εv} ∈ (0, ū). Let B = {v′ : d (v, v′) ≤ ε/2}, the closed ball of radius ε/2

centered at v. We will find c > 0 such that if (Y, p) satisfies η-pairwise identifiability and

δ > 1− cη, then B ⊆ E (Y, p, δ), and hence v ∈ E (Y, p, δ).

The following definition and lemma are due to Abreu, Pearce, and Stacchetti (1990).

Definition 1 A bounded set W ⊆ RN is self-generating if for all v̂ ∈ W , there exist α ∈

∆∗ (A) and w : Ȳ → RN satisfying

1. Promise keeping (PK): v̂ = (1− δ)u (α) + δ
∑

y p (y|α)w (y).

2. Incentive compatibility (IC): supp (αi) ⊆ argmaxai (1− δ)ui (ai, α−i)+δ
∑

y p (y|ai, α−i)wi (y)

for all i.
14This issue explains why SS are able to give a minmax threat folk theorem: they consider Poisson signals

with bounded likelihood ratios, as well as Brownian signals which are truncated to give bounded likelihood
ratios in their equilibrium construction.
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3. Self-generation (SG): w (y) ∈ W for all y.

When (PK), (IC), and (SG) hold, we say that the pair (α,w) decomposes v̂ on W .

Lemma 3 Any bounded, self-generating set W is contained in E (Y, p, δ).

Our key lemma (Lemma 4) will provide a suffi cient condition for B to be self-generating,

and hence contained in E (Y, p, δ). It is based on the following definition, where we let

‖·‖ denote the Euclidean norm, let Λ = {λ ∈ RN : ‖λ‖ = 1}, and for each λ ∈ Λ, let

‖λ+‖ =
√∑

λn>0 (λn)2 and ‖λ−‖ =
√∑

λn<0 (λn)2.

Definition 2 The maximum score in direction λ ∈ Λ with reward bound X > 0 is defined

as

k (λ,X) := sup
α∈∆∗(A),x:Ȳ→RN

λ ·
(
u (α) +

∑
y

p (y|α)x (y)

)

subject to

1. Incentive compatibility with ε slack (ICε): For all i and ai /∈ supp (αi),

ui (α) +
∑
y

p (y|α)xi (y) ≥ ui (ai, α−i) +
∑
y

p (y|ai, α−i)xi (y) + ε1 {λi ≥ 0} .

2. Half-space decomposability with reward bound X (HSX):

λ · x (y) ≤ 0 for all y,∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥

‖λ+‖
≤ X for all y, and

∑
y

p (y|α)

∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥2

‖λ+‖2 ≤ X.

If ε = 0 and X = ∞ then k (λ,X) equals k∗ (λ), the maximum score in direction λ

as defined by Fudenberg and Levine (1994; henceforth FL). The idea of tightening IC and

bounding rewards is inspired by SS. The following is our key lemma:
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Lemma 4 If there exists X > 0 such that

k (λ,X) ≥ max
v′∈B

λ · v′ + ε

4
for all λ ∈ Λ, and (10)

max
{
X,Nū2

}
≤ δ

1− δ
ε2

212
, (11)

then B is self-generating.

FL showed that B is self-generating for all suffi ciently high δ if k∗ (λ) ≥ maxv′∈B λ · v′

for all λ. The logic is that B is locally linear and thus accommodates arbitrarily large

continuation value transfers when δ → 1. Lemma 4 extends FL’s result to show that B

is self-generating for a given value of δ if k (λ,X) ≥ maxv′∈B λ · v′ + ε/4 for all λ, where

the magnitude and the variance of the normalized reward x (y) are bounded by a constant

multiple of (1− δ)−1.

To complete the proof, we find c > 0 such that if (Y, p) satisfies η-pairwise identifiability

and δ > 1− cη, then there exists X > 0 that satisfies (10) and (11). To define c and X, we

first introduce one more constant, denoted λ ∈ (0, 1), which we will use to partition the set

of directions λ ∈ Λ in a manner similar to FLM and KM.

For any λ ∈ Λ, let i (λ) ∈ argmaxn∈I λn denote a player with the highest Pareto weight

under λ (choosing arbitrarily in case of a tie); let m (λ) = λi(λ) = maxn λn denote the

corresponding Pareto weight; and let M (λ) = maxn6=i |λn| denote the highest Pareto weight

in absolute value terms of any player other than i (λ).

Lemma 5 Let λ > 0 satisfy

Nūmax

{
λ,

1−
√

1−Nλ2√
1−Nλ2

}
≤ ε

16
. (12)

For all λ ∈ Λ,

1. If m (λ) ≤ λ, then there exists a static Nash equilibrium αNE such that

λ · u
(
αNE

)
≥ max

v′∈B
λ · v′ + ε/4. (13)
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2. If m (λ) ≥M (λ) /λ, then

λ · u
(
ai(λ)

)
≥ max

v′∈B
λ · v′ + ε/4. (14)

Intuitively, in the first case all Pareto weights λn are small or negative, so the maximum

score is approximated by a static NE; and in the second case player i (λ)’s Pareto weight is

close to 1, so the maximum score is approximated by ai(λ).

Now we fix the constants

X̄ = max

{
8N2ū2

λ4 , 1

}
and c =

ε2λ4

216N2ū2
.

Lemma 6 If η < 1 and δ > 1− cη, then

max

{
X̄

η
,Nū2

}
≤ δ

1− δ
ε2

212
.

Proof. Note that c < min
{

1
216
, ε2

213Nū2

}
, as ε < ū, λ < 1, and N ≥ 1. Hence, we have

δ > 1− cη > 1− c > 1−min
{

1
216
, ε2

213Nū2

}
, and so X̄

η
≤ X̄c

1−δ = max
{

ε2

(1−δ)213 ,
c

1−δ

}
≤ δε2

(1−δ)212 ,

and Nū2 ≤ ε2

(1−δ)213 ≤
δε2

(1−δ)212 .

We henceforth assume that (Y, p) satisfies η-pairwise identifiability and δ > 1 − cη. By

Lemmas 4 and 6, to complete the proof it suffi ces to show that k
(
λ, X̄/η

)
≥ maxv′∈B λ · v′+

ε/4 for all λ ∈ Λ.

We first observe that, for each pair of players i 6= j and each action profile a, we can

define rewards
(
xj,−i (y; a)

)
y∈Ȳ and

(
xj,+i (y; a)

)
y∈Ȳ with mean 0 and variance at most 4ū2/η

that induce player i to take ai when her opponents take a−i; and that have the property that,

for player j, taking aj maximizes the expectation of x
j,−
i (y; a) and minimizes the expectation

of xj,+i (y; a), for each y. This is a direct implication of conditions (6) and (7).
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Lemma 7 For each pair of players i 6= j and a ∈ A, there exist
(
xj,−i (y; a)

)
y∈Ȳ such that

∑
y

p (y|a)xj,−i (y; a) = 0, (15)∑
y

p (y|a′i, a−i)x
j,−
i (y; a) ≤ −2ū for all a′i 6= ai, (16)∑

y

p
(
y|a′j, a−j

)
xj,−i (y; a) ≤ −2ū for all a′j 6= aj, and (17)

∑
y

p (y|a)xj,−i (y; a)2 ≤ 4ū2

η
; (18)

and there exist
(
xj,+i (y|a)

)
y∈Ȳ such that

∑
y

p (y|a)xj,+i (y; a) = 0, (19)∑
y

p (y|a′i, a−i)x
j,+
i (y; a) ≤ −2ū for all a′i 6= ai, (20)∑

y

p
(
y|a′j, a−j

)
xj,+i (y; a) ≥ 2ū for all a′j 6= aj, and (21)

∑
y

p (y|a)xj,+i (y; a)2 ≤ 4ū2

η
. (22)

Finally, we show that k
(
λ, X̄/η

)
≥ maxv′∈B λ · v′ + ε/4 for all λ ∈ Λ. As in FLM, we

partition Λ into three cases: (1) m (λ) ≤ λ; (2) m (λ) ≥ M (λ) /λ; and (3) λ < m (λ) <

M (λ) /λ. In Case 1, we take α to be a static Nash equilibrium that satisfies (13) and set

x (y) = 0 for all y. In Case 2, for i = i (λ), we take α = ai and set x (y) so that players

n 6= i have correct incentives and player i’s reward “balances the budget” (i.e., satisfies∑
n∈I λnxn (y) = 0 for all y). In Case 3, we take any α ∈ argmaxa λ · u (a), and for i = i (λ)

and for any j 6= i such that λi/ |λj| < 1/λ, we set x (y) so that all players have correct

incentives and players i and j’s rewards balance the budget. The details are relatively

straightforward and are deferred to the appendix.
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5 Discussion

This paper has established general results on the tradeoffbetween discounting and monitoring

for supporting cooperation in repeated games. We conclude by discussing some applications.

We have already seen some implications of our results for repeated games with fre-

quent actions. We showed how these games can be viewed as an instance of a general

low-discounting/low-monitoring double limit. When specialized to frequent-actions games,

our folk theorem extends SS’s by allowing more than two players and unbounded likelihood

ratios. We also note that the standard frequent-action limit– where the interaction fre-

quency 1/∆→∞ for a fixed real-time discount rate r > 0, with signals parameterized by an

underlying Lévy process– corresponds to the edge case between our positive and negative

theorems, where discounting and monitoring vanish at the same rate. This edge case is

interesting and important, but also perhaps somewhat special and detail-dependent.

Another type of low-discounting/low-monitoring double limit arises in large-population

repeated games, where many patient players are monitored by an aggregate signal, which

conveys little information about each individual player’s action. This type of model was

studied by Green (1980) and Sabourian (1990) under a continuity condition on the mapping

from action distributions to signal distributions, and by Fudenberg, Levine, and Pesendorfer

(1996) and al-Najjar and Smorodinsky (2000, 2001) under the assumption that each player’s

action is hit by independent, individual-level noise. In a companion paper (Sugaya and

Wolitzky, 2022a), we derive necessary and suffi cient conditions for cooperation in large-

population repeated games with individual-level noise, as a function of the population size,

the discount factor, and the channel capacity (maximum expected entropy reduction) of

the monitoring structure. These results extend those in the current paper by introducing

individual-level noise and letting the stage game– and in particular the number of players–

vary together with the discount factor and the monitoring structure.

Our negative result can also be extended to show that, for any fixed imperfect monitoring

structure, the Nash equilibrium payoff set cannot converge to the boundary of the FIR payoff

set at a rate faster than (1− δ)1/2+ε for any ε > 0. (With ε = 0, this is known to be the

rate of convergence for PPE with imperfect public monitoring). This rate-of-convergence
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bound holds even if one allows private strategies and private monitoring, which answers in

the negative a question posed by Hörner and Takahashi (2016). Moreover, by accounting

for monitoring precision as well as discounting, this bound can be refined to show that the

distance between the equilibrium payoff set and the boundary of the FIR payoff set must

exceed ((1− δ) /maxi,si χ
2
i (si))

1/2+ε. This is another result where the relevant timescale is

the intrinsic time experienced by a martingale with likelihood ratio difference increments.

We present these results in a second companion paper (Sugaya and Wolitzky, 2022b).

Finally, our results also apply to repeated principal-agent problems: that is, two-player

games where one player’s strategy is fixed in advance. Sadzik and Stacchetti (2015) provide

a detailed analysis of repeated principal-agent problems with one-dimensional actions and

concave preferences in the frequent-action limit (the edge case between our positive and

negative). Our results complement theirs by providing necessary and suffi cient conditions for

cooperation in a more general class of games, where such detailed analysis may be infeasible.
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A Appendix: Omitted Steps in Proof of Theorem 2

A.1 Proof of Lemma 4

To show that B is self-generating, it suffi ces to show that the extreme points of any ball

B′ ⊆ B of radius ε/4 are decomposable on B′.

Lemma 8 Suppose that for any ball B′ ⊆ B with radius ε/4 and any direction λ ∈ Λ, the

point v̂ = argmaxv′∈B′ λ · v′ is decomposable on B′. Then B is self-generating.

Proof. Fix any v0 ∈ B. Since the radius of B is ε/2, there exists a ball B′ ⊆ B with

radius ε/4 such that v0 lies on the boundary of B′. There then exists a direction λ0 such

that v0 = argmaxv′∈B′ λ0 · v′. By hypothesis, v0 is decomposable on B′. Since B′ ⊆ B, this

implies that v0 is decomposable on B. Hence, B is self-generating.

We thus fix a ball B′ ⊆ B with radius ε/4 and a direction λ ∈ Λ, and let v̂ =

argmaxv′∈B′ λ · v′. We construct (α,w) that decompose v̂ on B′.

Since k (λ,X) ≥ maxv′∈B λ · v′ + ε/4 by hypothesis, there exist α and x : Ȳ → RN that

satisfy (ICε), (HSX), and

λ ·
(
u (α) +

∑
y

p (y|α)x (y)

)
≥ max

v′∈B
λ · v′ + ε/5 ≥ max

v′∈B′
λ · v′ + ε/5. (23)

Fix any such α and x. Define

Xy =

∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥2

‖λ+‖2 .

Note that, by (HSX) and (11), we have

1− δ
δ

√
Xy ≤

ε

64
(24)

and
1− δ
δ

∑
y

p (y|α)Xy ≤
ε2

640
. (25)
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To construct w, let

ξi (y) = −64λiXy

ε
1 {λi ≥ 0} for all i, y, (26)

and let ξ (y) = (ξi (y))i∈I . Note that ξi (y) ≤ 0 for all i, y. Finally, for each y, let

w (y) = v̂+
1− δ
δ

(
x (y)− u (α) + v̂ −

∑
y′

p (y′|α)x (y′)

)
+

(
1− δ
δ

)2
(
ξ (y)−

∑
y′

p (y′|α) ξ (y′)

)
.

Here the first term in parentheses captures orthogonal continuation payoff movements with

respect to normal vector λ (as in FL), while the second term is an adjustment that will keep

w (y) in B′ even when the orthogonal component of w (y)− v̂ is large.

We show that (α,w) decomposes v̂ on B′ by verifying in turn (PK), (IC), and (SG) (with

W = B′).

(PK): This holds by construction: we have
∑

y p (y|α)w (y) = (1/δ) (v̂ − (1− δ)u (α)),

and hence (1− δ)u (α) + δ
∑

y p (y|α)w (y) = v̂.

(IC): Setting aside the constant terms in w (y), we see that an action ai maximizes

(1− δ)ui (ai, α−i)+δ
∑

y p (y|ai, α−i)wi (y) iff it maximizes ui (ai, α−i)+
∑

y p (y|ai, α−i)
(
xi (y) + 1−δ

δ
ξi (y)

)
.

Now note that, for all ai /∈ suppα, we have

ui (α) +
∑
y

p (y|α)

(
xi (y) +

1− δ
δ

ξi (y)

)
− ui (ai, α−i)−

∑
y

p (y|ai, α−i)
(
xi (y) +

1− δ
δ

ξi (y)

)
≥ ε1 {λi ≥ 0}+

∑
y

p (y|α)
1− δ
δ

ξi (y) by (ICε) and ξi (y) ≤ 0 ∀y

≥ 1 {λi ≥ 0}
(
ε− 64λi

ε

1− δ
δ

∑
y

p (y|α)Xy

)
by (26)

≥ 0 by (25) and λi ≤ 1.

This establishes (IC).

(SG):We start with a standard geometric observation: if a payoffvector w ∈ RN satisfies

λ · (v̂ − w) ≥ 0 and the Euclidean distance between v̂ and w is suffi ciently small compared

to the distance between v̂ and w in direction λ, then w ∈ B′.
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Lemma 9 If w ∈ RN satisfies λ · (v̂ − w) ≥ 0 and

‖v̂ − w‖ ≤
√
ε

4
λ · (v̂ − w), (27)

then w ∈ B′.

Proof. (27) implies that λ · (v̂ − w) ≤
√

ε
4
λ · (v̂ − w), and hence 0 ≤ λ · (v̂ − w) ≤ ε

4
. Let

x := v̂ − w − λ · (v̂ − w)λ. Since ‖x‖2 = ‖v̂ − w‖2 − (λ · (v̂ − w))2 ≤ ‖v̂ − w‖2, (27) implies

that ‖x‖2 ≤ ε
4
λ · (v̂ − w). Denote the center of B′ by o = v̂ − ε

4
λ. We have

‖w − o‖ = ‖w − o+ x− x‖ = ‖v̂ − o− (λ · (v̂ − w))λ− x‖ = ‖(λ · (w − o))λ− x‖

=

√
‖λ · (w − o)λ‖2 + ‖x‖2 ≤

√
ε

4
λ · (w − o) +

ε

4
λ · (v̂ − w) =

ε

4
,

where the third equality is by v̂−o−(λ · v̂)λ = ε
4
λ−
(
λ ·
(
o+ ε

4
λ
))
λ = − (λ · o)λ, the fourth

equality is by λ · x = 0, the inequality is by λ · (w − o) = λ · (v̂ − o)− λ (v̂ − w) ∈
[
0, ε

4

]
and

‖x‖2 ≤ ε
4
λ · (v̂ − w), and the final equality is by λ · (v̂ − o) = ε

4
. Hence, w ∈ B′.

We thus show that, for each y, w (y) satisfies λ · (v̂ − w (y)) ≥ 0 and (27). Note that

v̂ − w (y) =
1− δ
δ

∆ (y)−
(

1− δ
δ

)2

ξ (y) +

(
1− δ
δ

)2∑
y′

p (y′|α) ξ (y′) ,

where ∆ (y) = u (α)− v̂ +
∑
y′

p (y′|α)x (y′)− x (y) .

By (HSX) and (23),

λ ·∆ (y) ≥ 1− δ
δ

ε

5
, and

‖∆ (y)‖ ≤ ‖u (α)− v̂‖+

∥∥∥∥∥∑
y′

p (y′|α)x (y′)− x (y)

∥∥∥∥∥ ≤ √Nū+ ‖λ+‖
√
Xy

ε
.
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By (HSX) and the definition of ξ (cf. (26)),

−λ · ξ (y) ≥ ‖λ+‖2 64Xy

ε
, ‖ξ (y)‖ ≤ ‖λ+‖

64Xy

ε
, and∥∥∥∥∥∑

y′

p (y′|α) ξ (y′)

∥∥∥∥∥ =

∥∥∥∥(λi1 {λi ≥ 0}
64
∑

y p (y|α)Xy

ε

)
i

∥∥∥∥ ≤ ‖λ+‖
64

ε

∑
y

p (y|α)Xy.

Therefore,

λ · (v̂ − w (y)) =
1− δ
δ

λ ·∆ (y)−
(

1− δ
δ

)2

λ · ξ (y) +

(
1− δ
δ

)2

λ ·
(∑

y′

p (y′|α) ξ (y′)

)

≥ 1− δ
δ

ε

5
+

(
1− δ
δ

)2

‖λ+‖2 64Xy

ε
−
(

1− δ
δ

)2

‖λ+‖
64

ε

∑
y

p (y|α)Xy

≥ 1− δ
δ

ε

10
+

(
1− δ
δ

)2

‖λ+‖2 64Xy

ε
≥ 0, (28)

where the last line follows since ‖λ+‖ ≤ 1 and (25) imply that 1−δ
δ
‖λ+‖ 64

ε

∑
y p (y|α)Xy ≤

ε
10
. Thus, we have

√
ε

4
λ · (v̂ − w (y)) ≥ 4

1− δ
δ

max

{√
1

640

δ

1− δ ε, ‖λ+‖
√
Xy

}
.

Similarly, we have

‖v̂ − w (y)‖

≤ 1− δ
δ
‖∆ (y)‖+

(
1− δ
δ

)2

‖ξ (y)‖+

(
1− δ
δ

)2 ∥∥∥∑y′ p (y′|α) ξ (y′)
∥∥∥

≤ 1− δ
δ

(
√
Nū+ ‖λ+‖

√
Xy

ε

)
+

(
1− δ
δ

)2

‖λ+‖
64Xy

ε
+

(
1− δ
δ

)2

‖λ+‖
64

ε

∑
y

p (y|α)Xy

≤ 2
1− δ
δ

(√
Nū+ ‖λ+‖

√
Xy

)
≤ 4

1− δ
δ

max
{√

Nū, ‖λ+‖
√
Xy

}
, (29)

where the third inequality follows since ‖λ+‖ ≤ 1 and (25) imply that 1−δ
δ
‖λ+‖ 64

ε

∑
y p (y|α)Xy ≤

1, and (24) implies that 1−δ
δ

64Xy
ε
≤
√
Xy.

Comparing (28) and (29), we see that w (y) satisfies (27) whenever
√
Nū ≤

√
1

640
δ

1−δε,

which is implied by (11).
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A.2 Proof of Lemma 5

Case 1: m (λ) ≤ λ. Let λ′n = min {λn, 0} / ‖λ−‖ and let λ′ = (λ′n)n∈I ∈ Λ. We claim

that
∑

n |λ
′
n − λn| ≤ ε/4ū. To see this, note that if λn ≥ 0 then |λn| ≤ λ, and hence

|λ′n − λn| = |0− λn| = |λn| ≤ λ. If instead λn ≤ 0, then

|λ′n − λn| =
∣∣∣∣λn − ‖λ−‖λn‖λ−‖

∣∣∣∣ ≤ 1− ‖λ−‖
‖λ−‖

≤ 1−
√

1−Nλ2√
1−Nλ2

,

where the first inequality follows because |λn| ≤ 1, and the second inequality follows because,

since
∑

n′ (λn′)
2 = 1 and λn ≤ m (λ) ≤ λ ∀n, we have ‖λ−‖ =

∑
n′:λn′<0 (λn′)

2 ≥ 1 − Nλ2.

In total, we have

∑
n

|λ′n − λn| ≤ N max

{
λ,

1−
√

1−Nλ2√
1−Nλ2

}
≤ ε

4ū
by (12).

Since λ′ ≤ 0, by definition of F ∗ there exists a static Nash equilibrium αNE such that

λ′ ·u
(
αNE

)
≥ maxv′∈F ∗ λ

′ ·v′. Since
∑

n |λ
′
n − λn| ≤ ε/4ū, |ui (a)| ≤ ū ∀i, a, and the distance

from B to the boundary of F ∗ is greater than ε/2, we have λ ·u
(
αNE

)
≥ λ′ ·u

(
αNE

)
−ε/4 ≥

maxv′∈F ∗ λ
′ · v′ − ε/4 ≥ maxv′∈B λ

′ · v′ + ε/4, establishing (13).

Case 2: m (λ) ≥ M (λ) /λ. Let i = i (λ). Since m (λ) ≤ 1 and |λn| ≤ M (λ) ≤ m (λ)λ

∀n 6= i, we have |λn| ≤ λ ∀n 6= i, and hence |λi| ≥ 1 − Nλ (since ‖λ‖ = 1). By (12)

and ε ≤ 1, this implies that |λi| ≥ 3/4, which, since i ∈ argmaxλn, implies that λi > 0,

and hence λi ≥ 1 − Nλ. Since |ui (a)| ≤ ū ∀i, a, we have, for all v′ ∈ F ∗ and λ ∈ Λ,

|(λ− ei) · v′| ≤
∑

n |λn − ei,n| ū ≤ ((N − 1)λ+ |(1−Nλ)− 1|) ū ≤ 2Nλū. Therefore, for

ai ∈ arg maxa∈A ei · u (a), we have λ · u (ai) ≥ ei · u (ai)− 2Nλū ≥ maxv′∈F ∗ ei · v′ − 2Nλū ≥

maxv′∈F ∗ λ · v′ − 4Nλū ≥ maxv′∈B λ · v′ + ε/2− 4Nλū ≥ maxv′∈B λ · v′ + ε/4, where the last

inequality is by (12).
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A.3 Proof of Lemma 7

Fix any i, j, and a. We first construct
(
xj,−i (y; a)

)
y∈Ȳ . Let x ∈ R

|Ȳ | satisfy ‖x‖ = 1 and (6).

By definition of P , Pi, and Pj, we have(
p (y|a)− p (y|a′i, a−i)√

p (y|a)

)
y

· (x (y))y ≥
√
η for all a′i 6= ai, or equivalently

(p (y|a)− p (y|a′i, a−i))y ·
(

x (y)√
p (y|a)

)
y

≥ √
η for all a′i 6= ai; and similarly

(
p (y|a)− p

(
y|a′j, a−j

))
y
·
(

x (y)√
p (y|a)

)
y

≥ √
η for all a′j 6= aj.

Defining

xj,−i (y; a) = 2ū

(
x (y)√
p (y|a) η

−
∑
ỹ

p (ỹ|a)
x (ỹ)√
p (ỹ|a) η

)
for all y,

conditions (15)—(17) hold by construction, and condition (18) holds because

∑
y

p (y|a)
(
xj,−i (y; a)

)2
=

4ū2

η

∑
y

p (y|a)

(
x (y)√
p (y|a)

−
∑
ỹ

p (ỹ|a)
x (ỹ)√
p (ỹ|a)

)2

=
4ū2

η

∑
y

x (y)2 =
4ū2

η
.

To construct
(
xj,+i (y; a)

)
y∈Ȳ , let x ∈ R

|Ȳ | satisfy ‖x‖ = 1 and (7), and proceed as in the

construction of
(
xj,−i (y; a)

)
y∈Ȳ .

A.4 Completion of the Proof of Theorem 2

We show that k
(
λ, X̄/η

)
≥ maxv′∈B λ · v′ + ε/4 for all λ ∈ Λ.

Case 1: m (λ) ≤ λ. For αNE that satisfies (13), taking α = αNE and x (y) = 0 ∀y

attains a score greater than maxv′∈B λ · v′ + ε/4 and trivially satisfies (ICε) and (HSX/η).

Case 2: m (λ) ≥ M (λ) /λ. Fix i = i (λ) and let α = ai. For each y, define x (y) =

(xn (y))n∈I by

xn (y) =

 −
∑

n′ 6=i
λn′
λi
x
i,sign(λiλn′ )
n′ (y; ai) if n = i,

x
i,sign(λiλn)
n (y; ai) if n 6= i,
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where sign (z) = − for z ≤ 0 and sign (z) = + for z > 0. Note that λ · x (y) = 0 ∀y, and

hence λ ·
(
u (ai) +

∑
y p (y|ai)x (y)

)
= λ · u (ai) ≥ maxv′∈B λ · v′ + ε/4, by (14). It remains

to verify (ICε) and (HSX/η).

For (ICε), for player i, note that
∑

y p (y|ai)xi (y) = 0 by (16) and (20), and
∑

y p
(
y|ai, ai−i

)
xi (y) ≤

0 ∀ai 6= aii by (17) and (21). Together with ui (a
i) − ui

(
ai, a

i
−i
)
≥ ε ∀ai 6= aii, this implies

(ICε) for player i. Next, for any player n 6= i, (16) and (20) imply that the expected re-

duction in continuation payoff from deviating is at least 2ū, which exceeds the maximum

difference between any two stage game payoffs by at least ū > ε.

For (HSX/η), since |λn| /λi ≤ M (λ) /m (λ) ≤ λ ∀n (by hypothesis), ‖λ+‖ ≥ 1 − Nλ ≥

1− ε/16 (arguing as in Case 1 of the proof of Lemma 5 and applying (12)), and

∑
y

p
(
y|ai

)(
xi,sign(λiλn)
n

(
y|ai

)
−
∑
ỹ

p
(
ỹ|ai

)
xi,sign(λiλn)
n

(
ỹ; ai

))2

≤ 4ū2

η
∀n (30)

(by (15), (18), (19) and (22)), we have

∑
y

p (y|a)
∥∥∥x (y)−

∑
ỹ p (ỹ|a)x (ỹ)

∥∥∥2

‖λ+‖2 ≤
4ū2

((∑
n6=i λn/λi

)2

+N − 1

)
η ‖λ+‖2

≤
4ū2

(
(N − 1)2 λ2 +N − 1

)
η (1− ε/16)2

≤ 8ū2N2

ηλ4 =
X̄

η
.

Since p (y|a) ≥ η for all y, we have

∥∥∥x (y)−
∑

ỹ p (ỹ|a)x (ỹ)
∥∥∥2

‖λ+‖2 ≤ X̄

η2
⇒

∥∥∥x (y)−
∑

ỹ p (ỹ|a)x (ỹ)
∥∥∥

‖λ+‖
≤
√
X̄

η
≤ X̄

η
.

Case 3: λ < m (λ) < M (λ) /λ. Fix any aλ ∈ argmaxa λ · u (a). Fix i = i (λ), and fix
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some j 6= i such that λi/ |λj| < 1/λ. For each y, define x (y) = (xn (y))n∈I by

xn (y) =


x
j,sign(λjλi)
i

(
y; aλ

)
−
∑

n′ 6=i
λn′
λi
x
i,sign(λiλn)
n′

(
y; aλ

)
if n = i,

x
i,sign(λiλj)
j

(
y; aλ

)
− λi

λj
x
j,sign(λjλi)
i

(
y; aλ

)
if n = j,

x
i,sign(λiλn)
n

(
y; aλ

)
if n 6= i, j.

Note that λ·x (y) = 0 ∀y, and hence λ·
(
u
(
aλ
)

+
∑

y p
(
y|aλ

)
x (y)

)
= λ·u

(
aλ
)
≥ maxv′∈B λ·

v′+ε/4. Moreover, (ICε) holds because, for each player, (16) and (20) imply that the expected

reduction in continuation payoff from deviating is at least 2ū, which exceeds the maximum

difference between any two stage game payoffs by at least ū > ε. Finally, (HSX/η) is satisfied

because, since |λn| /λi ≤ 1/λ ∀n, λi/ |λj| ≤ 1/λ, ‖λ+‖2 ≥ λ2 (as λi > λ), and (30) holds

with aλ in place of ai, we have

∑
y

p (y|a)
∥∥∥x (y)−

∑
ỹ p
(
ỹ|aλ

)
x (ỹ)

∥∥∥2

‖λ+‖2 ≤
4ū2

((
1−

∑
n6=i λn/λi

)2

+ (1− λi/λj)2 +N − 2

)
η ‖λ+‖2

≤
4ū2

(
(1 + (N − 1) /λ)2 + (1 + 1/λ)2 +N − 2

)
ηλ2

≤ 8ū2N2

ηλ4 =
X̄

η
.

Since p (y|a) ≥ η for all y, we have

∥∥∥x (y)−
∑

ỹ p (ỹ|a)x (ỹ)
∥∥∥2

‖λ+‖2 ≤ X̄

η2
⇒

∥∥∥x (y)−
∑

ỹ p (ỹ|a)x (ỹ)
∥∥∥

‖λ+‖
≤
√
X̄

η
≤ X̄

η
.
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