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Abstract

This paper studies how ex-ante information affects consumer welfare in a

search market where buyers search and match to sellers of a vertically differen-

tiated product. In a random search market, a buyer gets no informative signal

about the quality of a seller’s product prior to matching, whereas in a directed

search market, a buyer observes a perfectly informative signal. I derive the

unique equilibrium outcome in each type of market and show that consumers

are worse off in a directed search market when sellers are scarce and prices are

bilaterally ex-post efficient.
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1. Introduction

Agents in search markets often make use of publicly available information to aid in

their search process. For example, firms seeking productive employees can narrow

down their search by recruiting only from universities reputable for producing skilled

workers. With the proliferation of online review aggregators, it has become ubiquitous

practice for diners to direct their search towards four-star or five-star restaurants.

Health insurance enrollees can now consult websites like Vitals and Healthgrades to

direct their search towards highly rated primary care physicians.

In all these examples, agents are using ex-ante information to direct their search

towards desirable goods and services. When there is a single agent in the market, such

access to ex-ante information is beneficial; it helps the agent find what he is searching

for quickly. Hence, the value of information can never be negative.

However, markets often have many agents simultaneously searching while capacity

constraints limit the resources sought out by the agents. In reality, there are many

firms and a limited number of recruits from a given university, many diners and a

limited number of tables at a restaurant, and many insurance enrollees and a limited

number of in-network doctors. The strategic choices agents make in such settings

often give rise to search externalities, and the types of externalities agents impose on

the market may depend on the ex-ante information they observe while they search. It

is therefore not immediately clear if the non-negative value of information in single-

agent search environments can be extended to the case with many agents. The goal

of this paper is to study how ex-ante information affects the welfare of agents in a

search market plagued with scarcity.

To that end, I consider a parsimonious model of a consumer search market.1 The

market is sub-divided into a continuum of two-sided queues that match buyers to

sellers on a first-come-first-serve (FCFS) basis. The FCFS matching mechanism is

frictionless in that the maximal number of matches that can be formed in each period

within a queue are indeed formed. By focusing on a frictionless matching mechanism,

I abstract away from any search inefficiencies due to miscoordination and instead

1It is important to note that the model can be adapted to a labor search market (for example,
with firms in the role of consumers and workers in the role of sellers) as well as search with non-
transferable utility (for example, health insurance enrollees in the role of consumers, primary care
physicians in the role of sellers, and all prices set to zero).
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highlight the externalities that arise from information alone.2

In each period, a mass of sellers (she), each with a unit supply of a vertically

differentiated product, and a mass of buyers (he), each with a unit demand and

homogenous preferences over product quality, enter the market. Each buyer and seller

in the market joins some queue, waits for a match, and may perish with positive

probability while waiting. Once a buyer and a seller are matched, the buyer observes

the true quality of the seller’s product, and the pair either trades and exits the market

or searches for a different match by re-queueing.

I consider two types of markets: In a random search market, each queue contains

a random and uniform sampling of sellers from the market. Thus, each queue con-

tains the same distribution of quality and the buyers have no ex-ante information.

In contrast, in a directed search market, each queue contains only sellers of a unique

product quality. In other words, each queue contains a single quality and the buyers

have full ex-ante information.

The main result of the paper shows that consumer welfare is higher in a random

search market than in a directed search market under two key assumptions: First,

there is scarcity—the market has (weakly) fewer sellers than buyers. Second, buyers

and sellers avail themselves to ex-post efficient bilateral contracts. This allows me to

nest non-transferable utility settings in which buyers can “purchase” a product of any

quality for a price of zero as well as transferable utility settings with different pricing

mechanisms such as take-it-or-leave-it offers and bargaining.

In order to derive the main result, I first characterize the equilibrium of both

a random and a directed search market. The equilibrium of both types of markets

is, generically, unique and ex-ante inefficient. The inefficiency arises because prices

derived from ex-post efficient bilateral contracts do not fully internalize search exter-

nalities unless the well-known Hosios condition (Hosios, 1990) holds, which is satisfied

in my model only in the generic case when sellers extract the match surplus.3

In the equilibrium of a random search market, buyers join queues uniformly at

random (hence the name). Within each queue, buyers cream-skim—a matched buyer-

2Inefficiencies due to coordination frictions have been extensively studied in the search and matching
literature. See Rogerson et al. (2005) and references therein.

3For example, suppose prices are determined via Nash bargaining. With scarcity and a frictionless
matching mechanism, the elasticity of the matching function (with respect to buyers) will be zero
implying that the Hosios condition holds only if buyers have no bargaining power. In this case, the
ex-ante value of joining any queue for the buyers is zero. We can then construct an equilibrium
with ex-ante efficient queueing strategy, regardless of the ex-ante information available to buyers.
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seller pair trade if and only if the seller’s product quality is above a cutoff—giving

rise to two negative externalities. First, the distribution of quality within a queue is

worse than what it would have been without cream-skimming because sellers with

product quality below the cutoff remain in the market for a long time. Consequently,

buyers are relatively more likely to randomly match with sellers whose quality falls

below the cutoff. Second, as noted by Romanyuk and Smolin (2019), cream-skimming

increases competition since buyers who reject a match will compete with other buyers

for future matches. Together, the two externalities imply that a buyer may wait a

long time before he matches to a seller whose quality falls above the cutoff.

In the equilibrium of a directed search market, I show that there are two cutoffs

that divide the product type space into low-, intermediate-, and high-quality regions.

The queues containing low-quality products are empty on the buyers’ side, the queues

containing intermediate-quality products are uncongested and prices are low enough

to attract buyers despite the quality offerings, and the queues containing high-quality

products are congested with high prices. As such, the main externality that arises in

a directed search market is congestion. Once again, a buyer waits a long time before

he matches to a seller of a high-quality product.

Despite the difference in ex-ante information across random and directed search

markets, buyers’ search behavior shares a similar structure—a buyer stops searching

and trades once he matches to a seller whose product is of a “good-enough” quality.

Perhaps counterintuitively, consumer welfare decreases as the cutoff for a good-enough

quality increases. On the one hand, a high cutoff implies that trade occurs only when

the match surplus is large, and a buyer benefits from getting a share of this large

surplus. On the other hand, a high cutoff also implies that a buyer faces a high

expected wait time before he matches to a seller whose product is of good-enough

quality (either because of the two negative externalities in a random search market

or because of congestion in a directed search market). In a market with scarcity, the

latter effect dominates.

Unsurprisingly, what the buyers consider to be a good-enough quality in equilib-

rium depends on their ex-ante information. The main result shows that a directed

search market yields a lower consumer welfare precisely because the cutoff for a good-

enough quality is higher in a directed search market. In a random search market, the

cutoff depends on a buyer’s inter-temporal trade-off between instantaneous trade with

his current match or searching for better matches by re-queueing in the next period.
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The inter-temporality reflects the difference between the buyer’s ex-ante information

when he only knows the distribution of quality within a queue and his ex-post in-

formation when he observes a product’s true quality. In a directed search market,

the cutoff depends on a buyer’s contemporaneous trade-off between instantaneous

trade by joining an uncongested queue or searching for better matches by joining a

congested queue in the current period. The contemporality reflects the fact that the

buyer’s ex-ante and ex-post information coincide in a directed search market. As a

contemporaneous trade-off does not involve the cost of waiting until the next period

to search for better matches, buyers in a directed search market can afford to be pick-

ier, which makes the negative externalities they impose on the search market more

severe. Overall, the queues containing products of good-enough quality in a directed

search market involve not only a longer wait time for buyers because of congestion,

but also higher prices (because congestion implies higher levels of buyer-competition),

consequently leading to a lower consumer welfare.

The qualitative results of the paper continue to hold for various extensions of the

model. First, I consider an endogenous entry model in which only sellers who expect

to trade with positive probability choose to enter the market in the first place. Second,

I consider a class of search markets with monotone partitional information structures,

which are more informative than a random search market but less informative than a

directed search market. Finally, I consider different frictionless matching mechanisms

such as service-in-random-order (SIRO) and last-come-first-serve (LCFS). In all three

extensions, I show that consumer welfare is higher in a random search market.

Related Literature

This paper is closely related to Menzio (2007), who studies a labor search market in

which firms with differing productivity levels advertise vacancies through cheap talk

messages. If a (partially) separating equilibrium of the cheap talk game exists, workers

can direct their job search based the firms’ credible messages. Otherwise, the workers

search randomly. Menzio shows that directed search could be welfare dominated by

random search for some model parameters. However, the result depends not just

on congestion externalities that the workers generate when they direct their search

towards more productive firms, but also on search frictions from miscoordination and

signaling inefficiencies needed to sustain a separating equilibrium in the first place.

In this paper, I abstract away from both frictional search as well as any signaling
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inefficiencies, yet I obtain an unambiguous welfare comparison.

A few papers have highlighted the benefits of restricting ex-ante information when

agents can use it to direct search. For example, Hagiu and Jullien (2011) consider

consumers who direct their search based on the recommendations of an information

intermediary and they show that it may be profit maximizing for the intermediary

to divert search by providing noisy information. Vellodi (2018) shows that when con-

sumers direct their search based on past reviews, platforms like Yelp! can incentivize

the entry of new firms and delay the exit of incumbent firms by suppressing reviews.

While these papers are related to mine, my results are not a consequence of search

diversion or inadequate incentives for entry.

A number of papers have also highlighted the benefits of restricting ex-post in-

formation, i.e., information between a matched pair. While I assume that a buyer

observes the true quality of a product once he matches to a seller, Lauermann (2012)

shows that such a symmetric information setting between a matched buyer-seller

pair could be welfare dominated by its asymmetric information analog when search

costs are small. Similarly, Lester et al. (2019) show that small reductions in infor-

mation asymmetry between matched buyer-seller pairs can be detrimental depending

on the market’s competitiveness and search frictions. Romanyuk and Smolin (2019)

echo these results by showing that an information designer can improve welfare by

obfuscating what agents observe within a match.

A large literature on competitive search shows that equilibrium outcomes are ex-

ante efficient when sellers post prices and buyers direct their search based on both the

posted prices and ex-ante informative signals. Some of the papers in this literature

include search for exchange goods, (Butters, 1977; Peters, 1991; Kim and Kircher,

2015), labor markets (Montgomery, 1991; Moen, 1997; Mortensen and Wright, 2002),

and markets with two-sided heterogeneity (Shi, 2002; Shimer, 2005; Eeckhout and

Kircher, 2010). The directed search market I consider is distinct from this literature

because prices are not posted ex-ante in my model; they are determined ex-post

conditional on a match, which implies that buyers cannot direct their search based

on a price-dimension. One such application is the Economics Job Market in which

salaries are rarely posted on vacancy advertisements but are instead negotiated ex-

post. Directed search based on a price-dimension would also be infeasible when sellers

cannot commit to the prices they post. For example, while restaurants post their

prices on online menus, they do not offer any guarantees that their online menus are
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up-to-date. This would allow a restaurant to advertise a different price than the one

it charges to a diner, making the posted price meaningless. Finally, directed search

based on prices will clearly not be feasible in applications of non-transferable utility,

such as the market for health-insurance enrollees and PCPs.

The distinction of directed search in my model from the competitive search liter-

ature is also important because it underscores the theoretical limitations of directed

search when it is based only on the information-dimension. In both the random and

directed search markets of my model, ex-ante efficiency obtains only when sellers can

extract the match surplus (for example, when the Hosios condition is satisfied and

sellers have all the bargaining power), in which case consumer welfare is zero in either

type of market. In contrast, if buyers are able to retain a portion of the match surplus,

then the equilibrium is ex-ante inefficient for both a random and a directed search

market, and consumer welfare is strictly lower in a directed search market. Hence,

the model highlights that ex-ante informative signals in a market with scarcity could

be either (a) useless to consumers when the market features an ex-ante efficient sell-

ing mechanism, or (b) detrimental to consumers when the market lacks an ex-ante

efficient selling mechanism.

Finally, this paper is related in spirit to the insight that more information could

be detrimental in exchange economies (Hirshleifer, 1971; Schlee, 2001).

The remainder of the paper is structured as follows: In Section 2, I describe a

simple model of a FCFS matching with a continuum of agents. I use the insights from

this simple model to describe a consumer search market in Section 3. I then derive

the equilibrium outcomes of a random and a directed search market in Section 4 and

Section 5. Section 6 compares consumer welfare across the two markets, and Section 7

briefly discusses various extensions. All proofs are in the Appendix.

2. First-come-first-serve with a continuum of agents

This section describes FCFS matching in a queue with a continuum of agents. The

steady state characterization in this setting has a simple form, which will prove useful

to study a consumer search market in the subsequent sections.

The queue is comprised of two sides, Side A and B. Time is discrete with an

infinite horizon (t = . . . ,−1, 0, 1, . . .) and the sequence of events within each period

is as follows: First, a mass qi ≥ 0 of new agents join Side i = A,B of the queue with
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(qA, qB) 6= 0. Agents on opposite sides are then matched on a FCFS basis according to

a procedure I will describe shortly. Matched agents leave the queue and get a payoff

of vi ≥ 0 for i = A,B. Unmatched agents get a payoff of zero. Finally, an unmatched

agent on either side perishes with probability γ ∈ (0, 1] and survives on to the next

period with the complementary probability. The survival probability 1−γ also serves

as a discount factor for the agents; there is no additional waiting cost or discounting.

The FCFS matching mechanism rations all agents on the short-side of the queue

to agents on the long-side, with priority given to agents who have waited the longest

in the queue. As the maximal number of matches that can be formed in each period

are indeed formed, FCFS is a frictionless matching mechanism.

Formally, let qA ≤ qB so that Side A agents are on the short-side. Hence, a Side

A agent is matched with probability one upon joining the queue. On the other hand,

Side B agents, who are on the long-side, may have to wait until a match is rationed

to them. Let P t
k denote the probability that a Side B agent is matched in period

t conditional on having already waited for k = 0, 1, . . . periods. The conditional

matching probabilities (P t
k)t∈Z,k∈N satisfy a FCFS procedure if for each t,

P t
k > 0 =⇒ P t

k′ = 1 for all k′ > k.

In words, a Side B agent is matched with a positive probability in a given period

only if all Side B agents who have waited longer are guaranteed a match in that

same period. The procedure implicitly gives equal chances to any two agents who

have waited for the same duration because the conditional matching probabilities are

anonymous.

A steady state of a FCFS matching mechanism is given by stationary conditional

matching probabilities that depend only on how long an agent has waited in the

queue, i.e., P t
k = Pk. Let

n = inf{k ∈ N : Pk > 0}

so that a Side B agent waits at least n periods in a steady state to get matched.

By the FCFS procedure, an agent is matched with positive probability after waiting

n periods only if agents who have waited even longer are guaranteed a match, i.e.,

Pn > 0 only if Pk = 1 for all k > n. In particular, Pn+1 = 1, so a Side B agent waits

at most n+ 1 periods for a match. The steady state of a FCFS matching mechanism
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is therefore characterized by a pair (n, β) ∈ N× (0, 1] such that for any k ∈ N,

Pk =


0 if k < n

β if k = n

1 if k > n.

The values (n, β) are pinned down from the parameters of the model, which proves

existence and uniqueness of a steady state for any γ ∈ (0, 1] and qB ≥ qA ≥ 0 with

(qA, qB) 6= 0.4 To that end, consider the steady state balance equations: Each period,

there is a mass qA of Side A agents who leave the queue via a match. On the other

hand, there is a mass qB(1 − γ)nβ Side B agents who leave the queue via a match

after waiting for n periods and a mass qB(1− γ)n+1(1− β) of agents that leave via a

match after waiting for n+ 1 periods. Thus, the balance equation must satisfy

qA = qB(1− γ)n
(
β + (1− β)(1− γ)

)
.

By rearranging, the probability of a match for a Side B agent who has waited n

periods is given by

β =
qA − qB(1− γ)n+1

qB(1− γ)nγ
,

which is well-defined, i.e., β ∈ (0, 1], only if qB(1 − γ)n+1 < qA ≤ qB(1 − γ)n. This

chain of inequalities is satisfied at a unique and finite n ∈ N given by

n =

⌊
ln(qA)− ln(qB)

ln(1− γ)

⌋
.

When the market is balanced with qA = qB, neither side has to wait for a match;

in this case, n = 0 and β = 1. The more unbalanced the market is (a decrease in

qA/qB), Side A agents become more scarce so that Side B agents have to wait longer

for a match to arrive. Similarly, when γ = 1, the queue empties out each period since

any unmatched agent perishes. In this case, n = 0 and β = qA/qB, i.e., each Side

B agent is matched with a positive probability immediately upon joining the queue.

4The unique steady state for qA ≥ qB ≥ 0 with (qA, qB) 6= 0 is characterized symmetrically. When
qA = qB = 0, the queue is empty on both sides, so waiting times and matching probabilities are
not well-defined. There can be no steady state when γ = 0.
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However, as γ decreases, more Side B agents survive each period, which makes the

wait time longer.

Since Side A agents are matched with probability one upon joining the queue, the

ex-ante payoff for a Side A agent is given by VA = vA. The ex-ante payoff for a Side

B agent is given by

VB = (1− γ)n
(
β + (1− β)(1− γ)

)
vB.

From the steady state balance equation, we can simplify the ex-ante payoff for Side

B agents to VB = (qA/qB)vB. More generally, the ex-ante payoff for a Side i agent

with i = A,B can be expressed as

Vi = min

{
q−i
qi
, 1

}
︸ ︷︷ ︸
Ex-ante matching

probability

× vi︸︷︷︸
Payoff conditional

on match

. (1)

This formulation of the ex-ante matching probability and the ex-ante payoff will prove

useful in the upcoming analysis.

3. Search

3.1. Setup

I consider a market in a steady state that is populated by a continuum of buyers (he)

and sellers (she). Each buyer has a unit demand for a product and each seller has a

unit supply. The product is vertically differentiated with θ ∈ Θ = [0, 1] denoting the

quality of a seller’s product, which I refer to as the seller’s type.

Each period, a unit mass of new buyers and a mass k > 0 of new sellers enter

the market. New seller types are distributed according to a cumulative distribution

function (CDF) F with a positive and bounded density function f . A seller knows

her type but a buyer observes it only after matching to the seller.

The market features a continuum of two-sided queues indexed by ω ∈ Ω = [0, 1].

Buyers and sellers within each queue are matched according to the FCFS protocol

in Section 2. Once a buyer and seller are matched, each one chooses either to trade

or to reject the match. If at least one of them rejects, the pair either perishes with

probability γ ∈ (0, 1] or searches for another match with probability 1− γ by joining
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a queue at the “back of the line” in the following period. I refer to the latter group

as re-queuers. If the buyer and seller instead mutually agree to trade at some price

p ∈ R, the pair exits the market with the buyer getting a payoff of θ−p and the seller

getting a payoff of p.5 All agents get a payoff of zero otherwise.

The timing of events in each period is as follows: First, new buyers and sellers enter

the market. The new as well as the re-queueing buyers and sellers form a cohort. Each

buyer and seller in a cohort joins some queue and waits to be matched. A matched

buyer-seller pair either trades and exits the market, or rejects the match. Finally, a

fraction γ of the buyers and sellers still waiting to match as well as those who rejected

a match perish. The remaining 1− γ continue on to the next period.

t t+ 1
New buyers

& sellers enter

market

New & re-queueing

buyers & sellers

join queues

Match

by FCFS

Trade & exit,

or

reject

Fraction γ

still in the

market perish

Figure 1: Sequence of events within each period.

Let ψ , (MB,MS, G) represent the endogenous cohort composition in a steady

state where MB is the mass of new and re-queueing buyers, MS is the mass of new

and re-queueing sellers, and G is the type distribution of sellers within a cohort.

A type θ ∈ Θ seller in a cohort joins queues according to some exogenously given

and commonly known CDF σ(·|θ) : Ω → [0, 1]. Let σ(ω) = EG[σ(ω|θ)], and let

G(·|ω) : Θ → [0, 1] be the type distribution in queue ω ∈ Ω, which is computed by

Bayes rule whenever possible.

From the buyers’ perspective, the queues serve a dual role: each queue facilitates

matching and is also a source of ex-ante information about the seller types therein.

Formally, G can be seen as a buyer’s prior belief over seller types in the market, Ω

as the signal space, and {σ(·|θ)}θ∈Θ as the information structure (or experiment).

Under this interpretation, G(·|ω) becomes the buyer’s posterior belief conditional on

observing signal realization ω ∈ Ω. By exogenously varying the seller-queueing CDF,

we can consider various ex-ante information environments within the same consumer

search market.

5The model can be enriched by considering common value payoffs u(θ)−p and p−c(θ) for the buyer
and seller respectively, or by allowing for idiosyncratic taste shocks so that the surplus of a match
is θ + ε for ε ∼ iid. These formulations do not change the qualitative results.
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Based on the ex-ante information, each buyer in a cohort strategically chooses

which queues to join. Without loss of generality, I focus on symmetric and stationary

strategies with each buyer joining queues according to some CDF Q : Ω → [0, 1]. I

assume that

(i) the mappings θ 7→ σ(·|θ) and ω 7→ G(·|ω) are measurable, and

(ii) the buyer-queueing CDF Q is absolutely continuous with respect to σ, i.e.,

buyers do not join queues that contain no sellers.

Additionally, there are two substantive assumptions in this paper. First, I assume

that fewer sellers than buyers enter the market in each period.

Assumption 1 (Scarcity) k ≤ 1.

Prior to stating the second assumption, it is useful to introduce some notation.

Let uB ∈ R and uS : Θ → R represent the buyers’ and sellers’ continuation values

from re-queueing, and let u , (uB, uS) denote the pair of buyer-seller continuation

values. Conditional on matching to a type-θ seller, it is sequentially rational for a

buyer to trade at a price p if and only if θ− p ≥ (1− γ)uB. Similarly, conditional on

matching to a buyer, it is sequentially rational for a type-θ seller to trade at a price

p if and only if p ≥ (1 − γ)uS(θ). Thus, a buyer and seller mutually agree to trade

only if θ ≥ (1− γ)
(
uB + uS(θ)

)
, i.e., the match is ex-post efficient. Let

E(u) ,
{
θ ∈ Θ : θ ≥ (1− γ)

(
uB + uS(θ)

)}
be the set of ex-post efficient types for a given pair of continuation values.

I assume that a matched buyer and seller avail themselves of a bilateral ex-post

efficient contract.6 Specifically, if a buyer matches with a seller of type θ ∈ E(u), then

the contract yields some price p(θ, u) that guarantees mutually agreeable trade, i.e.,

θ − (1− γ)uB ≥ p(θ, u) ≥ (1− γ)uS(θ).

In other words, the price is assumed be some convex combination of θ − (1 − γ)uB

and (1 − γ)uS(θ) when the match is ex-post efficient. Given that ex-post inefficient

matches cannot lead to mutually agreeable trade for any price, I assume without loss

6See Section 8 for a brief discussion of ex-ante prices.
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of generality that p(θ, u) continues to take the convex combination form for in-efficient

matches.

Assumption 2 (Ex-post efficiency) There exists a measurable “surplus splitting”

function λ : Θ→ (0, 1] such that

p(θ, u) = λ(θ)(1− γ)uS(θ) +
(
1− λ(θ)

)(
θ − (1− γ)uB

)
.

I refer to λ as the surplus splitting function as it represents the share of surplus

captured by buyers. I take the surplus splitting function as exogenously given and

fixed across random and directed search markets. Nonetheless, prices can still differ

across the two markets based on the continuation values.

Assumption 2 nests several standard trading mechanisms. One foundation for

p(θ, u) is as the outcome of a Rubinstein bargaining problem: a matched buyer and

seller enter a “bargaining phase” in which the buyer has a discount factor of δ, the

seller has a type-dependent discount factor of ρθ, and the pair make alternating offers

on how to divide the surplus θ − (1 − γ)(uB + uS(θ)). The unique solution to this

bargaining phase is equivalent to a price p(θ, u) with λ(θ) = (1 − ρθ)/(1 − δρθ).

Additionally, p(θ, u) can also be rationalized as the solution to a Nash-bargaining

problem

max
p∈R

(
θ − p− (1− γ)uB

)λ(θ)(
p− (1− γ)uS(θ)

)1−λ(θ)

with λ(θ) capturing the buyer’s bargaining power when matched to a type-θ seller.

Finally, the formulation also incorporates buyers making take-it-or-leave-it offers with

probability λ(θ) and sellers doing the same with the complementary probability. The

case with λ(θ) = 1 for all θ ∈ Θ is equivalent to search with non-transferable utility

because a buyer can trade with any seller he matches to at a price of zero.

Notice that buyers get none of the surplus from trade when λ(θ) = 0 for all θ ∈ Θ,

so consumer welfare is always zero regardless of the seller-queueing CDF. Thus, the

problem is only interesting when λ(θ) > 0 for a positive measure of types (with respect

to F ). I assume λ(θ) > 0 for all θ ∈ Θ only for expositional ease. Additionally, it

is possible to generalize the surplus-splitting function to λ(θ, u) but an equilibrium

may not exist without assuming λ is continuous and monotone in u. However, it is

harder to motivate such a surplus-splitting function. For example, this would imply

that in a Rubinstein bargaining model, the agents’ discount rates in the alternating
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offers phase depend on their continuation values.

3.2. Steady state market composition

Let µ : Ω → [0, 1] be a measurable function with µ(ω) representing the ex-ante

matching probability for a seller in queue ω ∈ Ω. Let π : Θ→ [0, 1] be a measurable

function with π(θ) representing the probability that a type-θ seller trades conditional

on a match. The pair (µ, π) are determined as part of an equilibrium. However, for

now, I take these functions as a given and characterize the associated steady state

cohort composition.

The cohort composition ψ , (MB,MS, G) is uniquely characterized by two sets

of balance equations. First, the mass of sellers in a cohort must be made up of new

and re-queueing sellers.7 Hence, over any interval [θ′, θ′′] ⊆ Θ, the balance equation

for sellers satisfies

MS

∫ θ′′

θ′
dG(θ) = k

∫ θ′′

θ′
dF (θ)︸ ︷︷ ︸

New sellers

+MS

∫ θ′′

θ′

∫
Ω

µ(ω)(1− π(θ))(1− γ)dσ(ω|θ)dG(θ)︸ ︷︷ ︸
Re-queueing sellers

. (2)

Similarly, the mass of buyers in a cohort must be made up of new and re-queueing

buyers. As a re-queueing buyer comes from a rejected buyer-seller pair, the mass of

re-queueing buyers must equal the mass of re-queueing sellers. Hence, the balance

equation for buyers satisfies

MB = 1︸︷︷︸
New buyers

+MS

∫
Θ

∫
Ω

µ(ω)(1− π(θ))(1− γ)dσ(ω|θ)dG(θ)︸ ︷︷ ︸
Re-queueing buyers

(3)

=1 +MS − k,

where the second equality follows from evaluating (2) at θ′ = 0 and θ′′ = 1 and

substituting into (3). Given Assumption 1, we can conclude that MB ≥MS.

7A type-θ seller who joins queue ω ∈ Ω has four possible outcomes: (i) perishes while waiting
for a match with probability 1 − µ(ω), (ii) matches, trades, and exits with probability µ(ω)π(θ),
(iii) matches, rejects, and perishes with probability µ(ω)(1 − π(θ))γ, or (iv) matches, rejects, and
re-queues with probability µ(ω)(1− π(θ))(1− γ).
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From (2),

k
(
F (θ′′)− F (θ′)

)
≤MS

(
G(θ′′)−G(θ′)

)
≤ k

γ

(
F (θ′′)− F (θ′)

)
for any interval [θ′, θ′′] ⊆ Θ. In particular, k ≤MS ≤ k/γ, and

γ
(
F (θ′′)− F (θ′)

)
≤ G(θ′′)−G(θ′) ≤ F (θ′′)− F (θ′)

γ
.

In other words, G is absolutely continuous with respect to F and vice versa. Hence,

there exits a density function g which satisfies γf(θ) ≤ g(θ) ≤ f(θ)/γ for all θ ∈ Θ.

As f is positive and bounded, so is g. The following lemma summarizes these results.

Lemma 1 Suppose Assumption 1 holds. Then for any pair (µ, π), the associated

steady state cohort composition ψ = (MB,MS, G) satisfies the following:

1. MB ≥MS.

2. G is absolutely continuous with a positive and bounded density function g.

3.3. Equilibrium

Fix the seller-queueing CDF {σ(·|θ)}θ∈Θ. Consider a tuple 〈u, ψ,Q〉 where u , (uB, uS)

is a pair of continuation values, ψ , (MB,MS, G) is the cohort composition, and Q

is the buyer-queueing CDF. Since Q is assumed to be absolutely continuous with

respect to σ, let q = dQ/dσ represent the Radon-Nikodym derivative. The ratio of

buyers to sellers in queue ω ∈ Ω is then given by MBq(ω)/MS, often called the market

tightness in the search literature.8

As shown in Section 2, a queue’s steady state FCFS characterization depends only

on its market tightness.9 In particular, the ex-ante matching probability for a seller in

queue ω ∈ Ω is given by min{MBq(ω)/MS, 1} while the ex-ante matching probability

8See Rogerson et al. (2005) and references therein.
9For example, if MBq(ω) ≥ MS , sellers are matched immediately and the steady state FCFS
characterization for the buyers’ side is given by (nω, βω) with

nω =

⌊
ln(MS)− ln(MBq(ω))

ln(1− γ)

⌋
and βω =

MS −MBq(ω)(1− γ)nω+1

MBq(ω)(1− γ)nωγ
.
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for a buyer is min{MS/(MBq(ω)), 1}. The payoff of a type-θ seller in queue ω is

VS(θ, ω;u, ψ,Q) = min

{
MBq(ω)

MS
, 1

}
︸ ︷︷ ︸

Seller’s ex-ante
matching probability

max {p(θ, u), (1− γ)uS(θ)}︸ ︷︷ ︸
Seller’s payoff

conditional on match

, (4)

which is derived from (1) in Section 2. The ex-ante value of search is given by

VS(θ;u, ψ,Q) =

∫
Ω

VS(θ, ω;u, ψ,Q)dσ(ω|θ).

Similarly, a buyer’s payoff in queue ω is given by

VB(ω;u, ψ,Q) = min

{
MS

MBq(ω)
, 1

}
︸ ︷︷ ︸

Buyer’s ex-ante
matching probability

∫
Θ

max {θ − p(θ, u), (1− γ)uB} dG(θ|ω)︸ ︷︷ ︸
Buyer’s expected payoff

conditional on match

(5)

and the ex-ante value of search is given by

VB(u, ψ,Q) =

∫
Ω

VB(ω;u, ψ,Q)dQ(ω).

Definition 1 An equilibrium of a steady state search market is given by a tuple

〈u, ψ,Q〉 such that

(i) VS(θ;u, ψ,Q) = uS(θ) for all θ ∈ Θ,

(ii) VB(u, ψ,Q) = uB,

(iii) supp(Q) ⊆ arg maxω∈Ω VB(ω;u, ψ,Q), and

(iv) ψ is derived from (2) and (3) with µ(ω) = min
{
MBq(ω)
MS , 1

}
and π(θ) = 1E(u)(θ).10

In words, a tuple 〈u, ψ,Q〉 constitutes an equilibrium of a steady state search

market if (i) sellers have rational expectations such that their ex-ante value of search

VS(θ;u, ψ,Q) is consistent with their continuation value uS(θ), (iii) buyers also have

rational expectations such that their ex-ante value of search VB(u, ψ,Q) is consistent

with their continuation value uB, (iii) buyers only join queues that maximize their

payoffs, and (iv) the steady state cohort composition is derived from the pair (µ, π)

10
1A(x) is the indicator function which equals 1 if x ∈ A and 0 otherwise.
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where µ is the sellers’ ex-ante matching probability consistent with a FCFS procedure

and π is the sequentially rational trading decision given ex-post efficient prices. Points

(ii) and (iii) of Definition 1 can further be summarized as

VB(ω;u, ψ,Q) ≤ uB

for all ω ∈ Ω, with equality if ω ∈ supp(Q). This underscores the fact that buyers

join multiple queues in equilibrium only if they are indifferent across them.

Notice that any buyer or seller can guarantee a payoff of zero by rejecting every

match and eventually perishing. The best a buyer can hope for is to instantly match

with the highest type and trade at price p = 0, and the best a type-θ seller can

hope for is to instantly match with a buyer and trade at price p = θ. Thus, in any

equilibrium, uB ∈ [0, 1] and uS(θ) ∈ [0, θ] for all θ ∈ Θ.

Consider an ex-post inefficient type θ /∈ E(u), i.e., θ < (1− γ)
(
uB + uS(θ)

)
. Such

an inefficient seller type never trades, and by construction, p(θ, u) ≤ (1 − γ)uS(θ).

Since sellers have rational expectations in equilibrium, the continuation value for a

seller of type θ /∈ E(u) must satisfy

uS(θ) = VS(θ;u, ψ,Q)

=

∫
Ω

min

{
MBq(ω)

MS
, 1

}
(1− γ)uS(θ)dσ(ω|θ)

≤ (1− γ)uS(θ),

which implies that uS(θ) = 0. Thus, θ < (1 − γ)uB is a necessary condition for

θ /∈ E(u). It is also a sufficient condition: θ < (1−γ)uB implies θ < (1−γ)(uB+uS(θ))

because uS(θ) ≥ 0 for all θ ∈ Θ. Consequently, in any equilibrium 〈u, ψ,Q〉, there

exists a cutoff type

θE(uB) , (1− γ)uB

such that θ ∈ E(u) if and only if θ ≥ θE(uB).

4. Random Search

In a random search market, each seller type has a uniform probability of joining any

queue. Formally, a random search market is characterized by a seller-queueing CDF
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σ(ω|θ) = ω for all θ ∈ Θ, which implies that G(θ|ω) = G(θ) for all ω ∈ Ω. In other

words, a queue’s index is an uninformative signal about the seller types therein.

Since the type distribution within each queue is the same, a buyer’s expected

payoff conditional on a match in any queue is also the same. Thus, in equilibrium,

each buyer joins queues uniformly at random.

Lemma 2 Suppose Assumptions 1 and 2 hold. Then in any equilibrium 〈u, ψ,Q〉 of

a random search market, the buyer-queueing CDF is the uniform distribution.

From Lemma 2, the market tightness of any queue ω ∈ Ω is MBq(ω)/MS =

MB/MS. As MB ≥ MS by Lemma 1, sellers are on the short-side of every queue

while buyers are on the long-side. In any queue, a seller is matched to a buyer with

probability min{MB/MS, 1} = 1 while a buyer’s ex-ante matching probability is

min{MS/MB, 1} = MS/MB. The sellers’ payoff in (4) can be rewritten as

VS(θ, ω;u, ψ,Q) =

 (1− γ)uS(θ) if θ < θE(uB)

p(θ, u) if θ ≥ θE(uB)

and the buyers’ payoff in (5) can be written as

VB(ω;u, ψ,Q) =
MS

MB

(
(1− γ)uB +

∫ 1

θE(uB)

θ − p(θ, u)− (1− γ)uB dG(θ)

)
.

Theorem 1 Suppose Assumptions 1 and 2 hold. Then there exists a unique equilib-

rium 〈ur, ψr, Qr〉 in a random search market, and payoffs are given by

urS(θ) =

{
0 if θ < θE(urB)(

1− λ̂(θ)
)(
θ − (1− γ)urB

)
if θ ≥ θE(urB)

(6)

and

urB =

k

∫ 1

θE(urB)

λ̂(θ)θdF (θ)

1− k(1− γ)

∫ 1

θE(urB)

1− λ̂(θ)dF (θ)

, (7)

where λ̂ : Θ→ (0, 1] is a re-weighted surplus splitting function given by

λ̂(θ) =
λ(θ)γ

1− λ(θ) + λ(θ)γ
.
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While it was thus far necessary to keep track of the endogenous cohort com-

position, the equilibrium payoffs in (6) and (7) are entirely pinned down from the

exogenous model parameters k, F , λ, and γ.

To gain some intuition for the equilibrium characterization, let us consider a set-

ting in which the surplus-splitting rule is given by λ(θ) = 1 for all θ ∈ Θ. As previously

mentioned, this is equivalent to a non-transferable utility setting in which sellers get

none of the surplus generated from trade and buyers are able to “trade” with any

type θ seller at a price of p(θ, u) = 0. In this case, the equilibrium payoff for buyers

given in (7) simplifies to

urB = k

∫ 1

θE(urB)

θdF (θ)

⇔ θE(urB) = (1− γ)k

∫ 1

θE(urB)

θdF (θ). (7′)

In the equilibrium of a random search market, buyers cream-skim—a buyer trades

with a seller he is matched to if and only if the seller’s type is above some cut-

off. Cream-skimming arises from of the trade-off a buyer faces conditional on being

matched to a seller. He can either settle for his current match by trading and exiting,

or he can search for sellers with higher types by re-queueing. The trade-off between

settling and searching is expressed in (7′): The left-hand-side is the lowest seller type

the buyer is willing to settle for while the right-hand-side is the discounted value of

searching for a better match by re-queueing in the following period. The marginal

seller type that leaves the buyer indifferent between settling and searching is the ex-

post efficiency cutoff type θE(urB). The same intuition carries through for a general

surplus-splitting rule albeit with a less tractable equilibrium payoff expression that

accounts for non-trivial prices.

The buyers’ cream-skimming behavior gives rise to two externalities. First, the

competition for desirable matches is fiercer when buyers cream-skim. This externality

arises because whenever a buyer rejects a match and re-queues in a market with

scarcity, he increases the competition among the buyers for future matches. Second,

the distribution of types within each queue worsens when the buyers cream-skim.

In a market with scarcity, cream-skimming implies that every seller whose type falls

above the cutoff exits the market (via trade) while a fraction of sellers whose types falls
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below the cutoff re-queue. Thus, among the sellers in a cohort, the seller types above

the cutoff are comprised of only new sellers whereas the seller types below the cutoff

are comprised of both new and re-queueing sellers. Consequently, the steady state

distribution of types in a cohort is adversely shifted with G first-order stochastically

dominated by F .

Since buyers lack ex-ante information in a random search market, they cannot

direct their search towards sellers of any specific types. This implies that each buyer

faces a positive probability of perishing before he matches to a seller whose type falls

above θE(urB). In fact, the two externalities make it even more likely that the buyer

perishes before matching to a seller type above the cutoff.

In the following section, I consider a search market in which each seller type has

a separate queue. This allows the buyers to direct their search only towards the seller

types with whom they are willing to trade. Thus, buyers never re-queue in a directed

search market. Additionally, since each queue is comprised of a single type of seller,

the distribution of types within each queue is unaffected by the buyers’ strategy.

Hence, a directed search market alleviates the two negative externalities borne by a

random search market.

5. Directed Search

In a directed search market, a type-θ seller joins queue ω if and only if θ = ω. Formally,

a directed search market is characterized by a seller-queueing CDF σ(ω|θ) = 1[θ,1](ω)

for all θ ∈ Θ, which implies that G(θ|ω) = 1[ω,1](θ) for all ω ∈ Ω. In other words, a

queue’s index is a fully informative signal about the seller types within the queue.

As contracts are bilaterally ex-post efficient, it remains sequentially rational for

a matched buyer-seller pair to trade if and only if the match is ex-post efficient.

Therefore, given a pair of continuation values u , (uB, uS), a seller’s probability of

trade conditional on a match is π(θ) = 1[θE(uB),1](θ). However, this does not imply

that all ex-post efficient types trade because it could be ex-ante suboptimal for buyers

to join the queue for some ex-post efficient types.

Given a tuple 〈u, ψ,Q〉, the payoff in (4) for a type-θ seller in queue ω = θ can be
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rewritten as11

VS(θ, θ;u, ψ,Q) =

 min
{
MBq(θ)
MS , 1

}
(1− γ)uS(θ) if θ < θE(uB)

min
{
MBq(θ)
MS , 1

}
p(θ, u) if θ ≥ θE(uB),

(8)

and the payoff in (5) for a buyer who joins queue ω = θ can be rewritten as

VB(θ;u, ψ,Q) =

 min
{

MS

MBq(θ)
, 1
}

(1− γ)uB if θ < θE(uB)

min
{

MS

MBq(θ)
, 1
}(

θ − p(θ, u)
)

if θ ≥ θE(uB).
(9)

I start the equilibrium analysis by first considering the support of Q. The seller-

queueing CDF in a directed search market satisfies σ(ω) = EG[σ(ω|θ)] = G(ω). As

G is absolutely continuous (Lemma 1), so is σ. Hence, the buyer-queueing CDF Q,

which is assumed to be absolutely continuous with respect to σ, cannot have any

atoms.

It is never optimal for a buyer to join the queue for a type-θ seller if it is also not

sequentially rational to trade with that type conditional on a match; otherwise, the

buyer could have done better by joining a different queue initially. Thus, in equilib-

rium, θ ∈ supp(Q) only if θ ≥ θE(uB).

Suppose θ ∈ supp(Q) in equilibrium, which implies that uB = VB(θ;u, ψ,Q) by

Definition 1. Using the expression in (9) for VB(θ;u, ψ,Q),

uB = min

{
MS

MBq(θ)
, 1

}
(θ − p(θ, u))

≤ θ − p(θ, u)

≤ θ −
(
1− λ(θ)

)(
θ − (1− γ)uB

)
where the last inequality follows from the definition of p(θ, u) in Assumption 2 and

the fact that uS(θ) ≥ 0 in equilibrium. Therefore, θ ∈ supp(Q) in equilibrium only if

uB ≤
θλ(θ)

λ(θ)(1− γ) + γ
.

Conversely, suppose θ /∈ supp(Q) in equilibrium so that q(θ) = 0, which implies

11There is no need to define VS(θ, ω;u, ψ,Q) for θ 6= ω as such a type θ /∈ supp(σ(·|ω)).
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that a type-θ seller’s ex-ante matching probability would be min{MBq(θ)/MS, 1} = 0.

From (8) and Definition 1, VS(θ, θ;u.ψ,Q) = 0 = uS(θ). If a buyer were to deviate

and join queue θ /∈ supp(Q), he would be immediately matched to a seller. However,

such deviations cannot be profitable in an equilibrium. Formally, uB ≥ VB(θ;u, ψ,Q)

by Definition 1, which can be expressed as

uB ≥ min

{
MS

MBq(θ)
, 1

}
︸ ︷︷ ︸

=1

max{θ − p(θ, u), (1− γ)uB}

≥ θ − p(θ, u)

= θ −
(
1− λ(θ)

)(
θ − (1− γ)uB

)
where the last equality follows from the definition of p(θ, u) in Assumption 2 and the

fact that uS(θ) = 0 when the queue for such a type θ seller is empty on the buyer’s

side. Therefore, θ /∈ supp(Q) in equilibrium only if

uB ≥
θλ(θ)

λ(θ)(1− γ) + γ
.

In other words, the support of Q is nested between two sets given by{
θ ∈ Θ : uB <

θλ(θ)

λ(θ)(1− γ) + γ

}
⊆ supp(Q) ⊆

{
θ ∈ Θ : uB ≤

θλ(θ)

λ(θ)(1− γ) + γ

}
.

If λ is non-monotonic, the two sets nesting the support of Q could differ on a large

subset of types, and could lead to non-existence of an equilibrium.12 Therefore, for

the remainder of the paper, I assume that λ is a weakly increasing function. I also

assume that it is continuous for ease of exposition.

Assumption 3 (Regularity) λ : Θ→ (0, 1] is continuous and weakly increasing.

When Assumption 3 holds, the mapping θ → θλ(θ)/(λ(θ)(1− γ) + γ) is strictly

increasing and continuous. Thus, the two sets nesting the support of Q coincide on

all but a σ-measure zero set of queues. In any equilibrium 〈u, ψ,Q〉, there exists a

12The correspondences uB ⇒ {θ ∈ Θ : uB < θλ(θ)
λ(θ)(1−γ)+γ } and uB ⇒ {θ ∈ Θ : uB ≤ θλ(θ)

λ(θ)(1−γ)+γ }
may be discontinuous, possibly leading to non-existence when solving for the fixed point of uB .
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cutoff type

θ†(uB) , max

{
θ ∈ Θ :

θλ(θ)

λ(θ)(1− γ) + γ
≤ uB

}
such that θ ∈ supp(Q) if and only if θ ≥ θ†(uB).

Each period, a mass MB of buyers and a mass MS(1−G(θ†(uB))) of sellers join the

queues for types above θ†(uB). Yet, by Lemma 1, there are more buyers than sellers in

a steady state. Therefore, buyers must be on the long-side of some (and possibly all)

of the queues they join, i.e., MBq(θ) ≥MS for a positive measure of types θ ≥ θ†(uB).

I say that a queue is congested when MBq(θ) > MS and uncongested otherwise. The

following lemma characterizes the set of queues that are congested in equilibrium.

Lemma 3 Suppose Assumptions 1-3 hold. For any uB ∈ [0, 1], define a cutoff

θ††(uB) , max {θ ∈ Θ : θλ(θ) ≤ uB} .

Then in any equilibrium 〈u, ψ,Q〉 of a directed search market, the queue for type θ ∈ Θ

is congested if and only if θ > θ††(uB).

θ
1θE(uB) θ†(uB) θ††(uB)

θ
1−γ

1

λ(θ)θ

λ(θ)θ
γ+(1−γ)λ(θ)

uB

Congested

supp(Q)

E(u)

Figure 2

23



As illustrated in Figure 2, θE(uB) ≤ θ†(uB) ≤ θ††(uB) for any uB ∈ [0, 1], which

implies that buyers in a directed search market may not trade with all ex-post efficient

types and may be on the short-side of some queues. This is in contrast to a random

search market in which buyers trade with all ex-post efficient types and are always

on the long-side of every queue.

It may be surprising to have some uncongested non-empty queues in equilibrium.

The overall market features scarcity, so it is natural to expect all queues in the support

of Q to be congested. However, an uncongested queue for buyers means a congested

queue for sellers. If queue θ ∈ supp(Q) is uncongested, then type-θ sellers have to

compete against each other for matches. The fiercer competition among sellers reduces

their continuation values in equilibrium, thereby also reducing the price that prevails

in the queue. Hence, even if the quality offerings of these uncongested queues are

lower, the prices are also sufficiently low enough to attract buyers.

Theorem 2 Suppose Assumptions 1-3 hold. Then there exists a unique equilibrium

〈ud, ψd, Qd〉 in a directed search market. The equilibrium payoffs are given by

udS(θ) =



0 if θ < θ†(udB)

θλ(θ)− udB (γ + (1− γ)λ(θ))

λ(θ)(1− γ)
if θ†(udB) < θ ≤ θ††(udB)

(
1− λ̂(θ)

)(
θ − (1− γ)udB

)
if θ > θ††(udB)

(10)

and

udB =

k

∫ 1

θ††(ud
B)

θλ̂(θ)dF (θ)

1− k(1− γ)

∫ 1

θ††(ud
B)

1− λ̂(θ)dF (θ)− k
∫ θ††(ud

B)

θ†(ud
B)

θλ(θ)− udB
(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − udB)

dF (θ)

, (11)

where λ̂ : Θ→ (0, 1] is the re-weighted surplus splitting function given by

λ̂(θ) =
λ(θ)γ

1− λ(θ) + λ(θ)γ
.

Once again, the equilibrium payoffs in (10) and (11) are entirely pinned down

from the exogenous model parameters k, F , λ, and γ. To gain some intuition for

the equilibrium characterization, let us reconsider the setting with λ(θ) = 1 for all

θ ∈ Θ. In this case, θ††(uB) = θ†(uB) for all uB ∈ [0, 1], i.e., almost every queue the
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buyers join is congested. This is because when utility is non-transferable, there is no

mechanism by which fiercer competition amongst sellers leads to depressed prices.

Hence, buyers are not attracted to the queues of low-type sellers even if these queues

are uncongested.

Instead, each buyer uses his ex-ante information to join only the queues of suf-

ficiently high-type sellers. The equilibrium payoff for buyers given in (11) simplifies

to

udB = k

∫ 1

θ††(udB)

θdF (θ)

⇔ θ††(udB) = k

∫ 1

θ††(udB)

θdF (θ). (11′)

Similar to a random search market, the buyers in a directed search market face a

trade-off between settling or searching: a buyer could settle by joining an uncongested

queue and matching to a low-type seller without waiting, or he could search by joining

a congested queue in the hopes of eventually matching to a high-type seller before

he perishes. The trade-off between settling and searching is expressed in (11′): the

left-hand-side is the highest seller type the buyer can match to without waiting while

the right-hand-side is the buyer’s expected value from entering one of the congested

queues for high quality sellers. The marginal seller type that leaves buyers indifferent

between settling and searching is the cutoff type θ††(udB). The same intuition carries

through for a general surplus-splitting rule albeit with a less tractable equilibrium

payoff expression that accounts for the possibility of uncongested non-empty queues

due to non-trivial prices.

As I already discussed at the end of Section 4, a directed search market, by pro-

viding full ex-ante information to buyers, eliminates the two negative externalities

that arise in a random search market. However, a directed search market gives rise to

a new externality—congestion. In particular, a directed search market features public

information as all buyers share the same posterior beliefs conditional on observing a

queue’s index. Given the buyers’ homogenous preferences, public information leads to

too much coordination with all the buyers joining queues for types above θ††(udB) and

none below the cutoff. Effectively, this is another form of cream-skimming but the

buyers cream-skim across queues in a directed search market as opposed to within

queues like they do in a random search market. Hence, the effect of cream-skimming
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is not to adversely shift the distribution of types within a queue but to create varying

levels of congestion across queues.

In the next section, I take a closer look at the differences between random and

directed search markets in terms of the consumer welfare.

6. Consumer Welfare

In a steady state market with overlapping generations of long-lived buyers, the ap-

propriate way to measure consumer welfare is by aggregating the equilibrium payoffs

of the new buyers entering the market.13 Since all buyers have the same preferences

and there is a unit mass of new buyers in each period, consumer welfare is urB in a

random search market and udB in a directed search market.

Theorem 3 Suppose Assumptions 1-3 hold. Then consumer welfare is strictly higher

in a random search market than a directed search market, i.e., urB > udB. Additionally,

limγ→0 u
r
B − udB = 0.

Let us return to the setting in which utility is non-transferable, i.e., λ(θ) = 1 for

all θ ∈ Θ. Suppose buyers trade only with seller types above some arbitrary cutoff

x ∈ Θ. Each period, a unit mass of buyers enter the market demanding a product

of quality θ ≥ x while only a mass k(1 − F (x)) of new sellers enter the market

supplying a product of the desired quality. Thus, in each period, there can only be a

mass k(1 − F (x)) of buyers who trade, and conditional on trading, a buyer gets an

expected value of EF [θ|θ ≥ x]. Consumer welfare in this case can be expressed as

CW (x) , k(1− F (x))× EF [θ|θ ≥ x]

= k

∫ 1

x

θdF (θ).

As the cutoff x increases, there are two competing effects on welfare: the mass

of buyers exiting via trade decreases but the expected payoff conditional on trading

increases. In a market with scarcity, the former effect dominates. Hence, as x increases,

CW (x) decreases. As such, consumer welfare would be maximized when x = 0.

13See Olszewski and Wolinsky (2016) or Burdett and Menzio (2017) for a discussion.
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However, the buyers’ search behavior in equilibrium is not given by some exoge-

nous cutoff x ∈ Θ. Instead, the cutoff is endogenously determined based on a settle

versus search trade-off, which depends on the buyers’ ex-ante information. Therefore,

a market that endogenously leads to lower cutoffs yields a higher consumer welfare.

Under this interpretation, consumer welfare is higher in a random search market

than a directed search one because the endogenously determined random search cutoff

x = θE(urB) is lower than the directed search cutoff x = θ††(udB). In a random search

market, the cutoff is characterized by an inter-temporal trade-off given in (7′) between

a buyer’s current match surplus and his value from searching for better matches in

the next period. In contrast, the cutoff in a directed search market is characterized by

a contemporaneous trade-off given in (11′) between a guaranteed match surplus (by

joining an uncongested queue) and his value of searching for better matches in the

current period by entering a congested queue. As buyers facing the former trade-off

have to discount their value of search for better matches by 1−γ, they are less picky.

Figure 3 depicts the trade-offs in (7′) and (11′). The solid blue curve represents

CW (x) and the dashed red curve represents (1 − γ)CW (x) as the cutoff x varies

between 0 and 1. As can be seen in the figure, the blue curve attains its maximum

at x = 0. The cutoffs for a random and directed search market are the fixed points

of the red and blue curves respectively. As the cutoff for a random search market is

lower, the consumer welfare is higher.

x
1

45 °

udB

θ††(udB)

urB

θE(urB)

Figure 3: The solid blue curve is CW (·) and the dashed red curve is (1− γ)CW (·).

When utility is transferable, consumer welfare depends on the cutoffs as well as on

the prices consumers pay. The higher level of congestion in a directed search market

not only implies that buyers wait a long time to match with high-type sellers but also
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that the buyers pay a higher price when they trade (since higher congestion implies a

fiercer competition amongst buyers), further lowering consumer welfare in a directed

search market.

Finally, as the perishing probability γ goes to zero, any substantive difference in

the buyers’ strategies across the two types of markets disappears; even buyers in a

random search market can effectively direct their search by continually re-queueing

until they randomly match with sellers of their desired types. Thus, consumer welfare

in random and directed markets converge to one another. In Figure 3, this can be

seen by the dashed red curve converging to the blue line when γ → 0, which implies a

convergence in both the cutoff and the equilibrium payoff of a random search market

to that of a directed search market.

7. Extensions

In this section, I show that the results of this paper hold for various extensions of the

consumer search market.

7.1. Endogenous entry

In the equilibrium of both random and directed search markets, any seller whose

type falls below some relevant cutoff never trades. If sellers face any entry cost into

the market, such low-quality sellers would be absent from the steady state cohort. In

this section, I consider an extension in which entry is endogenous—a seller enters the

market if and only if she trades with a positive probability in equilibrium.14

Suppose a seller enters the market if and only if her type is θ ≥ x for some cutoff

x ∈ (0, 1). The original model is kept the same except in each period, a unit mass

of new buyers and a mass kx , k(1 − F (x)) of new sellers with types distributed

according to

Fx(θ) ,

{
0 if θ < x

F (θ)−F (x)
1−F (x)

if θ ≥ x

enter the market.

14This assumption can be micro-founded as follows: Let supθ∈Θ λ(θ) < 1 so that almost all types
earn a positive payoff if they trade. Suppose a new seller can either enter the market by paying
a fee c > 0 or can stay out and earn zero. In the limiting equilibrium as c → 0, any type who
does not trade prefers to stay out of the market, whereas any type who trades with a positive
probability enters.
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Given a cutoff x, let 〈ur,x, ψr,x, Qr,x〉 constitute the equilibrium of a random search

market. Any seller of type θ > θE(ur,xB ) has a positive probability of trading while any

seller of type θ < θE(ur,xB ) would never trade. Thus, the cutoff x would endogenously

arise in a random search market if and only if x = θE(ur,xB ).

Similarly, given a cutoff x, let 〈ud,x, ψd,x, Qd,x〉 constitute the equilibrium of a

directed search market. Any seller of type θ > θ†(ud,xB ) has a positive probability of

trading while any seller of type θ < θ†(ud,xB ) would never trade. Thus, the cutoff x

would endogenously arise in a directed search market if and only if x = θ†(ud,xB ).

Proposition 1 Suppose Assumptions 1-3 hold, and entry is endogenous. Then

(a) the cutoff for a random search market is x = θE(urB) and ur,x = ur, and

(b) the cutoff for a directed search market is x = θ†(udB) and ud,x = ud.

In other words, the payoffs in a market with and without endogenous entry are

the same in both random and directed search markets. Consequently, the consumer

welfare comparison of Theorem 3 continues to hold when entry is endogenous.

Corollary 1 Suppose Assumptions 1-3 hold, and entry is endogenous. Then con-

sumer welfare is strictly higher in a random search market than a directed search

market.

7.2. Monotone partitional Information

Thus far, I have considered two market types that represent extreme information

structures: a random search market in which a queue’s index is uninformative of

the distribution of types therein, and a directed search market in which a queue’s

index is fully informative. In this section, I consider a partitional market in which a

queue’s index provides coarse information. I will restrict attention to the simpler case

of non-transferable utility with λ(θ) = 1 for all θ ∈ Θ.

For some integer n > 1, a monotone n-partitional search market is characterized

by a sequence {xk}nk=0 with 0 = x0 < x1 < . . . < xn = 1 such that the seller-queueing

CDF for θ ∈ [xk−1, xk] is given by

σ(ω|θ) =


0 if ω < xk−1

ω − xk−1

xk − xk−1

if ω ∈ [xk−1, xk]

1 if ω > xk

.
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Thus, the distribution of types in queue ω ∈ [xk−1, xk] is

G(θ|ω) =


0 if θ < xk−1

G(θ)−G(xk−1)

G(xk)−G(xk−1)
if θ ∈ [xk−1, xk]

1 if θ > xk

.

In other words, buyers can be certain that each queue ω ∈ [xk−1, xk] only contains

sellers whose type falls within [xk−1, xk]. Therefore, a monotone partitional search

market is Blackwell more informative than a random search market but less informa-

tive than a directed search market. The main result of this section is that consumer

welfare is (weakly) lower in any monotone partitional market than in a random search

market.

Proposition 2 Suppose Assumptions 1-3 hold, with λ(θ) = 1 for all θ ∈ Θ. Then

for any integer n > 1, consumer welfare is higher in a random search market than

any monotone n-partitional search market.

7.3. Other Frictionless Matching Mechanisms

The consumer search market in the main model is based on the FCFS matching mech-

anism described in Section 2. In this section, I consider other frictionless matching

mechanisms such as service-in-random-order (SIRO) or last-come-first-serve (LCFS).

Let us revisit the simple model in Section 2 with qA ≤ qB so that Side A is

the short-side of the queue. In any frictionless matching mechanism, a Side A agent

is matched with probability one upon joining the queue, whereas a Side B agent is

matched in period t conditional on having already waited for k ≥ 0 periods with prob-

ability P t
k. The conditional matching probabilities (P t

k)t∈Z,k∈N depend on the matching

mechanism under consideration.

A steady state of a frictionless matching mechanism (if it exists) is given by

stationary conditional matching probabilities, i.e., P t
k = Pk.

15 Each period, there is

a mass qA of Side A agents who leave the market via a match to a Side B agent.

15I show existence and uniqueness of a steady state for SIRO and LCFS in the Online Appendix.
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Therefore, the stationary conditional probabilities (Pk)k∈N must satisfy

qA = qB

(
P0 +

∑
k≥1

(1− γ)kPk

k−1∏
`=0

(1− P`)

)
, (12)

which generalizes the balance equation for FCFS in Section 2.

Since Side A agents are matched with probability one upon joining the queue, the

ex-ante payoff for a Side A agent is given by VA = vA. The ex-ante payoff for a Side

B agent is given by

VB =

(
P0 +

∑
k≥1

(1− γ)kPk

k−1∏
`=0

(1− P`)

)
vB,

which can be simplified to VB = (qA/qB)vB using the balance equation in (12). There-

fore, the ex-ante matching probability and the ex-ante payoff characterized in (1) for

FCFS hold more generally for any frictionless matching mechanism.

Proposition 3 For any frictionless matching mechanism in a steady state, the ex-

ante matching probability for Side i = A,B is given by

min

{
q−i
qi
, 1

}
and the ex-ante payoff is given by

Vi = min

{
q−i
qi
, 1

}
vi.

From Proposition 3, we can conclude that none of the results in the consumer

search market would change if we replace FCFS with a different frictionless matching

mechanism, as long as the new mechanism converges to a steady state. However, it is

important to note that the equivalence in ex-ante payoffs across the steady state of any

frictionless matching mechanism will no longer hold if the agents face an additional

cost of waiting or discounting beyond γ.

I conclude this section by showing that a steady state does indeed exist for SIRO

and LCFS matching mechanisms. For SIRO, the conditional probabilities (P t
k)t∈Z,k∈N

satisfy

P t
k = P t

k′ , for all k′ 6= k and for all t.
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In words, SIRO gives equal chances of matching for any two Side B agents in the

queue, regardless of how long they have waited. If a steady state exists for SIRO, the

conditional matching probabilities would satisfy Pk = Pk′ = P for some P ∈ (0, 1].

The balance equation in (12) could then be simplified to

qA = qBP
∑
k≥0

(1− γ)k(1− P )k,

which yields

P =
qAγ

qB − qA(1− γ)
.

Notice that P is well-defined and uniquely pinned down from the parameters of the

model.

For LCFS, the conditional probabilities (P t
k)t∈Z,k∈N satisfy

P t
k > 0 =⇒ P t

k′ = 1, for all k′ < k and for all t.

In words, LCFS gives priority to Side B agents who have waited the least in the queue.

If a steady state exists for LCFS, the conditional matching probabilities would satisfy

Pk > 0 =⇒ Pk′ = 1 for all k′ < k. Suppose to the contrary that Pn > 0 for some

n ≥ 1. Then Pn is well-defined only if

qA > qB

(
P0 +

n−1∑
k=1

(1− γ)kPk

k−1∏
`=0

(1− P`)

)
.

In words, Side B agents who have waited for n ≥ 1 periods can be matched with

positive probability only if there are still Side A agents left over after matching every

Side B agent that has waited less than n periods. However, in a LCFS matching

mechanism, Pn > 0 =⇒ Pk = 1 for all k = 0, . . . , n− 1, which in turn would imply

qA > qB; a contradiction. Thus, Pn = 0 for all n ≥ 1. From the balance equation in

(12), we have qA = qBP0. Thus, the steady state of LCFS mechanism is given by

Pk =


qA
qB

if k = 0

0 if k ≥ 1

32



which is uniquely pinned down from the parameters of the model.

8. Conclusion

In this paper, I study the role of ex-ante information in a consumer search market for

a vertically differentiated product. In the model, sellers are scarce, prices are ex-post

efficient, and buyers are homogenous in both their preferences over quality and their

access to information. The main result (Theorem 3) is that consumers are worse off

when they observe an informative signal which allows them to direct their search

towards sellers of high-quality products. The result is general in that it holds for all

values of the model’s parameters, such as distribution of quality and cost of searching.

I conclude by highlighting how the main result changes under a different set of

assumptions. Using a continuity argument, the main result extends to the case when

there are slightly more sellers than buyers. Intuitively, even if sellers are not scarce, the

sellers of high-quality products would still be scarce when k > 1 but not too large.

However, as k increases, the main result may hold only for a subset of parameter

values. At the limit as k →∞, the main result completely breaks down because the

market would approximate a single-buyer search problem in which an informative

signal can never be detrimental. A possible comparative statics exercise would be to

characterize how an increase in k changes the subset of parameter values for which

Theorem 3 holds, although it is unclear if such an exercise would yield insightful

results.

If ex-post efficient prices are replaced by ex-ante efficient prices, then ex-ante

information would be neither detrimental nor beneficial to buyers in my model. For

example, if sellers could post prices and buyers could direct their search based on

the posted prices (as well as any ex-ante information available), then an equilibrium

would involve each type-θ seller posting a price p = θ. Buyers would be indifferent

across all sellers as trade always leaves the buyers with no surplus. Hence, the buyers

randomize across all sellers, and given scarcity, each seller would be guaranteed a

match to a buyer, eliminating any competitive pressure on sellers Therefore, sellers

would not need to compete for matches by posting lower prices. In fact, the posted-

price equilibrium outcome is equivalent to the case when prices are determined ex-post

but the Hosios condition is satisfied with λ(θ) = 0 for almost all θ ∈ Θ, in which case

consumer welfare is always zero regardless of the buyers’ ex-ante information.

33



In this paper, congestion arises because a publicly informative signal creates too

much coordination in the search behavior of buyers with homogenous preferences.

This intuition can extend to the case when there is two-sided heterogeneity. For

example, consider a horizontally differentiated product and buyers with heterogenous

preferences. An informative signal could still lead to congestion if buyers preferences

are not sufficiently diverse, which reduces consumer welfare. However, an informative

signal could also improve consumer welfare by facilitating assortative matching. Thus,

the overall effect of ex-ante information in a market with two-sided heterogeneity is

unclear. Understanding the relationship between preference diversity, scarcity, and ex-

ante information would be an interesting avenue for future work, which admittedly

requires a richer model than the one in this paper.

Finally, it is possible to introduce heterogeneity in the buyers’ access to ex-ante

information by letting only a fraction of buyers observe an informative signal.16 The

model in this paper, with either none of the buyers (random search market) or all of

the buyers (directed search market) observing an informative signal, can be seen as the

limits of the enriched model. Therefore, a continuity argument to Theorem 3 would

imply that consumer welfare is strictly higher when almost none of the buyers observe

an informative signal than when almost all of the buyers observe an informative signal.

However, a more general analysis away from the limits would allow for interesting

interactions between informed and uninformed buyers. For example, such an analysis

would need to account for information leakage—the informed buyers join queues

differentially, which means that the wait times across queues differ. The uninformed

buyers could then update their beliefs based on how long it takes to be matched. Such

a thorough analysis would be an interesting and non-trivial extension of this paper.

9. Appendix

Proof of Lemma 2. Suppose the tuple 〈u, ψ,Q〉 constitutes an equilibrium. Since

Q is absolutely continuous with respect to σ, which is the uniform distribution, Q

does not have any mass points. Furthermore, since λ(θ) > 0 for all θ ∈ Θ, buyers

must capture some of the surplus from trade. Rational expectations would then entail

that uB > 0 in equilibrium.

16Lester (2011) considers such an environment in which a fraction of consumers observe an informa-
tive signal about a seller’s posted price for a homogenous product.
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In a random search market, G(θ|ω) = G(θ) for all ω ∈ Ω. Thus, the buyers’

payoff VB(ω;u, ψ,Q) given in (5) depends on ω only through the ex-ante matching

probability. In equilibrium, the buyers must be indifferent across all the queues they

join, which in this setting is equivalent to

min

{
MS

MBq(ω)
, 1

}
= min

{
MS

MBq(ω′)
, 1

}
for any ω, ω′ ∈ supp(Q). Additionally, buyers join only queues that maximize their

payoffs, i.e.,

supp(Q) ⊆ arg max
ω∈Ω

min

{
MS

MBq(ω)
, 1

}
.

Suppose to the contrary that either the set {ω ∈ supp(Q) : MS > MBq(ω)} or the

set Ω\ supp(Q) has a positive measure (wrt σ). If the first set has positive measure,

then indifference across the queues in supp(Q) would imply that the buyer’s ex-ante

matching probability in each ω ∈ supp(Q) is min{MS/(MBq(ω)), 1} = 1.

If the second set has positive measure, then any ω̂ /∈ supp(Q) has q(ω̂) = 0 and

min{MS/(MBq(ω̂)), 1} = 1, which would imply that ω̂ maximizes the ex-ante match-

ing probability. Thus, for all ω ∈ supp(Q), the ex-ante matching probability must

also satisfy min{MS/(MBq(ω)), 1} = 1; otherwise, buyers could profitably deviate to

queues off the support of Q.

In either case, we have MS ≥ MBq(ω) for all ω ∈ supp(Q). Integrating over

supp(Q), we get

MS ≥
∫

supp(Q)

MSdσ(ω) ≥
∫

supp(Q)

MBq(ω)dσ(ω) = MB,

with at least one of the inequalities strict since at least one of the two sets has positive

measure. However, the conclusion MS > MB contradicts Lemma 1.

In other words, in the equilibrium of a random search market, MS ≤MBq(ω) for

almost all ω ∈ Ω. Furthermore, indifference across supp(Q) implies that the ex-ante

matching probability must satisfy for almost all ω ∈ Ω,

min

{
MS

MBq(ω)
, 1

}
=

MS

MBq
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for some q > 0. Finally, we must have
∫

supp(Q)
q(ω)dσ(ω) = q

∫
Ω
dσ(ω) = 1. Thus,

q = 1 and Q(ω) = σ(ω) = ω, i.e., the buyer-queueing CDF is the uniform distribu-

tion.

Proof of Theorem 1. Let the tuple 〈u, ψ,Q〉 constitute an equilibrium. Then

VS(θ;u, ψ,Q) = uS(θ) for all θ ∈ Θ. Additionally, for a seller of type θ < θE(uB),

VS(θ, ω;u, ψ,Q) = (1 − γ)uS(θ) for all ω ∈ Ω, which implies uS(θ) = 0. After all, a

seller of type θ < θE(uB) exits the market only by perishing as no buyer is willing to

trade with such an ex-post inefficient type.

For a seller of type θ ≥ θE(uB), VS(θ, ω;u, ψ,Q) = p(θ, u) for all ω ∈ Ω, which

implies

uS(θ) =λ(θ)(1− γ)uS(θ) + (1− λ(θ))
(
θ − (1− γ)uB

)
=

1− λ(θ)

1− λ(θ) + λ(θ)γ︸ ︷︷ ︸
,1−λ̂(θ)

(
θ − (1− γ)uB

)
,

where the first equality is derived from the expression of p(θ, u) given in Assumption 2.

If a buyer matches to a seller of type θ ≥ θE(uB), trade occurs and the buyer gets

θ − p(θ, u) =θ − λ(θ)(1− γ)uS(θ)− (1− λ(θ))
(
θ − (1− γ)uB

)
=(1− γ)uB + λ̂(θ)

(
θ − (1− γ)uB

)
.

where the second equality follows from the expression of uS(θ) given in (6). In equi-

librium, VB(u, ψ,Q) = uB and

VB(ω;u, ψ,Q) =
MS

MB

(
(1− γ)uB +

∫ 1

θE(uB)

λ̂(θ)
(
θ − (1− γ)uB

)
dG(θ)

)
for all ω ∈ Ω. Hence, setting uB =

∫
Ω
VB(ω;u, ψ,Q)dQ(ω) and rearranging yields

uB

(
MB −MS(1− γ)

(
1−

∫ 1

θE(uB)

λ̂(θ)dG(θ)

))
= MS

∫ 1

θE(uB)

λ̂(θ)θdG(θ). (A1)

From Definition 1 and the balance equations (2)-(3), the market composition
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satisfies MSg(θ) = kf(θ) for almost all θ ≥ θE(uB), and

MB = 1 +MS(1− γ)G(θE(uB)).

Substituting these values into (A1) yields

uB

(
1− k(1− γ)

∫ 1

θE(uB)

1− λ̂(θ)dF (θ)

)
= k

∫ 1

θE(uB)

λ̂(θ)θdF (θ),

which can be rearranged into (7).

The final step is to show that a unique solution exists for the fixed point problem

in (7). Let R : [0, 1]→ R be a function given by

R(uB) =

k

∫ 1

θE(uB)

λ̂(θ)θdF (θ)

1− k(1− γ)

∫ 1

θE(uB)

1− λ̂(θ)dF (θ)

.

Note that R(·) is continuous and decreasing, with 0 < R(1) < R(0) < 1. Therefore,

there exists a unique point urB ∈ (0, 1) such that R(urB) = urB.

Proof of Lemma 3. Let 〈u, ψ,Q〉 constitute an equilibrium of a directed search

market. Since λ(θ) > 0 for all θ ∈ Θ, buyers must capture some of the surplus from

trade. Rational expectations would then entail that uB > 0 in equilibrium, which

implies θ†(uB) > 0 by construction.

For any θ ≥ θ†(uB), we have θ ∈ supp(Q) and θ ≥ θE(uB) by construction. In

equilibrium, sellers must have rational expectations. From Definition 1 and (8),

uS(θ) = VS(θ;u, ψ,Q) = min

{
MBq(θ)

MS
, 1

}
︸ ︷︷ ︸

,µ(θ)

p(θ, u).

Using the definition of p(θ, u) in Assumption 2, a type θ seller’s continuation payoff

is given by

uS(θ) = µ(θ)
(
λ(θ)(1− γ)uS(θ) +

(
1− λ(θ)

)(
θ − (1− γ)uB

))
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=
µ(θ)

(
1− λ(θ)

)(
θ − (1− γ)uB

)
1− λ(θ)µ(θ)(1− γ)

. (A2)

Additionally, a buyer’s payoff conditional on a match in queue θ ≥ θ†(uB) is given by

θ − p(θ, u) = θ −
(
λ(θ)(1− γ)uS(θ) +

(
1− λ(θ)

)(
θ − (1− γ)uB

))

= θλ(θ)

(
1− µ(θ)(1− λ(θ))(1− γ)

1− λ(θ)µ(θ)(1− γ)

)
+ uB

(1− λ(θ))(1− γ)

1− λ(θ)µ(θ)(1− γ)︸ ︷︷ ︸
>0

. (A3)

In equilibrium, buyers must also have rational expectations. Thus, for any θ ≥ θ†(uB),

uB = VB(θ;u, ψ,Q) = min

{
MS

MBq(θ)
, 1

}
(θ − p(θ, u))

from Definition 1 and (9). In other words, uB ≤ θ − p(θ, u) for all θ ∈ supp(Q), with

a strict inequality if only if MBq(θ)/MS > 1.

Consider the queue for some type θ > θ††(uB) ≥ θ†(uB). Then θ ∈ supp(Q) and

θλ(θ) > uB by Assumption 3. Hence, from (A3),

θ − p(θ, u) > uB

(
1 +

(1− µ(θ))(1− λ(θ))(1− γ)

1− λ(θ)µ(θ)(1− γ)

)
≥ uB.

Since θ − p(θ, u) > uB only if MBq(θ)/MS > 1, the queue for any type θ > θ††(uB)

must be congested.

Next, consider the queue for some type θ ∈ [θ†(uB), θ††(uB)]. Then θ ∈ supp(Q)

and θλ(θ) ≤ uB by Assumption 3. Suppose, to the contrary that the queue is con-

gested, i.e., MBq(θ)/MS > 1. Then µ(θ) = 1. From (A3),

θ − p(θ, u) = θλ(θ)

(
1− (1− λ(θ))(1− γ)

1− λ(θ)(1− γ)

)
+ uB

(1− λ(θ))(1− γ)

1− λ(θ)(1− γ)
≤ uB.

This however contradicts the fact that θ − p(θ, u) > uB if MBq(θ)/MS > 1. Hence,

the queue for any type θ ∈ [θ†(uB), θ††(uB)] must be uncongested.

Finally, consider the queue for some type θ < θ†(uB) ≤ θ††(uB). Then θ /∈ supp(Q)

and q(θ) = 0. This immediately implies the queue is uncongested.
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Proof of Theorem 2. Let 〈u, ψ,Q〉 constitute an equilibrium of a directed search

market. As already mentioned in the proof for Lemma 3, uB > 0 in equilibrium,

which implies θ†(uB) > 0. As MS ≤ MB by Lemma 1, and as buyers do not enter

the queues for a positive measure of seller types [0, θ†(uB)), we have

MB︸︷︷︸
mass of

buyers joining
queues in
supp(Q)

≥MS > MS

∫
Θ

∫ 1

θ†(uB)

dσ(ω|θ)dG(θ)︸ ︷︷ ︸
mass of

sellers joining
queues in
supp(Q)

.

Consequently, there must be a positive measure of types whose queues are congested,

i.e., θ††(uB) < 1 in equilibrium, which in turn implies that uB < λ(1).

Consider the queue for a type θ ∈ (θ††(uB), 1]. As the queue is congested with

MBq(θ)/MS > 1 by Lemma 3, the seller’s payoff is given by evaluating (A2) with

µ(θ) = 1 which yields

uS(θ) =
1− λ(θ)

1− λ(θ) + λ(θ)γ︸ ︷︷ ︸
,1−λ̂(θ)

(
θ − (1− γ)uB

)
.

The buyer’s payoff satisfies

uB = VB(θ;u, ψ,Q)

= min

{
MS

MBq(θ)
, 1

}
(θ − p(θ, u))

=
MS

MBq(θ)

(
θλ̂(θ) + (1− γ)(1− λ̂(θ))uB

)
,

where the last equality follows from evaluating (A3) with µ(θ) = 1. By rearranging

the above expression and integrating over (θ††(uB), 1] with respect to σ, we get17

uB

∫ 1

θ††(uB)

(
MBq(θ)−MS(1− γ)(1− λ̂(θ))

)
dσ(θ)︸ ︷︷ ︸
=dG(θ)

= MS

∫ 1

θ††(uB)

θλ̂(θ) dσ(θ)︸ ︷︷ ︸
=dG(θ)

. (A5)

Next, consider the queues for types θ ≤ θ††(uB). There are two cases to consider.

17σ = G in a directed search market.
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Case 1: If θ†(uB) < θ††(uB), consider the queue for a type θ ∈ (θ†(uB), θ††(uB)].

From Lemma 3, the queue is uncongested with µ(θ) = MBq(θ)/MS ≤ 1. The buyer’s

payoff satisfies

uB = VB(θ;u, ψ,Q) =

{
MS

MBq(θ)
, 1

}
︸ ︷︷ ︸

=1

(θ − p(θ, u)).

Using (A3), the equality θ − p(θ, u) = uB can be expressed as

θλ(θ) = uB

(
γ + λ(θ)(1− γ)

(
1− µ(θ)

)
1− µ(θ)(1− γ)

)
,

from which we can solve for µ(θ) as

µ(θ) =
θλ(θ)− uB

(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − uB)

. (A6)

Notice that (A6) is well-defined with µ(θ) ∈ (0, 1] for all θ ∈ (θ†(uB), θ††(uB)]. The

seller’s payoff can now be derived from (A2) and (A6) as

uS(θ) =
θλ(θ)− udB (γ + (1− γ)λ(θ))

λ(θ)(1− γ)
.

Furthermore, by equating µ(θ) = MBq(θ)/MS to the expression of µ(θ) in (A6)

and integrating over (θ†(uB), θ††(uB)] with respect to σ, we have

MB
(
Q(θ††(uB))−Q(θ†(uB))

)
= MS

∫ θ††(uB)

θ†(uB)

θλ(θ)− uB
(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − uB)

dG(θ), (A7)

with Q(θ†(uB)) = 0 because Q is atomless and the buyers do not enter the queues for

types that lie below θ†(uB).

Case 2: If θ†(uB) = θ††(uB), then Q(θ††(ub)) = Q(θ†(uB)) = 0. Thus, the equallity

in (A7) still holds true.

Let us next consider the balance equations in a steady state. Recall that given

an ex-ante matching probability µ and a trading probability π, a type-θ seller in

queue ω = θ re-queues with probability µ(θ)(1− π(θ))(1− γ). Sequential rationality

implies that, conditional on a match, all ex-post efficient matches result in a trade,
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i.e., π(θ) = 1 for all θ ≥ θE(uB). Hence, the re-queueing probability for any type

θ ≥ θ†(uB) ≥ θE(uB) is zero. Additionally, θ /∈ supp(Q) for any type θ < θ†(uB),

which implies that µ(θ) = 0 and the re-queueing probability for any such type is also

zero.

The balance equations (2) and (3) imply that MSg(θ) = kf(θ) for almost all θ ∈ Θ

and MB = 1. In other words, only new agents form cohorts as there is no re-queueing

in equilibrium. This allows us to rewrite (A5) as

uB

(
1−Q(θ††(uB))− k(1− γ)

∫ 1

θ††(uB)

1− λ̂(θ)dF (θ)

)
= k

∫ 1

θ††(uB)

θλ̂(θ)dF (θ)

and rewrite (A7) as

Q(θ††(uB)) = k

∫ θ††(uB)

θ†(uB)

θλ(θ)− uB
(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − uB)

dF (θ). (A8)

We can combine these two expressions and rearrange to get (11).

The final step is to show that a unique solution exists for the fixed point problem

in (11). Let D : [0, 1]→ [0, 1] be a function with D(uB) given by

k

∫ 1

θ††(uB)

θλ̂(θ)dF (θ)

1− k(1− γ)

∫ 1

θ††(uB)

1− λ̂(θ)dF (θ)− k
∫ θ††(uB)

θ†(uB)

θλ(θ)− uB(γ + λ(θ)(1− γ))

λ(θ)(1− γ)(θ − uB)
dF (θ)

.

The function D(uB) is continuous because the cutoffs θ†(uB) and θ††(uB) are contin-

uous by Assumption 3. Additionally, D(0) = R(0) > 0 because θ†(0) = θ††(0) = 0,

and D(uB) = 0 for uB ∈ [λ(1), 1] because θ††(uB) = 1. Therefore, there exists at least

one point udB ∈ (0, λ(1)) such that D(udB) = udB.

Unfortunately, D(·) may not be a monotone function, so proving uniqueness is

not immediate. Assume that D(uB) is differentiable on the relevant open interval

(0, λ(1)).18 The derivative is given by

D′(uB) =− k

Z
f(θ††(uB))

∂θ††(uB)

∂uB
θ††(uB)λ̂(θ††(uB))

18Differentiability is not necessary for proving uniqueness but the argument is less cumbersome
under differentiability.
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−D(uB)
k

Z

{
(1− γ)

(
1− λ̂

(
θ††(uB)

))
f(θ††(uB))

∂θ††(uB)

∂uB

−
θ††(uB)λ(θ††(uB))− uB

(
γ + λ(θ††(uB))(1− γ)

)
λ(θ††(uB))(1− γ)(θ††(uB)− uB)︸ ︷︷ ︸

=1 by definition of θ††(uB)

f(θ††(uB))
∂θ††(uB)

∂uB

+
θ†(uB)λ(θ†(uB))− uB

(
γ + λ(θ†(uB))(1− γ)

)
λ(θ†(uB))(1− γ)(θ†(uB)− uB)︸ ︷︷ ︸

=0 by definition of θ†(uB)

f(θ††(uB))
∂θ††(uB)

∂uB

+

∫ θ††(uB)

θ†(uB)

θγ(1− λ(θ))

(θ − uB)2λ(θ)(1− γ)
dF (θ)

}

= − k
Z
f(θ††(uB))

∂θ††(uB)

∂uB

(
θ††(uB)λ̂(θ††(uB))−D(uB)

(
1− (1− γ)(1− λ̂(θ††(uB))

))

−D(uB)
k

Z

∫ θ††(uB)

θ†(uB)

θγ(1− λ(θ))

(θ − uB)2λ(θ)(1− γ)
dF (θ),

where

Z = 1−k
∫ θ††(uB)

θ†(uB)

θλ(θ)− uB
(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − uB)

dF (θ)−k(1−γ)

∫ 1

θ††(uB)

1− λ̂(θ)dF (θ).

Using the definition of λ̂ and the fact that λ(θ††(uB))θ††(uB) = uB for uB ∈ (0, λ(1)),

we can simplify the derivative to

D′(uB) =− k

Z
f(θ††(uB))

∂θ††(uB)

∂uB

(
γ

1− λ(θ††(uB)) + λ(θ††(uB))γ

)
(uB −D(uB))

−D(uB)
k

Z

∫ θ††(uB)

θ†(uB)

θγ(1− λ(θ))

(θ − uB)2λ(θ)(1− γ)
dF (θ).
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By Assumption 3, θ††(·) is strictly increasing on (0, λ(1)), so that ∂θ††(uB)/∂uB > 0.

Hence, D′(uB) ≤ 0 whenever D(uB) ≤ uB < λ(1), which implies that D(uB) can cross

the 45◦ line only once from above. Thus, the fixed point udB is unique.

Proof of Theorem 3. Let D̄ : [0, 1]→ [0, 1] be given by

D̄(uB) =

k

∫ 1

θ†(uB)

θλ̂(θ)dF (θ)

1− k(1− γ)

∫ 1

θ†(uB)

1− λ̂(θ)dF (θ)

.

Given Assumption 3, the cutoff θ†(uB) is continuous and weakly increasing in uB.

Hence, the function D̄(uB) is continuous and weakly decreasing with D̄(0) = R(0) > 0

and D̄(1) = 0 < 1. Therefore, there exists a unique point ūdB ∈ (0, 1) such that

D̄(ūdB) = ūdB.

Consider a steady state equilibrium of a random search market 〈ur, ψr, Qr, 〉. By

Theorem 1, the buyer’s equilibrium payoff is given by urB = R(urB). I aim to show

that urB > ūdB. To that end, notice that R(uB) > D̄(uB) for all uB ∈ (0, 1) because

θ†(uB) > θE(uB) when the buyer’s continuation value is positive. Assume to the

contrary that urB ≤ ūdB. Since D̄ is a decreasing function, we would have ūdB =

D̄(ūdB) ≤ D̄(urB) < R(urB) = urB, which would yield a contradiction.

Next consider a steady state equilibrium of a directed search market 〈ud, ψd, Qd, 〉.
By Theorem 2, the buyer’s equilibrium payoff is given by udB = D(udB). I aim to show

that udB ≤ ūdB. To that end, from (A8),

Q(θ††(uB)) = k

∫ θ††(uB)

θ†(uB)

θλ(θ)− uB
(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − uB)

dF (θ)

≤ k

∫ θ††(uB)

θ†(uB)

θλ(θ)− udB
(
γ + λ(θ)(1− γ)

)
+ ud

B − λ(θ)(1 − γ)θ

λ(θ)(1− γ)(θ − udB) + ud
B − λ(θ)(1 − γ)θ

dF (θ)

= k

∫ θ††(uB)

θ†(uB)

θλ̂(θ)

udB
+ (1− γ)(1− λ̂(θ))dF (θ),

where the inequality follows for the same reason that a/b ≤ (a + c)/(b + c) when a,
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b, and c are constants with a ≤ b and c ≥ 0. Thus,

D(udB)︸ ︷︷ ︸
=udB

=

k

∫ 1

θ††(udB)

θλ̂(θ)dF (θ)

1− k(1− γ)

∫ 1

θ††(udB)

1− λ̂(θ)dF (θ)− k
∫ θ††(udB)

θ†(udB)

θλ(θ)− udB
(
γ + λ(θ)(1− γ)

)
λ(θ)(1− γ)(θ − udB)

dF (θ)

≤
k

∫ 1

θ††(udB)

θλ̂(θ)dF (θ)

1− k(1− γ)

∫ 1

θ†(udB)

1− λ̂(θ)dF (θ)− k
∫ θ††(udB)

θ†(udB)

θλ̂(θ)

udB
dF (θ)

By rearranging, we get

udB ≤
k

∫ 1

θ†(udB)

θλ̂(θ)dF (θ)

1− k(1− γ)

∫ 1

θ†(udB)

1− λ̂(θ)dF (θ)

= D̄(udB).

As D̄(·) is a decreasing function with a unique fixed point, we can conclude that

udB ≤ ūdB. Therefore, udB < urB, which concludes the proof for the first statement.

To prove the second statement, let θ∗ = sup{θ ∈ Θ : λ(θ) < 1}. As λ is assumed

to be monotone (Assumption 3), λ(θ) < 1 for any θ < θ∗ and λ(θ) = 1 for any θ > θ∗.

For any (θ, γ) ∈ Θ× (0, 1], let

λ̂(θ, γ) ,
λ(θ)γ

(1− λ(θ) + λ(θ)γ)
,

and notice that λ̂(θ, γ) < 1 for any θ < θ∗ and λ̂(θ, γ) = 1 for any θ > θ∗.

For any (uB, γ) ∈ [0, 1]× (0, 1], define

• θE(uB, γ) , (1− γ)uB,

• θ†(uB, γ) , max
{
θ ∈ Θ : θλ(θ)

λ(θ)(1−γ)+γ
≤ uB

}
, and

• θ††(uB, γ) , max {θ ∈ Θ : θλ(θ) ≤ uB},

which are all continuous functions. Similarly define R(uB, γ) and D(uB, γ) based

on the fixed-point operators in the proofs for Theorem 1 and Theorem 2. The two
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functions are continuous. Additionally, for any γ ∈ (0, 1], we have 0 = D(1, γ) ≤
R(1, γ) < D(0, γ) = R(0, γ) < 1, and the mappings uB 7→ R(uB, γ) and uB 7→
D(uB, γ) have a unique fixed point. Let urB(γ) and udB(γ) be the unique fixed points

of R(·, γ) and D(·, γ) respectively. Since the fixed points are unique and each fixed-

point operator is continuous, the mappings γ 7→ urB(γ) and γ 7→ udB(γ) are also

continuous.

Note that limγ→0 λ̂(θ, γ) = 0 for all θ < θ∗ and limγ→0 λ̂(θ, γ) = 1 for all θ > θ∗.

Additionally, for any uB ∈ [0, 1], limγ→0 θ
E(uB, γ) = limγ→0 θ

†(uB, γ) = uB while

θ††(uB, γ) is a constant function of γ. Finally,

lim
γ→0
R(uB, γ) = lim

γ→0
D(uB, γ) =



k

∫ 1

uB

θdF (θ) if θ∗ ≤ uB

k

∫ 1

θ∗
θdF (θ)

1− k (F (θ∗)− F (uB))
if θ∗ ≥ uB

.

By continuity of the fixed-point operators and the fixed-points themselves, the

fixed point of limγ→0R(·, γ) is limγ→0 u
r
B(γ). Similarly, the fixed point of limγ→0D(·, γ)

is limγ→0 u
d
B(γ). Hence, limγ→0 u

r
B(γ) =limγ→0 u

d
B(γ), which concludes the proof for

the second statement.

Proof of Proposition 1. Consider an arbitrary cutoff x ∈ (0, 1). The only change

to the original model is that the parameters k and F are replaced by kx and Fx. Let

Rx : R→ R be given by

Rx(uB) =

kx

∫ 1

θE(uB)

λ̂(θ)θdFx(θ)

1− kx(1− γ)

∫ 1

θE(uB)

1− λ̂(θ)dFx(θ)

=

k

∫ 1

θE(uB)∨x
λ̂(θ)θdF (θ)

1− k(1− γ)

∫ 1

θE(uB)∨x
1− λ̂(θ)dF (θ)

,
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where θ∨x = max{θ, x}. Notice that for any arbitrary x ∈ (0, 1),Rx(uB) is continuous

and weakly decreasing, with Rx(0) > 0 and Rx(1) < 1. Thus, it has a unique fixed

point ur,xB . Additionally, Rx(uB) ≤ R(uB) for all uB ∈ [0, 1] with a strict inequality if

and only if θE(uB) < x. This implies that ur,xB ≤ urB for all x ∈ (0, 1).

As the only change is a shift of parameter values, we can directly apply Theorem 1

to characterize the unique equilibrium 〈ur,x, ψr,x, Qr,x〉 of a random search market with

entry cutoff x. In particular, the buyers’ equilibrium payoff in a random search mar-

ket with entry cutoff x is given by the fixed point ur,xB = Rx(ur,xB ). In equilibrium,

a type-θ seller trades with a positive probability if and only if θ ≥ θE(ur,xB ). There-

fore, the cutoff x is endogenous for a random search market if and only if x = θE(ur,xB ).

Case 1: Suppose x = θE(urB), which implies Rx(urB) = R(urB) = urB. Then ur,xB = urB
and θE(ur,xB ) = θE(urB) = x. We can therefore conclude that x = θE(urB) constitutes

a cutoff for endogenous entry in a random search market.

Case 2: Suppose x < θE(urB), which implies Rx(urB) = R(urB) = urB. Then ur,xB = urB.

However, we now have θE(ur,xB ) = θE(urB) > x, so such an x does not constitute a

cutoff for endogenous entry in a random search market.

Case 3: Suppose x > θE(urB). Since ur,xB ≤ urB, we have θE(ur,xB ) ≤ θE(urB) < x. How-

ever, such an x also does not constitute a cutoff for endogenous entry in a random

search market.

Thus, x = θE(urB) is the only cutoff that can arise in a random search market with

endogenous entry. A similar argument establishes the result for directed search.

Proof of Proposition 2. Fix a monotone n-partitional search market. For each

ω ∈ [xk−1, xk], the seller-queueing CDF satisfies

σ(ω) = G(xk−1) +
(
G(xk)−G(xk−1)

)( ω − xk−1

xk − xk−1

)
,

which is absolutely continuous. Hence, Q, which is assumed to be absolutely contin-

uous with respect to σ, does not have any atoms.

Let 〈u, ψ,Q〉 constitute an equilibrium. A similar argument to Lemma 2 estab-
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lishes that Q is uniform over each subinterval. Specifically, there exists a non-negative

sequence {qk}nk=1 such that for each k = 0, . . . , n and each ω ∈ [xk−1, xk], q(ω) = qk,

and

Q(ω) =

∫ ω

0

q(ω)dσ(ω) =
∑
m<k

qm

(
G(xm)−G(xm−1)

)
+qk

(
G(xk)−G(xk−1)

)( ω − xk−1

xk − xk−1

)
.

Thus,

1 =
n∑
k=1

qk

(
G(xk)−G(xk−1)

)
.

Let k∗ = min{k : qk > 0}. Notice that qk > 0 for all k ≥ k∗; If qk = 0 for

some k > k∗, a buyer could profitably deviate by joining any queue ω ∈ [xk−1, xk].

Additionally, θE(uB) < xk∗ ; otherwise, the buyer would be better off not joining any

queue ω ∈ [xk∗−1, xk∗ ].

Consider some k > k∗ (if any exist). Then MBqk > MS; otherwise, buyers would

never choose to join any ω ∈ [xk∗−1, xk∗ ] when they can join any ω ∈ [xk−1, xk] and

match instantly with a higher type of seller. Thus, a buyer’s value from joining some

queue ω ∈ [xk−1, xk] is

uB = VB(ω;u, ψ,Q)

=
MS

MBqk

(∫ 1

θE(uB)

θdG(θ|ω) + (1− γ)uBG(θE(uB)|ω)

)

=
MS

MBqk

∫ 1

θE(uB)

θdG(θ|ω),

where the last equality follows from the fact that θ > θE(uB) for all θ ∈ supp(G(·|ω)).

Next, consider k∗. A buyer’s value from joining some queue ω ∈ [xk∗−1, xk∗ ] is

uB = VB(ω;u, ψ,Q)

= min

{
MS

MBqk∗
, 1

}(∫ 1

θE(uB)

θdG(θ|ω) + (1− γ)uBG(θE(uB)|ω)

)

≤ MS

MBqk∗

(∫ 1

θE(uB)

θdG(θ|ω) + (1− γ)uBG(θE(uB)|ω)

)
.
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Integrating over Ω with respect to Q, we have

uB =

∫
Ω

VB(ω;u, ψ,Q)dQ(ω)

≤
∫ xk∗

xk∗−1

MS

MBqk∗

(∫ 1

θE(uB)

θdG(θ|ω) + (1− γ)uBG(θE(uB)|ω)

)

+
∑
k>k∗

∫ xk

xk−1

MS

MBqk

∫ 1

θE(uB)

θdG(θ|ω)dQ(ω)

=
MS

MB

(∫ 1

θE(uB)∨xk∗−1

θdG(θ) + (1− γ)uB

[
G
(
θE(uB) ∨ xk∗−1

)
−G(xk∗−1)

])

+
∑
k>k∗

MS

MB

∫ xk

xk−1

θdG(θ).

Since all seller types θ ≥ θE(uB) ∨ xk∗−1 leave the market via trade, they never re-

queue. Hence, from the steady state balance equation (2), MSg(θ) = kf(θ) for all

θ ≥ θE(uB) ∨ xk∗−1. We can therefore rewrite the above inequality as

uB ≤
k

MB

∫ 1

θE(uB)∨xk∗−1

θdF (θ) +
MS

MB
(1− γ)uB

[
G
(
θE(uB) ∨ xk∗−1

)
−G(xk∗−1)

]
or

uB

(
MB −MS(1− γ)

[
G
(
θE(uB) ∨ xk∗−1

)
−G(xk∗−1)

])
≤
∫ 1

θE(uB)∨xk∗−1

θdF (θ).

From the steady state balance equation (2), we have that

MB = 1︸︷︷︸
new buyers

+MS(1− γ)
[
G
(
θE(uB) ∨ xk∗−1

)
−G(xk∗−1)

]
︸ ︷︷ ︸

re-queuers

.

Thus, the equilibrium payoff uB must satisfy

uB ≤ k

∫ 1

θE(uB)∨xk∗−1

θdF (θ)
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≤ k

∫ 1

θE(uB)

θdF (θ).

However, note that the equilibrium payoff urB in a random search market satisfies the

fixed point (see equation (7′))

urB = k

∫ 1

θE(urB)

θdF (θ),

which implies that uB ≤ urB.
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