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1 Introduction

Assessing whether a policy change is desirable in dynamic stochastic economies with rich individual
heterogeneity and imperfect insurance is far from trivial. One significant challenge is to understand
the channels — such as aggregate efficiency, intertemporal-sharing, risk-sharing, or redistribution —
through which a particular normative criterion finds a policy change desirable. A different challenge
is how to formally define welfare criteria that exclusively value one or several of the aforementioned
channels but not others.1

This paper tackles both challenges by developing a new approach to making welfare assessments
in dynamic stochastic economies. This approach is based on the notion of Dynamic Stochastic
Generalized Social Marginal Welfare Weights (Dynamic Stochastic weights or DS-weights, for
short). The introduction of DS-weights accomplishes two main objectives. First, DS-weights allow
us to decompose aggregate welfare assessments of policy changes into four distinct components:
aggregate efficiency, intertemporal-sharing, risk-sharing, and redistribution, each capturing a
different normative consideration. Second, DS-weights allow us to systematically formalize new
welfare criteria that society may find appealing. In particular, we are able to define normative
criteria that are exclusively based on one or several of the four normative considerations that we
identify, potentially disregarding the others.

We introduce our results in a canonical dynamic stochastic environment with heterogeneous
individuals. Initially, as a benchmark, we explicitly define in our environment i) Pareto-improving
policies and ii) desirable policies for a welfarist planner. While Pareto improvements seem highly
desirable, they are rare to find, which forces planners/policymakers to make interpersonal welfare
comparisons using a Social Welfare Function — this is the welfarist approach. However, while the
welfarist approach is popular and widely applicable, it is not easy to understand how a welfarist
planner exactly makes tradeoffs among individuals that are ex-ante heterogeneous along some
dimension, because of the ordinal nature of individual utilities. By reviewing these well-understood
approaches and treating them as benchmarks, we set the stage for the introduction of DS-weights.

In our approach, there is no social welfare objective that a planner maximizes. Instead, the
primitives to make welfare assessments are DS-weights, which represent the value that society places
on a marginal dollar of consumption by a particular individual i at a particular time t and along
a particular history st. Equipped with these weights, we define a policy to be desirable when the
weighted sum — using DS-weights — across all individuals, dates, and histories of the instantaneous
consumption-equivalent effects of a policy is positive. By defining DS-weights marginally, we can
define normative criteria that the welfarist approach cannot capture.

In order to understand how a DS-planner, that is, a planner who adopts DS-weights, carries out
welfare assessments, we introduce two different decompositions. First, we introduce an individual

1Recently, the Federal Reserve seems to have explicitly included cross-sectional considerations in its policy-making
process — see e.g., https://www.nytimes.com/2021/04/19/business/economy/federal-reserve-politics.html.
The approach that we develop in this paper can plausibly be used to define a mandate for a monetary authority
or other policymakers that explicitly incorporates or removes cross-sectional concerns from policy assessments.
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multiplicative decomposition of DS-weights. We show that, in general, the DS-weights assigned to
a given individual can be decomposed into i) an individual component, which is invariant across all
dates and histories; ii) a dynamic component, which can vary across dates, but not across histories at
a given date; and a stochastic component, which can vary across dates and histories. Moreover, we
show that there exists a unique normalized individual multiplicative decomposition of DS-weights,
which is easily interpretable and has desirable properties.

Leveraging the individual multiplicative decomposition of DS-weights, we also introduce an
aggregate additive decomposition of welfare assessments. Formally, we show that, in dynamic
stochastic environments, the welfare assessments made by a DS-planner can be exactly decomposed
into four components: i) an aggregate efficiency component, ii) a risk-sharing component, iii) an
intertemporal-sharing component, and iv) a redistribution component. The aggregate efficiency
component accounts for the change in aggregate consumption-equivalents across all individuals. The
remaining three components of the decomposition are driven by the cross-sectional variation of each
of the three elements (individual, dynamic, stochastic) of the individual multiplicative decomposition.
In particular, the risk-sharing component adds up across all dates and histories the cross-sectional
covariances between the stochastic component of the individual multiplicative decomposition and the
change in normalized instantaneous utility at each date and history. Similarly, the intertemporal-
sharing component adds up across all dates the covariances between the dynamic component of
the individual multiplicative decomposition and the change in normalized net utility at each date.
Finally, the redistribution component consists of a single cross-sectional covariance between the
individual components of the individual multiplicative decomposition and the change in individual
lifetime marginal utility from the perspective of a DS-planner. In intuitive terms, we can say that
the aggregate efficiency component ΞAE captures the aggregate impact of a policy, that the risk-
sharing component ΞRS captures the transitory stochastic impact across individuals of a policy,
that the intertemporal-sharing component ΞIS captures the transitory deterministic impact across
individuals of a policy, and that the redistribution component ΞRD captures the permanent impact
across individuals of a policy.

Next, we present properties of the aggregate additive decomposition and its components for
a general DS-planner. Initially, we show that a DS-planner who assigns DS-weights that do
not vary across individuals at all dates and histories makes welfare assessments purely based on
aggregate efficiency considerations. We also show that different components of the aggregate
additive decomposition may vanish depending on which specific components of the individual
multiplicative decomposition of DS-weights are invariant across individuals: if the individual
multiplicative component is constant across individuals, then the redistribution component of
the aggregate decomposition is zero; if the dynamic multiplicative component is constant across
individuals at all dates, then the intertemporal-sharing component of the aggregate decomposition
is zero; if the stochastic multiplicative component is constant across individuals at all dates and
histories, then the risk-sharing component of the aggregate decomposition is zero. We highlight
four implications of these results with practical relevance. First, we show that welfare assessments
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in single-agent/representative-agent economies are exclusively attributed to aggregate efficiency
considerations. Second, we show that welfare assessments in perfect-foresight economies (under
normalized DS-weights) are never attributed to risk-sharing. Third, we show that welfare assessments
in economies in which all individuals are ex-ante identical (but not necessarily ex-post) are never
attributed to intertemporal-sharing or redistribution. Fourth, we show that welfare assessments in
static economics (under normalized DS-weights) are exclusively attributed to aggregate efficiency
or redistribution considerations. Subsequently, we show that, under normalized DS-weights, the
risk-sharing, intertemporal-sharing, and redistribution components are zero whenever a given policy
impacts all individuals identically. We also identify conditions on how a policy affects individuals
that imply that a subset of the components of the aggregate decompositions are zero. Finally, we
show that the aggregate efficiency component of the aggregate decomposition is zero in endowment
economies.

Given the importance of the welfarist approach in practice, we characterize — critically, in
easily interpretable consumption units — how a welfarist DS-planner makes tradeoffs across periods
and histories for a given individual, and across individuals. Formally, we characterize the unique
normalized individual multiplicative decomposition of DS-weights for a given welfarist planner, and
discuss its implications. Armed with this decomposition, we characterize new additional properties of
the aggregate additive decomposition of welfare assessments for welfarist planners. In particular, we
show that all normalized welfarist planners conclude that the risk-sharing and intertemporal-sharing
components are zero when markets are complete, that the intertemporal-sharing component is zero
when individuals can freely trade a riskless bond, and that different normalized welfarist planners —
with different Social Welfare Functions — exclusively disagree on the redistribution component. To
our knowledge, the aggregate additive decomposition of welfare assessments introduced in this paper
is the first welfare decomposition for which these properties — which seem highly desirable — have
been established.

Since a central objective of this paper is to provide a framework to systematically formalize new
welfare criteria, we describe how to use DS-weights to formalize new welfare criteria that capture
particular normative objectives that society may find appealing. First, we introduce three different
sets of novel DS-planners: aggregate efficiency (AE) DS-planners, aggregate efficiency/risk-sharing
(AR) DS-planners, and no-redistribution (NR) DS-planners, and characterize their properties.2 The
welfare assessments made by these new planners purposefully set to zero particular components of
the aggregate additive decomposition. Within each set of DS-planners, we identify a pseudo-welfarist
planner as the one that represents the minimal departure relative to the normalized welfarist planner.
We also introduce an α-DS-planner, a new planner that spans i) AE, ii) AR, and iii) NR pseudo-
welfarist planners, as well as iv) the associated normalized welfarist planner. Finally, we explain why
some new planners (AE and AR) are paternalistic, while others are not (NR). We also discuss the

2For instance, the current “dual mandate” (stable prices and maximum employment) of the Federal Reserve
(as defined by the 1977 Federal Reserve Act) seems to be better described by an aggregate efficiency (AE) DS-
planner, rather than a normalized utilitarian planner, who would care about risk-sharing, intertemporal-sharing, and
redistribution.
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implications of introducing new planners for policy mandates and institutional design.
Before presenting an application of our framework, we describe additional results. First, we

further decompose the components of the aggregate additive decomposition and then explain how
to connect welfare assessments to measures of inequality. Next, we explain how to make welfare
assessments using DS-weights in recursive environments, and show how to implement welfare
assessments via an instantaneous Social Welfare Function. Finally, we briefly described additional
results included in the Online Appendix. Among other results, we present a detailed comparison of
how our approach relates to the widely used approach introduced by Lucas (1987) and Alvarez and
Jermann (2004).

At last, we illustrate how to make welfare assessments using DS-weights in a fully specified
application. In our application, we illustrate the mechanics of our approach by conducting welfare
assessments of policies in a single-good economy with no financial markets. We explore two specific
scenarios. Scenario 1 corresponds to an economy in which individuals with identical preferences face
idiosyncratic shocks. We consider transfer policies that can potentially provide full insurance and
carefully explain how, depending on the persistence of idiosyncratic risk, a normalized utilitarian
planner can find such policies desirable for different reasons. In particular, when risks are transitory,
the planner attributes most of the welfare gains of the policy to risk-sharing. Alternatively, when
risks are very persistent, the planner attributes most of the gains to redistribution. Scenario 2
corresponds to an economy in which individuals with different preferences towards risk face aggregate
shocks. We consider transfer policies that shift aggregate risk to the more risk-tolerant investors and
carefully explain how a normalized utilitarian planner finds such policies desirable for different reasons
depending on the state of th economy in which welfare assessments take place.

Related literature. This paper contributes to several literatures, specifically those on i)
interpersonal welfare comparisons, ii) welfare decompositions, iii) welfare evaluation of policy changes
in dynamic environments, and iv) institutional mandates.

Interpersonal welfare comparisons. The question of how to make interpersonal welfare compar-
isons to form aggregate welfare assessments has a long history in economics — see, among many
others, Kaldor (1939), Hicks (1939), Bergson (1938), Samuelson (1947), Harsanyi (1955), Sen (1970)
or, more recently, Kaplow and Shavell (2001), Saez and Stantcheva (2016), Hendren (2020), Tsyvin-
ski and Werquin (2020), and Hendren and Sprung-Keyser (2020). Formally, our approach based
on endogenous welfare weights is most closely related to the work of Saez and Stantcheva (2016),
who introduce Generalized Social Marginal Welfare Weights. Building on their terminology, in this
paper we introduce the notion of Dynamic Stochastic Generalized Social Marginal Welfare Weights
(Dynamic Stochastic weights or DS-weights, for short). In static environments, our approach col-
lapses to theirs. In dynamic stochastic environments, the use of DS-weights allows us to formalize
a new, larger set of welfare criteria and to understand the normative implications for aggregate effi-
ciency, risk-sharing, intertemporal-sharing, and redistribution of different welfare criteria, including
the widely used welfarist criteria. In particular, Section 4 leverages the use of DS-weights to provide
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a novel interpretation of how welfarist planners trade off welfare gains and losses across individuals in
dynamic stochastic environments, a result at the heart of the question of how to make interpersonal
welfare comparisons.3

Welfare decompositions. Our results, in particular the aggregate additive decomposition
introduced in Proposition 1, contribute to the body of work that seeks to decompose welfare changes
in models with heterogeneous agents. The most recent contribution to this literature is the work
by Bhandari et al. (2021), who propose a decomposition of welfare changes when switching from
a given policy to another that is more general than the seminal contributions of Benabou (2002)
and Floden (2001).4 A fundamental difference between these papers and ours is that, in addition
to decomposing the aggregate welfare effects of a policy change, our approach allows us to define
a new set of normative criteria that can be used to endow a planner/policymaker with a specific
mandate. Purely from the perspective of the decomposition of welfare assessments, there are many
other significant differences between the approach of Bhandari et al. (2021) and ours. For instance,
their decomposition is based on a particular social welfare function (utilitarian, with individual-
specific weights), while ours critically hinges on the choice of welfare weights. Also, their welfare
decomposition, which is defined for non-marginal changes, relies on a Taylor expansion and is hence
based on an approximation. Our welfare decomposition, which is defined for marginal policy changes,
is exact, and can used to assess non-marginal changes when used as described in Section G.5
of the Online Appendix. Moreover, it should be evident that no existing decomposition satisfies
Proposition 6, in which we show that all normalized welfarist planners conclude that the risk-sharing
and intertemporal-sharing components are zero when markets are complete; Proposition 7, in which
we show that all normalized welfarist planners conclude that intertemporal-sharing component is
zero when individuals can freely trade a riskless bond; and Proposition 8, in which we show that
different normalized welfarist planners exclusively disagree on the redistribution component.

Welfare assessments in dynamic stochastic models. Our results are also related to the Lucas
(1987) approach to making welfare assessments in dynamic environments, in particular to its marginal
formulation introduced in Alvarez and Jermann (2004). Formally, as we show in Section F of the
Online Appendix, the marginal approach to making welfare assessment of Alvarez and Jermann
(2004) corresponds to choosing a particular set of DS-weights. While both Lucas (1987) and Alvarez
and Jermann (2004) study representative-agent environments, others have used a similar approach
in environments with heterogeneity; see e.g., Atkeson and Phelan (1994), Krusell and Smith (1999),
or Krusell et al. (2009), among many others. However, as highlighted by these papers, a well-
known downside of the Lucas (1987) approach is that it does not aggregate meaningfully because
individual welfare assessments are reported as a constant share of individual consumption. In this

3Saez and Stantcheva (2016) emphasize that by using generalized weights it is possible to accommodate alternatives
to welfarism, such as equality of opportunity, libertarianism, or Rawlsianism, among others. It should be evident
that our approach, which nests theirs, can also accommodate these possibilities. We purposefully avoid studying these
issues, since these normative approaches are rarely used in the study of dynamic stochastic economies.

4At an intuitive level, the decomposition proposed by Benabou (2002) and Floden (2001) is based on utilities while
the decomposition of Bhandari et al. (2021) is based on allocations. Our decomposition, on the other hand, is based
on marginal utilities.
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paper, we show that a normalized welfarist planner — a new concept that we introduce — is able
to meaningfully aggregate welfare assessments among heterogeneous individuals.

Institutional mandates. Finally, our results contribute to the literature that studies policymakers’
mandates. For instance, Woodford (2003) shows in representative agent economy that endowing a
monetary authority with the objective of minimizing inflation and output gaps maximizes welfare in a
flow sense. Relatedly, Rogoff (1985) shows that choosing a particular planner (a conservative central
banker) may be desirable in some circumstances. However, the literature on institutional mandates
has eschewed cross-sectional considerations. We hope that the approach that we develop in this
paper opens the door to future disciplined discussions on policy-making mandates, in particular
when trading off aggregate stabilization motives against interpersonal insurance and redistribution
motives.

Outline. Section 2 introduces the baseline environment and describes conventional approaches
used to make welfare assessments. Section 3 introduces the notion of DS-weights, defines an
individual multiplicative decomposition of DS-weights, an aggregate additive decomposition of
welfare assessments, and provides general properties of such decompositions. Section 4 studies
how welfarist planners make welfare assessments through the lens of DS-weights, characterizing
properties of the aggregate additive decomposition in that case. Section 5 formalizes new welfare
criteria that isolate different components of the aggregate additive decomposition and discusses the
implications of such planners for institutional design. Section 6 further decomposes the components
of the aggregate additive decomposition, explains how to connect welfare assessments to measures of
inequality, describes how to make welfare assessments in recursive environments, and shows how to
implement welfare assessments via an instantaneous Social Welfare Function. Section 7 illustrates
how to make welfare assessments in the context of a fully specified dynamic stochastic model. All
proofs and derivations are in the Appendix. The Online Appendix also includes several extensions
and additional results.

2 Environment and Benchmarks

In this section, we first describe our baseline environment, which encompasses a wide variety
of dynamic stochastic models with heterogeneous individuals. Subsequently, we describe the
conventional approaches to making welfare assessments, setting the stage for the introduction of
DS-weights in Section 3.

2.1 Baseline Environment

Our notation closely follows that of Ljungqvist and Sargent (2018). We consider an economy
populated by individuals, indexed by i ∈ I. For simplicity, we assume that there is a unit measure
of individuals, so

∫
di = 1, although our results apply unchanged to economies with a finite number

of individuals. At each date t ∈ {0, . . . , T}, where T ≤ ∞, there is a realization of a stochastic event
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st ∈ S. We denote the history of events up to and until date t by st = (s0, s1, . . . , st). We denote the
unconditional probability of observing a particular sequence of events st by πt

(
st
∣∣ s0
)
. We assume

that the initial value of s0 is predetermined, so π0
(
s0|s0

)
= 1.

There is a single nonstorable consumption good — which serves as numeraire — at all dates and
histories. Each individual i derives utility from consumption and (dis)utility from working, with a
lifetime utility representation, starting from s0, given by

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)
, nit

(
st
))
, (1)

where cit
(
st
)
and nit

(
st
)
respectively denote the consumption and hours worked by individual i at date

t given a history st; ui (·) corresponds to individual i’s instantaneous utility, potentially non-separable
between consumption and hours; and βi ∈ [0, 1) denotes individual i’s discount factor.5 Note
that Equation (1) corresponds to the time-separable expected utility preferences with exponential
discounting and homogeneous beliefs commonly used in dynamic macroeconomics and finance. Note
also that we purposefully allow for individual-specific preferences.

We assume that preferences are well-behaved and, for now, directly impose that cit
(
st
)
and nit

(
st
)

are smooth functions of a primitive parameter θ ∈ [0, 1], so

dcit
(
st
)

dθ
and dnit

(
st
)

dθ

are well-defined. We interpret changes in θ as policy changes although, at this level of generality, our
approach is valid for any change in primitives. This formulation allows us to consider a wide range
of policies, as we illustrate in our applications.6 In those applications — and more generally — the
mapping between outcomes, cit

(
st
)
and nit

(
st
)
, and policy, θ, emerges endogenously, and typically

accounts for general equilibrium effects. However, for most of the paper, we can proceed without
further specifying endowments, budget constraints, equilibrium concepts, etc.

We conclude the description of the baseline environment by describing several extensions, which
we present in the Online Appendix. In particular, in Section F.1, we describe how to account
for heterogeneous beliefs. In Section F.2, we show how our approach extends to richer preference
specifications, in particular, the widely used Epstein-Zin preferences. In Section F.3, we describe
how to extend our approach to environments in which preferences and probabilities directly depend
on θ or in which consumption and hours worked are not differentiable everywhere. In Section F.4 we
show how our results extend to economies with multiple commodities, in addition to working hours.
Finally, in Section F.5 we describe how to allow for births, deaths, and related intergenerational
considerations.

5Following Acemoglu (2009), we refer to Vi (·) as lifetime utility and to ui (·) as instantaneous utility. As in
Ljungqvist and Sargent (2018), we use a subscript i to refer to Vi (·), βi, and ui (·), and a superscript i to refer to
individual variables indexed by time or histories.

6In particular, the fact that θ is one-dimensional is not restrictive, since θ can be interpreted as the scale of an
arbitrary policy variation that can differ across individuals, dates, and histories.
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2.2 Benchmarks: Conventional Approaches to Welfare Assessments

Before introducing DS-weights, we first define in our environment i) Pareto-improving policies and
ii) desirable policies for a welfarist planner. To that end, it is useful to characterize the change in
the lifetime utility of an individual i induced by a marginal policy change, dVi(s0)

dθ .

Lifetime utility effect of policy change. Starting from Equation (1), dVi(s0)
dθ , which is measured

in utils (utility units), can be expressed as

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ
, (2)

where we respectively denote individual i’s marginal utilities of consumption and hours worked at
history st by

∂ui
(
st
)

∂cit
≡ ∂ui

(
cit
(
st
)
, nit

(
st
))

∂cit (st)
and ∂ui

(
st
)

∂nit
≡ ∂ui

(
cit
(
st
)
, nit

(
st
))

∂nit (st)
,

and where we denote the instantaneous consumption-equivalent effect of the policy at date t given a
history st, by

dui|c
(
st
)

dθ
≡

dui(cit(st),nit(st))
dθ

∂ui(st)
∂cit

= dcit
(
st
)

dθ
+

∂ui(st)
∂nit

∂ui(st)
∂cit

dnit
(
st
)

dθ
. (3)

Equation (2) shows that the impact of a policy change on the lifetime utility of individual i is given
by a particular combination of instantaneous consumption-equivalent effects, which, importantly, are
expressed in consumption units at a specific history. The relevance of each of these effects for dVi(s0)

dθ

is determined by (βi)t πt
(
st
∣∣ s0
) ∂ui(st)

∂cit
, that is, by how far in the future and how likely a given

history is, and by how much individual i values (in utils) a marginal unit of consumption at that
particular history. Equation (3) highlights that the instantaneous consumption-equivalent effect at a
given history depends on how consumption and hours worked respond to the policy change, as well
as on the rate at which an individual trades off both variables, captured by the individual marginal
rate of substitution between consumption and hours worked, given by ∂ui(st)

∂nit
/
∂ui(st)
∂cit

.7

Pareto-improving policy change. Equation (2) allows us to determine whether an individual
is better or worse off after a policy change. That is, when dVi(s0)

dθ > (<) 0, individual i perceives to
be better (worse) off after a policy change. Hence, it is possible to define a Pareto-improving policy
change as follows.

Definition 1. (Pareto-improving policy change) A policy change is strictly (weakly) Pareto-
7Note that the definition of the instantaneous consumption-equivalent effect in Equation (3) does not make use of

individual optimality (i.e., the envelope theorem). However, in specific applications, exploiting individual optimality
conditions can yield simple expressions for dui|c(st)

dθ
.
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improving if every individual i perceives to be strictly (weakly) better off after the policy change.
Hence, a policy change is strictly Pareto-improving when dVi(s0)

dθ > 0, ∀i, and weakly Pareto-improving
when dVi(s0)

dθ ≥ 0, ∀i.

Note that the notion of Pareto improvement does not involve interpersonal welfare comparisons,
and simply exploits the ordinal nature of utility. While Pareto improvements seem highly desirable,
they are rare to find, which forces planners/policymakers to make interpersonal welfare comparisons,
as we describe next.8

Desirable policy change for a welfarist planner. The conventional approach in economics to
balance welfare gains and losses among different individuals is based on individualistic social welfare
functions (SWF). As in Kaplow (2011) or Saez and Stantcheva (2016), we refer to this approach —
typically traced back to Bergson (1938) and Samuelson (1947) — as the welfarist approach. For a
welfarist planner, social welfare is a real-valued function of individuals’ lifetime utilities, which we
formally denote in our environment by

W
(
{Vi (s0)}i∈I

)
, (welfarist planner) (4)

where Vi (s0) is defined in Equation (1) and where typically ∂W
∂Vi
≥ 0, ∀i. As carefully explained in

Kaplow (2011), the critical restriction implied by the welfarist approach is that the social welfare
function W (·) cannot depend on any model outcomes besides individual utility levels.

Different welfarist social welfare functions W (·) have different implications for the assessment of
policies. In particular, the utilitarian SWF, which adds up a weighted sum of individual utilities, is
given by

W
(
{Vi (s0)}i∈I

)
=
∫
λiVi (s0) di, (utilitarian planner) (5)

where λi are a set predetermined scalars, commonly referred to as Pareto weights. While the
utilitarian SWF is by far the most used in practice, there exist other well-known SWF’s, e.g., isoelastic
(Atkinson, 1970) or maximin/Rawlsian (Rawls, 1971, 1974), among others, as we describe in Section
G.3.1 of the Online Appendix.

Next, we formally define when a policy change is desirable for a welfarist planner.

Definition 2. (Desirable policy change for a welfarist planner) A welfarist planner finds a policy
8As shown by Mas-Colell, Whinston and Green (1995) or Ljungqvist and Sargent (2018), among others, by varying

the welfare weights assigned to different individuals, a planner who maximizes a utilitarian social welfare function can
fully trace the Pareto frontier whenever a utility possibility set is convex, and partially when it is not. Even though
characterizing Pareto frontiers is a valuable exercise, we seek to study welfare assessments generally, even away from
the Pareto frontier.
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change desirable if and only if dWW (s0)
dθ > 0, where

dWW (s0)
dθ

=
∫
λi (s0) dVi (s0)

dθ
di (6)

=
∫
λi (s0)

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ
di,

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

, and where dVi(s0)
dθ is defined in Equation (2).

The properties of the welfarist approach have been widely studied.9 In particular, a welfarist
planner is non-paternalistic, since aggregate welfare assessments are based on individual welfare
assessments, and Paretian when ∂W

∂Vi
≥ 0, ∀i, since every Pareto-improving policy is desirable.

Moreover, when individuals are ex-ante homogeneous, i.e., they have identical preferences and face
an identical environment from the perspective of s0, all welfarist planners agree on whether a policy
change is desirable or not, even if individuals experience different shocks ex-post.10

However, because of the ordinal nature of individual utilities, it is not easy to understand how
a welfarist planner exactly makes tradeoffs among individuals that are ex-ante heterogeneous along
some dimension. For instance, a welfarist planner would mechanically put more weight on the gains
and losses of an individual whose lifetime utility is multiplied by a positive constant factor, even
though, since individual utility is ordinal, this has no impact on allocations. Relatedly, it is not
clear how a welfarist planner trades off the welfare gains and losses of individuals with different
preferences, endowments, or life-cycle profiles, who have access to different insurance opportunities
or who face shocks driven by different stochastic processes.

By introducing Dynamic Stochastic weights, we will be able to systematically i) provide a new
transparent interpretation of how a particular planner (including all welfarist planners, but also other
non-welfarist planners) implicitly trade off gains and losses across individuals, dates, and histories,
and ii) define new welfare criteria that capture normative objectives that society may find appealing.

3 Dynamic Stochastic Weights: Definition, Decompositions, and
General Properties

In this section, we introduce a new approach to assess the desirability of policy changes, based on
the notion of Dynamic Stochastic Generalized Social Marginal Welfare Weights (Dynamic Stochastic
weights or DS-weights, for short).

9See e.g., Mas-Colell, Whinston and Green (1995), Kaplow (2011), or Adler and Fleurbaey (2016) for recent textbook
treatments. Somewhat surprisingly, dynamic and stochastic considerations are not central to the literature on policy
assessments.

10Even in this case, it is not obvious to determine whether a welfarist planner finds a policy change desirable because
of aggregate efficiency, risk-sharing, or intertemporal-sharing considerations, as we illustrate in Section 4.
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3.1 Definition of DS-weights: Desirable Policy Change for a DS-Planner

We begin by formally defining when a policy change is desirable for a planner who adopts DS-weights,
a “DS-planner.”

Definition 3. (Desirable policy change for a DS-planner/Definition of DS-weights) A DS-planner,
that is, a planner who adopts DS-weights, finds a policy change desirable if and only if dW

DS(s0)
dθ > 0,

where
dWDS (s0)

dθ
=
∫ T∑

t=0

∑
st

ωit

(
st
∣∣∣ s0
) dui|c (st)

dθ
di, (7)

where dui|c(st)
dθ denotes the instantaneous consumption-equivalent effect of the policy at date t given

a history st, defined in Equation (3), and where ωit
(
st
∣∣ s0
)
> 0, which can be a function of all the

possible paths of outcomes, denotes the DS-weight assigned to individual i at date t given a history
st for a welfare assessment that takes place at s0.

Equation (7) shows that, in order to carry out a welfare assessment, a DS-planner must i) know
the instantaneous consumption-equivalent effect of a policy for each individual at all dates and
histories, that is, dui|c(st)

dθ , ∀i, ∀t, ∀st, which is measured in consumption units; and ii) specify DS-
weights ωit

(
st
∣∣ s0
)
for each individual at all dates and histories, that is, ωit

(
st
∣∣ s0
)
, ∀i, ∀t, ∀st. Hence,

dui|c(st)
dθ and ωit

(
st
∣∣ s0
)
are sufficient statistics for welfare analysis, which makes the computation of

welfare assessments conceptually straightforward. Intuitively, a DS-planner computes the impact of
a policy change in consumption units at each history for every individual and then weights those
changes to form an aggregate welfare assessment. Different choices of DS-weights ωit

(
st
∣∣ s0
)
will have

different normative implications, as the remainder of this paper will show.
It is worth highlighting four features that define a DS-planner. First, note that DS-weights can be

functions of model outcomes, which are typically endogenous variables. For instance, by comparing
Equations (6) and (7), it follows that every welfarist planner is a DS-planner with DS-weights given
by

ωit

(
st
∣∣∣ s0
)

= λi (s0) (βi)t πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit
, (8)

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

. Second, by making s0 an explicit argument of dW
DS(s0)
dθ , we emphasize

that welfare assessments in dynamic stochastic economies are contingent on the state in which
the assessment takes place. This observation leads to time-inconsistency of welfare assessments,
a topic we revisit in Section 6.3. Third, note that we define the welfare assessment of a DS-planner
in marginal form, i.e, DS-weights are marginal welfare weights. This contrasts with the welfarist
approach, which takes a lifetime social welfare function as primitive — see Equation (4). In Section
6.4, we show how a DS-planner can be equivalently defined in terms of an instantaneous social welfare
function with generalized (endogenous) welfare weights. Finally, note that Equation (7) allows us to
define a local optimum for a DS-planner as a value of θ for which dWDS(s0)

dθ = 0. In Section G.5, we
explain how to conduct non-marginal welfare assessments.
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3.2 Individual Multiplicative Decomposition of DS-weights

In Lemma 1, we introduce an individual multiplicative decomposition of DS-weights into i) individual,
ii) dynamic, and iii) stochastic components.11 This individual multiplicative decomposition of DS-
weights is useful to i) provide a meaningful economic interpretation of how a planner trades off welfare
gains and losses across individuals, dates, and histories, given a set of DS-weights; ii) formally define
and study the aggregate additive decomposition of welfare assessments, as we show in Section 3.3;
and iii) formalize welfare criteria by defining DS-weights in terms of each of its components, as we
illustrate in Section 4. We also define a normalized decomposition, which is unique and has desirable
properties, as we show throughout the paper.

Lemma 1. (DS-weights: individual multiplicative decomposition; unique normalized decomposition)
a) The DS-weights that a DS-planner assigns to an individual i can be multiplicatively decomposed
into three different components, as follows:

ωit

(
st
∣∣∣ s0
)

= ω̃i (s0)︸ ︷︷ ︸
individual

ω̃it (s0)︸ ︷︷ ︸
dynamic

ω̃it(st|s0)︸ ︷︷ ︸
stochastic

, where (9)

i) ω̃i (s0) corresponds to an individual component, which is invariant across all dates and histories;
ii) ω̃it (s0) corresponds to a dynamic component, which can vary across dates, but not across

histories at a given date; and
iii) ω̃it

(
st
∣∣ s0
)
corresponds to a stochastic component, which can vary across dates and histories.

b) For any set of DS-weights, there exists a unique “normalized” individual multiplicative decompo-
sition, such that

i) stochastic components add up to 1 at every date, that is,
∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, ∀t, ∀i;
ii) dynamic components add up to 1 across all dates, that is,

∑T
t=0 ω̃

i
t (s0) = 1, ∀i; and

iii) individual components add up to 1 across individuals, that is,
∫
ω̃i (s0) di = 1.

We refer to planners who adopt this decomposition as “normalized” DS-planners.

The components of the individual multiplicative decomposition define social marginal rates of
substitution for a DS-planner across individuals, dates, and histories. For instance, the stochastic
component, ω̃it

(
st
∣∣ s0
)
, which has the interpretation of a risk-neutral measure at date t when∑

st ω̃
i
t

(
st
∣∣ s0
)

= 1, determines how a DS-planner values unit of consumption good across different
histories st at date t for a given individual. The dynamic component, ω̃it (s0), which has the
interpretation of a normalized discount factor when

∑T
t=0 ω̃

i
t (s0) = 1, determines how a DS-planner

values consumption across different dates for a given individual.12 The individual component
determines how a DS-planner trades off permanent gains and losses across individuals. In the case
of the normalized decomposition, when

∫
ω̃i (s0) di = 1, it defines the units in which dWDS(s0)

dθ is
11This individual multiplicative decomposition is inspired by Alvarez and Jermann (2005) and Hansen and

Scheinkman (2009), who multiplicatively decompose pricing kernels into permanent and transitory components.
12Risk-neutral measures are widely used in finance (Duffie, 2001; Cochrane, 2005), while normalized discount factors

are common in the study of repeated games (Fudenberg and Tirole, 1991; Mailath and Samuelson, 2006).
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expressed. In particular, the individual component of individual i, ω̃i (s0), exactly determines the
weight that a DS-planner gives to a permanent transfer of one unit of consumption good across
all dates and histories to individual i, measured in units of a permanent transfer of one unit of
consumption good to all individuals across all dates and histories.

It is worth highlighting that the sign of dWDS(s0)
dθ — and hence whether a policy change is

desirable or not — is fully determined by the value of the DS-weights as a whole and not by
any individual multiplicative decomposition. However, we will show that the normalized individual
multiplicative decomposition is associated with desirable properties in the context of the aggregate
additive decomposition that we introduce next, while unnormalized decompositions typically are
not. The normalized decomposition guarantees that its components, as well as dWDS(s0)

dθ , have
a meaningful interpretation in terms of units of consumption across specific histories, dates, and
individuals. In general, once the units of ωit

(
st
∣∣ s0
)
and its components are defined, every individual

multiplicative decomposition is unique. See Section 4, and Section G.1 of the Online Appendix for
further details.

For instance, a possible individual multiplicative decomposition for an (unnormalized) welfarist
planner is given by

ω̃i (s0) = λi (s0) , ω̃it (s0) = (βi)t , and ω̃it

(
st
∣∣∣ s0
)

= πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit
, (10)

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

. This decomposition, because it is expressed in utils, cannot be used
to understand how a planner makes tradeoffs in terms of consumption units. In Section 4, we instead
introduce the individual multiplicative decomposition of a normalized welfarist planner, and study
its properties in detail.

3.3 Aggregate Additive decomposition of Welfare Assessments under DS-weights

Armed with the individual multiplicative decomposition of DS-weights, we now introduce an exact
additive decomposition of the welfare assessments made by a DS-planner. This decomposition shows
that the welfare assessment of a policy change dθ made by a DS-planner is driven by exactly four
considerations: aggregate efficiency, risk-sharing, intertemporal-sharing, and redistribution.13

Proposition 1. (Welfare assessments: aggregate additive decomposition) The aggregate welfare
assessment of a DS-planner, dWDS(s0)

dθ , can be decomposed into four components: i) an aggregate
efficiency component, ii) a risk-sharing component, iii) an intertemporal-sharing component, and iv)
a redistribution component, as follows:

13We have chosen the term risk-sharing and the (less conventional) term intertemporal-sharing to highlight that
both components of the aggregate additive decomposition are driven by cross-sectional differences, via interpersonal
sharing. Alternative terms, such as insurance, consumption smoothing, or intertemporal smoothing, do not have such
connotation, since they are applicable to a single individual.
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dWDS (s0)
dθ

=
T∑
t=0

Ei
[
ω̃it (s0)

]∑
st

Ei
[
ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE (Aggregate Efficiency)

+
T∑
t=0

Ei
[
ω̃it (s0)

]∑
st

Covi

[
ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞRS (Risk-sharing)

+
T∑
t=0

Covi

[
ω̃it (s0) ,

∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS (Intertemporal-sharing)

+ Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞRD (Redistribution)

, (11)

where Ei [·] and Covi [·, ·] respectively denote cross-sectional expectations and covariances, where the
history-specific term that determines the aggregate efficiency component, Ei

[
dui|c(st)

dθ

]
, is given by

Ei

[
dui|c

(
st
)

dθ

]
=
∫
dcit
(
st
)

dθ
di+

∫ ∂ui(st)
∂nit

∂ui(st)
∂cit

dnit
(
st
)

dθ
di, (12)

and where, without loss of generality, we have assumed that Ei
[
ω̃i (s0)

]
=
∫
ω̃i (s0) di = 1.

The first component of the aggregate additive decomposition is the aggregate efficiency
component, ΞAE . This component accounts for the aggregate instantaneous consumption-equivalent
effect of the policy, expressed in consumption units. As shown in Equation (12), ΞAE adds up
the changes in consumption-equivalents resulting from the marginal policy change across all dates
and histories. Because ΞAE can be computed using exclusively cross-sectional averages of ω̃it (s0),
ω̃it
(
st
∣∣ s0
)
, and dui|c(st)

dθ , we refer to the this term as aggregate efficiency.14

The remaining three components of the aggregate additive decomposition are driven by the cross-
14Note that Equation (12) can be rewritten as

Ei

[
dui|c

(
st
)

dθ

]
=
∫

dcit
(
st
)

dθ
τ it
(
st
)
di = Ei

[
dcit
(
st
)

dθ

]
Ei
[
τ it
(
st
)]

+ Cov

[
dcit
(
st
)

dθ
, τ it
(
st
)]
,

where τ it
(
st
)
≡ 1 +

∂ui(st)
∂ni
t

∂ui(st)
∂ci
t

dni
t(st)
dθ

dci
t
(st)
dθ

, which shows that aggregate efficiency is tightly connected to labor wedges.

Intuitively, policies that increases aggregate consumption contribute more to aggregate efficiency when the aggregate
labor wedge is greater than 1, i.e., when Ei

[
τ it
(
st
)]

> 1. Alternatively, policies that do not change aggregate
consumption can contribute to aggregate efficiency if they increase the consumption of those individuals with higher
individual labor wedges by more.
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sectional variation of each of the three elements (individual, dynamic, stochastic) of the individual
multiplicative decomposition of DS-weights. In particular, the risk-sharing component, ΞRS , adds up
across all dates and histories the covariances between the stochastic component, ω̃it

(
st
∣∣ s0
)
, and the

instantaneous consumption-equivalent effect at each date and history. Similarly, the intertemporal-
sharing component, ΞIS , adds up across all dates the covariances between the dynamic component,
ω̃it (s0), and the (expected, under the risk-neutral measure interpretation of stochastic weights)
instantaneous consumption-equivalent effect at each date. Finally, the redistribution component,
ΞRD, consists of a single cross-sectional covariance between the individual component, ω̃i

(
s0), and

the present discounted value — using the dynamic and stochastic components — of instantaneous
consumption-equivalent effects that a DS-planner assigns to particular individual.

Before we discuss the properties of this decomposition below, it is worth making two remarks.
First, the aggregate additive decomposition is exact for any marginal policy change and does
not rely on any approximations. Relatedly, the decomposition can be computed using only the
individual multiplicative decomposition of DS-weights — typically a function of model outcomes —
and instantaneous consumption-equivalent effects.

Second, the aggregate additive decomposition is based on cross-sectional averages and covariances,
and does not include covariances over future periods or histories. In Section 6.1, we further decompose
the aggregate efficiency and redistribution components along those lines, developing a stochastic
decomposition — see Propositions 10 and 12. There, we also provide an alternative decomposition
of the risk-sharing and intertemporal-sharing components still based on cross-sectional averages and
covariances.15

3.4 General Properties of the Aggregate Additive Decomposition

The merits of the aggregate additive decomposition introduced in Proposition 1 lie in its properties.
Similarly, the names we attribute to each of the components, ΞAE through ΞRD, are only meaningful
if they satisfy desirable properties. Hence, in the remainder of this section, we flesh out the properties
of the aggregate additive decomposition and its components for a general DS-planner.

First, in Proposition 2, we identify conditions on DS-weights and their components under which
the welfare assessments of a DS-planner i) are purely based on aggregate efficiency considerations or
ii) are such that the risk-sharing, intertemporal-sharing, or redistribution components are zero.

Proposition 2. (Properties of aggregate additive decomposition: individual-invariant DS-weights)
a) If DS-weights ωit

(
st
∣∣ s0
)
are constant across all individuals at all dates and histories, then the

welfare assessment of a DS-planner is exclusively based on aggregate efficiency considerations, i.e.,
ΞRS = ΞIS = ΞRD = 0.

b) If the stochastic component of DS-weights is constant across all individuals at all dates and
histories, then ΞRS = 0.

15The aggregate decomposition introduced in Proposition 1 is appealing because it treats systematically each of the
components of the individual multiplicative decomposition. That is, ΞRS is directly determined by ω̃it

(
st
∣∣ s0
)
, ΞIS by

ω̃it (s0), and ΞRD by ω̃i (s0).
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c) If the dynamic component of DS-weights is constant across all individuals at all dates, then
ΞIS = 0.

d) If the individual component of DS-weights is constant across all individuals, then ΞRD = 0.

Proposition 2 shows that a DS-planner who assigns DS-weights that do not vary across
individuals at all dates and histories makes welfare assessments purely based on aggregate efficiency
considerations. This result bears resemblance to the classic question of defining a normative
representative consumer — see e.g., Mas-Colell, Whinston and Green (1995) or Acemoglu (2009). In
particular, Proposition 2a) implies that the risk-sharing, intertemporal-sharing, and redistribution
components are zero in single-agent or representative-agent economies in which all individuals have
the same DS-weights, i.e., DS-weights are symmetric. Parts b) through d) of Proposition 2 also show
that, depending on which specific components of the individual multiplicative decomposition of DS-
weights are invariant across individuals, it may be that ΞRS = 0, ΞIS = 0, or ΞRD = 0. These results
highlight the cross-sectional nature of the risk-sharing, intertemporal-sharing, and redistribution
components. Moreover, parts c) and d) of Proposition 2 respectively imply that the intertemporal-
sharing and the redistribution components are always zero when individuals are ex-ante identical.

Given their practical importance, we highlight the following implications of Proposition 2 in four
corollaries.16

Corollary 1. (Representative-agent economies) Welfare assessments in single-agent economies or
representative-agent economies in which DS-weights are symmetric are exclusively attributed to
aggregate efficiency considerations, i.e., ΞRS = ΞIS = ΞRD = 0.

Corollary 2. (Perfect-foresight economies) Welfare assessments in perfect-foresight economies in
which the individual multiplicative decomposition of DS-weights is normalized are never attributed to
risk-sharing, i.e., ΞRS = 0.

Corollary 3. (Economies with ex-ante identical individuals) Welfare assessments in economies in
which all individuals are ex-ante identical (but not necessarily ex-post) and DS-weights are symmetric
are never attributed to intertemporal-sharing or redistribution, i.e., ΞIS = ΞRD = 0.

Corollary 4. (Static economies) Welfare assessments in static economics in which the individual
multiplicative decomposition of DS-weights is normalized are exclusively attributed to aggregate
efficiency or redistribution considerations, i.e., ΞRS = ΞIS = 0.

In Proposition 3, we identify conditions on the set of policy changes under which the welfare
assessments of a DS-planner i) are purely based on aggregate efficiency considerations or ii) are
such that the risk-sharing, or the risk-sharing and the intertemporal-sharing components are zero.

16We say that DS-weights are symmetric when two individuals with identical preferences and identical (random)
paths for consumption and hours are assigned identical DS-weights. This is a natural restriction when making welfare
assessments — see e.g., Mas-Colell, Whinston and Green (1995) for a discussion of symmetry. Corollaries 2 and 4
require a normalize individual multiplicative decomposition so that the choice of units of ωit

(
st
∣∣ s0
)
and ωit (s0) does

not generate meaningless cross-sectional variation when computing ΞRS and ΞIS .
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Generically, a policy change will affect all four components of the aggregate additive decomposition.
Hence, to guarantee that some components of the aggregate decomposition are zero, Proposition 3
identifies policies that impact all individuals identically along certain dimensions.

Proposition 3. (Properties of aggregate additive decomposition: individual-invariant policies) Sup-
pose that the individual multiplicative decomposition of DS-weights is normalized, so

∑
st ω̃

i
t

(
st
∣∣ s0
)

=
1, ∀t, ∀i, and

∑T
t=0 ω̃

i
t (s0) = 1, ∀i.

a) If the instantaneous consumption-equivalent effect of a policy change, dui|c(st)
dθ , is identical across

individuals at all dates and histories, then the welfare assessment of a DS-planner is exclusively based
on aggregate efficiency considerations, i.e., ΞRS = ΞIS = ΞRD = 0.
b) If the instantaneous consumption-equivalent effect of a policy change, dui|c(st)

dθ , is identical across
individuals at all histories on a date, for all dates, i.e., ΞRS = ΞIS = 0.
c) If the instantaneous consumption-equivalent effect of a policy change, dui|c(st)

dθ , is identical across
individuals conditional on a date and history, for all dates and histories, i.e., ΞRS = 0.

Proposition 3a) shows that a policy change that affects all individuals identically across all dates
and histories can only affect aggregate welfare via aggregate efficiency considerations. Proposition
3b) shows that a policy change that varies over time but affects all agents identically across all
histories at a given date can affect aggregate welfare via aggregate efficiency and redistribution, but
not risk-sharing or intertemporal-sharing. Proposition 3c) shows that a policy change that affects
all individuals identically conditional on a history taking place but that can vary across dates and
individuals will have no risk-sharing component. It should be evident that, for generic DS-weights,
the converse of these results also holds. That is, policy changes must affect different individuals
differently if they load on the risk-sharing, intertemporal-sharing, or redistribution components of
the aggregate additive decomposition.

Proposition 3 critically relies on considering a normalized individual multiplicative decomposition
of (the dynamic and stochastic components of) DS-weights. As highlighted above, such normalization
guarantees that the components of the individual multiplicative decomposition have meaningful
units, which makes it possible to derive conditions on how policies affect individuals in terms of
consumption. See Section G.1 of the Online Appendix for further details.

Finally, we show in Proposition 4 that, in an endowment economy, aggregate efficiency
considerations play no role for a DS-planner when making normative assessments. We use the
term endowment economy to refer to economies in which all consumption comes from predetermined
endowments of the consumption good at each date and history, and individuals’ instantaneous utility
exclusively depends on consumption. If individual utility depended on other variables, Proposition
4 remains valid only when the sum of consumption-equivalent effects is zero.

Proposition 4. (Properties of aggregate additive decomposition: endowment economies) In an
endowment economy in which the aggregate endowment of the consumption good is invariant to
policy, the aggregate efficiency component of the welfare assessment of a DS-planner is zero for any
set of DS-weights, ωit

(
st
∣∣ s0
)
, i.e., ΞAE = 0.
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Proposition 4 highlights that the aggregate efficiency component captures the impact of policies
on the production side of the economy. Proposition 10 below further discusses endowment economies.

4 Normalized Welfarist Planners: Characterization and Properties

One of the challenges of the welfarist approach is to understand how a planner makes tradeoffs
among heterogeneous individuals, because of the ordinal nature of individual utilities. In Section
4.1, we first show how to systematically characterize — critically, in easily interpretable consumption
units — how a welfarist DS-planner makes such tradeoffs across periods and histories for a given
individual, and across individuals. Next, in Section 4.2, we characterize new additional properties
of the aggregate additive decomposition of welfare assessments for welfarist planners. We focus on
defining and studying normalized welfarist planners because their welfare assessments satisfy highly
desirable properties. In particular, we show that all normalized welfarist planners conclude that the
risk-sharing and intertemporal-sharing components are zero when markets are complete, that the
intertemporal-sharing component is zero when individuals can freely trade a riskless bond, and that
different normalized welfarist planners — with different SWF’s W (·) — exclusively disagree on the
redistribution component.

4.1 Characterization of Individual Multiplicative Decomposition for Normalized
Welfarist Planners

Proposition 5 characterizes the unique normalized individual multiplicative decomposition of DS-
weights for a given welfarist planner, i.e., for a given SWF, W (·), defined in Equation (4).

Proposition 5. (Normalized welfarist planners: individual multiplicative decomposition) The unique
normalized individual multiplicative decomposition of DS-weights for a welfarist planner with SWF,
W (·), is given by

ω̃i,Wt

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
) ∂ui(st)

∂cit

(βi)t
∑
st πt (st| s0) ∂ui(s

t)
∂cit

=
πt
(
st
∣∣ s0
) ∂ui(st)

∂cit∑
st πt (st| s0) ∂ui(s

t)
∂cit

(13)

ω̃i,Wt (s0) =
(βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit∑T
t=0 (βi)t

∑
st πt (st| s0) ∂ui(s

t)
∂cit

(14)

ω̃i,W (s0) =
λi (s0)

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit∫
λi (s0)

∑T
t=0 (βi)t

∑
st πt (st| s0) ∂ui(s

t)
∂cit

di
, (15)

where λi (s0) = ∂W({Vi(s0)}i∈I)
∂Vi

.

This normalization explains how a welfarist planner makes welfare assessments. First, note that
the instantaneous consumption-equivalent effect of the policy at date t and history st, dui|c(st)

dθ , is
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expressed in units of the consumption good (dollars) at such a history. The stochastic component,
ω̃i,Wt

(
st
∣∣ s0
)
, can consequently be interpreted as the marginal rate of substitution between a dollar

in history st and a dollar across all possible histories at date t for individual i from the planner’s
perspective. Formally, the denominator of Equation (13) corresponds to the marginal value of
transferring one dollar in every possible history at date t. For instance, if the stochastic component
is 0.4 for a given individual, history, and date, a welfarist planner values equally a one-dollar transfer
at that particularly history and a transfer of 0.4 dollars to the same individual across all histories at
that date.

The dynamic component, ω̃i,Wt (s0), can similarly be interpreted as a marginal rate of substitution
between a dollar across all possible histories at date t and a dollar at date 0 for individual i from
the planner’s perspective. Formally, the denominator of Equation (14) corresponds to the marginal
value of permanently transferring one dollar across all dates and histories. For instance, if the
dynamic component is 0.3 for a given individual and date, a welfarist planner values equally — for
that individual — a one-dollar permanent transfer across all histories at that particular date and a
transfer of 0.3 dollars at date 0. Both the stochastic and the dynamic components are thus useful
because they allow the planner to meaningfully compare the welfare impact of policy changes across
dates and histories for a given individual i.

Finally, the individual component, ω̃i,Wt (s0), can be interpreted as the weight that a welfarist
planner assigns to welfare changes for a given individual, expressed in terms of a permanent dollar
transfer across dates and histories. Formally, the denominator of Equation (15) corresponds to the
marginal value of permanently transferring one dollar to each individual in the economy across all
dates and histories. For instance, if the individual component is 0.2 for a given individual, a welfarist
planner values equally a one-dollar permanent transfer to that individual across all dates and histories
and a permanent transfer of 0.2 dollars to all individuals across all dates and histories. It follows
from Equation (15) that a welfarist planner gives more weight to individuals who are more patient,
whose utility function has more curvature, who have lower consumption, and for whom λi (s0) is
lower.

Several implications follow from Proposition 5. First, the welfare assessment of a normalized
welfarist planner has a cardinal interpretation, since it is measured in dollars at all dates and histories
for all individuals. In other words, if dWW

dθ = 0.1, a normalized welfarist planner concludes that a
marginal policy change is equivalent to a permanent transfer to all individuals at all dates and
histories of 0.1 dollars.

Second, it is possible to reformulate the dynamic and stochastic normalized components as

ω̃i,Wt

(
st
∣∣∣ s0
)

= qit
(
st|s0

)∑
st q

i
t (st|s0)

= individual i date-0 state-price of history st

individual i date-0 price of date-t zero coupon bond (16)

ω̃i,Wt (s0) =
∑
st q

i
t

(
st|s0

)∑T
t=0

∑
st q

i
t (st|s0)

= individual i date-0 price of date-t zero coupon bond
individual i date-0 price of T -consol bond , (17)

where qit
(
st|s0

)
denotes the state-price over history st from the perspective of individual i at date 0,
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given by17

qit

(
st|s0

)
= (βi)t πt

(
st
∣∣∣ s0
) ∂ui (st)

∂cit
/
∂ui

(
s0)

∂ci0
. (18)

Equations (16) and (17) highlight that a welfarist planner makes tradeoffs across dates and histories
for a given individual exclusively using the individual’s own stochastic discount factor. This is a
natural result, since welfarist planners are non-paternalistic.

Third, we can reformulate the individual normalized components as

ω̃i,W (s0) =
λi (s0) ∂ui(s

0)
∂ci0

∑T
t=0

∑
st q

i
t

(
st|s0

)
∫
λi (s0) ∂ui(s

0)
∂ci0

∑T
t=0

∑
st q

i
t (st|s0) di

, (19)

where qit
(
st|s0

)
is defined in Equation (19). In contrast to Equations (13) and (16), the exact form

of the SWF W (·) does impact the normalized individual components, a fact that is critical to show
that welfarist planners exclusively disagree about the redistribution — see Proposition 8 below.18

Fourth, typically — at least when markets are incomplete (see Proposition 6 below) — we expect
all four components of the aggregate additive decomposition to be non-zero for a normalized welfarist
planner.

Finally, aggregate welfare assessments made by a particular welfarist planner (e.g., with a
particularW (·)) are directionally invariant to whether we consider a normalized or an unnormalized
individual multiplicative decomposition. That is, in both cases, both decompositions agree on
whether a policy is desirable or not. However, the normalized individual multiplicative decomposition
will have desirable properties, as we describe next.

4.2 Properties of Aggregate Additive Decomposition for Normalized Welfarist
Planners

Since welfarist planners are particular DS-planners, it follows immediately that Corollaries 1 and
3 of Proposition 2, as well as Propositions 3 and 4, also apply — without modification — to
normalized welfarist planners. However, we can further exploit the characterization of the individual
multiplicative decomposition introduced in Proposition 5 to identify new desirable properties of the
aggregate decomposition for normalized welfarist planners.

In particular, we show that i) all normalized welfarist planners conclude that the risk-sharing and
intertemporal-sharing components are zero when markets are complete, ii) the intertemporal-sharing
component is zero when individuals can freely trade a riskless bond, and iii) different normalized

17Consol bonds are typically defined as fixed-income securities with no maturity date. Since we consider economies
that may have a finite horizon, we define a T -consol bond as a bond that pays at every date. When T = ∞, the
conventional definition and ours coincide.

18Interestingly, as we discuss in Section G.3.3 of the Online Appendix, a planner who uses a date-0 Kaldor-Hicks
normalization, in which λi (s0) ∂ui(s

0)
∂ci0

= 1, implicitly assigns higher individual weights to those with higher willingness

to pay for T-consol bonds, since ω̃i,W (s0) =
∑T

t=0

∑
st
qit(st|s0)∫ ∑T

t=0

∑
st
qi
t
(st|s0)di

, which may seem like a desirable approach.
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welfarist planners — with different SWF’s W (·) — exclusively disagree on the redistribution
component. To our knowledge, the aggregate additive decomposition of welfare assessments
introduced in this paper is the first welfare decomposition for which these properties — which seem
highly desirable — have been established.

It seems natural to conjecture that the intertemporal- and risk-sharing components of the aggre-
gate additive decomposition depend critically on the ability of individuals to smooth consumption
intertemporally and across histories. For the purposes of Proposition 6, we say that markets are
complete when the marginal rates of substitution across all dates and histories are equalized across
agents — this condition is endogenously satisfied in any equilibrium model in which individuals can
freely trade claims that span all possible contingencies.

Proposition 6. (Properties of normalized welfarist planners: complete markets) When markets are
complete, that is, when the marginal rates of substitution across all dates and histories are equalized
across agents, the intertemporal-sharing and the risk-sharing components of the aggregate welfare
decomposition for a normalized welfarist planner are zero, that is, ΞRS = ΞIS = 0. Hence, in that
case, welfare assessments made by a normalized welfarist planner are exclusively driven by aggregate
efficiency and/or redistribution.

When markets are complete, ω̃i,NUt

(
st
∣∣ s0
)
and ω̃i,NUt (s0) become identical across individuals, as

shown by the fact that there is a unique stochastic discount factor, so qit = qt, ∀i, in Equations (16)
and (17). Combined with Proposition 2b), this immediately implies that ΞRS = ΞIS = 0. Intuitively,
a normalized welfarist planner perceives that no policy can entail welfare gains or losses coming from
risk-sharing or intertemporal-sharing among individuals, since individuals can perfectly share risks
and substitute intertemporally.19

Proposition 7. (Properties of normalized welfarist planners: riskless borrowing/saving) When
individuals are able to borrow and save freely at all times, the intertemporal-sharing component
of the aggregate welfare decomposition for a normalized welfarist planner is zero, that is, ΞIS = 0.

When agents are able to borrow and save freely at all times, ω̃i,NUt (s0) becomes identical across
individuals. This follows directly from Equation (16), since in that case

∑
st q

i
t

(
st|s0

)
is constant

for all individuals. Intuitively, a normalized welfarist planner perceives that no policy can entail
welfare gains or losses coming from intertemporal-sharing among individuals, since individuals can
perfectly transfer resources across periods. Proposition 7 immediately implies that constraints to
borrowing/saving are needed for the intertemporal sharing component to be relevant.

Proposition 8. (Properties of normalized welfarist planners: welfarist planners only disagree about
redistribution) For a given policy, the aggregate efficiency, risk-sharing, and intertemporal-sharing
components of the aggregate additive decomposition are identical for all normalized welfarist planners.

19Proposition 6 suggests that the cross-sectional dispersions of the dynamic and stochastic components of DS-weights,
SDi

[
ω̃it
(
st
∣∣ s0
)]

and SDi
[
ω̃it
(
s0)], may be natural candidates to measure the potential welfare gains from completing

markets for a normalized welfarist planner — see also Proposition 13 below.
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Hence, differences in welfare assessments between normalized welfarist planners are exclusively based
on how they assess redistribution.

Proposition 8 follows from the fact that the individual component of the individual multiplicative
decomposition, ω̃i,W (s0), is the only component that depends on the exact form ofW (·). Therefore,
differences in welfare assessments between welfarist planners can always be traced back to differences
in the redistribution component of the aggregate additive decomposition.20 This result crucially
hinges on the fact that welfarist planners are non-paternalistic, that is, welfarist planners use
individual lifetime utilities as inputs into their aggregate welfare calculations. In the next section, we
encounter new “pseudo-welfarist” planners for which this property does not hold — see also Section
G.3.1 of the Online Appendix.

5 New Welfare Criteria

A central objective of this paper is to provide a framework to systematically formalize new welfare
criteria to assess and conduct policy. In this section, we describe how to use DS-weights to
formalize new welfare criteria that capture particular normative objectives that society may find
appealing. These results have the potential to allow for disciplined discussions about the mandates of
independent technocratic institutions (central banks, financial regulators, other regulatory agencies,
etc.).

5.1 AE/AR/NR DS-Planners

In this subsection, we introduce three different sets of novel DS-planners: aggregate efficiency (AE)
DS-planners, aggregate efficiency/risk-sharing (AR) DS-planners, and no-redistribution (NR) DS-
planners. The welfare assessments made by these new planners purposefully set to zero particular
components of the aggregate additive decomposition. Within each set of DS-planners, we identify a
pseudo-welfarist planner as the one that represents the minimal departure relative to the normalized
welfarist planner.

By introducing these new planners we are able to formalize new welfare criteria that, for instance,
isolate aggregate efficiency as the sole welfare objective, or that remove the desire to redistribute
across individuals, among other goals. As we illustrate in our Applications, these new DS-planners
are helpful not only to provide analytical characterizations, but also to characterize and compute
optimal policy solutions guided by particular normative considerations.

Definition 4. (AE/AR/NR DS-planners: definition)
a) (Aggregate efficiency DS-planners) An aggregate efficiency (AE) DS-planner, that is, a planner
who exclusively values aggregate efficiency, is a DS-planner for whom the individual, dynamic, and

20Note that Proposition 8, when combined with Corollary 3 rationalizes why all normalized welfarist planners
directionally agree on welfare assessments when individuals are ex-ante identical. In that case, Corollary 3 implies that
the redistribution component is zero, and Proposition 8 shows that ΞAE , ΞRS , and ΞIS are identical for normalized
welfarist planners.

23



stochastic components of DS-weights are constant across all individuals at all dates and histories. A
pseudo-welfarist AE DS-planner, who values aggregate efficiency as a normalized welfarist planner,
has DS-weights ωi,W,AE

t

(
st
∣∣ s0
)
defined by

ω̃i,W,AE (s0) = 1, ω̃i,W,AE
t (s0) = Ei

[
ω̃i,Wt (s0)

]
, and ω̃i,W,AE

t

(
st
∣∣∣ s0
)

= Ei
[
ω̃i,Wt

(
st
∣∣∣ s0
)]
. (20)

b) (Aggregate efficiency/risk-sharing DS-planners) An aggregate efficiency/risk-sharing (AR) DS-
planner, that is, a planner who exclusively values aggregate efficiency and risk-sharing, is a DS-
planner for whom the individual and dynamic components of DS-weights are constant across all
individuals at all dates. A pseudo-welfarist AR DS-planner, who values aggregate efficiency and
risk-sharing as a normalized welfarist planner, has DS-weights ωi,W,AR

t

(
st
∣∣ s0
)
defined by

ω̃i,W,AR (s0) = 1, ω̃i,W,AR
t (s0) = Ei

[
ω̃i,Wt (s0)

]
, and ω̃i,W,AR

t

(
st
∣∣∣ s0
)

= ω̃i,Wt

(
st
∣∣∣ s0
)
. (21)

c) (No-redistribution DS-planners) A no-redistribution (NR) DS-planner, that is, a planner who
exclusively values aggregate efficiency, risk-sharing, and intertemporal-sharing, but disregards
redistribution, is a DS-planner for whom the individual component of DS-weights is constant across
all individuals. A pseudo-welfarist AR DS-planner, who values aggregate efficiency, risk-sharing,
and intertemporal-sharing as a normalized welfarist planner, has DS-weights ωi,W,NR

t

(
st
∣∣ s0
)
defined

by
ω̃i,W,NR (s0) = 1, ω̃i,W,NR

t (s0) = ω̃i,Wt (s0) , and ω̃i,W,NR
t

(
st
∣∣∣ s0
)

= ω̃i,Wt

(
st
∣∣∣ s0
)
. (22)

Formally, an AE DS-planner adopts components of the individual multiplicative decomposition of
DS-weights that are individual invariant. The pseudo-welfarist AE DS-planner sets these components
exactly equal to the cross-sectional average of those used by a normalized welfarist planner.21 An
AR DS-planner only makes the individual and dynamic components individual invariant, while the
pseudo-welfarist AR DS-planner further preserves the stochastic component used by the normalized
welfarist planner. A NR DS-planner only makes the individual component individual invariant, while
the pseudo-welfarist NR DS-planner further preserves the dynamic and stochastic components used
by the normalized welfarist planner.

We formalize the properties of these new planners for the components of the aggregate additive
decomposition in Proposition 9. Table 1 summarizes its results.

Proposition 9. (AE/AR/NR DS-planners: properties)
a) For an AE DS-planner, the risk-sharing, intertemporal-sharing, and redistribution components
of the aggregate additive decomposition are zero, that is, ΞRS = ΞIS = ΞRD = 0. The aggregate

21It is straightforward to consider other AE DS-planners that are not pseudo-welfarist. For instance, one could
choose the following weights:

ω̃i,AE (s0) = 1, ω̃i,AEt (s0) = β
t
, and ω̃i,AEt

(
st
∣∣ s0
)

= πt
(
st
∣∣ s0
)
,

for some β, plausibly β =
∫
βidi. This is helpful because, in some applications, DS-planners that are not pseudo-

welfarist may be easier to operationalize.
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Table 1: New Welfare Criteria: Summary

DS-Planners
ΞAE ΞRS ΞIS ΞRD

Aggregate Risk- Intertemporal- RedistributionEfficiency sharing sharing
Aggregate Efficiency (AE) X = 0 = 0 = 0

Aggregate Efficiency/Risk-Sharing (AR) X X = 0 = 0
No-Redistribution (NR) X X X = 0

Welfarist (W) X X X X

Note: Table 1 summarizes the properties of the aggregate additive decomposition for the DS-planners introduced in
Definition 4. These properties follow from Proposition 9.

efficiency component, ΞAE, is identical for a pseudo-welfarist AE DS-planner and its associated
normalized welfarist planner.
b) For an AR DS-planner, the intertemporal-sharing and redistribution components of the aggregate
additive decomposition are zero, that is, ΞIS = ΞRD = 0. The aggregate efficiency and risk-sharing
components, ΞAE and ΞRS, are identical for a pseudo-welfarist AR DS-planner and its associated
normalized welfarist planner.
c) For a NR DS-planner, the redistribution component of the aggregate additive decomposition is
zero, that is, ΞRD = 0. The aggregate efficient, risk-sharing, and intertemporal-sharing components,
ΞAE, ΞRS, and ΞIS, are identical for a pseudo-welfarist NR DS-planner and its associated normalized
welfarist planner.

Proposition 9 shows that the new DS-planners, by making the individual components of DS-
weights invariant across individuals, dates, and/or histories, are defined to directly exploit the
properties of the aggregate additive decomposition characterized in Proposition 2. Moreover, the
pseudo-welfarist planners are defined so as to exactly preserve the value of its components relative
to the associated welfarist planner along the dimensions in which they are not zero. This is useful in
practice because it allows us to interpret specific sums of the components the aggregate decomposition
of a welfarist planner as the welfare assessment made by a pseudo-welfarist planner.

Given its practical importance, we formally state this result as Corollary 5.

Corollary 5. (Pseudo-welfarist planners as components of welfarist aggregate additive decomposi-
tion) Particular sums of the components of the aggregate additive decomposition of welfare assess-
ments for a given welfarist planner have the interpretation of welfare assessments for particular
pseudo-welfarist DS-planners.

Interestingly, it is not possible to define a new pseudo-welfarist planner for whom exclusively
the risk-sharing and intertemporal-sharing components are zero, as we show in Section G.2 of the
Online Appendix. To guarantee that ΞRS = ΞIS = 0, a planner would need ωit (s0) and ω̃it

(
st
∣∣ s0
)

to be individual-invariant, which would interfere with ensuring that the value of ΞRD is the same as
for a welfarist planner. A similar logic applies to other combinations of the different components.
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Nonetheless, it is certainly possible to define new planners that are not pseudo-welfarist but that
exclusively value aggregate efficiency and redistribution.

5.2 α-DS-planners

The new planners that we introduce in Definition 4 by no means exhaust the set of new planners that
one can define using DS-weights. For instance, it is possible to define a new planner that spans i)
AE, ii) AR, and iii) NR pseudo-welfarist planners, as well as iv) the associated normalized welfarist
planner. We refer to this planner as an α-DS-planner.

Definition 5. (α-DS-planner: definition) An α-DS-planner is a DS-planner for whom the
individual, dynamic, and stochastic components of DS-weights are linear combinations of the
components of a normalized welfarist planner and the component of an AE pseudo-welfarist planner.
An α-DS-planner has DS-weights ωi,W,α

t

(
st
∣∣ s0
)
defined by

ω̃i,W,α
t

(
st
∣∣∣ s0
)

= (1− α2) ω̃i,W,AE
t

(
st
∣∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣∣ s0
)

ω̃i,W,α
t (s0) = (1− α3) ω̃i,W,AE

t (s0) + α3ω̃
i,W
t (s0)

ω̃i,W,α (s0) = (1− α4) ω̃i,W,AE (s0) + α4ω̃
i,W (s0) ,

where α = (α2, α3, α4), and where α2 ∈ [0, 1], α3 ∈ [0, 1], α4 ∈ [0, 1].

Depending on the value of α, an α-DS-planner behaves as a particular pseudo-welfarist planner
or as a combination of pseudo-welfarist planners. In particular, as we show in Section G.2 of the
Online Appendix, when α = (0, 0, 0), we have an AE DS-planner; when α = (1, 0, 0), we have an
AR DS-planner; when α = (1, 1, 0), we have a NR DS-planner; and when α = (1, 1, 1), we have a
welfarist planner.

By varying α, it is possible to model planners who care about the different components to different
degrees. Moreover, estimating α from actual policies in the context of a particular policy problem
has the potential to uncover the weights that a particular policymaker attaches in practice to the
different components of the aggregate additive decomposition. Dávila and Schaab (2022) leverage
this observation to develop an “inverse optimum” approach in the context of monetary policy.

5.3 Paternalism and Institutional Design

In Figure 1, we summarize the relations between the different planners studied in this section. We
conclude this section with two remarks.

Remark 1. (Paternalistic vs. Non-paternalistic DS-planners; AE and AR planners are paternalistic)
It is important to highlight that AE and and AR DS-planners are paternalistic, in the sense
that their welfare assessments do not take as an input changes in the lifetime utilities/valuations
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Figure 1: DS-Planners: Summary

Note: Figure 1 summarizes the relations between the different planners studied in Section 5 paper. The vertical dashed
line separates non-paternalistic planners from paternalistic planners. All welfarist planners, as well as no-redistribution
(NR) planners, are non-paternalistic. Aggregate efficiency (AE) and aggregate efficiency/risk-sharing (AR) planners
are paternalistic. Some pseudo-welfarist planners are non-paternalistic (welfarist, NR), while others are paternalistic
(AE, AR). In this figure, the α-DS-planners are pseudo-welfarist with respect to the utilitarian planner.

of individuals.22 In these cases, a planner and an individual may have different assessments of
whether a policy change is welfare improving or not for that individual. However, NR DS-planners
are not paternalistic. Intuitively, the welfare assessments of any planner who respects individual
preferences must value intertemporal-sharing and risk-sharing considerations as long as individuals
do. Redistributional concerns are independent of whether a planner respects individuals’ desires for
interpersonal sharing. Therefore, if a planner wants to make welfare assessments that do not value
intertemporal-sharing or risk sharing, such planner must necessarily be paternalistic.

Remark 2. (Implications for policy mandates and institutional design) The framework developed
in this paper has the potential to guide the design of independent technocratic institutions. In
practice, such institutions must be given a “mandate”, much like defining a set of DS-weights.
Therefore, a society may want to consider designing independent technocratic institutions that

22As explained in Section G.3.1 of the Online Appendix, a non-paternalistic planner makes welfare assessments
according to

dWNP (s0)
dθ

=
∫
φi (s0) dVi (s0)

dθ
di,

where φi (s0) are functions of all possible paths of outcomes and where dVi(s0)
dθ

is defined in Equation (2). The key
distinction between a welfarist and a non-paternalistic planner is that, for welfarist planners φi (s0) must take the
particular form ∂W({Vi(s0)}i∈I)

∂Vi
, where W (·) is a SWF of the form described in Equation (4). Non-paternalistic

planners can set φi (s0) freely.
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have some normative considerations in their mandate but not others, along the lines of the logic
we have developed in this section. For instance, the current “dual mandate” (stable prices and
maximum employment) of the Federal Reserve (as defined by the 1977 Federal Reserve Act) seems
to be better described by an aggregate efficiency DS-planner, rather than a welfarist planner,
which would care about cross-sectional considerations. Alternatively, an institution like the Federal
Emergency Management Agency (FEMA) has as part of its mandate to “support the Nation in a
risk-based, comprehensive emergency management system”, which unavoidably involves risk-sharing
considerations.

6 Additional Results

In this section, we include additional results. We first further decompose the components of the
aggregate additive decomposition and then explain how to connect welfare assessments to measures
of inequality. Next, we explain how to make welfare assessments using DS-weights in recursive
environments, and show how to implement welfare assessments via an instantaneous Social Welfare
Function. Finally, we briefly described additional results included in the Online Appendix.

6.1 Decomposing the components of the aggregate additive decomposition

Here, we further decompose and provide additional insights into the four components of the aggregate
additive decomposition. For the aggregate efficiency and the redistribution components, we provide
new stochastic decompositions. For the risk-sharing and intertemporal-sharing components, we
provide alternative cross-sectional decompositions.

Aggregate efficiency (ΞAE). It is important to highlight that the aggregate efficiency component
ΞAE includes aggregate valuation considerations. We formalize this insight by further decomposing
the aggregate efficiency component of the aggregate additive decomposition into an expected
aggregate efficiency component and an aggregate insurance component.

Proposition 10. (Aggregate efficiency component: stochastic decomposition) The aggregate effi-
ciency component of the aggregate additive decomposition, ΞAE, can be decomposed into i) an expected
aggregate efficiency component, ΞAE, and ii) an aggregate insurance component, ΞAE, as follows:

ΞAE =
T∑
t=0

ωt (s0)E0
[
ωπt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE (Expected Aggregate Efficiency)

(23)

+
T∑
t=0

ωt (s0)Cov0

[
ωπt

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE (Aggregate Insurance)

,
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where we define ωt (s0) = Ei
[
ω̃it (s0)

]
, ωπt

(
st
∣∣ s0
)

= Ei[ω̃it( st|s0)]
πt( st|s0) , and dui|c(st)

dθ = Ei
[
dui|c(st)

dθ

]
, and

where E0 [·] and Cov0 [·, ·] denote expectations and covariances conditional on s0.

The expected aggregate efficiency component, ΞAE , captures the discounted expectation over
time and histories of the aggregate instantaneous consumption-equivalent effect of the policy change.
The aggregate insurance component, ΞAE , captures whether aggregate efficiency gains take place
in histories that a DS-planner values more in aggregate terms. It should be evident that aggregate
insurance, ΞAE , based on aggregate covariances over histories, is logically different from the risk-
sharing and intertemporal-sharing components, ΞRS and ΞIS , based on cross-sectional covariances.

In practical terms, the welfare gains associated with eliminating aggregate business cycles in a
representative-agent economy, as in the policy experiment of Lucas (1987), fully arise from aggregate
insurance considerations, that is, ΞAE . Note that both the expected aggregate efficiency and the
aggregate insurance components incorporate discounting via ωt (s0), so policy changes that front-load
gains from expected aggregate efficiency or aggregate insurance are more desirable.

Risk-sharing and intertemporal-sharing components (ΞRS and ΞIS). While Propositions
2 through 4 establish desirable properties of the aggregate additive decomposition, it is possible
to provide alternative formulations of the risk-sharing and intertemporal-sharing components. In
Proposition 11 we further decompose the intertemporal-sharing component into a pure intertemporal-
sharing component, a weight concentration component, and a policy-weights coskewness component.
We also show a new identity that the sum of the risk-sharing and intertemporal-sharing components,
ΞRS + ΞIS , must satisfy.

Proposition 11. (Risk-sharing/intertemporal-sharing components: alternative cross-sectional de-
compositions)
a) The intertemporal-sharing component of the aggregate additive decomposition, ΞIS, can be decom-
posed into i) a pure intertemporal-sharing component, ΞIS, ii) a weight concentration component,
ΞIS and iii) a policy-weights coskewness component, ΞIS as follows:

ΞIS =
T∑
t=0

∑
st

Ei
[
ω̃it

(
st
∣∣∣ s0
)]

Covi

[
ω̃it (s0) ,

dui|c
(
st
)

dθ

]
︸ ︷︷ ︸

=ΞIS (Pure Intertemporal-sharing)

+
T∑
t=0

∑
st

Covi
[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
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Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞIS (Weight Concentration)

+
T∑
t=0

∑
st

Ei
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(
st
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dθ
− Ei
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(
st
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])(
ω̃it (s0)− Ei

[
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]) (
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(
st
∣∣∣ s0
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− Ei
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ω̃it

(
st
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︸ ︷︷ ︸
=ΞIS (Policy-weights Coskewness)

.

(24)
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b) The sum of the risk-sharing and the intertemporal-sharing components, ΞRS + ΞIS, can
be decomposed into i) a weight concentration component, ΞC23 and ii) an interpersonal-sharing
component, ΞI23 as follows:

ΞRS + ΞIS =
T∑
t=0

∑
st

Covi
[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞWC
23 (Weight Concentration)

+
T∑
t=0

∑
st

Covi

[
ω̃it (s0) ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞI23 (Interpersonal-sharing)

, (25)

where ΞWC
23 = ΞIS, defined above, and where ΞI23 = ΞRS + ΞIS + ΞIS.

The first component of ΞIS introduced in Proposition 11a), ΞIS , can be interpreted as capturing
pure intertemporal-sharing considerations. The major difference between ΞIS and ΞIS is that
the former is based on cross-sectional covariances of the dynamic component of DS-weights with
the expected — interpreting the stochastic weights as probabilities — instantaneous consumption-
equivalent effect of the policy at a given date. The latter, on the other hand, is based on the
expectation of cross-sectional covariances of the dynamic component of DS-weights with the actual
instantaneous consumption-equivalent effect of the policy. Formally, the difference between ΞIS and
ΞIS is captured by the remaining two components, which we describe next.

The second component of ΞIS introduced in Proposition 11a), ΞIS , can be interpreted as capturing
the welfare gain (loss) associated with policies that increase aggregate instantaneous consumption-
equivalent when the dynamic and stochastic components of DS-weights are positively (negatively)
correlated across individuals. While one may consider including ΞIS in the aggregate efficiency
component, there are two good reasons not to do so. First, it would require knowledge of the cross-
section of the dynamic and stochastic components of DS-weights, which goes against expressing the
aggregate efficiency component exclusively as a function of aggregate statistics. Second, as implied
by Proposition 6, for the case of welfarist planners, ΞIS = 0 when markets are complete. This fact
highlights that ΞIS necessarily relies on imperfect insurance across individuals, which makes this
term unsuitable to capture aggregate efficiency considerations.

The third component of ΞIS introduced in Proposition 11a), ΞIS , is exactly based on the
coskewness between i) the dynamic component of DS-weights, ii) the stochastic component of DS-
weights, and iii) the instantaneous consumption-equivalent effect of a policy. Coskewness is a measure
of how much three random variables jointly change. For instance, note that ΞIS could be non-zero
even when Covi

[
ω̃it (s0) , ω̃it

(
st
∣∣ s0
)]

= 0 and, consequently, ΞWC
23 = 0. Also, coskewness is zero when

the random variables are multivariate normal (Bohrnstedt and Goldberger, 1969), so it relies on
higher-order moments.23 Note also that if one of ω̃it (s0), ω̃it

(
st
∣∣ s0
)
, or dui|c(st)

dθ is constant across all
23We expect these terms to be in important in models that emphasize higher moments of the distribution of individual
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Figure 2: Aggregate additive decomposition

Note: Figure 2 illustrates the aggregate additive decomposition of welfare assessments for a general DS-planner, and
how its four components can be further decomposed. See Propositions 1, 10, 11, and 12 for formal definitions of each
of the terms.

individuals, then ΞWC
23 = 0.

Proposition 11b) simply provides an alternative decomposition of the sum of risk-sharing and
intertemporal-sharing. Its first component is exactly the weight concentration component just
described, ΞWC

23 = ΞIS , while the second component corresponds to the sum of risk-sharing, ΞRS ,
pure intertemporal-sharing, ΞIS , and policy-weights coskewness, ΞIS . At times, this alternative
decomposition may provide additional insights relative to the one in Proposition 1.

Redistribution component (ΞRD). Similarly to the aggregate efficiency component, the
redistribution component ΞRD is shaped by valuation considerations, in this case at the individual
level. Here, we decompose the redistribution component of the aggregate additive decomposition
into an expected redistribution component and a redistributive insurance component.

Proposition 12. (Redistribution component: stochastic decomposition) The redistribution compo-
nent of the aggregate additive decomposition, ΞRD, can be decomposed into i) an expected redistribu-
tion component, ΞRD, and ii) a redistributive insurance component, ΞRD, as follows:

ΞRD = Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)E0
[
ω̃i,πt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞRD (Expected Redistribution)

+ Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)Cov0

[
ω̃i,πt

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞRD (Redistributive Insurance)

,

where we define ωi,πt
(
st
∣∣ s0
)

= ω̃it( st|s0)
πt( st|s0) , and where E0 [·] and Cov0 [·, ·] denote expectations and

covariances conditional on s0.
risks (e.g., Guvenen, Ozkan and Song (2014)).
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The expected redistribution component, ΞRD, captures the perceived gains for a DS-planner from
changes in the expected instantaneous consumption-equivalent effect of the policy change. When
individuals with a high individual component of DS-weights, ω̃i

(
s0), have higher expected instanta-

neous consumption-equivalent effect, a planner attributes this to the redistribution component. The
redistributive insurance component, ΞRD, captures whether individual gains from the policy change
take place in histories that are more desirable for individuals with higher individual component of
DS-weights, ω̃i

(
s0). In practical terms, the redistributive insurance component will be non-zero

when a policy improves individual insurance for individuals with a higher individual component of
DS-weights.24

6.2 Inequality, bounds, and welfare assessments

Concerns related to inequality often take a prominent role when assessing policies. Our aggregate
additive decomposition provides direct insights into which particular forms of inequality matter
for the determination of aggregate welfare assessments and each of their components. Formally,
in Proposition 13, we provide bounds for the risk-sharing component, the intertemporal-sharing
component, and the redistribution component defined in Proposition 1 based on the cross-sectional
dispersion of DS-weights and policy effects.25 These bounds are helpful in practice because they
can be computed using univariate statistics, i.e., cross-sectional standard deviations, and do not
require the joint distribution of DS-weights and normalized consumption-equivalent effects, which
are necessary to compute cross-sectional covariances (a multivariate statistic).

Proposition 13. (Cross-sectional dispersion bounds) The value of the risk-sharing, the intertemporal-
sharing, and the redistribution components defined in Proposition 1 satisfy the following bounds:

|ΞRS | ≤
T∑
t=0

Ei
[
ω̃it

(
s0
)]∑

st

SDi
[
ω̃it

(
st
∣∣∣ s0
)]
× SDi

[
dui|c

(
st
)

dθ

]
(26)

|ΞIS | ≤
T∑
t=0

SDi
[
ω̃it

(
s0
)]
× SDi

[∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
(27)

|ΞRD| ≤ SDi
[
ω̃i
(
s0
)]
× SDi

[
T∑
t=0

ω̃it

(
s0
)∑

st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
, (28)

where SDi [·] denotes a cross-sectional standard deviation.

Proposition 13 shows that the magnitude of each of the three components considered here
is determined (bounded above) by i) the cross-sectional dispersion of the different components

24Note that the redistribution component, ΞRD, can be positive or negative for Pareto-improving policies. This
can occur if different individuals are differentially affected by the policy and if a DS-planner has different individual
multiplicative components for different individuals.

25It should be clear that cross-sectional variances and standard deviations can only bound the welfare effect of policies.
Equation (11) shows that cross-sectional covariances exactly determine each of the components of the aggregate additive
decomposition.
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of DS-weights, SDi
[
ω̃it
(
st
∣∣ s0)], SDi

[
ω̃it
(
s0)], and SDi

[
ω̃i
(
s0)], as well as ii) the cross-sectional

dispersion of the instantaneous consumption-equivalent effect of the policy, effectively SDi
[
dui|c(st)

dθ

]
.

Consequently, inequality considerations do matter for the aggregate assessments of policies via the
cross-sectional dispersion of DS-weights or the impact of a policy by itself.

Proposition 13 is helpful for three reasons. First, it shows that normative criteria with highly
dispersed DS-weights have the potential to generate a large welfare effect of policies via risk-sharing,
intertemporal-sharing and redistribution. Second, by computing the cross-sectional dispersion of the
different components of DS-weights for a given criterion, it shows that it is possible to understand
the potential scope that inequality may play when determining the risk/intertemporal-sharing and
redistribution components of aggregate welfare assessments. Finally, Proposition 13 shows that the
risk-sharing, intertemporal-sharing and redistribution components depend on the extent to which
which policies impact different individuals differently. That is, the more dui|c(st)

dθ varies across
individuals, dates, and/or histories, the more likely dispersion in DS-weights matters for welfare
assessments.

6.3 Recursive formulation

Up to now, we have defined DS-weights for a sequence formulation of a dynamic stochastic economy.
Here, we describe how to operationalize DS-weights in recursive environments, which are widely used
in practice. As in Ljungqvist and Sargent (2018), we denote possible recursive states by s and s′.26

Proposition 14. (Recursive formulation) Suppose that individual consumption and hours are
exclusively a function of the current realization of st and do not depend on the full history leading to
those outcomes, so that cit

(
st
)

= ci (st) = ci (s) and nit
(
st
)

= ni (st) = ni (s). Then, it is possible to
express dWDS(s0)

dθ , as defined in Equation (7), as follows:

dWDS (s0)
dθ

=
∫
ωi0

(
s0|s0

) dV̂ DS
i,0 (s0)
dθ

di, (29)

where dV̂ DSi,t (s)
dθ has the following recursive representation:

dV̂ DS
i,t (s)
dθ

=
dui|c (s)
dθ

+ β̂i,t
∑
s′

π̂i,t
(
s′|s

) dV̂ DS
i,t+1 (s′)
dθ

, (30)

26Note that in recursive economies individuals with idiosyncratic (and potentially aggregate) states (i.e., Aiyagari or
Krusell-Smith style economies) individuals can be ex-ante heterogeneous at the time of making a welfare assessment
for two different reasons. First, individuals can be different because of predetermined reasons (e.g., individuals have
different time-invariant preferences or face shocks that come from different distributions). Second, individuals can be
different because they are at a different idiosyncratic state (e.g., individuals have different endowments or asset holdings
at the time of the welfare assessment, even though they face identical problems starting from a given idiosyncratic
state). This is an important observation to interpret correctly some of the results in this paper. For instance, Corollary
3 of Proposition 2 only applies when all individuals are identical because of predetermined reasons and when they
all have the same initial state. Obviously, ex-post, individuals will also be heterogeneous if they experience different
shocks. In the notation used in this section, ex-ante heterogeneity of either form is captured by the index i.
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where β̂i,t and π̂i,t (s′|s) correspond to a twisted discount factor and a twisted set of transition
probabilities of the form:

β̂i,t =
ω̃it+1 (s0)
ω̃it (s0)

and π̂i,t
(
s′
∣∣ s) =

ω̃it+1 (s′| s0)
ω̃it (s| s0)

. (31)

For Equation (30) to be a valid recursive representation, it must be that β̂i,t is exclusively a function
of time and s0 and that π̂i,t (s′| s) is exclusively a function of time, s, and s0, but not of the full
histories.

Proposition 14 shows that, in order to make a welfare assessment at a state s0, a DS-planner
must compute the date-0 DS-weights for all individuals, ωi0

(
s0|s0

)
, as well as the value of dV̂

DS
i,0 (s0)
dθ =

dV DS
i

(s0)
dθ

ω̃i0(s0)ω̃i0( s0|s0) , which can be computed recursively following Equation (30). Intuitively, it is possible

to find a recursive representation for dV̂ DSi,t (s)
dθ , because it is expressed in units of consumption good

at state s. In fact, dV̂
DS
i,t (s)
dθ has the interpretation of an asset pricing equation for an asset that pays

dui|c(s)
dθ units of consumption good to individual i in state s.
It is worth highlighting that the set of DS-weights that admits a recursive representation is

smaller than the set of DS-weights that can be expressed non-recursively. In particular, β̂i,t and
π̂i,t (s′| s), which are ratios components of the individual decomposition of DS-weights cannot depend
on histories, although they may be time-dependent. Interestingly, even in a fully recursive economy,
the recursive representation of dV̂ DSi,t (s)

dθ is typically time-dependent, because the state in which
the welfare assessment takes place will anchor the future values of the dynamics and stochastic
components of the individual multiplicative decomposition for a DS-planner. Only in particular
cases it is possible to find a time-independent recursive representation, as we discuss next.

As we show in the Online Appendix, when π (s′| s) is Markov, we can express β̂i,t and π̂i,t (s′| s)
for a normalized welfarist planners as follows:

β̂Wi,t = βi

∑
s′ πt+1 (s′| s0) ∂ui(s

′)
∂ci∑

s πt (s| s0) ∂ui(s)
∂ci︸ ︷︷ ︸

=dynamic correction

≡ 1
Rfi,t

and π̂Wi,t
(
s′
∣∣ s) = π

(
s′
∣∣ s)

∂ui(s′)
∂ci∑

s′ πt+1( s′|s0) ∂ui(s
′)

∂ci

∂ui(s)
∂ci∑

s
πt( s|s0) ∂ui(s)

∂ci︸ ︷︷ ︸
=stochastic correction

≡ π?i,t
(
s′
∣∣ s) .

(32)
In this case, Equation (30) can be literally interpreted as a cum-dividend asset pricing equation,

since β̂Wi,t ≡ 1/Rfi,t has the interpretation of individual i’s one-period forward rate between dates t
and t+ 1, and π̂Wi,t (s′| s) ≡ π?i,t (s′| s) has the interpretation of individual i’s risk-neutral probability
between dates t and t+ 1. As we show in the Online Appendix, Equation (30) is time-independent
for normalized welfarist planners and NR pseudo-welfarist planners.27 However, Equation (30) is
time-dependent for AR and AE pseudo-welfarist planners. In our application, which we formulate

27Note that the product β̂Wi (s) · π̂Wi (s′| s) corresponds to the state-price assigned at state s by individual i to state
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recursively, we further illustrate how to use DS-weights in recursive environments.

6.4 Instantaneous SWF formulation

As explained in Section 2.2, the conventional approach to making welfare assessments relies on
defining a Social Welfare Function that takes individual lifetime utilities as arguments. In this
paper, we have shown that an approach based on generalized marginal DS-weights defined over
instantaneous consumption-equivalents allows us to consider a larger class of normative objectives.
In this section, we show that it is possible to interpret dWDS(s0)

dθ , defined in Equation (7), as the first-
order condition of a planner with a particular Social Welfare Function that i) takes as arguments
individuals’ instantaneous utilities, not lifetime utilities, and ii) features generalized (endogenous)
welfare weights.

Formally, a linear instantaneous Social Welfare Function, which we denote by I (·), is a linear
function of individuals’ instantaneous utilities, given by

I
({
ui
(
cit

(
st
)
, nit

(
st
))}

i,t,st

)
=
∫ T∑

t=0

∑
st

λit

(
st
)
ui
(
cit

(
st
)
, nit

(
st
))
di, (33)

where the instantaneous Pareto weights λit
(
st
)
define scalars that are individual-, date-, and history-

specific.28 Proposition 15 shows that welfare assessments made under DS-weights correspond to the
first-order condition of a planner whose objective function is given by a particular linear instantaneous
SWF. It also shows that any local optimum can be found as the first-order condition of a planner
who maximizes a linear ISWF, where DS-weights are evaluated at the optimum.

Proposition 15. (Linear instantaneous SWF formulation) For any set of DS-weights, there exist
instantaneous Pareto weights

{
λit
(
st
)}
i,t,st such that dWDS(s0)

dθ , defined in Equation (7), corresponds
to the first-order condition of a planner who maximizes a linear instantaneous SWF I (·) with
instantaneous Pareto weights λit

(
st
)

= ωit
(
st; θ

)
/
∂ui(st;θ)

∂cit
. Moreover, at a local optimum, in

which dWDS(s0)
dθ = 0, there exist instantaneous Pareto weights

{
λit
(
st
)}
i,t,st such that the optimal

policy satisfies the first-order condition formula of a linear instantaneous SWF I (·), defined in
Equation (33). The instantaneous Pareto weights in that case are evaluated at the optimum, so
λit
(
st
)

= ωit
(
st; θ?

)
/
∂ui(st;θ?)

∂cit
, where θ? denotes the value of θ at the local optimum.

Proposition 15 is helpful because it shows how to reverse-engineer Pareto weights of a linear

s′:
β̂Wi,t · π̂Wi,t

(
s′
∣∣ s) = βiπ

(
s′
∣∣ s) ∂ui (s′)

∂ci
/
∂ui (s)
∂ci

.

28At times, it may be more convenient to define a linear instantaneous SWF I (·) as follows:

I
({
ui
(
cit
(
st
)
, nit
(
st
))}

i,t,st

)
=
∫ T∑

t=0

∑
st

(βi)t πt
(
st
∣∣ s0
)
λit
(
st
)
ui
(
cit
(
st
)
, nit
(
st
))
di.

Both formulations are fully exchangeable in the baseline environment considered in this paper.

35



instantaneous SWF from DS-weights, while guaranteeing that any local optimum can be interpreted
as the solution to the maximization of a particular linear instantaneous SWF. Because the
instantaneous Pareto weights λit

(
st
)
are evaluated at the optimum θ?, they are taken as fixed in the

maximization of an linear instantaneous SWF. In practice, it is impossible to define the instantaneous
Pareto weights λit

(
st
)
without first having solved for the optimum using our approach that starts

with DS-weights as primitives. Relatedly, it is typically impossible to translate DS-weights into
instantaneous Pareto weights that are invariant to θ and the rest of the environment.29

6.5 Summary of additional results

In Section G of the Online Appendix, we discuss additional results. First, we provide a systematic
dimensional analysis of DS-weights and its components, illustrating why the choice of units if critical
to make meaningful welfare assessments. Second, we expand on how the approach that we develop
in this paper relates to other approaches used to make welfare assessments. In particular, we revisit
different welfarist SWF’s, we describe how our results relate to Saez and Stantcheva (2016) and
the Kaldor (1939)/Hicks (1939) compensation principle, we show how the consumption-equivalent
approach of Lucas (1987)/Alvarez and Jermann (2004) can be seen as using a particular set of DS-
weights that are related to the DS-weights used by welfarist planners but do not allow for aggregation,
and we explain how allowing for transfers can be interpreted as restricting or partially selecting a set
of DS-weights. Finally, we explain how to make use of DS-weights in optimal policy problems using
both primal and dual methods, and discuss how to make global welfare assessments.

7 Application: Transfer Policies under Incomplete Markets

In this section, we illustrate how to make welfare assessments using DS-weights in a fully specified
application. The purpose of this application is to illustrate the mechanics of our approach in a
tractable dynamic stochastic environment.

After defining a common economic environment, we consider two different scenarios. Scenario 1
corresponds to an economy in which individuals with identical preferences face idiosyncratic risk. In
this case, we consider transfer policies that can move the economy towards full insurance. Scenario
2 corresponds to an economy in which individuals with different preferences face aggregate risk. In
this case, we consider transfer policies that shift aggregate risk to the more risk-tolerant investors. In
both scenarios, we carefully explain the channels through which normalized welfarist planners find
such policies desirable or not.

Common Environment. We consider an economy with two types of individuals (individuals, for
short), with each corresponding to half of the population. Both individuals have time-separable

29For the purpose of showing that it is possible to define a DS-planner via a well-defined SWF with generalized
(endogenous) weights, it is sufficient to consider linear instantaneous SWF’s. There is scope to explore further the
welfare implications of using more general instantaneous SWF, or even SWF’s directly defined over consumption, hours,
or other commodities.
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Table 2: Summary of scenarios

Uncertainty Preferences
Endowment yi (s) Policy T i (s) Consumption ci (s)
y1 (s) y2 (s) T 1 (s) T 2 (s) c1 (s) c2 (s)

#1 Idiosyncratic Common y + ε (s) y − ε (s) −ε (s) ε (s) y + ε (s) (1− θ) y − ε (s) (1− θ)
#2 Aggregate Heterogeneous y + ε (s) y + ε (s) −ε (s) ε (s) y + ε (s) (1− θ) y + ε (s) (1 + θ)

Note: Instantaneous utility for both investors is given by ui (c) = c1−γi
1−γi

. Our benchmark parameterization is given by
β = 0.975, y = 1, ε (H) = 0.25, ε (L) = −0.25, and ρ = 0.95. If preferences are common, γ1 = γ2 = 2. If preferences
are heterogeneous, we assume that individual 1 is more risk averse, so γ1 > γ2, where γ1 = 5 and γ2 = 2.

constant relative risk aversion (CRRA) preferences with exponential discounting. We formulate
individual lifetime utility recursively as follows:

Vi (s) = ui
(
ci (s)

)
+ β

∑
s′

π
(
s′|s

)
Vi
(
s′
)
, where ui (c) = c1−γi

1− γi
,

where Vi (s) and ci (s) respectively denote the lifetime utility and the consumption of individual i in
a given state s; s and s′ denote possible states, and π (s′|s) is a Markov transition matrix, described
below; β is a discount factor, equal for both individuals; and ui (c) denotes the instantaneous utility
function of an individual i. A higher CRRA coefficient γi is mechanically associated with a lower
willingness to substitute consumption intertemporally.

There is a single nonstorable consumption good (dollar), which serves as numeraire. We consider
a extreme form of incomplete markets: no financial markets. Hence, in the absence of policy transfers,
individuals consume their endowments. The consumption of individual i at state s is given by their
endowment yi (s), and a transfer, θT i (s) R 0, where θ ∈ [0, 1] scales the size of the transfers at all
dates/states. Hence, the budget constraint of individual i in state s is given by

ci (s) = yi (s) + θT i (s) , (34)

where the form of yi (s) and T i (s) varies in each scenario considered. Given the lack of financial
markets, the equilibrium definition is trivial, so Equation (34) also defines equilibrium consumption
for individual i. We further assume that the transfers net out in the aggregate, so T 1 (s)+T 2 (s) = 0.
This assumption will immediately imply that aggregate efficiency is 0 for any policy.

Uncertainty in this economy is captured by a two-state Markov chain, with states denoted by
s = {L,H}, standing for a low (L) and a high (H) realization of y1 (s) (for individual 1) and a
transition matrix given by

Π =

 ρ 1− ρ
1− ρ ρ

 ,
where ρ ∈ [0, 1]. Table 2 summarizes the assumptions on yi (s) and T i (s) made in each scenario. In

37



this model, since dui|c(st)
dθ = T i (s), welfare assessments are simply given by

dWDS (s0)
dθ

=
∫ ∞∑

t=0

∑
st

ωit

(
st
∣∣∣ s0
)
T i (s) di. (35)

7.1 Scenario 1: Idiosyncratic risk, homogeneous preferences

Environment. In our first scenario, we assume i) that both individuals have identical preferences,
so γ1 = γ2 = γ, and ii) that they exclusively face idiosyncratic risk. Formally, we assume that

y1 (s) = y + ε (s) and y2 (s) = y − ε (s) ,

where y > 0, and where ε (L) = −ε (H). We consider the welfare assessment of a full-insurance
transfer policy. Formally, we set T 1 (s) = −ε (s) and T 2 (s) = ε (s), so individual consumption takes
the form

c1 (s) = y + ε (s) (1− θ) and c2 (s) = y − ε (s) (1− θ) .

Under this policy, when θ = 1, both individuals are fully insured. Note that aggregate consumption
does not depend on s or θ since

∫
ci (s) di = y.

Results. We adopt the following parameters: β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, and
γ1 = γ2 = 2. Importantly, we make the endowment processes persistent, by setting ρ = 0.975 as our
benchmark. In Figure 4, we compare how welfare assessments change when the endowment process
is extremely persistent (ρ = 0.999) and fully transitory (ρ = 0.5).30 As a benchmark, we consider a
normalized utilitarian planner with equal weights. In Figure 5 we compare how welfare assessments
change when we consider a normalized isoelastic planner.

Individual multiplicative decomposition of DS-weights. In Figure 3, we start by showing the
components of the individual multiplicative decomposition of DS-weights for a normalized utilitarian
planner for each of the individuals when θ = 0.25. Several insights emerge.

First, Figure 3 clearly illustrates that the DS-weights have time-dependence, despite the fact that
we consider a model that is recursive and stationary. This occurs because the shocks are persistent.

Second, the plots of the dynamic components show that a normalized utilitarian planner
overweights earlier periods for those individuals who initially have a low endowment/high marginal
utility. As reference we include the value of (1− β)βt = βt/

∑∞
t=0 β

t, which corresponds to the
dynamic weight for a hypothetical individual with linear marginal utility, i.e., when u′i

(
ci (s)

)
= 1.

Importantly, since dynamic weights must add up to 1 over time, overweighting initial periods for
individuals with low endowment/higher marginal utility necessarily implies underweighting periods
later in the future.

Third, the plots of the stochastic components show that a normalized utilitarian planner initially
overweights those states which are more likely given the initial state, although eventually the impact

30We use ρ = 0.999 so it makes for an easier illustration of the results. We could have used ρ = 1 instead.
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Figure 3: Individual multiplicative decomposition of DS-weights (Scenario 1)

Note: Figure 3 shows the components of the individual multiplicative decomposition of DS-weights for a normalized
utilitarian planner, defined in Proposition 5. We assume that θ = 0.25, although all figures are qualitatively similar
when θ ∈ [0, 1). The top row shows each of the components for individual 1, while the bottom row shows them for
individual 2. The left plots show the dynamic component, ω̃it (s0), for different values of t for different initial states,
s0 = {H,L}. For reference, we also show the dynamic weight for a hypothetical individual with linear marginal utility,
given by (1− β)βt = βt/

∑
t
βt. Note that the sum under each of the curves adds up to 1. The middle plots show the

stochastic component, ω̃it
(
st
∣∣ s0
)
, for different values of t, for different initial states, s0 = {H,L}, and for different final

states, st = {H,L}. The right plots show the actual DS-weights, ωit
(
st
∣∣ s0
)
, also for different values of t, and different

initial and final states: s0 = {H,L} and st = {H,L}. The parameters are θ = 0.25, β = 0.95, y = 1, ε (H) = 0.25,
ε (L) = −0.25, ρ = 0.975, and γ1 = γ2 = 2. The individual component of DS-weights are ω̃1 (s0 = L) = 1.186 and
ω̃2 (s0 = L) = 0.814 when an assessment takes place at s0 = L; and ω̃1 (s0 = H) = 0.814 and ω̃2 (s0 = H) = 1.186
when the assessment takes place at s0 = H.

of the initial state dissipates. More importantly, in the long run (although also in the short run),
regardless of the initial state, the stochastic components are higher for those states in which an
individual has a lower endowment/higher marginal utility.

Fourth, the individual components of the DS-weights further capture the differences in the
marginal valuation of transfers among individuals for different initial states. A normalized utilitarian
planner values a hypothetical permanent transfer at all dates/states towards the individual with low
endowment at s0 at 1.186, and towards the individual with a high endowment at 0.814. The plot
of DS-weights simply combines multiplicatively the dynamic, stochastic, and individual components
just discussed.

Aggregate additive decomposition of welfare assessments. In Figure 3, we show the components
of the aggregate additive decomposition of welfare assessments for a normalized utilitarian planner
for three different parametrizations: ρ = {0.5, 0.975, 0.999}. We exclusively consider the initial state
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s0 = L since the aggregate welfare assessments are identical in both states. A different set of insights
emerge from the aggregate additive decomposition.

First, as formally shown in Proposition 3, the aggregate efficiency component is zero, that is,
ΞAE = 0. This occurs because we study an endowment economy for which aggregate consumption
is invariant to the policy.

Second, a normalized utilitarian planner always finds it optimal to increase transfers until θ = 1,
which corresponds to full-insurance. Moreover, we show that all three remaining motives, risk-
sharing, intertemporal-sharing, and redistribution contribute qualitatively to that conclusion. Hence,
in this scenario, all pseudo-welfarist planners would agree on an optimal policy of θ? = 1. When
θ = 1, markets are effectively complete, which implies that both risk and intertemporal-sharing
components are zero, that is, ΞRS = ΞIS = 0. This is consistent with Propositions 6 and 7. When
θ = 1, both individuals have identical consumption paths, so ΞRD = 0. This is consistent with
Corollary 3.

Third, the nature of endowment shocks, in particular whether such shocks are transitory or
permanent, has a significant impact on the aggregate additive decomposition of welfare assessments.
When shocks are transitory (ρ = 0.5), the planner attributes most of the welfare gains to risk-
sharing, with intertemporal sharing playing a much smaller role and redistribution being virtually
zero. When shocks are persistent (ρ = 0.975), part of the welfare gains are now attributed to
redistribution, which is now larger than intertemporal-sharing, although risk-sharing is still the most
important component. When shocks are almost permanent (ρ = 0.999), the planner attributes most
of the welfare gains to redistribution, with risk-sharing and intertemporal-sharing playing a much
smaller role.

In Figure 5, we show the marginal assessment of normalized welfarist planners for different values
of the redistribution coefficient φ of an isoelastic social welfare function, given by

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (−Vi (s0))φ di
)1/φ

.

We consider three cases: φ ∈ {1, 5, 10}, where the utilitarian benchmark corresponds to φ = 1.31

Consistently with Proposition 8, differences in welfare assessments among normalized welfarist
planners are exclusively based on how they assess the redistribution component. Intuitively, higher
values of the curvature parameter φ are associated with more disperse individual components of
DS-weights, which in turn increase the redistribution component of the aggregate decomposition.
Moreover, we show the value of the sum of the risk-sharing and intertemporal-sharing components,
ΞRS + ΞIS , which is invariant to the value of φ — in fact, it corresponds to the assessment of a
pseudo-welfarist NR DS-planner. This figure illustrates an important conclusion of this paper, which
is that the choice of SWF does not to impact the aggregate efficiency, risk-sharing, and intertemporal-

31Our definition of isoelastic SWF is somewhat since lifetime utilities are negative for CRRA individuals. Our
formulation, in which φ ≥ 1, guarantees that the SWF is concave, implying that a planner prefers individual utilities
to be less disperse. See Section G.3.1 of the Online Appendix for further details.
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Figure 4: Aggregate additive decomposition of welfare assessments (Scenario 1)

Note: Figure 4 shows the marginal welfare assessment of a normalized utilitarian planner, dW
dθ

, and the components
of its aggregate additive decomposition, as defined in Proposition 5. The left plot corresponds to the assessment when
s0 = L, while the right plot corresponds to the assessments when s0 = H. Due to the symmetry of the model,
both aggregate assessments are identical regardless of the state in which they are made. The solid line is computed
as described in Equation (35). The dashed and dotted lines are computed as described in Equation (11), where the
DS-weights are given by in Equations (13), (14), and (15). Note that dW

dθ
= ΞAE + ΞRS + ΞIS + ΞRD. The parameters

are β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, ρ = 0.975, and γ1 = γ2 = 2.
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Figure 5: Aggregate additive decomposition; comparison of welfarist planners (Scenario 1)

Note: The left panel of Figure 5 shows the marginal welfare assessment of normalized welfarist planners with social
welfare function

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (−Vi (s0))φ di
)1/φ

,

for φ ∈ {1, 5, 10}. The utilitarian benchmark corresponds to φ = 1. The right panel of Figure 5 shows the redistribution
component, ΞRD, for such planners, as well as the sum of the risk-sharing and intertemporal-sharing components for
either of them, since ΞRS + ΞIS is identical in all three cases. In this economy, ΞAE = 0 at all times. Consistently with
Proposition 8, differences in welfare assessments among normalized welfarist planners are exclusively based on how
they assess the redistribution component. The parameters are β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, ρ = 0.975,
and γ1 = γ2 = 2.

sharing components of a normalized welfarist DS-planner.

7.2 Scenario 2: Aggregate risk, heterogeneous preferences

Environment. In our second scenario, we assume i) that some individuals are more risk-
averse/unwilling to substitute intertemporally than others, and ii) that all endowment risk is
aggregate. In particular, we assume that individual 1 is more risk averse than individual 2, so
γ1 > γ2. Formally, we assume that

y1 (s) = y + ε (s) and y2 (s) = y + ε (s) ,

where y ≥ 0, and where ε (L) = −ε (H). We consider the welfare assessment of a transfer policy that
shifts the amount of risk borne by individual 1 to individual 2. Formally, we set T 1 (s) = −ε (s) and
T 2 (s) = ε (s), so individual consumption takes the form

c1 (s) = y + ε (s) (1− θ) and c2 (s) = y + ε (s) (1 + θ) .
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Figure 6: Individual multiplicative decomposition of DS-weights (Scenario 2)

Note: Figure 6 shows the components of the individual multiplicative decomposition of DS-weights for a normalized
utilitarian planner, defined in Proposition 5. We assume that θ = 0.25, although all figures are qualitatively similar
when θ ∈ [0, 1). The top row shows each of the components for individual 1, while the bottom row shows them for
individual 2. The left plots show the dynamic component, ω̃it (s0), for different values of t for different initial states,
s0 = {H,L}. For reference, we also show the dynamic weight for a hypothetical individual with linear marginal utility,
given by (1− β)βt = βt/

∑
t
βt. Note that the area under each of the curves adds up to 1. The middle plots show the

stochastic component, ω̃it
(
st
∣∣ s0
)
, for different values of t, for different initial states, s0 = {H,L}, and for different final

states, st = {H,L}. The right plots show the actual DS-weights, ωit
(
st
∣∣ s0
)
, also for different values of t, and different

initial and final states: s0 = {H,L} and st = {H,L}. The parameters are θ = 0.25, β = 0.95, y = 1, ε (H) = 0.25,
ε (L) = −0.25, ρ = 0.975, γ1 = 5, and γ2 = 2. The individual component of DS-weights are ω̃1 (s0 = L) = 1.125 and
ω̃2 (s0 = L) = 0.875 when an assessment takes place at s0 = L; and ω̃1 (s0 = H) = 1.027 and ω̃2 (s0 = H) = 0.973
when the assessment takes place at s0 = H.

Under this policy, when θ = 1, individual 1 is fully insured, at the expense of increasing the
consumption fluctuations of individual 2 in response to aggregate shocks. In this scenario, aggregate
consumption varies with the aggregate state, but not with θ, since

∫
ci (s) di = y + ε (s).

Results. With the exception of risk aversion, set to γ1 = 5 and γ2 = 2, we use the same parameters
as in Scenario 1: β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25. As in the benchmark parameterization
of Scenario 1, we set ρ = 0.975, so endowment shocks are persistent. Once again, we consider a
normalized utilitarian planner with equal weights.

Individual multiplicative decomposition of DS-weights. In Figure 6, we show the components of
the individual multiplicative decomposition of DS-weights for a normalized utilitarian planner for
each of the individuals when θ = 0.25. This new scenario is associated with new insights.

First, the plots of the dynamic components show that a normalized utilitarian planner overweights
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Figure 7: Aggregate additive decomposition of welfare assessments (Scenario 2)

Note: Figure 7 shows the marginal welfare assessment of a normalized utilitarian planner, dW
dθ

, and the components
of its aggregate additive decomposition, as defined in Proposition 5. The left plot corresponds to the assessment when
s0 = L, while the right plot corresponds to the assessments when s0 = H. Note that dW

dθ
= ΞAE + ΞRS + ΞIS + ΞRD.

The parameters are β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, ρ = 0.975, and γ1 = 5 > γ2 = 2.

earlier periods for all individuals when the aggregate endowment is low (graphically, the solid blue
line is above the black dashed line for both individuals when s0 = L; this is not the case in Scenario
1). As one would expect, it does so more for individual 1, with the higher curvature coefficient
γ1 = 5. Note, for instance, that ω̃1

0 (s0 = L) > ω̃2
0 (s0 = L) and that ω̃1

0 (s0 = H) < ω̃2
0 (s0 = H).

Second, as in Scenario 1, the plots of the stochastic components show that a normalized utilitarian
planner overweights those states which are more likely, given the initial state. More importantly, in
the long run (although also in the short run), regardless of the initial state, the stochastic components
give relatively more weight to those states in which an individual has a lower endowment/higher
marginal utility, but differentially more for the individual 1, with the highest curvature coefficient
γ1 = 5. Note, for instance, that ω̃1

∞ (st = L) > ω̃2
∞ (st = L) and that ω̃1

∞ (st = H) < ω̃2
∞ (st = H).

Third, the individual components of the DS-weights still capture differences in the marginal
valuation of permanent transfers among individuals for different initial states. However, in this
scenario this differences are mostly driven by the differences in preferences between individuals.
Unlike in scenario 1, a normalized utilitarian planner gives more value to a hypothetical permanent
transfer towards individual 1 at all states, since ω̃1 (s0 = L) > ω̃2 (s0 = L) and ω̃1 (s0 = H) >

ω̃2 (s0 = H). This result illustrates how by computing the individual component it is possible to
determine the implicit desire for redistribution of a utilitarian planner.

Aggregate additive decomposition of welfare assessments. In Figure 7, we show the components
of the aggregate additive decomposition of welfare assessments for a normalized utilitarian planner.
As in Scenario 1, because we study an endowment economy for which aggregate consumption is
invariant to the policy, the aggregate efficiency component is zero, that is, ΞAE = 0. There is a new
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set of insights.
First, we show that a normalized utilitarian planner finds it optimal to increase transfers until

some value of θ?, regardless of whether the optimal policy is determined from s0 = L or s0 = H.
This should not be surprising, since transferring aggregate risk to the individual most willing to bear
such a risk seems desirable. Interestingly, the reason for why a planner finds desirable to increase
θ until θ? differs with the initial state of the economy. When s0 = L, we show that a normalized
utilitarian planner mostly attributes welfare gains to redistribution (ΞRD), followed by risk-sharing
(ΞRS), with intertemporal-sharing (ΞIS) barely playing a role. Instead, when s0 = H, we show that
a normalized utilitarian planner mostly attributes welfare gains to risk-sharing (ΞRS), followed by
redistribution (ΞRD) and intertemporal-sharing (ΞIS).

These findings are intuitive. When s0 = L, consumption is persistently lower, which amplifies
differences in curvature between individuals on a persistent basis. This is reflected in the large
redistribution component. Building on the insights of Proposition 13, one can trace these results
to the cross-sectional dispersion of the different components of DS-weights. In particular, Figure
7 illustrates how the cross-sectional dispersion of the individual component is significantly higher
when s0 = L, which explains why the redistribution component is more important when s0 = L.
Alternatively, Figure 7 reflects that the cross-sectional dispersion of the dynamic and the stochastic
components is higher when s0 = H.

Finally, note that at the optimal θ? for both s0 = L and s0 = H, the normalized utilitarian
planner perceives ΞRS to be positive and ΞRD to be negative and greater in magnitude than ΞRS ,
which is also positive. This implies that both pseudo-utilitarian NS and NR DS-planners would
choose a level of θ? higher than the normalized utilitarian planner, regardless of the state in which
the assessments is made. This results illustrates that, in general, different pseudo-utilitarian DS-
planners would disagree in the choice of optimal policies.

8 Conclusion

In this paper, we have introduced the notion of Dynamic Stochastic Generalized Social Marginal
Welfare Weights (Dynamic Stochastic weights or DS-weights, for short) and explored their properties.
First, we have shown that DS-weights are useful for decomposing aggregate welfare assessments
of policy changes into four distinct components: aggregate efficiency, intertemporal-sharing, risk-
sharing, and redistribution. Second, we have shown that by using DS-weights it is possible to
formalize a new, larger set of welfare criteria that society may find appealing. In particular, we have
been able to define normative criteria that are exclusively based on one or several of the components
that we identify, potentially disregarding the others.

Retrospectively, our definition of a normalized utilitarian planner — based on DS-weights —
opens the door to revisiting the exact rationales that have justified particular welfare assessments in
existing work. Looking forward, we hope that our approach informs ongoing and future discussions
on policy-making mandates, in particular when trading off aggregate stabilization objectives against
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interpersonal insurance and redistribution objectives.
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Appendix
A Proofs and Derivations: Section 3

Proof of Lemma 1. (DS-weights: individual multiplicative decomposition; unique
normalized decomposition)

Proof. By offering a constructive proof of part b), we automatically show that it is always possible
to construct an individual multiplicative decomposition, in particular a normalized one. Let us
start with a set of DS-weights ω̌it

(
st
∣∣ s0
)
> 0, defined for each individual, date, and history. After

multiplying and dividing by
∑
st ω̌

i
t

(
st
∣∣ s0
)
,
∑T
t=0

∑
st ω̌

i
t

(
st
∣∣ s0
)
, and

∫ ∑T
t=0

∑
st ω̌

i
t

(
st
∣∣ s0
)
di, we

reach the following identity:

ω̌it
(
st
∣∣ s0
)∫ ∑T

t=0
∑
st ω̌

i
t (st| s0) di︸ ︷︷ ︸

=ωit( st|s0)

=
∑T
t=0

∑
st ω̌

i
t

(
st
∣∣ s0
)∫ ∑T

t=0
∑
st ω̌

i
t (st| s0) di︸ ︷︷ ︸

=ω̃i(s0)

∑
st ω̌

i
t

(
st
∣∣ s0
)∑T

t=0
∑
st ω̌

i
t (st| s0)︸ ︷︷ ︸

=ω̃it(s0)

ω̌it
(
st
∣∣ s0
)∑

st ω̌
i
t (st| s0)︸ ︷︷ ︸

≡ω̃it( st|s0)

,

which defines an individual multiplicative decomposition since ωit
(
st
∣∣ s0
)
and ω̌it

(
st
∣∣ s0
)
are identical

from the perspective of Definition 4, but for a normalization regarding the choice of units. It is
straightforward to show that

∑T
t=0 ω̃

i
t (s0) = 1,

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, and
∫
ω̃i (s0) di = 1, which

concludes the proof.

Proof of Proposition 1. (Welfare assessments: aggregate additive decomposition)

Proof. Combining Equations (7) and (9), the definition of a desirable policy change for a DS-planner
can be expressed as follows:

dWDS (s0)
dθ

=
∫
ω̃i (s0) dV

DS
i (s0)
dθ

di = Ei

[
ω̃i
(
s0
) dV DS

i (s0)
dθ

]
, (36)

where
dV DS

i (s0)
dθ

=
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ
, (37)

Hence, we can first decompose dWDS(s0)
dθ as follows:

dWDS (s0)
dθ

= Ei
[
ω̃i
(
s0
)]

︸ ︷︷ ︸
=1

Ei

[
dV DS

i (s0)
dθ

]
+ Covi

[
ω̃i
(
s0
)
,
dV DS

i (s0)
dθ

]
︸ ︷︷ ︸

=ΞRD

(38)

where we use the fact that — without loss of generality, but for the choice of units — we can set
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Ei
[
ω̃i
(
s0)] =

∫
ω̃i
(
s0) di = 1, and where ΞRD satisfies

ΞRD = Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
.

Next, we can decompose Ei
[
dV DSi (s0)

dθ

]
as follows:

Ei

[
dV DS

i (s0)
dθ

]
= Ei

[
T∑

t=0
ω̃i

t (s0)
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]

=
T∑

t=0
Ei

[
ω̃i

t (s0)
]
Ei

[∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
+

T∑
t=0

Covi

[
ω̃i

t (s0) ,
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS

=
T∑

t=0
Ei

[
ω̃i

t (s0)
]∑

st

(
Ei

[
ω̃i

t

(
st
∣∣ s0
)]

Ei

[
dui|c (st)

dθ

]
+ Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

])
+ ΞIS

=
T∑

t=0
Ei

[
ω̃i

t (s0)
]∑

st

Ei

[
ω̃i

t

(
st
∣∣ s0
)]

Ei

[
dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞAE

+
T∑

t=0
Ei

[
ω̃i

t (s0)
]∑

st

Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞRS

+ΞIS

= ΞAE + ΞRS + ΞIS . (39)

Proposition 1 follows immediately after combining Equations (38) and (39).

Proof of Proposition 2. (Properties of aggregate additive decomposition: individual-
invariant DS-weights)

Proof. a) If DS-weights ωit
(
st
∣∣ s0
)
do not vary across individuals, parts b), c), and d) below are valid.

b) If the stochastic components, ω̃it
(
st
∣∣ s0
)
, do not vary across individuals at all dates and histories,

then
Covi

[
ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
= 0,∀t,∀st =⇒ ΞRS = 0.

c) If the dynamic components, ω̃it (s0), do not vary across individuals at all dates, then

Covi

[
ω̃it (s0) ,

∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
= 0,∀t =⇒ ΞIS = 0.

d) If the individual components, ω̃i (s0), do not vary across individuals, then

Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
= 0 =⇒ ΞRD = 0.
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Corollary 1 follows from part a). Corollary 2 follows from part b), since ω̃it
(
st|s0

)
= 1, ∀t, ∀i, in

perfect foresight economies. Corollary 3 follows from part d).

Proof of Proposition 3. (Properties of aggregate additive decomposition: individual-
invariant policies)

Proof. Note that
∑T
t=0 ω̃

i
t (s0) and

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1 imply that
∑T
t=0 ω̃

i
t (s0)

∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1.
a) If dui|c(s

t)
dθ = g (·), where g (·) does not depend on i, t, or st, then

Covi

[
ω̃i
(
s0
)
,
T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
)] dui|c (st)

dθ
= 0 =⇒ ΞRD = 0.

And the results from parts b) and c) also apply.
b) If dui|c(s

t)
dθ = g (t), where g (t) may depend on t, but not on i or st, then

Covi

[
ω̃it (s0) ,

∑
st

ω̃it

(
st
∣∣∣ s0
)] dui|c (st)

dθ
= 0 =⇒ ΞIS = 0.

And the result from part c) also applies.
c) If dui|c(s

t)
dθ = g

(
t, st

)
, where g

(
t, st

)
may depend on t and st, but not on i, then

Covi

[
ω̃it

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
= 0 =⇒ ΞRS = 0.

Proof of Proposition 4. (Properties of aggregate additive decomposition: endowment
economies)

Proof. In an endowment economy, Equation (11) simply corresponds to

Ei

[
dui|c

(
st
)

dθ

]
=
∫
dcit
(
st
)

dθ
di = 0,

where the last equality follows from the fact that aggregate consumption is equal to the aggregate
endowment, and hence fixed and invariant to θ, that is, d

∫
cit(st)di
dθ = 0.

B Proofs and Derivations: Section 4

Proof of Proposition 5. (Normalized welfarist planners: individual multiplicative
decomposition)
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Proof. Starting from Equation (6), note that we can express dVi(s0)
dθ as follows:

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
) ∂ui (st)

∂cit

T∑
t=0

(βi)t
∑

st
πt
(
st
∣∣ s0
) ∂ui(st)

∂ci
t

dui|c(st)
dθ∑T

t=0 (βi)t
∑

st
πt (st| s0) ∂ui(st)

∂ci
t

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
) ∂ui (st)

∂cit

T∑
t=0

(βi)t
∑

st
πt
(
st
∣∣ s0
) ∂ui(st)

∂ci
t∑T

t=0 (βi)t
∑

st
πt (st| s0) ∂ui(st)

∂ci
t︸ ︷︷ ︸

=ω̃i
t
(s0)

∑
st

(βi)t πt
(
st
∣∣ s0
) ∂ui(st)

∂ci
t

(βi)t
∑

st
πt (st| s0) ∂ui(st)

∂ci
t︸ ︷︷ ︸

=ω̃i
t
( st|s0)

dui|c
(
st
)

dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
) ∂ui (st)

∂cit

T∑
t=0

ω̃it (s0)
∑
st

ω̃it
(
st
∣∣ s0
) dui|c (st)

dθ
, (40)

where we define dynamic and stochastic components of DS-weights as in Equations (13) and (14).
Hence, we can express dWW (s0)

dθ — with appropriately normalized units — as follows:

dWW (s0)
dθ∫

λi
∑T
t=0 (βi)t

∑
st πt (st| s0) ∂ui(s

t)
∂cit

di
=
∫
ω̃i (s0)

T∑
t=0

ω̃it (s0)
∑
st

ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ
di,

where we define the individual component as in Equation (15):

ω̃i (s0) =

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit∫
λi
∑T
t=0 (βi)t

∑
st πt (st| s0) ∂ui(s

t)
∂cit

di
.

It is straightforward to verify that
∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, ∀t, ∀i; that
∑T
t=0 ω̃

i
t (s0) = 1, ∀i, and that∫

ω̃i (s0) di = 1, which concludes the proof. Note that by multiplying and dividing the dynamic and
stochastic components of a given individual by his marginal utility of consumption at 0, we recover
Equations (16) and (17):

ω̃it (s0) =
(βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
/
∂ui(s0)
∂ci0∑T

t=0 (βi)t
∑
st πt (st| s0) ∂ui(s

t)
∂cit

/∂ui(s
0)

∂ci0

= qit
(
st|s0

)∑
st q

i
t (st|s0)

ω̃it

(
st
∣∣∣ s0
)

=
πt
(
st
∣∣ s0
) ∂ui(st)

∂cit
/
∂ui(s0)
∂ci0∑

st πt (st| s0) ∂ui(s
t)

∂cit
/∂ui(s

0)
∂ci0

=
∑
st q

i
t

(
st|s0

)∑T
t=0

∑
st q

i
t (st|s0)

.

Proof of Proposition 6. (Properties of normalized welfarist planners: complete markets)

Proof. When markets are complete, there is a unique stochastic discount factor, which implies
that qit

(
st|s0

)
= qt

(
st|s0

)
, ∀i. From Equations (16) and (17), it follows immediately that ω̃it (s0)
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and ω̃it
(
st
∣∣ s0
)
are invariant across all individuals at all dates and states. Hence, Parts b) and c)

Proposition 2 guarantee that ΞRS = ΞIS = 0.

Proof of Proposition 7. (Properties of normalized welfarist planners: riskless
borrowing/saving)

Proof. When individual can freely borrow and save, it must be the case that the price/valuation
of a riskless bond is identical for all individuals, which implies that

∑
st q

i
t

(
st|s0

)
is identical across

individuals. Hence, from Equation (17), it follows immediately that ω̃it (s0) is invariant across all
individuals at all dates. Hence, Part c) Proposition 2 guarantees that ΞIS = 0.

Proof of Proposition 8. (Properties of normalized welfarist planners: welfarist planners
only disagree about redistribution)

Proof. Note that Equations (13) and (14) do not depend on W (·), while Equation (15) does. This
fact, along with Proposition 1, immediately imply that ΞAE , ΞRS , and ΞIS identical for all welfarist
planner, but ΞRD is not.

C Proofs and Derivations: Section 5

Proof of Proposition 9 (AE/AR/NR DS-planners: properties)

Proof. a) This result follows from part a) of Proposition 3, since ω̃it
(
st
∣∣ s0
)
, ω̃it (s0), and ω̃i (s0) do

not vary across individuals. Note that ΞAE is identical for the pseudo-welfarist AE DS-planner and
its associated normalized welfarist planner, since

Ei
[
ω̃i,W,AE
t (s0)

]
= Ei

[
ω̃i,Wt (s0)

]
and Ei

[
ω̃i,W,AE
t

(
st
∣∣∣ s0
)]

= Ei
[
ω̃i,Wt

(
st
∣∣∣ s0
)]
.

b) This result follows from parts c) and d) of Proposition 3, since ω̃it
(
st
∣∣ s0
)
and ω̃it (s0) do not vary

across individuals. Note that ΞAE and ΞRS are identical for the pseudo-welfarist AR DS-planner
and its associated normalized welfarist planner, since

Ei
[
ω̃i,W,AR
t (s0)

]
= Ei

[
ω̃i,Wt (s0)

]
and ω̃i,W,AR

t

(
st
∣∣∣ s0
)

= ω̃i,Wt

(
st
∣∣∣ s0
)
.

c) This result follows from part d) of Proposition 3, since the individual components ω̃i (s0) do not
vary across individuals. Note that ΞAE , ΞRS , and ΞIS are identical for the pseudo-welfarist NR
DS-planner and its associated normalized welfarist planner, since

ω̃i,W,NR
t (s0) = ω̃i,Wt (s0) and ω̃i,W,NR

t

(
st
∣∣∣ s0
)

= ω̃i,Wt

(
st
∣∣∣ s0
)
.
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Online Appendix
Section D of this Online Appendix includes proofs and derivations for Section 6. Section E includes
additional results for Application 1. Section F includes several extensions and Section G contains
additional results.

D Proofs and Derivations: Section 6

Proof of Proposition 10. (Aggregate efficiency component: stochastic decomposition)

Proof. Starting from the definition of the aggregate efficiency component in Equation (11), we can
express ΞAE as follows:

ΞAE =
T∑
t=0

Ei
[
ω̃it (s0)

]∑
st

Ei
[
ω̃it

(
st
∣∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]

=
T∑
t=0

ωt
∑
st

ωt
(
st
∣∣∣ s0
) dui|c (st)

dθ
,

where we define ωt (s0) = Ei
[
ω̃it (s0)

]
, ωt

(
st
∣∣ s0
)

= Ei
[
ω̃it
(
st
∣∣ s0
)]
, and dui|c(st)

dθ = Ei
[
dui|c(st)

dθ

]
.

Multiplying and dividing by πt
(
st
∣∣ s0
)
at every history, we can express and decompose ΞAE as

follows:

ΞAE =
T∑
t=0

ωt (s0)
∑
st

πt
(
st
∣∣∣ s0
) ωt (st∣∣ s0

)
πt (st| s0)

dui|c
(
st
)

dθ
=

T∑
t=0

ωt (s0)E0

[
ωπt

(
st
∣∣∣ s0
) dui|c (st)

dθ

]

=
T∑
t=0

ωt (s0)E0
[
ωπt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE

+
T∑
t=0

ωt (s0)Cov0

[
ωπt

(
st
∣∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE

,

which corresponds to Equation (23) in the text.

Proof of Proposition 11. (Risk-sharing/intertemporal-sharing components: alternative
cross-sectional decompositions)

Proof. Here we make use of the following property of covariances (Bohrnstedt and Goldberger, 1969):

Cov [X,Y Z] = E [Y ]Cov [X,Z] + E [Z]Cov [X,Y ] + E [(X − E [X]) (Y − E [Y ]) (Z − E [Z])] ,

whereX, Y , and Z denote random variables. Applying this property to Covi
[
ω̃it (s0) , ω̃it

(
st
∣∣ s0
) dui|c(st)

dθ

]
,
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we find that

Covi

[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
) dui|c (st)

dθ

]
= Ei

[
ω̃it

(
st
∣∣∣ s0
)]

Covi

[
ω̃it (s0) ,

dui|c
(
st
)

dθ

]
︸ ︷︷ ︸

∼PI

+Ei

[
dui|c

(
st
)

dθ

]
Covi

[
ω̃it (s0) , ω̃it

(
st
∣∣∣ s0
)]

︸ ︷︷ ︸
∼WC

+Ei

[(
dui|c

(
st
)

dθ
− Ei

[
dui|c

(
st
)

dθ

])(
ω̃it (s0)− Ei

[
ω̃it (s0)

]) (
ω̃it

(
st
∣∣∣ s0
)
− Ei

[
ω̃it

(
st
∣∣∣ s0
)])]

︸ ︷︷ ︸
∼PC

,

which immediately yields Equation (24) in the text after adding up over dates and states.
Equation (25) follows immediately after using once again the same property of covariances on
Covi

[
ω̃it (s0) ω̃it

(
st
∣∣ s0
)
,
dui|c(st)

dθ

]
.

Proof of Proposition 12. (Redistribution component: stochastic decomposition)

Proof. We can express dV DSi (s0)
dθ , defined in Equation (37), as follows:

dV DS
i (s0)
dθ

=
T∑
t=0

ω̃it (s0)E0

[
ω̃it
(
st
∣∣ s0
)

πt (st| s0)
dui|c

(
st
)

dθ

]

=
T∑
t=0

ω̃it (s0)E0
[
ω̃i,πt

(
st
∣∣∣ s0
)]

E0

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=
dV
DS,ER
i

(s0)
dθ

+
T∑
t=0

ω̃it (s0)Cov0

[[
ω̃i,πt

(
st
∣∣∣ s0
)]
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=
dV
DS,RI
i

(s0)
dθ

.

Hence, we can express ΞRD as follows:

ΞRD = Covi

[
ω̃i
(
s0
)
,
dV DS

i (s0)
dθ

]
= Covi

[
ω̃i
(
s0
)
,
dV DS,ER

i (s0)
dθ

]
︸ ︷︷ ︸

ΞRD

+Covi

[
ω̃i
(
s0
)
,
dV DS,RI

i (s0)
dθ

]
︸ ︷︷ ︸

ΞRD

,

which corresponds to Equation (15) in the text.

Proof of Proposition 13. (Cross-sectional dispersion bounds)

Proof. Equations (26) through (28) follow from applying the Cauchy–Schwarz inequality, which
states that |Cov [X,Y ]| ≤

√
Var [X]

√
Var [Y ] for any pair of square integrable random variables X
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and Y . When applied to the relevant elements of ΞRS , ΞIS , and ΞRD, we find that

Covi

[
ω̃i

t

(
st
∣∣ s0
)
,
dui|c (st)

dθ

]
≤
√

Vari

[
ω̃i

t (st| s0)
]√

Vari

[
dui|c (st)

dθ

]

Covi

[
ω̃i

t (s0) ,
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
≤
√

Vari

[
ω̃i

t

]√√√√Vari

[∑
st

ω̃i
t (st| s0)

dui|c (st)
dθ

]

Covi

[
ω̃i
(
s0) , T∑

t=0
ω̃i

t (s0)
∑
st

ω̃i
t

(
st
∣∣ s0
) dui|c (st)

dθ

]
≤
√

Vari [ω̃i (s0)]

√√√√Vari

[
T∑

t=0

∑
st

ω̃i
tω̃

i
t (st| s0)

dui|c (st)
dθ

]
.

These three inequalities, when combined with the definitions of ΞRS , ΞIS , and ΞRD in Equation (11),
immediately imply Equations (26) through (28) in the text.

Proof of Proposition 14. (Recursive formulation)

Proof. Starting from Equation (36), note that we can express dWDS(s0)
dθ as follows:

dWDS (s0)
dθ

=
∫
ω̃i (s0) dV

DS
i (s0)
dθ

di

=
∫
ω̃i (s0) ω̃i0 (s0) ω̃i0

(
s0
∣∣∣ s0
)

︸ ︷︷ ︸
=ωi0( s0|s0)

dV DSi (s0)
dθ

ω̃i0 (s0) ω̃i0 (s0| s0)︸ ︷︷ ︸
=
dV̂ DS
i,0 (s0)

dθ

di

=
∫
ωi0

(
s0
∣∣∣ s0
) dV̂ DS

i,0 (s0)
dθ

di.

Note that we can also express dV̂ DSi,0 (s0)
dθ as follows:

dV̂ DS
i,0 (s0)
dθ

=
T∑
t=0

ω̃it (s0)
ω̃i0 (s0)

∑
st

ω̃it
(
st
∣∣ s0
)

ω̃i0 (s0| s0)
dui|c (st)

dθ

= ω̃i0 (s0)
ω̃i0 (s0)︸ ︷︷ ︸

=1

ω̃i0
(
s0∣∣ s0

)
ω̃i0 (s0| s0)︸ ︷︷ ︸

=1

dui|c (s0)
dθ

+
T∑
t=1

ω̃it (s0)
ω̃i0 (s0)

∑
st

ω̃it
(
st
∣∣ s0
)

ω̃i0 (s0| s0)
dui|c (st)

dθ

=
dui|c (s0)

dθ
+ ω̃i1 (s0)
ω̃i0 (s0)

 ω̃i1 (s0)
ω̃i1 (s0)︸ ︷︷ ︸

=1

∑
s1

ω̃i1
(
s1∣∣ s0

)
ω̃i0 (s0| s0)

dui|c (s1)
dθ

+
T∑
t=2

ω̃it (s0)
ω̃i1 (s0)

∑
st

ω̃it
(
st
∣∣ s0
)

ω̃i0 (s0| s0)
dui|c (st)

dθ



=
dui|c (s0)

dθ
+ ω̃i1 (s0)
ω̃i0 (s0)


∑
s1

ω̃i1
(
s1∣∣ s0

)
ω̃i0 (s0| s0)

dui|c (s1)
dθ

+
T∑
t=2

ω̃it (s0)
ω̃i1 (s0)

∑
st|s1

ω̃it
(
st
∣∣ s0
)

ω̃i1 (s1| s0)
dui|c (st)

dθ


︸ ︷︷ ︸

=
dV̂ DS
i,1 (s1)

dθ


,
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which immediately implies Equation (30) in the text, since this derivation is valid starting from any
state s0.

The definitions of β̂Wi,t and π̂Wi,t follow immediately after combining Equations (13) and (14) with
Equation (31). Note that the product β̂Wi (s) · π̂Wi (s′| s) corresponds to the state-price assigned at
state s by individual i to state s′:

β̂Wi,t · π̂Wi,t
(
s′
∣∣ s) = βiπ

(
s′
∣∣ s) ∂ui (s′)

∂ci
/
∂ui (s)
∂ci

,

and that this state-price is time-independent. This observation, combined with the definition of the
pseudo-utilitarian NR planner, implies the claim that Equation (30) is time invariant for welfarist
and pseudo-welfarist NR planners.

Proof of Proposition 15 (Linear instantaneous SWF formulation)

Proof. Note that, for a planner with a linear instantaneous SWF, it must be that

dI (·)
dθ

=
∫ T∑

t=0

∑
st

λit

(
st
) ∂ui (st)

∂cit

dui|c
(
st
)

dθ
di, (OA1)

where dui|c(st)
dθ is defined in Equation (3). The results for both the marginal welfare assessment and

the optimum follow immediately by comparing Equation (7) to Equation (OA1), where the following
relation must be satisfied:

λit

(
st
)

= ωit
(
st
)

∂ui(st)
∂cit

.

E Application: Additional Figures

Figures OA-1 and OA-2 are the counterparts of Figure 3 in the text when ρ = 0.999 and ρ = 0.5.
When ρ = 0.999, the components of the individual multiplicative decompositions evolve extremely
slowly. Given the extreme persistence of the shocks, all of the welfare gains from increasing θ

arise from redistribution (ΞRD). When ρ = 0.5, endowments shocks are fully transitory, and the
components of the individual multiplicative decomposition barely have any time-dependence. In this
case, the welfare gains from increasing θ arise mostly from risk-sharing. The gains from redistribution
are nonzero, but very small, since they are only driven by marginal utility differences at t = 0.
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Figure OA-1: Individual multiplicative decomposition of DS-weights (Scenario 1; ρ = 0.999)

Note: Figure OA-1 is the counterpart of Figure 3 in the text when endowment shocks are extremely persistent
(ρ = 0.999). The individual component of DS-weights in this case are ω̃1 (s0 = L) = 1.362 and ω̃2 (s0 = L) = 0.638
when an assessment takes place at s0 = L; and ω̃1 (s0 = H) = 0.638 and ω̃2 (s0 = H) = 1.362 when the assessment
takes place at s0 = H.
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Figure OA-2: Individual multiplicative decomposition of DS-weights (Scenario 1; ρ = 0.5)

Note: Figure OA-2 is the counterpart of Figure 3 in the text when endowment shocks are fully temporary (ρ = 0.5).
The individual component of DS-weights in this case are ω̃1 (s0 = L) = 1.362 and ω̃2 (s0 = L) = 0.638 when an
assessment takes place at s0 = L; and ω̃1 (s0 = H) = 0.638 and ω̃2 (s0 = H) = 1.362 when the assessment takes place
at s0 = H.
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F Extensions

F.1 Heterogeneous beliefs

In this section, we show how to use DS-weights to make paternalistic and non-paternalistic welfare
assessments in environments with heterogeneous beliefs.32 Note that the notion of paternalism used
here is fully consistent with the formal definition given in Footnote 22. To model heterogeneous
beliefs, instead of Equation (1), we assume instead that individual preferences take the form

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πit

(
st
∣∣∣ s0
)
ui
(
cit

(
st
)
, nit

(
st
))
, (OA2)

where πit
(
st
∣∣ s0
)
, denotes the beliefs held by individual i over histories, which are now individual-

specific.
In this case, a non-paternalistic planner would substitute πit

(
st
∣∣ s0
)
for πt

(
st
∣∣ s0
)
whenever it

appears in Equations (8) through (22). Alternatively, a paternalistic planner who imposes a single-
belief would substitute some planner’s belief, πPt

(
st
∣∣ s0
)
, which is invariant across individuals, for

πt
(
st
∣∣ s0
)
whenever it appears in Equations (8) through (22).33

F.2 Recursive preferences

In this section, we show how to use DS-weights in the context of economies with recursive preferences.
In particular, we consider the widely used Epstein-Zin preferences, which we define recursively as
follows:

Vi (s) =

(1− βi)
(
ui
(
ci (s) , ni (s)

))1− 1
ψi + βi

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) 1− 1
ψi

1−γi


1

1− 1
ψi

,

where γi modulates risk aversion and ψi modulates intertemporal substitution. We use s and s′ to
denote any two recursive states (Ljungqvist and Sargent, 2018).

In this case, we can recursively express the welfare effect of a policy change, measured in lifetime
32A recent literature has explored how to make normative assessments in environments with heterogeneous beliefs.

See, among others, Brunnermeier, Simsek and Xiong (2014), Gilboa, Samuelson and Schmeidler (2014), Dávila (2020),
Blume et al. (2018), Caballero and Simsek (2019), and Dávila and Walther (2021).

33At times, it makes sense to reinterpret heterogeneous beliefs as state-dependent preferences. In that case, Vi (s0)
can be expressed as

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
ui
(
cit
(
st
)
, nit
(
st
)

; st
)
.

All our results remain valid in the case of state-dependent preferences.
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utils (utility units), as follows:

dVi (s)
dθ

= ∂Vi (s)
∂ci (s)

dui|c (s)
dθ

+
∑
s′

∂Vi (s)
∂V i (s′)

dVi (s′)
dθ

, (OA3)

where

∂Vi (s)
∂ci (s) = (1− βi) (Vi (s))

1
ψ (ui (s))−

1
ψi
∂ui (s)
∂ci

∂Vi (s)
∂V i (s′) = βi (Vi (s))

1
ψ

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) γi−
1
ψi

1−γi
π
(
s′|s

) (
V i (s′))−γi ,

and where dui|c(s)
dθ is defined as in Equation (3). The structure of Equation (OA3) immediately implies

that dVi(s)
dθ can be expressed as a linear transformation of instantaneous consumption-equivalent

effects, dui|c(s)dθ , which in turn guarantees that the definition of a DS-planner in Equation (6) can also
be used in the context of economies with recursive preferences.

Note that it is straightforward to define normalized DS-weights when considering normalized
welfarist planners, as in Section 4. In particular, Equations (16), (17), and (19) remain valid, and
the one-period version of Equation (18), from which it is straightforward to compute state-prices for
any date/state, becomes

qi
(
s′|s

)
=

∂Vi(s)
∂ci(s′)
∂Vi(s)
∂ci(s)

=
∂Vi(s)
∂V i(s′)

∂V i(s′)
∂ci(s′)

∂Vi(s)
∂ci(s)

= βiπ
(
s′|s

) (Vi (s′)
H (s)

) 1
ψ
−γi

(
ci (s′)
ci (s)

)− 1
ψi

∂ui(s′)
∂ci

∂ui(s)
∂ci

,

where H (s) ≡
(∑

s′ π (s′|s)
(
V i (s′)

)1−γi) 1
1−γi . Finally, note that it is straightforward to define DS-

weights for even more general preferences, including preferences are not time-separable or recursive.

F.3 Policy changes that affect probabilities

In this section, we describe how to use DS-weights in environments in which policy changes affect
probabilities. Starting from Equation (2), note that we can express dVi(s0)

dθ as follows

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂cit

dui|c (st)
dθ

+ d ln πt
(
st
∣∣ s0
)

dθ

ui
(
cit
(
st
)
, nit

(
st
))

∂ui(st)
∂cit

 .
Hence, we can use the following definition of a DS-planner in this case.

Definition 6. (Desirable policy change for a DS-planner) A DS-planner, that is, a planner who
adopts DS-weights, finds a policy change desirable in an environment in which policies can also
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affect probabilities if and only if dW (s0)
dθ > 0, where

dWDS (s0)
dθ

=
∫ T∑

t=0

∑
st

ωit

(
st
∣∣∣ s0
)dui|c (st)

dθ
+ d ln πt

(
st
∣∣ s0
)

dθ

ui
(
cit
(
st
)
, nit

(
st
))

∂ui(st)
∂cit

 di,

where d lnπt( st|s0)
dθ =

dπt( st|s0)
dθ

πt( st|s0) .

Identical results apply in the case in which policy changes directly affect preferences. See Dávila
and Goldstein (2021) for an application of the results of this paper to an environment in which policy
changes have a discontinuous impact on payoffs.

F.4 Multiple commodities

In this section, we expand on how to use DS-weights in environments with multiple commodities. To
do so, we define a generalized version of Equation (1), which includes multiply commodities, indexed
by ` ∈ L, as follows:

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui

({
ci,`t

(
st
)}

`∈L

)
.

At this level of generality, the different commodities can represent hours worked, as in the baseline
environment, different consumption goods, flow utility from housing, or any variable that directly
impacts instantaneous utility. Without loss, we treat commodity 1 as the numeraire for the purpose
of making welfare assessments, so we can express dVi(s0)

dθ as follows:

dVi (s0)
dθ

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
) ∂ui (st)

∂ci,1t

∑
`∈L

dui|c1
(
st
)

dθ
,

where ∂ui(st)
∂ci,`t

≡
∂ui

({
ci,`t (st)

}
`∈L

)
∂ci,`t (st)

and where the instantaneous commodity-1-equivalent effect of the

policy at date t given a history st, is given by
dui|c1(st)

dθ , where

dui|c1
(
st
)

dθ
≡

dui

({
ci,`t (st)

}
`∈L

)
dθ

∂ui(st)
∂ci,1t

= dci,1t
(
st
)

dθ
+
∑
`∈L

∂ui(st)
∂ci,`t
∂ui(st)
∂ci,1t

dci,`t
(
st
)

dθ
.

In general, when there are multiple commodities, it is necessary to account for the marginal rates
of substitutions between those commodities and the commodity chosen as numeraire. It is worth
making two remarks in this context. First, note that it is possible to choose a particular bundle
of commodities as numeraire (e.g., this is natural when preferences are isoelastic and there is well-
defined price-index). However, for the purpose of making welfare assessments, it must be that his
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normalization is consistent across all individuals. Second, note that the choice of numeraire will
not change the directional welfare assessment or a welfarist planner, but it can have an impact on
the units of such assessments, as well as on the value of the components of the aggregate additive
decomposition.

F.5 Intergenerational considerations

In this section, we describe how to use DS-weights in environments with births, deaths, bequest
motives, and related considerations, which non-trivially affect welfare assessments — see Calvo and
Obstfeld (1988), Farhi and Werning (2010), Heathcote, Storesletten and Violante (2017), or Phelan
and Rustichini (2018). The most direct way of extending our baseline environment, is to interpret
the set of individuals I considered in the baseline model as the set all individuals i) alive or ii) yet
to be born from the perspective of s0. Under that interpretation, dui|c(s

t)
dθ is non-zero only for those

alive at a given history, so definition 3 applies unchanged.
Bequest motives, altruism, warm-glow preferences, social discounting or similar considerations

only impact welfare assessments via the choice of DS-weights. For instance, a welfarist planner who
values future generations directly placing a positive weight on their welfare and that in turn perceives
an effective social discount rate lower than the private one, can be modeled by choosing a particular
set of DS-weights. While do not explore that possibility in this paper, there is scope to use the
law of total covariance to internationally decompose the cross-sectional components of the aggregate
additive decomposition.
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G Additional Results

G.1 Dimensional analysis

This paper puts great emphasis on the units in which different variables are defining. In this section,
we carefully describe the units of the different components of individual multiplicative decomposition
for a normalized welfarist planner and for a general DS-planner

Welfarist planners. As we discuss in the text, the units of our formulation of DS-weights for the
case of the normalized utilitarian planner have a clear interpretation in terms of dollars at different
dates and histories. Here, we provide a systematic dimensional analysis (de Jong, 1967) of the welfare
assessments made by a normalized utilitarian planner. We denote the units of a specific variable by
dim (·), where, for instance, dim

(
cit
(
st
))

= dollars at history st ,where we interchangeably use dollars
and units of the consumption good.

First, note that the units of ω̃it
(
st
∣∣ s0
)
, ω̃it (s0), and ω̃i (s0), as defined in Equations (13), (14),

and (15), are respectively given by

dim
(
ω̃i,Wt

(
st
∣∣∣ s0
))

=
instantaneous utils at s0 for individual i

dollars at history st
instantaneous utils at s0for individual i

dollars at date t
= dollars at date t

dollars at history st

dim
(
ω̃i,Wt (s0)

)
=

instantaneous utils at s0 for individual i
dollars at date t

instantaneous utils at s0 for individual i
dollars at all dates and histories

= dollars at all dates and histories
dollars at date t

dim
(
ω̃i,W (s0)

)
=

instantaneous utils at s0
dollars at all dates and histories for individual i

instantaneous utils at s0
λi(s0) dollars at all dates and histories for all individuals

= λi (s0) dollars at all dates and histories for all individuals
dollars at all dates and histories for individual i .

Note that λi (s0) in the numerator of ω̃i,W (s0) does not change its units.34 Note also that the term
(βi)t πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
, which defines the numerator of ω̃it

(
st
∣∣ s0
)
, is measured in instantaneous utils

at s0 per dollars at history st for individual i, since

dim
(
(βi)t

)
= instantaneous utils at s0 for individual i

instantaneous utils at historyst for individual i

dim
(
∂ui

(
st
)

∂cit

)
= instantaneous utils at history st for individual i

dollars at history st ,

and probabilities, like πt
(
st
∣∣ s0
)
, are unitless, where the same logic applies to the remaining elements

of ω̃it
(
st
∣∣ s0
)
, ω̃it (s0), and ω̃i (s0).

34From the perspective of aggregation of lifetime utilities, which takes places through the individual component
ω̃i (s0), any welfarist planner has |I| + 1 degrees of freedom: the planner can give different weights to each of the |I|
individual assessments, and it can further normalize the units of aggregate welfare.
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Consequently, it follows that

dim
(
ω̃i,Wt

(
st
∣∣∣ s0
))

= dim
(
ω̃i (s0) ω̃it (s0) ω̃it

(
st
∣∣∣ s0
))

(OA4)

= λi (s0) dollars at all dates and histories for all individuals
dollars at history st .

In words, the DS-weights ω̃i,Wt
(
st
∣∣ s0
)
translates dollars at history st into λi (s0) dollars at all dates

and histories for all individuals.
Second, note that the units of dui|c(s

t)
dθ are given by

dim
(
dui|c

(
st
)

dθ

)
=

instantaneous utils at history st for individual i
unit of policy change

instantaneous utils at history st for individual i
dollars at history st

= dollars at history st

unit of policy change , (OA5)

which follows directly from Equation (14).
Finally, combining Equations (OA4) and (OA5), it follows that

dim
(
dWW (s0)

dθ

)
= dim

(
ωi

t

(
st
∣∣ s0
) dui|c (st)

dθ

)
= λi (s0) dollars at all dates and histories for all individuals

unit of policy change .

(OA6)
Hence, the units of WW for a normalized utilitarian planner are dollars paid to all individuals at

all dates and histories. That is, if dWNU

dθ = 7 for a given policy change, the welfare gain associated
with a marginal unit policy change is equivalent to paying 7 dollars to all individuals in the economy
at all dates and states.

General DS-planners. The dimensional analysis in the case of general planners is similar. In this
case, the welfare units of ω̃i,DSt

(
st
∣∣ s0
)
can be directly computed as

dim
(
ω̃i,DSt

(
st
∣∣∣ s0
))

= units of WDS

dollars at history st .

In this case, it is also possible to compute the units of each of the components of the individual
multiplicative decomposition as we just did for welfarist planners. By doing so, it becomes clear that
the units of each of the components of the individual multiplicative decomposition any normalized
DS-planner (including those who are not welfarist) are identical.

Undesirable properties of unnormalized decompositions. As briefly explained in the text,
using unnormalized individual multiplicative decompositions of DS-weights can be problematic in the
context of the aggregate additive decomposition, since unnormalized decompositions are expressed
in utils. This is not the case for normalized decompositions since these always make tradeoffs in
dollar units.

For instance, if one were to set λi (s0) = 1, ∀i, in the decomposition presented in Equation (10),
the redistribution component of the aggregate additive decomposition would be zero, ΞRD = 0.
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This result captures the fact that an unnormalized equal-weighted utilitarian planner is indifferent
between redistribution across individuals in utility terms. Hence, by directly adding up utils,
we would fail to capture the idea that a utilitarian planner does desire to redistribute resources
(in consumption units) towards individuals with low marginal utility — see e.g., Salanie (2011).
Similarly, if individual discount factors are identical, that is, βi = β, ∀i, a welfarist planner under
the decomposition presented in Equation (10) will conclude that intertemporal-sharing is zero, that
is, ΞIS = 0, regardless of the form of the policy under consideration. Equally important, the dynamic
and stochastic weights for a welfarist planner defined as in Equation (10) need not add up to 1. Hence,
according to Proposition 3, even when the instantaneous consumption-equivalent effect of a policy
change is identical across individuals at all dates and histories, an unnormalized utilitarian planner
would typically find non-zero intertemporal-sharing components and redistribution components of
the aggregate additive decomposition. This is is another undesirable property of the unnormalized
utilitarian welfare criterion.

An alternative date-0 normalization. One of the contributions of this paper is to introduce
the notion of a normalized planner — see Lemma 1, as one for which the stochastic, dynamic, and
individual components of the multiplicative decomposition add up to 1 across specific dimensions.
However, one can think of alternative normalizations. For instance, one may consider normalizing
the individual welfare effect of a policy change by date-0 marginal utility. In that case, it is possible
to decompose the weights of a welfarist planner as follows:

ω̃i,Wt

(
st
∣∣∣ s0
)

=
πt
(
st
∣∣ s0
) ∂ui(st)

∂cit∑
st πt (st| s0) ∂ui(s

t)
∂cit

= qit
(
st|s0

)∑
st q

i
t (st|s0)

(OA7)

ω̃i,Wt (s0) =
(βi)t

∑
st πt

(
st
∣∣ s0
) ∂ui(st)

∂cit
∂ui(s0)
∂cit

=
T∑
t=0

∑
st

qit

(
st|s0

)
(OA8)

ω̃i,W (s0) =
λi (s0) ∂ui(s

0)
∂cit∫

λi (s0) ∂ui(s
0)

∂cit
di
, (OA9)

This decomposition satisfies
∑
st ω̃

i
t

(
st
∣∣ s0
)

= 1, ∀t, ∀i, and
∫
ω̃i (s0) di = 1, but it is clear that∑T

t=0 ω̃
i
t (s0) 6= 1. In terms of units, this decomposition adds up individual welfare effects according

to ω̃i,W (s0), once they are expressed in date-0 dollars, which may seem reasonable. However, in this
case Proposition 3a) will note be valid if using this normalization. In particular, the redistribution
component of the aggregate decomposition will note be zero for policies that are invariant across all
individuals at all dates and histories.
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G.2 α-DS-Planners

After substituting the definition of the components of the DS-weights, we can explicitly express
welfare assessments for a α-DS-planner as follows:

dWW,α (s0)
dθ

=
T∑
t=0

Ei
[(

1− αi3
)
ω̃i,W,AEt (s0) + αi3ω̃

i,W
t (s0)

]∑
st

Ei
[
(1− α2) ω̃i,W,AEt

(
st
∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣ s0
)]

Ei

[
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAE (Aggregate Efficiency)

+
T∑
t=0

Ei
[(

1− αi3
)
ω̃i,W,AEt (s0) + αi3ω̃

i,W
t (s0)

]∑
st

Covi

[
(1− α2) ω̃i,W,AEt

(
st
∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣ s0
)
,
dui|c

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞRS (Risk-sharing)

+
T∑
t=0

Covi

[(
1− αi3

)
ω̃i,W,AEt (s0) + αi3ω̃

i,W
t (s0) ,

∑
st

(
(1− α2) ω̃i,W,AEt

(
st
∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣ s0
)) dui|c (st)

dθ

]
︸ ︷︷ ︸

=ΞIS (Intertemporal-sharing)

+ Covi
[
(1− α4) ω̃i,W,AE (s0) + α4ω̃

i,W (s0) , X
]︸ ︷︷ ︸

=ΞRD (Redistribution)

, (OA10)

where

X =
T∑
t=0

(
(1− α3) ω̃i,W,AE

t (s0) + α3ω̃
i,W
t (s0)

)∑
st

(
(1− α2) ω̃i,W,AE

t

(
st
∣∣∣ s0
)

+ α2ω̃
i,W
t

(
st
∣∣∣ s0
)) dui|c (st)

dθ
.

Note that the notion of α-DS-planner introduced in Definition 4 is designed so that the following
properties are satisfied:

Ei
[
ω̃i,W,α
t

(
st
∣∣∣ s0
)]

= ω̃i,W,AE
t

(
st
∣∣∣ s0
)

= Ei
[
ω̃i,Wt

(
st
∣∣∣ s0
)]

Ei
[
ω̃i,W,α
t (s0)

]
= ω̃i,W,AE

t (s0) = Ei
[
ω̃i,Wt (s0)

]
Ei
[
ω̃i,W,α (s0)

]
= ω̃i,W,AE (s0) = Ei

[
ω̃i,W (s0)

]
.

Hence, Equation (OA10) implies that when α = (0, 0, 0), we have an AE pseudo-welfarist DS-planner;
when α = (1, 0, 0), we have an AR pseudo-welfarist DS-planner; when α = (1, 1, 0), we have a NR
pseudo-welfarist DS-planner; and when α = (1, 1, 1), we have a welfarist planner. We summarize
this results in Table OA-1.

Table OA-1: α-DS-planner: Special cases

(α2, α3, α4) ω̃it
(
st
∣∣ s0
)

ω̃it (s0) ω̃i
(
s0) Planner

(1, 1, 1) ω̃i,Wt
(
st
∣∣ s0
)

ω̃i,Wt (s0) ω̃i,W (s0) W
(1, 1, 0) ω̃i,Wt

(
st
∣∣ s0
)

ω̃i,Wt (s0) ω̃i,W,AE (s0) NR
(1, 0, 0) ω̃i,Wt

(
st
∣∣ s0
)

ω̃i,W,AE
t (s0) ω̃i,W,AE (s0) NS

(0, 0, 0) ω̃i,W,AE
t

(
st
∣∣ s0
)

ω̃i,W,AE
t (s0) ω̃i,W,AE (s0) AE

Note: Note that all the α-DS-planners considered in this table are pseudo-welfarist.

However, note that there are other possible extreme combinations of α that one may want to
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consider, these are the following:

{(1, 0, 1) , (0, 1, 0) , (0, 1, 1) , (0, 0, 1)} . (OA11)

The problem with the α’s in Equation (OA11) is that, as long as one of the first two elements of α are
0, the redistribution component will be different from the redistribution component of the relevant
welfarist planner. Hence, these choices of α are not pseudo-welfarist. Hence, those α-DS-planners
will not pseudo-welfarist, but there are perfectly valid DS-planners.

G.3 Relation to existing welfare approaches

G.3.1 Welfarist Social Welfare Functions

In addition to the utilitarian SWF, defined in Equation (5), there are other welfarist SWF’s that are
at times used in specific applications — see e.g., Mas-Colell, Whinston and Green (1995), Kaplow
(2011), or Adler and Fleurbaey (2016) for details. Here we briefly described those.

The isoelastic SWF, commonly traced back to Atkinson (1970), is given by

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (Vi (s0))φ di
)1/φ

,

where the (inequality) coefficient φ is typically restricted to lie in [−∞, 1], so that W (·) is concave
when Vi (s0) > 0, and where it is typically assumed that

∫
aidi = 1, and that ai ≥ 0, ∀i.35 Limiting

cases of the isoelastic SWF correspond to the other four widely used SWF’s. First, when φ→ 1, the
isoelastic SWF becomes the conventional utilitarian SWF. In that case:

W
(
{Vi (s0)}i∈I

)
=
∫
aiVi (s0) di.

Second, when φ→ 0, the isoelastic SWF becomes the Nash (Cobb-Douglas) SWF. In that case:

W
(
{Vi (s0)}i∈I

)
=
∫

(Vi (s0))ai di.

Third, when φ→ −∞, the isoelastic SWF becomes the Rawlsian/maximin (Leontief) SWF. In that
case:

W
(
{Vi (s0)}i∈I

)
= min

{
. . . ,

Vi (s0)
ai

, . . .

}
.

Finally, when the isoelastic SWF gives positive weight to a single individual, it can be interpreted

35Note that, for an isoelastic SWF, ∂W
∂Vi

= ai
(
Vi
W

)φ−1. More importantly
∂W
∂Vi
∂W
∂Vj

= ai
aj

(
Vi
Vj

)φ−1
. When lifetime utilities

are negative, it is possible to define an isoelastic SWF of the form

W
(
{Vi (s0)}i∈I

)
=
(∫

ai (−Vi (s0))φ di
)1/φ

,

by considering φ ∈ [1,∞].
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as a dictatorial SWF. In that case:

W
(
{Vi (s0)}i∈I

)
= V1 (s0) .

Note that all of these SWF are Paretian, although the Rawlsian/maximin and the dictatorial SWF’s
are not strictly Paretian.36

G.3.2 Relation to Saez and Stantcheva (2016) and Kaldor/Hicks compensation
principle

It is straightforward to define welfare assessments in our framework that are based on the approach
introduced by Saez and Stantcheva (2016).

Definition 7. (Desirable policy change for a planner who uses generalized social marginal welfare
weights (Saez and Stantcheva, 2016)) A planner who uses generalized social marginal welfare weights
finds a policy change desirable if and only if dWSS(s0)

dθ > 0, where

dWSS (s0)
dθ

=
∫
hi (·) dVi (s0)

dθ
di, (OA12)

where hi (·) > 0, ∀i ∈ I, are a collection of individual-specific positive functions, and where dVi(s0)
dθ is

defined in Equation (2).

By comparing Equation (OA12) with Equation (6), it is evident that the approach based on
generalized social marginal welfare weights introduced in Saez and Stantcheva (2016) is more general
than the welfarist approach. The key difference between the two approaches is that for welfarist
planners the functions hi (·) are restricted to take the form

hi (·) =
∂W

(
{Vi (s0)}i∈I

)
∂Vi

,

while hi (·) can take many other values under the Saez and Stantcheva (2016) approach. Saez
and Stantcheva (2016) show that their approach can capture alternatives to welfarism, such as
libertarianism or equality of opportunity. It is also evident from definition 7 that a planner who uses
generalized social marginal welfare weights is not paternalistic, since welfare assessments are based
on individual lifetime welfare effects, dVi(s0)

dθ .
Finally, it is worth highlighting that the classic Kaldor/Hicks (Kaldor, 1939; Hicks, 1939)

compensation principle can be formalized in marginal form by setting hi = 1, ∀i in Equation (OA12)
— see e.g., (Hendren, 2020). This observation implies that the Kaldor/Hicks welfare criterion can also
be formalized as a particular DS-planner. In fact, when the Kaldor/Hicks compensation is defining in
units of a permanent dollars (dollars across all dates and states), the Kaldor/Hicks welfare criterion
exactly correspond to the pseudo-welfarist NR planner introduced in Section 5

36A planner with an isoelastic SWF is strictly Paretian when φ > −∞ if ai > 0, ∀i.
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G.3.3 Relation to Lucas (1987)/Alvarez and Jermann (2004)

It is common in papers that study the welfare consequences of policies in dynamic and stochastic
environments to compute welfare gains/losses of policies as in Lucas (1987), who measures the welfare
gains associated with a policy change — specifically, the welfare gains associated with eliminating
business cycles. Since our approach is built on marginal arguments, we connect instead our results to
those in Alvarez and Jermann (2004), who provide a marginal formulation of the approach in Lucas
(1987).

While the Lucas (1987)/Alvarez and Jermann (2004) approach is easily interpretable in
representative agent economies, it has the pitfall that it cannot be meaningfully aggregated when
there are heterogeneous individuals. See, for instance, how Atkeson and Phelan (1994), Krusell and
Smith (1999), or Krusell et al. (2009) carefully avoid aggregating welfare gains/losses for different
individuals.

To illustrate these arguments, here we consider a policy change for a given individual i, who
could be a representative agent or not. Formally, we consider a special case of the environment laid
out in Section 3, in which an individual i has preferences given by

Vi (s0) =
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
))
.

We suppose that the consumption of individual i at date t and history st can be written as

cit

(
st
)

= (1− θ) cit
(
st
)

+ θcit

(
st
)
,

where both cit
(
st
)
and cit

(
st
)
are sequences measurable with respect to history st. The sequence

cit
(
st
)
can be interpreted as a given initial consumption path (when θ = 0) and the sequence cit

(
st
)

can be interpreted as a final consumption path (when θ = 1). In the case of Lucas (1987), θ = 1
corresponds to fully eliminating business cycles.

First, we compute the marginal gains from marginally reducing business cycles, as in Alvarez
and Jermann (2004). Next, we compute the marginal gains from marginally reducing business cycles
using an additive compensation.

Multiplicative compensation. Lucas (1987) proposes using a time-invariant compensating
variation, expressed multiplicatively as a constant fraction of consumption at each date/history
as follows

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)

(1 + λ (θ))
)

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
(1− θ) cit

(
st
)

+ θcit

(
st
))
,

(OA13)
where λ (θ) implicitly defines the welfare gains associated with a policy indexed by θ; the exact
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definition in Lucas (1987) exactly corresponds to solving for λ (θ = 1).37

Following Alvarez and Jermann (2004), we can compute the derivative of the RHS of Equation
(OA13) as follows:

d
(

(βi)t∑
st πt (st| s0)ui

(
(1− θ) ci

t (st) + θci
t (st)

))
dθ

=
T∑

t=0
(βi)t

∑
st

πt

(
st
∣∣ s0
)
u′

i

(
(1− θ) ci

t

(
st
)

+ θci
t

(
st
)) dci

t (st)
dθ

(OA14)

where here dcit(st)
dθ = cit

(
st
)
− cit

(
st
)
.

Analogously, we can also compute the derivative of the LHS of Equation (OA13) as follows:

d
(∑T

t=0 (βi)t
∑

st
πt
(
st
∣∣ s0
)
ui
(
cit
(
st
)

(1 + λ (θ))
))

dθ
=

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
u′i
(
cit
(
st
)

(1 + λ (θ))
)
cit
(
st
)
λ′ (θ) .

(OA15)

Hence, combining Equations (OA14) and (OA15) and solving for dλ
dθ = λ′ (θ), yields the marginal

cost of business cycles, as defined in Alvarez and Jermann (2004). Formally, we can express dλ
dθ as

follows

dλ

dθ
= λ′ (θ) =

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
)
u′i

(
(1− θ) cit

(
st
)

+ θcit
(
st
)) dcit(st)

dθ∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) (1 + λ (θ))

)
cit (st)

=
T∑
t=0

∑
st

ωit

(
st
∣∣∣ s0
) dcit (st)

dθ
, (OA16)

where the second line shows how to reformulate dλ
dθ in terms of DS-weights given by

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
cit
(
st
)

+ θ∆cit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) (1 + λ (θ))

)
cit (st)

. (OA17)

Additive compensation. Here, we would like to contrast the approach in Lucas (1987) to one
that relies on a time-invariant compensating variation, expressed additively in terms of consumption
at each date/history as follows:

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)

+ λ (θ)
)

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣∣ s0
)
ui
(
(1− θ) cit

(
st
)

+ θcit

(
st
))
.

(OA18)
37Note that one could also define an alternative compensation as

T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
ui
(
cit
(
st
))

=
T∑
t=0

(βi)t
∑
st

πt
(
st
∣∣ s0
)
ui

((
cit
(
st
)

+ θ∆cit
(
st
))

(1 + λ (θ))
)
.
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In this case, we can follow the same steps as above to find the counterpart of Equation (OA16),
which is given by

dλ

dθ
= λ′ (θ) =

∑T
t=0 (βi)t

∑
st πt

(
st
∣∣ s0
)
u′i

(
(1− θ) cit

(
st
)

+ θcit
(
st
)) dcit(st)

dθ∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) + λ (θ)

)
cit (st)

=
T∑
t=0

∑
st

ωit

(
st
∣∣∣ s0
) dcit (st)

dθ
, (OA19)

where the second line shows how to reformulate dλ
dθ in terms of DS-weights given by

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
(1− θ) cit

(
st
)

+ θcit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st) + λ (θ)

) . (OA20)

Comparison and implications. We focus on comparing Equations (OA16) and (OA19) in the
case of θ = 0 — similar insights emerge when θ 6= 0. When θ = 0, Equations (OA17) and (OA20)
become

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
cit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st)

)
cit (st)

(multiplicative⇒ Lucas/Alvarez-Jermann)

(OA21)

ωit

(
st
∣∣∣ s0
)

=
(βi)t πt

(
st
∣∣ s0
)
u′i

(
cit
(
st
))

∑T
t=0 (βi)t

∑
st πt (st| s0)u′i

(
cit (st)

) . (additive⇒ normalized welfarist DS-planner)

(OA22)

Two major insights emerge from Equations (OA21) and (OA22). First, the DS-weights defined for
the additive case in Equation (OA22) exactly correspond to the dynamic and stochastic components
of DS-weights for a normalized utilitarian planner, as defined in Equations (13) and (14). Second,
note that the denominator of the DS-weights in the multiplicative case includes cit

(
st
)
at all dates

and histories. This captures the fact that the welfare assessment is computed as a fraction of
consumption at each date/history, not in units of the consumption good/dollars. The presence of
cit
(
st
)
in the denominator is what complicates the aggregation of welfare assessments that follow

Lucas (1987), because the denominator of the multiplicative decomposition is expressed on units of
permanent transfer of cit

(
st
)
units of consumption for individual i across dates and histories, not

simply a transfer of dollars.

Relation to EV, CV, and CS. Finally, note that the analysis in this section illustrates how
the marginal approach relates to the conventional approaches in classic demand theory: equivalent
variation (EV), compensating variation (CV), and consumer surplus (CS).

The approach of Lucas (1987)/Alvarez and Jermann (2004), and the alternative version described
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in Footnote 37 are the dynamic counterpart of compensating and equivalent variations, expressed
in proportional terms, in a dynamic stochastic environment. Hence, the analysis of this section
shows that a DS-planner can be used to operationalize the counterpart of all three notions —
either proportionally or additively — in dynamic stochastic environments. As expected, these
considerations only matter away from the θ = 0 case. However, the most straightforward approach
to make global assessments, described in Section G.5, corresponds to a consumer surplus approach.

G.3.4 Relation to welfare assessments that involve transfers

Finally, it was worth discussing how having the ability to costlessly transfer resources across
individuals impact the welfare assessments of a DS-planner. To do so, we consider an environment
in which a DS-planner has access to a set of transfers T ii

(
st
)
, so that investors budget constraints

have the form
cit

(
st
)

= T ii

(
st
)

+ . . . .

In that case, it follows immediately that

dWDS (s0)
dT ii (st)

= ωit

(
st
∣∣∣ s0
)
.

Hence, having transfers available will endogenously impose restrictions across the DS-weights of
different individuals. For instance, a planner who can transfer resources freely across all individuals,
at all dates and states have identical DS-weights across all individuals. Given Proposition 2, this
implies that this planner will only value aggregate efficiency. Similar conclusions can be reached
when a DS-planner only has a access to a subset of transfers.

G.4 Optimal policy problems using DS-weights

Throughout most of the paper we have focused on how to make welfare assessments. Here, we show
how it is straightforward to use DS-weights in the context of optimal policy problems, both in primal
and in dual forms. To do so, we consider an environments in which a planner chooses a set of policy
instruments τ to maximize social welfare, which depends on allocations X (τ ). We consider two
possibilities.

First, we consider a primal problem, in which a planner maximizes social welfare W (X (τ )),
subject to a set of implementability conditions, H (X, τ ).38 Consistent with Section 6.4, we assume
that W (X (τ )) corresponds to an instantaneous SWF. In this case, the planner solves

min
λ

max
X,τ

W (X) + λH (X, τ ) ,

38While social welfare is a scalar, bold variables can be vectors/matrices.
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with optimality conditions for τ given by

∂W

∂X
+ λ∂H

∂X
= 0. (OA23)

Second, we consider a dual problem, in which a planner maximizes social welfare W (X? (τ )), where
X? (τ) denotes the equilibrium mapping implicitly defined as H (X? (τ ) , τ ) = 0. In this case, the
planner solves

max
τ

W (X? (τ )) ,

with optimality conditions for τ given

∂W

∂X

dX?

dτ
= 0. (OA24)

In both cases, it is necessary to characterize ∂W
∂X to find optimal policies. Hence, by defining ∂W

∂X

as in Definition 3, it is straightforward to find optimal policies for different DS-planners. As a final
remark, note that, consistently with Section 6.4, it is important to understand that one cannot
define a conventional SWF from the onset, DS-weights must be introduced at the marginal level in
Equations (OA23) and (OA24).

G.5 Global welfare assessments

In the body of the paper, we have focused on marginal welfare assessments. However, one may be
interested in exploring the impact of non-marginal welfare assessments. To do so, we assume that
any policy change can be scaled by θ ∈ [0, 1], where θ corresponds to no policy change, while θ = 1
corresponds to a global non-marginal change.

Formally, we can define a non-marginal welfare change as follows:

WDS (s0; θ = 1)−WDS (s0; θ = 0) =
∫ 1

0

dWDS (s0; θ)
dθ

dθ,

where we explicitly make θ an argument of dW
DS(s0;θ)
dθ , as follows:

dWDS (s0; θ)
dθ

=
∫ T∑

t=0

∑
st

ωit

(
st
∣∣∣ s0; θ

) dui|c (st; θ)
dθ

di. (OA25)

Equation (OA25) points towards two different issues that need to be dealt with when using DS-
weights to make global assessments. First, it is important to understand how dui|c(st;θ)

dθ changes with
θ. Computing this term is straightforward, involves no normative assessment, and can be easily
operationalized by solving for the equilibrium of an economy for different values of θ.

Second, it is important to understand how the DS-weights and its components (individual,
dynamic, stochastic), vary with θ. For instance, a normalized utilitarian planner could select DS-
weights normalized at θ = 0, or normalized along the path of θ. This issue is closely related to the
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distinction between consumer surplus, equivalent variation, and compensating variation in classic
demand theory. In our applications, we assume that the DS-weights are computed for each value of
θ, which is akin to adopting a consumer surplus approach, as we discuss in Section F of the Online
Appendix. This is most straightforward approach to making global assessments, although one could
use the same methodology as Alvarez and Jermann (2004) to consider equivalent/compensating
variation-like global assessments.
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