Abstract: A seller decides whether to build a reputation for exerting high effort in front of a sequence of consumers. Each consumer decides whether to trust the seller after she observes the number of times that the seller took each of his actions in the last K periods, but not the order with which these actions were taken. I show that the seller sustains his reputation if and only if K is below some cutoff. Although a larger K allows more consumers to observe the seller’s opportunistic behavior, it weakens consumers’ incentives to punish the seller after they observe his opportunistic behavior. This undermines the seller’s reputational incentives and lowers consumers’ welfare. I also show that coarsening the summary statistics observed by the consumers may encourage the seller to sustain his reputation and may improve consumers’ welfare.

Keywords: limited memory, reputation sustainability, summary statistics, equilibrium behavior.

JEL Codes: C73, D82, D83

1 Introduction

In many settings of economic interest, people have limited information about their trading partners’ past records and can only observe some summary statistics of their recent behaviors.

To fix ideas, consider a market where consumers mainly learn through word-of-mouth communication with other consumers. This can happen due to the lack of record-keeping institutions or the lack of credible official records. After a consumer interacts with a seller, she remembers who the seller is as well as her personal experience for some time, during which she can share it with future consumers (e.g., whether the seller provided her good service). However, it is hard for consumers to communicate more detailed information such as who bought before them and what they learnt from others. This is because information transmitted through word-of-mouth is often filtered. For example, senders may omit complicated details due to the costs of describing them (Banerjee and Fudenberg 2004, Neihaus 2011), and receivers may not have enough capacity to process detailed information. As a result, consumers may only know the number...
of times} that the seller provided good and bad services within a certain time frame, but it might be hard for them to observe other details of the seller’s history, such as the exact timing of these actions.

This paper examines a seller’s incentive to sustain his reputation when consumers can only observe the summary statistics of his recent behaviors. Focusing on the case where consumers’ trust and the seller’s effort are strategic complements, my main result shows that the seller sustains his reputation for exerting high effort \textit{if and only if} consumers’ memory length is below some cutoff. The intuition is that longer memory weakens consumers’ incentives to punish the seller when he shirks occasionally. The lack of punishment undermines the seller’s incentive to sustain his reputation and lowers consumers’ welfare.

I study a repeated game between a patient seller and a sequence of consumers. The seller discounts future payoffs since the game ends with a positive probability after each period. Each period, the seller chooses his effort, and a consumer chooses the extent to which she trusts the seller after she observes the number of times that the seller took each of his actions in the last \(K\) periods. The seller is either a commitment type who exerts the highest effort in every period, or an opportunistic type who maximizes his payoff. The seller’s reputation is the probability that the consumer’s belief assigns to the commitment type.

The consumers in my model understand that the seller’s action may depend on the game’s history, such as his reputation. This stands in contrast to the reputation model of Jehiel and Samuelson (2012). However, consumers cannot observe when the game started and cannot observe the order with which the seller took his actions. As a result, they cannot use strategies that depend on the details of the game’s history and longer memories have ambiguous effects on consumers’ ability to monitor the seller: When memories are longer, each consumer receives information about a larger number of actions, which implies that the seller can be punished by more consumers after he shirks. However, each consumer’s signal about the seller’s action in any given period also becomes more noisy. My model stands in contrast to the reputation model in Fudenberg and Levine (1989) as well as existing reputation models with limited memories such as Liu (2011), Liu and Skrzypacz (2014), and Pei (2022), where consumers can observe the order of the seller’s actions. My model describes situations where each consumer interacts with the seller once, but remembers the seller’s action against her for \(K\) periods and communicates information about that action to consumers who arrive in the next \(K\) periods. She, however, does not communicate other details such as the identities of her predecessors and what she learnt from them, probably due to the costs of describing these details.

\footnote{In Section 3.5 I consider more general summary statistics, which is characterized by a partition of the seller’s action space such that each consumer only observes the number of times that the seller’s last \(K\) actions belong to each partition element.}

\footnote{One potential concern is that consumers need to make Bayesian inferences about the seller’s current-period action after observing the summary statistics of the seller’s last \(K\) actions, which can be quite complicated in some equilibria. I address this concern by showing that my theorems apply even when we focus attention on equilibria where consumers’ inference problems are simple and intuitive, such as equilibria where consumers believe that the distribution of the seller’s current-period action is close to the frequency of the seller’s actions in the last \(K\) periods. I provide more a more detailed explanation in Section 3.5.}
My analysis focuses on games that satisfy a *monotone-supermodularity* condition: Players’ actions are strategic complements and the seller’s payoff decreases in his effort and increases in consumers’ trust.

First, I show that the seller’s best reply in the repeated game must satisfy a *no-back-loop property*: The seller will not shirk when he has a positive reputation and then restore his reputation to a positive level in the future. This property applies regardless of the seller’s discount factor as well as the consumers’ strategy it best replies to. My no-back-loop property rules out reputation cycles in which the seller milks his reputation when it is strictly positive and then exerts high effort until he has a positive reputation again.

When the opportunistic-type seller’s strategy satisfies the *no-back-loop property*, there is at most one period over the infinite horizon where he has a positive reputation but does not exert the highest effort. Since the commitment type exerts the highest effort in every period and consumers do not know when the game started, consumers believe that the seller will exert the highest effort with probability close to one when he has a positive reputation. This leads to Theorem [1], which shows that in every equilibrium, consumers will play a best reply to the seller’s highest effort when the seller has a positive reputation. This implies that the seller can secure his commitment payoff by exerting the highest effort in every period.

Nevertheless, the fact that the seller can secure his commitment payoff by building a reputation does not imply that he will do so in equilibrium, since other strategies may give him a higher payoff. Focusing on games where the highest effort is the seller’s optimal commitment action, Theorem [2] shows that a patient seller exerts the highest effort with frequency close to one in all equilibria if and only if K is below some cutoff. This implies that longer memory hurts reputational incentives and lowers consumers’ welfare.

The rationale behind Theorem [2] is that having a longer memory undermines consumers’ incentives to punish a seller who shirks occasionally. For a heuristic explanation, suppose consumers believe that the opportunistic type will shirk in periods $0, K, 2K, ...$ and will exert the highest effort in other periods. Since consumers cannot observe calendar time, they believe that the seller will shirk with probability close to $\frac{1}{K}$ after they observe that the seller shirked once in the last K periods. When K is large, $\frac{1}{K}$ is small, each consumer believes that it is unlikely that the seller’s current-period effort is low, so she has no incentive to punish the seller even though she knows that the seller is opportunistic. If this is the case, then the seller prefers *shirking once every K periods* to *exerting the highest effort in every period*, making consumers’ beliefs self-fulfilling. This leads to an equilibrium where the opportunistic-type seller’s reputation is always zero. One can also construct equilibria where the seller shirks n times every K periods, provided that consumers have no incentive to punish him when he shirks with probability $\frac{n}{K}$.

The substantial part of my proof shows that if K is small, then in every equilibrium, consumers have no incentive to play their best reply to the highest effort when the seller’s reputation is zero. That is, the seller ...
is guaranteed to be punished after losing his reputation. Since the seller has the outside option of exerting
the highest effort in every period and obtains his commitment payoff, equilibria where he shirks periodically
will unravel. Hence, the seller will exert the highest effort with frequency close to one in every equilibrium.

Theorem 2 focuses on the seller’s equilibrium behavior. This stands in contrast to most of the existing
results in the reputation literature that focus on the patient player’s equilibrium payoff. My result implies
that when K is small, the seller exerts the highest effort in almost all periods in all equilibria. This stands in
contrast to the behavioral predictions in Fudenberg and Levine (1989)’s model, in which Li and Pei (2021)
show that there are equilibria where the seller shirks with positive frequency. The reason is that the seller can
still receive his commitment payoff after he separates from the commitment type in Fudenberg and Levine
(1989)’s model. The lack of punishment leads to equilibria where the seller shirks. In my model with a small
K, the seller is not only guaranteed to receive his commitment payoff when he has a positive reputation but
is also guaranteed to be punished after he loses his reputation. The guaranteed reward for exerting high
effort together with the guaranteed punishment after shirking encourages the seller to sustain his reputation.

From the above perspective, Theorem 2 contributes to the discussions on the sustainability of reputa-
tions. Instead of focusing on the patient player’s long-run behavior as in Cripps, Mailath and Samuelson
(2004), I examine the discounted frequency with which the patient player plays his commitment action.
Unlike the criteria in Cripps, Mailath and Samuelson (2004), my criteria for reputation sustainability
has a comparative advantage in evaluating the uninformed players’ welfare. My main result provides a
tight condition under which the patient player sustains his reputation in all equilibria.

Theorem 2 also has implications on societies’ ability to sustain cooperation when people have limited
information about others’ past behaviors. Most of the existing works on this topic focus on repeated games
with anonymous random matching, such as Kandori (1992), Ellison (1994), and Ghosh and Ray (1996). A
notable exception is Bhaskar and Thomas (2019) who study a repeated trust game between a long-run player
and a sequence of short-run players, each of whom has a finite memory. Their model has no commitment
type and no reputation. They show that cooperation cannot be sustained in any purifiable equilibrium when
the short-run players can perfectly observe past outcomes, but can be sustained in some purifiable equilibria
when past outcomes are observed with noise. By contrast, I study the effects of memory length on a patient
player’s incentive to sustain cooperation when his opponents can only observe the summary statistics of
his recent behaviors. My research question differs from the one in Bhaskar and Thomas (2019) since it is
unclear whether longer memories can improve the short-run players’ ability to monitor the patient player.

3Ekmekci, Gossner and Wilson (2012) and Liu and Skrzypacz (2014) propose another criteria for reputation sustainability, that
the patient player can secure his commitment payoff at every history in every equilibrium. My Theorem 1 implies that for every
$K \geq 1$, the patient player can secure his commitment payoff at every on-path history of every Nash equilibrium.
I also study an extension where consumers learn from coarse summary statistics, in the sense that there is a partition of the seller’s action space such that each consumer only observes the number of times that the seller’s last K actions belong to each element of that partition. This assumption fits when consumers cannot precisely communicate the seller’s actions to future consumers and can only tell which of the several broad categories the seller’s actions belong to (e.g., good actions, bad actions). I show that when K is intermediate and the seller has at least three actions, coarsening the summary statistics may improve the welfare of the consumers. Intuitively, consider a partition where each consumer only knows the number of times that the seller exerted the highest effort in the last K periods but cannot tell the difference between other actions. Under such a partition, it is never optimal for the seller to take any action other than the highest effort and the lowest effort. Ruling out intermediate effort levels provides consumers a stronger incentive to punish the seller after he loses his reputation. The threat of punishment encourages the seller to exert the highest effort.

2 Baseline Model

Time is indexed by $t = 0, 1, \ldots$. A long-lived player 1 (e.g., seller) interacts with a different player 2 (e.g., consumer) in each period. After each period, the game ends with probability $1 - \delta$ with $\delta \in (0, 1)$. I assume that player 1 is indifferent between receiving one unit of utility in the current period and receiving one unit of utility in the next period. Under this assumption, the seller discounts his future payoffs by δ.\footnote{In Section 4.2 I study an extension where player 1’s discount factor is different from the game’s continuation probability.}

In period t, player 1 chooses $a_t \in A$ and player 2 chooses $b_t \in B$ from finite sets A and B. Their stage-game payoffs are $u_1(a_t, b_t)$ and $u_2(a_t, b_t)$. I introduce two assumptions on players’ stage-game payoffs. I provide examples that satisfy them later in this section. First, I assume that players’ actions are strategic complements and that player 1 prefers to lower his action but prefers his opponents to raise their actions.

Assumption 1. There exist a complete order on A, \succ_A, and a complete order on B, \succ_B, such that:

1. $u_1(a, b)$ and $u_2(a, b)$ have strictly increasing differences in a and b.

2. $u_1(a, b)$ is strictly increasing in b and is strictly decreasing in a.

Let $a^* \equiv \max A$ be the highest element in A under \succ_A. Let b^* be player 2’s lowest best reply to a^* under \succ_B. Let $u_1(a^*, b^*)$ be player 1’s commitment payoff.

I introduce a condition in the comparative statics literature which ensures that player 2 has single-peaked preferences over her actions regardless of her belief about player 1’s action. Let $B \equiv \{b_1, \ldots, b^m\}$, where
For every $i \leq m - 1$ and $a \in A$, let $\gamma_a(i) \equiv u_2(a, b^i) - u_2(a, b^{i+1})$ be player 2’s payoff gain from locally decreasing her action from b^{i+1} to b^i when player 1’s action is a. Let $I \equiv \{1, 2, \ldots, m-1\}$.

Definition 1. $\gamma_a : I \to \mathbb{R}$ has single crossing property if $\gamma_a(i) \geq 0$ implies that $\gamma_a(j) > 0, \forall j > i$.

Definition 2. $\gamma_a : I \to \mathbb{R}$ and $\gamma_{\bar{a}} : I \to \mathbb{R}$ satisfy signed-ratio monotonicity if:

1. For any $i \in I$ such that $\gamma_a(i) > 0$ and $\gamma_{\bar{a}}(i) < 0$, we have $\frac{\gamma_{\bar{a}}(i)}{\gamma_a(i)} \leq \frac{\gamma_{\bar{a}}(j)}{\gamma_a(j)}$ for every $j > i$.

2. For any $i \in I$ such that $\gamma_a(i) < 0$ and $\gamma_{\bar{a}}(i) > 0$, we have $\frac{\gamma_{\bar{a}}(i)}{\gamma_a(i)} \leq \frac{\gamma_{\bar{a}}(j)}{\gamma_a(j)}$ for every $j > i$.

Assumption 2. Player 2’s stage-game payoff function $u_2(a, b)$ satisfies:

1. For every $a \in A$, γ_a has single-crossing property.

2. For every $(a, \bar{a}) \in A \times A$, γ_a and $\gamma_{\bar{a}}$ satisfy signed-ratio monotonicity.

Notice that Assumption 2 is trivially satisfied when $|B| = 2$. Assumption 2 has bite only when $|B| \geq 3$, in which case it is satisfied by a non-degenerate set of parameters.

According to Theorem 1 of Quah and Strulovici (2012), single-crossing functions f and g satisfying signed-ratio monotonicity is necessary and sufficient for all convex combinations of f and g to have the single-crossing property. Therefore, if u_2 satisfies Assumption 2 then for every $\alpha \in \Delta(A)$, $\sum_{a \in A} \gamma_a(i)\alpha(a)$ has the single-crossing property. This implies that $u_2(\alpha, b)$ is single-peaked with respect to b, in which case either player 2 has a unique pure-strategy best reply to α, or she has two pure-strategy best replies to α that are adjacent elements under \succ_{B}. Therefore, if u_2 satisfies Assumption 2 , then any pair of elements in

$$B^* \equiv \left\{ \beta \in \Delta(B) \right\} \left\{ \text{there exists } \alpha \in \Delta(A) \text{ such that } \beta \text{ best replies to } \alpha \right\}$$

(2.1)

can be ranked according to FOSD. That is to say, player 2’s mixed-strategy best replies to player 1’s actions can be completely ranked according to FOSD.

Before choosing a_t, player 1 observes all the past actions $h_t \equiv \{a_s, b_s\}_{s=1}^{t-1}$ and his perfectly persistent type $\omega \in \{\omega_s, \omega_c\}$. Let ω_c stand for a commitment type who plays his highest action $a^* \equiv \max A$ in every period. Let ω_s stand for a strategic type who maximizes his discounted average payoff $\sum_{t=0}^{\infty} (1 - \delta)^t u_1(a_t, b_t)$. Let $\pi_0 \in (0, 1)$ be the prior probability of the commitment type. For future reference, I call a^* player 1’s commitment action and actions that belong to $A \setminus \{a^*\}$ opportunistic actions.

Before choosing b_t, player 2 observes the number of times that player 1 took each of his actions in
the last \(\min\{t, K\} \) periods\(^5\), where \(K \in \mathbb{N} \) is a strictly positive integer that measures memory length. In contrast to the reputation models of Fudenberg and Levine (1989, 1992) and existing reputation models with limited memories such as Liu (2011), Liu and Skrzypacz (2014), and Pei (2022), player 2 \emph{cannot} observe the order of player 1’s actions. For example, if \(K = 3 \), then player 2 who arrives in period 4 cannot distinguish between \((a_1, a_2, a_3) = (a^*, a^*, a') \), \((a_1, a_2, a_3) = (a^*, a', a^*) \), and \((a_1, a_2, a_3) = (a', a^*, a^*) \).

The short-run players \emph{cannot} directly observe calendar time. They have a common prior and update their beliefs after observing their histories\(^6\). Since the game ends with probability \(1 - \delta \) after each period, for every \(t \in \mathbb{N} \), the probability player 2’s prior assigns to calendar time being \(t + 1 \) equals \(\delta \) times the probability her prior assigns to calendar time being \(t \). Therefore, player 2’s prior assigns probability \((1 - \delta)\delta^t \) to calendar time being \(t \). In Section 4.2, I extend my theorems to other prior beliefs about calendar time, which can distinguish the role of player 1’s patience and the role of player 2’s prior belief about calendar time.

Let \(\mathcal{H}_1 \equiv \left\{ (a_s, b_s)_{s=0}^{t-1} \text{ s.t. } t \in \mathbb{N} \text{ and } (a_s, b_s) \in A \times B \right\} \) be the set of player 1’s histories. Let

\[
\mathcal{H}_2 \equiv \left\{ (n_1, \ldots, n_{|A|}) \in \mathbb{N}^{|A|} \text{ s.t. } n_1 \geq 0, \ldots, n_{|A|} \geq 0 \text{ and } n_1 + \ldots + n_{|A|} \leq K \right\}
\]

be the set of player 2’s histories. Strategic-type player 1’s strategy is \(\sigma_1 : \mathcal{H}_1 \rightarrow \Delta(A) \). Let \(\Sigma_1 \) be the set of player 1’s strategies. Player 2’s strategy is \(\sigma_2 : \mathcal{H}_2 \rightarrow \Delta(B) \). Let \(\Sigma_2 \) be the set of player 2’s strategies. Let \(\sigma \equiv (\sigma_1, \sigma_2) \) be a typical strategy profile. The solution concept is Perfect Bayesian equilibrium, under which it is without loss of generality to focus on \(\sigma_2 : \mathcal{H}_2 \rightarrow B^* \), i.e., player 2 plays a best reply to some \(\alpha \in \Delta(A) \) at every history. My results extend to the solution concept of Nash equilibrium.

Examples: I present a few examples where players’ stage-game payoffs satisfy Assumptions\(^1\) and\(^2\). The leading example is a product choice game in Mailath and Samuelson (2015) where players’ stage-game payoffs are given by\(^8\)

\(^5\)Section 3.5 studies an extension where player 2 learns from coarse summary statistics. Each \emph{coarse summary statistics} is characterized by a partition of \(A \equiv A_1 \cup \ldots \cup A_o \) and player 2 only observes the number of times that player 1’s last \(\min\{t, K\} \) actions belong to each partition element. My baseline model corresponds to the finest partition of \(A \).

\(^6\)Because the first \(K \) short-run players observe fewer than \(K \) actions, they can perfectly infer calendar time based on their histories. All other short-run players know that calendar time is at least \(K \) after they observe their histories.

\(^7\)A similar assumption on the prior belief about calendar time is made in Cripps and Thomas (2019). Section 4 in Hu (2020) provides two interpretations for such a prior belief. The first interpretation is that the short-run players enter in a fixed order, and they are uncertain about their own identities and they hold an identical prior over their own identities. The second interpretation is that the short-run players know their own identities, but are uncertain about their entering periods. Hu (2020) also constructs a distribution over the entry process under which any two agents who observe the same history share the same belief.

\(^8\)Following Mailath and Samuelson (2015, page 168), I interpret “Trust” as purchasing a premium product or a customized product and “No Trust” as purchasing a standardized product. Under this interpretation, future consumers may observe the seller’s effort even when the current-period consumer does not trust the seller.
<table>
<thead>
<tr>
<th>seller \ consumer</th>
<th>Trust</th>
<th>No Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Effort</td>
<td>1, 1</td>
<td>$-c_N, x$</td>
</tr>
<tr>
<td>Low Effort</td>
<td>$1 + c_T, -x$</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Once we rank players’ actions according to $H \succ_A L$ and $T \succ_B N$, both assumptions are satisfied when $0 < c_T < c_N$ and $x \in (0, 1)$, namely, the seller’s cost of exerting high effort is lower when consumers trust him, and consumers are willing to trust the seller if and only if the probability of high effort is at least x.

For an example where players have more than two actions, suppose $A \subset \mathbb{R}^+$ and $B \subset \mathbb{R}^+$ are finite sets, where $a \in A$ is the seller’s effort and $b \in B$ is the extent to which consumers trust the seller. Each consumer’s payoff function is $-(a - b)^2$. The seller’s payoff function $u_1(a, b)$ is strictly decreasing in a, strictly increasing in b, and has strictly increasing differences. Verifying that these payoffs satisfy Assumption 1 is straightforward. To see why they satisfy Assumption 2 notice that for every $\alpha \in \Delta(A)$, player 2’s best replies are the elements in B that are closest to the expected value of player 1’s action under α. Therefore, player 2 either has a unique pure best reply, or has two pure best replies that are adjacent elements in B.

Although Assumption 1 restricts attention to games in which player 1’s actions can be completely ranked, both of my theorems can be generalized to the case where (A, \succ_A) is a lattice with a unique highest element a^*. This fits situations where the seller’s effort is multi-dimensional, e.g., the seller chooses both the quality of his product and the quality of his customer service. It also fits when the seller interacts with $m \in \mathbb{N}$ consumers in each period: The seller chooses his effort against each consumer from a lattice, the commitment type chooses the highest effort against all consumers, and every consumer observes the number of times that the seller took each of his actions against consumers who arrived in the last K periods. That is to say, every consumer who arrives after period K can observe the summary statistics of Km actions.

3 Results

Section 3.1 establishes a no-back-loop property that applies to each of the long-run player’s best reply under any discount factor. Section 3.2 uses this property to show that the long-run player receives at least his commitment payoff in all equilibria when his discount factor is above some cutoff. Section 3.3 shows that the commitment outcome (a^*, b^*) occurs with frequency arbitrarily close to 1 in all equilibria if and only if K is below some cutoff. I discuss the effects of memory length on consumers’ welfare and whether consumers can attain a higher welfare when they observe coarser summary statistics of the seller’s history.
3.1 The No-Back-Loop Property

Let $\pi_t \in [0, 1]$ be the probability player 2’s belief assigns to the commitment type after she observes the summary statistics of player 1’s actions in the last $\min\{t, K\}$ periods. I call π_t player 1’s reputation in period t. For every $t \geq K$, $\pi_t > 0$ if and only if player 1’s history $h^t \equiv (a_s, b_s)_{s=0}^{t-1}$ belongs to

$$H^*_1 \equiv \left\{ \left(a_s, b_s\right)_{s=0}^{t-1} \mid t \geq K \text{ and } (a_{t-K}, ..., a_{t-1}) = (a^*, ..., a^*) \right\}.$$

(3.1)

Intuitively, H^*_1 is the subset of histories where player 1 took his commitment action in each of the last K periods. Let $H_1(\sigma_1, \sigma_2)$ be the set of player 1’s histories that occur with positive probability under (σ_1, σ_2). Let $U^\delta_1(\sigma_1, \sigma_2)$ be player 1’s discounted average payoff under (σ_1, σ_2) when his discount factor is δ.

For every σ_2 and every pure strategy $\tilde{\sigma}_1 : H_1 \rightarrow A$, I say that $\tilde{\sigma}_1$ satisfies the no-back-loop property with respect to σ_2 if there exists no $h^t \in H_1(\tilde{\sigma}_1, \sigma_2) \cap H^*_1$ such that when player 1 uses strategy $\tilde{\sigma}_1$, he plays an action that is not a^* at h^t and reaches another history that belongs to $H_1(\tilde{\sigma}_1, \sigma_2) \cap H^*_1$ in the future. I say that $\tilde{\sigma}_1$ best replies to σ_2 if $\tilde{\sigma}_1 \in \arg\max_{\sigma_1 \in \Sigma_1} U^\delta_1(\sigma_1, \sigma_2)$.

No-Back-Loop Lemma. Suppose (u_1, u_2) satisfies Assumptions 1 and 2. For any $\delta \in (0, 1)$ and $\sigma_2 : H_2 \rightarrow B^*$. If pure strategy $\tilde{\sigma}_1 : H_1 \rightarrow A$ best replies to σ_2, then $\tilde{\sigma}_1$ satisfies the no-back-loop property with respect to σ_2.

The no-back-loop lemma implies that under each of the long-run player’s best reply in the repeated game, either he does not take any opportunistic action when he has a positive reputation (i.e., he never milks his reputation), or his future reputation is always zero after he milks his reputation (i.e., he never restores his reputation). This conclusion applies for all discount factors and for all strategies of the short-run players where they only play actions in B^*. In Section 4.1 I explain why this lemma hinges on the combination of (i) supermodular stage-game payoffs and (ii) the short-run players not being able to observe the order of the long-run player’s actions. My lemma rules out the reputation cycles in Liu (2011) and Liu and Skrzypacz (2014), where the long-run player milks his reputation and then restores his reputation. Those papers assume that the long-run player’s stage-game payoff is strictly submodular and the short-run players can observe the order of the long-run player’s actions. Both features stand in contrast to my model.

My lemma does not follow from existing results on supermodular games. This is because even when players’ stage-game payoffs are monotone-supermodular, it is not necessarily the case that when the game is played repeatedly, the long-run player has a stronger incentive to play higher actions at histories where

9 Most of the existing results on supermodular games focus on one-shot games, and it is well-known from the insightful work of Echenique (2004) that a repeated supermodular game is not necessarily supermodular.
the short-run players’ actions are higher. Intuitively, the long-run player’s action in the current period affects future short-run players’ observations, which in turn affects future short-run players’ actions as well as the long-run player’s continuation value. Hence, the long-run player’s incentive depends not only on the current short-run player’s action, but also on future short-run players’ responses after they observe his action.

The formal proof is in Appendix A. I provide a heuristic explanation that focuses on player 1’s pure strategies that depend only on his actions in the last K periods, including the order of these K actions.

Suppose by way of contradiction that there exists \(\sigma_1 \) that best replies to \(\sigma_2 : H_2 \rightarrow B^* \) such that when player 1 plays according to \(\sigma_1 \), he plays \(a' (\neq a^*) \) at a history where he has a positive reputation, and after a finite number of periods, reaches a history \(h^t \) that satisfies \((a_{t-K}, ..., a_{t-1}) = (a'', a^*, ..., a^*) \) where \(a'' \neq a^* \) but \(a'' \) and \(a' \) can be the same, and then he plays \(a^* \) at \(h^t \), after which he has a positive reputation again. I depict player 1’s on-path play under strategy \(\sigma_1 \) in the left panel of Figure 1.

If \(\sigma_1 \) best replies to \(\sigma_2 \), then player 1 prefers \(a' \) to \(a^* \) at the green circle and prefers \(a^* \) to \(a' \) at the white circle. No matter whether player 1 is currently at the green or the white circle, he will reach the green circle after playing \(a^* \) and will reach the blue circle after playing \(a' \). Hence, the differences in player 1’s incentives at the green and the white circles cannot be driven by his continuation value. This implies that such differences in incentives can only be driven by player 1’s stage-game payoff, which is affected by the current-period short-run player’s action. Since \(u_1(a, b) \) has strictly increasing differences and \(a^* \succ_A a' \), it cannot be the case that player 2’s mixed action at the green circle strictly FOSDs her mixed action at the white circle. When \(u_2(a, b) \) satisfies Assumption 2, any pair of elements in \(B^* \) can be ranked according to FOSD. This implies that player 2’s action at the white circle weakly FOSDs her action at the green circle.

I propose two deviations for player 1 starting from the white circle, which I call Deviation A and Deviation B, respectively. They are depicted in the middle and right panels of Figure 1:

- **Deviation A:** Plays \(a' \) at the white circle, and then follows strategy \(\sigma_1 \).

- **Deviation B:** Plays \(a'' \) at the white circle, then plays \(a^* \) for \(K - 1 \) consecutive periods after which play will reach the white circle again, and then follows strategy \(\sigma_1 \).

Since player 2 cannot observe the order of player 1’s actions, she takes the same action at the white circle and at every pink circle. I compare player 1’s continuation value at the white circle when he uses strategy \(\sigma_1 \) to his continuation values at the white circle under Deviation A and Deviation B, respectively.

1. Compared to \(\sigma_1 \), Deviation A takes a lower-cost action \(a' \) at the white circle, skips the green circle, and frontloads the payoffs along the blue lines (i.e., the blue, yellow, and white circles). If player 1
Player 1 uses strategy $\tilde{\sigma}_1$ that violates no-back-loop

Player 1 uses Deviation A

Player 1 uses Deviation B

Figure 1: The green circle represents a history where player 1 has a positive reputation. The white circle represents a history where player 1 is one-period-away from having a positive reputation. The blue circle represents a history that is reached after player 1 milks his reputation. The yellow circles represent histories that are reached on the path from the blue circle to the white circle when player 1 plays $\tilde{\sigma}_1$. The pink circles represent histories where a'' was played once and a^* was played $K - 1$ times in the last K periods.

prefers $\tilde{\sigma}_1$ to Deviation A, then his average payoff from the circles along the blue lines (i.e., the payoff that Deviation A frontloads) must be strictly lower than his stage-game payoff at the green circle.

2. Compared to $\tilde{\sigma}_1$, Deviation B takes a lower-cost action a'' at the white circle, skips the green circle, and induces payoffs along the red lines in the next $K - 1$ periods (i.e., the pink circles). If player 1 prefers $\tilde{\sigma}_1$ to Deviation B, then his average payoff along the red lines must be strictly smaller than a convex combination of his payoff at the green circle and his average payoff along the blue lines.

Therefore, if player 1 prefers $\tilde{\sigma}_1$ to both Deviations A and B at the white circle, then his stage-game payoff at the green circle must be strictly greater than his average payoff along the red lines. Since player 2 can only observe the summary statistics but not the order of player 1’s actions, player 2’s action at every circle along the red line coincides with her action at the white circle. This leads to a contradiction since player 2’s action at the white circle weakly FOSDs her action at the green circle, and player 1’s stage-game payoff is increasing in player 2’s action. This implies that at the white circle, either Deviation A or B yields a strictly higher payoff for player 1 relative to strategy $\tilde{\sigma}_1$. Hence, $\tilde{\sigma}_1$ cannot be a best reply to σ_2.

3.2 The Returns from Building Reputations

I use the no-back-loop lemma to show that at every on-path history of every equilibrium, the patient player’s continuation value is at least $u_1(a^*, b^*)$. My proof implies that he can secure payoff $u_1(a^*, b^*)$ by playing
Let \(a^* \) be player 1’s lowest action. For every \(\pi_0 \in (0, 1) \), there exists \(\delta(\pi_0) \in (0, 1) \) such that for every \(\delta > \delta(\pi_0) \), all of player 2’s best replies to the following mixed action:

\[
\left\{ 1 - \frac{(1 - \delta)(1 - \pi_0)}{\pi_0} \right\} a^* + \frac{(1 - \delta)(1 - \pi_0)}{\pi_0} a
\]

are no less than \(b^* \) under the order \(\succ_B \) defined in Assumption 1. Such \(\delta(\pi_0) \) exists since \(b^* \) is the lowest best reply to \(a^* \), \((1 - \delta)(1 - \pi_0) \pi_0 \rightarrow 0 \) as \(\delta \rightarrow 1 \), and best reply correspondences are upper-hemi-continuous.

Theorem 1. Suppose \((u_1, u_2)\) satisfies Assumptions 1 and 2 and \(\delta > \delta(\pi_0) \). The strategic-type player 1’s discounted average payoff at every on-path history of every equilibrium is at least:

\[
(1 - \delta^K) \min_{b \in B} u_1(a^*, b) + \delta^K u_1(a^*, b^*).
\]

(3.2)

Theorem 1 suggests that when players’ actions are strategic complements, the patient player can secure his commitment payoff at every on-path history of every equilibrium even when his opponents can only observe the summary statistics of his recent behaviors. My result applies as long as \(\delta \) is above some cutoff and no matter how small \(K \) is. This stands in contrast to existing reputation results that require either an infinite \(K \) (e.g., Fudenberg and Levine 1989), or a large \(K \) (e.g., Theorem 2 in Liu and Skrzypacz 2014)10 or the short-run players observing the entire history of some noisy signals that can statistically identify the patient player’s past actions (e.g., Fudenberg and Levine 1992, Gossner 2011, and Theorem 2 in Pei 2022)11.

Each short-run player in my model receives only one signal, which is the summary statistics of the long-run player’s recent behaviors. As a result, she cannot observe everything her predecessors observe. Because of this, Theorem 1 does not follow from the arguments in Fudenberg and Levine (1989, 1992) and Gossner (2011), which require each short-run player observing everything her predecessors observe.

Since each signal received by the short-run player is affected by all of the long-run player’s actions in the last \(K \) periods, the short-run player in my model face a novel lack-of-identification problem. For example, when \(K = 2 \), player 2 cannot tell the difference between \((a_{t-2}, a_{t-1}) = (a', a^*)\) and \((a_{t-2}, a_{t-1}) = (a^*, a')\). This stands in contrast to the lack-of-identification problems faced by the short-run players in Ely and Välimäki (2003) and Ely, Fudenberg and Levine (2008), where the monitoring technology has a product structure, that is, each short-run player’s signal is affected by exactly one action of the long-run player.

10Theorem 2 in Liu and Skrzypacz (2014) shows that for every \(\pi_0 > 0 \), there exists \(K \in \mathbb{N} \) such that the patient player can secure his commitment payoff at every history in every equilibrium when the memory length \(K \) is above \(K \).

11Theorem 2 in Pei (2022) establishes a reputation result when each short-run player observes all previous short-run players’ actions, an unboundedly informative private signal about the long-run player’s current-period action, and the long-run player’s actions in the last \(K \) periods. He shows that each short-run player’s action is either informative about the long-run player’s action against her, or this short-run player plays her best reply to the long-run player’s commitment action with probability close to 1.
My proof develops a novel argument using the no-back-loop lemma. I show that when \(\delta > \delta(\pi_0) \), player 2 has no incentive to play any action lower than \(b^* \) when calendar time is at least \(K \) and player 1 has a positive reputation. This implies Theorem \[1\] since when the strategic-type player 1 deviates by playing \(a^* \) in every period, player 2’s action is no lower than \(b^* \) starting from period \(K \).

Proof of Theorem 1: Let \(\Sigma_1^* \) be the set of player 1’s pure strategies that satisfy the no-back-loop property. For every integer \(t \in \mathbb{N} \), let \(E_t \) be the event that **player 1 is strategic and has a positive reputation in period \(t \).** Fix any \(\sigma_1 \in \Sigma_1^* \) and \(\sigma_2 \), let \(p_t(\sigma_1, \sigma_2) \) be the \textit{ex ante} probability of event \(E_t \) when the strategic-type player 1 plays \(\sigma_1 \) and player 2 plays \(\sigma_2 \). Since player 1 is the commitment type with probability \(\pi_0 \), we have \(p_t(\sigma_1, \sigma_2) \leq 1 - \pi_0 \) for every \(t \in \mathbb{N} \). Let \(\mathbb{N}^*(\sigma_1, \sigma_2) \subset \mathbb{N} \) be the set of calendar time \(t \) such that \(p_t(\sigma_1, \sigma_2) > 0 \) and \(t \geq K \). For every \(t \in \mathbb{N}^*(\sigma_1, \sigma_2) \), let \(q_t(\sigma_1, \sigma_2) \) be the probability that player 1 \textit{does not} play \(a^* \) in period \(t \) conditional on event \(E_t \). Since \(\sigma_1 \in \Sigma_1^* \), if player 1 plays according to \(\sigma_1 \), as soon as he plays any action that is not \(a^* \) at any history after period \(K \) where he has a positive reputation, he will never have a positive reputation in the future. This implies that \(\sum_{t \in \mathbb{N}^*(\sigma_1, \sigma_2)} p_t(\sigma_1, \sigma_2) q_t(\sigma_1, \sigma_2) \leq 1 - \pi_0 \).

Fix an equilibrium \((\bar{\sigma}_1, \sigma_2)\). The no-back-loop lemma implies that \(\bar{\sigma}_1 \in \Delta(\Sigma_1^*) \). For every pure strategy \(\sigma_1 \in \Sigma_1^* \), let \(\bar{\sigma}_1(\sigma_1) \) be the probability mixed strategy \(\bar{\sigma}_1 \) assigns to \(\sigma_1 \). This probability is well-defined since \(\Sigma_1^* \) is a countable set. Recall that player 2’s prior belief assigns probability \((1 - \delta)\delta^t\) to the calendar time being \(t \). At any history after period \(K \) where player 1 has a positive reputation, player 2 believes that player 1’s action is \textit{not} \(a^* \) with probability

\[
\frac{\sum_{\sigma_1 \in \Sigma_1} \bar{\sigma}_1(\sigma_1) \sum_{t \in \mathbb{N}^*(\sigma_1, \sigma_2)} (1 - \delta)\delta^t p_t(\sigma_1, \sigma_2) q_t(\sigma_1, \sigma_2)}{\pi_0 \sum_{t = K}^{+\infty} (1 - \delta)\delta^t + \sum_{\sigma_1 \in \Sigma_1^*} \bar{\sigma}_1(\sigma_1) \sum_{t \in \mathbb{N}^*(\sigma_1, \sigma_2)} (1 - \delta)\delta^t p_t(\sigma_1, \sigma_2)}. \tag{3.3}
\]

The denominator of (3.3) is at least \(\pi_0 \delta^K \). Since \(\sum_{t \in \mathbb{N}^*(\sigma_1, \sigma_2)} p_t(\sigma_1, \sigma_2) q_t(\sigma_1, \sigma_2) \leq 1 - \pi_0 \) for every \(\sigma_1 \in \Sigma_1^* \), \(\Sigma_1^* \) is a countable set, and \(t \geq K \) for every \(t \in \mathbb{N}^*(\sigma_1, \sigma_2) \), the numerator of (3.3) is no more than \((1 - \delta)(1 - \pi_0)\delta^K\). This suggests that the value of (3.3) is no more than \(\frac{(1 - \delta)(1 - \pi_0)}{\pi_0} \). The definition of \(\delta(\pi_0) \) together with \(u_2(a, b) \) having strictly increasing differences implies that when \(\delta > \delta(\pi_0) \), actions strictly lower than \(b^* \) are not optimal for player 2 at any history after period \(K \) and where player 1 has a positive reputation. This implies that at every on-path history of every equilibrium, if player 1 plays \(a^* \) in every period starting from that history, then he receives a continuation value of at least (3.2). \[^12\]

[^12]: One caveat to apply the no-back-loop lemma to prove the result for Nash Equilibrium is that it restricts attention to \(\sigma_2 : \mathcal{H} \rightarrow B^* \), while player 2 may play actions that do not belong to \(B^* \) at off-path histories. However, notice that the proof of the no-back-loop lemma uses \(\sigma_2 : \mathcal{H}_2 \rightarrow B^* \) only when comparing player 2’s mixed actions at the green circle and at the white circle, both of which occur with positive probability under \((\bar{\sigma}_1, \sigma_2)\). Hence, we can show that \(\bar{\sigma}_1 \) satisfies the no-back-loop property with respect to \(\sigma_2 \) if (i) \(\bar{\sigma}_1 \) best replies to \(\sigma_2 \), and (ii) \(\sigma_2(h^*_2) \in B^* \) for every \(h^*_2 \) that occurs with positive probability under \((\bar{\sigma}_1, \sigma_2)\).
3.3 The Incentive to Sustain Reputations

The fact that player 1 can secure his commitment payoff by playing a^* in every period does not imply that he will do so in equilibrium. My next result focuses on player 1’s behavior, and in particular, the frequency with which he plays the commitment action. It requires another assumption on players’ stage-game payoffs:

Assumption 3. Players’ stage-game payoffs (u_1, u_2) are such that b^* is a strict best reply to a^*,

$$u_1(a^*, b^*) > \max_{a \in A, b \prec b^*} u_1(a, b) \quad \text{and} \quad \{a^*\} = \arg \max_{a \in A} \left\{ \min_{b \in BR_2(a)} u_1(a, b) \right\}. \quad (3.4)$$

The product choice game is a leading example that satisfies Assumption 3. The first part of Assumption 3 is generically satisfied since b^* is defined as player 2’s lowest best reply to a^*. The second part requires that player 1 cannot obtain payoffs weakly greater than $u_1(a^*, b^*)$ when player 2’s action is strictly lower than b^*. The third part requires a^* to be player 1’s optimal pure commitment action. Since $u_1(a, b)$ is strictly decreasing in a and a^* is the highest element of A, b^* does not best reply to any action other than a^*.

Let $E^\sigma[\cdot]$ be the expectation operator induced by strategy profile $\sigma \equiv (\sigma_1, \sigma_2)$ conditional on player 1 being the strategic type. Since the game continues with probability δ after each period, the expected sum of the short-run players’ payoffs depends only on the discounted frequency (or the occupation measure) of each action profile $(a, b) \in A \times B$ under strategy profile σ, which is defined as

$$F^\sigma(a, b) \equiv E^\sigma \left[\sum_{t=0}^{+\infty} (1 - \delta)^t \mathbf{1}\{a_t = a, b_t = b\} \right]. \quad (3.5)$$

Let

$$H^\sigma \equiv E^\sigma \left[\sum_{t=1}^{+\infty} (1 - \delta)^{t-1} \mathbf{1}\{\pi_t > 0\} \right] \quad (3.6)$$

be the discounted frequency of histories where player 1 has a positive reputation excluding period 0.

Theorem 2. Suppose (u_1, u_2) satisfies Assumptions 1, 2, and 3.

1. Suppose b^* does not best reply to mixed action $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for every $a' \neq a^*$. There exists a constant $C \in \mathbb{R}_+$ that is independent of δ such that $F^\sigma(a^*, b^*) \geq 1 - (1 - \delta)C$ and $H^\sigma \geq 1 - (1 - \delta)C$ for every equilibrium strategy profile σ under discount factor δ.

2. Suppose b^* is a strict best reply to $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for some $a' \neq a^*$. There exist $\delta \in (0, 1)$ and $\eta > 0$ such that for every $\delta > \delta'$, there is a PBE strategy profile σ such that $\sum_{b \in B} F^\sigma(a^*, b) < 1 - \eta$ and $H^\sigma = 0$, i.e., $\pi_t = 0$ with probability 1 for every $t \geq 1$ when player 1 is the strategic type.
The proof is in Appendix B and Appendix C. Since Assumption 3 requires b^* to be player 2’s strict best reply to a^*, b^* does not best reply to $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for every $a' \neq a^*$ if and only if K is below some cutoff $K^* \geq 2$, where K^* depends only on player 2’s stage-game payoff function $u_2(a, b)$. My result implies that:

1. When K is below K^*, (i) player 1 plays a^* with frequency arbitrarily close to one in all equilibria as $\delta \to 1$, and (ii) histories where player 1 has a strictly positive reputation occur with frequency arbitrarily close to 1 as $\delta \to 1$. In Section 4.2, I discuss generalizations to situations where player 1’s discount rate differs from the probability with which the game continues after each period.

2. When K is above K^*, no matter how patient player 1 is, there always exists an equilibrium in which player 1 takes opportunistic actions with frequency bounded away from zero, and starting from period 1, the strategic-type player 1’s reputation is always zero on the equilibrium path.

In terms of how large η can be and how it is related to K and u_2, one can show that for every $m \in \{1, 2, \ldots, K-1\}$ and $a' \neq a^*$ such that b^* is player 2’s strict best reply to $\frac{K-m}{K} a^* + \frac{m}{K} a'$, there exists $\delta \in (0, 1)$ such that for every $\delta > \delta$, there is an equilibrium where the discounted frequency with which the strategic-type player 1 plays a' is approximately $\frac{m}{K}$. That is, η can be as large as $\frac{m}{K}$.

In the product choice game example of Section 2, the cutoff memory length is $\frac{1}{1-x}$. Theorem 2 implies that consumers having a long memory undermines the seller’s incentives to sustain reputations. Intuitively, a longer memory have two effects on the seller’s reputational incentives. On the one hand, each of the seller’s action is observed by more consumers, which implies that the seller can be punished by more consumers after he shirks. On the other hand, it undermines consumers’ incentives to punish the seller after they observe a few instances of low effort. The second effect encourages the seller to exert low effort occasionally instead of exerting high effort in every period. Theorem 2 suggests that this effect dominates in terms of determining whether the patient player will sustain his reputation in all equilibria.

In order to understand the second effect as well as how to pin down the cutoff memory length, I focus on the product choice game and provide a heuristic explanation for why the cutoff memory length is $\frac{1}{1-x}$.

Suppose consumers believe that the strategic-type seller will play L exactly once in every K consecutive periods. When δ is close to 1, consumers believe that L will be played in the current period with probability close to $\frac{1}{K}$ after they observe L being played only once in the last K periods. Hence, consumers prefer to play T at such histories when $x < \frac{K-1}{K}$, or equivalently, when $K > \frac{1}{1-x}$. If this is the case, then the seller prefers exerting low effort once every K periods to exerting high effort in every period.

This is the idea behind my proof for the second part of Theorem 2, where I construct equilibria under a large K such that on the equilibrium path, the strategic-type player 1 plays $a'(\neq a^*)$ in periods $0, K, 2K, \ldots$, 15
and plays \(a^* \) in other periods.\(^{13}\) According to Bayes rule, his reputation on the equilibrium path is always zero starting from period 1. Starting from period \(K \), player 2 plays \(b^* \) when player 1 has a positive reputation as well as at histories where she observes \(a' \) only once and the rest of the last \(K \) actions were \(a^* \).

Player 2’s belief at on-path histories has an intuitive interpretation and her optimal action at every on-path history is easy to compute: She believes that the distribution of player 1’s current-period action is close to the frequency with which player 1 played each of his actions in the last \(K \) periods. In particular, she believes that player 1 will choose \(a^* \) in the current period after observing player 1 has chosen \(a^* \) in all of the last \(K \) periods, and she believes that player 1 will choose \(a^* \) with probability close to \(\frac{K-1}{K} \) and \(a' \) with probability close to \(\frac{1}{K} \) after observing \(a^* \) occurred \(K-1 \) times and \(a' \) occurred once in the last \(K \) periods.

Using similar ideas, one can show that for every \(m \in \{1, 2, \ldots, K-1\} \) and \(a' \neq a^* \) such that \(b^* \) is a strict best reply to \(\frac{K-m}{K}a^* + \frac{m}{K}a' \), there exists an equilibrium under a sufficiently large \(\delta \) where in every \(K \) consecutive periods, player 1 plays \(a' \) in \(m \) periods and plays \(a^* \) in \(K-m \) periods, and player 2 plays \(b^* \) when she observes \(a' \) being played \(m \) times and \(a^* \) being played \(K-m \) times in the last \(K \) periods.

The proof for the first part is more substantial. This is because characterizing all equilibria in an infinitely repeated game is not tractable and ruling out the type of equilibria constructed in the proof for the second statement is insufficient to show that player 1 will play \(a^* \) with frequency close to 1 in all equilibria. The reason is that a Bayesian short-run player’s expectation of the long-run player’s current-period action may not equal the frequency with which the long-run player played each of his actions in the last \(K \) periods. For example, the seller may play \(H \) with high probability even when he played \(L \) in all of the last \(K \) periods, and he may play \(L \) with probability bounded away from \(\frac{1}{K} \) when \(L \) was played once in the last \(K \) periods.

I explain the ideas using the product choice game when \(K = 2 \) and \(x > \frac{1}{2} \), so that \(K < \frac{1}{1-x} \). Readers who are not interested in the proof can skip this part and jump to Section 3.4. In every period \(t \), the seller’s continuation value and incentive as well as consumer \(t \)’s action depend only on \((a_{t-2}, a_{t-1})\). I call \((a_{t-2}, a_{t-1})\) the state in period \(t \). Let \(S = \{LL, LH, HL, HH\} \) be the state space, with \(s \in S \) a typical element. For example, the state in period \(t \) is \(LH \) if and only if \(a_{t-2} = L \) and \(a_{t-1} = H \).

Fix any equilibrium \(\sigma \). For every \(s \in S \), let \(\mu(s) \) be the probability that the current state is \(s \) conditional on the seller being the strategic type and calendar time being at least 2 (in the general case, I replace 2 with \(K \)). For every \(s, s' \in S \), let \(Q(s \rightarrow s') \) be the probability that the state in the next period is \(s' \) conditional on the state in the current period being \(s \), the seller being the strategic type, and the calendar time being at least 2. Let \(p(s) \) be the probability that the state is \(s \) in period 2 conditional on the seller being the strategic type.

\(^{13}\)Since the strategic type’s reputation is always zero after period 1, his behavior in this equilibrium does not violate the no-back-loop property. The behavior I just described is qualitatively different from the reputation cycles in Liu (2011) and Liu and Skrzypacz (2014), since the strategic-type long-run player has a positive reputation at some on-path histories in their equilibria.
Step 1: Decompose the Discounted Frequency of States My proof hinges on the following equation, which I establish later as Lemma B.1

\[
\mu(s^*) = (1 - \delta)p(s^*) + \delta \sum_{s \in S} \mu(s)Q(s \rightarrow s^*) \text{ for every } s^* \in S.
\] (3.7)

The intuition behind (3.7) is that consumers do not directly observe calendar time, so \(\mu(s^*)\) is a convex combination of the probability of state \(s^*\) in period 2, which equals \(p(s^*)\), and the average probability with which play reaches state \(s^*\) after period 2, which equals \(\sum_{s \in S} \mu(s)Q(s \rightarrow s^*)\). Since consumers’ prior belief assigns probability \((1 - \delta)\delta^t\) to the calendar time being \(t\), the weight on the first term equals \(1 - \delta\).

Step 2: The Inflow-Outflow Lemma For every non-empty subset of states \(S' \subset S\), let

\[
\mathcal{I}(S') \equiv \sum_{s \in S'} \sum_{s^* \in S'} \mu(s)Q(s \rightarrow s^*)
\]

be the inflow from other states to states in \(S'\), and let

\[
\mathcal{O}(S') \equiv \sum_{s \in S'} \sum_{s^* \notin S'} \mu(s)Q(s \rightarrow s^*)
\]

be the outflow from states in \(S'\) to other states. Since \(\sum_{s \notin S'} Q(s^* \rightarrow s) + \sum_{s \in S'} Q(s^* \rightarrow s) = 1\) for every \(s^* \in S\) and \(S' \subset S\), we have:

\[
\sum_{s^* \in S'} \mu(s^*) = \sum_{s^* \in S'} \sum_{s \notin S'} \mu(s^*)Q(s^* \rightarrow s) + \sum_{s^* \in S'} \sum_{s \in S'} \mu(s^*)Q(s^* \rightarrow s) = \mathcal{O}(S') + \sum_{s^* \in S'} \sum_{s \in S'} \mu(s^*)Q(s^* \rightarrow s).
\] (3.8)

According to (3.7), we have

\[
\sum_{s^* \in S'} \mu(s^*) = (1 - \delta) \sum_{s^* \in S'} p(s^*) + \delta \mathcal{I}(S') + \delta \sum_{s^* \in S'} \sum_{s \in S'} \mu(s^*)Q(s^* \rightarrow s),
\]

or equivalently,

\[
\sum_{s^* \in S'} \mu(s^*) = \mathcal{I}(S') + \sum_{s^* \in S'} \sum_{s \in S'} \mu(s^*)Q(s^* \rightarrow s) + \frac{1 - \delta}{\delta} \sum_{s^* \in S'} \left(p(s^*) - \mu(s^*)\right).
\] (3.9)
Equations (3.8) and (3.9) imply that
\[
|\mathcal{I}(S') - \mathcal{O}(S')| = \left| \frac{1 - \delta}{\delta} \sum_{s^* \in S'} \left(p(s^*) - \mu(s^*) \right) \right| \leq \frac{1 - \delta}{\delta}. \tag{3.10}
\]

In words, the difference between the inflow to S' and the outflow from S' is no more than $\frac{1 - \delta}{\delta}$.

Step 3: Inflow to State HH and Outflow from State HH Must Be Small The no-back-loop lemma implies that either (i) the strategic-type seller never plays L when the state is HH, or (ii) the strategic-type seller never returns to state HH in the future after playing L in state HH. In the first case, the outflow from state HH to other states is 0, and (3.10) implies that the inflow from other states to state HH is no more than $\frac{1 - \delta}{\delta}$. In the second case, the inflow to S' is zero, where $S' \equiv \{ s' \neq HH \text{ s.t. the seller can reach HH from } s' \text{ under one of his best replies to player 2’s equilibrium strategy} \}$

Inequality (3.10) implies that the outflow from S' is no more than $\frac{1 - \delta}{\delta}$, and the definition of S' implies that the inflow to state HH is no more than the outflow from S', which is also no more than $\frac{1 - \delta}{\delta}$. Applying inequality (3.10) again, we obtain that the outflow from state HH to other states is no more than $\frac{2(1 - \delta)}{\delta}$.

Summarizing these two cases, we have:

\[
\max\{\mathcal{I}(\{HH\}), \mathcal{O}(\{HH\})\} \leq \frac{2(1 - \delta)}{\delta}. \tag{3.11}
\]

Step 4: Consumers’ Incentive After the Seller Loses His Reputation I use inequalities (3.7), (3.10), and (3.11) to show that when $K = 2$ and $x > \frac{1}{2}$, either $\mu(HL) + \mu(LH)$ is bounded above by some linear function of $1 - \delta$, i.e., $\mu(HL) + \mu(LH) \to 0$ as $\delta \to 1$, or consumers have a strict incentive to play N after they observe L being played exactly once in the last two periods.

This is because when consumers observe one L and one H in the last 2 periods, i.e., they know that the state is either HL or LH, they believe that the seller will play H in the current period with probability

\[
\frac{\mu(HL)Q(HL \to LH) + \mu(LH)Q(LH \to HH)}{\mu(HL) + \mu(LH)}
\]

and will play L in the current period with probability

\[
\frac{\mu(HL)Q(HL \to LL) + \mu(LH)Q(LH \to HL)}{\mu(HL) + \mu(LH)}.
\]
Since $x > \frac{1}{2}$, consumers strictly prefer to play N after observing one L and one H if

$$\mu(HL)Q(HL \to LH) + \mu(LH)Q(LH \to HH) < \mu(HL)Q(HL \to LL) + \mu(LH)Q(LH \to HL).$$

By definition, $I(\{HH\}) = \mu(LH)Q(LH \to HH)$ and $O(\{HH\}) = \mu(HH)Q(HH \to HL)$. Inequality (3.11) implies that $\mu(LH)Q(LH \to HH)$ and $\mu(HH)Q(HH \to HL)$ are close to 0 when $\delta \to 1$. Hence, $\mu(HL)Q(HL \to LH) + \mu(LH)Q(LH \to HH)$ is close to $\mu(HL)Q(HL \to LH)$, and $\mu(HL)Q(HL \to LL) + \mu(LH)Q(LH \to HL)$ is close to $\mu(HL)Q(HL \to LL) + \mu(LH)$. According to (3.7),

$$\mu(HL) \approx \mu(HH)Q(HH \to HL) + \mu(LH)Q(LH \to HL) \approx \mu(LH)Q(LH \to HL),$$

we know that either $\mu(HL)Q(HL \to LH) \approx \mu(LH)Q(LH \to HL)Q(HL \to LH)$, with the right-hand-side being no more than $\mu(LH)$, is smaller than $\mu(HL)Q(HL \to LL) + \mu(LH)$, in which case consumers prefer to play N upon observing $\{LH, LH\}$, or $\mu(LH) + \mu(HL)$ is small in the sense that it is bounded above by a linear function of $1 - \delta$.

Step 5: States where Consumers Play N Occur with Frequency Close to Zero I use inequality (3.11) to show that if consumers have a strict incentive to play N upon observing one H and one L, then $\mu(HL) + \mu(LH)$ is bounded above by a linear function of $1 - \delta$. Intuitively, the seller’s continuation value in state HH is 1. Because he can reach state HH by playing H in two consecutive periods, his continuation value in any other state is at least $- (1 - \delta^2)c_N + \delta^2$. Under the hypothesis that consumers play N when $(a_{t-2}, a_{t-1}) \in \{HL, LH\}$, the state cannot remain in $\{HL, LH\}$ for too long. This is because otherwise, the seller cannot obtain payoff weakly greater than $- (1 - \delta^2)c_N + \delta^2$. In another word, the state must reach HH or LL within a bounded number of periods. Since the inflow to HH is small, we know that when $\mu(HL) + \mu(LH)$ is large, there must be a large inflow to LL from $\{HL, LH\}$. Given the relationship between inflows and outflows in (3.10), there must also be a large outflow from LL to $\{HL, LH\}$. Hence, there exists a best reply of the seller that plays H at LL, plays L at LH, and plays L at HL. However, the seller’s payoff from such a behavior is strictly less than his payoff from playing L in every period, since consumers have no incentive to play T when the state is either HL or LH. This leads to a contradiction.

Similarly, one can show that $\mu(LL)$ is also close to 0 in all equilibria given that $\mu(HL) + \mu(LH)$, $I(\{HH\})$, and $O(\{HH\})$ are all bounded above by some linear function of $1 - \delta$. Suppose by way of contradiction that the ratio between $\mu(LL)$ and $\max \left\{ \mu(HL) + \mu(LH), I(\{HH\}), O(\{HH\}) \right\}$ can be
arbitrarily large in some equilibria. Since \(\mu(HL) + \mu(LH) \) is small, the inflow to \(\{HL, LH\} \) must be small, which implies that \(\mu(LL)Q(LL \to LH) \) is small. Since \(\mu(LL) \) is large relative to \(\mu(HL) + \mu(LH) \), we know that \(Q(LL \to LH) \) must be close to zero, which implies that the strategic-type seller plays \(L \) with positive probability in state \(LL \). Therefore, playing \(L \) is optimal for the seller in state \(LL \), which implies that it is optimal for the seller to remain in state \(LL \) after he reaches there. Since the seller’s continuation value is no less than \(- (1 - \delta^2)c_N + \delta^2 \) at every history, consumers must have an incentive to play \(T \) in state \(LL \) in order for the seller to receive such a payoff by remaining in state \(LL \). Hence, the probability with which the seller plays \(H \) at \(LL \) is at least \(x \), which implies that \(Q(LL \to LL) \leq 1 - x \).

However, (3.7) implies that \(\mu(LL) \) is close to \(\mu(LL)Q(LL \to LL) + \mu(HL)Q(HL \to LL) \), and under the hypothesis that \(\mu(HL) \) is close to 0, we know that \(\mu(LL) \) is close to \(\mu(LL)Q(LL \to LL) \). This suggests that \(\mu(LL) \left(1 - Q(LL \to LL)\right) \) must be close to 0. Since \(\mu(LL) \left(1 - Q(LL \to LL)\right) \geq x\mu(LL) \) and \(x > 0 \), we know that \(\mu(LL) \to 0 \) as \(\mu(LL) \left(1 - Q(LL \to LL)\right) \to 0 \).

Remark: Appendix B generalizes the above argument to \(K \geq 2 \) as well as to stage games where players have more than two actions. First, I derive the analogs of (3.7) and (3.10) under a general \(K \). I define each state as a sequence of player 1’s actions with length \(K \). For every \(0 \leq k \leq K \), let \(S_k \) be the set of states where \(k \) of the last \(K \) actions are not \(a^* \). The no-back-loop lemma and (3.10) imply that the inflow to \(S_0 \) from other states and the outflow from \(S_0 \) to other states must be bounded above by \(\frac{2(1 - \delta)}{\delta} \) (Lemma B.3).

The rest of the proof uses an induction argument. For any two subsets of states \(S' \cap S'' = \emptyset \), let

\[
Q(S' \to S'') = \sum_{s' \in S'} \sum_{s'' \in S''} \mu(s')Q(s' \to s'')
\]

be the flow from \(S' \) to \(S'' \). I show that for every \(k \geq 1 \), if the flow from \(S_{k-1} \) to \(S_k \) and the flow from \(S_{k-1} \) to \(S_k \) are both bounded above by a linear function of \(1 - \delta \), then the total discounted frequency of states in \(S_k \) is also bounded above by a linear function of \(1 - \delta \). Iterate the above argument, we obtain that the flow from \(S_k \) to \(S_{k+1} \) and the flow from \(S_k \) to \(S_{k+1} \) are also bounded above by a linear function of \(1 - \delta \).

The case in which \(k = 1 \) is shown in Lemma B.3, i.e., the flow from \(S_1 \) to \(S_0 \) and the flow from \(S_0 \) to \(S_1 \) are both close to zero. Establishing the inductive step proceeds as follows. For every \(k \in \{0, \ldots, K\} \), I partition \(S_k \equiv \bigcup_k S_{j,k} \) such that player 2 only observes which partition element the state belongs to. First, I show in Lemma B.4 that for every \(S_{j,k} \) with \(k \geq 1 \), if the flow from \(S_{k-1} \) to \(S_{j,k} \) and the flow from \(S_{j,k} \) to \(S_{k-1} \) are both bounded above by some linear function of \(1 - \delta \), then either the total discounted frequency of states in \(S_{j,k} \) is also bounded above by some linear function of \(1 - \delta \), or player 2 has no incentive to play.
when the state belongs to $S_{j,k}$. Second, I show in Lemma B.5 that for every $S_{j,k}$ with $k \geq 1$, if the flow from S_{k-1}^j to $S_{j,k}$ and the flow from $S_{j,k}$ to S_{k-1}^j are both bounded above by some linear function of $1 - \delta$, and player 2 has no incentive to play b^* when the state belongs to $S_{j,k}$, then under Assumption 3, the total discounted frequency of states in $S_{j,k}$ must be bounded above by some linear function of $1 - \delta$.

3.4 Implications of Theorem 2

Short-Run Players’ Welfare: In the equilibrium I constructed in order to show the second statement of Theorem 2, player 1 plays some a' ($\neq a^*$) once in every K consecutive periods, and player 2 plays b^* either when player 1 has a positive reputation or when player 1 has played a^* in $K - 1$ of the last K periods, and has played a' once in the last K periods. Player 1’s payoff in this equilibrium is approximately

$$K^{-1}u_1(a^*, b^*) + \frac{1}{K}u_1(a', b^*),$$

which is strictly greater than his commitment payoff $u_1(a^*, b^*)$.

Hence, Theorem 2 implies that player 1 can obtain a payoff that is strictly greater than his optimal commitment payoff $u_1(a^*, b^*)$ in some equilibria if and only if K is above some cutoff K^*. Under an additional assumption that $u_2(a, b)$ is strictly increasing in a, i.e., consumer’s payoff is strictly increasing in the seller’s effort, Theorem 2 implies that player 2’s discounted average payoff is arbitrarily close to their first best payoff $u_2(a^*, b^*)$ in all equilibria if and only if their memory length K is below the cutoff K^*.

Corollary 1. Suppose (u_1, u_2) satisfies Assumptions 1, 2, and 3

1. Suppose b^* does not best reply to mixed action $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for every $a' \neq a^*$. For every $\varepsilon > 0$, there exists $\delta \in (0, 1)$ such that for every $\delta > \delta_0$ and in every equilibrium strategy profile σ under δ, player 1’s payoff is no more than $u_1(a^*, b^*) + \varepsilon$ and player 2’s welfare satisfies

$$U_2^\sigma \equiv \mathbb{E}\left[\sum_{t=0}^{+\infty} (1 - \delta)\delta^t u_2(a_t, b_t)\right] \geq u_2(a^*, b^*) - \varepsilon. \quad (3.13)$$

2. Suppose b^* is a strict best reply to $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for some $a' \neq a^*$, and $u_2(a, b)$ is strictly increasing in a. There exist $\eta > 0$ and $\delta_0 \in (0, 1)$, such that for every $\delta > \delta_0$, there exists an equilibrium strategy profile σ such that player 1’s payoff is more than $u_1(a^*, b^*) + \eta_1$ and player 2’s welfare is less than $u_2(a^*, b^*) - \eta$.

\[\text{Intuitively, player 1 can secure his commitment payoff } u_1(a^*, b^*) \text{ after playing } a^* \text{ for } K \text{ periods, so he cannot remain in } S_{j,k} \text{ for a long time since his stage-game payoff is less than } u_1(a^*, b^*) \text{ when the state belongs to } S_{j,k}. \text{ Due to the hypothesis that the flow from } S_{j,k} \text{ to } S_{k-1}^j \text{ is small, as well as the conclusion in the previous step that every } S_{i,k} \text{ occurs with discounted frequency close to } 0 \text{ if player 2 has an incentive to play } b^* \text{ at } S_{i,k}, \text{ we know that there must exist a best reply for player 1 under which he reaches } S_{k+1} \text{ starting from } S_{j,k}. \text{ If he never returns to } S_{j,k} \text{ after reaching } S_{k+1}, \text{ then states in } S_{j,k} \text{ are transitory and therefore, must occur with frequency close to } 0. \text{ If he returns to } S_{j,k} \text{ after reaching } S_{k+1}, \text{ he needs to play } a^* \text{ in } S_{k+1} \text{ which is the most costly action, after which the state reaches } S_{j,k} \text{ and he receives a low payoff. This contradicts his incentive to play } a^* \text{ at } S_{k+1}.\]
The proof directly follows from that of Theorem 2 and is omitted in order to avoid repetition. Corollary 1 implies that longer memories enable the seller to obtain a higher payoff at the expense of consumers’ welfare. This happens in equilibria where the seller shirks occasionally and consumers trust the seller as long as the seller did not shirk too many times in the last K periods. By contrast, when K is small, the seller receives his commitment payoff and consumers receive their first best payoff in all equilibria.

Behavior in Each Period: The next corollary focuses on the case where the discounted frequency of (a^*, b^*) is arbitrarily close to 1 in all equilibria and examines the implication of Theorem 2 on player 1’s behavior in each period. It shows that in every equilibrium, the strategic-type patient player will have a positive reputation with probability close to 1 after the initial few periods, after which he will take the highest action a^* with probability close to 1 in every period until t is large enough such that δ^t is close to 0.

Corollary 2. Suppose (u_1, u_2) satisfies Assumptions 1, 2, and 3 and b^* does not best reply to mixed action $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for every $a' \neq a^*$. For every $\varepsilon > 0$, there exist $C_\varepsilon \in \mathbb{R}_+$ and $\delta \in (0, 1)$ such that for every $\delta > \delta$, every equilibrium under δ, and every $t \in \mathbb{N}$ that satisfies $\delta^t \in (\varepsilon, 1-\varepsilon)$:

1. The probability that $h^t \in H^*_1$ is at least $1 - (1 - \delta)C_\varepsilon$.

2. The strategic-type player 1 plays a^* with probability at least $1 - (1 - \delta)C_\varepsilon$ in period t.

The proof of Corollary 2 is in Appendix D which uses Theorem 2 and the no-back-loop lemma.

Comparison with Fudenberg and Levine (1989): I compare the discounted frequency with which player 1 plays his commitment action in any equilibrium under any finite K to the equilibrium frequencies with which player 1 plays his commitment action in Fudenberg and Levine (1989)’s model.

In Fudenberg and Levine (1989), every short-run player observes the entire sequence of the long-run player’s past actions. When players’ payoffs satisfy Assumptions 1, 2, and 3 Li and Pei (2021) show that the frequency with which player 1 plays a^* in equilibrium can be anything between $G^*(u_1, u_2)$ and 1 where

$$G^*(u_1, u_2) \equiv \min_{(\alpha_1, \alpha_2, b_1, b_2, q) \in \Delta(A) \times \Delta(A) \times B \times B \times [0,1]} \left\{ q\alpha_1(a^*) + (1-q)\alpha_2(a^*) \right\},$$

subject to $b_1 \in \arg\max_{b \in B} u_2(\alpha_1, b)$, $b_2 \in \arg\max_{b \in B} u_2(\alpha_2, b)$, and

$$qu_1(\alpha_1, b_1) + (1-q)u_1(\alpha_2, b_2) \geq u_1(a^*, b^*).$$
For an interpretation of the linear program that defines \(G^*(u_1, u_2) \), consider an optimization problem faced by a planner who chooses a distribution over action profiles in order to minimize the expected probability of \(a^* \) subject to the constraints that (i) each action profile in the support of this distribution satisfies player 2’s myopic incentive constraint, and (ii) player 1’s expected payoff from this distribution is no less than his commitment payoff \(u_1(a^*, b^*) \). In the product choice game, \(G^*(u_1, u_2) = \frac{x}{1 + (1 - x)c_T} \). Corollary shows that in my model, the discounted frequency of \(a^* \) is strictly bounded above \(G^*(u_1, u_2) \) for every finite \(K \).

Corollary 3. Suppose \((u_1, u_2)\) satisfies Assumptions \([1, 2] \) and \([3] \). There exists \(\psi > 0 \) such that for every \(K \in \mathbb{N}, \) there exists \(\delta \in (0, 1) \) such that for every \(\delta > \delta \), and in every equilibrium \(\sigma \) under \(\delta \), we have:

\[
\sum_{b \in B} F^\sigma(a^*, b) > G^*(u_1, u_2) + \psi. \tag{3.16}
\]

The proof is in Appendix \([E] \). Compared to Fudenberg and Levine (1989)’s model, the short-run players in my model receive coarser information about the patient player’s history. Corollary \([E] \) implies that the patient player plays his commitment action with strictly higher frequency in every equilibrium of my model compared to the worst equilibrium in terms of the frequency with which the patient player plays \(a^* \) in Fudenberg and Levine (1989)’s model. This suggests that my model delivers sharper predictions on the patient player’s behavior relative to Fudenberg and Levine’s \([15] \).

Intuitively, in Fudenberg and Levine (1989)’s model, in order to sustain an equilibrium where the patient player plays his commitment action with frequency bounded away from 1, the short-run players need to fine-tune their punishments based on the details of the patient player’s history. For example, in the product choice game, an equilibrium where the discounted frequency of \(H \) is approximately \(G^*(u_1, u_2) \) is given by:

- In period 0, the strategic-type player 1 plays \(L \) and player 2 plays \(N \).
- Starting from period 1, (i) if player 1 played \(H \) in period 0, then player 1 plays \(H \) and player 2 plays \(T \), and player 2 plays \(N \) in all subsequent periods after observing player 1 played \(L \); (ii) if player 1 played \(L \) in period 0, then player 1 plays \(H \) with probability \(x \) and player 2 plays \(T \) until period \(\bar{t} \), where \(\bar{t} \) is the smallest \(t \in \mathbb{N} \) that satisfies \(\sum_{s=1}^{t} (1 - \delta)\delta^{s-1}u_1(a_s, b_s) + (\delta^t - \delta^{t+1})(1 + c_T) > 1 \), after which the continuation play is either \((H, T)\) or \((L, N)\). The discounted frequencies of \((H, T)\)

\[15\] Nevertheless, it is not the case that every equilibrium of my model remains an equilibrium in Fudenberg and Levine (1989)’s model. This is because the short-run players’ incentive constraints can be violated once they receive more information, for example, after they observe the long-run player’s actions in the distant past and/or the order of the long-run player’s actions.
and \((L, N)\) are such that player 1’s continuation value in period 1 is 1. After period \(\tilde{t}\), if player 1 plays \(L\) in any period where he is supposed to play \(H\), then player 2 plays \(N\) in all subsequent periods.

A notable feature of the above equilibrium is that player 1 faces different punishments for shirking at different histories. If player 1 played \(H\) in period 0, then he will face a grim-trigger punishment when he plays \(L\) in any subsequent period, in which case he strictly prefers \(H\) to \(L\) starting from period 1. If player 1 played \(L\) in period 0, then he will be indifferent between \(H\) and \(L\) starting from period 1 until period \(\tilde{t}\) since he only faces a mild punishment for shirking in each of these periods. Moreover, the calendar time \(\tilde{t}\) starting from which shirking faces a grim-trigger punishment depends on the discounted frequency with which player 1 has played \(H\) from period 1 to \(\tilde{t}\). That is to say, player 2 needs to know the order of player 1’s past actions in order to compute this discounted frequency. Therefore, such a strategy is infeasible when player 2 can only observe the summary statistics of player 1’s recent play.

By contrast, the short-run players in my model can only observe the summary statistics of the long-run player’s recent actions. Their lack of information limits their abilities to use different punishments at different histories. Suppose there exists an equilibrium where player 1 plays \(a^*\) with frequency less than 1. The strategic type must have an incentive to separate from the commitment type at some histories, so his continuation value after separation at each of these histories must be at least \(u_1(a^*, b^*)\). In order to attain a continuation value of at least \(u_1(a^*, b^*)\), the punishments for shirking at some subsequent histories need to be harsh enough so that player 1 strictly prefers to play \(H\) at those histories. Since player 2 receives coarse information about player 1’s history, she must use the same harsh punishment for shirking at all histories that are indistinguishable from the ones at which she needs to punish player 1. Therefore, player 1 will face a harsh punishment for shirking at a larger set of histories when player 2 receives coarser information, so he has a strict incentive to play his commitment action \(a^*\) at a larger set of histories. This increases the frequency with which he plays his commitment action compared to that in Fudenberg and Levine (1989).

3.5 Learning from Coarse Summary Statistics

In this section, I focus on games that satisfy Assumptions [1] [2] and [3] and analyze the equilibrium outcomes when consumers can only observe coarse summary statistics about the seller’s recent behaviors.

Following Acemoglu, Makhdoum, Malekian and Ozdaglar (2020), every coarse summary statistics is characterized by a partition of \(A\), denoted by \(\{A_1, ..., A_n\}\), so that for every \(t \in \mathbb{N}\), consumer \(t\) only observes

\[16\] In Fudenberg and Levine (1989)’s model, player 2 assigns zero probability to the commitment type after observing \(L\) in period 0. According to Lemma 3.7.2 in Mailath and Samuelson (2006, page 99), there exists a continuation equilibrium in period \(\tilde{t}\) that delivers the target continuation value where the outcomes in all subsequent periods are either \((H, T)\) and \((L, N)\).
the number of times the seller’s action belongs to each A_i in the last $\min\{t, K\}$ periods.

This extension fits when consumers cannot communicate precise information about the seller’s action to future consumers. Instead, they can only describe which of the several broad categories the seller’s action belongs to. For example, she can only tell whether she had a good experience or a bad experience with the seller, but she finds it too time-consuming to precisely describe exactly how good or how bad.

The summary statistics in my baseline model correspond to the finest partition of A. Under the coarsest partition of A, consumers receive no information about the seller’s past actions.

Since there exists a complete order \succ_A on A and $u_1(a, b)$ is strictly decreasing in a, for every partition element A_i, the strategic-type player 1 will never choose action $a \in A_i$ if there exists $a' \in A_i$ that satisfies $a \succ_A a'$. Hence, analyzing the game under an n-partition $\{A_1, \ldots, A_n\}$ of A is equivalent to analyzing a game where player 1’s action set only contains the following n actions: $\{\min A_1, \ldots, \min A_n\}$.

When players’ stage-game payoffs satisfy Assumptions 1, 2, and 3, player 2 has no incentive to play b^* unless player 1 plays a^* with positive probability. When the prior probability of commitment type π_0 is small enough such that player 2 has no incentive to play b^* when player 1 plays a^* with probability no more than π_0, the strategic-type player 1 has no incentive to play a^* and player 2 has no incentive to play b^* unless the partition element that contains a^* is a singleton. If we partition A according to $A = \{a^*\} \cup (A \setminus \{a^*\})$, i.e., consumers only observe the number of times the seller chose a^* in the last K periods but cannot distinguish other actions, then consumers may receive a higher welfare under some intermediate K. Intuitively, such a partition helps the seller to credibly commit not to take any action other than his commitment action a^* and his lowest-cost action $a \equiv \min A$. This provides consumers a stronger incentive to punish the seller after the seller loses his reputation, since consumers know that the seller will take the lowest action as long as he does not take the highest action. Such an effect motivates the seller to play a^* in every period.

Corollary 4. Suppose (u_1, u_2) satisfies Assumptions 1, 2, and 3

1. Suppose the partition element that contains a^* is not a singleton, then the strategic-type player 1 never plays a^* at any on-path history of any equilibrium.

2. Suppose the partition element that contains a^* is a singleton (without loss, let $A_1 \equiv \{a^*\}$), then when $\delta > \delta(\pi_0)$, the strategic-type player 1’s payoff is at least (3.2) in every equilibrium. Furthermore,

 (i) Suppose b^* does not best reply to mixed action $\frac{K-1}{K}a^* + \frac{1}{K} \min_{j \in \{2, \ldots, n\}} \{\min A_j\}$. There exists $C \in \mathbb{R}_+$ such that $F_\sigma(a^*, b^*) \geq 1 - (1 - \delta)C$ and $H_\sigma \geq 1 - (1 - \delta)C$ for every equilibrium strategy profile σ under δ.

25
(ii) Suppose \(b^* \) is a strict best reply to mixed action \(\frac{K-1}{K} a^* + \frac{1}{K} \min_{j \in \{2,\ldots,n\}} \{ \min A_j \} \). There exist \(\delta \in (0, 1) \) and \(\eta > 0 \) such that for every \(\delta > \delta \), there exists a PBE strategy profile \(\sigma \) such that
\[
\sum_{b \in B} F^\sigma(a^*, b) < 1 - \eta \quad \text{and} \quad H^\sigma = 0, \quad \text{i.e.,} \quad \pi_t = 0 \quad \text{with probability} \quad 1 \quad \text{for every} \quad t \geq 1 \quad \text{conditional on player} \quad 1 \quad \text{being the strategic type.}
\]

Corollary 4 directly follows from Theorems 1 and 2, so the proof is omitted in order to avoid repetition. This result implies that fixing any \((u_1, u_2)\) and \(K \in \mathbb{N}\), if there exists a partition of \(A\) under which player 1 plays \(a^*\) with frequency arbitrarily close to one in all equilibria, then player 1 plays \(a^*\) with frequency arbitrarily close to one in all equilibria under partition \(A = \{a^*\} \cup (A \setminus \{a^*\})\), i.e., each consumer only knows the number of times with which the seller chose the highest action in the last \(K\) periods but she cannot distinguish other actions. It also implies that coarsening the summary statistics cannot improve consumers’ welfare when the seller’s action choice is binary, but can improve consumers’ welfare when the seller has at least three actions and the memory length \(K\) satisfies:

1. \(b^* \) does not best reply to \(\frac{K-1}{K} a^* + \frac{1}{K} a \).
2. \(b^* \) is a strict best reply to \(\frac{K-1}{K} a^* + \frac{1}{K} a' \) for some \(a' \notin \{a^*, a\} \).

That is, coarsening the summary statistics observed improves consumers’ welfare when \(K\) is intermediate.

4 Discussions

4.1 Observing the Order of Player 1’s Actions & Submodular Stage-Game Payoffs

My analysis relies on the no-back-loop property, which hinges on players’ stage-game payoffs being supermodular and the short-run players cannot observe the order of the patient player’s past actions. I explain why these conditions are not redundant for my results using the product choice game.

Observing the Order of Player 1’s Past Actions: Suppose every consumer can observe the seller’s last \(K\) actions including the order of these actions. I maintain the supermodularity assumption that \(c_N > c_T > 0 \).

When \(K = 1\), whether consumers can observe the order of the seller’s last \(K\) actions is irrelevant. Theorems 1 and 2 imply that in all equilibria, the patient seller can secure his commitment payoff and will play \(H\) with frequency arbitrarily close to one. Proposition 1 shows that there exists some cutoff \(K \geq 2\) such that when \(K \geq K\), there exist equilibria that violate the no-back-loop property. In those equilibria, the patient seller plays his commitment action with frequency bounded away from one and his discounted average payoff is bounded below his commitment payoff.
Proposition 1. Suppose consumer in period t observes $(a_{\max\{0,t-K\}}, \ldots, a_{t-1})$ for every $t \in \mathbb{N}$. For every $x \in (0,1)$ and $c_N > c_T > 0$, there exist $K \geq 2$, $\pi \in (0,1)$, and $\eta > 0$ such that when $\pi_0 \in (0,\pi)$ and $K \geq K$, for every δ close enough to 1, there exists an equilibrium σ that violates the no-back-loop property. In this equilibrium, $F^\sigma(H, T) < 1 - \eta$ and the seller’s payoff is no more than $1 - \eta$.

The proof is in Appendix \[\] In what follows, I illustrate the ideas behind my proof using an example where $K = 2$. I construct an equilibrium in which the seller plays H when $(a_{t-2}, a_{t-1}) = (L, H)$, plays L when $(a_{t-2}, a_{t-1}) = (H, L)$, and mixes between H and L when (a_{t-2}, a_{t-1}) is either (L, L) or (H, H). Consumers play T when $(a_{t-2}, a_{t-1}) = (L, H)$, play N when $(a_{t-2}, a_{t-1}) = (H, L)$, and mix between T and N when $(a_{t-2}, a_{t-1}) \in \{(L, L), (H, H)\}$. Consumers’ strategy in such an equilibrium is not feasible when they cannot observe the order of the seller’s actions. The existence of such an equilibrium also implies that there is no guarantee that consumers play T with higher probability when the seller exerted high effort more frequently in the last K periods. In the above equilibrium, consumers play T with higher probability when $(a_{t-2}, a_{t-1}) = (L, H)$ compared to $(a_{t-2}, a_{t-1}) = (H, H)$, and they play T with higher probability when $(a_{t-2}, a_{t-1}) = (L, L)$ compared to $(a_{t-2}, a_{t-1}) = (H, L)$.

The comparison between Proposition 1 and Theorem 1 suggests that allowing the uninformed players to observe the order of the informed player’s actions changes the set of equilibrium payoffs. This stands in contrast to repeated Bayesian game models where the uninformed player is long-lived, such as Renault, Solan and Vieille (2013), in which it is sufficient for the uninformed player to check the frequency with which the informed player played each of his actions. This is because in my model, the uninformed players are short-lived, so their incentives are sensitive to their beliefs about the informed player’s current-period action. By contrast, the equilibrium constructed in Renault, Solan, and Vieille (2013) requires the uninformed player to have intertemporal incentives, since she does not play her myopic best reply at some on-path histories.

Proposition 1, Theorem 1, the results in Fudenberg and Levine (1989) and Pei (2022) together imply that the patient player’s lowest equilibrium payoff is non-monotone with respect to the quality of the short-run players’ information, measured in the sense of Blackwell. My discussion focuses on situations where players’ stage-game payoffs satisfy Assumptions 1 and 2. My Theorem 1 and Fudenberg and Levine (1989)’s result imply that the patient player can secure his Stackelberg payoff in all equilibria either when the short-run players can observe the entire history of his actions, or when the short-run players can observe the summary statistics of the long-run player’s actions (my baseline model with $K = +\infty$) 17 or when the short-run players can only observe the summary statistics of the long-run player’s last K actions where K

17 Although this is not a direct implication of Fudenberg and Levine (1989)’s result, one can establish this conclusion using the argument in Fudenberg and Levine (1989)’s proof. The details are available upon request.
is a strictly positive and finite integer. The patient player’s lowest equilibrium payoff is bounded below his Stackelberg payoff either when the short-run players can observe his actions in the last $K (\geq K)$ periods including the order of these actions, or when every short-run player can observe the patient player’s actions in the last $K (\geq 1)$ periods and at least one previous short-run player’s action. One can also show that when the short-run players can observe the patient player’s last K actions including the order of these actions, the patient player’s lowest equilibrium payoff is weakly decreasing in K when K is strictly positive and finite.

Submodular Stage-Game Payoff: Suppose $K = 1$ and players’ payoffs are submodular, i.e., $c_T > c_N > 0$. I show that there exists an equilibrium that violates the no-back-loop property, the patient seller receives his minmax payoff, and his frequency of exerting high effort is bounded away from 1.

Proposition 2. Suppose $K = 1$, $c_T > c_N > 0$, and π_0 is small enough such that $\frac{\pi_0}{\delta(1-\pi_0)-\pi_0} \leq \frac{1}{2}$. There exists $\delta \in (0, 1)$ such that for every $\delta > \delta$, there exists an equilibrium in which the seller’s discounted average payoff is 0.

The proof is in Appendix G. I provide intuition for why submodular stage-game payoffs differ from supermodular stage-game payoffs. When payoffs are submodular, i.e., $c_T > c_N > 0$, it is still true that consumer t plays T with strictly higher probability when $a_{t-1} = H$. However, the seller has a stronger incentive to exert high effort when $a_{t-1} = L$. Unlike the case with supermodular payoffs, the seller can have incentives both to milk his reputation when $a_{t-1} = H$ and to rebuild his reputation when $a_{t-1} = L$. This can provide consumers a rationale for not trusting the seller even after they observe high effort in the period before. My proof constructs an equilibrium where the seller exerts low effort when $a_{t-1} = H$ and mixes between high and low effort when $a_{t-1} = L$. Consumer t plays N when $a_{t-1} = L$ and plays T with probability between 0 and 1 when $a_{t-1} = H$.

4.2 Player 1’s Discount Factor & Player 2’s Prior Belief about Calendar Time

The parameter δ plays a dual role in my baseline model: It is both the long-run player’s discount factor as well as the probability with which the game continues after each period. The latter affects the short-run players’ incentives through their beliefs about calendar time.

My results can be extended to situations where the long-run player’s discount factor does not coincide with the game’s continuation probability. For example, suppose the short-run players’ prior belief assigns probability $(1 - \overline{\delta})\delta^t$ to calendar time being $t \in \mathbb{N}$, and the long-run player’s discount factor is δ, which I assume is no more than $\overline{\delta}$. This model describes situations where the long-run player discounts future
payoffs for two reasons. First, he is indifferent between receiving one unit of utility in period \(t \) and receiving \(\delta / \delta \) unit of utility in period \(t - 1 \). Second, the game ends with probability \(1 - \delta \) after each period.

My no-back-loop lemma extends to this setting. This is because the conclusion is independent of player 1’s discount rate and the game’s continuation probability. Theorem 1 is modified as follows: Suppose \((u_1, u_2)\) satisfies Assumptions 1 and 2, and the continuation probability \(\delta \) is large enough such that all of player 2’s best replies to the mixed action

\[
\left\{ 1 - \frac{(1 - \delta)(1 - \pi_0)}{\pi_0} \right\} a^* + \frac{(1 - \delta)(1 - \pi_0)}{\pi_0} a
\]

are no less than \(b^* \), then the strategic-type player 1’s discounted average payoff at every on-path history of every equilibrium is at least

\[
(1 - \delta^K) \min_{b \in B} u_1(a^*, b) + \delta^K u_1(a^*, b^*).
\]

Hence, my payoff lower bound applies to any discount factor of the long-run player, as long as the probability with which the game continues after each period is above some cutoff, and that cutoff depends only on the prior probability of commitment type \(\pi_0 \) and player 2’s stage-game payoff function \(u_2 \). Intuitively, since the long-run player’s equilibrium strategy satisfies the no-back-loop property, there is at most one period over the infinite horizon in which he has a positive reputation yet he plays an action other than \(a^* \). Therefore, every short-run player has a strict incentive to play \(b^* \) after observing \(a^* \) in the last \(K \) periods when her prior belief assigns a low enough probability to each calendar time. The latter is the case when \(\delta \) is large.

For Theorem 2, let us redefine \(F^\sigma(a, b) \) and \(H^\sigma(a, b) \) based on the game’s continuation probability \(\delta^\sigma \):

\[
F^\sigma(a, b) \equiv \mathbb{E}^\sigma \left[\sum_{t=0}^{+\infty} (1 - \delta^\sigma)^t \delta^t \mathbf{1}\{a_t = a, b_t = b\} \right],
\]

and

\[
H^\sigma \equiv \mathbb{E}^\sigma \left[\sum_{t=1}^{+\infty} (1 - \delta^\sigma)^{t-1} \mathbf{1}\{\pi_t > 0\} \right].
\]

The motivation is that a social planner who wants to maximize the expected sum of the short-run players’ welfare only cares about \(F^\sigma(\cdot, \cdot) \). The statement of Theorem 2 should be modified as follows. Suppose \((u_1, u_2)\) satisfies Assumptions 1, 2, and 3 and the discount factor \(\delta \) is larger than some cutoff \(\delta \in (0, 1) \),

1. Suppose \(b^* \) does not best reply to mixed action \(\frac{K - 1}{K} a^* + \frac{1}{K} a' \) for every \(a' \neq a^* \). Then there exists a constant \(C \in \mathbb{R}_+ \) that is independent of \(\delta \) and \(\overline{\delta} \) such that \(F^\sigma(a^*, b^*) \geq 1 - (1 - \overline{\delta})C \) and \(H^\sigma \geq 1 - (1 - \delta)C \) for every equilibrium strategy profile \(\sigma \) under discount factor \(\delta \).
2. Suppose b^* is a strict best reply to $\frac{K-1}{K}a^* + \frac{1}{K}a'$ for some $a' \neq a^*$. There exist $\delta \in (0, 1)$ and $\eta > 0$ such that for every $\delta > \delta$, there is a PBE strategy profile σ such that $\sum_{b \in B} F^\sigma(a^*, b) < 1 - \eta$ and $H^\sigma = 0$, i.e., $\pi_t = 0$ with probability 1 for every $t \geq 1$ when player 1 is the strategic type.

Hence, the occupation measure of (a^*, b^*) is arbitrarily close to 1 in all equilibria even when player 1’s discount factor δ is bounded away from 1. The important parameter is δ, the game’s continuation probability, which affects player 2’s prior belief. When K is small, the total occupation measure of action profiles other than (a^*, b^*) is bounded above by some linear function of $1 - \delta$, i.e., it vanishes to zero as long as the game continues after each period with probability arbitrarily close to 1. Intuitively, δ being close to 1 implies that the short-run players’ prior belief assigns similar probabilities to adjacent calendar times. This is also reflected in the proof, where one needs to replace δ with δ in the first four steps in the proof of Theorem 2 (see Section 3.3). The fifth step only requires player 1’s discount factor δ to be above some cutoff, in which case histories where his stage-game payoffs are bounded below $u_1(a^*, b^*)$ are transitory.

5 Conclusion & Related Literature

I study a reputation game in which the short-run players face a novel lack-of-identification problem: Each of them can only observe the summary statistics of the long-run player’s recent actions. I show that when players’ stage-game payoffs are monotone-supermodular, each of the long-run player’s best reply in the repeated game must satisfy a no-back-loop property. This property implies that either the long-run player has no incentive to abandon his reputation when it is strictly positive, or he has no incentive to restore his reputation to a positive level after abandoning his reputation.

When the short-run players know that the long-run player’s strategy satisfies the no-back-loop property, they prefer to play their myopic best reply to the long-run player’s commitment action as long as the long-run player has a positive reputation and the game has lasted for at least K periods. This implies that the long-run player can secure his commitment payoff by playing his commitment action in every period.

I also show that the long-run player plays his commitment action and has a positive reputation with frequency close to one in all equilibria if and only if the short-run players’ memory length K is below some cutoff. This is because when the short-run players have long memories, they have an incentive to trust the long-run player even after the long-run player has lost his reputation. This encourages the long-run player to shirk occasionally instead of sustaining his reputation for exerting high effort. When the short-run players have short memories, the long-run player has a strong incentive to sustain his reputation since he is guaranteed to be punished after he loses his reputation. The welfare implication of my result is that longer
memories may increase the seller’s equilibrium payoff at the expense of consumers’ welfare.

Under some intermediate memory lengths, consumers can achieve a higher welfare when they only know the number of times that the seller exerted the highest effort in the last \(K \) periods, but cannot distinguish the seller’s other actions. The reason is that when consumers can only observe coarse summary statistics, it is never optimal for the strategic-type seller to take any action other than exerting the highest effort and exerting the lowest effort. Ruling out intermediate effort levels provides consumers a stronger incentive to punish the seller after he loses his reputation, since consumers believe that the seller will choose the lowest effort as long as he does not choose the highest effort. This provides the seller a stronger incentive to sustain his reputation for exerting the highest effort. I conclude by reviewing the related literature.

Reputation with Limited Memories: The short-run players in my model can only observe the summary statistics of the long-run player’s actions in the last \(K \) periods. Similar to existing models with limited memories, such as Liu (2011), Liu and Skrzypacz (2014), Sperisen (2018), and Pei (2022), the long-run player needs to sustain his reputation since the short-run players forget what happened in the distant past. In contrast to my model, those models assume that the uninformed players can observe the order of the informed player’s actions and the patience player’s best reply may not satisfy the no-back-loop property.

Kaya and Roy (2022) study a model with limited memories in which a seller has persistent private information about his quality and decides whether to sell in each period. Consumers’ willingness to pay depends only on the seller’s type, and each of them observes whether the seller sold his product in each of the last \(K \) periods. Longer memories have an ambiguous effect on welfare, since on the one hand, they encourage low-quality sellers to imitate high-quality sellers, which makes screening harder; and on the other hand, they increase the number of consumers who can benefit from the information obtained from screening.

By contrast, I show that longer memories undermine the strategic seller’s incentive to imitate the commitment type, instead of encouraging him to imitate the high-quality type. My model differs from Kaya and Roy (2022)’s model since the short-run player’s best reply depends only on the long-run player’s action.

Pei (2022) constructs an equilibrium in which the patient seller receives his minmax payoff when every consumer observes at least one previous consumer’s action as well as a bounded number of the seller’s past actions. By contrast, the current paper assumes that consumers cannot observe previous consumers’ actions and cannot observe the order with which the seller took his actions. I show that the patient seller can secure his commitment payoff in all equilibria irrespective of consumers’ memory length. I also provide conditions under which the patient seller plays his commitment action with frequency close to one in all equilibria.

\[^{18}\] The long-run player also needs to sustain his reputation when he is replaced with positive probability after each period, in which case his opponents put a low weight on his past behaviors. See Mailath and Samuelson (2001) and Phelan (2006).
Sustaining Cooperation under Limited Information: In repeated games with anonymous random matching but without commitment types, Kandori (1992), Ellison (1994), Takahashi (2010), Deb (2020), and Clark, Fudenberg and Wolitzky (2021) provide conditions on the monitoring structure under which players can cooperate in some equilibria. In repeated games with anonymous random matching and with commitment types, Sugaya and Wolitzky (2020, 2021) show that players can cooperate in some equilibria if and only if they can engage in cheap-talk communication.

In contrast to those papers which show that better information facilitates cooperation, I show that better information may weaken a patient player’s incentive to cooperate since it undermines his opponents’ incentives to punish him after he loses his reputation. My results imply that (i) the patient player will take the cooperative action in almost all periods if and only if his opponents have short enough memories, and (ii) under some intermediate memory lengths, the patient player may take the cooperative action with higher frequency when the short-run players observe coarser summary statistics. More closely related is the work of Bhaskar and Thomas (2019), which I have already discussed in the introduction, as well as the works of Ekmekci (2011) and Heller and Mohlin (2018).

Ekmekci (2011) studies a product choice game where the seller’s cost of effort is independent of consumers’ actions. He constructs a rating system under which there exist equilibria where the patient seller obtains his optimal commitment payoff, and another rating system where the consumers receive a high payoff. By contrast, I focus on stage games where payoffs are strictly supermodular. I examine the effects of memory length on the patient player’s incentives to take his commitment action. I provide conditions under which the patient player takes his commitment action with frequency close to one in all equilibria.

Heller and Mohlin (2018) study repeated prisoner’s dilemma game with anonymous random matching where every player is committed with positive probability and can sample a finite number of his opponent’s past actions. They show that players can cooperate in some equilibria when their actions are strategic complements but cannot cooperate in any equilibrium when their actions are strategic substitutes.

By contrast, I study a reputation game between an informed long-run player and a sequence of uninformed short-run players. I focus on the effects of the short-run players’ memory length on the long-run player’s returns from building reputations as well as his incentives to sustain his reputation. My results examine whether the long-run player will sustain his reputation in all equilibria, instead of examining whether cooperation is feasible in some equilibria. Focusing on games where players’ actions are strategic complements, I show that the longer memories undermine the long-run player’s incentive to sustain his reputation.

19 Hörner and Lambert (2021) study a career concern model in which a long-lived agent does not know his type. They show that the long-lived agent can be motivated to exert higher effort when the market receives coarser ratings.
since they undermine the short-run players’ incentives to punish the strategic-type long-run player.

Reputation Sustainability: My paper contributes to the discussions on the sustainability of reputations.

In contrast to Cripps, Mailath and Samuelson (2004)’s results that focus on the patient player’s reputation and behavior as \(t \rightarrow +\infty \) and examine whether reputations can be sustained in some equilibria, my analysis focuses on the discounted frequency of players’ actions and my result provides conditions under which the patient player plays his commitment action with frequency close to one in all equilibria. Compared to the existing results that focus on the patient player’s reputation and behavior in the \(t \rightarrow +\infty \) limit, my result on the discounted action frequency has a comparative advantage in evaluating consumers’ welfare.

Pei (2020) and Ekmekci and Maestri (2022) study reputation models with unbounded memories and interdependent values, that is, the patient player’s type directly affects his opponents’ payoffs. They provide sufficient conditions under which the patient player sustains his reputation in all equilibria. Similar to my model, the patient player is guaranteed to receive a low payoff after he abandons his reputation.

The mechanisms behind their results are different from mine. The patient player is guaranteed to be punished in their interdependent value settings since deviating from the commitment action signals negative information about the payoff-relevant state. By contrast, the current paper studies a private-value reputation model in which the uninformed players receive coarse information about the patient player’s past records. The patient player is guaranteed to be punished after he milks his reputation since the uninformed players cannot fine-tune their punishments based on the game’s history. As a result, the punishments needed to sustain cooperation inevitably punishes the patient player at other histories, and harsh punishments at a larger set of histories encourage the patient player to sustain his reputation.

Behavioral Reputation Models: Jehiel and Samuelson (2012) study a reputation model where the short-run players have infinite memories, but they mistakenly believe that all types of the patient player use stationary strategies. Under such a misspecified belief, each short-run player’s belief about the patient player’s current-period action depends only on the frequencies with which the patient player took his actions. This feature resembles my model where the short-run players can only observe the summary statistics of the patient player’s recent play, in which case their behaviors must be measurable with respect to this information.

In contrast to Jehiel and Samuelson (2012)’s model, the short-run players in my model understand that the patient player’s behavior may depend on the game’s history, e.g., his behavior when he has a positive reputation may differ from his behavior after he has lost his reputation. This assumption on the short-run players’ sophistication yields different predictions in terms of the long-run player’s behaviors. For example,
in the monotone-supermodular product choice game, the patient player exerts high effort with frequency arbitrarily close to one in all equilibria when K is small. By contrast, in Jehiel and Samuelson (2012)’s model, the seller exerts high effort with frequency close to $x \in (0, 1)$ in order to exploit the short-run players’ misspecified beliefs. Therefore, my results imply that the short-run players’ understanding of the game’s non-stationarity can provide strong incentives for the long-run player to sustain reputations, even when they have short memories and can only observe coarse summary statistics.

One potential concern of my model is that consumers need to make Bayesian inferences about the seller’s current-period action based on the summary statistics, which can be quite complicated in some equilibria. However, my proofs suggest that my main results apply even when we focus on equilibria where consumers’ inference problems are simple and intuitive on the equilibrium path. For example, in the equilibria I constructed in the proof of Theorem 2, consumers believe that the distribution of the seller’s current-period action is close to his action frequencies in the last K periods.

References

A Proof: No-Back-Loop Lemma

For every $t \geq K$, player 2’s incentive depends only on the number of times that player 1 takes each action in the last K periods. Therefore, player 1’s continuation value and incentive in period t depend only on $(a_{t-K}, ..., a_{t-1})$. Although the order of actions in the vector $(a_{t-K}, ..., a_{t-1})$ does not affect player 2’s action, it can affect player 1’s incentives. Moreover, player 1’s action in period t may depend on variables other than $(a_{t-K}, ..., a_{t-1})$, such as his actions more than K periods ago and previous player 2’s actions.

Fix $\sigma_2 : H_2 \rightarrow B^*$. Let $V(a_{t-K}, ..., a_{t-1})$ be player 1’s continuation value in period t. Let $\beta^* \in \Delta(B)$ be player 2’s action at histories that belong to H^*_1 under σ_2. For every $a \neq a^*$, let $\beta(a)$ be player 2’s action under σ_2 when exactly one of player 1’s last K actions was a and the other $K - 1$ actions were a^*. A pure strategy σ_1 is canonical if it depends only on the last K actions of player 1’s. For every strategy profile (σ_1, σ_2) and $h^t \in H_1$, let $H_1(\sigma_1, \sigma_2|h^t)$ be the set of histories h^s satisfying $h^s \succ h^t$ and h^s occurring with positive probability when the game starts from history h^t and players use strategies (σ_1, σ_2). If σ_1 is canonical, then $H_1(\sigma_1, \sigma_2|h^t) = H_1(\sigma_1, \sigma_2'|h^t)$ for every σ_2, σ_2', and h^t.

Since player 2’s action depends only on player 1’s actions in the last K periods, for every σ_2, there exists a canonical pure strategy σ_1 that best replies to σ_2. Therefore, as long as there exists a pure strategy that best replies to σ_2 and violates the no-back-loop property with respect to σ_2, there also exists a canonical pure strategy the best replies to σ_2 and violates the no-back-loop property with respect to σ_2. Hence, the no-back-loop lemma is implied by the following no-back-loop lemma*, which I show next.

No-Back-Loop Lemma*. For any $\sigma_2 : H_2 \rightarrow B^*$ and any canonical pure strategy σ_1 that best replies to σ_2. If there exists $h^t \in H^*_1 \cap H_1(\sigma_1, \sigma_2)$ such that $\sigma_1(h^t) \neq a^*$, then $H_1(\sigma_1, \sigma_2|h^t) \cap H^*_1 = \emptyset$.

Suppose by way of contradiction that there exists a canonical pure strategy σ_1 that best replies to σ_2 such that there exist two histories $h^t, h^s \in H^*_1 \cap H_1(\sigma_1, \sigma_2)$ that satisfy $h^s \in H_1(\sigma_1, \sigma_2|h^t)$, and $\sigma_1(h^t) = a'$ for some $a' \neq a^*$. Without loss of generality, let h^s be the first history in H^*_1 that succeeds h^t when player 1 behaves according to σ_1. Let $h^{s-1} \equiv (a_0, ..., a_{s-2}) \in H_1(\sigma_1, \sigma_2|h^t)$. Since h^s is the first history in H^*_1 that succeeds h^t, it must be the case that $h^{s-1} \notin H^*_1$, so $(a_{s-K-1}, ..., a_{s-2}) = (a'', a^*, ..., a^*)$ for some $a'' \neq a^*$. Since $h^s \in H^*_1$, player 1 plays a^* at h^{s-1} when he uses strategy σ_1. This implies that

\[(1 - \delta)u_1(a^*, \beta(a'')) + \delta V(a^*, a^*, ..., a^*, a^*) \geq (1 - \delta)u_1(a', \beta(a'')) + \delta V(a^*, a^*, ..., a^*, a'). \tag{A.1}\]
Since \(\hat{\sigma}_1(h^t) = a' \), player 1 weakly prefers \(a' \) to \(a^* \) at histories in \(\mathcal{H}_1^t \), we have:

\[
(1 - \delta)u_1(a^*, \beta^*) + \delta V(a^*, a^*, ..., a^*, a^*) \leq (1 - \delta)u_1(a', \beta^*) + \delta V(a^*, a^*, ..., a^*, a').
\] (A.2)

Since the seller’s stage-game payoff function is strictly supermodular, and \(\beta^* \) and \(\beta(a'') \) can be ranked according to FOSD under Assumption 2, inequalities (A.1) and (A.2) imply that \(\beta^* \preceq_{\text{FOSD}} \beta(a'') \). Let

\[
U \equiv \sum_{\tau = t+1}^{s-2} \delta^{\tau-t} u_1(\hat{\sigma}_1(h^\tau), \sigma_2(h^\tau))
\] (A.3)

be player 1’s discounted average payoff from period \(t + 1 \) to period \(s - 2 \) when his period \(t \) history is \(h^t \) and players play according to \((\hat{\sigma}_1, \sigma_2) \). Since the strategic-type player 1’s incentive depends only on his actions in the last \(K \) periods, when \((a_{s-K-1}, ..., a_{s-2}) = (a'', a^*, ..., a^*) \), it is optimal for him to use the following strategy, which I refer to as Strategy *:

- **Strategy *:** Play \(a^* \) in period \(s - 1 \), play \(a' \) in period \(s \), play \(\hat{\sigma}_1(h^\tau) \) in period \(\tau + (s - t) \) for every \(\tau \in \{t + 1, ..., s - 2\} \), and play the same action that he has played \(s - t \) periods ago in every period after period \(2s - t - 1 \).

Since Strategy * is optimal for player 1, it must yield a weakly greater payoff compared to any of the following two deviations starting from a period \(s - 1 \) history where \((a_{s-K-1}, ..., a_{s-2}) = (a'', a^*, ..., a^*) \):

- **Deviation A:** Play \(a' \) in period \(s - 1 \), \(\hat{\sigma}_1(h^\tau) \) in period \(\tau + (s - t - 1) \) for every \(\tau \in \{t + 1, ..., s - 2\} \), and play the same action that he has played \(s - t - 1 \) periods ago in every period after \(2s - t - 2 \).

- **Deviation B:** Play \(a'' \) in period \(s - 1 \), play \(a^* \) from period \(s \) to \(s + K - 2 \), and play the same action that he has played \(K \) periods ago in every period after \(s + K - 1 \).

Player 1 prefers Strategy * to Deviation A, which implies that:

\[
\frac{(1 - \delta)u_1(a', \beta(a'')) + (\delta - \delta^{s-t-2})U}{1 - \delta^{s-t-2}} \leq \frac{(1 - \delta)u_1(a^*, \beta(a'')) + (1 - \delta)\delta u_1(a', \beta^*) + (\delta^2 - \delta^{s-t-1})U}{1 - \delta^{s-t-1}}
\]

This leads to the following upper bound on \(U \), defined in (A.3):

\[
(\delta - \delta^{s-t-2})U \leq (1 - \delta^{s-t-2})u_1(a^*, \beta(a'')) + 1(1 - \delta^{s-t-2})u_1(a', \beta^*) - (1 - \delta^{s-t-1})u_1(a', \beta(a'')).
\] (A.4)
Player 1 prefers Strategy $*$ to Deviation B, which implies that:

$$
\frac{(1 - \delta)u_1(a'', \beta(a'')) + (\delta - \delta^K)u_1(a^*, \beta(a''))}{1 - \delta^K} \leq \frac{(1 - \delta)u_1(a^*, \beta(a'')) + (\delta - \delta^K)u_1(a, \beta(a'')) + (\delta^2 - \delta^{s+t-1})U}{1 - \delta^{s+t-1}}.
$$

(A.5)

This leads to a lower bound on U. The left-hand-side of (A.5) equals

$$
u_1(a^*, \beta(a'')) + \frac{1 - \delta}{1 - \delta^K} \left\{ u_1(a'', \beta(a'')) - u_1(a^*, \beta(a'')) \right\},$$

> 0, since $a'' \prec a^*$ and u_1 is decreasing in a.

and inequality (A.4) implies that the right-hand-side of (A.5) is no more than:

$$
u_1(a^*, \beta(a'')) + \delta \left\{ u_1(a', \beta^*) - u_1(a', \beta(a'')) \right\} \leq 0, \text{ since } \beta(a'') \succeq \beta^* \text{ and } u_1 \text{ is increasing in } b.$$

Since $u_1(a, b)$ is strictly increasing in b and is strictly decreasing in a, $a^* \succ a''$, and $\beta(a'') \succeq \beta^*$, inequality (A.5) cannot be true. This leads to a contradiction and implies the no-back-loop lemma*, which in turn implies the no-back-loop lemma.

B Proof: Part 1 of Theorem 2

Player 1’s continuation value and incentive after period K depend only on his actions in the last K periods, including the order of these actions. We call $S = A^K$ the state space, with $s \in S$ a typical state.

Fix any strategy profile σ. For every $s \in S$, let $\mu(s)$ be the probability that the current-period state is s conditional on the event that player 1 is the strategic type and calendar time is at least K. For every pair of states $s, s' \in S$, let $Q(s \rightarrow s')$ be the probability that the state in the next period is s' conditional on the state in the current period is s, player 1 is the strategic type, and the calendar time is at least K. Let $p(s)$ be the probability that the state is s conditional on calendar time being K and player 1 is the strategic type.

Lemma B.1. For any $\delta \in (0, 1)$ and any equilibrium under δ, we have

$$
\sum_{s \in S} \mu(s)Q(s \rightarrow s^*) = \frac{1}{\delta} \left\{ \mu(s^*) - (1 - \delta)p(s^*) \right\} \text{ for every } s^* \in S.
$$

(B.1)

Proof. For every $t \in \mathbb{N}$, let $p_t(s)$ be the probability that the state is s in period $K + t$ conditional on
player 1 being the strategic type, and let \(q_t(s \rightarrow s') \) be the probability that the state in period \(t + K + 1 \) is \(s' \) conditional on the state being \(s \) in period \(t + K \) and player 1 being the strategic type. By definition, \(p_0(s) = p(s) \) and \(p_{t+1}(s) = \sum_{s' \in S} p_t(s')Q(s' \rightarrow s) \). According to Bayes rule, we have

\[
\mu(s) = \sum_{t=0}^{\infty} (1 - \delta) \delta^t p_t(s) \quad \text{and} \quad Q(s \rightarrow s^*) = \frac{\sum_{t=0}^{\infty} (1 - \delta) \delta^t p_t(s)q_t(s \rightarrow s^*)}{\sum_{t=0}^{\infty} (1 - \delta) \delta^t p_t(s)}.
\]

This implies the following two equations:

\[
\sum_{s \in S} \mu(s)Q(s \rightarrow s^*) = \sum_{s \in S} \sum_{t=0}^{\infty} (1 - \delta) \delta^t p_t(s)q_t(s \rightarrow s^*) = \sum_{t=0}^{\infty} (1 - \delta) \delta^t \sum_{s \in S} p_t(s)q_t(s \rightarrow s^*) = \sum_{t=0}^{\infty} (1 - \delta) \delta^t p_{t+1}(s^*),
\]

and

\[
\frac{1}{\delta} \left\{ \mu(s^*) - (1 - \delta)p(s^*) \right\} = \frac{1}{\delta} \left\{ \sum_{t=0}^{\infty} (1 - \delta) \delta^t p_t(s^*) - (1 - \delta)p(s^*) \right\} = \sum_{t=0}^{\infty} (1 - \delta) \delta^t p_{t+1}(s^*).
\]

These two equations together imply (B.1). \(\square \)

For any non-empty subset of states \(S' \subset S \), let

\[
\mathcal{I}(S') \equiv \sum_{s' \in S'} \sum_{s \notin S'} \mu(s)Q(s \rightarrow s') \tag{B.2}
\]

be the inflow to \(S' \) from states that do not belong to \(S' \), and let

\[
\mathcal{O}(S') \equiv \sum_{s' \in S'} \sum_{s \notin S'} \mu(s')Q(s' \rightarrow s) \tag{B.3}
\]

be the outflow from \(S' \) to states that do not belong to \(S' \). Notice that \(\mathcal{I}(S') \) and \(\mathcal{O}(S') \) depend on the equilibrium strategy profile, which I omit in order to avoid cumbersome notation. By definition,

\[
\sum_{s' \in S'} \mu(s') = \sum_{s' \in S'} \mu(s') \left(\sum_{s \in S'} Q(s' \rightarrow s) + \sum_{s \notin S'} Q(s' \rightarrow s) \right) = 1
\]

\[
= \sum_{s' \in S'} \sum_{s \in S'} \mu(s')Q(s' \rightarrow s) + \sum_{s' \in S'} \sum_{s \notin S'} \mu(s')Q(s' \rightarrow s). \equiv \mathcal{O}(S')
\]

iv
Applying equation (B.1) to any non-empty subset of states $S' \subset S$, we have

$$
\sum_{s' \in S'} \sum_{s \in S'} \mu(s') Q(s' \rightarrow s) + \sum_{s' \in S'} \sum_{s \in S'} \mu(s) Q(s \rightarrow s') = \sum_{s' \in S'} \mu(s') + \sum_{s' \in S'} \frac{1 - \delta}{\delta} \left(\mu(s') - p(s') \right).
$$

These two equations imply the following lemma:

Lemma B.2. For every non-empty subset $S' \subset S$, we have:

$$
|I(S') - O(S')| = \left| \sum_{s' \in S'} \frac{1 - \delta}{\delta} (\mu(s') - p(s')) \right| \leq \frac{1 - \delta}{\delta}.
$$

Let $s^* \in S$ be the state where all of the last K actions were a^*, i.e., the only state where player 1 has a positive reputation. Lemma B.2 and the no-back-loop lemma imply the following lemma:

Lemma B.3. For every δ and in every equilibrium under δ, $O(\{s^*\}) \leq \frac{2(1-\delta)}{\delta}$ and $I(\{s^*\}) \leq \frac{1-\delta}{\delta}$.

Proof. Let S' be a subset of states such that $s \in S'$ if and only if (i) $s \neq s^*$, and (ii) there exists a pure-strategy best reply σ_1 such that s^* is reached within a finite number of periods when the initial state is s and player 1 uses strategy σ_1. The no-back-loop lemma implies that at least one of the two statements is true:

1. Player 1 has no incentive to play actions other than a^* at s^*.
2. Player 1 has an incentive to play actions other than a^* at s^*, and as long as player 1 plays any such best reply, the state never reaches S' when the initial state is s^*.

In the first case, $O(\{s^*\}) = 0$, and Lemma B.2 implies that $I(\{s^*\}) \leq \frac{1-\delta}{\delta}$. In the second case, the definition of S' implies that $I(S') = 0$. According to Lemma B.2, we have $O(S') \leq \frac{1-\delta}{\delta}$. The definition of S' also implies that $I(\{s^*\}) \leq O(S')$, so $I(\{s^*\}) \leq \frac{1-\delta}{\delta}$. According to Lemma B.2, we have $O(\{s^*\}) \leq \frac{2(1-\delta)}{\delta}$.

For every $k \in \{0, 1, ..., K\}$, let $S_k \subset S$ be the subset of states such that k of the last K actions were not a^*. By definition, $S = \bigcup_{k=0}^{K} S_k$ and $S_0 = \{s^*\}$. I partition every S_k into $S_k = S_{1,k} \cup ... \cup S_{j(k,|A|),k}$ such that s, s' belong to the same partition element if and only if player 2 cannot distinguish between s and s'. The number of elements in the partition of S_k depends on k and the cardinality of player 1’s action set A. I use $S_{j,k}$ to denote a typical partition element. For every state that belongs to S_k, exactly one of the following two statements is true, depending on whether player 1’s action K periods before was a^*:

1. The state in the next period belongs to S_{k-1} or S_k, depending on player 1’s current-period action.
2. The state in the next period belongs to S_k or S_{k+1}, depending on player 1’s current-period action.

Therefore, I partition $S_{j,k}$ into $S_{j,k}^*$ and $S_{j,k}'$, such that for every $s \in S_{j,k}$, $s \in S_{j,k}^*$ if and only if player 1’s action K periods before was a^*, and $s \in S_{j,k}'$ otherwise. For every pair of non-empty subsets $S', S'' \subset S$ that satisfy $S' \cap S'' = \emptyset$, let

$$Q(S' \to S'') \equiv \sum_{s' \in S'} \sum_{s'' \in S''} \mu(s') Q(s' \to s'') \quad (B.5)$$

be the expected flow from S' to S''. By definition, $Q(S_{j,k}^* \to S_i) = 0$ for every $i \leq k - 1$ and every $i \geq k + 2$, and $Q(S_{j,k}' \to S_i) = 0$ for every $i \geq k + 1$ and $i \leq k - 2$. The operator Q is additive in the sense that for any $S_1, S_2, S_3 \subset S$ such that $S_1 \cap S_2, S_1 \cap S_3, S_2 \cap S_3 = \emptyset$, we have

$$Q(S_1 \to S_3) + Q(S_2 \to S_3) = Q(S_1 \cup S_2 \to S_3) \quad (B.6)$$

and

$$Q(S_1 \to S_2) + Q(S_1 \to S_3) = Q(S_1 \to S_2 \cup S_3). \quad (B.7)$$

Upon observing a state that belongs to $S_{j,k}$, player 2 believes that player 1’s action is a^* with probability:

$$Q(S_{j,k} \to S_{k-1}) + \sum_{s \in S_{j,k}'} \sum_{s' \in S_{j,k}} \mu(s) Q(s \to s'), \quad (B.8)$$

and player 1’s action is not a^* with probability:

$$Q(S_{j,k} \to S_{k+1}) + \sum_{s \in S_{j,k}'} \sum_{s' \in S_k} \mu(s) Q(s \to s'). \quad (B.9)$$

I show that when $Q(S_{k-1} \to S_{j,k})$ and $Q(S_{j,k} \to S_{k-1})$ are bounded above by a linear function of $1 - \delta$, either $\sum_{s \in S_{j,k}} \mu(s)$ is also bounded above by some linear function of $1 - \delta$, or the probability that player 1 plays a^* at $S_{k,j}$ is no more than $\frac{K-1}{K}$. In the second case, player 2 has no incentive to play b^* at $S_{j,k}$.

Lemma B.4. For every $z \in \mathbb{R}^+$, there exist $y \in \mathbb{R}^+$ and $\delta \in (0, 1)$ such that for every equilibrium under $\delta > \delta$ and every $S_{j,k}$ with $k \geq 1$. If $\max\{Q(S_{j,k} \to S_{k-1}), Q(S_{k-1} \to S_{j,k})\} \leq z(1 - \delta)$, then either

$$\sum_{s \in S_{j,k}} \mu(s) \leq y(1 - \delta) \quad (B.10)$$
or

\[
\frac{Q(S_{j,k} \rightarrow S_{k-1}) + \sum_{s \in S_{j,k}^j} \sum_{s' \in S_{j,k}} \mu(s)Q(s \rightarrow s')}{Q(S_{j,k} \rightarrow S_{k+1}) + \sum_{s \in S_{j,k}^j} \sum_{s' \in S_{j,k}} \mu(s)Q(s \rightarrow s')} < K - 1. \tag{B.11}
\]

Proof. Since \(Q(S_{j,k} \rightarrow S_{k-1}) = Q(S_{j,k}^j \rightarrow S_{k-1}) \), \(Q(S_{j,k} \rightarrow S_{k+1}) = Q(S_{j,k}^* \rightarrow S_{k+1})\), and under the hypothesis that \(Q(S_{j,k} \rightarrow S_{k-1}) \leq z(1 - \delta)\) and \(Q(S_{k-1} \rightarrow S_{j,k}) \leq z(1 - \delta)\), we have:

\[
\sum_{s \in S_{j,k}^j} \sum_{s' \in S_{j,k}} \mu(s)Q(s \rightarrow s') + Q(S_{j,k} \rightarrow S_{k-1}) \leq \sum_{s \in S_{j,k}^j} \mu(s) - Q(S_{j,k}^* \rightarrow S_{k+1}) + z(1 - \delta),
\]

and

\[
\sum_{s \in S_{j,k}^j} \sum_{s' \in S_{k}} \mu(s)Q(s \rightarrow s') + Q(S_{j,k} \rightarrow S_{k+1}) \geq \sum_{s \in S_{j,k}^j} \mu(s) + Q(S_{j,k}^* \rightarrow S_{k+1}) - z(1 - \delta).
\]

Suppose there exists no such \(y \in \mathbb{R}_+\), i.e., \(\frac{\sum_{s \in S_{j,k}} \mu(s)}{z(1 - \delta)}\) can be arbitrarily large as \(\delta \rightarrow 1\). Since the sum of \(\sum_{s \in S_{j,k}^j} \mu(s) - Q(S_{j,k}^* \rightarrow S_{k+1}) + z(1 - \delta)\) and \(\sum_{s \in S_{j,k}^j} \mu(s) + Q(S_{j,k}^* \rightarrow S_{k+1}) - z(1 - \delta)\) equals \(\sum_{s \in S_{j,k}} \mu(s)\), we know that when \(\delta\) is close to 1, (B.11) is implied by:

\[
\sum_{s \in S_{j,k}^j} \mu(s) < \sum_{s \in S_{j,k}^j} \mu(s) + Q(S_{j,k}^* \rightarrow S_{k+1}) < K - 1,
\]

or equivalently,

\[
\sum_{s \in S_{j,k}} \mu(s) < (K - 1) \sum_{s \in S_{j,k}^j} \mu(s) + K \sum_{s \in S_{j,k}^j} Q(S_{j,k}^* \rightarrow S_{k+1}). \tag{B.12}
\]

I derive a lower bound for \(Q(S_{j,k}^* \rightarrow S_{k+1})\). Since \(O(S_{j,k}) = Q(S_{j,k}^* \rightarrow S_{k+1}) + Q(S_{j,k}^j \rightarrow S_{k-1}) + Q(S_{j,k} \rightarrow S_k \setminus S_{j,k})\), under the hypothesis that \(\max\{Q(S_{j,k} \rightarrow S_{k-1}), Q(S_{k-1} \rightarrow S_{j,k})\} \leq z(1 - \delta)\),

\[
Q(S_{j,k}^* \rightarrow S_{k+1}) = O(S_{j,k}) - Q(S_{j,k}^j \rightarrow S_{k-1}) - Q(S_{j,k} \rightarrow S_k \setminus S_{j,k}) \geq O(S_{j,k}) - Q(S_{j,k} \rightarrow S_k \setminus S_{j,k}) - z(1 - \delta).
\]

According to Lemma [B.2] we have:

\[
Q(S_{j,k}^* \rightarrow S_{k+1}) \geq I(S_{j,k}) - Q(S_{j,k} \rightarrow S_k \setminus S_{j,k}) - \frac{(1 - \delta)(1 + z\delta)}{\delta}.
\]

Since at every \(s \in S_{j,k}^*\), the state in the next period belongs to \(S_{k+1}\) if player 1 does not play \(a^*\) at \(s\), and
belongs to $S_{j,k}$ if player 1 plays a^* at s, we have $Q(S_{j,k}^* \rightarrow S_{k\setminus j,k}) = 0$. This implies that $Q(S_{j,k} \rightarrow S_{k\setminus j,k}) = Q(S_{j,k}^* \rightarrow S_{k\setminus j,k})$. Since $I(S_{j,k}) = I(S_{j,k}^*) + I(S_{j,k}') - Q(S_{j,k}^* \rightarrow S_{j,k}') - Q(S_{j,k}^* \rightarrow S_{j,k}')$,

\[
Q(S_{j,k}^* \rightarrow S_{j,k}') \geq I(S_{j,k}) - Q(S_{j,k}^* \rightarrow S_{j,k}') - \frac{(1 - \delta)(1 + z\delta)}{\delta}
\]

Since $Q(S_{j,k}^* \rightarrow S_{j,k}') \leq O(S_{j,k}')$ and $Q(S_{j,k}^* \rightarrow S_{j,k}') \leq I(S_{j,k}')$,

\[
Q(S_{j,k}^* \rightarrow S_{j,k}') \leq \frac{1}{K}O(S_{j,k}') + \frac{K - 1}{K}I(S_{j,k}') \leq \frac{1}{K}I(S_{j,k}') + \frac{K - 1}{K}O(S_{j,k}') + \frac{1 - \delta}{\delta}.
\]

This together with the lower bound on $Q(S_{j,k}^* \rightarrow S_{k+1})$ that we derived earlier implies that:

\[
Q(S_{j,k}^* \rightarrow S_{k+1}) \geq \frac{K - 1}{K} \left(I(S_{j,k}') - O(S_{j,k}') \right) - \frac{(1 - \delta)(3 + z\delta)}{\delta}.
\]

Since $O(S_{j,k}') = Q(S_{j,k}^* \rightarrow S_{k\setminus j,k}) + Q(S_{j,k}^* \rightarrow S_{j,k}') + Q(S_{j,k}' \rightarrow S_{k-1})$, and $Q(S_{j,k}' \rightarrow S_{k-1})$ is assumed to be less than $z(1 - \delta)$, we know that

\[
Q(S_{j,k}^* \rightarrow S_{k+1}) \geq \frac{K - 1}{K} \left(I(S_{j,k}') - Q(S_{j,k}^* \rightarrow S_{k\setminus j,k}) - Q(S_{j,k}' \rightarrow S_{j,k}') \right) - \frac{(1 - \delta)(3 + 2z\delta)}{\delta}.
\]

Hence, when δ is close to 1, inequality (B.12) is implied by

\[
\sum_{s \in S_{j,k}^*} \mu(s) < (K - 1) \left\{ \sum_{s \in S_{j,k}^*} \mu(s) - Q(S_{j,k}^* \rightarrow S_{k\setminus j,k}) \right\} + (K - 1) \left\{ I(S_{j,k}') - Q(S_{j,k}' \rightarrow S_{j,k}') \right\}.
\]
there exists an action \(a_i \in A \) such that playing \(a_i \) in state \(s_i \) leads to state \(s_{i+1} \) in the next period, (ii) if \(m \geq 2 \), then \(\{s_2, ..., s_m\} \subset S'_{j,k} \), and (iii) no matter which action player 1 takes in state \(s_m \), the state in the next period does not belong to \(S'_{j,k} \), or equivalently, there exists an action \(a \in A \) such that taking action \(a \) at state \(s_m \) leads to a state that belongs to \(S'_{j,k} \). Lemma [B.1] implies that

\[
\mu(s_2) \leq \mu(s_1)Q(s_1 \rightarrow s_2) + Q(S \setminus S_{j,k} \rightarrow \{s_2\}) + \frac{1-\delta}{\delta}
\]

\[
= \mu(s_1) - Q(\{s_1\} \rightarrow S_k \setminus S_{j,k}) + Q(S \setminus S_{j,k} \rightarrow \{s_2\}) + \frac{1-\delta}{\delta},
\]

(B.14)

and for every \(i \geq 2 \), we have:

\[
\mu(s_{i+1}) \leq \mu(s_i)Q(s_i \rightarrow s_{i+1}) + Q(S \setminus S_{j,k} \rightarrow \{s_{i+1}\}) + \frac{1-\delta}{\delta}
\]

\[
= \mu(s_i) + Q(S \setminus S_{j,k} \rightarrow \{s_{i+1}\}) + \frac{1-\delta}{\delta}.
\]

(B.15)

Iteratively apply (B.15) and (B.14) for every \(i \geq 2 \), we obtain:

\[
\mu(s_i) \leq \mu(s_1) + Q(S \setminus S_{j,k} \rightarrow \{s_2, ..., s_i\}) - Q(\{s_1\} \rightarrow S_k \setminus S_{j,k}) + \frac{(1-\delta)(i-1)}{\delta}.
\]

(B.16)

Summing up inequality (B.16) for \(i \in \{2, ..., m\} \), we obtain:

\[
\sum_{i=2}^{m} \mu(s_i) \leq (m - 1)\left\{ \mu(s_1) + Q(S'_{j,k} \rightarrow \{s_2, ..., s_m\}) - Q(\{s_1\} \rightarrow S_k \setminus S_{j,k}) \right\} + \frac{m(m - 1)(1-\delta)}{2\delta}
\]

\[
= (m - 1)\left\{ \mu(s_1) - Q(\{s_1\} \rightarrow S_k \setminus S_{j,k}) \right\}_{\geq -\frac{1-\delta}{\delta}}
\]

\[
+ (m - 1)\left\{ Q(S \setminus S_{j,k}^* \rightarrow \{s_2, ..., s_m\}) - Q(S'_{j,k} \rightarrow \{s_2, ..., s_m\}) \right\}_{\geq 0} + \frac{m(m - 1)(1-\delta)}{2\delta}
\]

\[
\leq (K - 1)\left\{ \mu(s_1) - Q(\{s_1\} \rightarrow S_k \setminus S_{j,k}) \right\}
\]

\[
+ (K - 1)\left\{ Q(S \setminus S_{j,k}^* \rightarrow \{s_2, ..., s_m\}) - Q(S'_{j,k} \rightarrow \{s_2, ..., s_m\}) \right\}
\]

\[
+ \left\{ \frac{m(m - 1)(1-\delta)}{2\delta} + \frac{K(1-\delta)}{\delta} \right\}
\]

(B.17)

One can obtain (B.13) by summing up (B.17) for every \(s_1 \in S'_{j,k} \) and taking the limit as \(\delta \rightarrow 1 \). This is because the left-hand-side of this sum equals \(\sum_{s \in S'_{j,k}} \mu(s) \), and after ignoring the last term that vanishes to
0 as \(\delta \to 1 \), and uses the additive property of the operator \(Q \) in (B.6) and (B.7), the right-hand-side equals

\[
(K - 1) \left\{ \sum_{s \in S_{j,k}} \mu(s) - Q(S'_{j,k} \rightarrow S_k \setminus S_{j,k}) \right\} + (K - 1) \left\{ I(S_{j,k}^* \rightarrow S_{j,k}^*) - Q(S'_{j,k} \rightarrow S_{j,k}^*) \right\}.
\]

Since \(b^* \) does not best reply to \(\frac{K-1}{K} a^* + \frac{1}{K} a' \) for every \(a' \neq a^* \), Lemma B.4 implies that when \(Q(S_{k-1} \rightarrow S_{j,k}) \) and \(Q(S_{j,k} \rightarrow S_{k-1}) \) are both bounded above by a linear function of \(1 - \delta \), then either \(\sum_{s \in S_{j,k}} \mu(s) \) is also bounded above by a linear function of \(1 - \delta \) or \(b^* \) is strictly suboptimal for player 2 when she observes that the state belongs to \(S_{j,k} \).

Lemma B.5. Suppose \(b^* \) does not best reply to \(\frac{K-1}{K} a^* + \frac{1}{K} a' \) for every \(a' \neq a^* \). For every \(y > 0 \), there exists \(z > 0 \) and \(\tilde{\delta} \in (0, 1) \) such that for every \(\delta > \tilde{\delta} \), every equilibrium under \(\delta \), and every \(k \in \{1, 2, ..., K\} \).

If \(\max\{Q(S_{k-1} \rightarrow S_k), Q(S_k \rightarrow S_{k-1})\} < y(1 - \delta) \), then \(\sum_{s \in S_k} \mu(s) \leq \frac{z}{1 - \delta} \).

Proof. Suppose by way of contradiction that for every \(y > 0 \) and \(\tilde{\delta} \in (0, 1) \), there exist \(\delta > \tilde{\delta} \), an equilibrium under \(\delta \), and \(k \geq 1 \), such that in this equilibrium, \(\max\{Q(S_{k-1} \rightarrow S_k), Q(S_k \rightarrow S_{k-1})\} < y(1 - \delta) \) but \(\sum_{s \in S_k} \mu(s) > \frac{z}{1 - \delta} \). Pick a large enough \(z \), Lemma B.4 implies that for every partition element \(S_{j,k} \subset S_k \), either \(\sum_{s \in S_{j,k}} \mu(s) < \frac{z}{2K} (1 - \delta) \), or player 2 has a strict incentive not to play \(a^* \) at \(S_{j,k} \). The hypothesis that \(\sum_{s \in S_k} \mu(s) > \frac{z}{1 - \delta} \) implies that there exists at least one partition element \(S_{j,k} \) such that player 2 has a strict incentive not to play \(a^* \) at \(S_{j,k} \). Let \(S_k' \) be the union of such partition elements.

I start from deriving an upper bound on the ratio between \(\sum_{s \in S_k'} \mu(s) \) and \(Q(S_{k-1} \rightarrow S_{k-1}) \). Let \(V(s) \) be player 1’s continuation value in state \(s \) and let \(\overline{V} \equiv \max_{s \in S} V(s) \). Let \(\nu \) be player 1’s lowest stage-game payoff. Let \(v' \equiv \max_{a \in A, b \neq b^*} u_1(a, b) \) and \(v^* \equiv u_1(a^*, b^*) \). Assumptions 1 and 3 imply that \(v^* > v' > \nu \).

Since player 1 can reach any state within \(K \) periods, we have \(V(s) \geq (1 - \delta^o) \nu + \delta^o \overline{V} \) for every \(s \in S \). Theorem 1 suggests that player 1’s continuation value at \(s^* \) is at least \(u_1(a^*, b^*) \). Therefore, \(\overline{V} \geq v^* \). Let \(M \) be the largest integer \(m \) such that

\[
(1 - \delta^m) v' + \delta^m \overline{V} \geq (1 - \delta^K) \nu + \delta^K \overline{V}.
\]

(B.18)

Applying the L’Hospital Rule, (C.5) implies that when \(\delta \) is close to 1, we have

\[
M \leq K \frac{\overline{V} - \nu}{\overline{V} - v'}
\]

Therefore, for any \(t \in \mathbb{N} \) and \(s \in S_k' \), and under any pure-strategy best reply of player 1, if the state is \(s \) in
period t, then there exists $\tau \in \{t + 1, \ldots, t + M\}$ such that when player 1 uses this pure-strategy best reply, the state in period τ does not belong to S'_k. Therefore,

$$\sum_{s \in S'_k} \mu(s) \leq \frac{1 - \delta^M}{\delta^M(1 - \delta)}.$$

When $\delta \to 1$, the RHS of the above inequality converges to M, which implies that

$$\sum_{s \in S'_k} \mu(s) \leq K \cdot \frac{V - v'}{V - v'} \cdot O(S'_k). \quad (B.19)$$

Since $\sum_{s \in S_k \setminus S'_k} \mu(s)$ is bounded from above by some linear function of $1 - \delta$, it must be the case that

$$O(S_{k-1} \rightarrow S'_k) \geq \frac{\sum_{s \in S'_k} \mu(s)}{2M}.$$

This implies that there exists a state $s \in S_{k+1}$ and a canonical pure best reply $\bar{\sigma}_1$ such that:

1. the state in the next period, denoted by s', belongs to S'_k, and the state belongs to S'_k for m periods,

2. the state returns to S_{k+1} after these m periods, returns to s after a finite number of periods, and the state never reaches $\bigcup_{n=0}^{k-1} S_n$ when play starts from s.

By definition, player 1 plays a^* in state s under $\bar{\sigma}_1$ and $\bar{\sigma}_1$ induces a cycle of states. Moreover, it is without loss of generality to focus on best replies that induce a cycle where each state occurs at most once.

I show that $m \leq K - 1$. Suppose by way of contradiction that $m \geq K$, namely, after reaching state s', the state belongs to S'_k, for at least K periods under player 1’s pure-strategy best reply $\bar{\sigma}_1$. Recall the definition of a minimal connected sequence. Every minimal connected sequence contains either one state (if $k = K$) or K states in category k. Therefore, the category k state after K periods is also s'. As a result, there exists a best-reply of player 1 such that under this best reply and starting from state s', the state remains in category k forever. Due to the hypothesis that player 2 has no incentive to play b^* when the state belongs to S'_k, player 1’s continuation value under such a best reply is at most v', which is strictly less than his guaranteed continuation value $(1 - \delta^K)\underline{v} + \delta^K v^*$. This contradicts the conclusion of Theorem 1.

Given that $m \leq K - 1$, let us consider an alternative strategy of player 1 under which he plays an action other than a^* in state s, then follows strategy $\bar{\sigma}_1$. Starting from state s, this strategy and $\bar{\sigma}_1$ lead to the same state after $m + 1$ periods. This strategy leads to a strictly higher payoff since the stage-game payoff at state s is strictly greater, and the payoffs after the first period are weakly greater. This contradicts the hypothesis that $\bar{\sigma}_1$ is player 1’s best reply to player 2’s equilibrium strategy.
In summary, Lemma B.3 implies that \(\max\{Q(S_0 \rightarrow S_1), Q(S_1 \rightarrow S_0)\} \leq \frac{2(1-\delta)}{\delta}. \) Lemma B.4 and Lemma B.5 together imply that \(\sum_{s \in S_k} \mu(s) \) is bounded from above by a linear function of \(1 - \delta \) given that \(\max\{I(S_0), O(S_0)\} \leq \frac{2(1-\delta)}{\delta}, \) which then implies that \(Q(S_1 \rightarrow S_2) \) and \(Q(S_2 \rightarrow S_1) \) are also bounded from above by a linear function of \(1 - \delta. \) Iteratively apply this argument, we obtain that for every \(k \in \{1, 2, ..., K\}, \sum_{s \in S_k} \mu(s) \) is bounded from above by a linear function of \(1 - \delta. \)

\section{Proof: Part 2 of Theorem 2}

I construct a Perfect Bayesian equilibrium that satisfies sequential rationality, players’ beliefs respect Bayes rule at on-path histories, and at every off-path history \((n_a)_{a \in A}\) where \(n_a \in \mathbb{N}\) denote the number of \(a\) in the last \(K\) periods, their posterior belief assigns positive probability only to histories where \(n_a\) of the last \(K\) actions are \(a\) for every \(a \in A\). The equilibrium I construct satisfies the no-signaling-what-you-don’t-know requirement in Fudenberg and Tirole (1991) since only player 2 is uninformed, and player 2’s action cannot be observed by future short-run players.

Recall that \(a^*\) is player 1’s highest action and \(b^*\) is player 2’s best reply to \(a^*\). Statement 2 of Theorem 2 requires \(b^*\) to be a strict best reply to \(\frac{K-1}{K}a^* + \frac{1}{K}a'\) for some \(a' \neq a^*\). Assumption 3 implies that every best reply to \(a'\) is strictly lower than \(b^*\). Hence, \(K \geq 2\) and there exists \(\alpha \in (0, \frac{K-1}{K})\) such that \(\{b^*, b'\} \subset BR_2(\alpha a^* + (1-\alpha)a')\) for some \(b' < b^*\). Let \(b''\) be player 2’s lowest best reply to \(a'\). Since \(u_2(a, b)\) has strictly increasing differences, we know that \(b'' \leq b' < b^*\). Let \(a\) be the lowest element of \(A\).

Let \(H_1^{a^*}\) be the set of histories such that player 2 observes at most one \(a'\) and does not observe any action other than \(a^*\) and \(a'\), which will contain the set of on-path histories. Player 2’s belief is derived from Bayes rule at every history that belongs to \(H_1^{a^*}\). For player 2’s belief at off-path histories,

1. If player 2 observes two or more \(a'\) and observes no action other than \(a^*\) and \(a'\), then she believes that \((a_{t-2}, a_{t-1}) = (a', a').\)

2. If player 2 observes \(a'' \notin \{a^*, a'\}\), then she believes that the action in the period before is \(a''\).

Other aspects of player 2’s off-path beliefs are irrelevant for her incentives.

Then I describe player 1’s equilibrium strategy. At every history that belongs to \(H_1^{a^*}\), player 1 plays \(a'\) in period \(t\) if \(t = 0\) or \(t > 0\) and \((a_{\min\{0, t-K+1\}}, ..., a_{t-1}) = (a^*, ..., a^*).\) Player 1 plays \(a^*\) in period \(t\) at other histories that belong to \(H_1^{a^*}\). Histories that do not belong to \(H_1^{a^*}\) occur off the equilibrium path, at which player 1’s behavior is given by:

1. Player 1 plays \(a^*\) if \((a_{t-2}, a_{t-1}) \neq (a', a')\) and the last \(\min\{K, t\}\) actions are either \(a^*\) or \(a'.\)
2. Player 1 plays a^* with probability α and plays a' with probability $1 - \alpha$ if $(a_{t-2}, a_{t-1}) = (a', a')$ and actions in the last $\min\{K, t\}$ periods are either a^* or a'.

3. Player 1 plays a' in period t if actions other than a^* and a' occurred in period $t - 1$.

I did not specify player 1’s behavior at histories where actions other than a^* and a' occurred in at least one of the last K periods, but does not occur in period $t - 1$. This is because his behaviors at such histories are irrelevant for player 2’s incentives since player 2’s belief assigns zero probability to these off-path histories. I verify later that the strategic type player 1 has no incentive to reach these off-path histories.

Player 2 plays a best reply to $\pi_0 a^* + (1 - \pi_0) a'$ in period 0. At every other history that belongs to \mathcal{H}_1^{**}, player 2 plays b^*. At every history that (i) does not belong to \mathcal{H}_2^{**}, and (ii) actions other than a^* and a' do not occur in the last K periods, player 2 plays b^* with probability β and plays b' with probability $1 - \beta$, where

$$\begin{align*}
\beta u_1(a', b^*) + (1 - \beta) u_1(a', b') &= (1 - \delta^{K-1}) \left(\beta u_1(a^*, b^*) + (1 - \beta) u_1(a^*, b') \right) \\
&\quad + \delta^{K-1} \frac{u_1(a', b^*) + (\delta + \delta^2 + \ldots + \delta^{K-1}) u_1(a^*, b^*)}{1 + \delta + \ldots + \delta^{K-1}}.
\end{align*}$$

(C.1)

Since $u_1(a', b^*) > u_1(a^*, b^*) > u_1(a', b') > u_1(a^*, b')$, β is strictly between 0 and 1. At every history that does not belong to \mathcal{H}_2^{**} and actions other than a^* and a' occurred in the last K periods, player 2 plays b''.

Player 2’s incentive constraint at every off-path history is satisfied under her belief since (i) she mixes between b^* and b' whenever she believes that player 1 plays $\alpha a^* + (1 - \alpha) a'$, and (ii) she plays b'' whenever she believes that player 1 plays a'. At on-path histories, player 2 believes that a' is played with probability $1 - \pi_0$ and a^* is played with probability π_0 in period 0, so she plays a best reply to this mixed action. From period 1 to $K - 1$, player 2 believes that a^* is played by both types, so she plays her best reply b^*. After period K, player 2’s belief assigns probability 1 to the commitment type upon observing any history where player 1’s last K actions were a^*, and therefore, she has a strict incentive to play b^*. For player 2’s incentive constraints at histories where a' occurred only once, she believes that $(a_{t-K}, \ldots, a_{t-1}) = (a', a^*, \ldots, a^*)$ with probability

$$\frac{1}{1 + \delta + \ldots + \delta^{K-1}}$$

(C.2)

and $(a_{t-K}, \ldots, a_{t-1}) \neq (a', a^*, \ldots, a^*)$ with complementary probability. When δ is close to 1, expression (C.2) is close to $\frac{1}{K}$. Since player 1 plays a' when $(a_{t-K}, \ldots, a_{t-1}) = (a', a^*, \ldots, a^*)$ and plays a^* at other on-path histories where a' occurred once, player 2 believes that player 1’s current period action is a' with probability close to $\frac{1}{K^2}$ and is a^* with probability close to $\frac{K-1}{K^2}$. Hence, there exists $\delta \in (0, 1)$ such that when
\(\delta > \delta\) player 2’s have a strict incentive to play \(b^*\) if \(a'\) occurred only once in the last \(K\) periods.

I verify player 1’s incentive constraint: (i) he has no incentive to reach any off-path history starting from any on-path history, and (ii) he has an incentive to play \(a'\) when \((a_{t-2}, a_{t-1}) = (a', a')\) or when \(a_{t-1} \notin \{a', a^*\}\). When \((a_{t-2}, a_{t-1}) = (a', a')\), equation (C.1) implies that player 1 is indifferent between playing \(a'\) and \(a^*\) in period \(t\).

Next, I show that player 1 has no incentive to play \(a'\) at every history that belongs to \(H_1^{s*}\) where \((a_{t-K+1}, ..., a_{t-1}) \neq (a^*, ..., a^*)\). For every \(m \in \{1, 2, ..., K\}\), let \(s_m\) be the state where \(a_{t-m} = a'\) and all actions that belong to \(\{a_{t-K}, ..., a_{t-1}\}\) \(\backslash\{a_{t-m}\}\) are \(a^*\). Let \(V_m\) player 1’s continuation value in state \(s_m\). For every \(m \in \{1, 2, ..., K - 1\}\), player 1 prefers \(a^*\) to \(a'\) in state \(s_m\) if

\[
V_m > (1 - \delta)u_1(a', b^*) + \delta(1 - \delta^{K-m})u_1(a^*, b) + (\delta^{K-m} - \delta^K)u_1(a^*, b^*) + \delta^K V_K. \tag{C.3}
\]

Since

\[
V_m = (1 - \delta)^K u_1(a^*, b^*) + \delta^K V_K \text{ for every } 1 \leq m \leq K,
\]

inequality (C.3) is equivalent to:

\[
(1 - \delta)(1 - \delta^{K-m})u_1(a^*, b^*) + \delta(1 - \delta^{K-m})\left(u_1(a^*, b^*) - u_1(a^*, b)\right) - (1 - \delta)u_1(a', b^*) + \delta^{K-m}(1 - \delta^m)V_K - (\delta^{K-m} - \delta^K)u_1(a^*, b^*) > 0. \tag{C.4}
\]

Dividing the above expression by \(1 - \delta\), and then taking the limit where \(\delta \to 1\), we obtain that inequality (C.4) is true when \(\delta\) is close to 1 if

\[
(K - m)\left(u_1(a^*, b^*) - u_1(a^*, b)\right) + mV_K - (m - 1)u_1(a^*, b^*) - u_1(a', b^*) > 0,
\]

or equivalently,

\[
(K - m)(1 - \beta)\left(u_1(a^*, b^*) - u_1(a^*, b')\right) > (m - 1)\left(u_1(a^*, b^*) - V_K\right) + \left(u_1(a', b^*) - V_K\right). \tag{C.5}
\]

When \(\delta\) is close to 1,

\[
V_K \approx \frac{1}{K} u_1(a', b^*) + \frac{K - 1}{K} u_1(a^*, b^*),
\]
and equation [C.1] implies that
\[1 - \beta = \frac{u_1(a', b^*) - V_K}{u_1(a', b^*) - u_1(a', b')} \approx \frac{K - 1}{K} \cdot \frac{u_1(a', b^*) - u_1(a^*, b^*)}{u_1(a', b^*) - u_1(a^*, b^*)} \geq \frac{K - 1}{K} \cdot \frac{u_1(a', b^*) - u_1(a^*, b^*)}{u_1(a^*, b^*) - u_1(a^*, b')}\]

where the last inequality follows from \(u_1(a, b)\) having strictly increasing differences. This implies that
\[(1 - \beta)\left(u_1(a^*, b^*) - u_1(a^*, b')\right) > u_1(a', b^*) - V_K \approx \frac{K - 1}{K} \left(u_1(a', b^*) - u_1(a^*, b^*)\right).

Inequality [C.5] is true when \(\delta\) is close to 1 since \(K - m \geq 1\) and \(u_1(a', b^*) - V_K \rightarrow \frac{K - 1}{K} (u_1(a', b^*) - u_1(a^*, b^*))\) as \(\delta \rightarrow 1\).

Next, I show that player 1 has no incentive to play actions other than \(a'\) and \(a^*\) at every history that belongs to \(\mathcal{H}_{1^*}^*\). It is straightforward to show that he has no incentive to play any action that does not belong to \(\{a^*, a', 2\}\), since playing \(a\) leads to a strictly higher stage-game payoff for player 1 while not lowering his continuation value. Hence, I only need to show that when \(a' \neq a\), player 1 has no incentive to play \(a\) at any history that belongs to \(\mathcal{H}_{1^*}^*\). This is because his payoff at any on-path history is bounded from below by
\[V_1 \approx \frac{1}{K} u_1(a', b^*) + \frac{K - 1}{K} u_1(a^*, b^*) > u_1(a^*, b^*).\]
Assumption 3 implies that player 1’s stage-game payoff is strictly less than \(u_1(a^*, b^*)\) when player 2’s action is strictly lower than \(b^*\). Since player 2 plays \(b''\) when actions other than \(a^*\) and \(a'\) occurred in the last \(K\) periods, player 1’s continuation value when he plays \(a\) is at most:
\[(1 - \delta)u_1(a, b^*) + (\delta - \delta^2)u_1(a', b') + (\delta^2 - \delta^{K+1})u_1(a^*, b^*) + \delta^{K+1}V_K\]

Since \(V_1 < V_2 < \ldots < V_K\), it is sufficient to show that
\[V_1 = (1 - \delta^{K-1})u_1(a^*, b^*) + \delta^{K-1}V_K > (1 - \delta)u_1(a, b^*) + (\delta - \delta^2)u_1(a', b') + (\delta^2 - \delta^{K+1})u_1(a^*, b^*) + \delta^{K+1}V_K.
\]

or equivalently,
\[(1 - \delta^{K-1})u_1(a^*, b^*) + (\delta^{K-1} - \delta^{K+1})V_K - (1 - \delta)u_1(a, b^*) - (\delta - \delta^2)u_1(a', b') - (\delta^2 - \delta^{K+1})u_1(a^*, b') > 0.\]

Dividing the left-hand-side of the above inequality by \(1 - \delta\) and then taking the \(\delta \rightarrow 1\) limit, we know that
\[\text{the above inequality is true when } \delta \text{ is close to } 1 \text{ if}
\][\(K - 1)u_1(a^*, b^*) + 2V_K \geq u_1(a, b^*) + u_1(a', b') + (K - 1)u_1(a^*, b').\]
Since u_1 has strictly increasing differences, we have:

$$u_1(a, b^*) \leq u_1(a, b^*) - u_1(a', b') + u_1(a, b') \leq u_1(a', b^*) - u_1(a', b') + u_1(a^*, b^*)$$

Assumption 1

$$u_1(a', b') - u_1(a', b') + u_1(a', b') - u_1(a', b') + u_1(a^*, b^*) = 2u_1(a^*, b^*) - u_1(a^*, b').$$

Assumption 3

So the right-hand-side of (C.6) is bounded from above by $2u_1(a^*, b^*) + (K-2)u_1(a^*, b') + u_1(a', b')$, which is strictly less than $(K+1)u_1(a^*, b^*)$. Since $V_K > u_1(a^*, b^*)$, the left-hand-side of (C.6) is strictly greater than $(K+1)u_1(a^*, b^*)$. This establishes (C.6).

In the last step, I show that if any action other than a^* and a' occurred in period $t-1$, player 1 has an incentive to play a' in period t. Since $a_{t-1} \notin \{a^*, a'\}$, player 2’s actions from period t to period $t+K-1$ are b'' regardless of player 1’s behavior in those periods, and moreover, player 2 has an incentive to play actions greater than b'' in period $s(\geq t + K)$ only if player 1 has played a^* at least $K-1$ times and a' at least once after the last time they played actions other than a^* and a'. Since $V_K > V_{K-1} > ... > V_1$, player 1’s continuation value in period t is bounded from above by:

$$(1 - \delta)u_1(a', b'') + (\delta - \delta^K)u_1(a^*, b'') + \delta^K V_K.$$

This upper bound is attained when player 1 plays a' in period t and plays a^* in the next $K-1$ periods, after which play reaches state s_K and player 1’s continuation value is V_K. This verifies his incentive to play a' when his previous period action was neither a^* nor a'.

D Proof of Corollary 2

Recall that $S \equiv A^K$ and $s^* \in S$ is the state where all of player 1’s actions in the last K periods are a^*. For every equilibrium $\sigma \equiv (\sigma_1, \sigma_2)$, let $S'(\sigma) \subset S$ be such that $s \in S'(\sigma)$ if and only if (i) $s \neq s^*$, and (ii) (ii) there exists a pure strategy $\tilde{\sigma}_1$ that best replies to σ_2 such that s^* is reached within a finite number of periods when the initial state is s and player 1 uses strategy $\tilde{\sigma}_1$. Let $S''(\sigma) \equiv S \setminus \{s^*\} \cup S'(\sigma)$.

Recall the definitions of inflow $I(\cdot)$ and outflow $O(\cdot)$ in (B.2) and (B.3). Since player 1’s equilibrium strategy σ_1 must satisfy the no-back-loop property, we have $I(S'(\sigma)) = O(S''(\sigma)) = 0$. Statement 1 of Theorem 2 implies that there exists a constant $C \in \mathbb{R}_+$ such that $\mu(s^*) \geq 1 - C(1 - \delta)$ for every equilibrium under discount factor δ. Therefore, $\sum_{s \in S'(\sigma)} \mu(s) + \sum_{s \in S''(\sigma)} \mu(s) \leq C(1 - \delta)$. Recall that $p(s)$ is the probability that the state is s conditional on calendar time being K and player 1 is the strategic type. Since
\(O(S''(\sigma)) = 0\), we have

\[
\sum_{s \in S''(\sigma)} p(s) \leq \sum_{s \in S''(\sigma)} \mu(s) \leq C(1 - \delta)
\]

Recall from Lemma \[B.2\] that

\[
\left| I(S''(\sigma)) - O(S''(\sigma)) \right| = \frac{1 - \delta}{\delta} \sum_{s \in S''(\sigma)} (\mu(s) - p(s)) \leq \frac{C(1 - \delta)^2}{\delta}.
\]

(D.1)

This together with \(O(S''(\sigma)) = 0\) implies that \(I(S''(\sigma)) \leq \frac{C(1 - \delta)^2}{\delta}\). For every \(t \geq K\) and \(S' \subset S\), let \(q_t(S')\) be the probability that the state in period \(t\) belongs to \(S'\) conditional on player 1 being the strategic type. Since \(I(S'(\sigma)) = O(S''(\sigma)) = 0\),

\[
(1 - \delta^t - K)q_t(S'(\sigma)) + \delta^t - K q_t(S''(\sigma)) \leq \sum_{s \neq s^*} \mu(s) \leq C(1 - \delta).
\]

(D.2)

Suppose \(t\) is such that \(\delta^t \in (\varepsilon, 1 - \varepsilon)\), and \(\delta\) is above some cutoff such that \(\delta^{t - K} \in (\sqrt{\varepsilon}, 1 - \sqrt{\varepsilon})\), (D.2) implies that

\[
q_t(S'(\sigma)) + q_t(S''(\sigma)) \leq \max \left\{ \frac{C(1 - \delta)}{1 - \delta^t - K}, \frac{C(1 - \delta)}{\delta^t - K} \right\} \leq \frac{C}{\sqrt{\varepsilon}}(1 - \delta),
\]

which implies that \(q_t(\{s^*\}) \geq 1 - \frac{C}{\sqrt{\varepsilon}}(1 - \delta)\). Let \(r_t\) be the probability with which the strategic-type player 1 does not play \(a^*\) in period \(t\) conditional on the period \(t\) state is \(s^*\). Inequality (D.1) implies that:

\[
(1 - \delta)\delta^t - K \left(1 - q_t(S'(\sigma)) - q_t(S''(\sigma)) \right) r_t \leq I(S''(\sigma)) \leq \frac{C(1 - \delta)^2}{\delta}.
\]

(D.3)

Dividing both sides of (D.3) by \(1 - \delta\), and using the conclusion that \(q_t(\{s^*\}) \geq 1 - \frac{C}{\sqrt{\varepsilon}}(1 - \delta)\) and the hypothesis that \(\delta \geq \sqrt{\varepsilon}\), we have:

\[
r_t \leq \frac{C}{\sqrt{\varepsilon} \delta} \cdot \frac{1}{1 - \frac{C}{\sqrt{\varepsilon}}(1 - \delta)} \cdot (1 - \delta) \leq \frac{C}{\varepsilon} \cdot \frac{1}{1 - \frac{C}{\sqrt{\varepsilon}}(1 - \sqrt{\varepsilon})} \cdot (1 - \delta).
\]

\[
\equiv C_x
\]

E Proof of Corollary 3

According to the definition of \(G^*(u_1, u_2)\), it is without loss of generality to focus on \((\alpha_1, b_1)\) and \((\alpha_2, b_2)\) such that \(u_1(\alpha_1, b_1) \geq u_1(a^*, b^*) \geq u_1(\alpha_2, b_2)\). Under Assumptions [1 and 3] every \((\alpha_1, \alpha_2, b_1, b_2, q)\) that solves the constrained optimization problem must satisfy:

\[xvii]
1. $b_1 = b^*$,

2. α_1 is a nontrivially mixed action that assigns positive probability to a^*,

3. $u_1(\alpha_1, b_1) > u_1(a^*, b^*) > u_1(\alpha_2, b_2)$ and constraint (3.15) is binding.

This is because:

1. The first requirement is implied by Assumption 3 that player 1 cannot attain payoff more than $u_1(a^*, b^*)$ unless player 2 plays an action no less than b^*.

2. The second requirement is implied by Proposition 1 in Li and Pei (2021).

3. Since $u_1(a, b)$ is strictly decreasing in a, requirement 2 implies that $u_1(\alpha_1, b_1) > u_1(a^*, b^*)$. Suppose by way of contradiction that $u_1(a^*, b^*) = u_1(\alpha_2, b_2)$, then Assumption 3 implies that α_2 assigns positive probability to a^*. Consider another solution $(\alpha_1', \alpha_2', b_1', b_2', q')$ where $(\alpha_1', b_1') = (\alpha_1, b_1)$, α_2' assigns probability 1 to player 1’s lowest action, b_2' best replies to α_2', and q' is chosen such that constraint (3.15) binds. Compared to $(\alpha_1, \alpha_2, b_1, b_2, q)$, $(\alpha_1', \alpha_2', b_1', b_2', q')$ increases the value of (3.14) without violating any constraint, which contradicts the optimality of $(\alpha_1, \alpha_2, b_1, b_2, q)$.

4. Suppose by way of contradiction that constraint (3.15) is not binding. Consider two cases separately. First, suppose $\alpha_1(\alpha^*) > \alpha_2(\alpha^*)$. One can decrease q to make (3.15) binding, which increases the value of (3.14). This is a contradiction. Second, suppose $\alpha_1(\alpha^*) \leq \alpha_2(\alpha^*)$. Consider another solution $(\alpha_1', \alpha_2', b_1', b_2', q')$ where $(\alpha_1', b_1') = (\alpha_1, b_1)$, α_2' assigns probability 1 to player 1’s lowest action, b_2' best replies to α_2', and q' is chosen such that constraint (3.15) binds. Compared to $(\alpha_1, \alpha_2, b_1, b_2, q)$, $(\alpha_1', \alpha_2', b_1', b_2', q')$ increases the value of (3.14) without violating any constraint. This contradicts the optimality of $(\alpha_1, \alpha_2, b_1, b_2, q)$.

Let $S \equiv A^K$. Let us partition S according to player 2’s information structure $S \equiv \bigcup_{j=1}^N S_j$, where $N \in \mathbb{N}$ can be computed from K and the number of actions in A. Recall the definition of $\mu \in \Delta(S)$. Let $\mu(S_j) \equiv \sum_{s \in S_j} \mu(s)$. Let $\alpha_j \in \Delta(A)$ be player 1’s expected action conditional on S_j and $\beta_j \in \Delta(B)$ be player 2’s action at S_j. We have

$$\left| \sum_{b \in B} F^\alpha(a^*, b) - \sum_{j=1}^N \mu(S_j)\alpha_j(a^*) \right| \leq 1 - \delta^K. \quad \text{(E.1)}$$

and

$$(1 - \delta^K) \max_{(a,b) \in A \times B} u_1(a, b) + \delta^K \sum_{j=1}^N \mu(S_j)u_1(\alpha_j, \beta_j) \geq \sum_{t=0}^{+\infty} (1 - \delta)^t u_1(a_t, b_t). \quad \text{(E.2)}$$
Suppose by way of contradiction that for every $\delta \in (0, 1)$, there exist $\delta > \delta$ and an equilibrium σ under δ such that $\sum_{b \in B} F^\sigma(a, b) < G^*(u_1, u_2) + \varepsilon$. When δ is close to 1, there exists an element of player 2’s information partition $S_j \in \{S_1, ..., S_N\}$ such that (i) $\mu(S_j)$ is bounded away from 0, (ii) β_j assigns probability close to 1 to b^* and α_j is close to one of the optimal solutions to (3.14), i.e., the probability α_j assigns to a^* is bounded away from 1.

First, I show that S_j cannot be the partition element that contains the history where all of the last K actions were a^*. This is because the probability α_j assigns to a^* is bounded away from 1, which implies that if S_j contains the history where all of the last K actions were a^*, it must be the case that $O(S_j) \geq \mu(S_j)(1 - \alpha_j(a^*))$. Since (u_1, u_2) satisfies Assumptions [1] [2] and [3] Lemma [B.3] implies that $O(S_j) \leq \frac{2(1-\delta)}{\delta}$ if S_j contains the history where all of the last K actions were a^*. This leads to a contradiction.

Next, for every $a \in A$, let $K_j(a)$ be the number of times action a occurred in histories that belong to S_j. Suppose player 1 deviates and plays action a for $K_j(a)$ times every K periods for every $a \in A$. Under this deviation, player 1’s discounted average payoff is close to

$$\frac{1}{K} \sum_{a \in A} K_j(a)u_1(a, \beta_j) \approx \frac{1}{K} \sum_{a \in A} K_j(a)u_1(a, b^*). \tag{E.3}$$

When δ is close to 1, (E.3) is bounded away from $u_1(a^*, b^*)$ since $K_j(a^*) \leq K - 1$ and $u_1(a, b)$ is strictly decreasing in a. Hence, for every $\varepsilon > 0$, there exists $\delta \in (0, 1)$ such that when $\delta > \delta$, player 1’s equilibrium payoff is at least $\frac{1}{K} \sum_{a \in A} K_j(a)u_1(a, b^*) - \varepsilon$. According to (E.2), we have

$$(1 - \delta)^K \max_{(a, b) \in A \times B} u_1(a, b) + \delta^K \sum_{j=1}^N \mu(S_j)u_1(\alpha_j, \beta_j) \geq \frac{1}{K} \sum_{a \in A} K_j(a)u_1(a, b^*) - \varepsilon.$$

Since constraint (3.15) must be binding in the optimal solution, there is no equilibrium where the frequency of a^* is close to $G^*(u_1, u_2)$ when δ is close to 1. Hence, there exists $\eta > 0$ and $\delta \in (0, 1)$ such that for every $\delta > \delta$ and every equilibrium σ under δ, we have $\sum_{b \in B} F^\sigma(a^*, b) > G^*(u_1, u_2) + \eta$.

F Proof of Proposition 1

Consider the following strategy profile. For every $t \geq K$,

1. When $(a_{t-K}, ..., a_{t-1}) = (H, H, ..., H)$, the strategic-type seller plays H with probability $\gamma \in (0, x)$ and consumer t plays T with probability $\beta_H \in (0, 1)$.

2. When $(a_{t-K}, ..., a_{t-1}) = (L, L, ..., L)$, the strategic-type seller plays H with probability x and con-
sumer \(t\) plays \(T\) with probability \(\beta_L \in (0, 1)\).

3. When \((a_{t-K}, \ldots, a_{t-1}) \in \{(L, \ldots, L, H), (L, \ldots, L, H, H), \ldots, (L, H, \ldots, H)\} \), the strategic-type seller plays \(H\) and consumer \(t\) plays \(T\).

4. At all other histories, the strategic-type seller plays \(L\) and consumer \(t\) plays \(N\).

When \(t = 0\), the consumer plays \(T\) with probability \(\beta_L\) and the strategic-type seller plays \(H\) with probability \(\frac{\pi_0}{1-\pi_0}\). For every \(t \in \{1, 2, \ldots, K - 1\}\), players behave as if actions before period 0 were \(L\).

I pin down \(\beta_H\) and \(\beta_L\) using the seller’s incentive constraints. I show that when \(\pi_0\) is small, there exists \(y \in (0, x)\) under which consumer \(t\) is indifferent between \(T\) and \(N\) when \((a_{t-K}, \ldots, a_{t-1}) = (H, H, \ldots, H) \).

The strategic-type seller being indifferent between \(H\) and \(L\) when \((a_{t-K}, \ldots, a_{t-1}) = (H, H, \ldots, H) \) implies that:

\[
V(H, H, \ldots, H) = \beta_H(1 + c_N) - c_N = (1 - \delta)\beta_H(1 + c_T) + \delta^K \beta_L(1 + c_T). \tag{F.1}
\]

The seller being indifferent between \(H\) and \(L\) when \((a_{t-K}, \ldots, a_{t-1}) = (L, L, \ldots, L) \) implies that:

\[
V(L, L, \ldots, L) = r_L(1 + c_T) = (1 - \delta)\beta_L(1 + c_N) - c_N + (\delta - \delta^K) + \delta^K \beta_H(1 + c_N) - c_N. \tag{F.2}
\]

Solving this system of linear equations, I obtain:

\[
\beta_L \left\{ \frac{(1 + \cdots + \delta^{2K-1})(1 + c_N)(1 + c_T) - (1 + c_T)^2}{(1 + c_N) - (1 - \delta)(1 + c_T)} - (1 + c_N) \right\} = -c_N + \delta (1 + \cdots + \delta^{K-2}) + \frac{\delta^K c_N (1 + c_T)}{(1 + c_N) - (1 - \delta)(1 + c_T)}
\]

and

\[
\beta_H = \frac{\delta^K (1 + c_T)}{(1 + c_N) - (1 - \delta)(1 + c_T)} \beta_L + \frac{c_N}{(1 + c_N) - (1 - \delta)(1 + c_T)}.
\]

Since both \(\beta_L\) and \(\beta_H\) are continuous functions of \(\delta \in [0, 1]\), as \(\delta \to 1\), \(\beta_L\) and \(\beta_H\) converge to

\[
\beta_L^* = \frac{c_N(c_T - c_N) + (K - 1)(1 + c_N)}{2K(1 + c_N)(1 + c_T)(1 + c_T - 1 + c_N)^2}, \tag{F.3}
\]

\[
\beta_H^* = \frac{2Kc_N(1 + c_T) + (K - 1)(1 + c_T) - c_N(c_N + c_T + 2)}{2K(1 + c_N)(1 + c_T)(1 + c_T - 1 + c_N)^2}. \tag{F.4}
\]

If \(c_N > c_T > 0\), there exists \(K \in \mathbb{N}\) such that when \(K > K^*\), both \(\beta_H^*\) and \(\beta_L^*\) are strictly between 0 and 1.
Given the strategic-type seller’s equilibrium behavior, he plays \(L \) from period 0 to \(K - 1 \) with positive probability. Hence, there exists \(p > 0 \) independent of \(\delta \) such that conditional on the seller being the strategic type and \(t \geq K \), the probability that \((a_{t-K}, ..., a_{t-1}) = (H, ..., H) \) is more than \(p \). Hence, when \(\pi_0 \) is small enough, there exists \(N \) with \(N > (0, \infty) \) such that when the strategic-type seller plays \(H \) with probability \(\pi_0 \) when \((a_{t-K}, ..., a_{t-1}) = (H, ..., H) \), consumer \(t \)’s belief assigns probability \(x \) to \(a_t = H \) and hence, has an incentive to mix between \(T \) and \(N \). Since it is optimal for the strategic-type seller to play \(L \) from period 0 to \(K - 1 \), \(\beta_H^* \) is bounded away from 1 as \(\delta \to 1 \), and

\[
V(L, L, ..., L) \leq (1 - \delta^K) + \delta^K V(H, ..., H) = (1 - \delta^K) + \delta^K \left(\beta_H(1 + c_N) - c_N \right),
\]

the strategic-type seller’s continuation value in period 0 is bounded away from 1 even as \(\delta \to 1 \).

\[G\quad \text{Proof of Proposition 2}\]

In period 0, the strategic-type seller plays \(L \) and consumer 0 plays \(N \). For every \(t \geq 1 \), (i) if \(a_{t-1} = L \), the strategic seller plays \(H \) with probability \(\frac{\pi_0}{\delta(1 - \pi_0) - \pi_0} \) and consumer \(t \) plays \(N \), and (ii) if \(a_{t-1} = H \), the strategic seller plays \(L \) and consumer \(t \) plays \(T \) with probability \(\frac{c_N}{\delta(1 + c_T)} \).

Under this strategy profile, the strategic-type seller’s continuation value satisfies \(V(L) = (1 - \delta)u_1(L, N) + \delta V(L) \) and \(V(H) = (1 - \delta)\frac{c_N}{\delta(1 + c_T)}u_1(L, T) + (1 - \delta)(1 - \frac{c_N}{\delta(1 + c_T)})u_1(L, N) + \delta V(L) \), which implies that \(V(L) = 0 \) and \(V(H) = 1 - \frac{\delta}{c_N} \). The strategic-type seller is indifferent between \(H \) and \(L \) when \(a_{t-1} = L \) since \((1 - \delta)u_1(L, N) + \delta V(L) = (1 - \delta)u_1(H, N) + \delta V(H) \). The strategic-type seller prefers \(L \) to \(H \) when \(a_{t-1} = H \) since \(c_T \geq c_N > 0 \) and consumers play \(T \) with higher probability when \(a_{t-1} = H \). Consumers have incentives to play \(N \) when \(a_{t-1} = L \) since \(\frac{\pi_0}{\delta(1 - \pi_0) - \pi_0} \leq \frac{1}{2} \).

I verify consumers’ incentive constraints when \(a_{t-1} = H \) using Lemma [B.1]. Recall that the strategic-type seller plays \(L \) when \(t = 0 \), plays \(H \) with probability \(\frac{\pi_0}{\delta(1 - \pi_0) - \pi_0} \) when \(a_{t-1} = L \), and plays \(L \) for sure when \(a_{t-1} = H \). Recall that \(\pi_0 \) is the prior probability of the commitment type. Lemma [B.1] implies that:

\[
\mu(H) = \delta \cdot (1 - \mu(H)) \cdot \frac{\pi_0}{\delta(1 - \pi_0) - \pi_0},
\]

which yields \(\mu(H) = \frac{\pi_0}{\delta(1 - \pi_0)} \). Conditional on observing \(a_{t-1} = H \), the probability consumers believe that the seller’s current-period action being \(H \) is computed via Bayes rule, which equals

\[
\frac{\pi_0}{\pi_0 + (1 - \pi_0) \cdot \delta \cdot \mu(H)} = \frac{1}{2}.
\]