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Abstract

We develop a new approach to estimating the causal effects of treat-
ments or instruments that combine multiple sources of variation ac-
cording to a known formula. Examples include treatments capturing
spillovers in social or transportation networks and simulated instru-
ments for policy eligibility. We show how exogenous shocks to some,
but not all, determinants of such variables can be leveraged while
avoiding omitted variables bias. Our solution involves specifying coun-
terfactual shocks that may as well have been realized and adjusting for
a summary measure of non-randomness in shock exposure: the aver-
age treatment (or instrument) across shock counterfactuals. We use
this approach to address bias when estimating employment effects of
market access growth from Chinese high-speed rail construction.
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1 Introduction

Many questions in economics involve the causal effects of treatments x; which are computed
from multiple sources of variation, according to a known formula. Consider three examples.
First, when estimating spillovers from a randomized intervention, x; might count the number
of individual i’s neighbors who were selected for the intervention. This treatment combines
variation in who was selected and variation in who neighbors whom. Second, in studies of
transportation infrastructure effects, a common x; measures the growth of regional market
access: a treatment computed from the location and timing of transportation upgrades and
the spatial distribution of economic activity in a country. A third example is an x; capturing
individual ¢’s eligibility for a public program, such as Medicaid, which is jointly determined
by the eligibility policy in i’s state and her household’s demographics and income.!

This paper develops a new approach to estimating the effects of such composite variables
when some, but not all, of their determinants are generated by a true or natural experiment.
We ask, for example, how one can estimate market access effects by leveraging the timing
of new railroad line construction as exogenous shocks, when the other determinants of
market access (such as the pre-determined location of large markets and planned lines) are
non-random.

We first show that omitted variable bias (OVB) may confound conventional regression
approaches in such settings. Bias arises from different observations receiving systematically
different values of x; because of their individual non-random “exposure” to the exogenous
shocks. For example, even when construction is delayed for a random set of lines, regions
that are economically or geographically more central will tend to see a larger growth in
market access because they are closer to a typical potential line. Regression identification
of market access effects then fails without an additional assumption on the exogeneity of
economic geography: that more exposed (e.g., central) regions do not differ in their relevant
unobservables, such as changes in local productivity or amenities. Intuitively, randomizing
transportation upgrades does not randomize the market access growth generated by them.

Our solution to the OVB challenge is based on the specification of counterfactual ex-
ogenous shocks that might as well have been realized. This approach views the observed
shocks as one realization of some data-generating process—what we call the shock assign-
ment process—which can be simulated to obtain counterfactuals. In a true experiment, the
shock assignment process is given by the randomization protocol. Otherwise, in natural

experiments, shock counterfactuals make explicit the experimental contrasts which the re-

'"Examples of these three settings include Miguel and Kremer (2004), Donaldson and Hornbeck (2016),
and Currie and Gruber (1996), respectively. Our working paper (Borusyak and Hull 2021) discusses other
common treatments and instruments nested in our framework: linear and nonlinear shift-share variables,
model-implied optimal instruments, instruments based on centralized school assignment mechanisms, “free-
space” instruments for access to mass media, and variables leveraging weather shocks.



searcher wishes to leverage, for instance by specifying permutations of the shocks that were
as likely to have occurred. For example, if line construction delays are considered as-good-
as-random, one might produce counterfactual network maps by randomly exchanging the
lines which were completed earlier and later.

Valid shock counterfactuals can be used to avoid OVB by a “recentering” procedure
which involves measuring and appropriately adjusting for a single confounder: the expected
treatment, ;. To do so, a researcher draws counterfactual shocks from the assignment
process and recomputes the instrument many times. Then, for each observation 7, the
treatment is averaged across these many draws to obtain p;. Finally, u; is subtracted from
x; to obtain the recentered treatment &; = x;— ;. We show that using Z; as an instrument for
x; removes the bias from non-random shock exposure. Intuitively, observations only get high
vs. low values of Z; because the observed shocks were drawn instead of the counterfactuals,
which is assumed to be by chance. For example, when u,; is constructed by permuting the
timing of new line construction, regressions that instrument with Z; compare regions which
received higher vs. lower market access growth because proximate lines were constructed
early vs. late, and not because of the economic geography. Another, closely related, solution
to OVB is to include pu; as a control in the regression of an outcome on x;; this can be viewed
as recentering x; while also removing some residual variation in the outcome.?

This approach to causal inference with composite variables, in which some determinants
are labeled as exogenous and characterized by an assignment process, can be seen as for-
malizing the natural experiment of interest and bringing composite variables to familiar
econometric territory.®> The conditions we impose on the exogenous shocks are similar to
those which might be used if the shocks were directly used as treatments: e.g., if shocks to
the timing of railroad line upgrades were used in a regression of outcomes defined at the
“level” of those lines. Recentering ensures identification from the natural experiment, even
when the regression is estimated at a different level (e.g., across regions instead of lines).

Our general identification framework further allows the treatment to have endogenous or
unobserved determinants. In this case one may construct candidate composite instruments
for z; based on its exogenous and predetermined components. The same OVB problem
arises in this instrumental variable (IV) case, and it can again be solved by recentering the

candidate instrument by its expectation over the shock assignment process. Controlling for

ZWhile recentering is the key step that removes OVB, removing residual variation is likely to increase
the efficiency of estimation in large samples. We give practical recommendations for each adjustment in the
paper’s conclusion.

30ur approach is “design-based,” in that identification is achieved by specifying the assignment process
of some observed shocks (see, e.g., Lee (2008), Athey and Imbens (2018), Shaikh and Toulis (2019), and
De Chaisemartin and Behaghel (2018)). It contrasts with other identification strategies that instead model
the residual determinants of the outcome, such as difference-in-difference strategies (e.g. Chaisemartin and
D’Haultfeeuille (2020) and Athey et al. (2021)) or fully-specified structural models.



the expected instrument is again another solution.

We establish several attractive properties of the recentering approach, beyond our pri-
mary identification results. First, shock counterfactuals can be used for exact finite-sample
inference and specification tests via randomization inference (RI). Second, consistency of the
estimates and RI tests follows regardless of the correlation structure of unobservables, pro-
vided the exogenous shocks induce sufficient cross-sectional variation in the instrument and
treatment. Finally, while our RI and consistency results rely on an assumption of constant
treatment effects, identification with recentered IV estimators generalizes to heterogeneous
effects under a natural first-stage monotonicity condition.

We apply this framework to estimate the employment effects of market access (MA)
growth due to new high-speed rail in China. We show how recentering can help leverage
variation in the timing of transportation upgrades to purge OVB. Simple regressions of
employment growth on MA growth suggest a large and statistically significant effect, which
is only partially reduced by conventional geography-based controls. But this effect is elim-
inated when we adjust for expected MA growth, measured by permuting constructed HSR
lines with similar ones that were planned but not built. The unadjusted estimates thus
reflect the fact that employment grew in regions which were more exposed to high-speed
rail upgrades, whether or not construction actually occurred.

FEconometrically, expected treatment and instrument adjustment is similar to propen-
sity score methods for removing OVB (Rosenbaum and Rubin 1983), with two key differ-
ences. First, we propose using the structure of composite x; to compute expected treat-
ments/instruments from more primitive assumptions on the assignment process for exoge-
nous shocks. This approach is similar to how Borusyak et al. (2021) and Aronow and Samii
(2017) address OVB when using linear shift-share instruments and network treatments, re-
spectively. It differs from conventional methods of directly estimating propensity scores;
such methods are typically infeasible in the settings we consider because the exposure to
exogenous shocks is high-dimensional. Second, our regression-based adjustment differs from
conventional approaches of weighting by or matching on propensity scores.* Regression ad-
justment is more popular in applied research, avoids practical issues of limited overlap (due
to, e.g., propensity scores that are close to zero or one), does not require to treatments or
instruments to be binary, and is natural for estimating constant structural parameters or
convex averages of heterogeneous treatment effects.

The remainder of this paper is organized as follows. The next section motivates our
analysis with three examples related to network spillovers, market access effects, and Med-

icaid eligibility effects. Section 3 develops our general framework and results. Section 4

1A notable exception of a recentering-type regression adjustment in the traditional propensity scores
setting is the E-estimator of Robins et al. (1992).



presents our application, and Section 5 concludes. Additional results and extensions are

given in an earlier working paper, Borusyak and Hull (2021, henceforth BH).

2 DMotivating Examples

We develop three stylized examples, inspired respectively by the settings of Miguel and
Kremer (2004), Donaldson and Hornbeck (2016), and Currie and Gruber (1996), to illustrate
the main insights of this paper. In each example we consider estimating the parameter

of a causal or structural model which relates an outcome y; to a treatment x;,
vi = Bx; + &, (1)

for a set of units ¢+ = 1,..., N with an unobserved error ¢;. The common feature of the

examples is that z; is computed from multiple sources of variation by a known formula.

Example 1: Network spillovers. Suppose y; is student i’s educational achievement

and x; counts the number of ¢’s neighbors who have been dewormed in an intervention:

N
T = Z Neighbor;, Dewormedy,. (2)
k=1

Here Dewormed), € {0, 1} is an indicator for student k being selected for the deworm-
ing intervention and Neighbor;, € {0,1} indicates that ¢ and k are neighbors (i.e.,
connected by an observed network link). The error term &; captures ¢’s educational

outcome when none of her neighbors are dewormed.

Example 2: Market access. Suppose y; is the growth of land values in region i
between two dates ¢ € {0,1} and z; = log M A;; — log M A, is the growth of regional
market access (MA) due to improvements to the cross-country railroad network. Market
access is computed as

N

Pop,;
MAy = . 3
=2 7 (Networky, Loc;, Locj)’ 3)

j=1
following standard models of economic geography (e.g. Redding and Venables (2004)).
Here Popj is the time-invariant population of region j, Network; is the set of railway
lines and other types of transit which comprise the transportation network in operation
at time t, Loc; is the location of region j on the map, and 7 (-) is a function giving
the travel time between regions ¢ and j. The error term ¢; captures location i’s land
value growth in the absence of market access growth, due to some regional amenity

and productivity shocks.

Example 3: Medicaid eligibility. Suppose y; is individual i’s health outcome and



x; € {0, 1} indicates her eligibility for Medicaid. Let IncDem; be a vector of individual
income and demographics, State; € {1,...,50} index i’s state of residence, and Policyy,
be state k’s eligibility policy: i.e. the set of income and demographic groups eligible
for Medicaid in that state. Then

x; = 1[IncDem; € Policysiate, - (4)
The error term ¢g; captures individual i’s outcome when she is ineligible for Medicaid.

To estimate (§ in each example, we consider an actual or natural experiment that manip-

ulates some of the determinants of x;. Formally, we partition the variables from which

x = (x1,...,zy) is computed into two groups: a set of shocks g and a set of predetermined
variables w. The shocks ¢ = (¢1,...,9K) are assumed to be exogenous, i.e. indepen-
dent of the errors € = (e1,...,en). Shock exogeneity combines two conceptually distinct

assumptions—that g is as-good-as-randomly assigned, and that this assignment only affects
the outcome of each unit ¢ via its treatment x; (an exclusion restriction). The shocks can be
assigned at a different “level” than the observations, with K # N. The remaining variables
w have an arbitrary structure and govern the mapping from the exogenous shocks to each
unit’s treatment, i.e. the observation’s “exposure” to the shocks. We assume that w is

determined prior to the (natural) experiment and is unaffected by the shocks.

Example 1 (cont.) Suppose deworming is assigned in a randomized control trial
(RCT) and fu; fully captures its spillover effects. Then g = (Dewormedy);—, col-
lects the exogenous shocks, for K = N.° The remaining determinants of the spillover

treatments of all units, w = (Neighbor;) fV w—1, are fixed in the experiment.

Example 2 (cont.) Suppose the timing of new railroads is exogenous. Specifically,
suppose that among K lines planned to be constructed at ¢ = 1 some are randomly de-
layed by unexpected engineering problems (unrelated to the trends in regional land val-
ues). Suppose also the model of economic geography is correctly specified, so 3 log M A;;
fully captures the effects of transportation upgrades. Then g = (Openk)l{le collects
the exogenous shocks, where Openy, is an indicator for whether planned line k faces
no delays. Assuming no other changes to the network at ¢ = 1, we can partition the
determinants of MA growth into g and w = ({Loci, POPi}i]\Ll ,Networko> as Network;
is fully determined by Networky and the set of newly opened lines.

Example 3 (cont.) Suppose Medicaid policies across the K = 50 states are exoge-

nous, i.e. are chosen irrespective of the potential health outcomes and affect individual

outcomes only via Medicaid eligibility. Then g = (Polz’cyk)i(:1 collects the exogenous

5For simplicity here we assume away any direct effects of deworming; see Section 3.5 on the extension to
multiple treatments.



shocks, with the other determinants of eligibility collected in w = (IncDem;, statei)f\il.

The first point of this paper is that ordinary least squares (OLS) estimation of  can suffer
from OVB, despite the experimental variation underlying ;. The OVB problem arises
because some units receive systematically higher values of ; than others, as a consequence of
their non-random exposure to the shocks. This systematic variation may be cross-sectionally

correlated with the errors ¢;, generating bias in OLS estimation of equation (1).

Example 1 (cont.) Even when deworming is randomly assigned to students, those
with more neighbors (e.g., because they live in dense urban areas) will tend to have
more dewormed neighbors and therefore be more exposed to the deworming interven-
tion. Urban areas may have different educational outcomes for reasons unrelated to

deworming, generating OVB.

Example 2 (cont.) Even when the opening status of lines is as-good-as-randomly
assigned, regions in the economic and geographic center of the country will tend to see
more market access growth than peripheral regions as the former are closer to a typical
potential line.” Central regions may face different amenity and productivity shocks,

generating OVB.

Example 3 (cont.) Even when Medicaid policies are as-good-as-randomly assigned
to states, poorer individuals with certain demographics will tend to see higher rates of

eligibility. Poor individuals may face different health shocks, generating OVB.

Our second insight is that this OVB problem has a conceptually simple solution, which
follows from viewing the set of realized g as one draw from a shock “assignment process”
and considering what counterfactual sets of exogenous shocks could have as likely been
drawn. The specification of such counterfactuals allows one to measure and remove the
systematic component of variation in the treatment which drives OVB. Specifically, the
researcher recomputes the treatment x; of each unit ¢ across many counterfactual sets of
shocks and takes their average to measure the “expected treatment,” n;. We show that this
i, which is co-determined by the exposure of x; to the shocks g and the shock assignment
process, is the sole confounder in equation (1). OVB can then be purged by “recentering”

the treatment, i.e. instrumenting x; with ; = z; — u; in equation (1), or by simply adding

5Such OVB may arise even if (as in Examples 1 and 2) variation in the treatment “results” from the
experimental shocks, in the sense that x1 = --- = zxy = 0 whenever g1 =--- =gk = 0.

"Our working paper (BH, Section 2) illustrates this phenomenon with a simple example of a square map
with no period-0 network. Even when the population is equal in all regions and period-1 lines connect any
adjacent regions with equal probability, MA growth is systematically higher in the center of the map. When
the set of planned lines or regional populations are not uniform across the map, the variation in MA growth
becomes more intricate: e.g. it is systematically higher in economic centers, except for populous regions
where the large local market makes connections less important.



w; as a control in OLS estimation. The key to removing bias with this approach is thus
to credibly specify and average over shock counterfactuals—a task which is trivial in true

experiments and which otherwise formalizes the natural experiment of interest.

Example 1 (cont.) With deworming assigned in an RCT, the shock assignment
process is given by the known randomization protocol. If, say, each student has
a 30% chance of being dewormed, the expected number of ’s dewormed neighbors
over repeated draws of deworming shocks p; is 0.3 times their number of neighbors
Zszl Neighbor;;;. OVB is thus purged by controlling for the number of neighbors, or
by using the recentered number of dewormed neighbors Z; = z; — p; to instrument
for x;. With either adjustment, the regression will only compare students who had
more neighbors dewormed than expected (given the network) to those with fewer than

expected dewormed neighbors.

Example 2 (cont.) The as-good-as-random assignment of opening status can be
formalized by each planned line facing an equal and independent chance of opening.
Then, if Zkkzl Open;, = K; railway lines open by t = 1, every counterfactual network
in which K lines from the plan opened was as likely to have occurred. One can thus
compute expected MA growth u; as the average MA growth of region ¢ across these
counterfactuals (or a random subset of them). Recentering by or controlling for this yu;
ensures that the regressions only compare regions which saw higher MA growth than
expected (given pre-existing economic geography and the plan) to those which saw

less-than-expected MA growth.

Example 3 (cont.) The as-good-as-random assignment of Medicaid policies can be
formalized by each state randomly drawing from a pool of potential policies, such that
every permutation of the realized policies was equally likely to have occurred. Aver-
aging individual ¢’s eligibility across these permutations yields an expected eligibility
w; which equals the share of states in which she would be eligible. Our solution is to
instrument actual eligibility with recentered eligibility x; — u;, or control for u; in an
OLS regression. Either approach would, for example, effectively remove from the sam-
ple “always-eligible” or “never-eligible” individuals (with z; = p; = 1 or x; = pu; = 0)

whose income and demographics make them unaffected by policy variation.

The recentering solution generally dominates more conventional ones, such as instrument-
ing directly by the shocks or controlling for the other determinants of ;. Instrumenting
with the shocks is infeasible when the shocks are assigned at a different level than the
units, and generally discards variation in treatment due to w. Controlling for an observa-
tion’s non-random shock exposure flexibly is typically infeasible, because such exposure is

high-dimensional. Conversely, low-dimensional controls are only guaranteed to purge OVB



(absent additional non-experimental restrictions on the error term) when they linearly span
wi—which is difficult to establish except when p; is known and recentering is feasible. If
either the assignment process or shock exposure mapping is complex, u; is unlikely to be a

simple function of observed characteristics.

Example 1 (cont.) Using student i’s own deworming status as an instrument is
infeasible as it does not predict the number of dewormed neighbors; leveraging the
non-random network adjacency matrix is necessary. Controlling for the entire row
of the adjacency matrix (which characterizes student’s exposure) is also infeasible, as
it would absorb all cross-sectional variation in the treatment. Miguel and Kremer
(2004) follow a different controlling strategy, by including the number of i’s neighbors
in the regression. Under completely random assignment of deworming this control is
proportional to p; and thus purges OVB. However, such simple controls would not
linearly span p; with more complex randomization protocols, such as with two tiers
(by school, then by student) or stratification (e.g., with girls dewormed with a known
higher probability). Simple controls are also generally insufficient with more complex

specifications of spillovers.?

Example 2 (cont.) Railroad timing shocks vary at the level of lines, so it is infeasible
to use them as instruments for regional market access without incorporating some non-
random features of economic geography. Controlling perfectly for these features is also
infeasible, as each region’s market access depends on the entire spatial distribution of
economic activity. Simple sets of controls, such as polynomials in the latitude and
longitude of a region, need not linearly span p; given the complexity of x;, and thus

are not guaranteed to purge OVB.

Example 3 (cont.) Currie and Gruber (1996) propose instrumenting individual eligi-
bility with a measure of the overall policy generosity of her state—a so-called “simulated
instrument.” Such instruments are simple functions of Policyy, for all individuals in state
k and are thus exogenous and relevant under random policy assignment. However they
discard relevant within-state variation in i’s income and demographics and are thus

likely to yield a less powerful first-stage prediction of z; than recentered eligibility.”?

8 An example is given by Carvalho et al. (2021), where i is a Japanese firm and z; is the distance in the
firm-to-firm supply network from i to the nearest firm located in the area hit by an earthquake. Unlike
the number of treated neighbors, this spillover treatment is a nonlinear function of the earthquake shock
dummies. The earthquake assignment process is also more complex, exhibiting spatial correlation. Our
recentering approach still applies naturally in cases like this.

9With completely random policy assignment, flexibly controlling for IncDem; may purge OVB as this
is the only source of variation in p;. However, even in this setting the relevant demographics in IncDem;
and their interactions can be high-dimensional, as discussed by Gruber (2003). This problem is exacerbated
under more complex assignment processes, e.g. if policies can be viewed as random only within some groups
of states, in which case group indicators and their interactions with the demographics would also have to be



We conclude this section by noting that the OVB problem and recentering solution both
extend to the case with an arbitrary endogenous x; and a candidate instrument z; which is
constructed from exogenous shocks and other variables by a known formula. This approach
is natural when the treatment can be represented as a function of exogenous shocks g,
predetermined variables w, and endogenous (and possibly unobserved) variables u: i.e.
when z; = h;(g,w,u) for a known h;(-). An intuitive candidate instrument for x; is the
prediction of z; in the scenario when the u shocks are ignored: z; = h;(g,w,0). Our
framework shows that these candidate instruments are generally invalid, again because of
the non-random exposure of z; to g. Yet OVB can again be purged by measuring the
expected instrument p;—the average z; across counterfactual g—and either instrumenting

x; with the recentered IV Z; = z; — u; or controlling for p; while instrumenting with z;.

Example 2 (cont.) Suppose population sizes also change between ¢ = 0 and t =
1, and the observable changes u = (Pop;; — Popio)i]\i1 are not exogenous (e.g. they
respond to house price shocks in €). Then one can consider instrumenting the observed
change in MA by a predicted change in MA which keeps population sizes fixed at the
predetermined ¢ = 0 levels. Without recentering, this IV regression may suffer from the
same OVB as the OLS regression discussed above. OVB is now avoided by recentering

the MA prediction via counterfactual railroad networks.

Example 3 (cont.) Suppose one is interested in the effects of Medicaid takeup, in-
stead of eligibility. Takeup is the product of eligibility and 1 — NeverTaker;, where
NeverTaker; indicates that individual ¢ would decline Medicaid if eligible and u =
(N everTak:eri)i]\i | is unobserved. Under the appropriate exclusion restriction one can
consider instrumenting takeup with eligibility; our recentering strategy then again re-

moves OVB from non-random variation in policy exposure.

3 Theory

We now develop a general econometric framework for settings with non-random exposure to
exogenous shocks. We introduce the baseline setting, develop our approach to identification
and estimation based on the recentering procedure, and discuss how this recentering can
be performed by specifying counterfactual shocks in Sections 3.1-3.3. We then discuss
how shock counterfactuals can be used for finite-sample inference and summarize several

extensions in Sections 3.4 and 3.5.

included. Recentering extends naturally and avoids the curse of dimensionality.



3.1 Setting

We consider identification of § in the causal or structural model (1) with scalar and de-
meaned y; and x;. Below we discuss extensions to heterogeneous causal effects, nonlinear
models, multiple treatments, and additional control variables. Although we use a single
index for observations, we note our framework accommodates repeated cross-sections and
panel data (where it is also relevant).

Importantly for the generality of our framework, we do not assume that the observations
of (y;,z;) are independently or identically distributed (7id) as when arising from random
sampling. This allows for complex dependencies across the units due to their common
exposure to observed and potentially unobserved shocks. It is also consistent with settings
where the NN units represent a population—for example, all regions of a country—and
conventional random sampling assumptions are inappropriate (Abadie et al. 2020).%°

We suppose that to identify g a researcher has constructed a candidate instrument

zi = fi(g;w), (5)

where {f; ()}f\; , is a set of known non-stochastic functions, ¢ is a K x 1 vector of shocks,
and w is a set of predetermined variables. Equation (5) is very general: any z; that can be
computed from a set of observed data, according to a known formula, can be described in
this way.!! It also allows z; = z;, in which case 3 is the effect of a composite treatment.
We assume that the shocks g are exogenous, which we formalize by their conditional

independence from the vector of errors given the other sources of instrument variation:
Assumption 1. (Shock exogeneity): g 1L e | w

As noted in Section 2, this notion of shock exogeneity combines two conceptually distinct
conditions. First, it imposes an exclusion restriction, reflecting an economic model of how g
can affect y. Second, it requires as-good-as-random shock assignment. This latter condition
is satisfied when the shocks are fully randomly assigned, as in an RCT (i.e., g L (g,w)), but
also allows w to contain variables that govern the shock assignment process.'? Importantly,
Assumption 1 allows E[e; | w] to vary arbitrarily across i; this reflects the lack of non-

experimental assumptions, such as parallel trends, constraining the error in equation (1).!3

OFormally, we assume {xs, si}f.vzl and the g and w variables introduced below are all drawn from some
joint distribution which is unrestricted at this point.

" Note that equation (5) does not contain a residual: it formalizes an algorithm for computing an instru-
ment rather than characterizing an economic relationship.

12The exclusion and as-good-as-random assignment assumptions are isolated in Appendix C.1 of BH, via
a general potential outcomes model.

130ur identification results hold under the weaker conditional mean independence assumption of
Ele|g,w] = E[e |w]. This assumption can be understood as defining a partially linear model, as in
Robinson (1988): y; = Bz; + ¥ (w) + & where ¢;(w) = Ele; | w] and E[E; | g,w] =0 for & = &; — i (w). A

10



We consider identification of § by an instrumental variable (IV) regression of y; on z;
instrumenting with z;. Identification follows when z; is relevant to the treatment and or-
thogonal to the structural residual. In our non-iid setting, we formalize these conditions as
E [% Do zzxz] # 0 and E [% D zisl} = 0, which together imply that § is uniquely recov-
erable from the observable moments E {% Do ziml} and E {% Do ziyl} = PE {% > ziznl} +

E [% Zz Ziél} .14

3.2 OVB and Instrument Recentering

We define the exzpected instrument p; = E[fi(g;w) | w] as the average value of z; across
different realizations of the shocks, conditional on w. Our first result shows that IV identifi-
cation fails when predetermined exposure to the natural experiment is endogenous, and that
this failure is entirely governed by the relationship between p; and the error ;. Formally,
under Assumption 1 the IV moment condition need not be satisfied: E {% Do ziez} # 0 in

general. Rather, the moment condition violation satisfies:
E ! E € E ! E €
—N el =E = o
N &= N £ pici

This result follows from the law of iterated expectations: E [z;g;] = E[E[fi(g;w)e; | w]] =

(6)

E [1E [ei | w]] = E [use;] for all 4, where the second equality uses Assumption 1 and the
definition of p;.

The central role of u; in governing OVB immediately suggests a “recentering” solution:
even though OVB results from potentially high-dimensional variation in units’ exposure
to shocks, adjustment for the one-dimensional confounder p; is sufficient for identification.
We adjust z; by defining the recentered instrument Z; = z; — p;. By equation (6), the TV

moment condition holds for this instrument:
1 - 1 1
E [N Z zisil =E [N Z zisil -E [N Z me,} =0. (7)
Thus, if Z; is also relevant, IV estimation of (1) which instruments x; with Z; (instead of
the initial z;) identifies 3.1°

A closely related solution, also suggested by equation (6), is to include the expected

instrument p; as a control in specification (1) while using the original z; as the instrument.

difference from Robinson (1988) arises because we do not assume iid data; for instance, we do not assume
Y (w) = P(w;) for iid w;.

“Here it is worth highlighting that the orthogonality condition E [% Zl zisi] = 0 combines two dimen-
sions of variation: over the stochastic realizations of g, w, and &, and across the cross-section of observations
i=1,...,N. In the #d case it reduces to the more familiar condition E [z;e;] = 0.

5There exist fi (-) constructions that yield a relevant recentered instrument whenever the shocks induce
some variation in treatment. Formally, when Var [E [z; | g, w] | w] is not almost-surely zero at least for some
i, the recentered instrument constructed as Z; = E [x; | g, w] — E [z; | w] is relevant.

11



Controlling for p; can be thought of as recentering z; while also removing the residual
variation in 1; which is cross-sectionally correlated with s;.'® As usual, removing this
residual variation may generate precision gains in large samples; similar gains may arise from
including (a fixed number of) any predetermined controls in a recentered IV regression.!”

Equation (6) further shows that adjusting for u; is generally necessary for identification,
absent additional restrictions on the unobserved error. Conventional controls and fixed
effects are only guaranteed to purge OVB when they linearly span p,—a condition that
is difficult to verify except when recentering is also feasible.!® Data-driven procedures for
selecting appropriate controls (e.g. Belloni et al. (2013) and Chernozhukov et al. (2018))
will also fail unless the set of candidate controls sparsely spans both p; and E [¢; | w], which
is again difficult to establish in most settings we consider.

While our primary focus is on identification, we now briefly discuss the asymptotic
properties of the recentered IV estimator 3 = >i Zivi/ >; Zixi, which is the solution to the
sample analog of (7). Leaving details to Section 3 of BH, we consider a sequence of data-
generating processes, indexed by N, for the complete data (y,z,g,w). We show that B is
consistent, i.e. BEBas N — oo, under weak mutual cross-sectional dependence of Z; and
an asymptotic first stage (Proposition S2 in BH). In line with our general approach, this
result does not rely on conventional sampling-based arguments that may be inappropriate
with non-iid data. We also make no restriction on the mutual dependence of residuals,
imposing only a weak regularity condition on &;. At a high-level, the substantive assumption
on Z; requires the recentered instrument construction to well-differentiate observations by
their exposure to the exogenous shocks; BH also provide lower-level sufficient conditions.

Adjustments based on u;, as the sole confounder of z;, are similar to more conven-
tional propensity score methods. There are three key differences, concerning the setting,
adjustment method, and computation of p;. First, propensity score methods have mostly
been applied to binary treatments, starting from Rosenbaum and Rubin (1983). While
generalizations to binary instruments (e.g. Abadie (2003)) and non-binary treatments (e.g.
Hirano and Imbens (2004)) have been proposed, our setting allows for arbitrary domains
of treatments or instruments. Second, the propensity score literature has mostly used non-

regression adjustment methods, such as matching or binning (Abadie and Imbens 2016;

Formally, this regression yields the reduced-form and first-stage moments E [% Zl z,yf‘] and
E [% ZZ zzwf‘], where v;* denotes the residuals from a cross-sectional projection of v; on p;. We show
in BH that these moments also identify 8 under Assumption 1 (Appendix B.1).

17 Appendix C.9 of BH shows that controlling for u; always reduces asymptotic variance of the estimator
when z; | w is homoskedastic, while also giving a counterexample under heteroskedasticity.

8Tn panel data with z;; = fit(ge, ws), for example, unit fixed effects generally purge OVB only when the
expected instrument is time-invariant, which generally requires the f;:(-) mapping, the value of wy, and the
distribution of g+ to be time-invariant. While plausible in some applications, these conditions (in particular,
stationarity of the shock distribution) can be quite restrictive. For instance, when new railroad lines tend
to be built more than destroyed expected market access will tend to grow over time.
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King and Nielsen 2019). A notable exception is the E-estimator of Robins et al. (1992),
which similarly leverages linearity of an outcome model like (1) to recenter by a scalar
variable. Third, and most importantly, propensity scores are usually estimated from the
data by relating the treatment to a vector of observation-specific confounders. This ap-
proach is generally not feasible because exposure to exogenous shocks is high-dimensional:
for instance, as noted in Section 2, the expected market access of any region i depends on
the entire economic geography of the country. We therefore take a different approach to

computing u;, which we turn to next.

3.3 Computing the Expected Instrument via Shock Counterfactuals

We propose computing the expected instrument by specifying an assignment process for
the shocks, drawing many sets of counterfactual shocks from this process, recomputing
the instrument each time, and averaging it across the counterfactuals. Here we formalize
this approach, discuss general ways in which counterfactual shocks can be specified, and
highlight the advantages of our approach over alternatives.

We define the shock assignment process as the conditional distribution of g | w, denoted
G (g | w). When G (-) is known, the expected instrument u; = [ fi(y;w)dG(y | w) can be
computed and either used to recenter z; or added as a regression control. To emphasize the

importance of a known shock assignment process, we write it as an assumption:
Assumption 2. (Known assignment process): G (g | w) is known in the support of w.

This assumption is unrestrictive when the shocks are determined by a known random-
ization protocol, as in an RCT or with policy randomizations (such as tie-breaking lottery
numbers in centralized assignment mechanisms; Abdulkadiroglu et al. (2017)). The assign-
ment process may also be given by scientific knowledge when the shocks are randomized
naturally, such as when g captures weather or seismic shocks governed by meteorological or
geological processes (e.g., Carvalho et al. (2021) and Madestam et al. (2013)). Policy dis-
continuities (as in regression discontinuity designs) can also yield a known G (-) when viewed
as generating local randomization around known cutoffs (Lee 2008; Cattaneo et al. 2015).19

In observational data, where the distribution of shocks is unknown, Assumption 2 can
be satisfied by specifying some permutations of shocks that were as likely to have occurred.
For instance, if one is willing to assume the shocks g are iid across k, it follows that all
permutations of g are equally likely to arise. In this case G(g | w) is known to be uniform

when w is augmented by the permutation class II(g) = {n(g9) | 7 (:) € Ik}, where IIg

19 Assumption 2 requires specification of G(- | w) in the entire domain of w. However, our identification
results hold when w is viewed as non-stochastic in which case this is not restrictive. We allow w to be
stochastic only for full generality and to make non-random exposure more explicit.
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denotes the set of permutation operators m(-) on vectors of length K (e.g. Lehmann and
Romano 2006, p. 634). The distribution of each g (conditionally on other components
of w) then needs not be specified; the expected instrument is the average z; across all
permutations of shocks, which serve as counterfactuals:
b= O filrlg)iw) (®)
()
Such p; are easy to compute (or approximate with a random set of pernmltations).20

Similar expected instrument calculations follow under weaker shock exchangeability con-
ditions, such as when the g are 7id within, but not across, a set of known clusters and the
class of within-cluster permutations is used to draw counterfactuals. We illustrate this ap-
proach in Section 4. In BH we discuss how our framework can also apply with G (g | w)
specified up to a low-dimensional vector of consistently estimable parameters (Appendix
C.5); we also show how Assumption 2 can derive from an economic model (e.g. of trans-
portation network formation) with stochastic shocks or from symmetries of the joint shock
distribution (Appendices D.1 and D.2)

We note that even when G (+) is challenging to specify, a possibly incorrect specification
can be useful as a sensitivity check. Specifically, if Assumption 1 holds and there is already
no OVB because the included regression controls perfectly capture either the endogenous
features of exposure or the expected instrument, then controlling for any candidate expected
instrument m;(w) cannot introduce bias. In this case the researcher may safely control for

21 More generally,

one or several m;(w) based on some guesses of the assignment process.
researchers may achieve additional robustness by controlling for multiple candidate m;(w)
based on multiple shock assignment process guesses; only one such guess needs to be right

to purge OVB.

3.4 Randomization Inference and Testing

In some applications of our framework, natural assumptions on the mutual independence
of Z; or g; across observations can make conventional (e.g. clustered) asymptotic inference
valid. Generally, however, the common exposure of observations to observed and unobserved

shocks generates complex dependencies across observations making conventional asymptotic

20 Approximating p; is sufficient for identification because the recentered IV still identifies 4 in this case:
ie. E [% > (filg,w) — fi(m(g), w)) 51} = 0 under Assumption 1, for any fixed or randomly drawn = (-).
?!'Formally, suppose either E[% | w] = 0 or E[& | w] = 0 for each i, where ¥; denotes the cross-sectional

residualization of variable v; on some functions of w used as controls. Then E [% Zl éfsvﬂ = 0, where here

vi~ denotes the residuals from a cross-sectional projection of v; on m;(w). See Appendix C.6 of BH for our
framework extended to predetermined controls.
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analysis inapplicable.?? In such cases, in may be attractive to construct confidence intervals
for the constant effect 8 and tests for Assumptions 1 and 2 based on the specification of the
shock assignment process, following a long tradition of randomization inference (RI; Fisher
1935). The RI approach guarantees correct coverage in finite samples, of both observations
and shocks.??> We focus on a particular type of RI test which is tightly linked to the
recentered IV estimator B .

RI tests and confidence intervals for /5 are based on a scalar test statistic T = T (g, y — bz,
w), where b is a candidate parameter value. Under the null hypothesis of 5 = b and
Assumption 1, the distribution of 7' = 7T (g,&,w) conditional on ¢ and w is implied by the
shock assignment process G(g | w). One may simulate this distribution, by redrawing the
g shocks and recomputing T'. If the original value of T is far in the tails of the simulated
distribution, one has grounds to reject the null. Inversion of such tests yields confidence
interval for 8 by collecting all b that are not rejected. These intervals have correct size,
both conditionally on (¢, w) and unconditionally (see Appendix C.3 of BH for details).

We propose addressing the practical issue of choosing a randomization test statistic by
picking a T' that is tightly linked to the recentered IV estimator, building on the theory of
Hodges and Lehmann (1963) and Rosenbaum (2002). Specifically, we consider the sample
covariance of the recentered instrument and implied residual: T = % > (filg,w) — pi) -
(yi — bx;). Lemma 2 of BH shows that B is a Hodges-Lehmann estimator corresponding
to this 7T, meaning that B equates T with its expectation across counterfactual shocks
(specifically, zero).2* This connection makes RI tests and confidence intervals based on T
inherit the consistency of f: the test power asymptotically increases to one for any fixed
alternative b # 3, under additional regularity conditions (Proposition S2 of BH).?°

Randomization inference can also be used to perform falsification tests on our key As-
sumptions 1 and 2. Recentering implies a testable prediction that Z; is orthogonal to any
variable r = (ri)fil satisfying g L 7 | w, which holds for any function of w or other ob-
servables thought to be determined prior to (or independent of) the shocks g. To test this

restriction, one may check that the sample covariance % >-; Zir; is sufficiently close to zero

22Addo et al. (2019) derive non-standard asymptotic inference in one such setting: when z; is a linear
shift-share variable, i.e. with fi(g,w) = Zk Wik G-

238pecifically, RI guarantees the validity of tests for the model parameter 3, which can be interpreted as
a constant treatment effect. Valid inference with heterogeneous effects in the kind of interdependent data
we study is a difficult challenge, even with an asymptotic approach (Adéo et al. 2019).

24With additional predetermined controls included in the regression (e.g. j;), the same property is satisfied
by the residualized statistic % Zl Z; (yf — bmf), where here vi- denotes the residuals from a cross-sectional
projection of v; on the included controls.

2RI confidence intervals based on this statistic are still obtained by test inversion, and not from the
distribution of the recentered estimator itself across counterfactual shocks g*. The latter idea fails in TV
since the re-randomized instrument f;(g*, w) — u; has a true first-stage of zero. The distribution of reduced-
form coefficients across counterfactual shocks is also not useful, except for testing 8 = 0, as that distribution
is centered around zero rather than .
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by drawing counterfactual shocks and checking that 7" is not in the tails of its conditional-on-
(w, r) distribution. Multiple falsification tests, based on a vector of predetermined variables
R;, can be combined by an appropriate RI procedure, e.g. by taking T" to be the sample
sum of squared fitted values from regressing %; on R;.2

Falsification tests are useful in two ways. First, when r; is a lagged outcome or another
variable thought to proxy for ¢;, they provide an RI implementation of conventional placebo
and covariate balance tests of Assumption 1. While the use of RI for inference on causal
effects may be complicated by treatment effect heterogeneity, the sharp hypothesis of zero
placebo effects is a natural null. Second, RI tests will generally have power to reject false
specifications of the shock assignment process, i.e. violations of Assumption 2, even when r;
does not proxy for ¢;. For r; = 1, for example (which is trivially conditionally independent
of g), the test verifies that the sample mean of z; is typical for the realizations of the specified
assignment process. Setting r; = u; instead checks that the recentered instrument is not

correlated with the expected instrument that it is supposed to remove.

3.5 Extensions

While we analyze the constant-effect model (1), identification by p;-adjusted regressions ex-
tends to settings with heterogeneous treatment effects. Namely, Appendix C.1 of BH shows
that the recentered IV estimator generally identifies a convexly weighted average of hetero-
geneous effects under an appropriate monotonicity condition, extending the classic result

of Imbens and Angrist (1994). The weights are proportional to the conditional variance of
2

% | w across counterfactual shocks, 0. These o2, like y;, are given by the shock assign-
ment process (Assumption 2) and therefore can be computed by the researcher. Moreover,
they can be used to identify more conventional weighted average effects. For example, in
reduced-form models of the form y; = 3;2; + &; a recentered and rescaled IV (z; — p;)/0?
identifies the average effect E {% Zfil ﬂz}. Similarly, in IV settings with binary x; and z;,
the same rescaled instrument identifies the local average treatment effect of Imbens and
Angrist (1994).27

Further extensions to our framework are given in the appendix of BH. Appendix C.6
shows how predetermined observables can be included as regression controls to reduce
residual variation and potentially increase power. Appendix C.7 discusses identification
and inference with multiple treatments or instruments. Finally, Appendix C.8 extends the

framework to nonlinear outcome models.

25Formally, this T = Z'R (R'R)_1 R'Z can be seen as a quadratic form of the vector-valued statistic
~ Y. ZiRi, weighted by (R’ R)™', where R is the matrix collecting R; and % is the vector collecting Z;.

2"We note that this heterogeneous effects extension applies to identification but not randomization-based
confidence intervals which, as noted above, require a sharp null hypothesis 8; = b for all i.
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4 Application: Effects of Transportation Infrastructure

We now present an empirical application showing how our theoretic framework can be used
to avoid OVB in practice. Specifically, we estimate the effect of market access growth on
Chinese regional employment growth over 2007-2016, leveraging the recent construction of
high-speed rail (HSR). We show how counterfactual HSR shocks can be specified, and how
correcting for expected market access growth can help purge OVB.

The recent construction of Chinese HSR has produced a network longer than in all
other countries combined (Lawrence et al. 2019). The network mostly consists of dedicated
passenger lines and has developed rapidly since 2007.?8 Construction objectives included
freeing up capacity on the low-speed rail network and supporting economic development by
improving regional connectivity (Lawrence et al. 2019; Ma 2011). While affordable fares
make HSR popular for multiple purposes, business travel is an important component of rail
traffic, ranging between 28% and 62%, depending on the line (Ollivier et al. 2014; Lawrence
et al. 2019). The role of HSR may also extend beyond directly connected regions, as
passengers frequently transfer between HSR and traditional lines (and between intersecting
HSR lines). An early analysis by Zheng and Kahn (2013) finds positive effects of HSR on
housing prices, while Lin (2017) similarly finds positive effects on regional employment.

We analyze HSR-induced market access effects for 340 sub-province-level administra-
tive divisions in mainland China, referred to as prefectures.?? We measure market access
growth between 2007 and 2016 by combining data on the development of the HSR network
and each prefecture’s location and population (as measured in the 2000 census). A total
of 83 HSR lines opened between these years, with the first in 2008; a further 66 lines were
completed or under construction as of April 2019.3° We compute a simple market access
measure in each prefecture i and year ¢ based on the formula in Zheng and Kahn (2013):
MA; =3 ;exp (—0.027;5¢) - Popj 2000, Where Pop; 2000 denotes the predetermined popula-
tion of prefecture j and 7;;; denotes predicted travel time between regions 7 and j in year
t (in minutes). Travel time predictions are based on the operational speed of each HSR
line as well as geographic distance, which proxies for the travel time by car or a low-speed
train. We relate MA growth, x; = log M A; 2016 — log M A; 2007, to the corresponding growth
in prefecture’s urban employment 3; from Chinese City Statistical Yearbooks. This yields
a set of 275 prefectures with non-missing outcome data; see Appendix A for details on the

sample construction and MA measure. Panel A of Figure 1 shows the Chinese HSR network

28Construction was started by the Medium- and Long-Term Railway Plan in 2004; this plan was later
expanded in 2008 and again in 2016.

29Most prefectures are officially called “prefecture-level cities,” but typically include multiple urban areas.

30We define a line by a contiguous set of inter-prefecture HSR links that were proposed together and opened
simultaneously. One pilot HSR line between Qinhuangdao and Shenyang opened in 2003. We include it in
our market access measure but focus on the bulk of HSR growth over 2007-2016.
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Figure 1: Chinese High Speed Rail and Market Access Growth, 2007-2016
A. Completed Lines and MA Growth B. All Planned Lines
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Notes: Panel A shows the completed China high-speed rail network by the end of 2016, with shading
indicating MA growth (i.e. log-change in MA) relative to 2007. Panel B shows the network of all HSR lines,
including those planned but not yet completed as of 2016 (in red).

as of the end of 2016, along with the implied MA growth of relative to 2007.

Column 1 of Table 1, Panel A, reports the coefficient from a regression of employment
growth on MA growth.3! The estimated elasticity of 0.23 is large. With an average MA
growth of 0.54 log points, it implies a 12.4% employment growth attributable to HSR for an
average prefecture—almost half of the 26.6% average employment growth. The estimate is
also highly statistically significant using Conley (1999) spatially-clustered standard errors.

Panel A of Figure 1, however, gives reason for caution against causally interpreting the
OLS coefficient. Prefectures with high MA growth, which serve as the effective treatment
group, tend to be clustered in the main economic areas in the southeast of the country where
HSR lines and large markets are concentrated. A comparison between these prefectures
and the economic periphery may be confounded by the effects of unobserved policies, both
contemporaneous and historical, that differentially affected the economic center.

We quantify the systematic nature of spatial variation in MA growth in Column 1 of
Table 2, by regressing it on a prefecture’s distance to Beijing, latitude, and longitude. These
predictors capture over 80% of the variation in MA growth (as measured by the regression’s
R?), reinforcing the OVB concern: for a causal interpretation of the Table 1 regression,
one would need to assume that all unobserved determinants of employment growth (e.g.
local productivity shocks) are uncorrelated with these geographic features. While one could
of course control for the specific geographic variables from Table 2 (as we explore below),

controlling perfectly for geography is impossible without removing all variation in x;.

31This regression can be viewed as a reduced form of a hypothetical IV regression, in which the treatment
is a measure of market access that accounts for changes in population. We focus on the reduced form because
of data constraints: we only observe the population of all 340 prefectures in the 2000 Census.
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Table 1: Employment Effects of Market Access: Unadjusted and Recentered Estimates

Unadjusted Recentered Controlled
OLS v OLS
(1) (2) (3)
Panel A. No Controls
Market Access Growth 0.231 0.081 0.067
(0.075) (0.098) (0.094)
[-0.280, 0.330]  [-0.187, 0.339]
Expected Market Access Growth 0.319
(0.095)
Panel B. With Geography Controls
Market Access Growth 0.133 0.053 0.043
(0.064) (0.089) (0.092)
[-0.132, 0.281]  [-0.154, 0.284]
Expected Market Access Growth 0.216
(0.072)
Recentered No Yes Yes
Prefectures 275 275 275

Notes: This table reports coefficients from regressions of employment growth on MA growth in Chinese
prefectures from 2007-2016. MA growth is unadjusted in Column 1. In Column 2 this treatment is instru-
mented by MA growth recentered by permuting the opening status of built and unbuilt HSR lines with the
same number of cross-prefecture links. Column 3 instead estimates an OLS regression with recentered MA
growth as treatment and controlling for expected MA growth given by the same HSR counterfactuals. The
regressions in Panel B control for distance to Beijing, latitude, and longitude. Standard errors which allow
for linearly decaying spatial correlation (up to a bandwidth of 500km) are reported in parentheses. 95% RI
confidence intervals based on the HSR counterfactuals are reported in brackets.

Our solution is to view certain features of the HSR network as realizations of a natu-
ral experiment. By specifying a set of counterfactual HSR networks we can compute the
appropriate function of geography u; which removes the systematic variation in MA growth.

Our specification of counterfactuals exploits the heterogeneous timing of HSR construc-
tion. Specifically, we permute the 2016 completion status of the built and unbuilt (but
planned) lines, assuming that the timing of line completion is conditionally as-good-as-
random. Panel B of Figure 1 compares the built and unbuilt lines which form our counter-
factuals. Unbuilt lines tend to be concentrated in the same areas of China as built lines,
reinforcing the fact that construction is not uniformly distributed in space. Moreover, built
lines tend to connect more regions: the average number of cross-prefecture “links” is 3.19
and 2.48 for built and unbuilt lines, respectively, with a statistically significant difference
(p = 0.048). To account for this difference we construct counterfactual upgrades by per-

muting the 2016 completion status only among lines with the same number of links. For
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Table 2: Regressions of Market Access Growth on Measures of Economic Geography

Unadjusted Recentered

(1) @ 6 @
Distance to Beijing —0.291 0.066 0.087
(0.062) (0.039) (0.045)
Latitude/100 —3.324 —0.324 —0.147
(0.646) (0.274) (0.315)

Longitude/100 1.321 0.455 0.404
(0.458) (0.234) (0.236)

Expected Market Access Growth 0.030 0.059
(0.056)  (0.067)

Constant 0.536 0.017 0.017 0.017
(0.029) (0.018)  (0.020)  (0.018)

Joint RI p-value 0.510 0.715 0.558
R? 0.824 0.077 0.010 0.080

Prefectures 275 275 275 275

Notes: This table reports coefficients from regressing the unadjusted and recentered MA growth of Chinese
prefectures (2007—2016) on predetermined geographic controls. Recentering is done by permuting the opening
status of built and unbuilt lines with the same number of cross-prefecture links. All regressors are measured
for the prefecture’s main city and demeaned such that the constant in each regression captures the average
outcome. Distance to Beijing is measured in 1,000km. Standard errors which allow for linearly decaying
spatial correlation (up to a bandwidth of 500km) are reported in parentheses. Joint RI p-values are based

on the 999 HSR counterfactuals and the sum-of-square fitted values statistic, as described in footnote 26.

example the main Beijing to Shanghai HSR line, which has the greatest number of links, is
always included in the counterfactuals. This procedure generates 999 counterfactual HSR
maps that are visually similar to the actual 2016 network; Appendix Figure Al gives an
illustrative example.

Columns 2—4 of Table 2 validate this specification of the HSR assignment process by the
test described in Section 3.4. Column 2 shows that this recentering successfully removes
the systematic geographic variation in market access. Specifically, it regresses recentered
MA growth on a constant and the same geographic controls as in Column 1. The regression
coefficients and R? fall dramatically relative to Column 1, while a permutation-based p-value
for their joint significance (based on the regression’s sum-of-squares, as suggested in footnote
26) is 0.51. Columns 3 and 4 further show that recentered MA growth is uncorrelated with
expected MA growth.3?

Figure 2 plots expected and recentered MA growth given by the permutations of built

and unbuilt lines. The effect of recentering is apparent by contrasting the solid and striped

32These results are consistent with correct specification of counterfactuals (i.e. we cannot reject Assump-
tion 2), though we note they do not provide direct support for the exogeneity of HSR construction to the
unobserved determinants of employment (Assumption 1).
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Figure 2: Expected and Recentered Market Access Growth from Chinese HSR
A. Expected Market Access Growth B. Recentered Market Access Growth
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Notes: Panel A shows the variation in expected 2007-16 MA growth across Chinese prefectures, computed
from 999 HSR counterfactuals that permute the opening status of built and unbuilt lines with the same
number of cross-prefecture links. Panel B plots the variation in corresponding recentered MA growth: the
difference between the MA growth shown in Panel A of Figure 1 and expected MA growth. The HSR

network as of 2016 is also shown in this panel.

regions in Panel B of Figure 2 (indicating high and low recentered MA growth) with the
dark- and light-shaded regions in Panel A of Figure 1 (indicating high and low MA growth).
The recentered treatment no longer places western prefectures in the effective control group,
as their MA growth is as low as expected. Similarly, some prefectures in the east (such as
Tianjin) are no longer in the effective treatment group, as they saw an expectedly large
increase in MA. At the same time, recentering provides a justification for retaining other
regional contrasts. Hohhot, for example, expected higher MA growth than Harbin due to
the planned connection to Beijing. This line was still under construction in 2016, however,
resulting in lower MA growth in Hohhot than Harbin.

Column 2 of Table 1, Panel A, shows that instrumenting MA growth with recentered MA
growth reduces the estimated employment elasticity substantially, from 0.23 to 0.08. Con-
trolling for expected MA growth yields a similar estimate of 0.07 in Column 3. Neither of
the two adjusted estimates is statistically distinguishable from zero according to either Con-
ley (1999) spatial-clustered standard errors or permutation-based inference (which yields a
wider confidence interval in this setting). The difference between the unadjusted and ad-
justed estimates is explained by the fact that employment growth is strongly predicted by
expected MA growth. In Column 3 we find a large coefficient on p;, of 0.32, meaning that
employment grew faster in prefectures that were more highly exposed to potential HSR
construction, whether or not the nearby lines were built yet.

Panel B of Table 1 shows that the geographic controls from Table 2 do not isolate

the same variation as expected MA growth adjustment. Including these controls in the
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unadjusted regression of Column 1 yields a smaller but still economically and statistically
significant coefficient of 0.13. In contrast, Columns 2 and 3 show that the finding of no
significant MA effect after adjusting for u; is robust to including geographic controls. The
u; adjustment alone appears sufficient to remove the geographic dependence of MA, as
Table 2 also showed.?3

While our primary interest is to illustrate the recentering approach, we note that there
are several possible explanations for the substantive finding of a small employment effect of
MA. Unlike other transportation networks used for trading goods, the Chinese HSR network
primarily operates passenger trains. Its scope for directly affecting production is therefore
smaller, although it could still facilitate cross-regional business relationships. In addition,
the employment effects of growing market access could be positive for some regions but
negative for others, as easier commuting between regions relocates employers. We leave
analyses of such mechanisms and heterogeneity for future study.

In BH we discuss how market access recentering relates to other approaches in the long
literature estimating transportation infrastructure upgrade effects (Redding and Turner
2015). We first contrast the well-known challenge of strategically chosen transportation
upgrades with the less discussed problem that regional exposure to exogenous upgrades
may be unequal. We then explain how common strategies to address the former issue
(e.g. by leveraging historical routes or inconsequential places) can be incorporated in our
framework, at least in principle. At the same time, we highlight that recentering may still be
needed to address the latter issue. We further discuss how some of the existing approaches
naturally yield specifications of counterfactual networks (e.g. the placebos in Donaldson
(2018) and Ahlfeldt and Feddersen (2018)) and summarize the conceptual and practical
advantages of our approach relative to employing more conventional controls. We emphasize
that even when it is challenging to obtain a convincing specification of counterfactuals, any

specification can yield a robustness check on these alternative strategies (see footnote 21).

5 Conclusion

Many studies in economics construct treatments or instruments that combine multiple
sources of variation, according to a known formula. We develop a general approach to
causal inference when some, but not all, of this variation is exogenous. Non-random expo-
sure to exogenous shocks can bias conventional regression estimators, but this problem can
be solved by specifying an assignment process for the exogenous shocks: namely, a set of

counterfactual shocks that might as well have been realized. Averaging the treatment or

33In BH we provide additional robustness checks, adjusting the definitions of MA and outcome variables,
using a binary measure of connectivity to the HSR network, including province fixed effects, dropping
influential prefectures, and examining the role of treatment effect heterogeneity.
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instrument over this assignment process yields a single confounder p; which can be adjusted
for to achieve identification. The specification of counterfactuals also yields a natural form
of valid finite-sample inference.

In practice, researchers face a choice in how to use p; in a regression analysis: recentering
by it or controlling for it. When the assignment process is given by a true randomization
protocol, as in a RCT, we recommend researchers recenter first to purge OVB. Then any
predetermined controls (i.e. functions of exposure) can be included to remove variation in
the error term and likely increase estimation efficiency. While p; is one possible control,
which automatically recenters the treatment or instrument, it need not be the best choice
in terms of predicting the residual variation. Our recommendation is different in natural
experiments where assumptions must be placed on the assignment process. Then controlling
for candidate p; instead of recentering can have a valuable “double-robustness” property.
Researchers can compute and control for several candidate p; based on different assignment
processes, such that OVB is purged if at least one of the processes is specified correctly (or
if there is no OVB to begin with).

We conclude by noting that our framework bears practical lessons for a range of com-
mon treatments and instruments, well beyond the market access measure in our empirical
application. In our working paper (Borusyak and Hull 2021), we discuss and illustrate some
of these implications for policy eligibility treatments, network spillover treatments, linear
and nonlinear shift-share instruments, model-implied instruments, instruments from cen-
tralized school assignment mechanisms, “free-space” instruments for mass media access, and
weather instruments. We expect other settings may also benefit from explicit specification

of shock counterfactuals and appropriate adjustment for non-random shock exposure.

A Data Appendix

Our analysis of market access effects uses data on 340 prefectures of mainland China. This
excludes the islands of Hainan and Taiwan and the special administrative regions of Hong
Kong and Macau, but includes six sub-prefecture-level cities (e.g. Shihezi) that do not
belong to any prefecture. We use United Nations shapefiles to geocode each prefecture by
the location of its main city (or, in a few cases, by the prefecture centroid).?*

We use a variety of sources to assemble a comprehensive database of the HSR network
in 2016 as well as the lines planned (and in many cases under construction) as of April 2019
but not opened yet by the end of 2016. Our starting points are Map 1.2 of Lawrence et
al. (2019), China Railway Yearbooks, and the replication files of Lin (2017). We cross-check

34The shapefiles are obtained from https: //data.humdata.org/dataset/province-and-prefecture-capitals-
of-china and https://data.humdata.org/dataset/china-administrative-boundaries, accessed on April 4, 2020.
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network links across these sources and use Internet resources such as Wikipedia and Baidu
Baike to confirm and fill in missing information. Our database includes various types of HSR
lines, including the National HSR Grid (444 and 8+8) and high-speed intercity railways.
However, we only consider newly built HSR lines, excluding traditional lines upgraded to
higher speeds. We do not put further restrictions on the class of trains (e.g. to G- and
D-classes only) or specify an explicit minimum speed. The operating speed therefore ranges
between 160 and 380kph, although the majority of lines are at 250kph. For each line we
collect the date of its official opening (if it has opened), the actual or planned operating
speed, and the list of prefecture stops. When different sections of the same line opened in
a staggered way, we classify each section as a separate line for the purposes of constructing
our 999 counterfactuals, following the definition of a line in footnote 30. We include only
one contiguous stop per prefecture and drop lines that do not cross prefecture borders.

We compute travel time 7;;; between all pairs of prefectures ¢ and j as of the ends
of 2007 and 2016 for both the actual and counterfactual networks. Travel time combines
traditional modes of transportation (car or low-speed train) with HSR, where available. We
allow for unlimited changes between different HSR lines and between HSR and traditional
modes without a layover penalty, as HSR trains tend to operate frequently and traditional
modes also involve downtime. Following the existing literature, we proxy for travel time by
traditional modes by the straight-line distance, and specify the speed of 100 = 120/1.2kph,
where 120kph is their typical speed and the 1.2 adjustment for actual routes that are longer
than a straight line. For two prefectures connected by an HSR line, we compute the distance
along the line as the sum of straight-line distances between adjacent prefectures on the line.
We use the operating speed of each line divided by an adjustment factor of 1.3 to capture
the fact that the average speed is lower than the nominal speed we record. Computing
MA further requires the population of each of the 340 prefectures from the 2000 population
Census, which we obtain from the CityPopulation.de website.?>

We measure prefecture employment in the 20082017 China City Yearbooks.?® Each
yearbook covers the previous year (so our data cover 2007—2016). While the yearbooks
provide several employment variables, we use “The Average Number of Staff and Workers”
(from the “People’s Living Conditions and Social Security” chapter), as measured in the
entire prefecture and not just the main urban core. This employment series has by far the
lowest number of strong year-to-year deviations which may indicate data quality issues.

We finally apply a data cleaning procedure to the outcome variable. We first mark a

35https://www.citypopulation.de/php/china-admin.php, accessed on November 20, 2018.

36Data for 2008-2015, excluding 2009 and 2011, are from http://oversea.cnki.net.proxy.uchicago.edu/kns55 /default.aspx
(accessed on January 23, 2019 via a University of Chicago portal). Data from 2009, 2011, 2016, and
2017, are from http://tongji.oversea.cnki.net/chn/navi/HomePage.aspx?id=N2018050234&name=YZGCA
(accessed January 23, 2019). We checked that these sources agree in years where both are available.
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prefecture-year observation as exhibiting a “structural break” if (7) the outcome changes
by more than twice in either direction relative to the previous non-missing value for the
prefecture, (i¢) it is not followed by a change in the opposite direction that is between 3/4
and 4/3 as large in terms of log-changes (which we view as a one-off jump and ignore), and
(7it) the previous change does not satisfy (i). We view the outcome change between 2007
and 2016 as valid only if there are no structural breaks in any year in between. This reduces

the sample from 283 to the final set of 275 prefectures.

Figure Al: Simulated HSR Lines and Market Access Growth
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Notes: This figure shows an example map of simulated Chinese HSR lines and market access growth over
2007-2016, obtained by permuting the opening status of built and unbuilt lines with the same number of

cross-prefecture links.
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