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Abstract

We propose a framework for characterizing the sensitivity of counterfactuals with respect
to parametric assumptions about the distribution of latent variables in a class of structural
models. In particular, we show how to characterize the smallest and largest values of the
counterfactual as the distribution of latent variables spans nonparametric neighborhoods
of a researcher’s parametric specification while other “structural” features of the model are
maintained. Our procedure replaces the infinite-dimensional optimization with respect to
the distribution by a finite-dimensional convex program and is therefore computationally
simple to implement. We develop a novel MPEC implementation of our procedure to further
simplify computation in models featuring endogenous parameters defined by equilibrium
constraints. Our procedure recovers sharp bounds on the nonparametrically identified set
of counterfactuals over large neighborhoods and has connections with local approaches
to sensitivity analysis over small neighborhoods. We propose plug-in estimators of the
smallest and largest counterfactuals and two procedures for inference. We illustrate the
broad applicability of our procedure with empirical applications to matching models and
dynamic discrete choice.
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1 Introduction

Researchers frequently make parametric assumptions about the distribution of latent variables

(e.g. productivity shocks or random components of utility) when formulating structural models.

Such assumptions are typically made for computational convenience1 or because simulation-

based methods are used for estimation. However, economic theory typically provides little

guidance as to the correct specification of the distribution of latent variables and in many

models, such as those we consider in this paper, the distribution is not nonparametrically

identified. Ex ante policy experiments, or counterfactuals, can be particularly sensitive to such

distributional assumptions. This sensitivity arises through two channels: the assumptions are

used first at the estimation stage to define the model’s mapping from structural parameters

to observables (e.g. choice probabilities) and again when the model is solved under the policy

intervention at the estimated structural parameters. The potential sensitivity of counterfactuals

to such assumptions threatens the credibility of structural modeling exercises, a point made

even by proponents of structural modeling (see, e.g., Keane, Todd, and Wolpin (2011)).

In this paper, we introduce a tractable econometric framework to characterize the sen-

sitivity of counterfactuals with respect to parametric assumptions about the distribution of

latent variables in a class of structural models. In particular, we show how to characterize the

smallest and largest values of the counterfactual as the distribution of latent variables spans

nonparametric neighborhoods of the researcher’s assumed specification while other structural

features of the model are maintained. This approach is in the spirit of global sensitivity analysis

advocated by Leamer (1985). Global, rather than local, approaches to sensitivity analyses in

nonlinear structural models are important, as policy interventions can have different effects at

different points in the parameter space. Global sensitivity analyses of nonlinear models can

be computationally and theoretically challenging, however. Local sensitivity analyses—based

on linearizing small perturbations around a correct specification—are often more tractable.

However, local approaches may fail to correctly characterize the counterfactuals predicted by

the model when the researcher’s parametric assumption is misspecified by a degree that is not

vanishingly small. This is particularly important for the class of problems we consider, in which

the distribution of latent variables is not nonparametrically identified.

The central innovation of our procedure is to borrow from the robustness literature in

economics pioneered by Hansen and Sargent (2001, 2008) to simplify computation using convex

programming. Following the robustness literature, we define nonparametric neighborhoods in

1For instance, work on static discrete choice following McFadden (1974) often assumes random components
of utility are Gumbel-distributed as this leads to closed-form expressions for choice probabilities and welfare
measures. Similarly, dynamic discrete choice models following Rust (1987) are typically implemented assuming
that latent payoff shocks are Gumbel-distributed for computational convenience. Additionally, models of static
or dynamic discrete games often impose parametric assumptions about the distribution of payoff shocks (see,
e.g., Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Ciliberto and Tamer (2009)).

2



terms of statistical divergence from the researcher’s assumed specification, with the option to

add location or scale normalizations and certain shape restrictions. For tractability, we restrict

attention to a class of models that may be written as a finite number of moment in/equalities,

where the expectation is taken with respect to the distribution of unobservables. Though

somewhat restrictive, this class is sufficiently broad that it accommodates many models of

static and dynamic discrete choice, static or dynamic discrete games, and matching markets.

To briefly summarize our procedure, consider the problem of minimizing or maximizing

the counterfactual at a particular value of structural parameters by varying the distribution

over the neighborhood, subject to the model’s in/equality restrictions. This inner optimization

problem is infinite-dimensional, but can be recast as convex program of fixed (finite) dimension.

The value of the convex program is treated as a criterion function, which is optimized in an

outer optimization with respect to structural parameters.

Importantly, our procedure recovers sharp bounds on the nonparametrically identified

set of counterfactuals as the neighborhood size becomes large. Neighborhoods constrained

by statistical divergence can therefore be viewed as a type of (infinite-dimensional) sieve:

although they exclude many distributions, as their size increases the neighborhoods span all

distributions relevant for characterizing the nonparametrically identified set of counterfactuals.

Unlike sieve methods based on parametric families of growing dimension, here the dimension of

the optimization problem remains fixed as we consider increasingly rich classes of distributions.

Our methods therefore provide a tractable way for characterizing nonparametrically identified

sets of counterfactuals in nonlinear structural models.

In addition, we develop a novel MPEC implementation of our procedure to further simplify

computation in models featuring endogenous parameters defined by equilibrium constraints

(e.g. value functions in dynamic discrete choice models). The novelty relative to other MPEC

implementations (e.g. Su and Judd (2012)) is that the equilibrium constraints are evaluated

under a “least favorable” distribution arising from the solution to the inner optimization.

We show that this implementation can produce significant computational gains for dynamic

discrete choice models.

For estimation and inference, we propose plug-in estimators for the lower and upper bounds

on the counterfactual over nonparametric neighborhoods. We show the estimators are consis-

tent and establish their (nonstandard) asymptotic distribution. In addition, we propose two

procedures for inference: a computationally inexpensive projection-based procedure and a more

efficient bootstrap-based procedure. Our methodology, estimators, and inference procedures

are robust to partial identification and irregular estimability of structural parameters, both of

which may be important in applications.

We illustrate our procedure with empirical applications to matching models with trans-

ferable utility (Choo and Siow, 2006) in which we revisit Chiappori, Salanié, and Weiss (2017)
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and to welfare analysis in models of dynamic discrete choice (Rust, 1987). Both applications

feature several hundred moments, illustrating the computational feasibility of our procedure.

Related literature. Our approach has connections with global prior sensitivity in Bayesian

analysis (Chamberlain and Leamer, 1976; Leamer, 1982; Berger, 1984; Berger and Berliner,

1986). In particular, Giacomini, Kitagawa, and Uhlig (2016) and Ho (2018) consider sets of

priors constrained by Kullback–Leibler divergence relative to a default prior.

Motivated by questions of sensitivity, Chen, Tamer, and Torgovitsky (2011) study infer-

ence in partially identified semiparametric likelihood models using sieve approximations for

the infinite-dimensional parameter (the distribution of latent variables in our context). Sieve

methods would require a (typically non-convex) optimization over the sieve coefficients, whose

number must increase to infinity to recover the nonparametrically identified set. For the class of

moment-based problems we consider, our approach eliminates the infinite-dimensional nuisance

parameter via a convex program of fixed dimension.

Several other works have used convex duality to characterize identification regions for

models with latent variables. Most closely related are Ekeland, Galichon, and Henry (2010)

and Schennach (2014).2 The primal problem we study involves minimizing or maximizing a

counterfactual with respect to a distribution in a neighborhood of a researcher’s parametric

specification subject to moment in/equalities. This is a different problem from that which is

studied in these works and, consequently, its dual formulation is different. Moreover, our focus

is on counterfactuals and our estimation and inference methods are tailored accordingly.

Torgovitsky (2019b) uses linear programming to characterize sharp identified sets in a

class of latent variable models defined by finitely many quantile restrictions. His approach

may be more computationally convenient than ours within this class of problems as it uses

linear programming. However, several important moment functions or counterfactuals cannot

be expressed as quantile restrictions, including measures of social surplus (or welfare) in discrete

choice following McFadden (1978) and Bellman equations in dynamic discrete choice models.

Our approach is compatible with these, and therefore allows for the construction of identified

sets in broader classes of model, as well as addressing issues of sensitivity.

There is also work on nonparametrically identified sets of counterfactuals in some specific

models with latent variables. Examples include Manski (2007, 2014), Allen and Rehbeck (2019),

Chiong, Hsieh, and Shum (2017), Tebaldi, Torgovitsky, and Yang (2019), Lafférs (2019) and

Torgovitsky (2019a). Most closely related to our work, Norets and Tang (2014) construct

identified sets of counterfactual conditional choice probabilities (CCPs) in dynamic binary

choice models without parametric assumptions on latent payoff shocks. Their approach, which

2Other works using various “duality” notions to simplify the construction of identified sets in general classes
of models with latent variables include Beresteanu, Molchanov, and Molinari (2011), Galichon and Henry (2011),
Chesher and Rosen (2017), and Torgovitsky (2019b). In recent work that is concurrent with ours, Li (2018)
relaxes some restrictions on the moment functions and the support of unobservables in Ekeland et al. (2010).
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uses linear programming, is specific to counterfactual CCPs in dynamic binary choice models

while we allow for more general counterfactuals (e.g. welfare) and multinomial choice. We also

accommodate a broader range of normalizations and shape restrictions on the distribution, as

well as addressing issues of sensitivity.3

Finally, a recent literature on local sensitivity considers deviations from a well-specified

model that shrink to zero at an appropriate rate with the sample size; see, e.g., Kitamura,

Otsu, and Evdokimov (2013), Andrews, Gentzkow, and Shapiro (2017, 2020), Armstrong and

Kolesár (2021), Bonhomme and Weidner (2018), and Mukhin (2018). The typical justification

for vanishingly small neighborhoods is that larger departures may be detected using various

specification tests as one observes more data. This motivation is not compelling in our setting

as the distribution of unobservables is not nonparametrically identified. Moreover, much of this

recent literature is concerned with local misspecification of the moment conditions, which is a

different problem from that which we consider.

The remainder of the paper is organized as follows. Section 2 describes our procedure,

introduces the estimators, and shows that our procedure can be used to obtain sharp bounds

on the nonparametrically identified set of counterfactuals. Section 3 discusses practical aspects,

including computation and our MPEC reformulation. Section 4 presents theoretical results and

practical guidance to interpret the neighborhood size. Empirical applications are presented

Section 5. Section 6 discusses estimation and inference and Section 7 discusses connections with

local approaches to sensitivity analysis. The appendix presents extensions of our methodology,

supplemental results, and all proofs.

2 Procedure

2.1 Setup

We consider a class of models that links a structural parameter θ ∈ Θ ⊂ Rdθ , a vector of

targeted moments P0 ∈ P ⊆ RdP , and possibly an auxiliary parameter γ0 ∈ Γ (a metric space)

via the moment restrictions

EF [g1(U, θ, γ0)] ≤ P10, (1a)

EF [g2(U, θ, γ0)] = P20, (1b)

EF [g3(U, θ, γ0)] ≤ 0, (1c)

EF [g4(U, θ, γ0)] = 0, (1d)

3Kalouptsidi, Scott, and Souza-Rodrigues (2017) and Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues
(2020) consider the converse problem, in which flow payoffs are nonparametric (as they can be in our setting) but
the distribution of latent payoff shocks is known. Note, however, that this distribution is not nonparametrically
identified when the state-space is discrete.
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where g1, . . . , g4 are vectors of moment functions, P0 = (P10, P20) is partitioned conformably,

U is a vector of latent variables, and the expectations are taken with respect to the distribution

F of U . We assume that the researcher has consistent estimators (P̂ , γ̂) of (P0, γ0). We also

assume that the researcher is interested in a (scalar) counterfactual of the form

κ = EF [k(U, θ, γ0)] . (2)

Several workhorse models and counterfactuals of interest are subsumed in this framework.

Example 2.1 (Discrete choice and consumer welfare) Suppose an individual i derives

utility hj(Xij , θ) +Uij from consuming good j ∈ J0, where J0 = {0}∪J with J = {1, . . . , J},
Xi = (Xij)j∈J0 is a vector of observable characteristics, and the latent random vector (Uij)j∈J0

represents the components of individual i’s utilities that are unobserved by the econometrician.4

Following McFadden (1974), it is common to assume that (Uij)j∈J0 are independent of Xi and

i.i.d. across individuals i with continuous distribution F . The (conditional) probability that an

individual i for whom Xi = x chooses j is then

p(j|x) = PF
(
hj(x, θ) + Uj ≥ maxj′∈J0

(
hj′(x, θ) + Uj′

))
, j ∈ J0 , (3)

where PF denotes probabilities under the distribution F of U := (Uj)j∈J0 . In empirical work, θ

is typically estimated from choice data by matching empirical choice probabilities with model-

implied choice probabilities under a parametric functional form for F (e.g. i.i.d. Gumbel, which

leads to multinomial logit expression for choice probabilities).

Welfare analyses are often based on the social surplus (McFadden, 1978)

W (x) := EF
[
max
j∈J0

(hj(x, θ) + Uj)

]
,

which represents the average utility that consumers with characteristics X = x derive from

their choice problem, or the change in surplus ∆W (xa, xb) = W (xa)−W (xb) associated with

a shift from xb to xa. As W (x) is not identified from aggregate choice data, welfare analyses

can be sensitive to researchers’ assumptions about F .5

Our approach may be used to examine sensitivity of W (x) and ∆W (xa, xb) to assumptions

about F in models in which the support X of X is a finite set. A leading example is empirical

matching models in which X indexes agents’ types (see, e.g., Dagsvik (2000), Choo and Siow

(2006), Chiappori et al. (2017), and Section 5.1). In our notation, g2 is a vector of indicator

4Our approach applies equally in settings in which variables are indexed by individual, choice, and market.
We maintain this simpler presentation (indexing by individual and choice only) to simplify notation.

5Allen and Rehbeck (2019) provide sufficient conditions for nonparametric identification of ∆W (xa, xb) from
aggregate choice data when xa and xb lie in the support of X and the distribution of X satisfies some continuity
conditions. Note that ∆W (xa, xb) is not nonparametrically identified when all characteristics are discrete.
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functions representing the choice probabilities (3):

g2(U, θ) =

(
1l

{
hj(x, θ) + Uj ≥ max

j′∈J0

(
hj′(x, θ) + Uj′

)})
(j,x)∈J×X

and P20 = (Pr(j|x))(j,x)∈J×X is the vector of true choice probabilities (j = 0 is redundant).

There is no g1, g3, or γ in this model. The welfare measures W (x) and ∆W (xa, xb) are of

the form (2) with k(U, θ) = maxj∈J0 (hj(x, θ) + Uj) and k(U, θ) = maxj∈J0 (hj(xa, θ) + Uj) −
maxj∈J0 (hj(xb, θ) + Uj), respectively. �

Example 2.2 (Discrete games) Consider a complete-information, two-player game follow-

ing Bresnahan and Reiss (1990, 1991), Berry (1992), and Tamer (2003):

Firm 2

0 1

Firm 1
0 (0, 0) (0, β′2x+ U2)

1 (β′1x+ U1, 0) (β′1x−∆1 + U1, β
′
2x−∆2 + U2)

Table 1: Payoff matrix for (Firm 1, Firm 2) when X = x.

We focus on static, two-player, complete-information games to simplify exposition, but

our procedure can be applied more broadly. In Table 1, U = (U1, U2) is the latent (to the

econometrician) component of firms’ profits which is typically assumed to be independent of

covariates X. Suppose that the solution concept is restricted to equilibria in pure strategies.

The econometrician may estimate the probabilities of the potential market structures (0, 0),

(0, 1), (1, 0), (1, 1) (conditional on X) form data on a large number of markets. Parameters

are estimated by matching the observed and model-implied probabilities. As the model is

incomplete—there are certain realizations of U for which there are two equilibria in pure

strategies (Firm 1 enters and Firm 2 does not, or vice versa)—moment inequality methods are

typically used to be robust to potential misspecification of the equilibrium selection mechanism.

However, strong parametric assumptions are often made about the distribution of U (typically

bivariate Normal) to derive model-implied probabilities; see, e.g., Berry (1992), Ciliberto and

Tamer (2009), Beresteanu et al. (2011), and Kline and Tamer (2016). Given the emphasis on

robustness with respect to equilibrium selection, it seems natural to also question the sensitivity

of counterfactuals to parametric assumptions for U .

This model falls into our setup when the regressors X have finite support X .6 In our

notation, g1 collects the moment inequalities that bound the probabilities of (0, 1) and (1, 0)

6Continuous regressors are often discretized in empirical applications; see Ciliberto and Tamer (2009), Grieco
(2014), Kline and Tamer (2016).
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with P10 denoting the corresponding true probabilities:

g1(U, θ) =

[
(−1l{U1 ≥ −β′1x;U2 ≤ ∆2 − β′2x})x∈X
(−1l{U1 ≤ ∆1 − β′1x;U2 ≥ −β′2x})x∈X

]
, P10 =

[
(−Pr((1, 0)|X = x))x∈X
(−Pr((0, 1)|X = x))x∈X

]
.

Similarly, g2 and P20 collect the moment conditions and probabilities for (0, 0) and (1, 1):

g2(U, θ) =

[
(1l{U1 ≤ −β′1x; U2 ≤ −β′2x})x∈X

(1l{U1 ≥ ∆1 − β′1x; U2 ≥ ∆2 − β′2x})x∈X

]
, P20 =

[
(Pr((0, 0)|X = x))x∈X
(Pr((1, 1)|X = x))x∈X

]
.

There is no g3 or γ in this model. The vector of structural parameters is θ = (∆1,∆2, β1, β2).7

In terms of counterfactuals, Ciliberto and Tamer (2009) compute upper bounds on the entry

probability of entrants under a counterfactual payoff shift, say τ(θ). In the present context,

the k function corresponding to the upper bound on the probability of observing firm 1 in a

market with X = x is k(U, θ) = 1l{U1 ≥ τ(θ) − β′1x}. Average maximum entry probabilities

across markets can be computed similarly. �

Example 2.3 (Dynamic discrete choice) Consider a canonical dynamic discrete choice

(DDC) model following Rust (1987). The decision maker solves

V (s) = EF
[
max
d∈D0

(
πd,s(θπ) + Ud + βE[V (s′)|s, d]

)]
, (4)

where s is an observed Markov state variable with finite state-space S, D0 = {0} ∪ D with

D = {1, . . . , D} is the set of actions, πd,s is the flow payoff for action d in state s which is indexed

by parameters θπ, Ud is a utility shock observed by the agent but not the econometrician, and

E[ · |s, d] denotes expectation with respect to the future state. The vector U = (U0, U1, . . . , UD)

is continuously distributed independently of the state with distribution F . The CCP of action

d in state s is

p(d|s) = PF
(
πd,s(θπ) + Ud + βE[V (s′)|s, d] ≥ max

d′∈D0

(
πd′,s(θπ) + Ud′ + βE[V (s′)|s, d′]

))
, (5)

where PF denotes probabilities under the distribution F of U .

In empirical work, CCPs and transition distributions for s are estimated from data on

(s, d). The parameters θπ or (θπ, β) are then estimated under a parametric assumption on F

to fit the model-implied CCPs to the observed choice data. It is common to assume the payoff

shocks are i.i.d. (across s and d) standard Gumbel, which yields closed-form expressions for

the right-hand sides of (4) and (5). Counterfactuals are computed by first solving (4) under

7We can also allow the correlation between U1 and U2 under a bivariate normal parametric specification to
be treated as a free parameter. Let U1 and U2 be independent standard normal, replace U1 and U2 in the above
displays with V1 and V2 where V1 = U1, V2 = ρU1 +

√
1− ρ2U2, and let θ = (∆1,∆2, β1, β2, ρ).
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alternative laws of motion, flow payoffs, or sets of actions.

Our procedure may be applied to examine sensitivity of counterfactuals to researchers’

assumptions about F as follows. Let θ = (θπ, β, v, ṽ), where v = (V (s))s∈S and ṽ = (Ṽ (s))s∈S

are the pre- and post-intervention value functions. In our notation, γ = (Md)d∈D0 collects the

transition matrices for s, g2 collects indicator functions representing the CCPs (5):

g2(U, θ, γ) =

(
1l

{
πd,s(θπ) + Ud + βMdv ≥ max

d′∈D0

(
πd′,s(θπ) + Ud′ + βMd′v

)})
(d,s)∈D×S

,

P20 = (Pr(d|s))(d,s)∈D×S is the corresponding vector of true CCPs (d = 0 is redundant), and

g4 is a vector of moment functions representing (4) pre- and post-intervention:

g4(U, θ, γ) =


(

maxd∈D0

{
πd,s(θπ) + Ud + βMdv

}
− vs

)
s∈S(

maxd∈D̃0

{
π̃d,s(θπ) + Ud + β̃M̃dṽ

}
− ṽs

)
s∈S

 , (6)

where vs = V (s), ṽs = Ṽ (s), and D̃0, ũ, β̃, M̃d denote the counterfactual action set, flow

payoffs, discount factor, and law of motion. There are several possibilities for k from (2). For

the counterfactual CCP for action d in state s one could use

k(U, θ, γ) = 1l
{
π̃d,s(θπ) + Ud + β̃M̃dṽ ≥ max

d′∈D̃0

(
π̃d′,s(θπ) + Ud′ + β̃M̃d′ ṽ

)}
,

whereas for change in average welfare one could use k(u, θ, γ) = k(θ, γ) = w′(ṽ−v) for a weight

vector w. �

Remark 2.1 Our setup requires that the moments do not depend on the data beyond their

dependence through γ and P . Our setup permits conditional moments models of the form

E[g1(U,X, θ, γ)|X = x] ≤ P10(x) (and similarly for the other moment conditions involving g2,

g3, and g4) provided U is independent of X and X takes values in a finite set, in which case the

moment functions at each value of X are stacked to form g1, g2, g3, g4 (see Examples 2.1-2.3).

Remark 2.2 Appendix A presents extensions of our setup to (i) conditional moment restric-

tion models where the distribution of U |X may vary with X provided X takes values in a

finite set, and (ii) nonseparable moments of the form E[g1(X,U, θ, γ)] ≤ P10 (and similarly

for the other moment conditions involving g2, g3, and g4) with discrete X. Although models

with continuous covariates fall outside the scope of our procedure, continuous covariates can,

in principle, be discretized up to the limits of one’s computing resources.

Remark 2.3 Our setup relies on the counterfactual being scalar and of the form (2). If k

is vector-valued then our procedure can be applied to compute the support function of the
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identified set of counterfactuals:8 for any conformable unit vector τ set kτ (U, θ, γ) = τ ′k(U, θ, γ)

and replace (2) with κτ = EF [kτ (U, θ, γ0)]. Our setup excludes counterfactuals that are infinite-

dimensional, however, such as the distribution of the number of firms in a market.

The distribution F is not nonparametrically identified in any of the above examples or,

more generally, in the class of problems we consider. Therefore, in common practice, a seemingly

reasonable or computationally convenient distribution, say F∗, is assumed by the researcher and

maintained throughout the analysis (e.g. bivariate Normal in Example 2.2 and i.i.d. Gumbel

in Examples 2.1 and 2.3). Given F∗ and estimates P̂ = (P̂1, P̂2) of P0 and possibly γ̂ of γ0, the

researcher would estimate θ using a criterion function based on the moment conditions

EF∗ [g1(U, θ, γ̂)] ≤ P̂1 , EF∗ [g2(U, θ, γ̂)] = P̂2 ,

EF∗ [g3(U, θ, γ̂)] ≤ 0 , EF∗ [g4(U, θ, γ̂)] = 0 .
(7)

Given any such estimator θ̂, the counterfactual κ can then be estimated using

κ̂ = EF∗ [k(U, θ̂, γ̂)] .

If the function k does not depend on U , then we simply have κ = k(θ, γ0) and κ̂ = k(θ̂, γ̂).

In this case the estimated counterfactual κ̂ will still depend implicitly on F∗ through θ̂. While

the preceding discussion has assumed point identification of θ and κ for sake of exposition, our

methods allow structural parameters and counterfactuals to be partially identified.

In the preceding description of a structural modeling exercise, the researcher’s parametric

specification F∗ is being used both for estimation of the structural parameter θ and again for

computation of the counterfactual κ. A natural question that arises is: to what extent does

the counterfactual depend on the researcher’s choice F∗, and to what extent does it depend

on the underlying structure of the model? The main contribution of this paper is to provide a

tractable econometric framework to address this question.

2.2 Our Approach

In the spirit of sensitivity analysis, we relax the parametric assumption F∗ and allow F to vary

over nonparametric neighborhoods Nδ of F∗, where δ is a measure of “size”. When we do so,

there are pairs (θ, F ) ∈ Θ ×Nδ that satisfy the moment conditions (1), but which may yield

different values of the counterfactual. We wish to characterize the smallest and largest values

8The support function sA : Rk → R of A ⊂ Rk is sA(x) = supa∈A a
′x. Note that sA = sB if and only if the

closures of the convex hulls of A and B are equal.
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of the counterfactual over such (θ, F ) pairs:

κδ = inf
θ∈Θ,F∈Nδ

EF [k(U, θ, γ0)] subject to (1), (8)

κδ = sup
θ∈Θ,F∈Nδ

EF [k(U, θ, γ0)] subject to (1). (9)

By focusing on κδ and κδ, our approach does not require point-identification of θ under F∗ or

any other candidate distribution F . Thus, we accommodate models with partially-identified

structural parameters and counterfactuals. Our approach also sidesteps having to compute the

identified set of structural parameters.

Computing κδ and κδ requires solving infinite-dimensional optimization problems with

respect to F . This is made tractable for the class of models we consider by a convenient choice

of Nδ. Following work on ambiguity and model uncertainty by Hansen and Sargent (2001) and

Maccheroni, Marinacci, and Rustichini (2006), we consider neighborhoods that are constrained

by φ-divergence from F∗:

Nδ = {F ∈ F : Dφ(F‖F∗) ≤ δ} , (10)

with

Dφ(F‖F∗) =


∫
φ

(
dF

dF∗

)
dF∗ if F � F∗ ,

+∞ otherwise ,

where F denotes all probability measures on U (the support of U) and F � F∗ denotes absolute

continuity of F relative to F∗. The function φ : [0,∞) → R ∪ {+∞} is a non-negative convex

function that penalizes deviations of F from F∗. For example, φ(x) = x log x−x+1 corresponds

to Kullback–Leibler (KL) divergence, φ(x) = 1
2(x− 1)2 corresponds to Pearson χ2 divergence,

and

φ(x) =
xp − 1− p(x− 1)

p(p− 1)
, (p > 1) ,

corresponds to Lp divergence. Common choices for F∗ have positive (Lebesgue) density, so the

absolute continuity condition merely rules out F with mass points.

The neighborhoods may be further disciplined by incorporating normalizations, smooth-

ness constraints, or other shape restrictions in g1, . . . , g4. Examples include: (i) location normal-

izations, e.g. EF [U ] = 0 or EF [1l{Ui ≤ 0}− 0.5] = 0; (ii) scale normalizations, e.g. EF [U2
i ] = 1;

(iii) covariance normalizations, e.g. EF [UU ′] = I, or bounds, e.g. EF [UU ′] ≤ Σ; (iv) smooth-

ness restrictions, e.g. EF [1l{Ui ≤ ak+1} − 1l{Ui ≤ ak}] ≤ C for a1 < . . . < aK and a positive

constant C, for each element Ui of U ; and (v) notions of exchangeability. Exchangeability

can carry important economic content in certain applications and is easy to impose whenever

F∗ is exchangeable (see Appendix A.3). Researchers may add or remove such restrictions to

investigate how these affect the sets of counterfactuals.

11



2.3 Dual Formulation

In this subsection we use convex duality to simplify computation of κδ and κδ. We start by

noting κδ and κδ may be written as the solution to two profiled optimization problems:

κδ = inf
θ∈Θ

Kδ(θ; γ0, P0) , κδ = sup
θ∈Θ

Kδ(θ; γ0, P0) ,

where the criterion functions Kδ(θ; γ0, P0) and Kδ(θ; γ0, P0) are, respectively, the infimum and

supremum of EF [k(U, θ, γ0)] with respect to F ∈ Nδ subject to the moment conditions (1). In

what follows, it is helpful to define the criterion functions at a generic (γ, P ). To do so, we say

that the moment conditions (1) hold “at (θ, γ, P )” if they hold when γ0 is replaced by γ and

P0 is replaced by P . Then

Kδ(θ; γ, P ) = inf
F∈Nδ

EF [k(U, θ, γ)] subject to (1) holding at (θ, γ, P ) , (11)

Kδ(θ; γ, P ) = sup
F∈Nδ

EF [k(U, θ, γ)] subject to (1) holding at (θ, γ, P ) , (12)

with the understanding that Kδ(θ; γ, P ) = +∞ and Kδ(θ; γ, P ) = −∞ if there does not exist

a distribution in Nδ for which the moment conditions (1) hold at (θ, γ, P ).

To justify the dual formulation, we first impose some mild regularity conditions on F∗,

φ, and the moment functions. The conditions are similar to those justifying duality results in

generalized empirical likelihood estimation (see, e.g., Komunjer and Ragusa (2016)).

Definition 2.1 Φ0 consists of all φ : [0,∞) → R ∪ {+∞} such that φ is twice continuously

differentiable on (0,∞) and strictly convex, φ(1) = φ′(1) = 0, φ(0) < +∞, limx↓0 φ
′(x) < 0,

limx→∞ φ(x)/x = +∞, limx→∞ φ
′(x) > 0, and limx→∞ xφ

′(x)/φ(x) < +∞.

For any φ ∈ Φ0, let φ?(x) = supt≥0:φ(t)<+∞(tx−φ(t)) denote its convex conjugate and let

ψ(x) = φ?(x)− x. Define

E = {f : U → R for which EF∗ [ψ(c|f(U)|)] <∞ for all c > 0} .

The class E is an Orlicz class (see Appendix D). For common choices of φ, we have

E = {f : U → R : EF∗ [ec|f(U)|] <∞ for all c > 0} for KL divergence,

E = {f : U → R : EF∗ [f(U)2] <∞} for χ2 divergence, and

E = {f : U → R : EF∗ [|f(U)|q] <∞} for Lp divergence (p−1 + q−1 = 1).

Let g = (g1, g2, g3, g4) denote the vector formed by stacking each of the moment functions from

(1a)–(1d). Our key regularity condition is the following assumption:
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Assumption Φ (i) φ ∈ Φ0.

(ii) k( · , θ, γ) and each entry of g( · , θ, γ) belong to E for each θ ∈ Θ and γ ∈ Γ.

We briefly comment on Assumption Φ before proceeding. The φ functions inducing KL,

χ2, and Lp divergence all belong to Φ0. For KL divergence, the class E contains of bounded

functions (e.g. indicator functions) and functions that are additively separable in U provided F∗

has tails that decay super-exponentially (e.g. Gaussian but not Gumbel). It therefore excludes

several moment functions in the above examples under conventional parametric assumptions.

Using χ2 or Lp neighborhoods imposes much weaker requirements on the moment functions,

requiring only finite second or qth moments, respectively.

The following result justifies formulating the criterion functions as finite-dimensional con-

vex programs. Let d =
∑4

i=1 di where di is the dimension of gi, let Λ := Rd1+ ×Rd2 ×Rd3+ ×Rd4 ,

and let λ12 denote the first d1 + d2 elements of λ.

Proposition 2.1 Let Assumption Φ hold. If there exists a distribution F ∈ Nδ such that the

moment conditions (1) hold at (θ, γ, P ), then

Kδ(θ; γ, P ) = sup
η>0,ζ∈R,λ∈Λ

−ηEF∗
[
φ?
(
k(U,θ,γ)+ζ+λ′g(U,θ,γ)

−η

)]
− ηδ − ζ − λ′12P , (13)

Kδ(θ; γ, P ) = inf
η>0,ζ∈R,λ∈Λ

ηEF∗
[
φ?
(
k(U,θ,γ)−ζ−λ′g(U,θ,γ)

η

)]
+ ηδ + ζ + λ′12P . (14)

Moreover, if the value of problem (13) is +∞ (equivalently, if the value of problem (14) is

−∞), then there is no distribution in Nδ under which (1) holds at (θ, γ, P ).

The problems on the right-hand side of (13) and (14) are convex optimizations with respect

to (η, ζ, λ). The parameter η is the Lagrange multiplier for the constraint Dφ(F‖F∗) ≤ δ.

Similarly, λ collects the Lagrange multipliers for the moment in/equalities (1a)–(1d). These are

unconstrained if they correspond to equality restrictions and non-negative if they correspond

to inequality restrictions. Finally, ζ is the Lagrange multiplier for the constraint
∫

dF = 1,

thereby ensuring that the optimization is over probability measures.

It is worth highlighting some special cases of the dual formulation. For KL neighborhoods,

φ?(x) = ex − 1 and the multiplier ζ may be solved out explicitly, leading to

Kδ(θ; γ, P ) = sup
η>0,λ∈Λ

−η logEF∗
[
e−(k(U,θ,γ)+λ′g(U,θ,γ))/η

]
− ηδ − λ′12P ,

Kδ(θ; γ, P ) = inf
η>0,λ∈Λ

η logEF∗
[
e(k(U,θ,γ)−λ′g(U,θ,γ))/η

]
+ ηδ + λ′12P .

Another special case is when k does not depend on u, i.e. k(u, θ, γ) = k(θ, γ). In this case, the
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right-hand sides of (13) and (14) reduce to

Kδ(θ; γ, P ) =

[
k(θ, γ)

+∞
, Kδ(θ; γ, P ) =

[
k(θ, γ) if ∆?(θ; γ, P ) ≤ δ,
−∞ if ∆?(θ; γ, P ) > δ,

(15)

where

∆?(θ; γ, P ) = sup
ζ∈R,λ∈Λ

−EF∗
[
φ?(−ζ − λ′g(U, θ, γ))

]
− ζ − λ′12P . (16)

The program ∆? is the dual formulation of the minimum-divergence problem

∆(θ; γ, P ) = inf
F
Dφ(F‖F∗) subject to (1) holding at (θ, γ, P ) . (17)

The dual formulation is valid under Assumption Φ (see Appendix F.3 for a formal justification).

For KL divergence, ζ may be solved out in closed form to obtain

∆?(θ; γ, P ) = sup
λ∈Λ
− logEF∗

[
e−λ

′g(U,θ,γ)
]
− λ′12P .

An important feature of our approach is that the optimization problems (13), (14), and (16)

are convex and their dimension does not increase with the neighborhood size δ. This feature is

not shared by other seemingly natural approaches, such as using expanding parametric families

(e.g. mixtures or other sieves) to flexibly model F . Importantly, our procedure recovers sharp

bounds on the nonparametrically identified set of counterfactuals as δ becomes large.

2.4 Nonparametrically Identified Sets of Counterfactuals

We define the nonparametrically identified set of counterfactuals as

K =
{
EF [k(U, θ, γ0)] : (1) holds at (θ, γ0, P0), θ ∈ Θ, F ∈ Fθ

}
,

where

Fθ = {F ∈ F : EF [g(U, θ, γ0)] is finite and F � µ} .

The set Fθ consists of all probability measures on U that are absolutely continuous with respect

to some σ-finite dominating measure µ and for which the moments in (1) are finite at θ. We

impose existence of a density with respect to µ as it is often a structural assumption used,

e.g., to avoid ties in CCPs or to establish existence of equilibria. Importantly, the class Fθ can

contain distributions not in Nδ for any finite δ. It is therefore reasonable to ask: in confining

ourselves to neighborhoods of the form Nδ, do we throw away other distributions that can yield

smaller or larger values of the counterfactual? As we shall see, the answer is “no” provided F∗

satisfies a type of full-support condition.
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We require two other regularity conditions to establish the result. First, we say that k is

“µ-essentially bounded” if |k(·, θ, γ0)| has finite µ-essential supremum9 for each θ ∈ Θ. This

condition is trivially satisfied when k(u, θ, γ0) is a bounded function of u for each θ, which

is true of the k functions representing counterfactual CCPs and change in average welfare in

Examples 2.2 and 2.3. Note, however, that we do not require any of g1, . . . , g4 to be bounded.

Therefore, one may reparametrize models with unbounded k (e.g. Example 2.1) by setting

θ̃ = (θ, κ), appending k(U, θ, γ0)− κ as an element of g4, and setting k(U, θ̃, γ0) = κ.

The second is a Slater-type constraint qualification condition. Let 0di denote a di × 1

vector of zeros, C = Rd1+ × {0d2} × Rd3+ × {0d4}, G(θ, γ) = {EF [g(U, θ, γ)] : Dφ(F‖F∗) < ∞},
~P = (P, 0d3+d4), and let ri(A) denote the relative interior of A ⊆ Rn.

Definition 2.2 Condition S holds at (θ, γ, P ) if ~P ∈ ri(G(θ, γ) + C).

In models without inequality restrictions, Condition S requires that ~P ∈ ri(G(θ, γ)). For

models with inequality conditions only, we require that there exists a distribution such that

all inequalities are strict. Using “relative interior” instead of “interior” allows for moment

functions that may be linearly dependent at certain values of θ.

Let ΘI = {θ ∈ Θ : (1) holds for some F ∈ Fθ} denote the nonparametrically identified set

of structural parameters.

Theorem 2.1 Let Assumption Φ hold, let Condition S hold at (θ, γ0, P0) for all θ ∈ ΘI , let µ

and F∗ be mutually absolutely continuous, and let k be µ-essentially bounded. Then:

lim
δ→∞

κδ = inf K , lim
δ→∞

κδ = supK .

If µ is Lebesgue measure—which it often is in applications—then Theorem 2.1 implies

that choosing F∗ with strictly positive density over U ensures that κδ and κδ will recover the

limits of K as δ gets large. Aside from sensitivity analyses, our procedure can therefore be used

to compute bounds on K by setting the neighborhood size δ to be large but finite.

Remark 2.4 In Appendix B we characterize inf K and supK using convex duality. Unlike

Proposition 2.1, the dual representations are non-smooth, non-convex min-max and max-min

problems which are computationally challenging, especially when u is multivariate.10 Adding

a φ-divergence constraint regularizes the dual formulation, resulting in the criterion functions

Kδ and Kδ defined by smooth, convex optimization problems. In particular, the dimension of

U does not play a role in the computational complexity of our procedure (though it may when

expectations are computed numerically, as discussed in Section 3.1).

9The µ-essential supremum of f : U → R is µ-ess sup f = inf{c : µ({u : f(u) > c} = 0)}.
10Similar representations are obtained in Ekeland et al. (2010) and Li (2018).
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2.5 Estimation

The preceding discussion provides a roadmap for estimating the smallest and largest coun-

terfactuals κδ and κδ given consistent first-stage estimators (P̂ , γ̂) of (P0, γ0). Analogously to

their population counterparts, estimators κ̂δ and κ̂δ are obtained by optimizing sample criterion

functions with respect to θ:

κ̂δ = inf
θ∈Θ

K̂δ(θ) , κ̂δ = sup
θ∈Θ

K̂δ(θ) ,

where the sample criterion functions are

K̂δ(θ) =

[
Kδ(θ; γ̂, P̂ )

+∞
, K̂δ(θ) =

[
Kδ(θ; γ̂, P̂ ) if ∆?(θ; γ̂, P̂ ) < δ,

−∞ if ∆?(θ; γ̂, P̂ ) ≥ δ,

with Kδ(θ; γ̂, P̂ ) and Kδ(θ; γ̂, P̂ ) denoting the values of the convex optimization problems from

Proposition 2.1 evaluated at (γ̂, P̂ ), and ∆?(θ; γ̂, P̂ ) denoting the value of the optimization

problem (16) evaluated at (γ̂, P̂ ). If k(u, θ, γ) = k(θ, γ), the criterion functions simplify:

K̂δ(θ) =

[
k(θ, γ̂)

+∞
, K̂δ(θ) =

[
k(θ, γ̂) if ∆?(θ; γ̂, P̂ ) < δ,

−∞ if ∆?(θ; γ̂, P̂ ) ≥ δ.

In Section 6 we establish consistency of the estimators κ̂δ and κ̂δ, derive their joint asymptotic

distribution, and present two procedures for inference on κδ and κδ.

3 Practical Considerations

3.1 Computation

There are three aspects to computation: (i) computing the expectations with respect to F∗ in

the objective functions, (ii) solving the inner optimization problems over Lagrange multipliers,

and (iii) solving the outer optimization problems over θ.

The expectations in the objective functions (13), (14), and (16) are available in closed-

form for certain models, φ-divergences, and distributions F∗,
11 in which case the dimension

of U does not play a role in the computational complexity of our procedure. Outside of these

special cases, the expectations in the objective functions will need to be computed numerically.

Here the dimension of U will play a role in terms of determining how many quadrature points

or Monte Carlo draws are needed to control any numerical approximation error. In practice, we

used randomized quasi-Monte Carlo methods, specifically scrambled Halton sequences using

11An earlier draft worked through the closed-form solution for a discrete game of complete information with
Gaussian payoff shocks and KL neighborhoods (see https://arxiv.org/abs/1904.00989v2).
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the algorithm of Owen (2017), which can yield improvements over conventional Monte Carlo

methods especially when U is of moderate or high dimension (see, e.g., Lemieux (2009)).

The inner optimization with respect to Lagrange multipliers can be solved rapidly: it is

convex and gradients and Hessians are available in closed-form. The envelope theorem can

be used to derive gradients for the outer optimization when k and the moment functions are

continuously differentiable in θ. Our procedures were all implemented in Julia with the inner

and outer optimizations solved using KNITRO. As with parameter estimation in nonlinear

structural models, the outer optimization with respect to θ is typically non-convex. In appli-

cations, we iteratively applied a multi-start procedure in the outer optimization in an attempt

to avoid local optima. Computation times are reported in the applications below.

3.2 MPEC Implementation

In this subsection, we propose a MPEC version of our procedure to simplify computation

in models with endogenous parameters defined by equilibrium conditions (e.g. value functions

defined by Bellman equations). In DDC models as described Example 2.3, this approach reduces

the dimension of the inner optimization by twice the cardinality of the statespace.

Suppose we may partition θ = (θs, θe) and g4 = (g4s, g4e) where θs are “deep” structural

parameters and θe are “endogenous” parameters that are defined implicitly by the subset

of moment conditions corresponding to g4e. That is, for any (θs, γ, F ), the parameter θe =

θe(θs, γ, F ) solves

EF [g4e(U, (θs, θe), γ)] = 0 .

For instance, in Example 2.3 we have θs = (θπ, β), θe = (v, ṽ), and g4e is the vector of moment

functions in display (6). While our procedure can be implemented as described in Section 2,

this does not take advantage of the fact that the subvector θe is defined implicitly.

To leverage this additional structure, consider the subset of moments excluding g4e:

EF [g1(U, θ, γ0)] ≤ P10, EF [g2(U, θ, γ0)] = P20,

EF [g3(U, θ, γ0)] ≤ 0, EF [g4s(U, θ, γ0)] = 0,
(18)

and define the criterion functions using only these moments:

Ks
δ(θ; γ, P ) = inf

F∈Nδ
EF [k(U, θ, γ)] subject to (18) holding at (θ, γ, P ) , (19)

K
s
δ(θ; γ, P ) = sup

F∈Nδ
EF [k(U, θ, γ)] subject to (18) holding at (θ, γ, P ) . (20)
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Under the conditions of Proposition 2.1, these criterion functions admit a dual formulation:

Ks
δ(θ; γ, P ) = sup

η>0,ζ∈R,λ∈Λs

−ηEF∗
[
φ?
(
k(U,θ,γ)+ζ+λ′gs(U,θ,γ)

−η

)]
− ηδ − ζ − λ′12P , (21)

K
s
δ(θ; γ, P ) = inf

η>0,ζ∈R,λ∈Λs
ηEF∗

[
φ?
(
k(U,θ,γ)−ζ−λ′gs(U,θ,γ)

η

)]
+ ηδ + ζ + λ′12P , (22)

with gs = (g1, g2, g3, g4s) and Λs = Rd1+ × Rd2 × Rd3+ × Rd4s with d4s = dim(g4s). These

criterion functions simplify analogously to (15) when k does not depend on u, with the minimum

divergence problem ∆? now involving only the gs moments. The remaining moment conditions

corresponding to g4e are appended as constraints in the outer optimization. The constraints

are evaluated under the distributions that solve problems (19) and (20), which we denote F δ,θ

and F δ,θ.
12 We first justify this approach and then show how to construct F δ,θ and F δ,θ.

Proposition 3.1 Let Assumption Φ hold. Then:

inf
θ∈Θ

Kδ(θ; γ, P ) ≡ inf
θ∈Θ

Ks
δ(θ; γ, P ) subject to EF δ,θ [g4e(U, θ, γ)] = 0 ,

sup
θ∈Θ

Kδ(θ; γ, P ) ≡ sup
θ∈Θ

K
s
δ(θ; γ, P ) subject to EF δ,θ [g4e(U, θ, γ)] = 0 .

Proposition 3.1 justifies our MPEC implementation, showing that it yields the same min-

imizing and maximizing values of the counterfactual as the “full” implementation described in

Section 2. The expectations in the constraints may be expressed as

EF δ,θ [g4e(U, θ, γ)] = EF∗ [mδ,θ(U)g4e(U, θ, γ)] ,

EF δ,θ [g4e(U, θ, γ)] = EF∗ [mδ,θ(U)g4e(U, θ, γ)] ,

where mδ,θ and mδ,θ denote the Radon–Nikodym derivatives of F δ,θ and F δ,θ with respect to

F∗. When k depends on u, we construct mδ,θ and mδ,θ from solutions to (21) and (22), say

(η, ζ, λ) and (η, ζ, λ) (solutions exist under the regularity conditions below). With η > 0, define

mδ,θ(u) = φ̇?

(
k(u, θ, γ) + ζ + λ′gs(u, θ, γ)

−η

)
, (23)

where φ̇?(x) = dφ?(x)
dx . The function mδ,θ(u) is constructed similarly, replacing (η, ζ, λ) in (23)

by (−η,−ζ,−λ). For KL divergence the multiplier ζ can be solved out explicitly, leading to

mδ,θ(u) =
e(k(u,θ,γ)+λ′gs(u,θ,γ))/−η

EF∗
[
e(k(u,θ,γ)+λ′gs(u,θ,γ))/−η

] .
12The distributions F δ,θ and F δ,θ also depend on γ and P , but we suppress this to simplify notation.
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When η > 0 the distribution solving (19) is unique and is defined by mδ,θ(u).13 We exclude

the case η = 0 as it is rare in practice.14

When k does not depend on u, mδ,θ and mδ,θ are constructed from solutions to the program

∆?(θ; γ, P ) defined in (16) using only the reduced set of moments gs. Under the regularity

conditions below, this program has a solution, say (ζ, λ), and we define

mδ,θ(u) = mδ,θ(u) = φ̇?
(
−ζ − λ′gs(u, θ, γ)

)
. (24)

For KL divergence the multiplier ζ may be solved out explicitly, leading to

mδ,θ(u) = mδ,θ(u) =
e−λ

′gs(u,θ,γ)

EF∗
[
e−λ

′gs(u,θ,γ)
] .

Proposition 3.2 Let Assumption Φ hold, let Condition S hold at (θ, γ, P ), and let there exist

a distribution F with D(F‖F∗) < δ under which conditions (18) hold at (θ, γ, P ). Then: the

distributions F δ,θ and F δ,θ induced by mδ,θ and mδ,θ solve (19) and (20).

Example. In Table 2 we report computation times for the inner optimization problems for

the DDC model and counterfactual in Section 5.4 of Norets and Tang (2014), which is based

on Rust (1987), in which |S| = 90 and U = (U0, U1). For brevity, we report times for the inner

problems for Kδ and K
s
δ for maximizing the counterfactual CCP in the highest mileage state

only. We also report times for solving the inner problem for the minimum divergence problem

∆? and its MPEC analogue using gs only. The MPEC implementation has 92 moments in gs

(90 moments for the CCPs plus two mean-zero normalizations for U0 and U1) for the inner

optimization. The inner optimization in the full implementation involves an additional 180

moments representing the Bellman equations pre- and post-intervention. In this design, the

inner optimization problems are solved at least 20 times faster for the MPEC implementation.15

3.3 Overidentification

Our theoretical results are developed assuming the researcher’s model is correctly specified:

there exists θ ∈ Θ for which the population moment conditions (1) hold under F∗. However, in

overidentified models (i.e., d > dθ) there might not exist θ ∈ Θ for which the sample moment

conditions (7) hold under F∗. We propose two options to deal with this situation.

13Uniqueness follows by strict convexity of φ because Dφ(F‖F∗) ≤ δ must be binding at F δ,θ if η > 0.
14In this case, the distribution F δ,θ will concentrate on the F∗-essential infimum of k(·, θ, γ) + λ′gs(·, θ, γ). If

k and/or elements of gs are unbounded then this set will typically have zero F∗ measure. In consequence, η = 0
will not be a solution for any δ < +∞.

15The computations reported in Table 2 initialize the solver at η = 1, ζ = 0, and λ = 0. When embedded in
the outer optimization with respect to θ, the inner-optimization computation times are reduced significantly by
initializing at the (η, ζ, λ) solving the inner problem at the previous value of θ.
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Implementation K0.01 K0.10 K1.00 ∆?

MPEC (92 moments) 0.185 0.209 0.244 0.102
Full (272 moments) 4.444 12.028 33.250 3.585

Table 2: Computation times (seconds) for solving the inner optimization problems using the design
in Section 5.4 of Norets and Tang (2014) at the true θ values. Expectations are computed numerically
using 50, 000 scrambled Halton draws. Neighborhoods constrained by a hybrid of KL and χ2 divergence
(see Section 5). All computations are performed in Julia version 1.5.3 and KNITRO 12.2.0 on a 2.7GHz
MacBook Pro with 16GB memory.

First, one may compute the smallest value of δ for which there exists F ∈ Nδ consistent

with the sample moment conditions (7) by solving

δ̂ = inf
θ∈Θ

∆?(θ; γ̂, P̂ ).

The bounds [κ̂δ, κ̂δ] will be nonempty for δ > δ̂. Under the conditions of Theorem 6.1, the value

δ̂ will converge in probability to zero and for each δ > 0 the bounds [κ̂δ, κ̂δ] will be nonempty

with probability approaching one.

For certain correctly specified but overidentified models it may be the case that δ̂ = +∞.

This can occur when estimates P̂ are inconsistent with certain restrictions of the model. For

instance, it is natural to estimate CCPs nonparametrically using the empirical frequencies of

choices in each state. If some choices aren’t observed in certain states then their corresponding

estimated CCPs will be zero even though the model-implied CCPs may be strictly positive.

In models with equality restrictions only for P (i.e., P0 ≡ P20), this issue can be avoided

by using P̂ = EF∗ [g2(U, θ̃, γ̂)] where θ̃ is an estimate of θ based on (7). This approach ensures

P̂ is compatible with the model and therefore that the bounds [κ̂δ, κ̂δ] are nonempty for each δ.

Under mild regularity conditions the estimator P̂ will be consistent and asymptotically normal,

so the consistency and inference results developed in Section 6 will continue to apply.

4 Interpreting the Neighborhood Size

As with any sensitivity analysis, interpreting the neighborhood size δ is important. In this

section we first discuss some properties of φ-divergences and their implications for interpreting

δ. We then present some specific methods for interpretation.

4.1 Invariance

A defining property of φ-divergences that they are invariant to invertible transformations. That

is, if G and G∗ denote the distribution of T (U) when U ∼ F and U ∼ F∗, respectively, for
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some invertible transformation T , then Dφ(F‖F∗) = Dφ(G‖G∗).16 An important consequence

is that the neighborhood size has the same interpretation under a change in units for U . For

instance, if one researcher writes a model using dollars as units with U ∼ F∗ and another uses

thousands of dollars as units with U ∼ G∗ where G∗(u) = F∗(10−3u) then F is in Nδ if and

only if its rescaled counterpart G is in the corresponding δ-neighborhoods of G∗. A second

consequence is that neighborhood size is invariant under location and scale transformations of

F∗ (e.g. N(µ,Σ) versus N(0, I)).

4.2 Relating Different φ-divergences

It is well known that φ-divergences are equivalent over vanishingly small neighborhoods.17

While the bounds [κδ, κδ] may depend on the choice of φ over non-vanishing neighborhoods, it

is possible to formally relate the bounds induced by different φ functions.

Consider two functions, say φ1 and φ2. We write Nφ1,δ and Nφ2,δ for δ-neighborhoods from

(10) induced by φ1 and φ2, respectively. Without loss of generality, order φ1 and φ2 so that

limx→+∞
φ1(x)
φ2(x) < ∞. Under this ordering, the divergence induced by φ2 is stronger than that

induced by φ1: Dφ2(F‖F∗) <∞ implies Dφ1(F‖F∗) <∞ (see Appendix D). Define

ā := sup
x>0,x 6=1

φ1(x)

φ2(x)
.

The quantity ā is a measure of relative neighborhood size in the sense that Nφ2,δ ⊆ Nφ1,āδ
holds for each δ > 0 (see the proof of Proposition 4.1). Thus, δ-neighborhoods under φ1 are

ā times as large as δ neighborhoods under φ2. For instance, KL δ-neighborhoods are twice as

large as χ2 δ-neighborhoods. Finally, write κφ1,δ and κφ2,δ for the smallest counterfactual from

(8) over Nφ1,δ and Nφ2,δ. The values κφ1,δ and κφ2,δ are defined analogously.

Proposition 4.1 Let φ1, φ2 ∈ Φ0 and let Assumption Φ(ii) hold for the space E corresponding

to φ1. Then: the inclusion [κφ2,δ, κφ2,δ] ⊆ [κφ1,āδ, κφ1,āδ] holds for each δ > 0.

It follows from Proposition 4.1 that bounds that are wide under φ2 must necessarily be

wide under φ1. Similarly, narrow bounds under φ1 must also be narrow under φ2. Note also

that the ordering does not depend on the counterfactual function k.

4.3 “Least Favorable” Distributions

A useful feature of our approach is that the “least favorable” distributions (LFDs) that attain

the smallest or largest values of the counterfactual can be recovered. The researcher may plot

16See, e.g., Liese and Vajda (1987). A more direct statement is in Qiao and Minematsu (2010), who also
show invariance is unique to φ-divergences.

17See, e.g., Theorem 4.1 of Csiszár and Shields (2004).
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the LFDs and compute other quantities of interest (e.g. correlations or welfare measures) under

the LFDs to help interpret δ.

As in Section 3.2, we use Radon–Nikodym derivatives to construct the LFD. If k depends

on u then the Radon–Nikodym derivative of the distribution solving (11) at θ is analogous to

(23), namely

mδ,θ(u) = φ̇?

(
k(u, θ, γ) + ζ + λ′g(u, θ, γ)

−η

)
, (25)

where (η, ζ, λ) is any solution to (13) with η > 0 (as in Section 3.2, we exclude the case

η = 0 as it is rare in practice). The distribution solving the maximization problem (12) at θ is

obtained similarly, replacing (η, ζ, λ) in (25) by (−η,−ζ,−λ) where (η, ζ, λ) solves (14). The

distributions solving (11) and (12) are unique when η > 0 and η > 0, respectively (see Section

3.2). If k does not depend on u then we set

mδ,θ(u) = mδ,θ(u) = φ̇?
(
−ζ − λ′g(u, θ, γ)

)
(26)

where (ζ, λ) solve the program (16). While there may exist multiple distributions solving (11)

and (12) at θ in this case, the distribution induced by (26) has smallest φ-divergence relative

to F∗. The justification of these LFD constructions follows similarly to Proposition 3.2.

4.4 Viewing Neighborhood Size through the Lens of the Model

Our second method for interpreting the neighborhood size is based on measuring variation in

the moments at the solutions to the optimization problems (8) and (9) relative to their values

under the researcher’s specification F∗.

Under the regularity conditions in Section 6, the values κδ and κδ are attained by minimiz-

ing and maximizing Kδ(θ; γ0, P0) and Kδ(θ; γ0, P0) with respect to θ, and the sets of minimizing

and maximizing values of θ, denoted Θδ and Θδ, are nonempty. While any θ ∈ Θδ∪Θδ satisfies

the moment conditions (1) under the corresponding LFD, it will typically not do so under F∗.

Our second, model-based interpretation for the neighborhood size is to consider the maximum

degree to which the moments at θ ∈ Θδ ∪Θδ violate (1) under F∗:

size(δ) = sup
θ∈Θδ∪Θδ

max
{∥∥∥ (EF∗ [g1(U, θ, γ0)]− P10

)
+

∥∥∥
∞
,
∥∥∥EF∗ [g1(U, θ, γ0)]− P20

∥∥∥
∞
,∥∥∥ (EF∗ [g3(U, θ, γ0)]

)
+

∥∥∥
∞
,
∥∥∥EF∗ [g4(U, θ, γ0)]

∥∥∥
∞

}
,

where (v)+ = ((v1 ∨ 0), . . . , (vd ∨ 0)) for a vector v ∈ Rd. This measure is informative about

the extent to which the moment conditions (1) discipline the model’s predictions about κ once

F is allowed to vary over Nδ. Small values of size(δ) indicate that the moment conditions (1)

exert little influence on the counterfactuals: the LFDs supporting κδ and κδ distort F∗ in a
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way that moves the counterfactual but barely moves the moments. Conversely, large values of

size(δ) indicate that distortions required to increase or decrease the counterfactual also have

a material impact on the moments. This measure can be computed in practice by replacing

(P0, γ0) by estimators (P̂ , γ̂) and the sets Θδ and Θδ by either the minimizers and maximizers

of the sample criterions or by the estimators of Θδ and Θδ described in Section 6.

5 Empirical Applications

5.1 Marital College Premium

Chiappori, Salanié, and Weiss (2017, CSW hereafter) study the evolution of marital returns to

education in the US using a matching model with transferable utility (Choo and Siow, 2006).

CSW find that the marital college premium—the difference in social surplus that college-

and non-college-educated individuals derive from the marriage market—increased significantly

across cohorts of women in the US in the mid to late 20th century, which they attribute

to increasing returns to parental investment in children’s human capital. As is conventional

following Dagsvik (2000) and Choo and Siow (2006), CSW assume that the random components

of individuals’ marital preferences are i.i.d. Gumbel. While this assumption lends analytic

tractability, the distribution of preference shocks is not nonparametrically identified in CSW’s

model. We therefore examine the sensitivity of their findings to this conventional assumption.

Our analysis reveals several insights about CSW’s findings and, more generally, about

welfare measures in matching models following Choo and Siow (2006). First, estimates of

the marital college premium are highly sensitive to the i.i.d. Gumbel assumption and some

of CSW’s findings cannot be maintained under slight departures from this assumption. In-

terestingly, this sensitivity arises primarily at the estimation stage: premiums have narrow

nonparametrically identified sets at any fixed value of parameters, yet relaxing the parametric

assumption slightly allows significant variation in parameters and, consequently, wide bounds

on premiums. In the framework of Choo and Siow (2006), preference parameters are just-

identified under for any given distribution of shocks. Therefore, overidentifying restrictions on

parameters and/or shape restrictions on the distribution are required to tighten the bounds.

We explore the role of one such shape restriction, namely exchangeability, in tightening the

bounds. Overall, we find weaker, but more robust evidence consistent with CSW’s theme of

increasing marital returns to higher education.

Model. The model follows Choo and Siow (2006). Agents are male or female and one of

J types. Each agent chooses to be unmatched or to match with one partner of the opposite

gender. A type-a man i receives utility εia0 if unmatched and zab + εiab if he matches with a

type-b female; a type-b female i′ receives utility ei′0b if unmatched and tab+ei′ab if she matches

with a type-a male. The parameters (zab, tab)
J
a,b=1 represent the common deterministic compo-
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nent of marital preferences whereas the latent (to the econometrician) shocks (εia0, . . . , εiaJ)

and (ei′0b, . . . , ei′Jb) represent the idiosyncratic components. Shocks are i.i.d. across agents

(conditional on own type and gender) with mean zero.

The stable matching problem can be reduced to standard individual-level discrete choice

problems (see, e.g., Propositions 1 and 2 of CSW for a formal statement), so this model maps

into Example 2.1. CSW estimate the model using data from the American Community Survey.

They form 28 cohorts indexed by female birth year from 1941 (cohort 1) to 1968 (cohort 28) and

treat each as an independent marriage market. We use a c superscript in what follows to denote

cohort-c quantities. For each cohort c, CSW estimate the parameters (tcab)
J
a,b=1 and (zcab)

J
a,b=1 by

matching estimated and model-implied match probabilities for females and males, respectively,

assuming the (e0b, . . . , eJb)
J
b=1 and (εa0, . . . , εaJ)Ja=1 are i.i.d. Gumbel (F∗ hereafter).

The type b to b′ marital education premium for cohort-c females is

κc := EF
[

max
a=1,...,J

(
tcab′ + eab′

)
∨ e0b′

]
− EF

[
max

a=1,...,J

(
tcab + eab

)
∨ e0b

]
, (27)

which corresponds to the welfare measure ∆W in Example 2.1. CSW estimate the premium

by evaluating (27) at their estimates of (tcab, t
c
ab′)

J
a=1 under F∗.

Implementation. We focus on CSW’s estimates for marriages between white men and

women for which there are J = 5 ordered types, namely “high-school dropouts” (type 1),

“high-school graduates”, “some college”, “college graduate”, and “college-plus” (type 5).

Our first implementation lets the distribution of (e0b, . . . , eJb) vary by cohort but not

by own type b.18 For each cohort c, we therefore let (eab)
J
a=0 =d U ∼ F c for all b. The

parameters (tcab)
J
a=1 are just-identified from the match probabilities for cohort-c, type-b women,

say (Prc(a|b))Ja=1, under any given distribution F c (see, e.g., Galichon and Salanié (2020)).

Similarly, (zcab)
J
a,b=1 is just-identified from the cohort-c match probabilities for men under any

given distribution of the male preference shocks. We therefore only need to enforce the moment

conditions that involve the parameters in (27), namely θc := (tcab, t
c
ab′)

J
a=1, as the remaining

parameters can be chosen to fit the other match probabilities under the resulting LFD. We

therefore form g2 as in Example 2.1 to explain the type b and b′ match probabilities P c20 :=

(Prc(a|b),Prc(a|b′))Ja=1 and use CSW’s estimated match probabilities as our estimate P̂ c2 of P c20.

We also normalize the marginal distribution of each shock to have mean zero and the same

variance as under F∗, forming g4(U, θ) = (Uj , U
2
j − π2/6)Jj=0. The scale normalization ensures

that the nonparametrically identified set for the premium is bounded at any fixed θc. As J = 5,

there are 22 moments (for 10 match probabilities and 12 location/scale normalizations) and

10 parameters in this implementation.

18In view of the just-identification results below, we would obtain the same results if the distribution was
homogeneous across cohorts. Allowing for heterogeneity in own-type would result in wider bounds.
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Our second implementation imposes invariance of the distribution F c under rotations and

reflections of potential spouse types (“dihedral exchangeability”; see Appendix A.3). Under

this shape restriction, match probabilities depend on the parameters (tcab)
J
ab=1 but not the

labeling of potential spouse types (though they may depend to some extent on the ordering

of types).19 That is, F c must explain (Prc(a|b))Ja=1 when (e$(0)b, . . . , e$(J)b) ∼ F c for each

dihedral permutation $ of {0, . . . , J} (of which there are 12 when J = 5), and similarly for

type b′. The moment conditions from our first implementation are therefore duplicated across

all 12 permutations, so there are 264 moments and 10 parameters in this implementation.20 By

symmetry, however, it suffices to form g2 and g4 using the averages of the 22 moments across

the 12 permutations rather than all 264 moments separately (see Remark A.1).

Assumption Φ(ii) fails for KL divergence for this model but holds for χ2 and Lp (p <∞)

divergence. One possibly unappealing feature of χ2 divergence, however, is that the LFDs can

assign zero mass to certain regions. We therefore define neighborhoods using a hybrid of KL

and χ2 divergence induced by

φ(x) =

[
x log x− x+ 1 if x ≤ e,
1
2e(x− e)

2 + (x− e) + 1 if x > e.

This hybrid divergence, like KL, ensures the LFDs are everywhere positive and only requires

finite second moments for Assumption Φ(ii) to hold, which is indeed the case. As a robustness

check, we repeated our analysis with neighborhoods constrained by χ2 and L4 divergences.

Overall, our findings are not sensitive to the choice of φ (see Appendix C.1 for a discussion).

All computations are performed as described in Section 3.1. Our first implementation uses

50, 000 scrambled Halton draws to compute the expectations. Our second uses 15, 000 draws

which are concatenated over the 12 permutations (see Remark A.2), for a total of 180, 000

draws. Computation times are reported in Appendix C.1.

Findings. We focus two findings from CSW, namely (i) that the “some college” to “college

graduate” premium for white women went from being significantly negative in early cohorts

to significantly positive for late cohorts, and (ii) that the “college graduate” to “college-plus”

premium for white women, while negative, increased significantly across cohorts.

CSW’s estimates of the “some college” to “college graduate” (SC to CG) premium under

F∗ are plotted across cohorts in blue in Figure 1a with (pointwise) 95% confidence intervals (cf.

Panel C of Figure 21 in CSW). We relax F∗ and plot estimates and confidence sets for κcδ and

κcδ for our first implementation in Figure 1, beginning at δ = 0.01 and increasing δ by factors of

19Allowing dependence on ordering seems desirable in this setting where types are naturally ordered. This
dependence can be shut down by imposing (full) exchangeability on F c. Doing so was computationally infeasible
with J = 5 as it required computing the moments under all (J + 1)! = 720 permutations across a further 720
permutations of many draws (see Remark A.2), though it is feasible with smaller J .

20If F c is dihedrally exchangeable then these 2(J + 1)× 2J restrictions are just-identifying for (tcab, t
c
ab′)

J
a=1.
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(a) Small δ-neighborhoods. (b) Large δ-neighborhoods.

Figure 1: Sensitivity analysis for the SC to CG premium κc for white women for our first implementation.
CSW’s estimates under F∗ are shown in blue (δ = 0). Estimates of κcδ and κcδ are shown as solid lines;
dashed lines are (pointwise) 95% confidence sets for κcδ and κcδ.

10.21 With δ = 0.01, the estimates κ̂cδ and κ̂
c
δ lie uniformly below and above zero across cohorts

(see Figure 1a). Therefore, it is impossible to say how the sign of the premium has changed over

time when the i.i.d. Gumbel assumption is relaxed even slightly without further restrictions on

F c or θc. Figure 1b shows that the bounds become uninformatively wide for large δ. There are

some interesting asymmetries, however, with κ̂
c
δ remaining flat across cohorts while the lower

bound increases significantly, thereby providing weaker, but more robust evidence in favor of

CSW’s theme of increasing marital returns to higher education.

To interpret δ and understand better what is meant by “small” and “large” neighborhoods,

Figure 2a plots the CDFs of U4 − U0 and U1 − U3 under the LFDs at which κ̂
1
δ is attained.

The LFDs were computed as described in Section 4.3 using (25). Similar LFDs (not reported)

were obtained for other Ua, Ub pairs, other cohorts, and the lower values κ̂cδ. The CDFs of

U4 − U0 and U1 − U3 under the LFDs are near indistinguishable from the logistic CDF (their

distribution under F∗) when δ = 0.01 and 0.10. With δ = 1 the CDFs look close to logistic,

while for δ = 10 the CDF for U4 − U0 displays kinks and moves mass into the tails while the

CDF for U1 − U3 is relatively less distorted.

To further aid the interpretation of δ, we compute the largest correlation between the

elements of U under the LFDs for κ̂cδ and κ̂
c
δ as well as our size measure from Section 4.4.

As these quantities are relatively stable across cohorts, we present their average across cohorts

in Table 3. The shocks are uncorrelated under F∗ and close to uncorrelated under the LFDs

with δ = 0.01 and 0.1, while for δ = 10 some shocks (typically U3 or U4 and U0) are strongly

21One-sided 95% confidence sets are computed using our bootstrap procedure described in Section 6.2 with
1000 bootstrap replications for each cohort. We resample P̂ c2 using P̂ c∗2 ∼ N(P̂ c2 , V̂

c) where V̂ c is CSW’s estimate
of the covariance matrix of the sampling distribution of P̂ c2 . Confidence sets constructed using Remark 6.3 were
equivalent up to an order of magnitude of 10−3.
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δ = 0.01. δ = 0.10.

δ = 1.00. δ = 10.0.

(a) First implementation (without exchangeability).

δ = 0.01. δ = 0.10.

δ = 1.00. δ = 10.0.

(b) Second implementation (dihedral exchangeability).

Figure 2: CDFs of U4−U0 (blue solid lines) and U1−U3 (orange solid lines) under the LFDs at which

κ̂
1

δ is attained. The standard logistic CDF (black dotted lines) is also shown.
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First Implementation Second Implementation

δ Max. corr., κ̂cδ Max. corr., κ̂
c

δ size Max. corr., κ̂cδ Max. corr., κ̂
c

δ size
0.01 −0.016 −0.018 0.010 −0.018 0.016 0.006
0.10 −0.070 −0.072 0.037 −0.059 0.055 0.026
1.00 −0.246 −0.214 0.114 −0.138 0.093 0.099
10.0 −0.502 −0.493 0.240 −0.203 0.198 0.174

Table 3: Averages across cohorts of (i) the largest correlation of elements of U under the LFDs and
(ii) our size measure from Section 4.4. Each is computed at the parameter values which minimize and
maximize the sample criterion functions.

negatively correlated under the LFDs. Turning to the size measure, we see that the LFDs for

δ = 0.01 are distorting F∗ in a manner that shifts the model-implied match probabilities by at

most 0.010 (on average, across cohorts). By contrast, the LFDs for δ = 10 are distorting F∗ in

a manner that shifts the match probabilities up to 0.24 (on average, across cohorts).

To investigate why the bounds become so wide under slight departures from F∗, Figure 6a

plots estimates of κc when F c is allowed to vary but θc is fixed at CSW’s estimates under F∗,

say θ̂c∗. The bounds in Figure 6a for δ = 10 are identical to those with δ = 100 and represent

the nonparametrically identified sets for κc when θc = θ̂c∗. These “fixed-θ” sets are narrow

compared with the bounds [κcδ, κ
c
δ] obtained when θc and F c vary: they are roughly the same

width as [κc0.01, κ
c
0.01]. The cause of the wide bounds in Figure 1 is therefore the large variation

in θc permitted when parametric assumptions on F c are relaxed. As θc is just-identified from

data on choice probabilities under any fixed distribution, overidentifying restrictions on θc

and/or shape restrictions on F c are required to further shrink the identified sets.

To this end, results for our second implementation are plotted in Figure 3. The dihedral

exchangeability restriction shrinks the sets by around 67% for δ = 0.10, 0.1, and 1, and around

53% for δ = 10.22 Estimates and confidence sets with δ = 0.01 provide evidence that the SC

to CG premium has indeed increased over time, corroborating CSW’s findings under small

departures from their i.i.d. Gumbel assumption. While bounds for larger neighborhoods are

also very wide for this implementation, Figure 3b again shows a significant increase in the

lower bound across cohorts.

CDFs of U4−U0 and U1−U3 under the LFDs for κ̂
1

for this implementation are plotted in

Figure 2b. Here the LFDs for U4−U0 and U1−U3 are identical and symmetric due to the shape

restriction. The CDFs of the LFDs with δ = 1 or smaller are again virtually indistinguishable

from the logistic CDF. For δ = 10 the CDFs depart meaningfully from the logistic CDF but

in a manner that is less kinked and irregular than Figure 2a, reflecting the fact that the shape

restriction reduces asymmetries in the LFDs across types. Turning to Table 3, the size measure

is around 3/4 the values for our first implementation because the shape restriction does not

allow the parameters to vary as much when F∗ is relaxed. The maximal correlations of the

22The fixed-θ sets are reduced by a similar amount; see Figure 6b.
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(a) Small δ-neighborhoods. (b) Large δ-neighborhoods.

Figure 3: Sensitivity analysis for the SC to CG premium for white women for our second implementation.
CSW’s estimates under F∗ are shown in blue (δ = 0). Estimates of κcδ and κcδ are shown as solid lines;
dashed lines are (pointwise) 95% confidence sets for κcδ and κcδ. Grey dotted lines are estimates from our
first implementation with δ = 0.01 and δ = 0.10.

shocks under the LFDs are also smaller, especially for larger δ, again reflecting the fact that

the shape restriction reduces the asymmetries in the LFDs across types.23

We repeated the analysis for the “college-graduate” to “college-plus” premium and found

qualitatively similar results (not reported). In particular, evidence for an increase in the pre-

mium across cohorts was found under small departures from F∗ (i.e., δ = 0.01) for the ex-

changeable implementation but not for the implementation without exchangeability. We also

found a significant increase in the lower bounds on this premium across cohorts.

5.2 Welfare Analysis in a Rust Model

As a second empirical illustration, we perform a sensitivity analysis for counterfactual welfare

in the DDC model of Rust (1987). This familiar setting serves as a useful laboratory in which

to illustrate our procedure and some implementation issues that can arise in practice.

Model. The model is as described in Rust (1987). We focus on his specification in which

maintenance costs are linear in the state (i.e., mileage). The counterfactual of interest is the

change in average welfare arising from a 10% reduction in maintenance costs in each state.

Implementation. The model maps to our framework as described in Example 2.3. We focus

on the implementation in Table IX of Rust (1987) in which the state space is 90 dimensional,

β = 0.9999, and θπ = (RC,MC) where RC is replacement cost and MC is the mainte-

nance cost parameter (θ11 in Rust’s notation). Payoffs are π1,s(θπ) = π̃1,s(θπ) = −RC and

23Indeed, the correlation matrix under the LFD must be a symmetric circulant matrix due to the exchange-
ability restriction.
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π0,s(θπ) = −0.001MC × s and π̃0,s(θπ) = 0.9π0,s(θπ). We normalize F so that the shocks

have mean zero and the same variance as Rust’s i.i.d. Gumbel specification (F∗ hereafter) by

appending the moment conditions EF [Uj ] = 0 and EF [U2
j − π2/6] = 0, for j = 0, 1 to g4. The

counterfactual function is k(θ, γ) = w′(ṽ−v) where w is the stationary distribution of the state

pre-intervention.

We estimate choice probabilities using Rust’s Group 4 data. Nonparametric estimates of

the 90 choice probabilities are noisy with zeros in many states (see also Figure 3 in Rust (1987))

whereas the model-implied CCPs are positive. We therefore proceed as described in Section 3.3,

first estimating θ by maximum likelihood under F∗ and then taking the model-implied CCPs

at the MLE of θ as our estimate P̂ . As estimated CCPs are near zero for very low values of

the state, we drop the moment conditions for CCPs in states where the CCP is less than 0.001

to avoid numerical instabilities induced by including near-degenerate moments. This reduces

the dimension of g2 by 19. In total there are 255 moments (71 for CCPs, 180 for Bellman

equations, and 4 location/scale normalizations) and θ = (θπ, v, ṽ) has dimension 182.

We perform computations using our MPEC procedure described in Section 3.2. The inner

optimization uses 75 moments (71 for CCPs, 4 location/scale normalizations) with the remain-

ing 180 moments representing the Bellman equations for v and ṽ appended as constraints for

the outer optimization. Expectations are computed numerically using 50, 000 scrambled Halton

draws. Computation times are reported in Appendix C.2. As with the matching example, we

define neighborhoods using hybrid of KL and χ2 divergence (Assumption Φ(ii) fails for KL

divergence for this example). We repeated our analysis with neighborhoods constrained by χ2

and L4 divergences as a robustness check. Overall, our findings are not sensitive to the choice

of φ (see Appendix C.2 for a discussion).

Findings. Estimates and confidence sets for κδ and κδ are plotted in Figure 4 for values of

δ from 0.01 to 10.24,25 As can be seen, the bounds expand rapidly under slight relaxations

of the i.i.d. Gumbel assumption then stabilize by around δ = 1. Indeed, with δ = 0.01 the

estimated bounds are [44.6, 105.4] with confidence sets agreeing up to rounding error. The

lower bound on change in average welfare is near zero, while the upper estimate for δ = 1 is

160.5, approximately 220% the value under F∗.

To interpret δ, in Figure 5 we plot the CDFs of U1 − U0 under the LFDs at which κ̂δ

and κ̂δ are attained. The LFDs were computed as described in Section 4.3 using (26). The

CDFs of U1−U0 under the LFDs appear very close to logistic for δ = 0.01 and therefore show

that large differences in welfare counterfactuals can arise under very slight departures from

24Bounds with δ = 100 were almost identical, so we truncate the figure at δ = 10.
25One-sided 95% confidence sets are computed using our bootstrap procedure described in Section 6.2 with

1000 bootstrap replications. To resample CCPs, we draw θ∗π ∼ N(θ̂π, V̂ ) where θ̂π is the MLE of (RC,MC)
under F∗ and V̂ is the inverse Hessian, then take P̂ ∗2 as the model-implied CCPs under F∗ at θ∗π. Note that
these confidence sets treat M0, M1, and w as deterministic. Confidence sets constructed using Remark 6.3 were
equivalent up to an order of magnitude of 10−3.
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Figure 4: Sensitivity analysis for change in average welfare under a 10% maintenance cost subsidy.
Estimates of κδ and κδ are shown as solid lines; dashed lines are (pointwise) 95% confidence sets for κδ
and κδ. Dotted line is the estimate under F∗.

κ̂δ κ̂δ
δ Corr(U0,U1) size RC MC Corr(U0,U1) size RC MC

0.00 0.000 0.000 10.208 2.294 0.000 0.000 10.208 2.294
0.01 0.035 0.010 7.339 1.403 −0.032 0.014 13.401 3.306
0.10 −0.016 0.033 4.430 0.378 0.149 0.109 16.134 4.374
1.00 0.037 0.044 3.188 0.094 0.616 0.346 17.166 5.038
10.0 0.071 0.049 3.069 0.086 0.765 0.461 17.595 5.331

Table 4: Correlation of U0 and U1 under the LFD at which κ̂δ and κ̂δ are attained, our size measure
from Section 4.4, and replacement and maintenance cost parameters at which κ̂δ and κ̂δ are attained.

the i.i.d. Gumbel assumption. The LFDs for κ̂δ with large δ shift increasing amounts of mass

to the center of the distribution of U1 − U0. If these LFDs seem too “rough” then smoothness

restrictions could be imposed as described in Section 2, though any narrowing of the bounds

would be due to the smoothness restriction rather than the structure of the model. The LFDs

for κ̂δ are relatively less distorted and are similar for δ = 0.1, 1, and 10 because κ̂δ stabilizes

for smaller values of δ than κ̂δ (cf. Figure 4).

Table 4 lists other metrics to help interpret the neighborhood size. The first is the corre-

lation of U0 and U1 under the LFDs at which κ̂δ and κ̂δ are attained. These are very small for

δ = 0.01 and remain small under the LFDs for κ̂δ as δ increases, while the correlations under

the LFDs for κ̂δ increase dramatically. Given the asymmetry in distortions between the lower

and upper values, we compute our size measure separately for both, using only the moments

corresponding to the CCPs as these are most directly interpretable within the context of the

model. We see that the LFDs for δ = 0.01 are distorting F∗ in a manner that shifts the model-

implied CCPs by at most 0.014. By contrast, the LFDs for δ = 10 distort F∗ in a manner that
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δ = 0.01. δ = 0.10.

δ = 1.00. δ = 10.0.

Figure 5: CDFs of U1 − U0 under the LFDs at which κ̂δ (blue solid lines) and κ̂δ (orange solid lines)
are attained. The standard logistic CDF (black dotted lines) is also shown.

shifts model-implied CCPs by at most 0.05 for κ̂δ and 0.46 for κ̂δ. Once again, this asymmetry

reflects the fact that κ̂δ stabilizes for smaller values of δ than κ̂δ.

The parameters at which κ̂δ and κ̂δ are attained are also revealing. Table 4 presents MLEs

of MC and RC, which are similar to the values reported in Table IX of Rust (1987). We see

from Table 4 that κ̂δ and κ̂δ are attained at very different parameter values than under F∗, with

much smaller cost parameters for the lower bound and larger parameters for the upper bound,

even for δ = 0.01. Intuitively, a smaller MC means that the change in average welfare from

the subsidy—which is proportional—must be small, and a low RC is needed to help the model

to fit the pre-intervention CCPs at the smaller MC. While it is known that payoff parameters

are not identified without parametric assumptions on F , it is perhaps surprising to see these

parameters vary by so much under slight relaxations of F∗.

6 Estimation and Inference

In this section, we first establish consistency and the asymptotic distribution of the plug-in

estimators κ̂δ and κ̂δ from Section 2.5. We then present two procedures for inference.
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6.1 Large-sample Properties of Plug-in Estimators

We first introduce some regularity conditions to establish consistency of the plug-in estimators

κ̂δ and κ̂δ. Recall the space E from Assumption Φ. We equip E with the Orlicz norm (see

Appendix D)

‖f‖ψ = inf
c>0

1

c

(
1 + EF∗ [ψ(c|f(Z)|)]

)
.

The norm ‖ · ‖ψ is equivalent to the L2(F∗) norm for χ2 and hybrid neighborhoods and the

Lq(F∗) norm for Lp neighborhoods (p−1 + q−1 = 1), while for KL neighborhoods it is stronger

than any Lp(F∗) norm with p < ∞ but weaker than the sup-norm. We say that a class of

functions {fa : a ∈ A} ⊂ E indexed by a metric space A is E-continuous in a if a′ → a in A
implies ‖fa− fa′‖ψ → 0. We shall also use a slightly stronger notion of constraint qualification

than that which was introduced in Section 2.4:

Definition 6.1 Condition S’ holds at (θ, γ, P ) if ~P ∈ int(G(θ, γ) + C).

Finally, let Θδ(γ, P ) = {θ ∈ Θ : ∆?(θ; γ, P ) < δ} where the program ∆? is defined in (16).

Assumption M (i) k(·; θ, γ) and each entry of g(·; θ, γ) are E-continuous in (θ, γ);

(ii) EF∗ [φ?(a1 + a2k(U, θ, γ) + a′3g(U, θ, γ))] is continuous in (θ, γ) for each (a1, a2, a3) ∈
R× R× Rd;

(iii) Θδ(γ0, P0) is nonempty and Condition S’ holds at (θ, γ0, P0) for each θ ∈ Θδ(γ0, P0);

(iv) cl(Θδ(γ0, P0)) ⊇ {θ ∈ Θ : ∆?(θ; γ0, P0) ≤ δ};
(v) Θ is a compact subset of Rdθ .

Assumption M(i)(ii) are continuity conditions. If k and g consist of indicator functions of

events, these conditions hold provided the probabilities of the events under F∗ are continuous

in (θ, γ). These conditions just require continuity in θ for models without γ. Nonemptyness of

Θδ(γ0, P0) is trivially satisfied when the model is correctly specified under F∗, i.e., there exists

a θ ∈ Θ solving (1) under F∗. Assumption M(iv) is made for convenience and can be relaxed;

this condition simply ensures that there do not exist values of θ at which ∆?(θ; γ0, P0) = δ

that are separated from Θδ(γ0, P0). Assumption M(v) is standard.

Theorem 6.1 Let Assumptions Φ and M hold and let (γ̂, P̂ ) →p (γ0, P0) or, if there is no

auxiliary parameter, P̂ →p P0. Then: κ̂δ →p κδ and κ̂δ →p κδ.

We now derive the asymptotic distribution of the estimators. To simplify presentation, we

assume the auxiliary parameter γ0 is known and suppress dependence of all quantities on γ for

the remainder of this section. This entails no loss of generality for models without auxiliary

parameters, such as Examples 2.1 and 2.2 and the application in Section 5.1. In DDC models

this presumes the law of motion of the state is known and so the asymptotic distribution
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reflects only sampling uncertainty from the estimated CCPs, which is the case for confidence

sets reported when laws of motion and other inputs are first estimated “offline”. Extending our

approach to accommodate sampling variation in γ̂ in a tractable manner appears to require

exploiting application-specific structure of the model. We therefore defer such extensions to

future work.

Define
bδ(P ) = inf

θ∈Θδ(P )
Kδ(θ;P ) , bδ(P ) = sup

θ∈Θδ(P )
Kδ(θ;P ) . (28)

In this notation, we have κδ = bδ(P0) and κδ = bδ(P0) (see Lemma E.9 for a formal statement)

and κ̂δ = bδ(P̂ ) and κ̂δ = bδ(P̂ ). We shall therefore derive the asymptotic distribution of the

estimators by showing that bδ(P ) and bδ(P ) are directionally differentiable functions of P and

applying a suitable delta method.

A function f : Rd1+d2 → R is (Hadamard) directionally differentiable at P0 if there is a

continuous map dfP0 [·] : Rd1+d2 → R such that

lim
n→∞

f(P0 + tnhn)− f(P0)

tn
= dfP0 [h]

for all sequences tn ↓ 0 and hn → h (Shapiro, 1990, p. 480). If dfP0 [h] is linear in h then f is

(fully) differentiable at P0. To describe the directional derivatives, define

Ξδ(θ;P ) = argsupη≥0,ζ∈R,λ∈Λ − EF∗
[
(ηφ)?(−k(U, θ)− ζ − λ′g(U, θ))

]
− ηδ − ζ − λ′12P ,

Ξδ(θ;P ) = arginfη≥0,ζ∈R,λ∈ΛEF∗
[
(ηφ)?(k(U, θ)− ζ − λ′g(U, θ))

]
+ ηδ + ζ + λ′12P ,

where (ηφ)? denotes the convex conjugate of x 7→ η×φ(x). Let Λδ(θ;P ) and Λδ(θ;P ) denote the

projections of Ξδ(θ;P ) and Ξδ(θ;P ) for the subvector λ12 of (η, ζ, λ).26 Finally, let Θδ(P0) =

arg minθ∈ΘKδ(θ;P0) and Θδ(P0) = arg maxθ∈ΘKδ(θ;P0). The sets Θδ(P0) and Θδ(P0) are

nonempty and compact under Assumptions Φ and M. We require two further conditions:

Assumption M (continued) (vi) Θδ(P0) ⊆ Θδ(P0) and Θδ(P0) ⊆ Θδ(P0);

(vii) θ 7→ Λδ(θ;P0) and θ 7→ Λδ(θ;P0) are lower hemicontinuous at each θ ∈ Θδ(P0) and

θ ∈ Θδ(P0), respectively.

Theorem 6.2 Let Assumptions Φ and M hold. Then: the functions bδ(·) and bδ(·) are direc-

tionally differentiable at P0, with

dbδ,P0
[h] = min

θ∈Θδ(P0)
max

λ12∈Λδ(θ;P0)
−λ′12h , dbδ,P0 [h] = max

θ∈Θδ(P0)
min

λ12∈Λδ(θ;P0)
λ
′
12h .

26That is, Λδ(θ;P ) = {(λ1, λ2) : (η, ζ, λ1, λ2, λ3, λ4) ∈ Ξδ(θ;P )} and similarly for Λδ(θ;P ).
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In addition, if
√
n(P̂ − P0)→d N(0,Σ), then

√
n

[
κ̂δ − κδ
κ̂δ − κδ

]
→d

[
dbδ,P0

[Z]

dbδ,P0 [Z]

]
, where Z ∼ N(0,Σ) .

Theorem 6.2 derives the asymptotic distribution of plug-in estimators by extending a result

of Shapiro (2008).27 The distribution is nonstandard due to the fact that bδ(·) and bδ(·) are

directionally, but possibly not fully, differentiable. The exception is when ∪θ∈Θδ(P0)Λδ(θ;P0) =

{λ12}, in which case
√
n(κ̂δ − κδ)→d N(0, λ′12Σλ12), and similarly for the upper bound.

6.2 Inference Procedure 1: Bootstrap

In view of directional differentiability established in Theorem 6.2, it is well known that the

bootstrap will be inconsistent (Dümbgen, 1993). We therefore specialize the general approach

of Fang and Santos (2019) for inference on directionally differentiable functions to the present

setting. Define

d̂bδ,P0
[h] = inf

θ∈Θ̂δ,n

sup
λ12∈Λδ(θ;P̂ )

−λ′12h , d̂bδ,P0 [h] = sup
θ∈Θ̂δ,n

inf
λ12∈Λδ(θ;P̂ )

λ
′
12h ,

where
Θ̂δ,n = {θ ∈ Θδ(P̂ ) : Kδ(θ; P̂ ) ≤ κ̂δ + ν̂

√
log n/n} , and

Θ̂δ,n = {θ ∈ Θδ(P̂ ) : Kδ(θ; P̂ ) ≥ κ̂δ − ν̂
√

log n/n} .

The quantity ν̂ is a (possibly sample-dependent) positive scalar tuning parameter that satisfies

ν̂ →p ν for some ν > 0.28 Any such ν̂ results in a confidence set with asymptotically correct

coverage. We give some practical guidance on choice of ν̂ in Remark 6.2 below.

Let P̂ ∗ denote a bootstrapped version of P̂ . In practice any bootstrap can be used provided

it satisfies some mild consistency conditions below. For instance, in the empirical application

in Section 5.1 we simply draw P̂ ∗ ∼ N(P̂ , Σ̂/n) where Σ̂ is a consistent estimator of Σ. Let

ĉα = α-quantile of d̂bδ,P0
[
√
n(P̂ ∗ − P̂ )] , ĉα = α-quantile of d̂bδ,P0 [

√
n(P̂ ∗ − P̂ )] ,

where the quantiles are computed by resampling P̂ ∗. Lower, upper, and two-sided 100(1−α)%

27The extensions allow for non-compact domain, non-convexity/concavity in θ, and discontinuity (which can
arise at η = 0) and unboundedness (which can arise as η ↓ 0, |ζ| → ∞, or ‖λ‖ → ∞) of the objective. In
independent work, Galvao and Parker (2019) also establish directional differentiability for minimax problems
without convexity-concavity, though they require that the objective function is bounded.

28The approach of Fang and Santos (2019) will typically require some choice of tuning parameter.
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confidence sets (CSs) for κδ, κδ, and [κδ, κδ] are, respectively:

CS1−α
δ,L =

[
κ̂δ −

ĉ1−α√
n
,+∞

)
, CS1−α

δ,U =
(
−∞, κ̂δ − ĉα√

n

]
,

CS1−α
δ =

[
κ̂δ −

ĉ1−α/2√
n
, κ̂δ −

ĉα/2√
n

]
.

We require a slight strengthening of Assumption M(vii) to establish validity of the procedure:

Assumption M (continued) (vii’) (θ, P ) 7→ Λδ(θ;P ) and (θ, P ) 7→ Λδ(θ;P ) are lower

hemicontinuous at (θ, P0) for each θ ∈ Θδ(P0) and θ ∈ Θδ(P0), respectively.

We also require (standard) consistency and measurability conditions for the bootstrap for

P̂ ∗; see Assumption 3 of Fang and Santos (2019). Finally, let Gδ and Gδ denote the cumulative

distribution functions of dbδ,P0
[Z] and dbδ,P0 [Z], respectively, with Z ∼ N(0,Σ).

Theorem 6.3 Let Assumptions Φ and M(i)–(vi)(vii’) hold,
√
n(P̂ −P0)→d N(0,Σ), and the

bootstrap for P̂ ∗ satisfy Assumption 3 of Fang and Santos (2019). Then: the bootstrap procedure

is consistent for the asymptotic distribution derived in Theorem 6.2. In addition, if Gδ and Gδ

are continuous and increasing at their α/2, α, 1− α, and 1− α/2 quantiles, then:

lim
n→∞

Pr(κδ ∈ CS1−α
δ,L ) = 1− α , lim

n→∞
Pr(κδ ∈ CS1−α

δ,U ) = 1− α ,

lim inf
n→∞

Pr([κδ, κδ] ⊆ CS1−α
δ ) ≥ 1− α .

Remark 6.1 Note dbδ,P0
and dbδ,P0 are convex and concave, respectively, when Θδ(P0) and

Θδ(P0) are singletons. If so, lim infn→∞ Prn(κδ ∈ CS1−α
δ,L ) ≥ 1−α and similarly for CS1−α

δ,U and

CS1−α
δ where “Prn” denotes probabilities along contiguous perturbations with

√
n(P̂ −P0)→d

N(µ,Σ) for fixed µ (Fang and Santos, 2019; Hong and Li, 2018).

Remark 6.2 Implementing our bootstrap procedure requires choosing ν̂. In principle, any ν̂

that satisfies ν̂ →p ν > 0 results in a CS with asymptotically correct coverage. As is evident

from the construction of d̂bδ,P0
[·] and d̂bδ,P0

[·], choosing a smaller value of ν̂ results in (weakly)

wider CSs. In the applications in Section 5, we set ν̂ to be equal to the minimum diagonal

element of the covariance matrix (under F∗) of the moments evaluated at (θ̂, γ̂, P̂ ) where θ̂ is

an estimate of the (point-identified) parameter θ∗ solving (1) under F∗. We chose this quantity

as it is related to the convexity of the inner optimization problem for small δ. Quantitatively,

this resulted in ν̂ between 0.001 and 0.01. In practice, we recommend setting ν̂ to be of a

similarly small magnitude, then performing a sensitivity analysis to check that critical values

aren’t too dependent on ν̂.

Remark 6.3 Choosing ν̂ = 0 and replacing Θ̂δ,n and Θ̂δ,n by {θ̂δ} and {θ̂δ} where θ̂δ and θ̂δ

minimize and maximize the sample criterions is valid but possibly conservative.
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6.3 Inference Procedure 2: Projection

This second approach is computationally very simple but potentially conservative.29 Suppose

we have random vectors P̂ 1−α
1,U , P̂ 1−α

2,U , and P̂ 1−α
2,L that form a 100(1 − α)% rectangular CS for

P0 (see below for its construction):

lim inf
n→∞

Pr
(
P10 ≤ P̂ 1−α

1,U , P̂ 1−α
2,L ≤ P20 ≤ P̂ 1−α

2,U

)
≥ 1− α , (29)

where the inequalities should be understood to hold element-wise. We replace the sample

moment conditions by the following inequalities constructed from the rectangular CS for P0:

EF [g1(U, θ)] ≤ P̂ 1−α
1,U , EF [g2(U, θ)] ≤ P̂ 1−α

2,U , EF [−g2(U, θ)] ≤ −P̂ 1−α
2,L . (30)

Define

K̂δ,1−α(θ) =

[
Kδ,cs(θ; P̂1−α)

+∞
, K̂δ,1−α(θ) =

[
Kδ,cs(θ; P̂1−α) if ∆?

cs(θ; P̂1−α) < δ,

−∞ if ∆?
cs(θ; P̂1−α) ≥ δ,

and Kδ,cs, Kδ,cs, and ∆?
cs are “relaxed” versions of (13), (14), and (16) formed by replacing

sample counterparts of (1a) and (1b) by the inequalities (30). In the relaxed criterions, the set

Λ is replaced by Λcs := Rd1+2d2+d3
+ ×Rd4 because the number of inequality restrictions is now

d1 + 2d2 + d3, the vector of moment functions g is replaced by gcs := (g1, g2,−g2, g3, g4), P is

replaced by P̂1−α := (P̂ 1−α
1,U , P̂ 1−α

2,U ,−P̂ 1−α
2,L ), and λ12 denotes the first d1 + 2d2 elements of λ.

Critical values are computed by optimizing the relaxed criterions:

κ̂δ,1−α = inf
θ∈Θ

K̂δ,1−α(θ) , κ̂δ,1−α = sup
θ∈Θ

K̂δ,1−α(θ) .

Lower, upper, and two-sided 100(1− α)% CSs for κδ and κδ are then given by

CS1−α
δ,L =

[
κ̂δ,1−α,+∞

)
, CS1−α

δ,U =
(
−∞, κ̂δ,1−α

]
, CS1−α

δ =
[
κ̂δ,1−α/2, κ̂δ,1−α/2

]
.

Note that CS1−α
δ requires projecting a 1− α/2 CS constructed from P̂1−α/2.

Theorem 6.4 Let Assumptions Φ and M(i),(iii)–(v) hold and P̂1−α and P̂1−α/2 satisfy (29)

with levels 1− α and 1− α/2, respectively. Then:

lim inf
n→∞

Pr(κδ ∈ CS1−α
δ,L ) ≥ 1− α , lim inf

n→∞
Pr(κδ ∈ CS1−α

δ,U ) ≥ 1− α ,

lim inf
n→∞

Pr([κδ, κδ] ⊆ CS1−α
δ ) ≥ 1− α .

29We are grateful to a referee for suggesting this approach.
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To construct a rectangular CS for P0 satisfying (29), suppose
√
n(P̂ −P0)→d N(0,Σ) and

we have a consistent estimator Σ̂ of Σ. Let σ̂ denote the vector formed by taking the square

root of each diagonal entry of Σ̂. Then, partition σ̂ conformably as σ̂ = (σ̂(1), σ̂(2)) and set

P̂ 1−α
1,L = P̂1 + n−1/2ĉ1−α,1σ̂(1) , P̂ 1−α

2,L = P̂2 − n−1/2ĉ1−α,2σ̂(2) , P̂ 1−α
2,U = P̂2 + n−1/2ĉ1−α,2σ̂(2) ,

where the (scalar) critical values ĉ1−α,1 and ĉ1−α,2 solve

Pr

(
max

1≤i≤d1
Zi/σ̂i ≤ ĉ1−α,1, max

d1+1≤i≤d2
|Zi/σ̂i| ≤ ĉ1−α,2

)
= 1− α , Z ∼ N(0, Σ̂) .

In particular, if d2 = 0 then ĉ1−α,1 is the (1 − α)-quantile of max1≤i≤d1 Zi/σ̂i while if d1 = 0

then ĉ2,1−α is the (1− α)-quantile of max1≤i≤d2 |Zi/σ̂i| with Z ∼ N(0, Σ̂).

7 Local Sensitivity

In this section, we introduce a measure of local sensitivity of the counterfactual κ with respect

to F . We then contrast our approach with other recent approaches to local sensitivity.

7.1 Measure of Local Sensitivity

Our measure of local sensitivity of the counterfactual κ with respect to F at F∗ is

s = lim
δ↓0

(κδ − κδ)2

4δ
.

If s is finite, then under the regularity conditions below, we have

κδ = κ∗ −
√
δs+ o(

√
δ) , κδ = κ∗ +

√
δs+ o(

√
δ)

as δ ↓ 0, where κ∗ = EF∗ [k(U, θ∗, γ0)] and θ∗ solves (1) under F∗.
30 We shall characterize s

using an influence function representation and present an easy to compute estimator ŝ of s.

To draw comparison with the local sensitivity literature, we restrict attention to moment

equality models and impose (standard) regularity conditions. Assume that conditions (1b) and

(1d) under F∗ point identify a structural parameter θ∗ ∈ int(Θ) and that Θ is compact. Note

θ∗ will depend on the parametric specification F∗. With some abuse of notation, let

g(u, θ, γ, P2) =

[
g2(u, θ, γ)− P2

g4(u, θ, γ)

]
,

30Finiteness of s implies that κ∗ is point identified. Note this may be true if θ∗ is not point identified; see,
e.g., Aguirregabiria (2005), Norets and Tang (2014), and Kalouptsidi et al. (2017) for DDC models.
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g∗(u) = g(u, θ∗, γ0, P20), and k∗(u) = k(u, θ∗, γ0). Let EF∗ [g(U, θ, γ0, P20)] and EF∗ [k(U, θ, γ0)]

be continuously differentiable with respect to θ at θ∗, G := ∂
∂θ′E

F∗ [g(U, θ, γ0, P20)]
∣∣
θ=θ∗

have

full rank, V := EF∗ [g∗(U)g∗(U)′] be finite and positive definite, EF∗ [k(U, θ∗, γ0)2] be finite, and

k(·, θ, γ0) and g(·, θ, γ0, P20) be L2(F∗) continuous in θ at θ∗.

We define the influence function of the counterfactual κ with respect to F at F∗ as

ι(u) = Mk∗(u)− J ′(G′V −1G)−1G′V −1g∗(u) , (31)

where Mk∗(u) := k∗(u) − κ∗ − EF∗ [k∗(U)g∗(U)′](V −1 − V −1G(G′V −1G)−1G′V −1)g∗(u) and

J := ∂
∂θE

F∗ [k(U, θ, γ0)]
∣∣
θ=θ∗

. This notion is different from the statistical influence function

of an estimator, as ι measures the sensitivity of an estimand to perturbations of a modeling

assumption rather than the sensitivity of an estimator to perturbations of the data.31

The following theorem relates s and ι. We restrict attention to neighborhoods characterized

by χ2 divergence. Other φ-divergences are locally equivalent to χ2 divergence, so this restriction

entails no great loss of generality.32

Theorem 7.1 Let the above GMM-type regularity conditions hold. Then: s = 2EF∗ [ι(U)2].

In addition to reporting κ̂ = EF∗[k(U, θ̂, γ̂)], the researcher could also report an estimate

of the local sensitivity of the counterfactual with respect to F∗:

ŝ = 2EF∗ [(k̂(U)− κ̂)2] + 2Q̂′V̂ Q̂− 4EF∗ [ĝ(U)(k̂(U)− κ̂)]′Q̂ ,

where k̂(u) = k(u, θ̂, γ̂), ĝ(u) = g(u, θ̂, γ̂, P̂2), V̂ = EF∗ [ĝ(U)ĝ(U)′], and

Q̂ = EF∗ [k̂(U)ĝ(U)′](V̂ −1 − V̂ −1Ĝ(Ĝ′V̂ −1Ĝ)−1Ĝ′V̂ −1) + Ĵ ′(Ĝ′V̂ −1Ĝ)−1Ĝ′V̂ −1 ,

with Ĝ = ∂
∂θ′E

F∗ [g(U, θ, γ̂, P̂2)]
∣∣∣
θ=θ̂

and Ĵ = ∂
∂θE

F∗ [k(U, θ, γ̂)]
∣∣
θ=θ̂

. Bounds on counterfactuals

as F varies over small neighborhoods of F∗ can then be estimated using κ̂±
√
δŝ. The estimator

ŝ is consistent under mild smoothness conditions:

Lemma 7.1 Let the conditions of Theorem 7.1 hold. Also let (θ̂, γ̂, P̂2)→p (θ∗, γ0, P20), and let

EF∗ [g(U, θ, γ, P2)g(U, θ, γ, P2)′], EF∗ [g(U, θ, γ, P2)k(U, θ, γ)], EF∗ [g(U, θ, γ, P2)], EF∗ [k(U, θ, γ)],
∂
∂θ′E

F∗ [g(U, θ, γ, P2)], ∂
∂θ′E

F∗ [k(U, θ, γ)], and EF∗ [k(U, θ, γ)2] each be continuous in (θ, γ, P2) at

(θ∗, γ0, P20). Then: ŝ→p s.

31We use the term influence function as κ(F ) − κ(F∗) ≈
∫
ι d(F − F∗) is valid for distributions F suitably

close to F∗, where κ(F ) denotes the counterfactual under U ∼ F . This mimics the asymptotic linear expansion
for estimators, where F and F∗ are replaced by the empirical and true probability measures, respectively.

32See Theorem 4.1 of Csiszár and Shields (2004). The quantity 2EF∗ [ι(U)2] should be rescaled by a factor of
φ′′(1) for other φ divergences.
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7.2 Comparison with Other Approaches

We conclude this section by comparing our approach with Andrews, Gentzkow, and Shapiro

(2017, 2020; AGS hereafter) and Bonhomme and Weidner (2018; BW hereafter). In what

follows, we shall restrict attention to models characterized only by moments of the form (1b)

with d2 ≥ dθ and in which the auxiliary parameter γ is vacuous. The approaches of AGS,

BW, and this paper all apply to more general models; this restriction is simply to facilitate a

comparison of their approaches with ours.

AGS consider a setting in which the moments (1b) are locally misspecified:

EF∗ [g2(U, θ∗)] = P20 + n−1/2c , (32)

where c gives the direction of local misspecification. Suppose a researcher has a first-stage

estimator P̂2 and computes an estimator θ̂ by minimizing

(EF∗ [g2(U, θ)]− P̂2)′Ŵ (EF∗ [g2(U, θ)]− P̂2)

given some weight matrix Ŵ →p W where W is positive-definite and symmetric. The researcher

would then estimate the counterfactual as κ̂ = EF∗ [k(U, θ̂)], where θ̂ is the first-stage estimator.

AGS’s measure of sensitivity of κ̂ to P̂2 is J ′(G′WG)−1G′W . The first-order asymptotic bias of

κ̂ due to local misspecification of the form (32) is therefore J ′(G′WG)−1G′Wc. AGS’s measure

of informativeness of P̂2 for κ̂ is 1, meaning that all (statistical) variation in κ̂ is explained by

(statistical) variation in P̂2. Our measure of sensitivity instead characterizes the “specification

variation” in κ as the researcher varies F while requiring that F satisfy (1b) for some θ ∈ Θ.

AGS’s measures and our measure of sensitivity therefore represent distinct but complementary

quantities.

BW consider estimation of a target parameter (κ in our context) using a reference model

MR = {(θ, F ) ∈ Θ × {F∗}} when the true (θ0, F0) possibly belongs to a larger model ML =

{(θ, F ) ∈ Θ × Nδ} where δ ↓ 0 with nδ → τ for some constant τ > 0. Shrinking δ ↓ 0 with

n lends tractability to BW’s approach but is not necessarily appropriate in settings such as

ours where F is not nonparametrically identified. BW seek estimators of κ under MR that

minimize worst-case asymptotic bias or MSE over ML. Consider the one-step estimator

κ̂ = EF∗ [k(U, θ̂)] + a′(EF∗ [g2(U, θ̂)]− P̂2) ,

where θ̂ is a
√
n-consistent estimator of θ∗ and a ∈ Rd2 satisfies J ′ = −a′G so that κ̂ does not

depend asymptotically on θ̂. The true counterfactual is κ0 = EF0 [k(U, θ0)] where (θ0, F0) ∈ML

satisfies EF0 [g2(U, θ0)] = P20. If MR is correctly specified so that EF∗ [g2(U, θ∗)] = P20, then
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for any a the worst-case asymptotic bias of the one-step estimator is

lim
n→∞

sup
(θ0,F0)∈ML:EF0 [g2(U,θ0)]=P20

|
√
n(κ∗ − κ0))| =

√
τs ,

where s is our measure of local sensitivity. If we allow for local misspecification of MR, in the

sense that EF∗ [g2(U, θ∗)] 6= P20, then the worst-case asymptotic bias of the one-step estimator

is

lim
n→∞

sup
(θ0,F0)∈ML:EF0 [g2(U,θ0)]=P20

∣∣√n (κ∗ − κ0 + a′
(
EF∗ [g2(U, θ∗)]− P20

))∣∣ =
√
τsa ,

where sa is our local sensitivity measure with k replaced by k + a′g2.

8 Conclusion

This paper introduces a tractable framework for performing a global sensitivity analysis of

counterfactuals to researchers’ assumptions about the distribution of latent variables in a

class of structural models. In particular, we show how to construct the smallest and largest

counterfactuals obtained as the distribution of unobservables varies over fully nonparametric

neighborhoods of the researcher’s parametric specification while other structural features of

the model are maintained. Our procedure recovers sharp bounds on the nonparametrically

identified set of counterfactuals as the neighborhoods size becomes large and has connections

with local sensitivity analyses over small neighborhoods. We illustrate our procedure with

empirical applications to matching models and dynamic discrete choice.
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Online Appendix to “Counterfactual Sensitivity and Robustness”

Timothy Christensen Benjamin Connault

A Extensions

In this section we present three extensions of the methodology developed in the main text.

The first two extensions are to different classes of model, namely conditional moment models

and nonseparable models. The final extension shows how to impose exchangeability as a shape

restriction on the class of distributions.

A.1 Conditional Moments

Consider the conditional moment model

EF [g1(U,X, θ, γ0)|X = x] ≤ P10,x, EF [g2(U,X, θ, γ0)|X = x] = P20,x,

EF [g3(U,X, θ, γ0)|X = x] ≤ 0, EF [g4(U,X, θ, γ0)|X = x] = 0,
for each x ∈ X (33)

where the conditioning variable X takes values in a finite set X . Suppose we are interested in

a counterfactual33

κ =
∑
x∈X

EF [k(U,X, θ, γ0)|X = x] . (34)

Suppose a researcher assumes U |X = x ∼ F∗ for each x. We show how to bound counterfactuals

when we relax this parametric assumption and allow each conditional distribution of U given

X = x, say Fx, to depart from F∗ and vary in a neighborhood Nδx of F∗. Thus, in relaxing the

parametric assumption F∗ we are allowing the conditional distributions Fx to vary with x, and

therefore relaxing independence of U and X.34 For simplicity we assume each Nδ is defined by

the same φ function, though we allow the neighborhood size to possibly vary with x.

Let δ = (δx)x∈X . By analogy with (8) and (9), we are interested in the values

κδ = inf
θ∈Θ,(Fx∈Nδx )x∈X

∑
x∈X

EFx [k(U, x, θ, γ0)] subject to (33), (35)

κδ = sup
θ∈Θ,(Fx∈Nδx )x∈X

∑
x∈X

EFx [k(U, x, θ, γ0)] subject to (33). (36)

33Note κ can be the expected value at a particular value x0 if k(U, x, θ, γ0) = 0 for x 6= x0. More generally,
κ can be a weighted average by incorporating the weighting into the definition of k(u, x, θ, γ0).

34The case with U independent of X is subsumed in (1) by stacking the moment functions and reduced-form
parameters by values of the conditioning variable: g1(U, θ, γ) = (g1(U, x, θ, γ))x∈X and similarly for g2, g3, and
g4, P10 = (P10,x)x∈X , P20 = (P20,x)x∈X , and k(U, θ, γ) =

∑
x∈X k(U, x, θ, γ).
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By similar reasoning to Section 2.3, the optimization problems defining κδ and κδ can

be written as optimizations of profiled criterion functions Kδ(θ; γ0, P0) and Kδ(θ; γ0, P0) with

respect to θ. Let P = (Px)x∈X where each Px = (P1,x, P2,x) is partitioned conformably with g1

and g2. For a generic (θ, γ, P ), the profiled criterion functions are

Kδ(θ; γ, P ) = inf
(Fx∈Nδx )x∈X

∑
x∈X

EFx [k(U, x, θ, γ0)] s.t. (33) holding at (θ, γ, P ) ,

Kδ(θ; γ, P ) = sup
(Fx∈Nδx )x∈X

∑
x∈X

EFx [k(U, x, θ, γ0)] s.t. (33) holding at (θ, γ, P ) .

These profiled criterion functions have a dual formulation analogous to Proposition 2.1. Let

g(·, x, θ, γ) = (g1(·, x, θ, γ), . . . , g4(·, x, θ, γ)) denote the vector of moment functions evaluated

at X = x. Recall that d =
∑4

i=1 di where di is the dimension of gi, i = 1, . . . , 4, and that

Λ = Rd1+ × Rd2 × Rd3+ × Rd4 , and let λ12,x denote the first d1 + d2 elements of λx ∈ Λ.

Assumption Φ-conditional (i) φ ∈ Φ0.

(ii) k( · , x, θ, γ) and each entry of g( · , x, θ, γ) belong to E for each θ ∈ Θ, γ ∈ Γ, and x ∈ X .

Proposition A.1 Let Assumption Φ-conditional hold. If there exist distributions Fx ∈ Nδx
for each x ∈ X such that moment conditions (33) hold at (θ, γ, P ), then

Kδ(θ; γ, P ) (37)

= sup
(ηx>0,ζx∈R,λx∈Λ)x∈X

∑
x∈X

(
−ηxEF∗

[
φ?
(
k(U,x,θ,γ)+ζx+λ′xg(U,x,θ,γ)

−ηx

)]
− ηxδx − ζx − λ′12,xPx

)
,

Kδ(θ; γ, P ) (38)

= inf
(ηx>0,ζx∈R,λx∈Λ)x∈X

∑
x∈X

(
ηxEF∗

[
φ?
(
k(U,x,θ,γ)−ζx−λ′xg(U,x,θ,γ)

ηx

)]
+ ηxδx + ζx + λ′12,xPx

)
.

Moreover, if the value of problem (37) is +∞ (equivalently, if the value of problem (38) is

−∞), then for at least one x ∈ X there is no distribution in Nδx under which the moment

conditions (33) hold at (θ, γ, P ).

Analogously to Section 2.5, estimators κ̂δ and κ̂δ of κδ and κδ are computed by minimizing

and maximizing sample criterions with respect to θ. Letting P̂ = (P̂x)x∈X , the sample criterions

are

K̂δ(θ) =

[
Kδ(θ; γ̂, P̂ )

+∞
, K̂δ(θ) =

[
Kδ(θ; γ̂, P̂ ) if ∆?

x(θ; γ̂, P̂x) < δx for each x ∈ X ,

−∞ if ∆?
x(θ; γ̂, P̂x) ≥ δx for some x ∈ X ,

where Kδ(θ; γ̂, P̂ ) and Kδ(θ; γ̂, P̂ ) denote the dual representations from Proposition A.1 eval-
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uated at (γ̂, P̂ ), and ∆?
x(θ; γ̂, P̂x) denotes the program

∆?
x(θ; γ, Px) = sup

ζx∈R,λx∈Λ
−EF∗

[
φ?(−ζx − λ′xg(U, x, θ, γ))

]
− ζx − λ′12,xPx

evaluated at (γ̂, P̂x). Consistency of the estimators and an asymptotic distribution theory may

be derived by a suitable modification of the arguments in Section 6.

A.2 Nonseparable Moments

Here we show that our approach also extends to nonseparable models of the form

EH [g̃1(U,X, θ, γ̃0)] ≤ P10, EH [g̃2(U,X, θ, γ̃0)] = P20,

EH [g̃3(U,X, θ, γ̃0)] ≤ 0, EH [g̃4(U,X, θ, γ̃0)] = 0,
(39)

where the expectation is with respect to the joint distribution H of (U,X) and X again takes

values in a finite set X . We also consider a counterfactual function

κ = EH [k̃(U,X, θ, γ̃0)] . (40)

As in the previous subsection, we suppose the researcher assumes U |X = x ∼ F∗ for each x as

this independent specification is often used in applied work. We wish to relax the researcher’s

parametric assumption and allow U |X = x ∼ Fx where each Fx is in a neighborhood Nδx of

F∗. For simplicity we shall again assume each Nδ is defined by the same φ function, though we

allow the neighborhood size to possibly vary with x.

Write H(u, x) = q0,x × Fx(u) where q0,x = Pr(X = x). The probabilities q0 = (q0,x)x∈X

can be consistently estimated from data on X. Let γ0 = (γ̃0, q0) and g1(U, x, θ, γ0) = q0,x ×
g̃1(U, x, θ, γ̃0) and similarly for g2, g3, g4, and k. The model (39) and counterfactual (40) can

then be written in similar notation to the previous subsection, namely as∑
x

EFx [g1(U, x, θ, γ0)] ≤ P10,
∑
x

EFx [g2(U, x, θ, γ0)] = P20,∑
x

EFx [g3(U, x, θ, γ0)] ≤ 0,
∑
x

EFx [g4(U, x, θ, γ0)] = 0,
(41)

and κ =
∑

x EFx [k(U, x, θ, γ0)]. With δ = (δx)x∈X , our objects of interest are then

κδ = inf
θ∈Θ,(Fx∈Nδx )x∈X

∑
x

EFx [k(U, x, θ, γ0)] subject to (41),

κδ = sup
θ∈Θ,(Fx∈Nδx )x∈X

∑
x

EFx [k(U, x, θ, γ0)] subject to (41).
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As before, the optimization problems defining κδ and κδ can be written as optimizations

of profiled criterion functions Kδ(θ; γ0, P0) and Kδ(θ; γ0, P0) with respect to θ. For a generic

(θ, γ, P ), the criterion functions are

Kδ(θ; γ, P ) = inf
(Fx∈Nδx )x∈X

∑
x

EFx [k(U, x, θ, γ0)] s.t. (41) holding at (θ, γ, P ) ,

Kδ(θ; γ, P ) = sup
(Fx∈Nδx )x∈X

∑
x

EFx [k(U, x, θ, γ0)] s.t. (41) holding at (θ, γ, P ) .

These profiled criterion functions have a dual formulation analogous to Proposition 2.1. Let

g(·, x, θ, γ) = (g1(·, x, θ, γ), . . . , g4(·, x, θ, γ)) denote the vector of moment functions evaluated

at X = x. The remaining notation the same as in Proposition 2.1.

Proposition A.2 Let Assumption Φ-conditional hold. If there exist distributions Fx ∈ Nδx
for all x ∈ X such that the moment conditions (41) hold at (θ, γ, P ), then

Kδ(θ; γ, P )

= sup
(ηx>0,ζx∈R)x∈X ,λ∈Λ

∑
x

(
−ηxEF∗

[
φ?
(
k(U,x,θ,γ)+ζx+λ′g(U,x,θ,γ)

−ηx

)]
− ηxδx − ζx − λ′12P

)
, (42)

Kδ(θ; γ, P )

= inf
(ηx>0,ζx∈R)x∈X ,λ∈Λ

∑
x

(
ηxEF∗

[
φ?
(
k(U,x,θ,γ)−ζx−λ′g(U,x,θ,γ)

ηx

)]
+ ηxδx + ζx + λ′12P

)
. (43)

Moreover, if the value of problem (42) is +∞ (equivalently, if the value of problem (43) is

−∞), then for at least one x ∈ X there is no distribution in Nδx under which the moment

conditions (39) hold at (θ, γ, P ).

Estimators κ̂δ and κ̂δ are again computed by minimizing and maximizing sample criterions

with respect to θ, namely

K̂δ(θ) =

[
Kδ(θ; γ̂, P̂ )

+∞
, K̂δ(θ) =

[
Kδ(θ; γ̂, P̂ ) if ∆?

sep(θ; γ̂, P̂ ) < 0

−∞ if ∆?
sep(θ; γ̂, P̂ ) ≥ 0,

where Kδ(θ; γ̂, P̂ ) and Kδ(θ; γ̂, P̂ ) denote the dual representations from Proposition A.2 eval-

uated at (γ̂, P̂ ) with γ̂ = (ˆ̃γ, q̂) for estimators ˆ̃γ of γ̃ and q̂ of q0, and

∆?
sep(θ; γ, P )

= sup
(ηx≥0,ζx∈R)x∈X ,λ∈Λ∑

x∈X ηx≤1

(
−
∑
x∈X

EF∗
[
(ηxφ)?(−ζx − λ′xg(U, x, θ, γ))

]
− ηxδx − ζx

)
− λ′12P .
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Using similar arguments to Appendix F.3, the program ∆?
sep may be shown to be the dual of

inf
t∈R,(Fx)x∈X

t s.t. Dφ(Fx‖F∗) ≤ δx + t for each x ∈ X and (41) holding at (θ, γ, P ).

If there exist Fx with Dφ(Fx‖F∗) < δx for each x such that (41) holds at (θ, γ, P ), the value of

this program is negative and hence ∆?
sep(θ; γ, P ) is negative. Consistency of the estimators and

an asymptotic distribution theory may be derived by a suitable modification of the arguments

in Section 6.

A.3 Exchangeability

Exchangeability can be an attractive shape restriction to impose on F in certain settings.

For instance, in the context of discrete choice (Example 2.1), exchangeability ensures that

choice probabilities depend on the alternatives’ deterministic components of utility but not

their labeling. Exchangeability can be easily imposed using our procedure whenever F∗ is

exchangeable, which is often the case in applications.

Let U = (U1, . . . , UJ) and let ΠJ denote the set of all permutations $ of {1, . . . , J}.
Given any Π ⊆ ΠJ that forms a group under composition, we say that F is Π-exchangeable

if (M$(1), . . . ,M$(J)) ∼ F for all $ ∈ Π. Special cases include (full) exchangeability with

Π = ΠJ , cyclic exchangeability with Π = Πc
J := {$j

c : j = 0, . . . , J − 1} where $j
c(i) =

(i+ j)(modJ) + 1 (i.e., invariance under rotations), and dihedral exchangeability when J ≥ 3,

with Π = Πc
J ∪ {$

j
r : j = 0, . . . , J − 1} where $j

r(i) = (J − i + j)(modJ) + 1 (i.e., invariance

under rotations and reflections).

Each notion of exchangeability ensures the marginal distribution of each element of U is

identical, but they have different implications for the joint distributions of elements of U . For

instance, the distribution of (Ui, Uj) for i 6= j depends on i − j and |i − j| under cyclic and

dihedral exchangeability, respectively, but is independent of (i, j) under (full) exchangeability.

Let N ex
δ = {F ∈ Nδ : F is Π-exchangeable}. Similar to (8) and (9), we are interested in

κexδ = inf
θ∈Θ,F∈N exδ

EF [k(U, θ, γ0)] subject to (1), (44)

κexδ = sup
θ∈Θ,F∈N exδ

EF [k(U, θ, γ0)] subject to (1). (45)

We again write these as optimization problems in terms of profiled criterion functions:

Kex
δ (θ; γ, P ) = inf

F∈N exδ
EF [k(U, θ, γ)] subject to (1) holding at (θ, γ, P ) , (46)

K
ex
δ (θ; γ, P ) = sup

F∈N exδ
EF [k(U, θ, γ)] subject to (1) holding at (θ, γ, P ) . (47)
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The values of the programs (46) and (47) can be computed using finite-dimensional convex

programs when F∗ is Π-exchangeable. Identify each $ with its corresponding permutation

matrix M$ ∈ {0, 1}J×J . Define

kex(U, θ, γ) =
1

|Π|
∑
$∈Π

k(M$U, θ, γ) , gexj (U, θ, γ) =
1

|Π|
∑
$∈Π

gj(M$U, θ, γ) , j = 1, 2, 3, 4,

and let gex = (gex1 , gex2 , gex3 , gex4 ). We have the following counterpart to Proposition 2.1.

Proposition A.3 Let Assumption Φ hold, let F∗ be Π-exchangeable, and let Condition S hold

at (θ, γ, P ) for the moments gex. If there exists a distribution F ∈ N ex
δ such that the moment

conditions (1) hold at (θ, γ, P ), then

Kex
δ (θ; γ, P ) = sup

η>0,ζ∈R,λ∈Λ
−ηEF∗

[
φ?
(
kex(U,θ,γ)+ζ+λ′gex(U,θ,γ)

−η

)]
− ηδ − ζ − λ′12P , (48)

K
ex
δ (θ; γ, P ) = inf

η>0,ζ∈R,λ∈Λ
ηEF∗

[
φ?
(
kex(U,θ,γ)−ζ−λ′gex(U,θ,γ)

η

)]
+ ηδ + ζ + λ′12P . (49)

Moreover, if the value of problem (48) is +∞ (equivalently, if the value of problem (49) is

−∞), then there is no distribution in N ex
δ under which (1) holds at (θ, γ, P ).

Remark A.1 If F is Π-exchangeable and satisfies (1), then it must also satisfy (1) under all |Π|
permutations of the elements of U . The moment conditions imposed in the inner optimization

are in fact
EF [g1(M$U, θ, γ0)] ≤ P10, EF [g2(M$U, θ, γ0)] = P20,

EF [g3(M$U, θ, γ0)] ≤ 0, EF [g4(M$U, θ, γ0)] = 0,
(50)

for all permutations $ ∈ Π, which yields a total of |Π| × d moment conditions (J !× d for full

exchangeability, and J × d and 2J × d for cyclic and dihedral exchangeability, respectively,

when J ≥ 3). In principle one could include the full set of |Π|×d moments under permutations

in the problems (48) and (49). By Π-exchangeability of F∗ and convexity of the objective, the

multipliers on the moments (50) will be identical across all permutations. Therefore, it suffices

to consider only the d averaged moments in gex rather than the full set of |Π| permutations of

the d moments, reducing the dimension of the inner optimization by a factor of |Π|.

Remark A.2 When Monte Carlo methods are used to compute the expectations, the empir-

ical distribution of the random draws from F∗ may not be Π-exchangeabile even though the

distribution F∗ from which they are drawn is Π-exchangeable. In this case, Π-exchangeability

of the empirical distribution of the draws can be imposed by taking a sample from F∗ and then

concatenating this sample across each of its |Π| permutations.
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B Additional Results on Nonparametrically Identified Sets

In this section we present further details to supplement Section 2.4 in the main text. Theorem

2.1 follows largely from the three lemmas presented in this section.

We first characterize the behavior of κδ and κδ as the neighborhood size δ becomes large.

Let N∞ = {F : Dφ(F‖F∗) <∞}. Define

K∞ = {EF [k(U, θ, γ0)] : (1) holds at (θ, γ0, P0), θ ∈ Θ, F ∈ N∞} .

The inclusion K∞ ⊆ K holds because N∞ ⊆ Fθ for each θ ∈ Θ by Assumption Φ. Our

first result is that the smallest and largest values of K∞ are approached by κδ and κδ as the

neighborhood size δ gets large.

Lemma B.1 Let Assumption Φ hold. Then κδ → inf K∞ and κδ → supK∞ as δ →∞.

Next, we characterize the smallest and largest elements of K∞ using profiled optimization

problems and derive their dual forms. Define the profiled criterion functions

K∞(θ; γ0, P0) = inf
F∈N∞

EF [k(U, θ, γ0)] subject to (1) holding at (θ, F ) , (51)

K∞(θ; γ0, P0) = sup
F∈N∞

EF [k(U, θ, γ0)] subject to (1) holding at (θ, F ) , (52)

which are the infinite-δ versions of (11) and (12). By definition, we have

inf K∞ = inf
θ∈Θ

K∞(θ; γ0, P0) , supK∞ = sup
θ∈Θ

K∞(θ; γ0, P0) .

Let F∗-ess inf and F∗-ess sup denote essential infimum and supremum defined relative to the

measure F∗.

Lemma B.2 Let Assumption Φ hold and let Condition S hold at (θ, γ, P ). Then:

K∞(θ; γ, P ) = sup
λ∈Λ:F∗-ess inf(k(·,θ,γ)+λ′g(·,θ,γ))>−∞

(
F∗-ess inf(k(·, θ, γ) + λ′g(·, θ, γ))− λ′12P

)
,

K∞(θ; γ, P ) = inf
λ∈Λ:F∗-ess sup(k(·,θ,γ)−λ′g(·,θ,γ))<+∞

(
F∗-ess sup(k(·, θ, γ)− λ′g(·, θ, γ)) + λ′12P

)
.

The programs characterizing K∞(θ; γ0, P0) and K∞(θ; γ0, P0) at any fixed θ are non-

smooth max-min and min-max optimization problems. These optimization problems may be

difficult to solve, especially when u is multivariate and enters k or g nonlinearly. Note in

particular that the inner optimization over u will typically be non-convex. Constraining F to

Nδ with δ < +∞ replaces the inner optimization over u with a nonlinear expectation, and

results in the smooth convex programs (13) and (14).
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Finally, we characterize the smallest and largest elements of K using profiled optimization

problems. Define

Knp(θ; γ0, P0) = inf
F∈Fθ

EF [k(U, θ, γ0)] subject to (1) holding at (θ, F ) , (53)

Knp(θ; γ0, P0) = sup
F∈Fθ

EF [k(U, θ, γ0)] subject to (1) holding at (θ, F ) . (54)

We then have

inf K = inf
θ∈Θ

Knp(θ; γ0, P0) , supK = sup
θ∈Θ

Knp(θ; γ0, P0) .

As with the other cases, the criterion functions Knp and Knp have a dual representation. Given

the different topological nature of Fθ, we require a slightly different constraint qualification:

Definition B.1 Condition Snp holds at (θ, γ, P ) if ~P ∈ ri({EF [g(U, θ, γ)] : F ∈ Fθ}+ C).

Condition Snp is weaker than Condition S from Section 2.4 provided F∗ and µ are mutually

absolutely continuous (see Lemma E.6). Under this condition, the criterion functions Knp and

Knp admit a dual representation:

Lemma B.3 Let Condition Snp hold at (θ, γ0, P0) and let µ-ess sup |k(·, θ, γ0)| <∞. Then:

Knp(θ; γ0, P0) = sup
λ∈Λ:µ-ess inf(k(·,θ,γ0)+λ′g(·,θ,γ0))>−∞

(
µ-ess inf(k(·, θ, γ0) + λ′g(·, θ, γ0))− λ′12P0

)
,

Knp(θ; γ0, P0) = inf
λ∈Λ:µ-ess sup(k(·,θ,γ0)−λ′g(·,θ,γ0))<+∞

(
µ-ess sup(k(·, θ, γ0)− λ′g(·, θ, γ0)) + λ′12P0

)
.

C Additional Details for Empirical Applications

This Appendix presents some additional details for the applications in Sections 5.1 and 5.2.

C.1 Marital College Premium

Additional results. Figure 6a plots lower and upper bounds on the SC to CG premium

for our first implementation when structural parameters are held fixed at CSW’s estimates θ̂c∗

(computed under F∗) but F c is allowed to vary. Figure 6b repeats this analysis for our second

implementation imposing the exchangeability shape restriction. The fixed-θ nonparametric

identified set for our second implementation is around half the width of the bounds [κ̂0.01, κ̂0.01]

for our first implementation for late cohorts, and a fraction of the width for earlier cohorts.
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(a) Implementation 1 (without exchangeability). (b) Implementation 2 (dihedral exchangeability).

Figure 6: Matching example: Bounds on the SC to CG premium for white women when F c varies but
structural parameters are held fixed at their estimates θ̂c∗ under F∗. Grey dotted lines are the estimates
κ̂c0.01 and κ̂

c

0.01 reported in Figure 1.

δ 0.01 0.10 1.00 10.0 100.0
Implementation 1 0.071 0.055 0.082 0.278 0.290
Implementation 2 0.197 0.271 0.363 0.313 0.588

Table 5: Matching example: Inner-optimization computation times (seconds) for κ̂1δ . Implementations
1 and 2 use 50,000 and 180,000 Monte Carlo draws, respectively. All computations are performed in
Julia version 1.5.3 and KNITRO 12.2.0 on a 2.7GHz MacBook Pro with 16GB memory.

Computation times. Table 5 reports average computation times for the inner optimization

for evaluating the criterion function K̂δ(θ; P̂ ) for κ̂1
δ at CSW’s estimate θ̂1

∗ (the computation

times are slightly different at different θ). Computation times increase somewhat with δ, as the

Hessian becomes more ill-conditioned around the optimum for smaller δ. The computations

reported in Table 5 initialize the solver at η = 1, ζ = 0, and λ = 0. When embedded in the

outer optimization with respect to θ, the inner-optimization computation times were reduced

significantly by initializing at the (η, ζ, λ) solving the inner optimization at the previous value

of θ. The outer optimization times varied with c, δ, and implementation but were typically

solved in at most a few minutes (often 90 seconds or less).

Sensitivity to φ. Implementing the procedure with χ2 and L4 divergences produced near

identical bounds for δ = 0.01 and 0.1. With δ = 1 and 10 the bounds with χ2 divergence were

slightly narrower than with hybrid divergence, but at most only around 10% narrower across

cohorts for both premiums we analyze. The bounds with L4 divergence were around 60% the

width of the hybrid-neighborhood bounds for δ = 1 and 10 across cohorts (L4 divergence is

stronger than χ2 and hybrid divergence). The shapes of the sets with χ2 and L4 divergence

were also similar to those reported for hybrid divergence. Overall, these results show that the

conclusions we draw from our analysis are not sensitive to the choice of φ function.
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δ 0.01 0.10 1.00 10.0 100.0
κ̂δ 0.119 0.163 0.203 0.184 0.730

κ̂δ 0.100 0.125 0.146 0.411 1.032

Table 6: Dynamic discrete choice example: Inner-optimization computation times (seconds) at the
parameter values at which κ̂δ and κ̂δ are attained. All computations are performed in Julia version
1.5.3 and KNITRO 12.2.0 on a 2.7GHz MacBook Pro with 16GB memory.

C.2 Welfare Analysis in a Rust Model

Computation times. Table 6 reports average computation times for the inner optimiza-

tion for evaluating the criterion function K̂δ(θ; γ̂, P̂ ) at the parameter values at which κ̂δ and

κ̂δ are attained. Here the computation times correspond to solving the minimum divergence

problem ∆?(θ; γ̂, P̂ ) because k does not depend on u (cf. Section 2.5). Computation times are

reported for the MPEC implementation, in which the inner optimization involves 75 moments

(71 moments for CCPs and 4 location/scale normalizations). The computations reported in

Table 6 initialize the solver at η = 1, ζ = 0, and λ = 0. When embedded in the outer optimiza-

tion with respect to θ, the inner-optimization computation times were reduced significantly by

initializing at the (η, ζ, λ) solving the inner optimization at the previous value of θ. Here again

the outer optimizations were typically solved in a few minutes or less.

Sensitivity to φ. Implementing the procedure with χ2-divergence produced bounds that

were at most 3% narrower and no wider than the bounds for hybrid divergence for all values of

neighborhood size δ. Repeating the analysis with L4-divergence, which is stronger than χ2 and

hybrid divergence, produced bounds that were 15-20% narrower than the bounds for hybrid

divergence for values of δ up to δ = 1 and at most 5% narrower than the hybrid divergence

bounds for larger values of δ. As with the matching application, these results again show that

the conclusions we draw from our analysis are not sensitive to the choice of φ function.

D Background Material on Orlicz Spaces

Our results rely on the theory of paired Orlicz spaces. We refer the reader to Krasnosel’skii

and Rutickii (1961) for a textbook treatment. Here we summarize the relevant aspects that

are used in our proofs. Define

L = {f : U → R such that EF∗ [φ(1 + c|f(U)|)] <∞ for some c > 0}

E = {f : U → R such that EF∗ [ψ(c|f(U)|)] <∞ for all c > 0} .

The class L is an Orlicz class of functions corresponding to the function x 7→ φ(1+ |x|) whereas

the class E is the Orlicz heart corresponding to ψ(x) = φ?(x) − x where φ? is the convex

conjugate of φ. The condition limx→∞ xφ
′(x)/φ(x) < ∞ in Assumption Φ(i) verifies the so-
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called ∆2-condition in Krasnosel’skii and Rutickii (1961). The spaces L and E are separable

Banach spaces when equipped with the norms

‖f‖φ = inf
c>0

1

c
(1 + EF∗ [φ(1 + c|f(U)|)]) , and ‖f‖ψ = inf

c>0

1

c
(1 + EF∗ [ψ(c|f(U)|)]) ,

respectively (Krasnosel’skii and Rutickii, 1961, Chapter II, Section 10).35 Given two functions

φ1, φ2 satisfying Assumption Φ(i), write φ1 ≺ φ2 if there exist positive constants c and x0 such

that φ1(x) ≤ φ2(cx) for all x ≥ x0. If φ1 ≺ φ2 and φ2 ≺ φ1 then φ1 and φ2 are said to be

equivalent. Equivalent φ functions induce the same spaces L and E and their corresponding

norms ‖ · ‖φ1 and ‖ · ‖φ2 are equivalent (Krasnosel’skii and Rutickii, 1961, Theorems 13.1 and

13.3). For example, the functions inducing hybrid and χ2 divergence are equivalent.

A sequence {fn}n≥1 ⊂ L is E-weakly convergent if {EF∗ [fn(U)g(U)]}n≥1 converges for

each g ∈ E . The space L is E-weakly complete: any E-weakly convergent sequence of functions

{fn}n≥1 ⊂ L has a unique limit, say f∗ ∈ L, for which

lim
n→∞

EF∗ [fn(U)g(U)] = EF∗ [f∗(U)g(U)]

for each g ∈ E ; it is also E-weakly compact: every ‖ · ‖φ-norm bounded sequence in L has an

E-weakly convergent subsequence (Krasnosel’skii and Rutickii, 1961, Theorem 14.4). A version

of Hölder’s inequality also holds:

|EF∗ [f(U)g(U)]| ≤ ‖f‖φ‖g‖ψ

for each f ∈ L and g ∈ E (Krasnosel’skii and Rutickii, 1961, Theorem 9.3).

The spaces L and E are paired locally convex topological vector spaces under the pairing

〈f, g〉 := EF∗ [f(U)g(U)] , f ∈ L, g ∈ E ,

and suitable topologies on L and E . Specifically, we equip L with the E-weak topology, which en-

sures every continuous linear functional on L is representable in the form 〈 · , g〉 for g ∈ E (Kras-

nosel’skii and Rutickii, 1961, Theorem 14.7). Similarly, we equip E with the topology of L-weak

convergence, i.e., the sequence {gn}n≥1 ⊂ E is L-weakly convergent if {EF∗ [f(U)gn(U)]}n≥1

converges for each f ∈ L.36 Under this topology, every continuous linear functional on E is

representable in the form 〈f, · 〉 for f ∈ L. Refer to Chapter 2, Section 14 of Krasnosel’skii and

Rutickii (1961) and Section 3.3 of Komunjer and Ragusa (2016) for further details.

35In the notation of Krasnosel’skii and Rutickii (1961), our space L is the space L?M with M(x) = φ(1 + x)
and the space E is the space EN with N(x) = ψ(x). As φ satisfies the ∆2-condition, we have L?M = LM = EM .

36In the notation of Krasnosel’skii and Rutickii (1961), this is equivalent to EM -weak convergence (since
EM = L?M by virtue of the ∆2 condition) for functions in EN ⊆ L?N , with M(x) = φ(1 + x) and N(x) = ψ(x).
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We close this section by noting three useful results, the first of which is stated informally

on p. 961 of Komunjer and Ragusa (2016).

Lemma D.1 Under Assumption Φ(i), the functional m 7→ EF∗ [φ(m(U))] is l.s.c. on L in the

E-weak topology.

Lemma D.2 Under Assumption Φ(i), if EF∗ [φ(m(U))] ≤ δ then ‖m‖φ ≤ 2 + φ(2) + δ.

Let L+ := {m ∈ L : m ≥ 0 (F∗-a.e.)} denote the cone of non-negative functions in L.

Lemma D.3 Under Assumption Φ(i), EF∗ [φ(m(U))] <∞ if and only if m ∈ L+.

E Proof of Main Results

Throughout the proofs, we abbreviate upper-semicontinuous and upper-semicontinuity to u.s.c.

and lower-semicontinuous and lower-semicontinuity to l.s.c.

E.1 Preliminary Results

We first present some preliminary results on the derivation of the dual formulation and verifi-

cation of the constraint qualification conditions.

We derive the dual for Kδ(θ; γ, P ); the derivation of the dual program for Kδ follows

similarly, replacing k with −k. Fix any θ ∈ Θ and γ ∈ Γ. We drop dependence of k(u, θ, γ) and

g(u, θ, γ) on (θ, γ) to simplify notation. For Kδ, the problem we wish to study is

inf
F

EF [k(U)] subject to Dφ(F‖F∗) ≤ δ , EF [g1(U)] ≤ P1 , . . . , EF [g4(U)] = 0 . (55)

We apply duality theory as exposited in Chapter 2.5 of Bonnans and Shapiro (2000). We

identify each distribution F for which Dφ(F‖F∗) < ∞ with its Radon–Nikodym derivative

m = dF
dF∗
∈ L (see Appendix D). We also pair the space L with the space E , equipping both

with the topologies described in Appendix D and using the pairing 〈·, ·〉 defined therein.

Define the function ϕ : L × Rd+2 → R ∪ {+∞} by

ϕ(m, y) = 〈m, k〉+ IC
(
Qφ(m)− δ + y1, 〈m, 1〉 − 1 + y2, 〈m, g〉 − ~P + y3

)
,

where y = (y1, y2, y3) ∈ R× R× Rd, ~P = (P, 0d3+d4), Qφ(m) = EF∗ [φ(m(U))],

〈m, k〉 = EF∗ [m(U)k(U)] , 〈m, 1〉 = EF∗ [m(U)] , 〈m, g〉 = EF∗ [m(U)g(U)] ,
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and IC : Rd+2 → R ∪ {+∞} is given by

IC(y1, y2, y3) =

[
0 if y1 ≤ 0, y2 = 0, and y3 ∈ Rd1− × {0}d2 × Rd3− × {0}d4 ,

+∞ otherwise .

For any y ∈ Rd+2, define the primal problem

min
m∈L

ϕ(m, y) (Py)

and let v(y) = infm∈L ϕ(m, y) denote its value. Then v(0) is the value of problem (55).

We first establish some facts about ϕ and v. A convex function f : X → R ∪ {+∞} is

said to be proper if f(x) > −∞ for all x ∈ X and f(x) < +∞ for some x ∈ X. The effective

domain of f is dom f = {x ∈ X : f(x) < +∞}.

Lemma E.1 Under Assumption Φ, the function ϕ is proper and convex.

Proof of Lemma E.1. First note that |〈m, k〉| < +∞ for any m ∈ L by Hölder’s inequality

for Orlicz spaces (see Appendix D) and Assumption Φ(ii). It follows that ϕ(m, y) > −∞ for

all m ∈ L and y ∈ Rd+2. Now take any m ∈ L+. Then Qφ(m) < +∞ by Lemma D.3. Setting

y1 = δ − Qφ(m), y2 = 1 − 〈m, 1〉 and y3 = ~P − 〈m, g〉 ensures IC(Qφ(m) − δ + y1, 〈m, 1〉 +

y2, 〈m, g〉 − ~P + y3) = 0, hence ϕ(m, y) < +∞. This shows that ϕ is proper. Convexity of ϕ

now follows from convexity of m 7→ Qφ(m) and convexity of dom IC .

Recall C = Rd1+ × {0d2} × Rd3+ × {0d4}. Let

Y =


 δ −Qφ(m)

1− 〈m, 1〉
~P − 〈m, g〉

 : m ∈ L+

− R+ × {0} × C .

Lemma E.2 Under Assumption Φ, (i) the function v is proper, convex, l.s.c., and dom v = Y,

and (ii) a solution to the primal problem (Py) exists for each y ∈ Y.

Proof of Lemma E.2. Convexity of v follows from convexity of ϕ established in Lemma E.1;

see, e.g., Proposition 2.143 of Bonnans and Shapiro (2000).

The set Y is the set of all y for which there exists a my ∈ L for which

IC
(
Qφ(my)− δ + y1, 〈my, 1〉 − 1 + y2, 〈my, g〉 − ~P + y3

)
< +∞ .

We have |〈m, k〉| < +∞ for any m ∈ L by Hölder’s inequality (see Appendix D) and As-

sumption Φ(ii), and so ϕ(my, y) < +∞ and hence v(y) < +∞. Conversely, if y 6∈ Y then

ϕ(m, y) = +∞ for all m ∈ L, and so v(y) = +∞.
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To see v is proper, take any u ∈ dom v and let y1 denote its first element. Then

v(y) ≥ inf{〈k,m〉 : m ∈ L, Qφ(m) ≤ δ − y1} ,

and inf{〈k,m〉 : m ∈ L, Qφ(m) ≤ δ−y1} > −∞ by Hölder’s inequality (see Appendix D), using

Assumption Φ(ii) (which implies ‖k‖ψ < +∞) and the fact that {m ∈ L : Qφ(m) ≤ δ − y1} is

‖ · ‖φ-norm bounded (by Lemma D.2).

Before proving l.s.c. we first prove assertion (ii). Take any y ∈ Y. Choose {mn}n≥1 ⊂ L
such that ϕ(mn, y) ↓ v(y) as n → ∞. As Qφ(mn) ≤ δ − y1 holds for each n, {mn}n≥1 is

‖ · ‖φ-norm bounded (by Lemma D.2) and therefore has a E-weakly convergent subsequence

{mnl}l≥1 (see Appendix D). Let m0 ∈ L denote the E-weak limit. Under Assumption Φ, we

have both liml→∞〈mnl , 1〉 = 〈m0, 1〉 and liml→∞〈mnl , g〉 = 〈m0, g〉 by the definition of E-weak

convergence, and also δ − y1 ≥ lim inf l→∞Q(mnl) ≥ Q(m0) by Lemma D.1. It follows that

IC
(
Qφ(m0)− δ + y1, 〈m0, 1〉 − 1 + y2, 〈m0, g〉 − ~P + y3

)
= 0 ,

so m0 is feasible for the primal problem. Moreover, by E-weak convergence we also have that

v(y) = liml→∞〈mnl , k〉 = 〈m0, k〉. Therefore, m0 solves the primal problem (Py).

To prove l.s.c., take any y ∈ Y. Take {yn}n≥1 ⊂ Y converging to y. By the argument used

to establish properness, we have that {v(yn)}n≥1 is bounded and therefore has a subsequence

{ynl}l≥1 converging to lim infn→∞ v(yn). Let mnl solve the primal problem for each ynl . The

sequence {mnl}l≥1 is ‖ · ‖φ-norm bounded (by Lemma D.2) and hence, taking a further sub-

sequence if necessary, has an E-weak limit m0 ∈ L (see Appendix D). By similar arguments

to the above, we may deduce that m0 is feasible for the primal problem at y. It then follows

again by E-weak convergence that

lim inf
n→∞

v(yn) = lim
l→∞

v(ynl) = lim
l→∞
〈mnl , k〉 = 〈m0, k〉 ≥ v(y) ,

as required.

The dual problem of (Py) is (Bonnans and Shapiro, 2000, p. 96)

max
y?∈Rd+2

y′y? − ϕ?(0, y?) , (Dy)

where ϕ? : E × Rd+2 → R ∪ {+∞} is the convex conjugate of ϕ:

ϕ?(m?, y?) = sup
(m,y)∈L×Rd+2

(
〈m,m?〉+ y′y? − ϕ(m, y)

)
,

14



and y? = (y?1, y
?
2, y

?
3) ∈ R× R× Rd. By direct calculation,

ϕ?(0, y?) = sup
(m,y)∈L×Rd+2

(
y′y? − 〈m, k〉 − IC

(
Qφ(m)− δ + y1, 〈m, 1〉 − 1 + y2, 〈m, g〉 − ~P + y3

))
= sup

m∈L

(
− y?1(Qφ(m)− δ)− y?2(〈m, 1〉 − 1)− y?′3

(
〈m, g〉 − ~P

)
− 〈m, k〉

)
+ ICo(y?)

where Co = R+ × R× Λ is the polar cone of C := dom IC .

Write any y? ∈ Co as y? = (η, ζ, λ) ∈ R+ × R× Λ. We then have

ϕ?(0, (η, ζ, λ)) = sup
m∈L

(
− ηQφ(m)− ζ〈m, 1〉 − λ′〈m, g〉 − 〈m, k〉

)
+ ηδ + ζ + λ′12P

= sup
m∈L

EF∗
[
m(U)(−k(U)− ζ − λ′g(U))− ηφ(m(U))

]
+ ηδ + ζ + λ′12P . (56)

As L is decomposable (Rockafellar and Wets, 1998, Definition 14.59 and Theorem 14.60), we

may bring the supremum inside the expectation and optimize pointwise to obtain

ϕ?(0, (η, ζ, λ)) = EF∗
[
(ηφ)?(−k(U)− ζ − λ′g(U))

]
+ ηδ + ζ + λ′12P

provided (η, ζ, λ) ∈ Co, where

(ηφ)?(x) = sup
t≥0:ηφ(t)<+∞

(tx− ηφ(t)) =

 ηφ?(x/η) if η > 0

0 if η = 0 and x ≤ 0

+∞ if η = 0 and x > 0

is the convex conjugate of x 7→ η × φ(x). As 〈y, y?〉 − ϕ?(0, y?) = −∞ whenever y? 6∈ Co, the

dual problem (Dy) can therefore be expressed as

max
η≥0,ζ∈R,λ∈Λ

ηy1 + ζy2 + λ′y3 − EF∗
[
(ηφ)?(−k(U)− ζ − λ′g(U))

]
− ηδ − ζ − λ′12P .

In particular, the dual of (55), which corresponds to the dual (Dy) of (Py) with y = 0, is

max
η≥0,ζ∈R,λ∈Λ

−EF∗
[
(ηφ)?(−k(U)− ζ − λ′g(U))

]
− ηδ − ζ − λ′12P . (57)

Note the value of the dual problem (Dy) is the biconjugate v??(y). The following result estab-

lishes conditions for equality of the primal and dual problems in displays (55) and (57).

Lemma E.3 Let Assumption Φ hold. Then: (i) if 0 ∈ Y then the value of the primal and dual

problems (55) and (57) are equal; (ii) if 0 ∈ ri(Y) then the set of solutions of the dual problem

is nonempty and convex; and (iii) if 0 ∈ int(Y) then the set of dual solutions is also compact.
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Proof of Lemma E.3. Part (i) follows by Lemma E.2(i) and the discussion following Theorem

2.144 on p. 98 of Bonnans and Shapiro (2000).

For part (ii), non-emptiness of the set of dual solutions follows by Propositions 2.147 and

2.148(iii) of Bonnans and Shapiro (2000), noting that v is convex by Lemma E.2 and v(0) is

finite because v is proper by Lemma E.2 and 0 ∈ dom v ≡ Y by Assumption. Convexity of the

set of dual solutions follows by noting that, in view of (Dy) and (56), the dual objective is the

pointwise infimum of affine functions of (η, ζ, λ), and is therefore concave and u.s.c.

Part (iii) follows from Theorem 2.151 and Proposition 2.152 of Bonnans and Shapiro

(2000).

Recall Condition S and the set C from Section 2.4 and Condition S’ from Section 6. Define

Y1 =
{
~P − 〈m, g〉 : m ∈ L+, 〈m, 1〉 = 1

}
− C ,

Y2 =

{(
1− 〈m, 1〉
~P − 〈m, g〉

)
: m ∈ L+

}
− {0} × C . (58)

Let 0 denote a vector of zeros whose dimension is determined by the context.

Lemma E.4 Let Assumption Φ hold and Condition S hold at (θ, γ, P ). Then: (i) 0 ∈ ri(Y1);

(ii) 0 ∈ ri(Y2); and (iii) if there exists F with Dφ(F‖F∗) < δ s.t. the conditions in (55) hold

at θ, then 0 ∈ ri(Y). Moreover, if Condition S’ holds at (θ, γ, P ) then “relative interior” can

be replaced with “interior” in parts (i)–(iii).

Proof of Lemma E.4. In view of Lemma D.3, identify each F ∈ N∞ := {F : Dφ(F‖F∗) <∞}
with its Radon–Nikodym derivative with respect to F∗, say m ∈ L. Part (i) follows by noting

~P ∈ ri({EF [g(U)] : F ∈ N∞}+C) ⇐⇒ ~P ∈ ri({〈m, g〉 : m ∈ L+, 〈m, 1〉 = 1}+C) ⇐⇒ 0 ∈ ri(Y1) .

To prove part (ii), note that showing 0 ∈ ri(Y2) is equivalent to showing (1, ~P ) ∈ ri(V2),

where

V2 =

{(
〈m, 1〉
〈m, g〉

)
: m ∈ L+

}
+ {0} × C = cone(V1) + {0} × C = cone (V1 + {0} × C) ,

V1 = {(1, 〈m, g〉) : m ∈ L+, 〈m, 1〉 = 1}, and cone(A) = {ta : a ∈ A, t ≥ 0}. But we have

ri(V2) = {tv : v ∈ ri(V1 + {0} × C), t > 0}. Moreover, (1, ~P ) ∈ ri(V1 + {0} × C) by Condition S

because ri({1} ×A) = {1} × ri(A). Therefore, (1, ~P ) ∈ ri(V2).

To prove part (iii), note that showing 0 ∈ ri(Y) is equivalent to showing (δ, 1, ~P ) ∈ ri(V3),

where

V3 =


 Qφ(m)

〈m, 1〉
〈m, g〉

 : m ∈ L+

+ R+ × {0} × C .
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It suffices to show that for every v ∈ V3 there exists some t > 1 such that t(δ, 1, ~P )+(1−t)v ∈ V3

(Rockafellar, 1970, Theorem 6.4). Take any v ∈ V3 . Then we may write v = (v1, v2) ∈ R+×V2.

By part (ii) and Theorem 6.4 of Rockafellar (1970) that there exists s > 1, mv ∈ L+, and c3 ∈ C
such that

s

(
1
~P

)
+ (1− s)v2 =

(
〈mv, 1〉
〈mv, g〉

)
+

(
0

c3

)
. (59)

By assumption, there exists F ∈ Nδ with Dφ(F‖F∗) < δ such that the moment conditions

in (55) hold at θ. Let m̃ denote the Radon–Nikodym derivative of such an F . Then for any

τ ∈ (0, 1), setting mτ = τmv + (1− τ)m̃, we have 〈mτ , 1〉 = τ〈mv, 1〉+ (1− τ) and 〈mτ , g〉 =

τ〈mv, g〉+ (1− τ)(~P − c̃) for some c̃ ∈ C. But then(
〈mv, 1〉
〈mv, g〉

)
=

1

τ

(
〈mτ , 1〉
〈mτ , g〉

)
− 1− τ

τ

(
1

~P − c̃

)
. (60)

Substituting (60) into (59) yields

(1 + τ(s− 1))

(
1
~P

)
− τ(s− 1)v2 =

(
〈mτ , 1〉
〈mτ , g〉

)
+

(
0

τ c̄3 + (1− τ)c̃

)
.

Note that Qφ(mτ ) can be made arbitrarily close to Qφ(m̃) < δ by choosing τ arbitrarily small.

Setting t = 1 + τ(s− 1) with τ sufficiently small that tδ + (1− t)v1 ≥ Qφ(mτ ), we may write

t

 δ

1
~P

+ (1− t)v =

 Qφ(mτ )

〈mτ , 1〉
〈mτ , g〉

+

 c1

0

τc3 + (1− τ)c̃


for some c1 ≥ 0. As the right-hand side belongs to V3, this completes the proof of part (iii).

Now suppose Condition S’ holds. Part (i) holds with “interior” by definition of Condition

S’. For part (ii) with “interior”, it suffices to show that Y2 has positive volume, in which

case its relative interior and interior coincide and the result follows by part (ii) above. A

sufficient condition is that the functions in g and a function that is constant F∗-a.e. are not

collinear F∗-a.e. We prove this by contradiction. Suppose Condition S’ holds but that there

exists 0 6= λ ∈ Rd and ζ ∈ R such that λ′(g(u)− ~P ) = ζ F∗-a.e. Then by Condition S’, we have

{EF [g(U)] − ~P : Dφ(F‖F∗) < ∞} contains a ε-ball with center c0 for some c0 ∈ C and ε > 0.

But then for any unit vector u we have ζ = λ′c0 + ελ′u, a contradiction. Thus, part (ii) must

hold with “interior” when Condition S’ holds. For part (iii), note that Y ⊇ ({δ} + R−) × Y2.

Therefore, Y has positive volume as Y2 as positive volume, so its relative interior and interior

coincide and part (iii) with “interior” follows similarly.

Lemma E.5 Let Assumption Φ hold. Then: the dual programs of Kδ(θ; γ, P ) and Kδ(θ; γ, P )
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are

K?
δ(θ; γ, P ) = sup

η≥0,ζ∈R,λ∈Λ
−EF∗

[
(ηφ)?(−k(U, θ, γ)− ζ − λ′g(U, θ, γ))

]
− ηδ − ζ − λ′12P , and

K
?
δ(θ; γ, P ) = inf

η≥0,ζ∈R,λ∈Λ
EF∗

[
(ηφ)?(k(U, θ, γ)− ζ − λ′g(U, θ, γ))

]
+ ηδ + ζ + λ′12P .

If there exists F ∈ Nδ such that the moment conditions (1) hold at (θ, γ, P ), then:

Kδ(θ; γ, P ) = K?
δ(θ; γ, P ) , Kδ(θ; γ, P ) = K

?
δ(θ; γ, P ) ,

and the supremum and infimum can be taken over (η, ζ, λ) ∈ (0,∞)× R× Λ in the definition

of K?
δ(θ; γ, P ) and K

?
δ(θ; γ, P ). Moreover, if Condition S holds and there exists F ∈ Nδ with

Dφ(F‖F∗) < δ such that the moment conditions (1) hold under F at (θ, γ, P ), then solutions

to both dual problems (with (η, ζ, λ) ∈ R+×R×Λ) exist. Moreover, if Condition S’ holds, then

the set of dual solutions is compact.

Proof of Lemma E.5. We prove only the result for Kδ; the result for Kδ follows similarly.

The dual program K?
δ is derived in (57) above, which requires only Assumption Φ to hold.

Equality of the primal and dual programs follows by Lemma E.3(i), noting that existence of

F ∈ Nδ such that (1) holds at (θ, γ, P ) under F ensures that 0 ∈ Y.

It remains to show that the supremum and infimum can be taken over (η, ζ, λ) ∈ (0,∞)×
R × Λ. In view of (Dy) and (56), the dual objective function, say `(η, ζ, λ), is the pointwise

infimum of affine functions of (η, ζ, λ), and is therefore concave and u.s.c. Note `(η, ζ, λ) <∞
for all (η, ζ, λ) ∈ R+×R×Λ as the primal value and hence dual value is finite. If `(0, ζ, λ) = −∞
for all ζ ∈ R and λ ∈ Λ, then restricting (η, ζ, λ) to (0,∞)×R×Λ will not affect the dual value.

Now suppose that there is some (0, ζ∗, λ∗) with (ζ∗, λ∗) ∈ R× Λ for which `(η, ζ∗, λ∗) > −∞.

Then by u.s.c. and concavity, `(·, ζ∗, λ∗) is continuous on [0, η] for η > 0 (Rockafellar, 1970,

Theorem 10.2) hence limη↓0 `(η, ζ
∗, λ∗) = `(0, ζ∗, λ∗).

If Condition S holds and there exists F ∈ Nδ with Dφ(F‖F∗) that satisfies the moment

conditions, then 0 ∈ ri(Y) by Lemma E.4. Existence of a dual solution then follows by Lem-

mas E.3(ii). Compactness of the set of dual solutions under Condition S’ follows similarly by

Lemmas E.3(iii) and Lemma E.4.

E.2 Proofs for Section 2

Proof of Proposition 2.1. Follows by Lemma E.5 and (ηφ)?(x) = ηφ?(x/η) for η > 0.

The proof of Theorem 2.1 uses results from Appendix B derived under different constraint

qualification conditions: Condition S from Section 2.4 and Condition Snp from Appendix B.

We first present a lemma relating these conditions.
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Lemma E.6 Under Assumption Φ, if µ and F∗ are mutually absolutely continuous and Con-

dition S holds at (θ, γ, P ), then Condition Snp also holds at (θ, γ, P ).

Proof of Lemma E.6. Assumption Φ implies N∞ = {F : Dφ(F‖F∗) <∞} ⊆ Fθ. Therefore,

G(θ, γ) := {EF [g(U, θ, γ)] : F ∈ N∞} ⊆ {EF [g(U, θ, γ)] : F ∈ Fθ} =: Gθ(γ) .

Write G(θ, γ) = G∞ and Gθ(γ) = Gθ to simplify notation. By Corollary 6.6.2 of Rockafellar

(1970), it suffices to show ri(G∞) ⊆ ri(Gθ). To this end, we shall actually show ri(G∞) = ri(Gθ).
As ri(G∞) ⊆ Gθ, it suffices to show Gθ ⊆ cl(G∞) (Hiriart-Urruty and Lemaréchal, 2001, Remark

2.1.9). For any x ∈ Gθ, we have x = EF [g(U, θ, γ)] for some F ∈ Fθ. As F � µ and F∗ and

µ are mutually absolutely continuous, F has a density, say m, with respect to F∗. For each

n ≥ 1, define

mn(u) =
m(u) ∧ n∫

(m ∧ n) dF∗
.

Each mn is bounded and hence each measure Fn defined by dFn = mndF∗ belongs to N∞. By

monotone convergence, we have G∞ 3 EFn [g(U, θ, γ)]→ x. Therefore, x ∈ cl(G∞).

Proof of Theorem 2.1. We prove only the result for inf K; the result for supK follows

similarly. First note

inf K = inf
θ∈Θ

Knp(θ; γ0, P0) = inf
θ∈ΘI

Knp(θ; γ0, P0) ,

where Knp is defined in (53). The first equality is by definition and the second equality holds

because if θ 6∈ ΘI , then there does not exist a distribution F ∈ Fθ under which the moment

conditions hold at (θ, γ0, P0) and consequently Knp(θ; γ0, P0) = +∞. If θ 6∈ ΘI , then there

does not exist F ∈ N∞ under which the moment conditions hold at (θ, γ0, P0) either because

N∞ ⊆ Fθ. Therefore, K∞(θ; γ0, P0) = +∞ in that case too. We therefore have

inf K∞ = inf
θ∈ΘI

K∞(θ; γ0, P0) .

As Condition S holds at (θ, γ0, P0) for each θ ∈ ΘI and µ � F∗ � µ, Lemma E.6 implies

that Condition Snp must also hold at (θ, γ0, P0) for each θ ∈ ΘI . As µ and F∗ are mutually

absolutely continuous, the µ- and F∗-essential supremums of any function are equal. Therefore

by Lemmas B.2 and B.3, we have K∞(θ; γ0, P0) = Knp(θ; γ0, P0) for each θ ∈ ΘI . The result

now follows by Lemma B.1.

E.3 Proofs for Section 3

Proof of Proposition 3.1. We prove the result for Kδ; the proof for Kδ follows similarly.
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Consider two programs:

vA := inf
θ∈Θ,F∈Nδ

EF [k(U, θ, γ)] subject to (1) holding at (θ, γ, P ) , (Program A)

vB := inf
θ∈Θ

EF δ,θ [k(U, θ, γ)] subject to EF δ,θ [g4e(U, θ, γ)] = 0 , (Program B)

where F δ,θ solves

inf
F∈Nδ

EF [k(U, θ, γ)] subject to (18) holding at (θ, γ, P ) ,

and vB = +∞ if there is no solution to this problem. Program A is the approach described in

Section 2 whereas Program B is equivalent to our MPEC implementation.

The inequality vA ≤ vB is trivial if vB = +∞. If vB is finite, for any ε > 0 there exists

θBε ∈ Θ for which EF δ,θBε [k(U, θBε , γ)] ≤ vB +ε and EF δ,θBε [g4e(U, θ
B
ε , γ)] = 0 where F δ,θBε is well

defined by Lemma E.2(ii). As (θBε , F δ,θBε ) are feasible for Program A, we have vA ≤ vB + ε. As

ε is arbitrary, we have vA ≤ vB.

A similar argument applies when vB = −∞: for any n ∈ N there exists θBn ∈ Θ for which

EF δ,θBn [k(U, θBε , γ)] ≤ −n and EF δ,θBn [g4e(U, θ
B
ε , γ)] = 0, where the distribution F δ,θBn is well

defined by Lemma E.2(ii). As (θBn , F δ,θBn ) are feasible for Program A, we have vA ≤ −n. As

this is true for all n ∈ N, we have vA = vB.

The inequality vB ≤ vA holds trivially if vA = +∞. If vA is finite, rewrite Program B as

inf
κ∈R,θ∈Θ

κ subject to EF δ,θ,κ [g4e(U, θ, γ)] = 0 ,

where F δ,θ,κ solves the feasibility program

inf
F∈Nδ

0 subject to (18) and EF [k(U, θ, γ)] = κ holding at (θ, γ, P ). (61)

For any ε > 0 there exists θAε ∈ Θ and FAε ∈ Nδ such that the constraints in Program A are

satisfied, i.e. EFAε [g1(U, θAε , γ)] ≤ P1, . . ., EFAε [g4(U, θAε , γ)] = 0, and

EF
A
ε [k(U, θAε , γ)] ≤ vA + ε .

Then FAε solves the feasibility program (61) with θ = θAε and κ = κAε := EFAε [k(U, θAε , γ)]. Note

that EFAε [g4e(U, θ
A
ε , γ)] = 0 also holds by construction. Therefore, (κAε , θ

A
ε ) are feasible for the

augmented form of Program B. It follows that vB ≤ κAε ≤ vA + ε holds for each ε > 0. As

ε > 0 is arbitrary, we have vB ≤ vA.

A similar argument applies when vA = −∞: for any n ∈ N, we may choose θAn ∈ Θ and

FAn ∈ Nδ such that the constraints in Program A are satisfied and EFAn [k(U, θAn , γ)] ≤ −n. It
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follows that vB ≤ −n. As this is true for all n ∈ N, we have vB = vA.

Proof of Proposition 3.2. We prove the result for F δ,θ, the result for F δ,θ follows similarly.

We drop dependence of F , m, k, and g on (θ, γ) to simplify notation in what follows.

First, consider the case in which k depends on u. The dual formulation is justified by

Proposition 2.1, replacing g by gs in the dual formulation and the moment conditions (1a)–

(1d) by (1a)–(1c) and EF [g4s(U, θ, γ)] = 0 in the statement of the Proposition. Note the primal

and dual values are equal and finite and a dual solution exists (by Lemmas E.2 and E.5).

Differentiability of the objective function in (η, ζ, λ) is guaranteed by Assumption Φ. Also

note that Assumption Φ(i) ensures φ̇? ≥ 0. The first-order condition (FOC) for ζ is

0 = EF∗
[
φ̇?(−η−1(k(U) + ζ + λ′gs(U)))

]
− 1

which implies EF∗ [mδ,θ] = 1 and hence that F δ,θ is a probability measure. The FOC for λ is

0 ≥ EF∗
[
φ̇?(−η−1(k(U) + ζ + λ′gs(U)))g1(U)

]
− P1 ,

0 = EF∗
[
φ̇?(−η−1(k(U) + ζ + λ′gs(U)))g2(U)

]
− P2 ,

0 ≥ EF∗
[
φ̇?(−η−1(k(U) + ζ + λ′gs(U)))g3(U)

]
,

0 = EF∗
[
φ̇?(−η−1(k(U) + ζ + λ′gs(U)))g4s(U)

]
,

hence (1a)–(1c) and EF [g4s(U, θ, γ)] = 0 hold at (θ, γ, P ) under F δ,θ. The FOC for η > 0 is

0 = EF∗
[
φ̇?(−η−1(k(U) + ζ + λ′gs(U)))(−η−1(k(U) + ζ + λ′gs(U)))

]
− EF∗

[
φ?(−η−1(k(U) + ζ + λ′gs(U)))

]
− δ .

By Assumption Φ(i), we may write the convex conjugate φ?? of φ? using its Legendre transform:

φ??(x?) = x?(φ̇?)−1(x?)− φ?((φ̇?)−1(x?))

for any x? in the range of φ̇? (Rockafellar, 1970, Theorem 26.4). Setting x? = φ̇?(x) and noting

that φ?? = φ holds by the Fenchel–Moreau theorem, we obtain

φ(φ̇?(x)) = xφ̇?(x)− φ?(x) .

It follows that we may rewrite the FOC for η as δ = EF ∗
[
φ(mδ,θ(U))

]
and so F δ,θ ∈ Nδ.

Now consider the case in which k does not depend on u. Lemma F.3 justifies the dual

representation of the program (17), equality of the primal and dual values, and existence

of a dual solution. A similar argument to the previous case shows that EF∗ [mδ,θ] = 1 and
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hence that F δ,θ is a probability measure, and that (1a)–(1c) and EF [g4s(U, θ, γ)] = 0 hold at

(θ, γ, P ) under F δ,θ. Finally, as there exists a distribution F with D(F‖F∗) < δ under which

the moment conditions (1a)–(1c) and EF [g4s(U, θ, γ)] = 0 hold at (θ, γ, P ). By construction,

D(F δ,θ‖F∗) ≤ D(F‖F∗) for said F , and so D(F δ,θ‖F∗) ≤ δ, as required.

E.4 Proofs for Section 4

Proof of Proposition 4.1. The result is a consequence of Theorem 1 of Sason and Verdú

(2016), which implies Dφ1(F‖F∗) ≤ āDφ2(F‖F∗). The inclusion Nφ2,δ ⊆ Nφ1,āδ for each δ > 0

follows immediately. The result now follows from this inclusion, noting that Assumption Φ(ii)

holding for E corresponding to φ1 implies the values κφ1,āδ and κφ1,āδ are both finite.

E.5 Proofs for Section 6

We first present two lemmas which we shall use multiple times in the following proofs.

Lemma E.7 Let Assumptions Φ and M(i)(v) hold and let {(Fn, θn, γn, Pn)}n≥1 ⊆ Nδ ×Θ×
Γ×P with (γn, Pn)→ (γ̃, P̃ ) ∈ Γ×P and for which (1) holds under Fn at (θn, γn, Pn). Then:

there exists a convergent subsequence (Fnl , θnl , γnl , Pnl)→ (F̃ , θ̃, γ̃, P̃ ) ∈ Nδ ×Θ×Γ×P along

which (i) liml→∞ EFnl [k(U, θnl , γnl)] = EF̃ [k(U, θ̃, γ̃)] and similarly for each entry of g1, . . . , g4,

and (ii) the moment conditions (1) hold under F̃ at (θ̃, γ̃, P̃ ).

Proof of Lemma E.7. Let mn = dFn
dF∗

. By Assumption M(v), {θn}n≥1 has a convergent

subsequence {θnl}l≥1. As {mnl}l≥1 is ‖ · ‖φ-norm bounded (cf. Lemma D.2), taking a further

subsequence if necessary we may assume {mnl}l≥1 is E-weakly convergent to m̃ ∈ L. By

Lemma D.1 we have δ ≥ lim inf l→∞ EF∗ [φ(mnl(U))] ≥ EF∗ [φ(m̃(U))]. By the triangle and

Hölder inequalities,∣∣∣EFnl [mnl(U)k(U, θnl , γnl)]− EF∗ [m̃(U)k(U, θ̃, γ̃)]
∣∣∣

≤ |EF∗ [(mnl(U)− m̃(U))k(U, θ̃, γ̃)]|+ ‖mnl‖φ‖k( · , θnl , γnl)− k( · , θ̃, γ̃)‖ψ → 0

by E-weak convergence and Assumption M(i). By similar arguments, we may deduce

EF∗ [m̃(U)] = 1 , EF∗ [m̃(U)g1(U, θ̃, γ̃)] ≤ P̃1 , EF∗ [m̃(U)g2(U, θ̃, γ̃)] = P̃2 ,

EF∗ [m̃(U)g3(U, θ̃, γ̃)] ≤ 0 , EF∗ [m̃(U)g4(U, θ̃, γ̃)] = 0

all hold.

Lemma E.8 Let Assumptions Φ and M(i)(ii) hold, let Condition S’ hold at (θ, γ0, P0), and let

∆?(θ; γ0, P0) < δ. Then: there is a neighborhood N of (θ, γ0, P0) such that for all (θ̃, γ̃, P̃ ) ∈ N
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we have that Condition S’ holds at (θ̃, γ̃, P̃ ), ∆?(θ̃; γ̃, P̃ ) < δ, Kδ(θ̃; γ̃, P̃ ) = K?
δ(θ̃; γ̃, P̃ ) and

Kδ(θ̃; γ̃, P̃ ) = K
?
δ(θ̃; γ̃, P̃ ).

Proof of Lemma E.8. By Lemma F.2 there is a neighborhood N ′ of (θ, γ0, P0) such that

Condition S’ holds at (θ̃, γ̃, P̃ ) for all (θ̃, γ̃, P̃ ) ∈ N ′. Moreover, the inequality ∆?(θ̃, γ̃, P̃ ) < δ

holds on a neighborhood N ′′ of (θ, γ, P ) by continuity of ∆? at (θ, γ0, P0) (cf. Lemma F.4). It

follows by Lemma F.3 that for each (θ̃, γ̃, P̃ ) ∈ N ′ ∩ N ′′ there exists F with Dφ(F‖F∗) < δ

satisfying (1) at (θ̃, γ̃, P̃ ). Therefore, Kδ(θ̃; γ̃, P̃ ) = K?
δ(θ̃; γ̃, P̃ ) on N ′ ∩N ′′ by Lemma E.5.

Lemma E.9 Let Assumptions Φ and M(i)(iii)(iv)(v) hold. Then κδ and κδ are finite, and:

κδ = inf
θ∈Θδ(γ0,P0)

Kδ(θ; γ0, P0) κδ = sup
θ∈Θδ(γ0,P0)

Kδ(θ; γ0, P0) .

Proof of Lemma E.9. We prove the result only for κδ; the result for κδ follows similarly.

Finiteness of κδ and κδ follows by Assumptions Φ and M(i)(v) and Hölder’s inequality. To

simplify notation, we suppress dependence of Θδ(γ0, P0) on (γ0, P0) in what follows. Suppose

there is θ 6∈ Θδ with Kδ(θ; γ0, P0) < infθ∈Θδ Kδ(θ; γ0, P0). Then there must exist Fθ ∈ Nδ
satisfying the moment conditions at (θ, γ0, P0). As ∆?(θ; γ0, P0) = δ, it follows by convexity of

φ that Fθ must be the unique such F . Therefore

EFθ [k(U, θ, γ0)] = Kδ(θ; γ0, P0) < inf
θ∈Θδ

Kδ(θ; γ0, P0) ≤ inf
θ∈Θδ

EFθ [k(U, θ0, γ0)] , (62)

where, for each θ ∈ Θδ, the distribution Fθ solves infF Dφ(F‖F∗) subject to (1). Existence

of such an Fθ follows by similar arguments to the proof of Lemma E.2(ii) and its uniqueness

follows by strict convexity of φ.

Choose {θn}n≥1 ⊂ Θδ with θn → θ (we may choose such a sequence by Assumption M(iv)).

By Lemma E.7, there is a subsequence {(θnl , Fθnl )}l≥1 with (θnl , Fθnl ) → (θ, F ) for some

F ∈ Nδ for which (1) holds under F at (θ, γ0, P0). It follows by uniqueness of Fθ established

above that F = Fθ. By Lemma E.7, we therefore have

inf
θ∈Θδ

EFθ [k(U, θ, γ0)] ≤ lim
l→∞

EFθnl [k(U, θnl , γ0)] = EFθ [k(U, θ, γ0)] ,

which contradicts (62).

Define

bδ(γ, P ) = inf
θ∈Θδ(γ,P )

Kδ(θ; γ, P ) , bδ(γ, P ) = inf
θ∈Θδ(γ,P )

Kδ(θ; γ, P ) .

Lemma E.10 Let Assumptions Φ and M(i)–(v) hold. Then: bδ(γ, P ) and bδ(γ, P ) are con-

tinuous at (γ0, P0).
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Proof of Lemma E.10. We prove the result only for bδ; the result for bδ follows similarly.

Fix ε > 0. By Lemma E.9, we may choose θε ∈ Θδ(γ0, P0) such that Kδ(θε; γ0, P0) <

bδ(γ0, P0) + ε. By Lemma E.8 and Assumption M(ii)(iii), Kδ(θε; γ, P ) = K?
δ(θε; γ, P ) and

∆?(θε; γ, P ) < δ both hold for all (γ, P ) in a neighborhood N of (γ0, P0). Moreover, Lemma

F.5 implies K?
δ(θε; γ, P )) < K?

δ(θε; γ0, P0) + ε for all (γ, P ) in a neighborhood N ′ of (γ0, P0).

Then on N ∩N ′,

bδ(γ, P ) ≤ Kδ(θε; γ, P ) = K?
δ(θε; γ, P ) < K?

δ(θε; γ0, P0)+ε = Kδ(θε; γ0, P0)+ε < bδ(γ0, P0)+2ε ,

proving bδ(γ, P ) is u.s.c. at (γ0, P0).

To establish l.s.c., suppose there is ε > 0 and a sequence {(γn, Pn)}n≥1 converging to

(γ0, P0) along which

bδ(γn, Pn) ≤ bδ(γ0, P0)− 2ε . (63)

The set Θδ(γn, Pn) is nonempty for n sufficiently large by Lemma F.4 and Assumptions

M(ii)(iii). For each n sufficiently large, choose θn ∈ Θδ(γn, Pn) and Fn ∈ Nδ for which

EFn [k(U, θn, γn)] < bδ(γn, Pn) + ε . (64)

By Lemma E.7 there is {(Fnl , θnl , γnl , Pnl)}l≥1 with (Fnl , θnl , γnl , Pnl)→ (F , θ, γ0, P0) for some

F ∈ Nδ and θ ∈ Θ, such that (1) holds under F at (θ, γ0, P0), and for which

lim
l→∞

EFnl [k(U, θnl , γnl)] = EF [k(U, θ, γ0)] ≥ Kδ(θ; γ0, P0) .

In view of (63) and (64) and Lemma E.9, this implies Kδ(θ; γ0, P0) ≤ bδ(γ0, P0)− ε = κδ − ε,
contradicting the definition of κδ.

Proof of Theorem 6.1. Immediate from Lemma E.10 and Slutsky’s theorem, noting that

κ̂δ = bδ(γ̂, P̂ ) and κ̂δ = bδ(γ̂, P̂ ).

In the remainder of this subsection we drop dependence of all quantities on γ.

Proof of Theorem 6.2. We prove the result only for bδ; the result for bδ follows similarly.

Step 1: We first show Θδ(P0) is nonempty and compact. For nonemptiness, choose {θn}n≥1

such that Kδ(θn;P0) ↓ κδ. Let Fn solve the primal problem for θn. By Lemma E.7, there is a

subsequence (Fnl , θnl)→ (F , θ) with F ∈ Nδ and θ ∈ Θ such that (1) holds under F at (θ, P0)

and for which

κδ = lim
l→∞

EFnl [k(U, θnl)] = EF [k(U, θ)] .

Therefore, Θδ(P0) is nonempty. The proof that Θδ(P0) is closed follows by similar arguments

to the proof of nonemptiness. Compactness now follows by Assumption M(v).

Step 2: We now prove directional differentiability. Let Pn = P0 + tnhn with tn ↓ t and

24



hn → h ∈ Rd1+d2 . Choose any θ ∈ Θδ(P0). By Lemma E.8 (using Assumptions M(iii)(vi)),

bδ(Pn)− bδ(P0) ≤ Kδ(θ;Pn)−Kδ(θ;P0) = K?
δ(θ;Pn)−K?

δ(θ;P0) ≤ tn ×−λ′12hn

for all n sufficiently large, where the final inequality holds for any λ12 ∈ Λδ(θ;Pn). By Lemma

F.5, compactness of Λδ(θ;P0) (cf. Lemma E.5 using Assumptions M(iii)(vi)), and the above

chain of inequalities, we obtain

lim sup
n→∞

bδ(Pn)− bδ(P0)

tn
≤ max

λ12∈Λδ(θ;P0)
−λ′12h .

As this inequality holds for any θ ∈ Θδ, taking the infimum over θ ∈ Θδ yields

lim sup
n→∞

bδ(Pn)− bδ(P0)

tn
≤ inf

θ∈Θδ
max

λ12∈Λδ(θ;P0)
−λ′12h . (65)

For the lower bound, choose {θn}n≥1 with θn ∈ Θδ(Pn) for all n sufficiently large and

for which Kδ(θn;Pn) ≤ bδ(Pn) + t2n. Take a subsequence {θnl}l≥1. By Assumption M(v), we

may extract a convergent subsequence θnlj → θ ∈ Θ. By similar arguments to Step 1 we may

deduce θ ∈ Θδ. By Lemma E.8 (using Assumptions M(iii)(vi)), for j sufficiently large

bδ(Pnlj )− bδ(P0) ≥ Kδ(θnlj ;Pnlj )−Kδ(θnlj ;P0)− t2nlj
= K?

δ(θnlj ;Pnlj )−K
?
δ(θnlj ;P0)− t2nlj ≥ tnlj ×−λ

′
12hnlj − t

2
nlj

,

where the final inequality holds for any λ12 ∈ Λδ(θnlj ;P0). By Assumption M(vii), we may

choose {λ12,nlj
}j≥1 with λ12,nlj

∈ Λδ(θnlj ;P0) for each j, for which

−λ′12,nlj
h→ max

λ12∈Λδ(θ;P0)
−λ′12h .

Therefore,

lim inf
j→∞

bδ(Pnlj )− bδ(P0)

tnlj
≥ max

λ12∈Λδ(θ;P0)
−λ′12h ≥ inf

θ∈Θδ
max

λ12∈Λδ(θ;P0)
−λ′12h .

As the lower bound does not depend on the subsequence {θnl}l≥1, we have

lim inf
n→∞

bδ(Pn)− bδ(P0)

tn
≥ inf

θ∈Θδ
max

λ12∈Λδ(θ;P0)
−λ′12h , (66)

proving directional differentiability. Finally, note that under Assumption M(vii) the function

θ 7→ maxλ12∈Λδ(θ;P0)−λ′12h is continuous on Θδ (rather than just u.s.c., as implied by Lemma

F.5). It follows by Step 1 that that the infima in (65) and (66) can be replaced by minima.
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Step 3: We now derive the joint asymptotic distribution. In view of Steps 2 and 3, this

result follows from Theorem 2.1 of Shapiro (1991) and
√
n(P̂ − P )→d N(0,Σ).

Before proving Theorem 6.3, we first present a preliminary result which is useful for

verifying some conditions in Fang and Santos (2019).

Lemma E.11 Let the conditions of Theorem 6.3 hold. Then:

(i) |d̂bδ,P0
[h1]− d̂bδ,P0

[h2]| ≤ Cn‖h1 − h2‖ and |d̂bδ,P0 [h1]− d̂bδ,P0 [h2]| ≤ Cn‖h1 − h2‖ for all

h1, h2 ∈ Rd1+d2 with Cn = Op(1) and Cn = Op(1);

(ii) d̂bδ,P0
[h]→p dbδ,P0

[h] and d̂bδ,P0 [h]→p dbδ,P0 [h] for all h ∈ Rd1+d2.

Proof of Lemma E.11. We prove the results for the lower values; the results for the upper

values follow similarly. Let Θδ,a(P ) = {θ ∈ Θδ(P ) : Kδ(θ;P ) ≤ bδ(P ) + a}.
Step 1: We first show there exists {an}n≥1 with an ↓ 0 such that Θδ ⊆ Θ̂δ,n ⊆ Θδ,an(P0)

holds with probability approaching one (wpa1).

To do so, we first show that there is a neighborhood N of P0 such that for any P ∈ N ,

for all θ ∈ Θδ we have Kδ(θ;P ) = K?
δ(θ;P ), ∆?(θ;P ) < δ, and Condition S’ holds at (θ, P ).

We prove this claim by contradiction. Suppose we can choose Pn → P0 and {θn}n≥1 ⊆ Θδ

such that Condition S’ doesn’t hold at (θn, Pn) and/or ∆?(θn;Pn) ≥ δ and/or Kδ(θn;Pn) 6=
K?
δ(θn;Pn) for each n. In view of Step 1 of the proof of Theorem 6.2, we can extract a convergent

subsequence {(θnl , Pnl)}l≥1 with θnl → θ ∈ Θδ. Then by Lemma E.8 we must have that

Condition S’ holds at (θnl , Pnl) and ∆?(θnl ;Pnl) < δ and Kδ(θnl ;Pnl) = K?
δ(θnl ;Pnl) all hold

for all l sufficiently large, a contradiction.

This intermediate result and consistency of P̂ implies that Θδ ⊆ Θδ(P̂ ) wpa1. It also

implies that Λδ(θ;P ) is nonempty and compact for all θ ∈ Θδ for any P ∈ N (cf. Lemma E.5).

By similar arguments to the proof of Theorem 6.2, for any P ∈ N we have

sup
θ∈Θδ

Kδ(θ;P )− bδ(P ) ≤ sup
θ∈Θδ

max
λ12∈Λδ(θ;P )

−λ′12(P − P0) + bδ(P0)− bδ(P ) .

As Θδ is compact and (θ, P ) 7→ maxλ12∈Λδ(θ;P ) ‖λ12‖ is u.s.c. (by Lemma F.5) on Θδ × N ,

supθ∈Θδ
maxλ12∈Λδ(θ;P ) ‖λ′12‖ ≤ C holds on a neighborhood N ′ of P0 for some C < ∞. It

follows by Theorem 6.2 that supθ∈Θδ
Kδ(θ; P̂ )− bδ(P̂ ) ≤ Op(

√
n) and so Θδ ⊆ Θ̂δ,n wpa1.

We now prove the remaining inclusion. By the almost sure representation theorem (Shapiro,

1991, Theorem A1), there exists a sequence of random vectors {(Zn, ν̂n)}n≥1 and a random

vector Z defined on a single probability space (Ω,F ,P) with Zn =d
√
n(P̂ − P0), ν̂n =d ν̂,

Z ∼ N(0,Σ), and (Zn, ν̂n) →a.s. (Z, ν). Let Pn = P0 + n−1/2Zn so that Pn =d P̂ . Fix any

ω ∈ Ω for which (Zn(ω), ν̂n(ω))→ (Z(ω), ν(ω)).

We wish to show that for any fixed a > 0, the inclusion Θ̂δ,n(ω) := {θ ∈ Θδ(Pn(ω)) :

Kδ(θ;Pn(ω)) ≤ bδ(Pn(ω)) + ν(ω)
√

log n/n} ⊆ Θδ,a(P0) holds for all n sufficiently large. To do
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so, we proceed by contradiction. By Lemma E.8, Θδ(Pn(ω)) and hence Θ̂δ,n(ω) are nonempty

for n sufficiently large. Suppose there is {θnl(ω)}l≥1 with θnl(ω) ∈ Θ̂δ,n(ω) \Θδ,a(P0) for all l.

By Assumption M(v) (taking a subsequence if necessary) we may assume θnl(ω)→ θ(ω) ∈ Θ.

By similar arguments to Step 1 in the proof of Theorem 6.2, we may deduce θ(ω) ∈ Θδ.

Then by Lemmas E.8 and F.5, we have liml→∞Kδ(θnl(ω);P0) = liml→∞K
?
δ(θnl(ω);P0) =

K?
δ(θ(ω);P0) = Kδ(θ(ω);P0) = bδ(P0) and liml→∞∆?(θnl(ω);P0) < δ. Therefore, θnl(ω) ∈

Θδ,a(P0) for l sufficiently large, a contradiction.

As Θ̂δ,n ⊆ Θδ,a(P0) holds wpa1 for any fixed a > 0, we may therefore choose {an}n≥1 with

an ↓ 0 such that Θ̂δ,n ⊆ Θδ,an(P0) holds wpa1.

Step 2: We prove part (i). First note that we may choose sufficiently small a > 0 such

that both Condition S’ holds at (θ, P0) and ∆?(θ;P0) < δ for all θ ∈ Θδ,a(P0). If not, we may

choose {an}n≥1 with an ↓ 0 and θn ∈ Θδ,an(P0) for which Condition S’ does not hold and/or

∆?(θn;P0) ≥ δ. By Assumption M(v), we can extract a convergent subsequence {(θnl , Pnl)}l≥1

with θnl → θ. By similar arguments to Step 1 of the proof of Theorem 6.2, we may deduce in

fact that θ ∈ Θδ. Then by Lemma E.8 we must have that Condition S’ holds at (θnl , P0) and

∆?(θnl ;P0) < δ for all l sufficiently large, a contradiction.

By similar arguments to Step 1, we may choose a neighborhood N of P0 such that

for any P ∈ N both Condition S’ holds at (θ, P ) and ∆?(θ;P ) < δ for all θ ∈ Θδ,a(P0).

Therefore, Λδ(θ;P ) is compact and nonempty for all (θ, P ) ∈ Θδ,a(P0) × N . As Θδ,a(P0) is

compact (which follows by similar arguments to Step 1 in the proof of Theorem 6.2), and

(θ, P ) 7→ maxλ12∈Λδ(θ;P ) ‖λ12‖ is u.s.c. (by Lemma F.5) on Θδ,a(P0)×N , we may deduce that

supθ∈Θδ,a(P0) maxλ12∈Λδ(θ;P ) ‖λ′12‖ ≤ C holds on a neighborhood N ′ of P0 for some C < ∞.

Now, as P̂ ∈ N ∩N ′ holds wpa1 and Θ̂δ,n ⊆ Θδ,an(P0) holds wpa1, it follows that∣∣∣∣∣ inf
θ∈Θ̂δ,n

sup
λ12∈Λδ(θ;P̂ )

−λ′12h1 − inf
θ∈Θ̂δ,n

sup
λ12∈Λδ(θ;P̂ )

−λ′12h2

∣∣∣∣∣ ≤ C‖h1 − h2‖ for all h1, h2 ∈ Rd1+d2

holds wpa1, proving part (i).

Step 3: We prove part (ii). In view of Step 1, it suffices to show

inf
θ∈Θδ

max
λ12∈Λδ(θ,P̂ )

−λ′12h→p dbδ,P0
[h] , inf

θ∈Θδ,an (P0)
max

λ12∈Λδ(θ,P̂ )
−λ′12h→p dbδ,P0

[h] .

Using the almost sure representation from Step 1, fix any ω ∈ Ω for which Zn(ω)→ Z(ω). Let

θh solve minθ∈Θδ
maxλ12∈Λδ(θ;P0)−λ12h. By Lemma F.5, we have

lim sup
n→∞

inf
θ∈Θδ

max
λ12∈Λδ(θ,Pn(ω))

−λ′12h

≤ lim sup
n→∞

max
λ12∈Λδ(θh,Pn(ω))

−λ′12h ≤ max
λ12∈Λδ(θh,P0)

−λ′12h = dbδ,P0
[h] . (67)
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Now choose θn(ω) ∈ Θδ,an(P0) such that

inf
θ∈Θδ,an (P0)

max
λ12∈Λδ(θ,Pn(ω))

−λ′12h ≥ max
λ12∈Λδ(θn(ω),Pn(ω))

−λ′12h−
1

n
.

By Assumption M(v), for any subsequence {θnl(ω), Pnl(ω)}l≥1 we may extract a subsequence

{θnlj (ω), Pnlj (ω)}j≥1 with θnlj (ω)→ θ(ω) ∈ Θ. By similar arguments to Step 1 of the proof of

Theorem 6.2, we may deduce in fact that θ(ω) ∈ Θδ. By Lemma F.5 and lower hemicontinuity

of (θ, P ) 7→ Λδ(θ, P ), writing Pj = Pnlj (ω), θj = θnlj (ω), and Θδ,anlj
(P0) = Θδ,aj (P0), we have

lim inf
j→∞

inf
θ∈Θδ,aj

(P0)
max

λ12∈Λδ(θ,Pj)
−λ′12h

≥ lim inf
j→∞

max
λ12∈Λδ(θj ,Pj)

−λ′12h ≥ max
λ12∈Λδ(θ(ω),P0)

−λ′12h ≥ dbδ,P0
[h] .

As the lower bound on the right-hand side does not depend on the subsequence chosen, we

therefore have lim infn→∞ infθ∈Θδ,an (P0) maxλ12∈Λδ(θ,Pn(ω))−λ′12h ≥ dbδ,P0
[h]. This, in conjunc-

tion with the upper bound (67), completes the proof.

Proof of Theorem 6.3. We verify the conditions of Theorem 3.2 of Fang and Santos (2019).

Their Assumptions 1 and 2 holds by Theorem 6.2 and because
√
n(P̂ −P0)→d N(0,Σ) with Σ

finite, respectively. Their Assumption 3 is assumed directly. Finally, Lemma E.11 shows that

d̂bδ,P0
and d̂bδ,P0 satisfy the sufficient conditions for Assumption 4 of Fang and Santos (2019)

presented in their Remark 3.4. Therefore, the proposed bootstrap procedure is consistent for the

asymptotic distribution derived in Theorem 6.2. Correct coverage now follows by the continuity

conditions on the distribution functions, which ensure the bootstrap estimates of the quantiles

are consistent for the true quantiles of Gδ and Gδ. The coverage of CSα may be deduced by

the Bonferroni inequality, leading to the inequality in the statement of the theorem.

Proof of Theorem 6.4. We prove the result only for CS1−α
δ,L ; the result for the other CSs

follow similarly. Say that P0 ∈ CS1−α
P0

if P10 ≤ P̂ 1−α
1,U and P20 ∈ [P̂ 1−α

2,L , P̂ 1−α
2,U ] both hold. By

Lemma E.9, for each ε > 0 we may choose θε ∈ Θδ(P0) such that Kδ(θε;P0) < κδ + ε. Let

Fθε solve the primal problem ∆(θε;P0) (see Appendix F.3). Whenever P0 ∈ CS1−α
P0

holds, Fθε

also satisfies the “relaxed” moment conditions used for computing κ̂δ,1−α, so it follows that

∆?(θε; P̂1−α) < δ. Moreover, as the primal solution for Kδ(θε;P0) is feasible for the relaxed

problem whenever P0 ∈ CS1−α
P0

, by Lemma E.5 we have

κ̂δ,1−α ≤ K?
δ,cs(θε; P̂1−α) = Kδ,cs(θε; P̂1−α) ≤ Kδ(θε;P0) < κδ + ε ,

and so κδ ≥ κ̂δ,1−α holds whenever P0 ∈ CS1−α
P0

. The desired coverage now follows by (29).
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E.6 Proofs for Section 7

Proof of Theorem 7.1. First note that under the GMM-type regularity conditions, k(·, θ, γ0)

and each entry of g(·, θ, γ0, P20) belong to L2(F∗) for all θ in a neighborhood of θ∗.

Step 1: We first prove a lower bound on s. To simplify notation, we drop dependence of g

on (γ, P2) and k on γ. Take any b ∈ L2(F∗) with EF∗ [b(U)] = 0. Define M : L2(F∗) → L2(F∗)

by

Mb = b− EF∗ [b(U)g∗(U)′](V −1 − V −1G(G′V −1G)−1G′V −1)g∗ .

Note Mb = b if the model is just-identified. Using a standard construction (see, e.g. Example

3.2.1 in Bickel, Klaassen, Ritov, and Wellner (1993)), we define a smooth parametric family

{Ft : t ∈ (−1, 1)} passing through F∗ at t = 0 by

dFt
dF∗

=
υ(tMb)

EF∗ [υ(tMb(U))]
, where υ(x) =

2

1 + e−2x
.

Fix any dθ × (d2 + d4) matrix A of full rank. Premultiplying g by A yields a just-identified

system. By the implicit function theorem and invertibility of AG, there exists ε > 0 such that

EFt [Ag(U, θ)] = 0 has a unique solution θ(Ft) ∈ Θ for all t ∈ (−ε, ε), and

dθ(Ft)

dt

∣∣∣∣
t=0

= −(AG)−1AEF∗ [g∗(U)Mb(U)] .

Writing κ(Ft) = EFt [k(U, θ(Ft))], we therefore have

dκ(Ft)

dt

∣∣∣∣
t=0

= EF∗ [k∗(U)Mb(U)]− J ′(AG)−1AEF∗ [g∗(U)Mb(U)]

= EF∗ [ι̃(U)Mb(U)]

= EF∗ [Mι̃(U)Mb(U)] ,

where ι̃(u) = k∗(u) − κ∗ − J ′(AG)−1Ag∗(u) and the final line is because M is an orthogonal

projection. However, note that for any A, we have

Mι̃ = Mk∗ − J ′(AG)−1A(g∗ − EF∗ [g∗(U)g∗(U)′](V −1 − V −1G(G′V −1G)−1G′V −1)g∗)

= Mk∗ − J ′(AG)−1A(g∗ − V (V −1 − V −1G(G′V −1G)−1G′V −1)g∗)

= Mk∗ − J ′(G′V −1G)−1G′V −1g∗

= ι ,

and so dκ(Ft)
dt

∣∣∣
t=0

= EF∗ [ι(U)Mb(U)].
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As φ(x) = 1
2(x− 1)2 for x ≥ 0, a Taylor series expansion of υ(x) around x = 0 yields

Dφ(Ft‖F∗) =
t2

2
EF∗ [(Mb(U))2] + o(t2) .

Therefore, whenever EF∗ [(Mb(U))2] 6= 0 we have

(κ(Ft)− κ(F−t))
2

4Dφ(Ft‖F∗)
=

EF∗ [ι(U)Mb(U)]2 + o(1)
1
2EF∗ [(Mb(U))2] + o(1)

hence

s ≥ EF∗ [ι(U)Mb(U)]2

1
2EF∗ [(Mb(U))2]

.

If ι(u) = 0 (F∗-almost everywhere) then the right-hand side is zero for any b and we trivially

have s ≥ 2EF∗ [ι(U)2]. Otherwise, choosing b = ι yields s ≥ 2EF∗ [ι(U)2].

Step 2: We now prove the reverse inequality s ≤ 2EF∗ [ι(U)2] by contradiction. Suppose

there exists a sequence {δn}n≥1 with δn ↓ 0 and ε > 0 such that

(κδn − κδn)2

4δn
≥ 2EF∗ [ι(U)2] + 2ε .

for each n. We may then choose θn, θn ∈ Θ and Fn, Fn ∈ Nδn such that Fn and Fn satisfy

EFn [g(U, θn)] = 0 and EFn [k(U, θn)] = 0, and

(EFn [k(U, θn)]− EFn [k(U, θn)])2

4δn
≥ 2EF∗ [ι(U)2] + ε . (68)

As Θ is compact, (taking a subsequence if necessary) we can assume that θn → θ∗ and θn → θ
∗

for some θ∗, θ
∗ ∈ Θ.

The spaces L and E are equivalent to L2(F∗) for φ(x) = 1
2(x − 1)2. Let ‖ · ‖2 denote the

L2(F∗) norm. Note EF∗ [φ(m(U))] = 1
2‖m − 1‖22 where m − 1 is the function u 7→ m(u) − 1.

Let mn and mn denote the Radon–Nikodym derivatives of Fn and Fn with respect to F∗. As

Fn, Fn ∈ Nδn , we have

‖mn − 1‖22, ‖mn − 1‖22 ≤ 2δn ↓ 0 as n→∞. (69)

By similar arguments to the proof of Lemma E.7, we may deduce EF∗ [g(U, θ∗)] = EF∗ [g(U, θ
∗
)] =

0. It then follows by identifiability of θ∗ that θ∗ = θ
∗

= θ∗.

By differentiability of θ 7→ EF∗ [g(u, θ)] at θ∗, we may deduce

−G(θn − θ∗) + o(‖θn − θ∗‖) = EF∗ [(mn(U)− 1)g(U, θn)] as θn → θ∗.
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It follows by Cauchy–Schwartz and the fact that G has full rank that ‖θn−θ∗‖ = O(‖mn−1‖2).

Therefore, by (69), Cauchy–Schwarz, and L2(F∗) continuity of θ 7→ g(·, θ, γ0, P20) at θ∗,

−G(θn − θ∗) = EF∗ [(mn(U)− 1)g∗(U)] + o(δ1/2
n ) (70)

and so

θn − θ∗ = −(G′V −1G)−1G′V −1EF∗ [(mn(U)− 1)g∗(U)] + o(δ1/2
n ) .

Turning to the counterfactual, by similar arguments we may deduce

EF∗ [mn(U)k(U, θn)]− κ∗ = J ′(θn − θ∗) + EF∗ [(mn(U)− 1)(k∗(U)− κ∗)] + o(δ1/2
n )

= −J ′(G′V −1G)−1G′V −1EF∗ [(mn(U)− 1)g∗(U)]

+ EF∗ [(mn(U)− 1)(k∗(U)− κ∗)] + o(δ1/2
n ) .

However, by (70) and definition of M we also have

EF∗ [(mn(U)− 1)(k∗(U)− κ∗ −M(k∗(U)− κ∗))] = o(δ1/2
n )

hence

EF∗ [mn(U)k(U, θn)]− κ∗ = EF∗ [(mn(U)− 1)ι(U)] + o(δ1/2
n ) .

Analogous arguments apply to mn and θn. We have therefore shown

(EFn [k(U, θn)]− EFn [k(U, θn)])2

4δn
=

(EF∗ [(mn(U)−mn(U))ι(U)])2

4δn
+ o(1) . (71)

Note that we must have mn 6= mn for all n sufficiently large. Otherwise, substituting (71) into

(68) yields o(1) ≥ 2EF∗ [ι(U)2] + ε, a contradiction. Now observe that

‖mn −mn‖22 ≤ 2‖mn − 1‖22 + 2‖mn − 1‖22 ≤ 8δn (72)

by (69). Substituting (71) and (72) into (68) yields

2(EF∗ [(mn(U)−mn(U))ι(U)])2

‖mn −mn‖22
+ o(1) ≥ 2EF∗ [ι(U)2] + ε .

So by Cauchy–Schwarz:

2EF∗ [ι(U)2] + o(1) ≥ 2EF∗ [ι(U)2] + ε .

As n→∞, the ε term dominates the o(1) term and we obtain a contradiction.

Proof of Lemma 7.1. Immediate by consistency of (θ̂, γ̂, P̂ ) and Slutsky’s theorem.

31



E.7 Proofs for Appendix A

Proof of Proposition A.1. The minimization problem is additively separable across each

x ∈ X . The proof for each x follows identical arguments to the proof of Proposition 2.1.

Proof of Proposition A.2. This follows by straightforward modification of the proof of

Proposition 2.1.

Proof of Proposition A.3. We prove only the result for Kex
δ ; the result for K

ex
δ follows

similarly.

Dropping dependence of k and g on (θ, γ) to simplify notation, we write (46) as

Kex
δ (θ; γ, P ) = inf

F∈N exδ
EF [kex(U)] subject to EF [gex1 (U)] ≤ P1 , . . . , EF [gex4 (U)] = 0

≥ inf
F∈Nδ

EF [kex(U)] subject to EF [gex1 (U)] ≤ P1 , . . . , EF [gex4 (U)] = 0 , (73)

where the first line uses Π-exchangeability and the second uses N ex
δ ⊆ Nδ. If there exists

F ∈ N ex
δ under which (1) holds at (θ, γ, P ), then EF [gex1 (U)] ≤ P1, . . . , EF [gex4 (U)] = 0 also

hold under F , in which case (73) has the dual representation (48) by Proposition 2.1. Thus we

have shown that the right-hand side of (48) is a lower bound for Kex
δ (θ; γ, P ).

We now show that a solution to (73) is Π-exchangeable. If there exists F ∈ N ex
δ under

which (1) holds at (θ, γ, P ), then arguing as in the proof of Lemma E.1 we know that the value

of (73) is finite, say κ†, and is attained by some F † ∈ Nδ. For each n ≥ 1, consider

inf
F
Dφ(F‖F∗) s.t. EF [kex(U)] ≤ κ† +

1

n
,EF [gex1 (U)] ≤ P1 , . . . , EF [gex4 (U)] = 0 . (74)

As Condition S holds for the moments gex at (θ, γ, P ) and EF † [kex(U)] < κδ + 1
n , it follows by

similar arguments to Lemma E.4 that Condition S holds at (θ, γ, P ) for the moments in (74).

Therefore, by Lemma F.3 the primal problem (74) and its dual

max
ζ∈R,λk∈R+,λg∈Λ

−EF∗
[
φ?(−ζ − λkkex(U)− λ′ggex(U))

]
− ζ − λ′g,12P − λ′k(κ† + n−1)

are equal and the set of dual solutions is nonempty. By similar arguments to Proposition 3.2,

we can deduce that the solution Fn to (74) has the form dFn = mndF∗ where

mn(u) = φ̇?
(
−ζ − λkkex(u)− λ′ggex(u)

)
,

where (ζ, λk, λg) is a solution to the dual program. As Π is a group, we have kex(M$u) = kex(u)

and gex(M$u) = gex(u) for all $ ∈ Π and all u ∈ U . As F∗ is Π-exchangeable, it follows that

each Fn is exchangeable.

As Dφ(Fn‖F∗) ≤ Dφ(F †‖F∗) ≤ δ, {mn}n≥1 is ‖ · ‖φ-norm bounded (by Lemma D.2)
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and therefore has a subsequence {mnl}l≥1 converging E-weakly to m0 ∈ L (see Appendix

D). Similar arguments to the proof of Lemma E.7 imply that the distribution F0 given by

dF0 = m0dF∗ solves (73). By Π-exchangeability of each Fn, for any $ ∈ Π, measurable A ⊆ U ,

and l ≥ 1, we have EFnl [1l{U ∈ A}] = EFnl [1l{M$U ∈ A}]. It follows by E-weak convergence

that EF0 [1l{U ∈ A}] = EF0 [1l{M$U ∈ A}], proving Π-exchangeability of F0.

Finally, if the value of (49) is +∞ then, by weak duality, so too must be the value of (73).

The result follows by noting that the value of (73) provides a lower bound for (46).

E.8 Proofs for Appendix B

Proof of Lemma B.1. Clearly κδ ≥ inf K∞ for each δ > 0. First suppose that inf K∞ is

finite. Fix any ε > 0. Then there is Fε ∈ N∞ and θε ∈ Θ such that (1) holds at (θε, γ0, P0) under

Fε and EFε [k(U, θε, γ0)] < inf K∞ + ε. Then for any δ ≥ Dφ(Fε‖F0) we have κδ < inf K∞ + ε.

Conversely, inf K∞ = −∞, then for each n ∈ N there exists Fn ∈ N∞ and θn ∈ Θ such that

(1) holds at (θn, γ0, P0) under Fn and EFn [k(U, θn, γ0)] < −n. But then for any δ ≥ Dφ(Fn‖F0)

we necessarily have κδ < −n.

Proof of Lemma B.2. We prove the result only for K∞; the result for K∞ follows similarly.

We follow similar arguments to the proof of Proposition 2.1. Dropping dependence of on

(θ, γ), consider

inf
F

EF [k(U)] subject to EF [g1(U)] ≤ P1 , . . . , EF [g4(U)] = 0 . (75)

Identifying distributions F ∈ N∞ with their Radon–Nikodym derivatives m ∈ L (see Appendix

D), we may define ϕ∞ : L × Rd+1 → R ∪ {+∞} by

ϕ∞(m, y) = 〈m, k〉+ IC+(m) + IC2

(
〈m, 1〉 − 1 + y1, 〈m, g〉 − ~P + y2

)
,

where y1 ∈ R, y2 ∈ Rd, IC : Rd+1 → R ∪ {+∞} is given by

IC2(y1, y2) =

[
0 if y1 = 0, and y2 ∈ Rd1− × {0}d2 × Rd3− × {0}d4 ,

+∞ otherwise ,

and IC+ : L → R ∪ {+∞} is given by

IC+(m) =

[
0 if m ≥ 0 F∗-almost everywhere ,

+∞ otherwise .

The primal problem is minm∈L ϕ∞(m, y) and its value is v∞(y) = infm∈L ϕ∞(m, y).

Under Assumption Φ, one may verify by similar arguments to Lemma E.1 that ϕ∞ is

proper and convex, and by similar arguments to Lemma E.2 that v∞ : Rd+1 → R ∪ {+∞} is
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proper, convex, and its effective domain is the set Y2 defined in display (58).

The dual problem we wish to characterize is maxy?∈Rd+1 (y′y? − ϕ?∞(0, y?)) at y = 0, where

now ϕ?∞ : E × Rd+1 → R ∪ {+∞} is the convex conjugate of ϕ∞. By direct calculation,

ϕ?∞(0, y?) = sup
(m,y)∈L×Rd+1

(
y′y? − 〈m, k〉 − IC+(m)− IC2

(
〈m, 1〉 − 1 + y2, 〈m, g〉 − ~P + y3

))
= sup

m∈L

(
− y?1(〈m, 1〉 − 1)− y?′2

(
〈m, g〉 − ~P

)
− 〈m, k〉 − IC+(m)

)
+ ICo2 (y?)

where Co2 = R×Λ is the polar cone of C2 := dom IC2 . Note that the supremum is never achieved

at a m ∈ L \ L+, as we can do strictly better by choosing m = 1 F∗-a.e. Write y? ∈ Co as

y? = (ζ, λ), where ζ ∈ R and λ ∈ Λ. By decomposibility of L (Rockafellar and Wets, 1998,

Definition 14.59 and Theorem 14.60):

ϕ?∞(0, (ζ, λ)) = sup
m∈L+

EF∗
[
m(U)(−k(U)− ζ − λ′g(U))

]
+ ζ + λ′12P

= EF∗
[
sup
x≥0

x(−k(U)− ζ − λ′g(U))

]
+ ζ + λ′12P

=

[
ζ + λ′12P if ζ + F∗-ess inf(k + λ′g) ≥ 0 ,

+∞ otherwise ,

provided (ζ, λ) ∈ Co. The dual value is therefore

sup
ζ∈R,λ∈Λ

−ζ − λ′12P subject to ζ + F∗-ess inf(k + λ′g) ≥ 0

= sup
λ∈Λ:F∗-ess inf(k+λ′g)>−∞

(
F∗-ess inf(k + λ′g)− λ′12P

)
. (76)

By Propositions 2.147 and 2.148(iii) of Bonnans and Shapiro (2000), we obtain a version

of Lemma E.3(ii): if 0 ∈ ri(Y2), then (75) and (76) are equal and the set of dual solutions is

nonempty. Finally, we have that 0 ∈ ri(Y2) under Condition S by Lemma E.4(ii).

Lemma B.3 is proved by applying results of Csiszár and Matúš (2012) that extend classical

duality results relying on paired function classes to broader classes of functions. Their results

apply to optimization problems constrained by equality restrictions. Straightforward modifi-

cations are required to show similar characterizations apply under inequality restrictions.

Proof of Lemma B.3. We prove the result only for Knp; the result for Knp follows similarly.

We drop dependence of g and k on (θ, γ0) in what follows. Let Ṁ = {m ∈ L1(µ) :
∫
mg dµ

is finite} and Ṁ+ = {m ∈ Ṁ : m ≥ 0 µ-a.e.}. Then F ∈ Fθ if and only if its Radon–Nikodym

derivative with respect to µ, say m, belongs to Ṁ+. Similarly, any m ∈M+ with
∫
m dµ = 1
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corresponds to a distribution in Fθ. Let ~P0 = (P0, 0d3+d4). For any y = (y1, y2) ∈ R× Rd, let

M[y] =

{
m ∈ Ṁ+ :

∫
m dµ = 1 + y1 ,

∫
mg dµ = ~P0 + y2

}
,

where the second integration is element-wise. Define q1, q2 : Rd+1 → R ∪ {+∞} by

q1(y) = inf
m∈M[y]

∫
mk dµ

with the understanding that q1(y) = +∞ if the infimum runs over an empty set, and

q2(y) =

[
0 if y ∈ {0} × Rd1− × {0}d2 × Rd3− × {0}d4 ,

+∞ otherwise.

The function q2 is proper and convex. Moreover, q1 is convex and proper because µ-essential

boundedness of k guarantees that q1(y) > −∞ for all y.

Note that dom q1 = {(
∫
m dµ − 1, (

∫
mg dµ − ~P0)) : m ∈ Ṁ+}. Under condition Snp, by

similar arguments to the proof of Lemma E.4(ii) and Corollary 6.6.2 of Rockafellar (1970), we

have

(1, ~P0) ∈ ri({
∫
m(1, g) dµ : m ∈ Ṁ+}+ {0} × C)

= ri({(
∫
m(1, g) dµ : m ∈ Ṁ+}) + ri({0} × C) .

Equivalently, 0 ∈ ri(dom q1) + ri({0}× C) and so ri(dom q1)∩ ri(dom q2) is nonempty. Then by

Fenchel’s Duality Theorem (Rockafellar, 1970, Theorem 31.1),

Knp(θ; γ0, P0) = inf
y∈Rd+1

(q1(y) + q2(y)) = sup
y?∈Rd+1

(−q?1(y?)− q?2(−y?)) , (77)

where q?1 and q?2 are the convex conjugates of q1 and q2. Write y? = (ζ, λ). Then

q?2(−(ζ, λ)) =

[
0 if − λ ∈ Λ ,

+∞ otherwise.
(78)
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For q?1, we begin by writing

−q?1((ζ, λ)) = inf
y∈Rd+1

(
−(ζ, λ′)y + q1(y)

)
= inf

y∈Rd+1
inf

m∈M[y]

(
−(ζ, λ′)y +

∫
mk dµ

)
= inf

y∈Rd+1
inf

m∈M[y]

(
ζ + λ′ ~P0 +

∫ (
k − ζ − λ′g

)
mdµ

)
= inf

m∈Ṁ+

(
ζ + λ′ ~P0 +

∫ (
k − ζ − λ′g

)
mdµ

)
.

Let

Q(u,m(u)) =

[
k(u)m(u) if m(u) ≥ 0 ,

+∞ otherwise.

We therefore have

−q?1((ζ, λ)) = inf
m∈Ṁ

(
ζ + λ′ ~P0 +

∫ (
Q(u,m(u))− ζ − λ′g(u)

)
m(u) dµ(u)

)
.

By Remark A.3 and Theorem A.4 of Csiszár and Matúš (2012), we may bring the inf inside

the integral:

−q?1((ζ, λ)) = ζ + λ′ ~P0 +

∫
inf
x≥0

(
k(u)− ζ − λ′g(u)

)
x dµ(u)

=

[
−∞ if µ-ess inf(k − ζ − λ′g) < 0 ,

ζ + λ′ ~P0 otherwise.
(79)

Letting λ12 denote the first d1 + d2 elements of λ, it now follows from (77), (78), and (79) that

Knp(θ; γ0, P0) = sup
ζ∈R,λ∈Λ:µ-ess inf(k−ζ+λ′g)≥0

ζ − λ′12P0

= sup
λ∈Λ:µ-ess inf(k+g′λ)>−∞

µ-ess inf(k + λ′g)− λ′12P0

as required.

E.9 Proofs for Appendix D

Proof of Lemma D.2. Follows by taking c = 1
2 in the definition of ‖ · ‖φ.

Proof of Lemma D.3. By Lemma D.2, it suffices to show EF∗ [φ(m(U))] <∞ for all m ∈ L+.

As φ satisfies the ∆2-condition under Assumption Φ(i), m ∈ L implies EF∗ [φ(1+c|m(U)|)] <∞
for all c > 0. As F∗ is a finite measure, L also contains constant functions. As L is closed under
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addition, we therefore have

∞ > EF∗ [φ(1 + |m(U)− 1|)] = EF∗ [φ(m(U))1l{m(U) ≥ 1}] + EF∗ [φ(2−m(U))1l{m(U) ≤ 1}]

which implies EF∗ [φ(m(U))1l{m(U) ≥ 1}] is finite. Finiteness of EF∗ [φ(m(U))1l{m(U) ≤ 1}]
follows because ∞ > φ(0) ≥ φ(x) ≥ φ(1) = 0 for x ∈ [0, 1] under Assumption Φ(i).

F Supplementary Results

F.1 Notation

For x ∈ Rn and A ⊂ Rn let d(x,A) = infa∈A ‖x − a‖. Let ~dH(A,B) = supa∈A infb∈B ‖a − b‖
denote the directed Hausdorff distance between sets A,B ⊂ Rn. Let Bε denote a Euclidean ball

centered at the origin with radius ε, where the dimension of the ball should be obvious from

the context. Let T ⊆ Rn be a nonempty, closed convex cone with nonempty interior. Let ∂A =

cl(A) \ int(A) denote the boundary of A ⊂ T (relative to Rn) and ∂(A;T ) = cl(∂A ∩ int(T ))

denote is boundary relative to T . For example, T = R+×R, and A = {(x, y) ∈ T : x2+y2 ≤ 1},
then ∂A = {(x, y) ∈ T : x2 + y2 = 1} ∪ {0} × [−1, 1] and ∂(A;T ) = {(x, y) ∈ T : x2 + y2 = 1}.

F.2 Stability of Constraint Qualifications under Perturbations

Lemma F.1 Let Assumption Φ hold and let Condition S’ hold at (θ, γ, P ). Then: there exists

a neighborhood N of P such that Condition S’ holds at (θ, γ, P̃ ) for each P̃ ∈ N .

Proof of Lemma F.1. By condition S’, there exists ε > 0 such that

B2ε ⊆ ({EF [g(U, θ, γ)]− (P, 0d3+d4) : F ∈ N∞}+ C) .

Then for any P̃ with ‖P − P̃‖ < ε, we have

‖(EF [g(U, θ, γ)]− (P, 0d3+d4))− (EF [g(U, θ, γ)]− (P̃ , 0d3+d4))‖ < ε

for all F ∈ N∞, and so Bε ⊆ ({EF [g(U, θ, γ)]− (P̃ , 0d3+d4) : F ∈ N∞}+ C).

Lemma F.2 Let Assumption Φ hold, let each entry of g be E-continuous in (θ, γ), and let Con-

dition S’ hold at (θ, γ, P ). Then: there exists a neighborhood N of (θ, γ, P ) such that Condition

S’ holds at (θ̃, γ̃, P̃ ) for each (θ̃, γ̃, P̃ ) ∈ N .

Proof of Lemma F.2. As Condition S’ holds at (θ, γ, P ), there exists sufficiently large δ

such that 0 ∈ int({EF [g(U, θ, γ)] − (P, 0d3+d4) : F ∈ Nδ} + C). (To see this, fit a sufficiently

small hypercube around 0, identify a density F ∈ N∞ with each vertex, and take δ to be the
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largest φ-divergence from F∗ of each of the densities at the vertex.) Therefore, we may choose

ε > 0 such that B4ε ⊆ int({EF [g(U, θ, γ)]− (P, 0d3+d4) : F ∈ Nδ}+ C).
Identify any F ∈ Nδ with its Radon–Nikodym derivative with respect to F∗, say m. The

set of all such m, sayMδ, is a ‖ · ‖φ-bounded subset of L (Lemma D.2). By E-continuity, there

exists a neighborhood N1 of (θ, γ) such that for any (θ̃, γ̃) ∈ N1 and with r denoting any entry

of g1, . . . , g4, we have

‖r(·, θ, γ)− r(·, θ̃, γ̃)‖ψ <
ε√

d(2 + φ(2) + δ)
.

It follows by Hölder’s inequality for Orlicz classes and Lemma D.2 that

sup
m∈Mδ

|EF∗ [m(U)r(U, θ, γ)]− EF∗ [m(U)r(U, θ̃, γ̃)]| ≤ ε√
d

for any (θ̃, γ̃) ∈ N1. Let N2 be an ε-neighborhood of P . For any F ∈ Nδ and any (θ̃, γ̃, P̃ ) ∈
N1 ×N2, we have

‖(EF [m(U)g(U, θ, γ)]− (P, 0))− (EF [m(U)g(U, θ̃, γ̃)]− (P̃ , 0))‖ < 2ε ,

hence

B2ε ⊆ int({EF [g(U, θ̃, γ̃)]− (P̃ , 0d3+d4) : F ∈ Nδ}+ C)

⊆ int({EF [g(U, θ̃, γ̃)]− (P̃ , 0d3+d4) : F ∈ N∞}+ C) ,

as required.

F.3 Additional Details on the Program ∆?(θ; γ, P )

We derive the dual of (17) using similar arguments to Appendix E.2. Suppressing dependence

of k and g on (θ, γ) to simplify notation, define ϕ : L × Rd+1 → R ∪ {+∞} by

ϕ(m, y) = Qφ(m) + IC2

(
〈m, 1〉 − 1 + y1, 〈m, g〉 − ~P + y2

)
,

where y = (y1, y2) ∈ R× Rd and IC2 : Rd+1 → R ∪ {+∞} is given by

IC2(y1, y2) =

[
0 if y1 = 0, and y2 ∈ Rd1− × {0}d2 × Rd3− × {0}d4 ,

+∞ otherwise .

For any y ∈ Rd+1, define the primal problem

min
m∈L

ϕ(m, y) (P′y)
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and let v(y) = infm∈L ϕ(m, y) denote its value. Then v(0) is the value in the original problem

(17). By similar arguments to Lemmas E.1 and E.2 we may deduce that ϕ and v are proper

and convex and that the effective domain of v is the set Y2 defined in (58). Existence of a

solution to the primal problem (P′y) for each y ∈ Y2 follows similarly, and uniqueness of the

solution follows by strict convexity of φ.

By similar arguments to Appendix E.2, the dual problem of (P′y) is

max
ζ∈R,λ∈Λ

ζy1 + λ′y2 − EF∗
[
φ?(−ζ − λ′g(U))

]
− ζ − λ′12P . (D′y)

The dual of (17), which corresponds to the dual (D′y) with y = 0, is ∆?(θ; γ, P ) from (16).

Lemma F.3 Let Assumption Φ hold. Then: the dual program of ∆(θ; γ, P ) is ∆?(θ; γ, P ) in

(16). If Condition S holds at (θ, γ, P ) then the primal and dual values are equal and the set of

solutions to the dual problem is nonempty and convex. Moreover, if Condition S’ holds, then

the set of dual solutions is compact.

Proof of Lemma F.3. The dual program is derived above, which requires only Assumption

Φ. Equality of the primal and dual programs and existence of dual solutions when 0 ∈ ri(Y2)

follows by similar arguments to Lemma E.3(ii). Lemma E.4 shows that Conditions S and S’ are

sufficient for 0 ∈ ri(Y2) and 0 ∈ int(Y2), respectively. Compactness of the set of dual solutions

when 0 ∈ int(Y2) follows by similar arguments to Lemma E.3(iii).

Lemma F.4 Let Assumption Φ hold, let EF∗ [φ?(c1 + c′2g(U, θ, γ))] be continuous in (θ, γ) for

every (c1, c2) ∈ R× Rd. Then: the function (θ, γ, P ) 7→ ∆?(θ; γ, P ) is continuous at any point

(θ, γ, P ) at which Condition S’ holds.

Proof of Lemma F.4. Fix some (θ, γ, P ) at which Conditions S’ holds. Note we must have

∆?(θ; γ, P ) <∞. The objective function

(ζ, λ) 7→ L(ζ, λ; θ, γ, P ) := −EF∗ [φ?(−ζ − λ′g(U, θ, γ))]− ζ − λ′12P

is the pointwise infimum of affine functions of (ζ, λ) and is therefore concave and u.s.c. By

Lemma F.3, it has a nonempty, convex, and compact set of maximizers Ξ ⊂ R× Λ. Fix ε > 0

and let Ξε = {(ζ, λ) ∈ R× Λ : d((ζ, λ),Ξ) ≤ ε}.
By continuity of (θ, γ) 7→ EF∗ [φ?(c1 + c′2g(U, θ, γ))], for any (ζ, λ) ∈ Rd+1 we have

L(ζ, λ; θ̃, γ̃, P̃ )→ L(ζ, λ; θ, γ, P ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ) .

By concavity of L in its first two arguments, convergence may be strengthened to hold uniformly
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over the compact set Ξε (Rockafellar, 1970, Theorem 10.8) and so, in particular,

sup
(ζ,λ)∈Ξε

L(ζ, λ; θ̃, γ̃, P̃ )→ ∆?(θ; γ, P ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ) . (80)

By u.s.c. of L(·; θ, γ, P ) and definition of Ξ:

∆?(θ; γ, P ) > sup
(ζ,λ)∈∂(Ξε;R×Λ)

L(ζ, λ; θ, γ, P ) . (81)

By (80) and (81) there exists a neighborhood N of (θ, γ, P ) such that for any (θ̃, γ̃, P̃ ) ∈ N ,

sup
(ζ,λ)∈Ξε

L(ζ, λ; θ̃, γ̃, P̃ ) > sup
(ζ,λ)∈∂(Ξε;R×Λ)

L(ζ, λ; θ̃, γ̃, P̃ )

holds. By standard arguments for maximizers of convex objective functions (e.g. Theorem 2.7

of Newey and McFadden (1994)), whenever (θ̃, γ̃, P̃ ) ∈ N we have that

∆?(θ̃; γ̃, P̃ ) := sup
(ζ,λ)∈R×Λ

L(ζ, λ; θ̃, γ̃, P̃ ) = sup
(ζ,λ)∈Ξε

L(ζ, λ; θ̃, γ̃, P̃ ) .

The result now follows by (80).

F.4 Additional Details on Convergence of Multipliers

Recall Ξδ(θ; γ, P ) and Ξδ(θ; γ, P ) denote the sets of multipliers (η, ζ, λ) solving (13) and (14).

By Lemma E.5, these sets are nonempty, convex, and compact whenever Condition S’ holds at

(θ, γ, P ) and there exists F ∈ Nδ with Dφ(F‖F∗) < δ such that (1) holds under F at (θ, γ, P ).

In particular, this is true if Condition S’ holds at (θ, γ, P ) and ∆?(θ; γ, P ) < δ.

Let T = R+ ×R×Λ. Provided Ξδ(θ; γ, P ) and Ξδ(θ; γ, P ) are compact, for each ε > 0 we

may cover Ξδ(θ; γ, P ) and Ξδ(θ; γ, P ) by sets Ξδ(θ; γ, P )ε ⊂ T and Ξδ(θ; γ, P )ε ⊂ T consisting

of finitely many hypercubes with edges parallel to the coordinate axes so that

d((η, ζ, λ),Ξδ(θ; γ, P )) ≤ ε for all (η, ζ, λ) ∈ Ξδ(θ; γ, P )ε

d((η, ζ, λ),Ξδ(θ; γ, P )) ≤ ε for all (η, ζ, λ) ∈ Ξδ(θ; γ, P )ε

and so that ∂(Ξδ(θ; γ, P )ε;T ) ∩ Ξδ(θ; γ, P ) = ∅ and ∂(Ξδ(θ; γ, P )ε;T ) ∩ Ξδ(θ; γ, P ) = ∅.

Lemma F.5 Let Assumptions Φ and M(i)(ii) hold, let Condition S hold at (θ, γ, P ), and let

∆?(θ; γ, P ) < δ. Then:

(i) K?
δ and K

?
δ are continuous at (θ, γ, P );

(ii) for each ε > 0 there exists a neighborhood N of (θ, γ, P ) such that Ξδ(θ̃; γ̃, P̃ ) ⊆ Ξδ(θ; γ, P )ε

and Ξδ(θ̃; γ̃, P̃ ) ⊆ Ξδ(θ; γ, P )ε for each (θ̃, γ̃, P̃ ) ∈ N ;
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(iii) ~dH(Ξδ(θ̃; γ̃, P̃ ),Ξδ(θ; γ, P )) → 0 and ~dH(Ξδ(θ̃; γ̃, P̃ ),Ξδ(θ; γ, P )) → 0 as (θ̃, γ̃, P̃ ) →
(θ, γ, P ).

Proof of Lemma F.5. We prove the result for K?
δ and Ξδ; the result for K

?
δ and Ξδ follows

similarly.

Step 1: Preliminaries. To simplify notation, let Ξ = Ξδ(θ; γ, P ) and Ξε = Ξδ(θ; γ, P )ε.

Lemmas F.2 and F.4 imply there is a neighborhood N ′ of (θ, γ, P ) such that Condition S’

holds at (θ̃, γ̃, P̃ ) and ∆?(θ̃, γ̃, P̃ ) < δ for each (θ̃, γ̃, P̃ ) ∈ N ′. By Lemma E.5, the multipliers

Ξδ(θ̃; γ̃, P̃ ) solving the program K?
δ(θ̃; γ̃, P̃ ) are a nonempty, convex, compact subset of T for

each (θ̃, γ̃, P̃ ) ∈ N ′.
The objective function

(η, ζ, λ) 7→ L(η, ζ, λ; θ, γ, P ) := −EF∗ [(ηφ)?(−k(U, θ, γ)− ζ − λ′g(U, θ, γ))]− ηδ − ζ − λ′12P

is the pointwise infimum of affine functions of (η, ζ, λ) and is therefore concave and u.s.c. By

u.s.c. and definition of Ξ, we have

K?
δ(θ; γ, P )− sup

(η,ζ,λ)∈∂(Ξε;T )
L(η, ζ, λ; θ, γ, P ) =: 4a > 0 . (82)

The remaining steps of the proof depend on whether or not min{η : (η, ζ, λ) ∈ Ξ} > 0.

Step 2: Proof of parts (i) and (ii) when min{η : (η, ζ, λ) ∈ Ξ} > 0. W.l.o.g. we may choose

Ξε such that min{η : (η, ζ, λ) ∈ Ξε} > 0. For any η > 0,

L(η, ζ, λ; θ̃, γ̃, P̃ ) = −ηEF∗
[
φ?
(
k(U,θ̃,γ̃)+ζ+λ′g(U,θ̃,γ̃)

−η

)]
− ηδ − ζ − λ′12P̃ .

By Assumption M(ii), for any (η, ζ, λ) ∈ (0,∞)× Rd+1 we have

L(η, ζ, λ; θ̃, γ̃, P̃ )→ L(η, ζ, λ; θ, γ, P ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ) .

By concavity of L in (η, ζ, λ), convergence may be strengthened to hold uniformly over the

compact set Ξε (Rockafellar, 1970, Theorem 10.8) and so, in particular,

sup
(η,ζ,λ)∈Ξε

L(η, ζ, λ; θ̃, γ̃, P̃ )→ K?
δ(θ; γ, P ) as (θ̃, γ̃, P̃ )→ (θ, γ, P ). (83)

By (82) and (83), there exists a neighborhood N ′′ of (θ, γ, P ) such that for (θ̃, γ̃, P̃ ) ∈ N ′∩N ′′,
the inequality

sup
(η,ζ,λ)∈Ξε

L(η, ζ, λ; θ̃, γ̃, P̃ ) > sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ̃, γ̃, P̃ )
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holds. By similar arguments to the proof of Lemma F.4 we may deduce that Ξ(θ̃; γ̃, P̃ ) ⊆ Ξε

holds on N := N ′ ∩N ′′, proving part (ii). Continuity (part (i)) now follows by (83).

Step 3: Proof of part (ii) when min{η : (η, ζ, λ) ∈ Ξ} = 0. Take (ζ̄, λ̄) ∈ R × Λ such that

(0, ζ̄, λ̄) ∈ Ξ. As in the proof of Lemma E.5, we may deduce

lim
η↓0

L(η, ζ̄, λ̄; θ, γ, P ) = L(0, ζ̄, λ̄; θ, γ, P ) = K?
δ (θ; γ, P ) .

For any ε0 ∈ (0, a), we may choose η̄ > 0 such that L(η̄, ζ̄, λ̄; θ, γ, P ) > K?
δ (θ; γ, P ) − ε0 and

(η̄, ζ̄, λ̄) ∈ int(Ξε). By Assumption M(ii), there exists a neighborhood N ′′ of (θ, γ, P ) upon

which

L(η̄, ζ̄, λ̄; θ̃, γ̃, P̃ ) > K?
δ(θ; γ, P )− 2ε0 (84)

holds for all (θ̃, γ̃, P̃ ) ∈ N ′′. We now argue by contradiction that the inequality

sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ, γ, P ) ≥ sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ̃, γ̃, P̃ )− 2ε0 (85)

holds on a neighborhood, say N ′′′, of (θ, γ, P ).

Suppose that there is ε1 > 0 and (θn, γn, Pn)→ (θ, γ, P ) along which

sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ, γ, P ) ≤ sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θn, γn, Pn)− ε1 . (86)

For each n ≥ 1, choose (ηn, ζn, λn) ∈ arg sup(η,ζ,λ)∈∂(Ξε;T )L(η, ζ, λ; θn, γn, Pn). As ∂(Ξε;T )

is compact, take a subsequence {(ηnl , ζnl , λnl)}l≥1 converging to (η∗, ζ∗, λ∗) ∈ ∂(Ξε;T ). If

η∗ > 0, then by uniform convergence of L(·; θn, γn, Pn) to L(·; θ, γ, P ) on compact subsets of

(0,∞)× R× Rd, we obtain

lim
l→∞

L(ηnl , ζnl , λnl ; θnl , γnl , Pnl) ≤ sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ, γ, P ) ,

contradicting (86). Conversely, if η∗ = 0, fix any small ε2 > 0 so that (ε2, ζ
∗, λ∗) ∈ ∂(Ξε;T ).

By u.s.c. and concavity of L(·, ζ∗, λ∗; θ, γ, P ), we may choose ε2 sufficiently small that

L(ε2, ζ
∗, λ∗; θ, γ, P )− L(2ε2, ζ

∗, λ∗; θ, γ, P ) < ε1 . (87)

For all l large enough we have ηnl < ε2 and hence τnl := ε2
2ε2−ηnl

∈ (0, 1). By concavity,

L(ε2, ζnl , λnl ; θnl , γnl , Pnl) ≥ τnlL(ηnl , ζnl , λnl ; θnl , γnl , Pnl)+(1−τnl)L(2ε2, ζnl , λnl ; θnl , γnl , Pnl) .
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which rearranges to yield

L(ηnl , ζnl , λnl ; θnl , γnl , Pnl) ≤
1

τnl
(L(ε2, ζnl , λnl ; θnl , γnl , Pnl)− (1− τnl)L(2ε2, ζnl , λnl ; θnl , γnl , Pnl)) .

By uniform convergence of L(·; θn, γn, Pn) to L(·; θ, γ, P ) on compact subsets of (0,∞)×Rd+1,

we obtain

lim
l→∞

L(ηnl , ζnl , λnl ; θnl , γnl , Pnl) ≤ 2L(ε2, ζ
∗, λ∗; θ, γ, P )− L(2ε2, ζ

∗, λ∗; θ, γ, P ) .

It follows by (87) that for all l sufficiently large we have

L(ηnl , ζnl , λnl ; θnl , γnl , Pnl) < sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ, γ, P ) + ε1 ,

which contradicts (86). This completes the proof of inequality (85).

It now follows from displays (82), (84), and (85) that on N ′ ∩N ′′ ∩N ′′′ we have

L(η̄, ζ̄, λ̄; θ̃, γ̃, P̃ ) > K?
δ(θ; γ, P )− 2ε0 = sup

(η,ζ,λ)∈∂(Ξε;T )
L(η, ζ, λ; θ, γ, P ) + 4a− 2ε0

≥ sup
(η,ζ,λ)∈∂(Ξε;T )

L(η, ζ, λ; θ̃, γ̃, P̃ ) + 4(a− ε0) .

As a− ε0 > 0, we have sup(η,ζ,λ)∈Ξε L(η, ζ, λ; θ̃, γ̃, P̃ ) > sup(η,ζ,λ)∈∂(Ξε;T ) L(η, ζ, λ; θ̃, γ̃, P̃ ) holds

on N := N ′ ∩N ′′ ∩N ′′′. By similar arguments to the proof of Lemma F.4 we may deduce that

Ξ(θ̃; γ̃, P̃ ) ⊆ Ξε holds on N , proving part (ii).

Step 4: Proof of part (i) when min{η : (η, ζ, λ) ∈ Ξ} = 0. For any (θ̃, γ̃, P̃ ) ∈ N , we have

K?
δ(θ̃; γ̃, P̃ ) = sup

(η,ζ,λ)∈Ξε
L(η, ζ, λ; θ̃, γ̃, P̃ ) (88)

by Step 3, so

K?
δ(θ̃; γ̃, P̃ ) ≥ L(η̄, ζ̄, λ̄; θ̃, γ̃, P̃ ) > K?

δ(θ; γ, P )− 2ε0 ,

by (84), proving l.s.c. To establish u.s.c., for each ε0 > 0 one may deduce (by similar arguments

used to establish (85) in Step 3) there is a neighborhood N ′′′′ of (θ, γ, P ) upon which

sup
(η,ζ,λ)∈Ξε

L(η, ζ, λ; θ, γ, P ) ≥ sup
(η,ζ,λ)∈Ξε

L(η, ζ, λ; θ̃, γ̃, P̃ )− ε0 (89)

holds. It follows by (88) and (89) that on N ∩N ′′′′, we have

K?
δ(θ̃; γ̃, P̃ ) = sup

(η,ζ,λ)∈Ξε
L(η, ζ, λ; θ̃, γ̃, P̃ ) ≤ sup

(η,ζ,λ)∈Ξε
L(η, ζ, λ; θ, γ, P ) + ε0 = K?

δ(θ; γ, P ) + ε0 ,
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proving u.s.c.

Step 5: Proof of part (iii). By part (ii), for each ε > 0 there exists a neighborhood N such

that Ξδ(θ̃; γ̃, P̃ ) ⊆ Ξδ(θ; γ, P )ε holds for all (θ̃, γ̃, P̃ ) ∈ N . Therefore, the inequality

~dH(Ξδ(θ̃; γ̃, P̃ ),Ξδ(θ; γ, P )) ≤ ~dH(Ξδ(θ; γ, P )ε,Ξδ(θ; γ, P )) ≤ ε

holds for all (θ̃, γ̃, P̃ ) ∈ N .

References

Bickel, P. J., C. A. Klaassen, Y. Ritov, and J. A. Wellner (1993). Efficient and Adaptive

Estimation for Semiparametric Models. Springer-Verlag, New York.

Bonnans, J. and A. Shapiro (2000). Perturbation Analysis of Optimization Problems. Springer.
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Sason, I. and S. Verdú (2016). f -divergence inequalities. IEEE Transactions on Information

Theory 62 (11), 5973–6006.

Shapiro, A. (1991). Asymptotic analysis of stochastic programs. Annals of Operations Re-

search 30 (1), 169–186.

44


	1 Introduction
	2 Procedure
	2.1 Setup
	2.2 Our Approach
	2.3 Dual Formulation
	2.4 Nonparametrically Identified Sets of Counterfactuals
	2.5 Estimation

	3 Practical Considerations
	3.1 Computation
	3.2 MPEC Implementation
	3.3 Overidentification

	4 Interpreting the Neighborhood Size
	4.1 Invariance
	4.2 Relating Different -divergences
	4.3 ``Least Favorable'' Distributions
	4.4 Viewing Neighborhood Size through the Lens of the Model

	5 Empirical Applications
	5.1 Marital College Premium
	5.2 Welfare Analysis in a Rust Model

	6 Estimation and Inference
	6.1 Large-sample Properties of Plug-in Estimators
	6.2 Inference Procedure 1: Bootstrap
	6.3 Inference Procedure 2: Projection

	7 Local Sensitivity
	7.1 Measure of Local Sensitivity
	7.2 Comparison with Other Approaches

	8 Conclusion
	A Extensions
	A.1 Conditional Moments
	A.2 Nonseparable Moments
	A.3 Exchangeability

	B Additional Results on Nonparametrically Identified Sets
	C Additional Details for Empirical Applications
	C.1 Marital College Premium
	C.2 Welfare Analysis in a Rust Model

	D Background Material on Orlicz Spaces
	E Proof of Main Results
	E.1 Preliminary Results
	E.2 Proofs for Section 2
	E.3 Proofs for Section 3
	E.4 Proofs for Section 4
	E.5 Proofs for Section 6
	E.6 Proofs for Section 7
	E.7 Proofs for Appendix A
	E.8 Proofs for Appendix B
	E.9 Proofs for Appendix D

	F Supplementary Results
	F.1 Notation
	F.2 Stability of Constraint Qualifications under Perturbations
	F.3 Additional Details on the Program (;,P)
	F.4 Additional Details on Convergence of Multipliers


