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ABSTRACT: A monopolist seller of multiple goods screens a buyer whose type is initially
unknown to both but drawn from a commonly known distribution. The buyer privately
learns about his type via a signal. We derive the seller’s optimal mechanism in two dif-
ferent information environments. We begin by deriving the buyer-optimal outcome. Here,
an information designer first selects a signal, and then the seller chooses an optimal mech-
anism in response; the designer’s objective is to maximize consumer surplus. Then, we
derive the optimal informationally robust mechanism. In this case, the seller first chooses
the mechanism, and then nature picks the signal that minimizes the seller’s profits. We
derive the relation between both problems and show that the optimal mechanism in both
cases takes the form of pure bundling.

1. INTRODUCTION

What is the optimal mechanism that a monopolist should use to sell multiple goods to a sin-
gle buyer? Despite being a classic economic problem, multi-dimensional screening is notoriously
intractable. Even if the seller has just two goods and the buyer’s values are additive, indepen-
dent, and identically distributed, the optimal mechanism is hard to characterize generally. In this
paper, we study a general version (with arbitrarily many goods and non-additive values) of this
problem but with the novel feature of buyer learning. As it turns out, introducing this new feature
makes the model tractable and in certain environments—including the one with independent and
additive values—makes pure bundling an optimal mechanism.

The buyer in our model initially has an unknown type (θ1, . . . , θn) that is drawn from a com-
monly known exchangeable1 distribution, where each θi ∈ [θ, θ] ⊂ R+. The buyer’s type deter-
mines his value κb ∑i∈b θi for any bundle b ⊆ {1 . . . , n} of goods where κb ≥ 0 is a non-negative
constant. We assume a weak free-disposal property, which requires that the value of the grand
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bundle (that is, the bundle of all n goods) is greater than any other bundle for every type. This
class of value functions allows for goods to be complements or substitutes and, importantly, in-
cludes additive values (κb = 1 for all bundles b) as a special case. The buyer learns about his type
via a signal. Upon privately observing the signal realization, the buyer forms a posterior estimate
of his value for different bundles.

Our aim is to derive the seller’s optimal mechanism under two different informational envi-
ronments. We first characterize the buyer-optimal outcome: this is the signal and the corresponding
optimal mechanism for the seller that generate the maximal consumer surplus. Specifically, an infor-
mation designer2 first publicly picks the signal (the signal realization remains private to the buyer)
to maximize consumer surplus anticipating that the seller will choose an optimal mechanism in
response. We show that the buyer-optimal outcome is generated by a signal that makes “pure
bundling” (selling the grand bundle at a given price) an optimal mechanism for the seller. Addi-
tionally, we show that the seller’s profit is minimized: there is no other signal and corresponding
optimal mechanism that yield a lower profit. Thus, we show that the seller’s profit in the buyer-
optimal outcome is the solution to a min-max problem where an adversarial nature picks a signal
with the aim of minimizing the profits of a seller who best-responds with an optimal mechanism.

We then derive the optimal informationally robust mechanism for the seller: this is an optimal mech-
anism for a seller who does not know how the buyer learns and who evaluates profits according
to a worst-case criterion. Here, the timing is reversed: the seller first chooses the mechanism, fol-
lowing which nature picks the signal to minimize the seller’s profit. Therefore, in this case, the
seller’s profit from the optimal informationally robust mechanism is the solution to a max-min
problem. Once again, we show that pure bundling is optimal for the seller, but, in this case, she
randomizes over the price for the grand bundle. Moreover, we derive this result by showing that
the seller’s profit, in this case, is exactly equal to her profit from the buyer-optimal outcome; that
is, the optimal value of the objective function in the max-min and the min-max problems coincide.

In our view, the solutions to both problems are individually economically interesting and have
distinct implications. At a high level though, both demonstrate different important properties
of pure bundling. The buyer-optimal outcome is a natural theoretical benchmark. The seller of
a single good always finds it optimal to screen by simply posting a price. By contrast, optimal
multidimensional screening can, and frequently does, involve complex menus and randomization
even when values are additive and each θi is independently and identically distributed. Such
elaborate screening helps sellers maximize profits, but the effect on the consumer is unclear. For
instance, complex screening might lead to Pareto improvements where both the seller and the
buyer are better off because the efficiency of trade increases. The buyer-optimal outcome is a
natural benchmark to study the tradeoff between mechanism complexity and the efficiency of
trade because the seller best responds to the most advantageous information structure for the
buyer. Here, the optimal mechanism takes the very simple form of pure bundling, and we show
that trade is efficient.

2As we discuss below, this could be interpreted either as a theoretical benchmark or alternatively we could think of the
designer as a regulator having the best interest of consumers in mind.
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The selling practices of multi-product retailers are scrutinized by regulators who specifically
express concerns about and pursue litigation against practices like tying and bundling by large
firms.3 Under the buyer-optimal signal, not only does pure bundling not cause consumer harm,
it leads to the highest possible consumer surplus and efficient trade. This suggests that the infor-
mation available to buyers is an important factor that should determine whether or not bundling
needs to be scrutinized. Of course, this also raises the question of whether and, if so, which adver-
tising practices should be regulated in the interest of consumers (see Bagwell, 2007 and Woodcock,
2017 for a recent case in favor of greater regulation).

Conversely, the optimal informationally robust mechanism provides a positive explanation for
why we should expect to observe pure bundling in practice. Despite having historical data from
different markets, sellers are unlikely to have very precise estimates of a buyer’s value distribu-
tion. In particular, it is impossible for a seller to predict what information the buyer has or will
acquire in any particular period. Our results show that pure bundling (albeit with a random price)
provides the highest revenue guarantee. This is perhaps one reason why, in practice, we do not
observe very complex screening that depends on fine details of the type distribution (as is possi-
ble in multidimensional screening). Instead, pure bundling is the common way that digital goods
such as streaming services are sold. This setting is a good fit for the model: sellers such as Netflix
and Spotify have considerable market power, and disposal is free.

Before moving on to the related literature, we provide some high-level intuition for the main
insight driving our results. The tractability of our model, given its generality and the simple form
of the seller’s optimal mechanisms might come across as surprising to some readers. After all,
we add buyer learning to the already complex (and unsolved at this level of generality) screening
problem. Learning itself can also be significantly more complex than its one-dimensional counter-
part. This is because, in this multidimensional environment, the set of possible signals is very rich
and does not have a simple characterization akin to the one-dimensional case (where the prior
type distribution is a mean-preserving spread of the distribution of posterior estimates that can
arise from any signal). Our central insight is that it is precisely the buyer learning that makes the
problem tractable. Specifically, we identify a signal that describes the buyer’s information in the
buyer-optimal outcome. For this particular signal, it is possible to derive the seller optimal mech-
anism. Moreover, this signal has the property that it minimizes the seller’s revenue when she
chooses the optimal informationally robust mechanism and plays an important role in its deriva-
tion.

An important feature of our environment is that generically there are informative signals such
that the posterior estimates of each θi have maximal positive correlation across i. This can be
done even when the prior distribution is such that different dimensions of the type vector are dis-
tributed independently or are negatively correlated. As an example, suppose the buyer observed
a signal (about the sum of his type vector) of the form θ1 + · · · + θn + ε where ε is some noise.
Maximal positive correlation in the distribution of the posterior estimate of the type vector then
follows from the fact that the prior distribution is exchangeable.

3Often, the concern is that such practices are used to prevent the entry of competitors. Importantly, however, a selling
practice is not illegal if it maximizes profits even if it deters entry as a side effect. Instead, regulators typically scrutinize
firms that incur deliberate losses to maintain market power.
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In addition to generating such correlation, the signal in the buyer-optimal outcome adds further
noise that determines the shape of the distribution of the posterior estimate of each θi. It might
seem counterintuitive to some that the signal in the buyer-optimal outcome contains so much
noise. After all, imperfect information about his type affects the buyer’s ability to make good
purchasing choices (in an ex-post sense) when faced with a given mechanism. However, the signal
also determines the seller’s optimal mechanism and, therefore, the share of surplus that the seller
can appropriate. Specifically, the correlation in the signal limits the seller’s ability to screen across
dimensions. Further, the induced shape of the distribution of the posterior type estimate results
in efficiency and gives the buyer the maximal surplus share possible (by making it optimal for
the seller to offer a pure bundling mechanism at a price that is favorable for the buyer). From a
technical perspective, we show that such signals allow us to map our multi-dimensional screening
problem onto its one-dimensional counterpart, which in turn allows us to leverage existing results
from the literature.

Related Literature

This paper lies at the intersection of a few different literatures. The first literature examines the
classic question of how a monopolist should jointly sell multiple goods. Despite being a mature
literature (dating back till at least Adams and Yellen (1976)), the complexity of the problem is such
that there are surprisingly few general insights even for the special case of additive values. A
seminal result is due to McAfee, McMillan, and Whinston (1989) who show that when values are
additive and each dimension of the type is distributed independently, selling goods individually
(separate sales) is never optimal for the monopolist.

In general, the optimal mechanism can be extremely complex even when values are indepen-
dent and additive. Pavlov (2011) shows that optimal screening can involve randomization when
values are identically and uniformly distributed. Daskalakis, Deckelbaum, and Tzamos (2017)
show that the optimal mechanism for two goods features an infinite menu of lotteries when the
values are drawn independently from the beta distribution. In fact, the seller might get a negli-
gible fraction of the optimal revenue if she is restricted to using “simple mechanisms” like pure
bundling or separate sales (Hart and Nisan, 2019). Unlike these results, we show that, even under
general exchangeable prior type distributions, simple pure bundling is optimal in two different
environments with buyer learning.

There is substantially less work that can accommodate non-additive values and we view this
generality to be a strength of our setting. The recent survey of Armstrong (2016) describes a
strand of the screening literature (with non-additive values) that does not aim to derive the op-
timal mechanism but instead derive conditions under which the seller can profit from offering
bundle discounts. A notable exception is Haghpanah and Hartline (2021) who characterize en-
vironments where pure bundling is seller optimal, and we employ one of their results for the
proof of our first main theorem. Specifically, we show that, while pure bundling is not an optimal
mechanism for the prior type distribution, it emerges as optimal due to buyer learning.

This paper is also related to the growing literature on information design: Bergemann and Mor-
ris (2019) and Kamenica (2019) are recent surveys. Within this literature, we are most closely
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related to the recent work studying how the information environment affects the selling mech-
anism, efficiency, and the resulting surplus division in bilateral trade settings.4 The key distinc-
tion of our paper with this literature is that we study multi-dimensional screening. Bergemann,
Brooks, and Morris (2015) study a standard single-good monopoly pricing problem and analyze
which buyer-seller surplus pairs are achievable when the seller (instead of the buyer) receives ad-
ditional information which she can use to price discriminate. Ravid, Roesler, and Szentes (2021)
study an environment where buyer-learning is unobservable but costly. Their main result shows
that there is a distinction between free and arbitrarily cheap learning.

The closest related papers are Roesler and Szentes (2017) and Du (2018); they respectively an-
alyze the one-dimensional versions of the two problems we study. Roesler and Szentes (2017)
derive the buyer-optimal outcome for a single good, and their main insight is to show that, even
if information is free, the buyer prefers not to perfectly learn his value for the product. Du (2018)
derives the optimal informationally robust mechanism (a random posted price) for a single good5

and uncovers the relation to the buyer-optimal outcome. The richness of the multi-dimensional
screening environment that we consider opens the door to questions that cannot be addressed in
the one-dimensional context. Namely, our main contribution is to derive the qualitative properties
of the seller’s optimal mechanism (it takes the form of pure bundling) in both information envi-
ronments; for the seller of a single good, it is always just a posted price (either deterministic or
random).

Finally, the optimal informationally robust mechanism that we derive is also related to the
broader literature on robust mechanism design. Within this literature, the closest paper is Car-
roll (2017). He considers a seller who knows the marginal distribution of the buyer’s value for
each good but not the joint distribution. The monopolist chooses a mechanism that maximizes the
worst-case profit computed over all joint distributions which have the given marginals. He shows
that separate sales is seller optimal for this criterion. In independent and contemporaneous work,
Che and Zhong (2021) generalize these results. They consider a setting where there is a partition
of the set of goods and there is an exogenously given set of distributions for the value (∑i∈b θi) of
each bundle b that is an element of the partition. Their seller evaluates worst case profits across
all possible joint distributions whose marginal distributions of the value of each partition element
b lie in the given set.

While we allow for more general non-additive values, the main difference between the results
in these papers and our optimal informationally robust mechanism is the set over which the seller
evaluates worst case profits. In our case, the distribution of the buyer’s posterior type estimate
must be obtained by Bayesian updating. As a result, any signal jointly determines both the mar-
ginal distribution of each dimension of the type and the correlation across dimensions. For exam-
ple, if there are two goods and the prior type distribution is independent across dimensions, any
signal that introduces correlation in the posterior type estimate necessarily changes the marginal

4Similar ideas can also be found in the literature on information acquisition and disclosure in mechanism design set-
tings such as Persico (2000), Bergemann and Välimäki (2002) or Shi (2012). In contrast to the information design litera-
ture, these papers usually consider a restricted domain of feasible information structures.
5He additionally constructs an informationally robust auction to sell a common-value good which has the property
that, as the number of bidders gets large, its revenue guarantee converges to the full surplus.
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distribution of at least one dimension. By contrast, the seller in Che and Zhong (2021) evaluates
the worst-case profits across all joint distributions that have marginals in the given set.

2. THE MODEL

We consider a mechanism design problem with one buyer and one seller, the latter of whom
has one unit of each of n ≥ 2 goods for sale. We denote the set of goods by N = {1, . . . , n}. We
assume that the seller’s cost of producing these goods is 0.

Type Space: The buyer has a type θ = (θ1, . . . , θn) that lies in a set Θ = [θ`, θh]
n (endowed with the

Borel σ-algebra F ) with θh > θ` ≥ 0. The type is initially unknown to both the buyer and seller,
and is drawn from a commonly known (cumulative) distribution F.6 We assume F has a positive
density for all θ ∈ Θ.

Additionally, we assume that F is exchangeable: for any permutation σ : N → N, the joint
distribution of (θ1, . . . , θn) is the same as the joint distribution of (θσ(1), . . . , θσ(n)) (both of which
are F).7

Exchangeability requires the marginal distribution of each θi to be the same and is clearly sat-
isfied when each dimension of the type, θi, is independent and identically distributed (henceforth
iid). Exchangeability allows both positive and negative correlations between dimensions of the
type vector, although it does imply a lower bound on the correlation coefficient. This bound is
increasing in n but, for the most widely examined case of two goods, exchangeability imposes no
restriction on the degree of correlation.

Given a type θ, we use θ ∈ Θ := [nθ`, nθh] to denote the sum θ := θ1 + · · ·+ θn and F denotes
the distribution of the sum θ induced by the type distribution F.

Value Function: Given a type θ, the buyer’s value for a bundle b ⊆ N is

u(θ, b) = κb ∑
i∈b

θi, (1)

where κb ≥ 0 and we normalize the constant for the grand bundle N to κN = 1. Because of this
normalization, we also refer to the sum θ as the grand bundle value.

We assume that the buyer’s value of not receiving a good is u(θ, ∅) = 0 and that u(θ, N) ≥
u(θ, b) for all b ⊆ N and all θ ∈ Θ. The latter is a weak free-disposal property and ensures that the
greatest surplus is generated by trading the grand-bundle. In terms of the κb-s, this requires that
κb ≤ 1 + N−|b|

|b|
θ`
θh

. Note that we do not require κb′ ≥ κb for proper subsets b ⊂ b′ ⊂ N. Indeed,
when θ` > 0, we can have κb > κN . We assume that preferences are quasilinear and players are
risk-neutral expected utility maximizers.

This framework generalizes additive values (κb = 1 for all b ⊆ N) and allows for goods to be
either complements or substitutes8. This generality is not merely cosmetic and, as we will ar-
gue, has implications for the form that the seller’s optimal mechanism takes. Geng, Stinchcombe,

6We abuse notation and interchangeably refer to F as a cumulative distribution (henceforth, cdf) and a probability
measure. The meaning will be clear from the argument (element vs. set).
7Formally, for any X ∈ F , we have F(X) = F(Xσ) where Xσ = {(θσ(1), . . . , θσ(n)) | (θ1, . . . , θn) ∈ X}.
8For example, our value function can capture the case of add-on items
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and Whinston (2005) also study multidimensional screening with such a value function, but they
require that κb is decreasing in the number of goods in the bundle b.

Maximal Total Surplus: We use µ :=
∫

Θ u(θ, N)dF(θ) =
∫

Θ θdF(θ) to denote the maximal surplus
that can be achieved from trading. Note that the weak free-disposal assumption implies that the
maximal surplus is achieved by trading the grand bundle with probability one.

Signals: The buyer learns about his type via a signal. Given the linearity of our model and risk-
neutrality of players, without loss, we will restrict attention to unbiased signals (S, GS×Θ). The set
of signal realizations S = Θ is just the type space. GS×Θ ∈ ∆(S× Θ) is a joint distribution over
S×Θ such that the marginal distribution of GS×Θ over Θ is F. We denote the marginal distribution
of GS×Θ over the set of signal realizations S by G.

The buyer learns about his type by observing a signal realization s ∈ S. We assume the poste-
rior estimate of the type is just the signal realization s = (s1 . . . , sn) itself (hence, the “unbiased”
terminology) so

s = EGS×Θ [θ | s]
for all s that lie in the support of G. We will refer to both the joint distribution GS×Θ and the mar-
ginal distribution G as signals since we can always convert one to the other. The buyer privately
observes the signal realization.

Restricting attention to the above class of signals is without loss because the value function is
linear in the type and therefore both the buyer and the seller only care about the posterior estimate
of the type. To see this, suppose instead that signal realizations are drawn from an arbitrary set
S′ and GS′×Θ ∈ ∆(S′ × Θ) is a joint distribution that has marginal distribution F over Θ.9 If the
buyer observes a signal realization s′, his value is determined by

E[u(θ, b) | s′] = u(EGS′×Θ
[θ | s′], b) for all b ⊆ N.

So we can just transform any (S′, GS′×Θ) into the above unbiased form by relabeling s′ to s =

EGS′×Θ
[θ | s′] with G being the distribution of EGS′×Θ

[θ | s′].

We denote the set of signals, by

G := {G ∈ ∆(S) | G is the marginal distribution over S induced by some signal (S, GS×Θ)}.

Note that this is the set of possible distributions over posterior estimates.

Mechanism: The seller chooses a mechanism. Formally, a mechanismM = (M, q, t) consists of a
set of messages M, a (possibly random) allocation q : M → ∆(2N) and a transfer t : M → R. The
allocation determines the likelihood of receiving the various bundles and of not being allocated
any good; we sometimes use q(m, b) to denote the probability that the buyer is allocated bundle b
when he reports message m ∈ M.

If the buyer with posterior estimate s reports m ∈ M, his expected utility is

Eq(m)[u(s, b)]− t(m),

9We are implicitly assuming that S′ is a Polish space endowed with the Borel σ-algebra. This is a technical assumption
which is necessary to guarantee that the conditional distributions are well defined.
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where the expectation is taken with respect to the random allocation. Because of this structure of
payoffs, it is without loss to restrict the seller to deterministic transfers.

We further assume that every mechanism is such that

max
m∈M

[
Eq(m)[u(s, b)]− t(m)

]
≥ 0,

for all s ∈ S. This is an individual rationality requirement. It ensures that the buyer is not forced to
participate in a mechanism that gives him negative utility. Implicitly, we are also assuming that a
solution to the above maximization problem exists; that is, every mechanismM has the property
that, for every s, there is a message that maximizes the buyer’s utility.

The buyer chooses a reporting strategy σ : S → ∆(M) that maximizes his utility. We say that
his strategy σ is a best response if his expected utility satisfies

U(s,M) := Eσ(s)

[
Eq(m)[u(s, b)]− t(m)

]
≥ Eσ′(s)

[
Eq(m)[u(s, b)]− t(m)

]
(2)

for all s ∈ S and all other strategies σ′. For a mechanismM, U(s,M) denotes the buyer’s utility
from best responding and the set of best responses is denoted by Σ(M).

Given a signal G, a mechanismM and a best response σ, the seller’s profit is given by

Π(G,M, σ) := EG

[
Eσ(s) [t(m)]

]
.

The outer expectation is taken with respect to distribution over signal realizations and the inner
with respect to the buyer’s strategy.

Pure Bundling and Separate Sales: We will refer to two special classes of mechanisms repeatedly.
The first is a pure bundling mechanism at price p which we denote byMPB

p = (MPB, qPB
p , tPB

p ). This
is the mechanism in which, whenever the buyer purchases, he is only allowed to purchase the
grand bundle N at a price p. Formally, we can implement this mechanism with a message space
MPB = [nθ`, nθh] and an allocation and transfer given by

qPB
p (m, b) =

{
1 if m ≥ p and b = N,
0 otherwise,

and tPB
p (s) =

{
p if m ≥ p,
0 otherwise.

(PB)

In words, the buyer reports his value m for the grand bundle and is allocated the grand bundle
at a price of p if the report is higher than the price. Clearly, it is a best response for the buyer to
truthfully report his value.

The second is a separate sales mechanism at prices p = (p1, . . . , pn) which we denote byMSep
p =

(MSep, qSep
p , tSep

p ). Here, the seller offers a price pi for each individual good and the buyer can
choose whichever bundle he likes and just pay the total price. Formally, we can implement such a
mechanism with a message space MSep = 2N and an allocation, transfer given by

qSep
p (m, b) =

{
1 if m = b,
0 otherwise,

and tSep
p (m) =

{
∑i∈m pi if m 6= ∅,

0 if m = ∅.
(Sep)
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Our aim is to derive the qualitative properties of the seller’s optimal mechanism under two
different information environments and to relate the solutions of each. We informally describe
both here in words, the formal descriptions are in Section 3 and Section 4 respectively.

We first derive the buyer-optimal outcome. This is a signal for the buyer and an optimal mech-
anism for the seller (in response to this signal) that maximize consumer surplus. The timing here
is that an information designer first publicly chooses the signal. That is, the signal structure is
observed by the buyer and the seller, the signal realization is private to the buyer. The seller then
chooses an optimal mechanism in response.

We then derive the seller’s optimal informationally robust mechanism. This is a mechanism
that maximizes the seller’s profit against the worst possible signal realization. In this case, the
timing is the exact opposite. The seller first chooses her mechanism. In response, nature chooses
a signal and a best response for the buyer that minimizes the seller’s profit.

2.1. Discussion of the model

We make several modeling assumptions that are worth discussing before we proceed to the
analysis. The fact that we allow for an arbitrary number of goods and for goods to be either
complements or substitutes makes our environment more general than the bulk of the multidi-
mensional screening literature (especially the subset that aims to derive optimal mechanisms),
which either assumes two goods, additive values or both. We chose the particular class of value
functions given by (1), because it has the feature that only the posterior estimate is relevant for
the mechanism design problem. For more general value functions, the posterior estimate is no
longer sufficient to determine the buyer’s utility and, for every signal realization s, the entire
posterior distribution over Θ induced by the signal G would become relevant. This significantly
complicates the information design part of our problem because we would need to optimize over
a significantly larger set of signals. It is for precisely this reason that the bulk of the information
design literature also restricts attention to linear environments.

We assume that the distribution F of the buyer’s type is exchangeable. This assumption is pri-
marily for tractability; we briefly discuss the complexities introduced by more general type distri-
butions in our concluding remarks in Section 5. Nonetheless, the fact that this assumption does
not rule out positive or negative correlations makes our environment significantly more general
than the bulk of the existing literature. To the best of our knowledge, apart from the aforemen-
tioned Haghpanah and Hartline (2021), there are very few results that characterize the optimal
mechanism when values for goods are correlated even with additional functional form assump-
tions about the marginal distribution of each dimension. Recent work (see, for instance, Chen
and Riordan, 2013; Chen and Ni, 2017) has instead sought to understand when pure bundling can
dominate separate sales (even though the former may not be the optimal mechanism).

3. THE BUYER-OPTIMAL OUTCOME

In this section, we formally define and characterize a buyer-optimal outcome. We then apply
this characterization to derive a comparative statics result that relates the consumer surplus to the
number of goods offered for sale. We begin with a few definitions.

9
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Optimal Mechanism: For a signal G ∈ G, an optimal mechanism maximizes the seller’s profit.
Formally, a mechanismM is optimal if it has a buyer best response σ ∈ Σ(M) such that

Π(G,M, σ) ≥ Π(G,M′, σ′)

for any other mechanismM′ and buyer best response σ′ ∈ Σ(M′). Here we make the implicit as-
sumption that the buyer chooses the best response that maximizes the seller’s revenue (this could
have a material impact on profits since, in particular, G may have atoms). This is the standard
assumption in mechanism design. In other words, for a given signal G, the optimal mechanism is
the solution to a standard multidimensional screening problem. Despite being standard, we make
this tie-breaking assumption explicit to provide a clear contrast with the optimal informationally
robust mechanism that we define in Section 4 (in which the buyer breaks ties against the seller).

Outcome: We will refer to a pair (G, M) as an outcome, whenever G ∈ G is a signal andM is an
optimal mechanism for the seller in response to distribution G.

Buyer-Optimal Outcome: Our goal in this section is to characterize the buyer-optimal outcome
(G∗, M∗) that maximizes the buyer’s surplus across all outcomes. Formally, we solve

max
M,G∈G

EG [U(s,M)]

such that

M is an optimal mechanism for the signal G.

The constraint in this maximization problem is well defined because a seller optimal mechanism
always exists for every signal (see, for instance, Balder (1996)). Our proof explicitly constructs the
signal G∗ in the buyer-optimal outcome, so we show that the maximum for the objective function
is obtained.

Before stating the result, we highlight a specific subclass of signals. These will play an important
role in the derivations of both the buyer-optimal outcome and the optimal informationally robust
mechanism.

Perfectly correlated signal: We say that a signal G ∈ G is maximally positively correlated across
dimensions, or simply perfectly correlated, if it is distributed along the diagonal {(s1, . . . , sn) ∈
S | s1 = · · · = sn}.

We are now in a position to present the first of our two main results.

THEOREM 1. There exists a buyer-optimal outcome (G∗, M∗) which has the following properties.
(1) Seller Best-Response:M∗ is a pure bundling mechanism soM∗ =MPB

p∗ for some p∗.
(2) Signal: G∗ is perfectly correlated.
(3) Total Surplus: The buyer is allocated the grand bundle with probability one so trade is efficient.

Before proceeding to the proof, it is worth briefly discussing this result. We begin by provid-
ing some intuition for why pure bundling emerges as the optimal mechanism. It turns out that
perfect information about his type is not optimal for the buyer because this allows the seller to
screen effectively. To prevent this, the signal in the buyer-optimal outcome injects two different

10
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kinds of noise into learning. First, it introduces perfect correlation. This effectively makes the type
space one-dimensional and reduces the seller’s ability to screen across dimensions. It is generi-
cally possible to construct informative perfectly correlated signals even though the θi’s might be
independently distributed or even negatively correlated.10 In our setting, suppose that the buyer
perfectly learned his grand bundle value θ1 + · · ·+ θn but nothing further. Then, because the dis-
tribution F is exchangeable, the buyer’s posterior estimate for each dimension will be identical
and will simply be (θ1 + · · ·+ θn)/n.

Reducing the seller’s ability to screen by introducing correlation could still harm the buyer as
it might simultaneously lead to a reduction of total surplus. This can be prevented by injecting
further noise into the signal: instead of telling the buyer his exact grand bundle value, the signal
provides a noisy estimate. Loosely speaking, perfect correlation effectively reduces the seller’s
problem to its one-dimensional counterpart, and hence we can adapt the methods from Roesler
and Szentes (2017) (who study the sale of a single good) to show that it is possible to construct
such a signal so that trade of the grand bundle always happens. The latter is the efficient outcome
because of the weak free-disposal assumption. Finally, if trade always happens, the seller must
be best-responding by offering a pure bundling mechanism where the price for the grand bundle
is the minimum of the support of the distribution of the posterior estimate of the grand bundle
value induced by G∗.

It might seem surprising that the signal in the buyer-optimal outcome inserts so much noise into
learning; after all, as a result, the buyer might frequently purchase the grand bundle even when
his true value is lower than the price. Both types of noise are necessary because, compared to the
one-dimensional case, the larger set of mechanisms at the seller’s disposal implies that a greater
amount of noise is necessary to prevent effective screening. The buyer-optimal outcome exactly
balances these two countervailing forces: making a good purchasing decision and preventing
effective screening.

In fact, the buyer-optimal outcome is the worst outcome for the seller.

COROLLARY 1. The seller’s profit in any outcome is weakly greater than her profit π∗ in any buyer-optimal
outcome. As a consequence, trade happens with probability one in every buyer-optimal outcome.

In words, this corollary (proved in Appendix A) says that every buyer-optimal outcome not
only maximizes consumer surplus, it also minimizes producer surplus. The first part of the above
corollary implies that the seller’s profit π∗ must be the same in every buyer-optimal outcome.
Statement (3) in Theorem 1 then implies that trade must be efficient in every buyer-optimal out-
come.

This corollary also implies that the seller’s revenue in the buyer-optimal outcome is the solution
to the min-max problem where an adversarial nature first picks the signal and the seller then
chooses an optimal mechanism in response. In other words,

π∗ = min
G∈G

max
M,σ∈Σ(M)

Π(G,M, σ). (3)

10Of course, a completely uninformative signal always induces perfect correlation.
11
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This fact will play an important role in the derivation of the optimal informationally robust mech-
anism.

We make one last observation before presenting the proof of Theorem 1. Note that the buyer-
optimal outcome is not unique and, in particular, pure bundling need not be the unique seller best
response. Specifically, if κb ≤ κN = 1 for all b ⊂ N, then it will also be optimal for the seller to
offer a separate sales mechanism where the price vector for the goods is simply the minimum of
the support of G∗. This is because the buyer will still prefer to always buy the grand bundle when
faced with this mechanism. However, this is no longer the case when κb > 1. We illustrate this in
the following example.

Example. Suppose there are two goods and that κ{i} > 1 for both i ∈ {1, 2}. We now argue that
separate sales cannot be the seller’s optimal mechanism in any buyer-optimal outcome. As a con-
tradiction, suppose that there is a buyer-optimal outcome

(
G?,MSep

p

)
whereMSep

p is a separate
sales mechanism at prices p = (p1, p2). Corollary 1 implies that trade must be efficient and so
the buyer must always purchase the grand bundle. This in turn implies that, for every ε > 0, we
must have G?({(s1, s2) | (s1 + s2)− (p1 + p2) ≤ ε}) > 0. In words, there must be a positive mass
of buyer types whose grand bundle value is just above the total price for the grand bundle as,
otherwise, the seller could earn a greater profit by instead offering a pure bundling mechanism at
the higher price p1 + p2 + ε.

Now consider the positive mass of types that satisfy 0 ≤ (s1 + s2)− (p1 + p2) ≤ ε. The buyer
prefers to purchase the grand bundle instead of just good i whenever κ{i}si − pi ≤ (s1 + s2) −
(p1 + p2). Adding up over the two goods, we get

(κb − 1)(p1 + p2) ≤ (κb − 1)(s1 + s2) ≤ (κ{1} − 1)s1 + (κ{2} − 1)s2 ≤ (s1 + s2)− (p1 + p2) ≤ ε

where κb = min{κ{1}, κ{2}}. For small enough ε > 0, the above inequality cannot be true since
we must have p1 + p2 > 0. This provides the requisite contradiction because it implies that there
will be a positive mass of buyer types that will strictly prefer to not buy the grand bundle thereby
implying trade is not efficient in the buyer-optimal outcome

(
G?, MSep

p

)
.

3.1. Proof of Theorem 1

In this subsection, we prove Theorem 1. Readers who are not interested in the details of the
proof can skip to Section 3.2 without loss of continuity. However, the proof of Theorem 3 (the
characterization of the optimal informationally robust mechanism) builds on the arguments that
follow.

We begin by introducing some additional notation and terminology. Given s ∈ S, we use
s̄ = s1 + · · · + sn to denote the sum. The set of all such s is denoted by S; note that S = Θ
(because S = Θ) but we use distinct notation nonetheless to distinguish the sum of the signal
realization vector from the sum of the type vector. Every signal G ∈ G induces a distribution
G ∈ ∆(S) over the posterior estimates s̄ of the grand bundle value. We use G to denote the set of
these distributions of grand bundle estimates that are induced by some signal G ∈ G.

12
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Given two distributions G, G′ ∈ ∆(S), we say that G is a mean-preserving spread of G′ or G % G′

if ∫ s

nθ`

G(x) dx ≥
∫ s

nθ`

G′(x) dx for all s ∈ [nθ`, nθh] with equality for s = nθh. (4)

We now establish some properties of the set G.

LEMMA 1. The set of distributions over grand bundle estimates induced by signals in G has the following
properties:

(i) G is a distribution over grand bundle estimates iff F is a mean-preserving spread of G, or equiva-
lently,

G =
{

G ∈ ∆(S) | F % G
}

.

(ii) For every signal G ∈ G, there exists a signal G′ ∈ G that is perfectly correlated such that G and G′

induce the same distribution G = G′ over posterior grand bundle estimates.

PROOF OF LEMMA 1. We begin by defining one-dimensional signals that only provide the buyer
information about his grand bundle value. These are (unbiased) signals (S, HS×Θ) where the set
of signal realizations S is just the set of possible grand bundle values and HS×Θ ∈ ∆(S×Θ) is a
joint distribution over S×Θ such that the marginal distribution of HS×Θ over Θ is F and

s = EHS×Θ
[θ | s]

for all s in the support. We refer to such one-dimensional signals as grand-bundle signals.

We use H to denote the marginal distribution of HS×Θ over the set of signal realizations S and
use H to denote the set of all such distributions H over grand bundle estimates. As we argued
when we defined signals (S, GS×Θ) for the type vector, it is without loss to restrict attention to
such unbiased signals.

Now note that elements of H are just cdfs of real-valued random variables. We defined this set
because it has a well known characterization

H =
{

H ∈ ∆(S) | F % H
}

, (5)

or, in words, H is the marginal distribution of posterior estimates of grand bundle values for some
grand bundle signal iff F is a mean-preserving spread of H. We will use this characterization to
establish the first part of the lemma.

We first argue that G ⊆ H. To see this, observe that signal GS×Θ induces a joint distribution
GS×Θ over S× Θ such that the marginal distribution of GS×Θ over Θ is F and the marginal dis-
tribution over S is G. Formally, this is the image measure of GS×Θ generated by the mapping
a(s, θ) = (s1 + · · ·+ sn, θ1 + · · ·+ θn) which implies that, for any measurable set A ⊂ S×Θ, we
have GS×Θ(A) = GS×Θ(a−1(A)). Moreover, observe that

EGS×Θ

[
θ|s
]
= EGS×Θ

[
θ|s
]
= EGS×Θ

[
EGS×Θ [θ1 + · · ·+ θn|s]|s

]
= EGS×Θ [s1 + · · ·+ sn|s] = s

for all s in the support. Therefore the marginal distribution G over S induced by GS×Θ satisfies
G ∈ H.

13
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To complete the proof of part (i), we need to show that H ⊆ G. We will in fact also show part
(ii) by arguing that, for every H ∈ H, there exists a perfectly correlated signal G ∈ G such that the
distribution it induces on grand bundle estimates satisfies G = H.

By definition, H is the marginal distribution over S corresponding to a joint distribution HS×Θ ∈
∆(S×Θ) that has marginal distribution F over Θ and that satisfies s = EHS×Θ

[θ | s]. We use HS×Θ

to define a family of conditional distributions Ĥ(·|θ) ∈ ∆(S) as follows

Ĥ(·|θ) := H(·|θ1 + · · ·+ θn). (6)

This combined with the distribution F over Θ generates a joint distribution ĤS×Θ over S × Θ
whose marginal distributions over S and Θ are Ĥ = H and F respectively.

Now observe that
EĤS×Θ

[θ1 + · · ·+ θn|s] = s

for all s in the support. This is a consequence of the definition (6) of ĤS×Θ and from the fact that
s = EHS×Θ

[θ | s].
Given the joint distribution ĤS×Θ, we can derive the conditional distribution Ĥ(·|s) over Θ.

Now observe that the conditional distribution Ĥ(·|s) is exchangeable. This follows from the defi-
nition of ĤS×Θ and because F is assumed to be exchangeable. This in turn implies

EĤ [θi|s] =
s
n

for all i ∈ {1, . . . , n}.

Now define a joint distribution GS×Θ over S×Θ that is the image measure of ĤS×Θ generated by
the mapping â(s, θ) =

( s
n , . . . , s

n , θ
)
. Formally, for any measurable Â ⊆ S×Θ, we have GS×Θ(Â) =

ĤS×Θ(â−1(Â)). By construction, the marginal distribution of GS×Θ over Θ is F, the marginal
distribution G over S is distributed along the diagonal {(s1, . . . , sn) ∈ S | s1 = · · · = sn} and so is
perfectly correlated.

Observe that

EGS×Θ

[
θi

∣∣∣∣ s =
(

s
n

, . . . ,
s
n

)]
= EĤS×Θ

[θi|s] =
s
n

for all i ∈ {1, . . . , n}

and so G ∈ G or, in words, that G is an unbiased signal. Finally, by construction, the distribution
G over posterior grand bundle estimates induced by G satisfies G = Ĥ = H which completes the
proof. �

We now define the special class of truncated Pareto distributions that we will employ in the
proof of Theorem 1 below. These are defined as

Hα,β(θ) =


0 if θ < α,

1− α/θ if θ ∈ [α, β),
1 if θ ≥ β,

(7)

where α ≤ β. Truncated Pareto distributions are supported on [α, β], are continuous on (α, β) and
have an atom of size α

β at the truncation point β. When α = β, Hα,α is the degenerate distribution
with an atom of size 1 at α.

14
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We use GP ⊂ G to denote the subset of distributions over grand bundle estimates (induced by
signals in G) that are truncated Pareto distributions. Formally,

GP
=
{

G ∈ G | G = Hα,β for some nθ` ≤ α ≤ β ≤ nθh
}

.

This set is non-empty because it includes the distribution Hµ,µ ∈ G over grand bundle estimates
induced by the completely uninformative signal.

It is easy to show that there is a continuous, strictly decreasing function β(α) such that every
element of GP

is of the form Hα,β(α). Hence, in what follows, we simplify notation and only use the

lower bound of the support Hα ∈ G
P

to denote a truncated Pareto distribution over grand bundle
estimates induced by a signal, since this alone suffices to describe this distribution. In other words,
whenever we refer to a distribution Hα we are implicitly assuming Hα ∈ G

P
and that Hα = Hα,β(α).

Roesler and Szentes (2017) showed that the class of truncated Pareto distributions can be used to
characterize the buyer-optimal outcome for a single good. The truncated Pareto distribution Hα,β

has the property that all pure bundling mechanisms with price p in [α, β] yield the same profit
α. Since their work, the properties of this class of distributions have been exploited in several
information design papers.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. We prove the theorem in two steps. The first step adapts the proof of
Lemma 1 in Roesler and Szentes (2017) to our multidimensional context. While the proofs are
similar, we reproduce the complete argument here so that our proof is self-contained, and we flag
the key differences.

Step 1: Consider an arbitrary outcome (G, M) at which the seller’s profit is π ∈ [nθ`, nθh]. There
exists a perfectly correlated signal G′ ∈ G that satisfies the following properties.

i G′ ∈ G induces a truncated Pareto distribution G′ = Hπ ∈ G
P

over grand bundle estimates.
ii The buyer’s consumer surplus under signal G′ is weakly higher (than that under outcome

(G, M)) when the seller offers the pure bundling mechanismMPB
π at price π.

iii Pure bundling mechanismMPB
π yields the seller the highest profit in the set of pure bundling

mechanisms.

Proof of Step 1: Let G be the distribution on the grand bundle estimates induced by G. Given this
signal, if the seller offers a pure bundling mechanism MPB

p at price p, the buyer purchases the
grand bundle if his posterior estimate of the grand bundle value satisfies s ≥ p (where note that
we assume the buyer purchases when s = p). Therefore, the seller’s profit from this pure bundling
mechanism satisfies

p
[
1− G(p) + δG(p)

]
≤ π ⇐⇒ 1− π

p
≤ G(p)− δG(p)

where δG(p) is the mass of distribution G at p (if G has no atom at p, this will be 0). The left
inequality follows from the fact thatM is an optimal mechanism in response to signal G.
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Observe that since δG(p) ≥ 0, we can conclude from the right inequality that Hπ,nθh(p) ≤ G(p)
for all p ∈ [nθ`, nθh] because, recall that,

Hπ,nθh(s) =


0 if s < π,

1− π
s if s ∈ [π, nθh),

1 if s ≥ nθh.

In words, Hπ,nθh first-order stochastically dominates G. This implies∫ nθh

nθ`

s dHπ,nθh(s) ≥
∫ nθh

nθ`

s dG(s) = µ ≥ π =
∫ nθh

nθ`

s dHπ,π(s). (8)

The left inequality follows from the first-order stochastic dominance we established above. The
left equality is a consequence of the fact that G is a signal and so

∫ nθh
nθ`

s dG(s) =
∫ nθh

nθ`
θ dF(θ) = µ.

The right equality follows from the fact that the distribution Hπ,π is just the Dirac measure that
has an atom of mass 1 at π.

The simple but key observation in the proof of this step (relative to the one dimensional case
analyzed in Roesler and Szentes (2017)) is the right inequality. This follows from the weak free-
disposal assumption on the buyer’s value function, which implies that always trading the grand
bundle generates the maximal surplus, and therefore we must have π ≤ µ. This implies that there
exists a pure bundling mechanism that would generate a higher consumer surplus.

Since
∫ nθh

nθ`
s dHπ,z(s) is continuous and strictly increasing in z ∈ [π, nθh], the inequality (8)

combined with the intermediate value theorem imply that there is a unique τ ∈ [π, nθh] such that∫ nθh
nθ`

s dHπ,τ(s) = µ. In words, the truncated Pareto distribution Hπ,τ has the same mean as F and
G.

We will now argue that G is a mean-preserving spread of Hπ,τ or, in our notation, that G % Hπ,τ.
To see this, first observe that Hπ,τ(s) = Hπ,nθh(s) ≤ G(s) on s ∈ [nθ`, τ). This implies that for any
z ∈ [nθ`, τ) ∫ z

nθ`

G(s) ds ≥
∫ z

nθ`

Hπ,τ(s) ds,

and for any z ∈ [τ, nθh],∫ z

nθ`

G(s) ds = µ−
∫ nθh

z
G(s) ds ≥ µ−

∫ nθh

z
Hπ,τ(s) ds =

∫ z

nθ`

Hπ,τ(s) ds, (9)

where the inequality follows from Hπ,τ(s) = 1 ≥ G(s) for all s ≥ τ.

Part (i) of Lemma 1 shows that F % G and therefore G % Hπ,τ implies F % Hπ,τ. In other words,
Hπ ∈ G is a distribution over posterior grand bundle estimates induced by a signal.

Part (ii) of Lemma 1 implies that we can find a signal G′ ∈ G that is perfectly correlated and
that induces a distribution G′ over posterior grand bundle estimates that satisfies G′ = Hπ ∈ G.

Finally, observe that the pure bundling mechanismMPB
π at price π is an optimal pure bundling

mechanism (though not necessarily an optimal mechanism) for the seller when the buyer’s pos-
terior grand bundle estimate is distributed according to Hπ. Since this price is the minimum of
the support of Hπ, trade is efficient and therefore the buyer’s surplus is weakly higher in this case
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than compared to outcome (G,M). This is because profits are the same in both cases, and the
maximal surplus µ is generated byMPB

π .

Step 2: There exists a buyer-optimal outcome (G∗, M∗) such that:
i Trade is efficient.

ii G∗ is perfectly correlated.
iii G∗ induces a truncated Pareto distribution G∗ ∈ GP

over grand bundle estimates.
iv M∗ is a pure bundling mechanism.

Proof of Step 2: Let (G, M) be an outcome. Then by Step 1, there exists a signal G′ ∈ G that is

perfectly correlated such that G′ = Hα ∈ G for some nθ` ≤ α ≤ nθh and the buyer is weakly better
off under this signal when the seller offers a pure bundling mechanismMPB

α at price α. We now
argue thatMPB

α is an optimal mechanism for the seller in response to G′.

So suppose that the buyer learns via signal G′. Then, for any mechanismM′ = (M′, q′, t′) and
any buyer best response σ′ ∈ Σ(M′), the seller’s revenue satisfies∫

s∈S
Eσ′(s) [t(m)] dG′(s) =

∫
s∈S

Eσ′( s
n ,..., s

n )
[t(m)] dG′(s)

because G′ is perfectly correlated and so the distribution is supported on the diagonal. Observe
that this implies that, given the signal G′, the seller is effectively solving a one-dimensional mech-
anism design problem. The Revelation Principle applies so the seller’s problem is equivalent to
choosing a direct mechanismM = (M, q, t) with M = S, q : S → ∆(2N), t : S → R (defined on a
one-dimensional type space where the type is the grand bundle value) to solve

max(q,t)

∫
s∈S

t (s) dG′ (s)
subject to
Eq(s)

[
u
( s

n , . . . , s
n , b
)]
− t (s) ≥ Eq(ŝ)

[
u
( s

n , . . . , s
n , b
)]
− t (ŝ) for all s, ŝ ∈ S and

Eq(s)
[
u
( s

n , . . . , s
n , b
)]
− t (s) ≥ 0 for all s ∈ S.

(10)

The constraints are simply the standard incentive compatibility and individual rationality con-
straints.

Now observe that, for s > 0, the ratio of the value of the grand bundle N to any other bundle b
is a constant because

u
( s

n , . . . , s
n , N

)
u
( s

n , . . . , s
n , b
) =

s

κb
|b|
n s

=
n

κb|b|
.

We can then directly apply Proposition 1 in Haghpanah and Hartline (2021)11 to conclude that
a pure bundling mechanism MPB

p at some price p solves (10). Because G′ = Hα, we can then
conclude that the pure bundling mechanismMPB

α at the price α is a best response of the seller to
G′.

Now define,
α∗ := min

{
α
∣∣ Hα ∈ G

}
.

11Informally, their result states that a pure bundling mechanism is optimal when types are one-dimensional and the
ratio of the value of the grand bundle N to every other bundle is non-increasing.
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In words, α∗ is the lowest minimum of the support of a truncated Pareto distribution over grand
bundle estimates induced by a signal; the existence of this minimum can be established by a
simple continuity argument. By Lemma 1, there exists a perfectly correlated signal G∗ such that
the distribution over grand bundle estimates that it induces satisfies G∗ = Hα∗ and, by the above
argument, the pure bundling mechanism MPB

α∗ at the price α∗ is an optimal mechanism for the
seller in response to G∗.

By construction, the outcome (G∗,MPB
α∗ ) satisfies all the properties (1)–(3) of the theorem. More-

over, from Step 1, it is buyer-optimal. If there were another outcome that generated strictly higher
consumer surplus, Step 1 implies that we would be able to find a truncated Pareto distribution
Hα ∈ G where α < α∗ which is a contradiction. This completes the proof of this step and of the
theorem. �

3.2. Comparative statics

In this section, we apply Theorem 1 to derive a comparative static relating consumer surplus
to the number of goods. We begin with some context. It is clearly beneficial for the monopolist
to have the ability to screen over all n goods as opposed to having to set a price for each good
individually. This is because maximizing profits over a strictly larger set of mechanisms must
achieve a weakly higher profit. However, as Salinger (1995) observes, increased profits need not
be at the expense of consumer surplus. For instance, consider a buyer with additive values for
n = 2 goods where his value for each good is independently and uniformly distributed on [0, 1].
Here, the optimal separate sales mechanism is to charge a price of 1

2 for each good. Now, suppose
that in addition to selling the goods individually, the seller was allowed to pure bundle. She
would choose to do the latter, and the optimal pure bundling mechanism is to charge a price of√

2
3 < 1

2 + 1
2 for the grand bundle. The latter mechanism (which exploits the fact that there are

multiple goods) leads to both higher profits and consumer surplus.
By contrast, Bakos and Brynjolfsson (1999) derive a limit result that shows the seller can extract

all the surplus from a buyer with additive, iid values when the number of goods n → ∞. They
use a law of large numbers to argue that the value of the grand bundle divided by the number of
goods n converges, and so the seller can extract all the surplus by just offering a pure bundling
mechanism at a price of n-times that limit. As we argued in the introduction, because it is hard
to characterize the optimal mechanism, we are not aware of any general results for finitely many
goods that describe whether the seller’s ability to screen across multiple dimensions hurts con-
sumers. The goal of this section is to show that such an analysis is possible for the buyer-optimal
outcome.

In this section, we restrict attention to the case of additive values and we assume each θi is iid
with distribution F̃ that has a positive density (so the joint distribution is F = F̃ × · · · × F̃). We
denote µ̃ = EF̃[θi] to be the mean of each dimension of the agent’s type. Because we will vary
the number of goods we define S̃ = [θ`, θh] and use S̃n := [θ`, θh]

n (instead of just S) to denote the
set of possible signal realizations. Additionally, we will use Sn := [nθ`, nθh] to denote the set of
possible grand bundle posterior estimates.
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Theorem 1 states that there is a buyer-optimal outcome
(

G∗n, MPB
p∗n

)
where G∗n is perfectly

correlated and MPB
p∗n

is a pure bundling mechanism at price p∗n. As we explained in the discus-

sion following Theorem 1, when values are additive, the separate sales mechanismMSep
p∗n

where

p∗n =
(

p∗n
n , . . . , p∗n

n

)
is also an optimal mechanism for the seller in response to G∗n.

Finally, we define

CSn := µ̃− p∗n
n

,

to be the average consumer surplus. This is the total consumer surplus from the buyer-optimal out-
come divided by the number of goods n. The following result, the proof of which is in Appendix A,
shows that this average consumer surplus decreases in the number of goods.

THEOREM 2. Suppose valuations are additive and each dimension of the type is iid. Then the average
consumer surplus in the buyer-optimal outcome is decreasing in the number of goods,

CSn ≥ CSn+1 for all n ≥ 1.

Moreover, as n grows large, the average consumer surplus in the buyer-optimal outcome converges to zero
(limn→∞ CSn = 0) and the seller extracts all the surplus.

This result (proved in the appendix) is a straightforward consequence of Theorem 1. For intu-
ition, consider the buyer-optimal outcome

(
G∗n+1,MSep

p∗n+1

)
for the n + 1 goods in which G∗n+1 is

perfectly correlated and the seller chooses a separate sales mechanism. Let G̃∗n be the marginal
distribution of G∗n+1 over the first n dimensions (s1, . . . , sn). Note that G̃∗n is a perfectly correlated
signal for the type space [θ`, θh]

n distributed by F̃× · · · × F̃. For the perfectly correlated signal G̃∗n,
the same separate sales mechanism MSep

p∗n+1
at prices p∗n+1 is an optimal mechanism for the seller

implying that buyer-optimal outcome must generate at least CSn+1 in average consumer surplus.

This result highlights the nuanced interplay between information and screening. In an addi-
tive values environment, there is always a buyer-optimal outcome in which the seller’s optimal
mechanism is separate sales. Thus, when we increase the number of goods, the seller still finds
it optimal to sell each good separately or, in other words, does not strictly benefit from bundling
together different goods. But yet the average consumer surplus decreases. This is because the
information that the buyer receives changes as the number of goods increases. In order to prevent
the seller from multi-dimensional screening, the signal in the buyer-optimal outcome must intro-
duce correlation (by injecting noise) and does so by only providing information to the buyer about
his value for the grand bundle. As the number of goods increase, such correlation surrenders more
surplus to the seller until, in the limit, she can extract all the surplus.

4. THE OPTIMAL INFORMATIONALLY ROBUST MECHANISM

The buyer-optimal outcome characterizes the informational environment that is most advan-
tageous for the buyer. Here, the timing is such that an information designer chooses the signal
first, and then the seller best responds. It is equally natural to think of the alternative timing: the
seller first picks her mechanism, and then nature chooses the signal in response. This has at least
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two interpretations. The first captures a seller who does not know the exact type distribution and
is worried about model misspecification. The second interpretation is that the buyer acquires in-
formation after observing the mechanism, but the seller does not know the buyer’s information
acquisition technology. The seller evaluates each mechanism based on the worst-case profits taken
with respect to all possible signal realizations and buyer best-responses.

We begin with a few definitions.

Revenue Guarantee: We say that a mechanismM provides a revenue guarantee of π if

Π(G,M, σ) ≥ π

for all signals G ∈ G and buyer best responses σ ∈ Σ(M).

Informationally Robust Mechanism: Formally, we define the optimal informationally robust mech-
anismM? as the mechanism that solves

M? ∈ argmax
M

inf
G∈G,σ∈Σ(M)

Π(G,M, σ).

This is the mechanism we aim to characterize. In words, it provides the seller the highest revenue
guarantee against all possible signals and best responses by the buyer. Note the difference with
the (standard) definition of an optimal mechanism in Section 3 where the buyer is assumed to
break indifference in favor of the seller. As with the buyer-optimal outcome, we will explicitly
construct the mechanism which will show that the maximum is obtained.

In fact, we will show that it takes the following simple form.

Random Pure Bundling Mechanism: A random pure bundling mechanismMrPB = (MrPB, qrPB, trPB)

has a message space MrPB = S given by the set of possible posterior grand bundle estimates and
an allocation rule

qrPB(m, b) = 0 if b 6= N and qrPB(m, N) + qrPB(m, ∅) = 1 (rPB)

for all m ∈ MrPB. In words, these are mechanisms in which the buyer is only ever allocated the
grand bundle; however this allocation could be random. Put differently, the buyer is effectively
offered a menu of prices and probabilities where each menu item corresponds to the buyer paying
a price in exchange for receiving the grand bundle with the given probability.

Before characterizing the optimal informationally robust mechanism, it is worth relating it to
the buyer-optimal outcome. Observe that we must have

max
M

inf
G∈G,σ∈Σ(M)

Π(G,M, σ) ≤ max
M

inf
σ∈Σ(M)

Π(G∗,M, σ) = π∗ = min
G∈G

max
M,σ∈Σ(M)

Π(G,M, σ)

(11)
where, recall that, G∗, π∗ are respectively the signal we construct and the profit in the buyer-
optimal outcome (Theorem 1). The first equality follows from the observation that MPB

π∗ is an
optimal mechanism in response to the signal G∗ and that, for this signal and mechanism, all buyer
best responses result in the same profit. In words, this shows that the seller’s worst case profit from
the optimal informationally robust mechanism must be lower than that from the buyer-optimal
outcome.
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In the next result, we show that these are actually equal and, more importantly, we use this fact
to characterize the optimal informationally robust mechanism. Note that we cannot immediately
employ a minimax theorem to show the equality because the infimum on the left and the max-
imum on the right in (11) are taken over both signals and buyer best responses. This fact is the
point of departure for Brooks and Du (2020) who study the relation between the max-min and
min-max problems in general multi-agent environments (we discuss their paper below).

THEOREM 3. There is a random pure bundling mechanism that is an optimal informationally robust mech-
anism. This mechanism provides a revenue guarantee of π∗, the seller’s revenue in the buyer-optimal out-
come.

PROOF. The proof adapts the argument of the proof of Proposition 1 in Du (2018). We provide it
here for completeness and flag the main step where we reduce our multidimensional problem to
the single good case that he analyzes.

We begin by stating a property of the signal G∗ from the buyer-optimal outcome we derived
in the proof of Theorem 1. Recall that this signal is perfectly correlated and induces a truncated
Pareto distribution G∗ = Hπ∗ on grand bundle estimates. It is possible to show12 that there must
be a s∗ ∈ (π∗, β(π∗)) in the interior of the support of Hπ∗ such that∫ s∗

nθ`

F(x) dx =
∫ s∗

nθ`

Hπ∗(x) dx. (12)

For some intuition, it is straightforward to show that the function Iπ(y) :=
∫ y

nθ`
Hπ(x) dx is con-

tinuous and decreasing in π (for a given y). In other words, whenever π < π′, then Iπ(y) ≥
Iπ′(y) for all y ∈ [nθ`, nθh] with strict inequality on (π, β(π)). Moreover, recall that Hπ∗ ∈ G
being a distribution over posterior grand bundle estimates (induced by a signal) implies that∫ s

nθ`
F(x) dx −

∫ s
nθ`

Hπ∗(x) dx ≥ 0 for all s ∈ (nθ`, nθh) or that F is a mean-preserving spread
of Hπ∗ . If this inequality was always slack, it would be possible to construct another truncated
Pareto distribution Hπ∗−ε ∈ G for sufficiently small ε > 0 which would violate the optimality of
Hπ∗ .

Equation (12) has two immediate consequences. First, because
∫ s

nθ`
F(x) dx−

∫ s
nθ`

Hπ∗(x) dx ≥ 0
for all s ∈ (nθ`, nθh), this function must be minimized at s = s∗. Hence, from the first-order
condition, we obtain

F(s∗) = Hπ∗(s∗). (13)

Second, doing integration by parts on both sides of (12) and using (13), we get∫ s∗

nθ`

x dF(x) =
∫ s∗

nθ`

x dHπ∗(x). (14)

We now use the revenue π∗ from the buyer optimal outcome and the value s∗ defined in (12)
to construct a random pure bundling mechanism. We first provide an intuitive implementation
before formally describing the allocation and transfer. So suppose the seller only offers the grand
bundle for sale but randomizes over the price. Specifically, suppose the price is randomly drawn

12See the proof of Proposition 1 in Du (2018) or Lemma 3 in Ravid, Roesler, and Szentes (2021).
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from the interval p ∈ [π∗, s∗] with the cumulative distribution P given by

P(p) =


1 if p > s∗,[

log
(

s∗
π∗

)]−1
log
(

p
π∗

)
if π∗ ≤ p ≤ s∗,

0 if p < π∗.

Clearly, a type s ∈ S purchases the grand bundle when the realized price p ≤ s; since the
distribution of prices has no atoms, the seller’s revenue is unaffected by the decision that the
buyer makes at the zero probability event p = s. Therefore, the allocation and transfer for this
mechanism can be written in the form of a random pure bundling mechanismMrPB with

qrPB(s, b) = 0 if b 6= N,

qrPB(s, N) = P(s) =


[
log
(

s∗
π∗

)]−1
min

{
log
( s

π∗
)

, log
(

s∗
π∗

)}
if s > π∗,

0 if s ≤ π∗,

trPB(s) =
∫ s

nθ`

p dP(p) =


[
log
(

s∗
π∗

)]−1
min {s− π∗ , s∗ − π∗} if s > π∗,

0 if s ≤ π∗.

(15)

Note that faced with this mechanism, truth-telling or σ(s) = s for all s ∈ S is a best response, and
all best responses give the seller the same revenue.

Now observe that, for any signal G ∈ G, the seller’s profit from the mechanismMrPB satisfies∫
Θ

trPB(s) dG(s) =
[

log
(

s∗

π∗

)]−1 ∫ nθh

π∗
(min {s− π∗ , s∗ − π∗}) dG(s)

≥
[

log
(

s∗

π∗

)]−1 ∫ nθh

nθ`

(min {s− π∗ , s∗ − π∗}) dG(s)

≥
[

log
(

s∗

π∗

)]−1 ∫ nθh

nθ`

(min {s− π∗ , s∗ − π∗}) dF(s). (16)

The first inequality follows from the fact that min {s− π∗ , s∗ − π∗} < 0 for s < π∗. The second
inequality is a consequence of two facts. First, G is a signal and so (from part (i) of Lemma 1) F
is a mean-preserving spread of the distribution G (induced by G over grand bundle estimates).
Second, the function being integrated is concave and hence the inequality follows from the fact
that F % G.

Observe that (16) implies

inf
G∈G,σ∈Σ(MrPB)

Π(G,MrPB, σ) ≥
[

log
(

s∗

π∗

)]−1 ∫ nθh

nθ`

(min {s− π∗ , s∗ − π∗}) dF(s)

or, in words, that mechanismMrPB has a revenue guarantee given by the right side. This is the key
insight that allows us to employ Du (2018)’s argument; it shows that it is possible to generate this
revenue guarantee in our multidimensional environment by effectively using a one dimensional
mechanism.
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Recall that G∗ induces a truncated Pareto distribution G∗ = Hπ∗ over grand bundle estimates
and so the seller’s worst-case profit fromMrPB when the signal is G∗ is equal to

inf
σ∈Σ(MrPB)

Π(G∗,MrPB, σ) =

[
log
(

s∗

π∗

)]−1 ∫ nθh

π∗
(min {s− π∗ , s∗ − π∗}) dHπ∗(s)

=

[
log
(

s∗

π∗

)]−1 ∫ s∗

nθ`

(s− π∗) dHπ∗(s) +
[

log
(

s∗

π∗

)]−1

(1− Hπ∗(s∗))(s∗ − π∗)

=

[
log
(

s∗

π∗

)]−1 ∫ nθh

nθ`

(min {s− π∗ , s∗ − π∗}) dF(s),

where the last equality follows from (13) and (14). In other words, for the signal G∗ from the buyer
optimal outcome, the seller’s profit precisely equals the revenue guarantee (16).

Finally, note that the seller’s revenue also satisfies

inf
σ∈Σ(MrPB)

Π(G∗,MrPB, σ) =

[
log
(

s∗

π∗

)]−1 ∫ nθh

π∗
(min {s− π∗ , s∗ − π∗}) dHπ∗(s)

=

[
log
(

s∗

π∗

)]−1 ∫ s∗

π∗
(s− π∗)

π∗

s2 ds +
[

log
(

s∗

π∗

)]−1

(s∗ − π∗)
π∗

s∗

=π∗.

But inequality (11) shows that π∗ is the highest possible revenue guarantee a mechanism can
provide and this implies that

max
M

inf
G∈G,σ∈Σ(M)

Π(G,M, σ) = inf
G∈G,σ∈Σ(MrPB)

Π(G,MrPB, σ) = inf
σ∈Σ(MrPB)

Π(G∗,MrPB, σ) = π∗

and soMrPB is an optimal informationally robust mechanism and this completes the proof. �

Theorem 3 provides one possible motivation for the ubiquity of pure bundling (especially for
digital goods): this mechanism guarantees the best possible profit evaluated against model mis-
specification. Note that, unlike Theorem 1, even with additive values, separate sales cannot im-
mediately be employed here as an alternative optimal informationally robust mechanism. To see
this, suppose the seller offered a separate sales mechanism with a random but perfectly correlated
price vector. Observe that there can be two separate signals G and G′ that induce the same dis-
tribution over grand bundle estimates, but that generate different profits given this separate sales
mechanism. Thus, we can no longer employ the simple argument that we did to generate the
revenue guarantee given by (16). Loosely speaking, random pure bundling mechanisms have an
advantage in providing higher revenue guarantees because they reduce the buyer’s private infor-
mation to a single dimension and, in doing so, the worst-case signal is effectively drawn from a
smaller set.

Finally, as we have already mentioned, the fact that the max-min and min-max problems have
the same solution for the sale of a single good was first observed by Du (2018). In independent
and contemporaneous work, Brooks and Du (2020) generalize this insight to a variety of different
settings (including multiple goods with additive values) with multiple buyers who have interde-
pendent values. They consider finite type spaces, so the fact that this equivalence arises in our
model is not per se implied by any of their results. More substantively, however, the aims of our
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respective papers are different. Our goal is to derive qualitative properties of the seller’s optimal
mechanism in two different information environments; the fact that the seller gets the same rev-
enue in both is a fact we use to prove Theorem 3 not a main focus of this paper. Moreover, we
show (in Corollary 1) that the seller’s profit in every buyer-optimal outcome equals the value of
the objective from the solution to the min-max problem (this equivalence is not a priori appar-
ent). By contrast, Brooks and Du (2020) aim to show the equivalence of the min-max and max-min
problems very generally, but they do not derive the seller’s optimal mechanism in either; instead,
their results are meant to provide a means for efficient numerical simulation. In the multiple-agent
environment they consider, this equivalence is harder to establish than in our single agent setting.
This is primarily due to the fact that with multiple agents, the payoff relevant information in a sig-
nal is more than simply the posterior estimate of the type. Moreover, there is also the possibility
of multiple equilibria.

5. CONCLUDING REMARKS

In this paper, we study a general multidimensional screening problem for a seller in two differ-
ent information environments with buyer learning. In the first, we derive the optimal mechanism
under the information structure that maximizes consumer surplus. In the second, we derive the
optimal informationally robust mechanism which provides the highest revenue guarantee for the
seller against all possible information structures. We show that pure bundling emerges in both
and that the seller’s profit is the same in both problems. Our main theoretical insight is that
the introduction of buyer learning allows us to reduce the seller’s problem to a one-dimensional
counterpart which, in turn, considerably simplifies this typically intractable problem.

We end with a brief discussion of some of the assumptions that drive our results. We assumed
that the seller’s cost of producing the goods was zero and we observed that this assumption is
appropriate for digital goods (such as those provided by streaming services). That said, it is worth
noting that, as in the case of standard multidimensional screening, this assumption is substantive
and is not a normalization. Similar to Haghpanah and Hartline (2021), our results extend when our
weak free-disposal assumption holds for cost-adjusted values. Formally, consider a cost function
c : 2N → R+ that determines the seller’s cost c(b) for each bundle b ⊆ N. The cost-adjusted
version of our weak free-disposal property requires that u(θ, N)− c(N) ≥ u(θ, b)− c(b) ≥ 0 for
all b ⊆ N and all θ ∈ Θ. In words, this implies that, as before, it is always efficient to trade the
grand bundle. For instance, this assumption holds when both the values and the bundle costs are
additive with each good costing 0 ≤ γ ≤ θ` (so a bundle b costs c(b) = γ|b|). For such costs,
our proof strategy immediately extends13 but more general cost and value functions will require
a different approach.

Finally, we also assumed that the prior type distribution F is exchangeable. As we discussed,
this is a considerably more general environment than what is typically analyzed in the multidi-
mensional screening literature (because different dimensions of the type may be correlated), but
it is worth pointing out that our proof strategy does not extend to general distributions. This
can happen even if F is such that each θi has identical marginal distributions; for instance, when

13Formal statements and proofs are omitted for brevity but are available upon request.
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the buyer’s values for two goods are positive correlated but negatively correlated for a different
pair. Our proof of Lemma 1, which uses the exchangeability of the prior, does not generalize to
this case. Therefore, Theorem 1 cannot be directly generalized, since it builds on this result that
any distribution over posterior grand bundle estimates (induced by a signal) can be induced by
a perfectly correlated signal. We view this richness to be yet another interesting feature of this
multi-dimensional environment and, in future work, we hope to generalize our results to such
asymmetric environments.
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APPENDIX A. MISSING PROOFS FROM THE TEXT

PROOF OF COROLLARY 1. Suppose, for contradiction, that there is an outcome (G, (q, t)) in which
the seller’s profit π is strictly lower than the profit π∗ from a buyer-optimal outcome (G∗, (q∗, t∗)).
Steps 1 and 2 in the proof of Theorem 1 show that it is possible to find an outcome (G′, (q′, t′)) in
which trade is efficient and the seller’s profit from her optimal mechanism is exactly π. But this
is a contradiction because the consumer surplus in outcome (G′, (q′, t′)) will be µ− π > µ− π∗

contradicting the optimality of (G∗, (q∗, t∗)).
�

PROOF OF THEOREM 2. Denote the set of signals when there are n goods by Gn and the set of
distributions on grand bundle estimates that they induce by Gn. Let F̃n denote the distribution of
the average value θ1+···+θn

n ∈ [0, 1]. Then observe that any Pareto distributed grand bundle signal
Hαn ∈ Gn will satisfy F̃n % H αn

n , β(αn)
n

or, in words, that H αn
n , αn

n
is a signal for the average value of n

goods. The converse is also true and F̃n % H αn
n , β(αn)

n
implies Hαn ∈ Gn. Therefore, if we have a signal

for the average value, there will be a corresponding grand bundle signal which implies we can
use Lemma 1 to find a perfectly correlated signal for the type vector.

Additionally, note that F̃n % F̃n+1. Clearly F̃n and F̃n+1 have the same mean µ̃ and the former
will have a higher variance because each θi is iid with distribution F̃. The fact that F̃n also second
order stochastically dominates F̃n+1 is a well known property of the distribution of sample means.

From the proof of Theorem 1, we know that there are buyer-optimal outcomes
(

G∗n, MSep
p∗n

)
and(

G∗n+1, MSep
p∗n+1

)
for n and n+ 1 goods respectively where G∗n and G∗n+1 are perfectly correlated and

induce truncated Pareto distributed grand bundle estimates Hp∗n ∈ Gn and Hp∗n+1
∈ Gn+1.

We have argued above that
F̃n % F̃n+1 % H p∗n+1

n+1 ,
β(p∗n+1)

n+1

. (17)

In words, this implies that, in addition to being a signal for the average value of n + 1 goods,
H p∗n+1

n+1 ,
β(p∗n+1)

n+1

is also a signal for the average value of n goods. The optimality of p∗n then implies

that p∗n+1
n+1 ≥

p∗n
n or, equivalently, that CSn ≥ CSn+1.

Finally, as n → ∞, the weak law of large numbers implies that F̃n
d→ δµ̃ where d→ denotes

convergence in distributions and δµ̃ is the Dirac measure that assigns mass 1 to the point µ̃. There-

fore, we will also have H p∗n
n , β(p∗n)

n

d→ δµ̃ and so, in the limit, p∗n
n → µ̃ and the seller extracts all the

surplus. �
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