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Abstract. Factor and sparse models are two widely used methods to impose a low-

dimensional structure in high-dimension. They are seemingly mutually exclusive.

We propose a lifting method that combines the merits of these two models in a su-

pervised learning methodology that allows to efficiently explore all the information

in high-dimensional datasets. The method is based on a flexible model for high-

dimensional panel data, called factor-augmented regression (FarmPredict) model

with both observable or latent common factors, as well as idiosyncratic components.

This model not only includes both principal component (factor) regression and

sparse regression as specific models but also significantly weakens the cross-sectional

dependence and hence facilitates model selection and interpretability. The method-

ology consists of three steps. At each step, the remaining cross-section dependence

can be inferred by a novel test for covariance structure in high-dimensions. We

developed asymptotic theory for the FarmPredict model and demonstrated the va-

lidity of the multiplier bootstrap for testing high-dimensional covariance structure.

This is further extended to testing high-dimensional partial covariance structures.

The theory is supported by an simulation study and applications to the construction

of a partial covariance network of the financial returns and a prediction exercise for

a large panel of macroeconomic time series from FRED-MD database.
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1. Introduction

With the emergence of new and large datasets, the correct characterization of the

dependence among variables is of substantial importance. Usually, to achieve this

goal, the literature has followed two seemingly orthogonal tracks over the last two

decades. On the one hand, factor models have become an essential tool to summarize

information in large datasets under the assumption that the remaining dependence

structure is negligible. For instance, panel factor models are applied now to a wide

variety of important applications, ranging from forecasting (macroeconomic) variables

and asset pricing models to causal inference in applied microeconomics and network

analysis. On the other hand, there have been major advances on parameter estimation

in ultra high-dimensions under the assumption of sparsity or weak-sparsity. That is, a

variable depends only on a (very) small subset of the other variables. For an overview

on these two topics and their exciting developments, see Fan et al. (2020).

In this paper, we take an alternative route and combine the best of the two worlds

described above in order to better characterize the dependence structure of high-

dimensional data. More specifically, we consider that the covariance structure of a

large set of variables, organized in a panel data format, is characterized as a combina-

tion of a factor structure, where factors can be either observed, unobserved, or both,

and a weakly-sparse idiosyncratic component. This formulation is general enough

in order to accommodate a very large number of data generating processes of in-

terest in economics, finance, and related areas. The proposed methodology has two

ingredients: a three-step estimation procedure and a new test for structure in high

dimensional (partial) covariance matrices. The steps of the estimation procedure are

as follows. In the first one, we take the original data and remove the effects of any

observed factors. These factors can be deterministic terms such as seasonal dummies

and/or trends or any other observed covariates. The first step can be parametric or

nonparametric, low or high dimensional. A latent factor model is then estimated us-

ing the residuals from the first stage. Finally, in a final step we model the dependence

among idiosyncratic terms as a weakly sparse regression estimated by the Least Ab-

solute Shrinkage and Selection Operator (LASSO). At each step, the null-hypothesis

of no remaining cross-section dependence can be tested by the proposed test for the

(partial) covariance structure in high-dimensions.



BRIDGING FACTOR AND SPARSE MODELS 3

Our approach has many downstream econometric applications. It can enhance

high-dimensional prediction, select more interpretable variables, construct counter-

factuals for treatment evaluations, and depict (partial) correlation networks.

1.1. Motivation. Let Y t :“ pY1t, . . . , Yntq
1 be a random vector generated as Yit “

λ1iF t ` Uit, for i “ 1, . . . , n, t “ 1, . . . , T , where Σ :“ EpU tU
1
tq, with U t :“

pU1t, . . . , Untq
1, is not necessarily diagonal. Fix one component of interest i P t1, . . . , nu,

which serve as a response variable. Consider the following prediction models:

M1 : EpYit|Y ´itq, M2 : EpYit|F tq, and M3 : EpYit|F t,U´itq, (1.1)

where Y ´it and U´it are, respectively, vectors with the elements of Y t and U t ex-

cluding the i-th entry. Model M3 is indeed the factor augmented regression model

since it is the same as EpYit|F t,Y ´itq.

Suppose that we observe both F t and U´it. Which one of three models above

is best in terms of mean square error (MSE) for prediction? Comparison between

M1 and M2 is not clear since it depends, among others, on the magnitude of Σ

relative to Λ1Λ, where Λ :“ pλ1, . . . ,λnq
1. However, since the σ-algebras generated

by Y ´it and F t are both included in the σ-algebra generated by pF t,U´itq, it is not

surprising that MSEpM3q ď minrMSEpM1q,MSEpM2qs. The same will hold true if

we replace the models in (1.1) by their best linear projections, which we denote by ĂMj

for j P t1, 2, 3u, since the linear space ĂM3 is the largest. In fact, since linear span by

pF t,U´itq is the same as that by pY ´it,F tq, we expand the space in the informative

factor directions F t. In the linear case, we can explicitly write the “gains” of ĂM3

when compared to ĂM1 and ĂM2:

MSEpĂM3q ´MSEpĂM1q “ ´θ
1
iΣ´i,´iθi

MSEpĂM3q ´MSEpĂM2q “ ´∆1i∆
1
1i ´∆1

2iΣ´i,´i∆2i,

where θi and βi are the coefficients of the projection of Uit onto U´it and the coeffi-

cients of the projection of Xit onto X´it, respectively; Σ´i,´i is Σ excluding the i-th

row and column; ∆1i :“ Λi ´ β
1
iΛ´i and ∆2i :“ βi ´ θi. From the previous expres-

sions, it becomes evident that both ĂM1 and ĂM2 are restrictions on ĂM3. Broadly

speaking, whenever one does not expect to have an exact factor model, there are

potential gains of taking into account the contribution of the idiosyncratic compo-

nents U´it. Therefore, we use ĂM3 as the base model for the estimation methodology

described in Section 2.2.
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1.2. Main Contributions and Comparison with the Literature. The contri-

butions of this paper are multi-fold. First, our methodology bridges the gap between

two apparently competing methods for high-dimensional modeling; see, for example

the discussion in Giannone et al. (2021) and Fan et al. (2020). This yields a vast

number of potential applications and spin-offs. For instance, in Fan et al. (2020), we

apply the methods developed in here to evaluate the effects of interventions and we

contribute to the literature on synthetic controls and related methods by combining

the approaches of Gobillon and Magnac (2016) and Carvalho et al. (2018). Therefore,

in our setup both a common factor structure and weak sparsity can coexist.1

Second, our results can also serve as a diagnostic and misspecification tool. For

panel data models with interactive fixed effects as in Pesaran (2006), Bai (2009),

Moon and Weidner (2015) and Bai and Liao (2017), our test can be directly applied

to uncover the dependence structure among cross-sectional units before and after

accounting for common factor components. If the factor structure is informative

enough, we expect the idiosyncratic covariance matrix to be almost sparse. If this

is not the case, we may have possibly underestimated the number of factors. One

popular application is in asset pricing as discussed in Gagliardini et al. (2019) and in

the empirical section of this paper. There are a huge number of proposed factors as

described in Feng et al. (2020), Giglio and Xiu (2020), and Gu et al. (2020). We can

apply our methodology not only to test for omitted factors, but, as well, to estimate

network connections among firms as in Diebold and Yilmaz (2014) and Brownlees

et al. (2020). Finally, as a diagnostic tool, our paper tackle the same problem as

Gagliardini et al. (2019). However, we take an alternative solution strategy which

relies on a much different set of hypothesis; see also Gagliardini et al. (2020).

Third, the methodology proposed here contributes to the forecasting literature.

For instance, in the second application considered in this paper, we build forecasting

models for a large cross-section of macroeconomic variables. We call this method

the FarmPredict. We show that the combination of factors and a sparse regression

strongly outperforms the traditional principal component regression as in Stock and

Watson (2002a,b). Therefore, FarmPredict can be an additional contribution to the

forecasting and machine learning toolkit. The method can be easily extended to a

multivariate setting combining factor-augmented vector autoregressions (FAVAR) as

1Sparsity and factor models can also coexist in the framework of sparse principal components; see
Fan et al. (2020).
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in Bernanke et al. (2005) with sparse vector models as in Kock and Callot (2015) and

Masini et al. (2019). Hence, we contribute to the debate in Giannone et al. (2021).

Fourth, we show consistency of factor estimation based on the residuals of a first-

step regression. Our results hold for both parametric (linear or nonlinear) and non-

parametric first stage. A high-dimensional first stage is also allowed. Note that,

current results in the literature consider that factors are estimated based on observed

data and our derivations favor a much more flexible and general setup (Bai and Ng,

2002, 2003, 2006). More specifically, our methodology favors settings where there

are both observed and latent factors, as well as trend-stationary data. In the later,

the trend can be first removed by (nonparametric) first-stage regression. In addi-

tion, whenever the unobserved factors and the observed covariates are correlated, the

method proposed in Pesaran (2006) can be used and all or results follow directly.

Fifth, we contribute to the LASSO literature. LASSO can not be model selection

consistent for highly correlated variables. Through the decomposition of covariates

into factors and idiosyncratic components, namely the idea of lifting, we decorrelate

the variables and make the model selection condition much easier to hold; see, for

example, (Fan et al., 2020). We show consistency of the estimates based on residuals

of the previous steps. Our results are derived under restrictions on the population

covariance matrix of the data and not on the estimated one, as it is usual in many

papers. See, for example, van de Geer and Bühlmann (2009). Furthermore, we derive

our results under much mild conditions that the ones considered in (Fan et al., 2020).

Finally, we extend the results in Chernozhukov et al. (2013, 2018) to strong-mixing

data in order to construct hypothesis tests for covariance and partial covariance struc-

ture in high dimensions.2 This step is necessary for econometrics and financial ap-

plications. As side results, in order to develop the test we first show consistency

of kernel-based estimation of a high-dimensional long-run covariance matrix of de-

pendent process. This is a new result with important consequences for the theory of

high-dimensional regression with dependent errors. We also establish consistency of a

new estimator of the partial covariance matrix in high-dimensions and strong-mixing

data. Our proposed tests can be used to infer if the (partial) covariance matrix of

a high-dimensional random vector is diagonal or block-diagonal. More generally, we

can test any pre-defined structure. Furthermore, we show that the test remains valid

2Recently, Giessing and Fan (2020) also extended the results in Chernozhukov et al. (2013). However,
their setup is very different from ours and the authors only consider the case of independent and
identically distributed data.
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when we use the residuals from a previous step estimation to compute the covariance

matrix. This result allows us to to apply the test to the three-stage estimation pro-

cedure proposed here. Although our results are derived under the assumption that

the number of factors is known, simulation results presented in the paper provide

evidence that the test have good finite-sample properties even when the number of

factors is determined by data-driven methods commonly found in the literature. In

addition, due to the factor augmentation, our method is robust to the over-estimation

of the number of factors. Over the past years, a vast number of papers proposed

different methods to test for covariance structure in high dimensions. See, for exam-

ple, Ledoit and Wolf (2002), Chen et al. (2010), Onatski et al. (2013), Cai and Ma

(2013), Li and Qin (2014), Zheng et al. (2019), Cai et al. (2016), Zheng et al. (2019),

and Guo and Tang (2020), among many others.3 To the best of our knowledge, we

complement all the previous papers by simultaneously considering high-dimensions,

strong-mixing data with mild distributional assumptions, and pre-estimation when

constructing tests for both covariance and partial covariance structure.

Summarizing, our approach provides:

(1) A systematic way to unify factor and sparse models in order to construct

econometric specifications which use all the available information. These mod-

els can be applied to:

(a) Forecasting in a high-dimensional setting;

(b) Construction of counterfactuals to aggregate data;

(c) Estimation of partial correlation networks;

(2) An inferential procedure to test for genereal structures in covariance and par-

tial covariance matrices.

1.3. Organization of the Paper. In addition to this Introduction, the paper is

organized as follows. We present the model setup and assumptions in Section 2. The

theoretical results are presented in Section 3 with practical guides given in Section 4.

We depict the results of a simulation experiment in Section 5 and discuss the em-

pirical application in Section 6. Section 7 concludes. All proofs are deferred to the

Supplementary Material.

1.4. Notation. All random variables (real-valued scalars, vectors and matrices) are

defined in a common probability space pΩ,F ,Pq. We denote random variables by an

3For a nice recent review, see Cai (2017).
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upper case letter, X for instance, and its realization by a lower case letter, X “ x. The

expected value operator is with respect to the P law such that EX :“
ş

Ω
XpωqdPpωq.

Matrices and vectors are written in bold letters X. Except for the number of factors,

r, and number of covariates, k, defined below, all other dimensions are allowed to

depend on the sample size (T ). However, we omit this dependency throughout the

paper to avoid clustering the notation prematurely.

We use } ¨ }p to denote the `p norm for p P r1,8s, such that for a d´dimensional

(possibly random) vector X “ pX1, . . . , Xdq
1, we have }X}p :“ p

řd
i“1 |Xi|

pq1{p for

p P r1,8q and }X}8 :“ supiďd |Xi|. If X is a pm ˆ nq possibly random matrix then

}X}p denotes the matrix `p-induced norm and }X}max denotes the maximum entry

in absolute terms of the matrix X. Note that whenever X is random, then }X}p for

p P r1,8s and }X}max are random variables. We also reserve the symbol } ¨ } without

subscript for the Euclidean norm } ¨ } :“ } ¨ }2 for both vectors and matrices.

For any convex function ψ : R` Ñ R` such that ψp0q “ 0 and ψpxq Ñ 8 as xÑ 8

and (real-valued) random variable X, we denote its Orlicz norm by }X}ψ, which is

defined by }X}ψ :“ inf
!

C ą 0 : E
”

ψ
´

|X|
C

¯ı

ď 1
)

. Since we are only concerned with

polynomial and exponential tails we restrict ourselves to Orlicz norm induces by the

class of function defined by (3.3). Evidently, as opposed to }X}p, }X}ψp is always a

non-negative non-random scalar. We do not abide to any convention to apply Orlicz

norm to vector or matrices to avoid confusion.

For any vector X, diag pXq is a diagonal matrix whose diagonal is the elements

of X. 1pAq is an indicator function on the event A, i.e, 1pAq “ 1 if A is true and

0 otherwise. We adopt the Landau big/small O, o notation and the “in probability”

OP and op analogues. We say that x is of the same order of y, x — y, if both x “ Opyq

and y “ Opxq. We write X —P Y if both X “ OP pY q and Y “ OP pXq. Unless stated

otherwise, the asymptotics are taken as T Ñ 8, where T is the time dimension, and

the op1q and oP p1q are with respect to the limit as T Ñ 8. We denote convergence

in probability and in distribution by “
p
ÝÑ” and “ñ”, respectively.

2. Setup and Method

2.1. Data Generating Process. We consider a very general panel data model,

which is rich enough in order to nest several important cases in economics, finance

and related areas. We define the following Data Generating Process (DGP).
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Assumption 1 (DGP). The process tYit : 1 ď i ď n, t ě 1u is generated by

Yit “ γ
1
iX it ` λ

1
iF t ` Uit

looooomooooon

“:Rit

(2.1)

where X it is a k-dimensional observable (random) vector which may also include a

constant term, F t is a r-dimensional vector of common latent factors, and Uit is

a zero mean idiosyncratic shock.4 The unknown parameters are γi P Rk, the factor

loadings λi, and the covariance matrix of the idiosyncratic shocks. Finally, we assume

that X it, F t and Uit are mutually uncorrelated.

Remark 1. In Assumption 1 we consider that k, the dimension of X it is finite and

fixed. Furthermore, the relation between Yit and X it is linear. This is for the sake of

exposition. However, the theoretical results in this paper are written in terms of the

consistency rate of the first-step estimation. Therefore, the DGP can be made much

more general by just changing the rates.

Remark 2. The assumption that X it, F t and Uit are mutually uncorrelated can be

relaxed. Whenever X it is correlated with F t and Uit are correlated and the interest lies

of the estimation of the parameters γi, i “ 1, . . . , n, the method proposed by Pesaran

(2006) can applied in the first-stage of the procedure considered in this paper and our

theoretical results will follow. Nevertheless, we provide several examples below where

the assumption that X it, F t and Uit are mutually uncorrelated is reasonable.

Example 1 (Asset Pricing Models). Suppose Yit is the return of an asset i at time

t and let X it :“ X t be a set of k observable risk factors, such as the market returns

and or Fama-French factors (Fama and French, 1993, 2015). F t can be a set of

additional, non observable, risk factors. Several asset pricing models, such as the

Capital Asset Pricing Model (CAPM) of the Arbitrage Pricing Theory (APT) model,

are nested into this general framework.

Example 2 (Networks). Model (2.1) also complements the network specifications

discussed in Barigozzi and Hallin (2016,2017b) and Barigozzi and Brownlees (2019).

Furthermore, the test proposed here can be used to detect networks links as in Diebold

and Yilmaz (2014) and Brownlees et al. (2020). For example, Yit can be the (realized)

volatility of financial assets and X it :“X t can be volatility factors as in Brito et al.

(2018) and Andreou and Ghysels (2021).
4For simplicity, we assume that all the units i have the same number of covariates (k). The framework
can certainly accommodate situations where ki is a function of i.
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Example 3 (FAVAR). In the case where the index i represents a different depen-

dent (endogenous) variable and Uit is a dependent process, model (2.1) turns out

to be equivalent to the Factor Augmented Vector Autoregressive (FAVAR) model of

Bernanke et al. (2005). In this case, X it may also include lagged dependent variables.

Example 4 (Panel Data Models). Model (2.1) is the panel model with iterative fixed-

effects considered in Gobillon and Magnac (2016), where the authors propose an alter-

native to the Synthetic Control method of Abadie and Gardeazabal (2003) and Abadie

et al. (2010) to evaluate the effects of regional policies. Model (2.1) is also in the

heart of the FarmTreat method of Fan et al. (2020).

2.2. Three-Stage Method. The method proposed here for estimation, inference

and prediction consists of three stages where at the end of each stage, the covariance

structure of the residuals is tested.

(1) For each i P t1, . . . , nu run the regression:

Yit “ γ
1
iX it `Rit, t P t1, . . . , T u,

and compute pRit :“ Yit ´ pγ 1iX it. The first stage may consist of a regression

on a constant, a deterministic time trend and seasonal dummies, for instance,

or, as in Example 1, a regression on observed factors. After removing the

contribution from the observables, we can use the test for the null hypothesis of

no remaining (partial) covariance structure to check if the (partial) covariance

of Rit is dense or sparse. If it is dense we move to Step 2. Otherwise, we

jump directly to Step 3. This first parametric, low dimensional step can be

replaced by a nonlinear/nonparametric regression or by a high-dimensional

model, when, for example, the number of observed factors is large. As pointed

out in Remark 2, the Pesaran’s (2006) estimator can be also used whenever

correlation between X it and Rit is allowed. This will be discussed more in the

subsequent sections.

(2) Write Rt :“ pR1t, . . . , Rntq
1 and Rt “ ΛF t `U t. The second step consists of

estimating Λ and F t for t “ 1, . . . , T using pRt through principal component

analysis (PCA) and compute

pU t “ pRt ´ pΛpF t.

After estimating the factors and loadings, we apply our testing procedure to

check for remaining covariance structure in U t. The second-step estimation
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can be carried out also by dynamic factor models as in Barigozzi and Hallin

(2016,2017,2020) or Barigozzi et al. (2020). In Section 4 we discuss the deter-

mination of the number of factors.

(3) Now, define pU´it :“ ppU1t, . . . , pUi´1,t, pUi`1,t . . . pUntq
1. The third step consists of

a sparse regression to estimate the following model for each i P t1, . . . , nu:

pUit “ θ
1
i
pU´it ` Vit, t P t1, . . . , T u.

(4) The regression in Step 3 provides useful augmentation for predicting the re-

sponse variable Yit (if Yit is a variable to be predicted; see (2.3)), which reduces

the error further from Uit to Vit. The sparsity of estimated θi is useful for con-

structing partial correlation network or graphica model.

At the end of Steps 2 and 3, we can conduct the relevant inference on the struc-

tures of the covariance or partial covariance matrices. We can also provide updated

prediction future outcomes. We detail those in the next subsection. Also note that

the nonzero estimates of θi shed light on the links among idiosyncratic components.5

2.3. Estimators and Inference Procedure. In a pure prediction exercise one is

usually interested in the linear projection of Yit onto pX 1
it,F

1
t,U

1
´itq

1, which results

in the factor-augmented regression model (FARM)

Yit “ γi
1X it ` λi

1F t ` θi
1U´it ` εit, t P t1, . . . , T u, (2.2)

for each given i, and can be predicted by

pYit :“ pγi
1X it `

pλi
1
pF t `

pθi
1
pU´it; i P t1, . . . , nu. (2.3)

This will be called FarmPredict. Note that model (2.2) is equivalent to using the

predictors Xit,Y ´it and F t, which augment predictors Xit,Y ´it by using the common

factors F t. The form in (2.2) mitigates the collinearity issues in high dimensions.

Model (2.2) also bridges factor regression (θi “ 0) on one end and (sparse) regres-

sion on the other end with λi “ Λ1
´iθi, where Λ´i is the loading matrix without the

ith row. In the latter case, model (2.2) becomes a (sparse) regression model:

Yit “ γi
1X it ` θi

1R´it ` εit, t P t1, . . . , T u. (2.4)

5The three-stage procedure described here could be replaced by a single-step joint estimation. How-
ever, not only the computational burden will be much higher, but also the technical challenges will
be greater. I believe that the simplicity of the method is more a blessing than a curse.
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In this case, FARM specification as in (2.2) decorrelates the variables R´i in (2.4).

It makes the model selection consistency much easier to satisfy and forms the basis

of FarmSelect in (Fan et al., 2020). Our contribution in this specific task is to

allow heteroscadestic adjustments, resulting in the estimated data Rt. In general, for

FARM (2.2) with sparsity, FarmPredict chooses additional idiosyncratic components

to enhance the prediction of the factor regression.

In other cases, the structure of the idiosyncratic components U “ pU1, . . . , Unq
1 is

the objective of interest. An estimator for Σ “ EpU tU
1
tq could be simply given by

pΣ :“
1

T

T
ÿ

t“1

pU t
pU
1

t. (2.5)

In order to proper understand the (linear) relation between a pair pUit, Ujtq of U t,

a simple covariance estimate sometimes is not enough. In applications, it is often

desirable to have a direct measure of how Uit and Ujt are connected. By direct

connection, we meant the relation between those units removing the contribution of

other variables of U t. For this purpose, we use the partial covariance between Uit

and Ujt, defined for any pair i, j P t1, . . . , nu as πij :“ EpVijtVjitq, where Vijt :“

Uit´ProjpUit|U´ij,tq and ProjpUit|U´ij,tq denotes the linear projection of Uit onto the

space spanned by all the units except i and j, which we denote by U´ij,t. We suggest

to estimate the partial covariance matrix Π :“ pπijq by

pΠ :“ ppπijq and pπij :“
1

T

T
ÿ

t“1

pVij,tpVji,t, (2.6)

where pVijt is the residual of the LASSO regression of pUit onto pU´ij,t for i, j P t1, . . . , nu.

We also would like to conduct formal test on the population structure of U t. Specif-

ically, we propose a test for the following null hypothesis:

HΣ
D : ΣD “ Σ0

D, D Ď t1, . . . , nu ˆ t1, . . . , nu, (2.7)

for a given subset D, where ΣD denotes the elements of Σ indexed by D and we allow

d :“ |D| to diverge as n, T Ñ 8. For example, to test if Σ is diagonal, D consists of

all off diagonal elements and Σ0
D “ 0. To test if Σ is block diagonal, D can be taken

to the corresponding off-diagonal blocks. Similarly, for testing the structure on the

partial covariance matrix

HΠ
D : ΠD “ Π0

D, D Ď t1, . . . , nu ˆ t1, . . . , nu. (2.8)
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The null hypotheses (2.7) and (2.8) nest several cases of interest. The most common

would be to test for a diagonal or a block diagonal structure in Σ and/or Π. But it also

accommodates other structures.6 The task of estimating Σ is well documented in liter-

ature even in high-dimensions; see, for example, Ledoit and Wolf (2004,2012,2017,2020),

Fan et al. (2008), Lam and Fan (2009), or Fan et al. (2013).7

The challenges for testing (2.7) and (2.8) can be summarized as follows:

(1) As we allow for both n and d to diverge to infinite as T grows, sometimes at

a faster rate, we have a high-dimensional test where some sort of Gaussian

approximation result for dependent data must be deployed as we also allow

the number covariances to be tested (d) to diverge. In this case, a high-

dimensional long-run covariance matrix must be estimated if one expects to

get (asymptotic) correct test size.

(2) We do not observe tU tu or tVij,tu. Instead, we have an estimate of both from

a postulated model on observable random variables. Therefore, the estimation

error must be taken into account to claim some sort of asymptotic properties

of the test. In fact, it is not uncommon to obtain estimates of both tU tu and

tVij,tu from a multi-stage estimation procedure as we illustrate later.

We propose to test (2.7) using the statistic

SΣ
D :“ }

?
T ppΣD ´Σ0

Dq}max. (2.9)

The quantiles of SΣ
D are approximated by a Gaussian bootstrap. To describe the

procedure, let ΥΣ denote the pdˆ dq covariance matrix for the vectorized submatrix

prσijqpi,jqPD, where rσij :“ 1
T

řT
t“1 Ui,tUj,t. Since the process tU tu might present some

form of temporal dependence (refer to Assumption 3(c)) we estimate ΥΣ using a

Newey-West-type estimator. For a given K P K, where K is a class of kernel functions

described below in (3.11) and bandwidth h ą 0 , ΥΣ is estimated by

pΥΣ :“
ÿ

|`|ăT

Kp`{hqxMΣ,` and xMΣ,` :“
1

T

T
ÿ

t“``1

pDΣ,t
pD
1

Σ,t´`, (2.10)

where pDΣ,t is a d-dimensional vector with entries given by pUit pUjt ´ pσij for pi, jq P D,

where pσij is the pi, jq element of pΣ defined in (2.5). Finally, let c˚Σpτq be the τ -quantile

of the Gaussian bootstrap S˚D :“ }Z˚Σ}8 and Z˚Σ|X,Y „ N p0, pΥΣq.

6With minor changes, the proposed test can also be used to test the null Mvec pΣq “ m for some
pdˆ n2q matrix M and d-dimensional vector m where d :“ dT is also a function of T .
7See Ledoit and Wolf (2021a) for a recent survey or the book by Fan et al. (2020).
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Theorem 4 demonstrates the validity of Gaussian bootstrap procedure described

above, i.e., it states conditions under which the τ -quantile of the test statistic (2.9)

can be approximated by c˚Σpτq in the appropriate sense.

Similarly, the test statistic for (2.8) is given by

SΠ
D :“ }

?
T ppΠD ´Π0

Dq}max. (2.11)

Let ΥΠ denote the pdˆdq covariance matrix of prπijqpi,jqPD where rπij :“ 1
T

řT
t“1 Vij,tVji,t.

ΥΠ is estimated by

pΥΠ :“
ÿ

|`|ăT

Kp`{hqxMΠ,`; xMΠ,` :“
1

T

T
ÿ

t“``1

pDΠ,t
pD
1

Π,t´`, (2.12)

where pDΠ,t is a d-dimensional vector with entries given by pVij,tpVji,t ´ pπij for pi, jq P

D. Also, let c˚Πpτq be the τ -quantile of the Gaussian bootstrap S˚D :“ }Z˚Π}8 and

Z˚V |X,Y „ N p0, pΥV q.

Theorem 5 demonstrate the validity of Gaussian bootstrap, i.e., it states conditions

under which the τ -quantile of the test statistic (2.11) can be approximated by c˚Πpτq

in the appropriate sense.

3. Theoretical Results

In this section we collect all the theoretical guarantees for the estimation of the

model (2.1) by using the proposed three-stage method described above. Specifically,

Section 3.1 deals with estimation and Section 3.2 with inference on the (partial)

covariance structure of Π.

To present the next results it is convenient to use a more compact notation. For

each i “ 1, . . . , n, we define the T -dimensional vectors Y i :“ pYi1, . . . , YiT q
1 and U i :“

pUi1, . . . , UiT q
1. We also define the pT ˆkq matrix of covariates X i :“ pX i1, . . . ,X iT q

1

for each i “ 1, . . . , n and the pT ˆ rq matrix of factors F :“ pF 1, . . . ,F T q
1 such that

(2.1) can be represented as

Y i “X iγi ` Fλi `U i, i “ 1, 2, . . . , n,

“X iγi `Ri,
(3.1)

for each cross-sectional unit i, where Ri :“ Fλi `U i.

When no confusion is likely to arise, we also define for each t “ 1, . . . , T , the

n-dimensional vectors Y t :“ pY1t, . . . , Yntq
1 and U t :“ pU1t, . . . , Untq

1; and the nk-

dimensional vector X t :“ pX 1
1t, . . . ,X

1
ntq

1. Also, set the pn ˆ nkq block diagonal
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matrix Γ whose block diagonal is given by pγ 11, . . . ,γ
1
nq and the pnˆrq loading matrix

Λ :“ pλ1, . . . ,λnq
1. Then, (2.1) can also be represented as panel time series

Y t “ ΓX t `ΛF t `U t, t “ 1, 2, . . . , T

“ ΓX t `Rt,
(3.2)

where Rt :“ ΛF t `U t.

3.1. Estimation. We consider the following set of assumptions

Assumption 2 (Factor Model). Assume:

(a) EpF tq “ 0, E pF tF
1
tq “ Ir and Λ1Λ is a diagonal matrix;

(b) All eigenvalues of Λ1Λ{n are bounded away from zero and infinity as nÑ 8;

(c) }Σ´ΛΛ1
} “ Op1q; and

(d) }Λ}max ď C.

Remark 3. Assumption 2 is standard in the literature. Note also that the assumption

EpF tq “ 0 is not restrictive as our approach considers a first-step estimation which

may include a constant in the set of regressors. It is also needed for identifiability.

In order to present the results in a unified manner for both light and heavy tail

distributions, we state the next assumption in terms the Orlicz norm of the random

variables. Specifically, since we are only concerned with polynomial and exponential

tails we define the following subset of unbounded, convex, real-valued functions that

vanish at the origin:

Ψ :“ tψp : R` Ñ R` : ψppxq “ xp, p ě 6

or ψppxq “ x1r0 ď xp ă p1´ pq{ps ` rexppxpq ´ 1s1rxp ě p1´ pq{ps, p ą 0u.

(3.3)

Also, for each ψp P Ψ, we define ψp`pxq :“ xp`ε for some ε ą 0 if ψppxq “ xp;

otherwise (for the exponential case) ψp` :“ ψp.

Assumption 3 (Moments and Dependency). There exists a constant C ă 8

and function ψp P Ψ defined in (3.3) such that, for all i “ 1, . . . , n; ` “ 1, . . . , k;

s, t “ 1, . . . , T ; and j “ 1, . . . , r:

(a) }Xit`}ψp` ď C, }Uit}ψp` ď C, }Fj,t}ψp` ď C;

(b) }}pX 1
iX i{T q

´1}max}ψp` ď C;
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(c) The process tpX 1
S,t,F

1
t,U

1
tq
1, t P Zu is weakly stationary with strong mixing

coefficient α satisfying αpmq ď expp´2cmq for some c ą 0 and for all m P

Z, where XS,t denotes the vector X t after excluding all deterministic (non-

random) components.

(d) }n´1{2 rU 1
sU t ´ EpU 1

sU tqs }ψp` ď C;

(e) }n´1{2
řn
i“1 λj,iUit}ψp` ď C; and

(f) log n “ o
´

T p{4

rlog T s2

¯

.

A few words about Assumption 3 are in order. Assumptions (3.a) and (3.c) allow

us to apply a Marcinkiewicz-Zygmund type inequality for partial sums to deal with

the polinomial tails (Rio (1994) and Doukhan and Louhichi (1999)) and a Bernstein

inequality (Merlevède et al. (2009) - Theorem 2) to control exponential tails. More-

over, Assumption (3.c) excludes the deterministic component of X t to accommodate

possibly non-random non-stationary (but uniformly bounded by (a)) covariates. As-

sumption (3.d) is only used to prove results for the first-stage estimation in case it

is performed by ordinary least-squares (Theorem 1). Assumption (3.d) controls for

the level of cross-sectional dependence among the units. As we allow the number of

units to diverge with T , some sort of control on this quantity is necessary which is not

implied by p3.cq. Assumption (3.e) has a similar role to (3.d) but in terms of linear

combinations of the idiosyncratic components. Assumption (3.e) only bounds the

growth rate of the number of units n to be sub-exponential with respect to T . As a

matter of fact, this assumption is only binding in the exponential tail case, otherwise

the rate conditions imposed in the theorems below imply (3.e).

For each i “ 1, . . . , n, let Ri :“ Fλi ` U i denote the unobservable error term

in (3.1), pγi the least-squares estimator of γi and pRi :“ Y t ´ X tpγi the vector of

residuals. Also set pR :“ ppR1, . . . , pRnq
1 and R :“ pR1, . . . ,Rnq

1. We must control

for the least-squares estimation error in the first step of the proposed methodology.

The next result gives a bound for the maximum entry of the pnˆ T q matrix pR ´R

when the first-stage is conducted by OLS in a linear setup. Note that in this case we

assume that X it, F t and Uit are mutually uncorrelated.

Theorem 1. Under Assumption 3(a)-(d)

max
i,t
} pRit ´Rit}ψp{4 ď

Ck,ψ
?
T

and }pR´R}max “ OP

«

ψ´1
p{4pnT q
?
T

ff

,

where the Ck,ψ is a constant only depending on k and ψp.
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Remark 4. In case the first step of the method involves more complicated estimation,

such as Pesaran’s (2006) method, instrumental variables, or LASSO, for example, we

write }pR´R}max “ OP pωq, where ω :“ ωn,T is a non-negative sequence. This will be

used in the next theorems.

Define the pn ˆ T q matrices Y :“ pY 1, . . . ,Y T q and U :“ pU 1, . . . ,UT q; and the

pnk ˆ T q matrix X :“ pX1, . . . ,XT q. We can write (2.1) in the matrix form as

Y “ ΓX `ΛF 1 `U . (3.4)

Notice that pR “ ΛF 1 ` rU where rU :“ U ` pR ´R and pΛ,F q can be estimated

by Principal Component Analysis (PCA), which minimizes

qpΛ,F q :“ }pR´ΛF 1}2F , (3.5)

with respect to Λ and F , subject to the normalization F 1F {T “ Ir. The solution pF

is the matrix whose columns are
?
T times r eigenvectors of the top r eigenvalues of

pR
1
pR and pΛ “ pRpF {T .

Since we do not directly observe U , in the third step of our estimation procedure

we use pU :“ pR ´ pΛpF
1

instead. Therefore, we must control of the estimation error

in the factor model given by pn ˆ T q matrix pU ´ U which is the main purpose of

Theorem 2 below. Also, it is well know fact that the loading matrix Λ and the factors

F are not separably identified since ΛF t “ ΛH 1HF t for any matrix H such that

H 1H “ Ir. If we let H :“ T´1V ´1
pF
1

FΛ1Λ, where V is the prˆ rq diagonal matrix

containing the r largest eigenvalues of pR
1
pR{T in decreasing order, we have that HF t

is identified as ΛF t is identified.

The result below first appeared in Bai (2003) for the case of fixed pn, T q, and was

further extended to hold uniformly in pi ď n, t ď T q by Fan et al. (2013). Fan et al.

(2020) makes the conditions modular. However, both consider the case when the

factor model is estimated using the true data as opposed to an “estimated” one as

in our case. Therefore, the next result is a generalization that takes into account

that pre-estimation error term and quantifies how the error impact on the precision

of factor analysis.

Theorem 2. Let ω :“ ωn,T be a non-negative sequence such that }pR´R}max “ OP pωq.

Then, under Assumptions 1 -3 and ψ´1
p pn

2q{
?
T ` ψ´1

p pnT qω “ Op1q, we have that
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(a)

max
tďT

}pF t ´HF t}2 “ OP

„

1
?
T
`
ψ´1
p pT q
?
n

` ωψ´1
p{2pnT q



,

(b)

max
iďn

}pλi ´Hλi}2 “ OP

«

ψ´1
p{2pnq
?
T

`
1
?
n
` ω

ff

,

(c)

} pU ´U}max “ OP

„

ψ´1
p pnqψ

´1
p pT q

?
T

`
ψ´1
p pT q
?
n

` ωψ´1
p{2pnT q



.

By setting ω “ 0, i.e., no estimation error in the first step, we recover Theorem

4 and Corollary 1 in Fan et al. (2013) under sub-Gaussian assumption. Note that

in order to have the error } pU ´ U}max vanishing in probability we must have the

pre-estimation error }pR´R}max of order (in probability) smaller than 1{ψ´1
p{2pnT q.

We have decided not to replace ω in Theorem 2 with the rate obtained in Theorem 1

as the latter only applies to the least square estimator. In some applications, however,

the first step of the procedure could be done using a different type of estimator. For

instance a penalized adaptive Huber regression (Fan et al., 2017) if the number of

features k is comparable or even larger than T and the tail of the distribution is

heavy. By stating the Theorem 2 in terms of a generic rate, it is easier to account

for the effect of a different estimator. By combining Theorems 1 and 2 we have the

following corollary

Corollary 1. Under the same assumptions of Theorems 1 and 2, for the OLS used

in the first-stage to obtain pR, we have

} pU ´U}max “ OP

«

ψ´1
p{6pnT q
?
T

`
ψ´1
p pT q
?
n

ff

.

In particular for the sub-Gaussian case (ψpxq “ exppx2q ´ 1) we have

} pU ´U}max “ OP

«

rlogpnT qs3
?
T

`

c

log T

n

ff

,

and for polynomial tails (ψpxq “ xp)

} pU ´U}max “ OP

„

n6{p

T 1{2´6{p
`
T 1{p

?
n



.
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For notational convenience, for each i P t1, . . . , nu, consider the splitU 1
“ pU i,U´iq

where U i is a T -dimensional vector and U´i a T ˆpn´1q-dimensional matrix. Anal-

ogously, we split pU
1

“ p pU i, pU´iq. Then for a the penalized parameter ξ ě 0, the

LASSO objective function can be written for each i P t1, . . . , nu

Lpθq ` Penaltypθq :“
1

T
} pU i ´ pU´iθ}

2
` ξ}θ}1. (3.6)

To ensure a consistent estimation of θ, a sort of restricted strong convexity of the

objective function is required when n ą T . This in turns is ensured, in the case of a

quadratic loss, by bounding the minimum eigenvalue on pU
1

´i
pU´i{T away from zero

restrict to a cone (refer to Negahban et al. (2012) or Fan et al. (2020) for a thorough

discussion). Here, we adopt the compatibility constant defined in van de Geer and

Bühlmann (2009). For an index S Ď t1, . . . , nu and any n-dimensional vector v, let

vS be the vector containing only the elements of the vector v indexed by S. Thus,

#vS “ #S and Sc :“ Szt1, . . . , nu is the complement of S.

Definition 1. For an nˆ n matrix M , a set S Ď t1, . . . , nu and a scalar ζ ě 0, the

compatibility constant is given by

κpM ,S, ζq :“ inf

#

}x}M
a

|S|
}xS}1

: x P Rn : }xSc}1 ď ξ}xS}1

+

, (3.7)

where }x}M “ x1Mx. Moreover, we say that pM ,S, ζq satisfies the compatibility

condition if κpM ,S, ζq ą 0.

Notice that the square of the compatibility constant is close related to the minimum

of the `1-norm of the eigenvalues of Σ restricted to a cone in Rn. Let t S0,i :“ tj :

θi,j ‰ 0u and κi :“ κ
“

EpU 1
´iU´iq{T q,S0,i, 3

‰

. Set the maximum non-sparsity level

and minimum compatibility constant

s0 :“ max
iďn

|S0,i| and κ0 :“ min
iďn

κi. (3.8)

The next result shows the `1 and `2 rate results for the Lasso estimator (3.6) based on

the “estimated data” and quantifies how the estimation errors impact on the choice

of regularization parameter and rates of convergence.
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Theorem 3. Let η :“ ηn,T be a non-negative sequence such that } pU´U}max “ OP pηq.

Assume that Assumption 3 holds and

s0 “ O

»

–κ0

˜

η
“

ψ´1
p pnT q ` η

‰

`
ψ´1
p{2pn

2q
?
T

¸´1
fi

fl . (3.9)

For every ε ą 0 there is a constant 0 ă Cε ă 8 such that if the penalty parameter is

set to

ξ “ Cε

«

ψ´1
p{2pnq
?
T

` ηψ´1
p pT q

ff

, (3.10)

then for any minimizer pθi of (3.6), with probability at least 1´ ε:

T´1
ppθi ´ θiq

1U 1
´iU´ip

pθi ´ θiq ` ξ}pθi ´ θi}1 ď 8
ξ2s0

κ0

. i P t1, . . . , nu.

Remark 5. Notice that we apply the compatibility condition on the non-random co-

variance matrix EpU 1
´iU´iq{T instead of the estimated random covariance matrix

pU
1

´i
pU´i{T or the “unobservable” random matrix U 1

´iU´i{T . Careful review of the

proofs reveals that the same is true for the gradient of the objective function that

defines our parameter via a first order condition.

Once again, we purposely avoided to replace η in Theorem 3 with the rate of

Corollary 1 to make it readily applicable to the case when a different type of factor

models was used or, as a matter of fact, any other pre-estimation procedure. By

plugging the rate of Corollary 1 into η we have the next corollary

Corollary 2. If η defined in Theorem 3 is taken to be rate given by Corollary 1 and

the compatibility condition holds, i.e.: κ0 ě C ą 0 then under the conditions of the

Theorem 3:

max
iďn

}pθi ´ θi}1 “ OP

«˜

ψ´1
p pT qψ

´1
p{6pnT q

?
T

`
ψ´1
p{2pT q
?
n

¸

s0

ff

.

3.2. Inference on Covariance and Precision Matrices. We now obtain the null

distributions of our test statistics for the structures of the covariance and the partial

covariance. Recall the setup and notation of section 2.3. In particular, we consider

the kernel Kp¨q appearing in the covariance estimator defined by (2.10) belongs to the
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class defined in Andrews (1991) which we reproduce below for convenience

K :“ tf : RÑ r´1, 1s : fp0q “ 1, fpxq “ fp´xq, @x P R,
ż

f 2
pxqdx ă 8, f is continuousu.

(3.11)

This includes most of the well-known kernel used in the literature. To avoid confusion,

it is worth to point out that our tuning parameter h, also called bandwidth parameter

by Andrews (1991), is supposed to diverge, as opposed to the bandwidth in the density

kernel estimation setup, which is expected to shrink to zero.

The next result shows how accurately the elements of the covariance matrix are

estimated and validates the bootstrap method.

Theorem 4. Let η :“ ηn,T and ν :“ νn,T be non-negative sequence such that } pU ´

U}max “ OP pηq and maxi,t } pRit ´ Rit}ψp “ Opνq and Kp¨q P K. Under Assumptions

1–3, if further

(a) tU tu is fourth-order stationary process

(b) }diagpΥΣq}8 ě c for some c ą 0

(c) As h, n, T Ñ 8:

(c.1)
plognq7{6ψ´1

p{2
pnq

T 1{6 `

?
log T lognψ´1

p{2
pnqψ´1

p{2
pT 1{4q

T 1{4 “ op1q

(c.2) plog nq3h
”

ηpψ´1
p pnT qq

3 ` ψ´1
p{4pn

4q{
?
T
ı

“ op1q

(c.3) plog nq3
´?

Tη2 ` r1?
T
` r2?

n
` r3ν

¯

“ op1q,

where the rates r1, r2, r3 are defined in Lemma C.10 and h ą 0 is the bandwidth

parameter of the covariance estimator defined in (2.10); then

}pΥΣ ´ΥΣ}max “ OP

”

h
´

η
“

ψ´1
p pnT q

‰3
` ψ´1

p{4pn
4
q{
?
T
¯ı

“ op1q,

and supD supτPp0,1q |P
“

SΣ
D ď c˚Σpτq

‰

´ τ | “ op1q, where the first supremum is over all

null hypotheses of the form (2.7) indexed by D P t1 : nu ˆ t1 : nu.

Remark 6. The rate assumptions (c.1)–(c.3) in Theorem 4 seem over complicated.

However, they are a direct consequence of having the first and second step estimation

error rates, ν and η respectively, explicitly appearing in the final rate and the general

tail condition through the ψpp¨q function. It allows the practitioner to directly adjust

the final rate should (s)he prefer to employ different intermediate estimators. For

instance, a LASSO estimator in the first step in case the number of covariates k is

large enough or estimate the factor model by PCA variants.
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Remark 7. Careful review of Theorem 4’s proof reveals that (c.1) traces back to the

Gaussian Approximation of the (unobservable) process
!

1?
T

řT
t“1U tU

1
t ´ EU tU

1
t

)

Tě1
;

whereas (c.3) controls for the difference between U t ´ pU t and, therefore, takes into

account the estimation error of the first and second steps. Note the presence of ν

and η in (c.3) which are absent in (c.1). Finally, (c.2) make sure that the bootstrap

constructed in terms of the estimated covariance matrix is close to the bootstrap based

in the true covariance. Note the presence of the bandwidth parameter h in (c.2).

If we were to specialized Theorem 4 to the sub-Gaussian case and incorporate the

rates obtain in Theorem 1 and Corollary 1 we have the following cleaner Corollary.

Corollary 3. Consider the sub-Gaussian where ψ2pxq “ exppx2q. Suppose that the

Assumptions 1-3 and conditions paq and pbq of Theorem 4 hold. If the rates ν and η are

set to be rates given by Theorem 1 and Corollary 1, respectively, then the conclusion

of Theorem 4 holds provided that as h, n, T Ñ 8:

(a) log n “ opT 1{18q

(b) h
”

plognq15{2
?
T

`
plognq5
?
n

ı

“ op1q

(c) plognq3plog T q
?
T

n
“ op1q.

Remark 8. In order to establish the rate of convergence in the last result of Theorem

4 we need an upper bound on the tails of the pre-estimation error namely }pZ´Z}max.

In fact, we need to control the tails of the factor model estimation to establish uniform

bounds on }pUit ´ Uit}ψ, which translate into obtain bounds on maxjt } pFjt ´ Fjt}ψ and

maxji }pλji ´ λji}ψ.

The next theorem shows how well the elements of the partial autocovariance matrix

is estimated and gives the conditions under which the bootstrap test works. Note that

in calculation the partial covariance (2.6), we used the residual pVijt of the LASSO

regression of pUit onto pU´ij,t for i, j P t1, . . . , nu. This adds extra technical challenges

to the proof. Let rS0,ij denote the active set of the projection of Uit onto U´ij,t

for i, j P t1, . . . , nu and rκij :“ κ
”

EpU 1
´ijU´ijq{T q, rS0,ij, 3

ı

. Set the maximum non-

sparsity level and minimum compatibility constant

rs0 :“ max
1ďi‰jďn

| rS0,ij| and rκ0 :“ min
1ďi‰jďn

rκij. (3.12)

We assume the same sparsity structure as in Theorem 3.
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Theorem 5. Let η :“ ηn,T and ν :“ νn,T be non-negative sequence such that } pU ´

U}max “ OP pηq and maxi,t } pRit´Rit}ψp “ Opνq, K P K where K appears in (2.12) and

K defined by (3.11), the LASSO regularization parameter rξ set as in (3.10), and the

sparsity level obeying (3.9) with s0 and κ0 replaced by rs0 and rκ0, respectively. Under

Assumptions 2-4, if further

(a) tU tu is fourth-order stationary process

(b) }diagpΥΠq}8 ě c for some c ą 0

(c) As n, T Ñ 8:

(c.1)
plognq7{6ψ´1

p{2
pnq

T 1{6 `

?
log T lognψ´1

p{2
pnqψ´1

p{2
pT 1{4q

T 1{4 “ op1q

(c.2) plog nq3h

ˆ

rs0

“

η ` ξψ´1
p pnq

‰ “

rs0ψ
´1
p pnT q

‰3
` rs0

ψ´1
p{4
pn4q

?
T

˙

s “ op1q

(c.3) plog nq3
´

rs2
0

!

r1?
T
` r2?

n
` r3ν ` rξψ´1

p pnq `
?
T
“

η ` ξψ´1
p pnq

‰2
)¯

“ op1q,

where the rates r1, r2, r3 are defined in Lemma C.10 and h ą 0 is the bandwidth

parameter of the covariance estimator defined in (2.12); then

}pΥΠ ´ΥΠ}max “ OP

˜

h

#

rs0rη ` rξψ´1
p pnqsrrs0ψ

´1
p pnT qs

3
` rs0

ψ´1
p{4pn

4q
?
T

+¸

“ op1q

and supD supτPp0,1q |PpSΠ
D ď c˚Πpτqq ´ τ | “ op1q under HΠ

0 , where the first supremum

is over all null hypotheses of the form (2.8) indexed by D P t1ˆ nu ˆ t1ˆ nu.

Similar comments as in Remarks 6-8 and Corollary 3 apply to Theorem 5 as well.

Remark 9. As opposed to the case of testing covariance, when testing partial co-

variance in high-dimensional setup, the sparse structure plays a role in terms of rs0

appearing in the rates (c.2) and (c.3). Therefore, these assumptions restricts the

cases when the proposed partial covariance test has the correct asymptotic size. For

instance, in the case of a complete dense partial covariance structure, i.e, all the re-

gressors are active in all LASSO regressions we are likely to have rs0 of order of n

and, therefore, pc.2q and pc.3q are not expected to hold.

4. Guide to Practice

The methodology in this paper involves three steps. The first step consists of

identifying known covariates that we may want to control for. It may involve the

removal of deterministic trends and seasonal effects, for instance. This can be done

either by parametric or nonparametric regressions. It is important to notice, however,
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that the convergence rates of the estimations in the subsequent steps will be influenced

by the convergence rate of the estimation in the first part of the procedure.

After the data is filtered in the first step, one can test for remaining covariance

structure. For instance, if the covariance matrix of the filtered data is (almost)

diagonal, there is no need to estimate a latent factor structure and the practitioner

may jump directly to the third step of the method.

On the other hand, if the covariance of the first-step filtered data is dense, a latent

factor model should be considered and the number of factors must be determined.

To determine the number of factors we consider either the eigenvalue ratio test of

Horenstein (2013) or the information criteria put forward in Bai and Ng (2002). The

factors can be estimated by the usual methods.

The last step involves a sparse regression in order to estimate any remaining links

between idiosyncratic components. Before running the last step, we may test for

a diagonal covariance matrix of the idiosyncratic terms. If the null is not rejected,

there is no need for additional estimation. In case of rejection, we can proceed with

a LASSO regression. We recommend that the penalty term is selected by Bayesian

Information Criterion (BIC) as advocated by Medeiros and Mendes (2016).

Finally, concerning the estimation of the long-run matrices, the usual methods

discussed in the literature can be used here to select the kernel and the bandwidth.

We use the simple Bartlett kernel with bandwidth given as tT {3u.

5. Simulation

In this section we report simulation results divided into two parts. In the first one,

we evaluate the finite-sample properties of the test for remaining covariance structure.

In the second part, we highlight the informational gains when considering both the

common factors and the idiosyncratic component. We simulate 1,000 replications

of the following model for various combinations of sample size (T ) and number of

variables (n):

Y it “ Λ1
iF t `Wit, (5.1)

F t “ 0.8F t´1 `Et, (5.2)

Wit “ φWit´1 ` Uit, (5.3)

Uit “ Ipi “ 1qpθ12U2t ` θ13U3t ` θ14U4t ` θ15U5tq ` Vit (5.4)
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where Ip¨q is the indicator function, tVitu is a sequence of independent Gaussian

random variables with zero mean and variance equal to 0.25, and tEtu is a sequence

of r-dimensional independent random vectors normally distributed with zero mean

and identity covariance. Furthermore, tVitu and tEtu are mutually independent for

all time periods, factors and variables. For each Monte Carlo replication, the vector of

loadings is sampled from a Gaussian distribution with mean -6 and standard deviation

0.2 for i “ 1 and mean 2 and unit variance for i “ 2, . . . , n. The value of φ is either

0 or 0.5. The coefficients θ12, θ13, θ14, and θ15 are equal to zero or 0.8, 0.9, -0.7, and

0.5, respectively. We set r “ 3.

5.1. Test for Remaining Covariance Structure. We start by reporting results

for the test of no remaining structure on the covariance matrix of U t “ pU1t, . . . , Untq
1.

The null hypothesis considered is that all the covariances between the first variable

(i “ 1) and the remaining ones are all zero. For size simulations we set θ12 “ θ13 “

θ14 “ θ15 “ 0 in the DGP. In order to evaluate the effects of factor estimation as well

as the methods in selecting the number of factors, we consider the following scenarios:

(1) factors are known and there is no estimation involved; (2) factors are estimated by

principal components but the number of factors is known; (3) the number of factors

is determined by the eigenvalue ratio procedure of Horenstein (2013); (4)-(7) the

number of factors is determined by one of the four information criteria proposed by

Bai and Ng (2002) as defined by

IC1 “ logrSprqs ` rn`T
nT

log
`

nT
n`T

˘

IC2 “ logrSprqs ` rn`T
nT

logC2
nT

IC3 “ logrSprqs ` r
logC2

nT

C2
nT

IC4 “ logrSprqs ` r pn`T´kq logpnT q
nT

.

where Sprq “ 1
nT
}R´ pΛr

pF r}
2
2 and CnT :“

a

minpn, T q.

Tables 1 and 5 report the results of the empirical size of test for different significance

levels. We consider the case of φ “ 0 in Table 1 and φ “ 0.5 in Table 5 in the

Supplementary Material. The tables present the results when the factors are known

in panel (a), the factors are unknown but the number of factors is known in panel

(b), or the number of factors are estimated either by the information criterion IC1 in

panel (c) or the eigenvalue ratio procedure in panel (d). Table 7 in the Supplementary

Material shows the results when the number of factors are determined by IC2 ´ IC4.

A number of facts emerge from the inspection of the results in the Table 1. First,

size distortions are small when the factors are known. In this case, the test is un-

dersized when the pair pn, T q is small. When the factor are not known but the true
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number of factors is available, the size distortions are high only when T “ 100 and

n “ 50 due to inaccurate estimation of factors. However, the distortions disappear

when the pair pT, nq grows. In this case, the empirical size is similar to the situation

reported in Panel (a). The finite performance of test in the case where the number of

factors is selected by information criterion IC1 is almost indistinguishable to the case

reported in Panel (b). However, the results with the eigenvalue ratio procedure are

much worse when T “ 100 and n “ 50. In this case, the procedure selects less factors

than true number r “ 3. For instance, the procedure selects 2 or less factors in 36%

of the replications. Just as comparison, for T “ 100 and n “ 50, IC1 underdetermines

the number of factors only in 3.10% of the cases. The latter also confirms that over

estimation of the number of factors will not have big adversorial effect. For all the

other combinations of T and n all the data-driven methods selects the correct number

of factors in almost all replications.

When the idiosyncratic components are autocorrelated the size distortions are

higher, as reported in Table 5. This is mainly caused by the well-known difficul-

ties in the estimation of the long-run covariance matrix.

Tables 2 and 6 report the results of the empirical power with β12 “ 0.8, β13 “ 0.9,

β14 “ ´0.7, and β15 “ ´0.5 in the DGP. When the factors are known, the test always

rejects the null and the empirical power is one for any significance level. On the other

hand, when factors must be estimated but the number of factors are known, the

power decreases as depicted in panel (b) in the tables. Nevertheless for T “ 500, 700

the power is reasonably high, specially when test is conducted at a 10% significance

level. For T “ 100, the performance deteriorates as n grows. The results are similar

when data-driven procedures are used to determine the number of factors and the

conclusions are mostly the same if φ “ 0 or φ “ 0.5.

The main message of the simulation exercise is that the finite-sample performance

of the proposed tests depend on the correct selection of factors. Nevertheless, for the

DGP considered here, the usual data-driven methods available in the literature to

determine the true number of factors seem to work reasonably well.

5.2. Informational Gains. The goal of this simulation is to compare, in a predic-

tion environment, the three-stage method developed in the paper by evaluating the

information gains in predicting Y1t by three different methods. First, the predictions

are computed from a LASSO regression of Y1t on all the other n ´ 1 variables. This

is the Sparse Regression (SR) approach. Second, we consider a principal component
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regression (PCR), i.e., an ordinary least squares (OLS) regression of the variable of

interest on factors computed from the pool of other variables. Finally, we consider

predictions constructed from the method proposed here, the FarmPredict method-

ology. Table 3 presents the results. The table presents the average mean squared

error (MSE) over 5-fold cross-validation (CV) subsamples. As in the size and power

simulations, we consider different combinations of T and n. We report results for the

case where θ12 “ 0.8, θ13 “ 0.9, θ14 “ ´0.7, and θ15 “ ´0.5 in the DGP.

According to the DGP, the theoretical MSE is 0.25 when all the information is

used. When just a factor is used, the MSE is 2.21. From the table is clear that

there are significant informational gains when we consider both factors and the cross-

dependence between idiosyncratic components. Several conclusions emerge from the

table. First, it is clear that when the sample size increases the MSE reduces. This

is expected. Second, the PCR’s MSE and FarmPredict’s MSE are close to their

theoretical values of 2.21 and 0.25 when the sample increases. The performance of

the FarmPredict is quite remarkable when T “ 500 or T “ 700 and is always superior

to Sparse Regression and PCR.

6. Applications

In this section we consider two applications with real data to illustrate the benefits

of the methodology developed in the paper.

6.1. Factor Models and Network Structure in Asset Returns.

6.1.1. The Dataset. We illustrate the methodology developed in this paper by study-

ing the factor structure of asset returns. We consider monthly close-to-close ex-

cess returns from a cross-section of 9,456 firms traded in the New York Stock Ex-

change. The data starts on November 1991 and runs until December 2018. There

are 326 monthly observations in total. In addition to the returns we also consider 16

monthly factors: Market (MKT), Small-minus-Big (SMB), High-minus-Low (HML),

Conservative-minus-Aggressive (CMA), Robust-minus-Weak (RMW), earning/price

ratio, cash-flow/price ratio, dividend/price ratio, accruals, market beta, net share is-

sues, daily variance, daily idiosyncratic variance, 1-month momentum, and 36-month

momentum. The firms are grouped according to 20 industry sectors as in Moskowitz

and Grinblatt (1999). The following sectors are considered:8 Mining (602), Food

8The number between parenthesis indicate the number of firms in our sample that belong to each
sector.
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(208), Apparel (161), Paper (81), Chemical (513), Petroleum (48), Construction (68),

Primary Metals (133), Fabricated Metals (186), Machinery (710), Electrical Equip-

ment (782), Transportation Equipment (166), Manufacturing (690), Railroads (25),

Other transportation (157), Utilities (411), Department Stores (67), Retail (1018),

Financial (3419), and Other (11).

6.1.2. Results. We start the analysis by looking at the correlation matrix of a sample

of nine different sectors, namely: Mining, Food, Petroleum, Construction, Manu-

facturing, Utilities, Department Stores, Retail, and Financial. Figure 1 plots the

correlations that are larger than 0.15 in absolute value. We also test for the null

of diagonal covariance matrix. The null hypothesis is strongly rejected with p-value

much lower than 1%. To conduct the test of the covariance matrix we use the sim-

ple sample estimator as described in the paper. However, the correlations plotted in

Figure 1 and in the subsequent ones are based on the nonlinear shrinkage estimator

proposed by Ledoit and Wolf (2020).

We proceed by regressing the daily returns on the observed 16 factors. These three

factors explain most of the variation of the returns. Figure 2 shows the empirical

distribution of the OLS estimates of factor loadings over the 9,456 regressions. Figure

3 presents the estimated correlations for the first-stage residuals. We focus on the nine

sectors as before. The first-stage regression as efficient in removing the correlation

within specific sectors in some cases. The most notable ones are Financial and Retail,

followed by Construction, Petroleum, and Manufacturing. Nevertheless, the tests for

diagonal covariance matrix reject the null even in these specific cases.

The second step is to conduct a principal component analysis on the residuals

of the first-stage. The eigenvalue ratio procedure selects two factors, while all four

information criteria points to a single factor. We proceed with two factors. Note

that, by construction, the principal component factors are orthogonal to all the 16

risk factors considered in the first stage. Figure 4 shows the estimated correlations

for the residuals of the second-stage. The latent factor are not able to reduce the

correlations within each sector. However, when we consider the partial correlations

the conclusions are much different. As can be seen from Figure 5 that the partial

correlation matrices are (almost) diagonal. In addition, we are not able to reject the

null of a diagonal covariance matrix at a 5% significance level.

To shed some light on the links among different sectors, we report how often vari-

ables from sector i are selected in the third-stage LASSO regression for firms in sector
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j. The numbers are normalized by the total number of firms in each sector and are

presented in Figure 6. The most interesting fact is that covariates from the finan-

cial sector are the ones most frequently selected for all the other sectors. This may

indicate that there is a “financial factor” that was unmodeled in the first two stages.

The results presented here can be useful in applications where forecasting future

returns is the goal, for instance. The results indicate that the inclusion of the returns

of firms belonging to the financial sector may improve the performance of forecast-

ing models. For example, if we run a regression of the residuals of the first-stage

regression of firms that do not belong to the financial sector on the first principal

component computed with the first-stage residuals only from the financial sector, we

find a statistically significant coefficient in 28% of the cases.

6.2. Macroeconomic Forecasting. The second application consists of forecasting

of a large set of monthly macroeconomic variables. We compare four different models:

(1) Autoregressive model; (2) Sparse LASSO Regression (SR); (3) Principal Compo-

nent Regression (PCR); and (4) FarmPredict.

6.2.1. The Dataset. Our data consist of variables from the FRED-MD database,

which is a large monthly macroeconomic dataset designed for empirical analysis in

data-rich macroeconomic environments. The dataset is updated in real time through

the FRED database and is available from Michael McCraken’s webpage.9 For further

details, we refer to McCracken and Ng (2016).

We use the vintage as of October 2020. Our sample extends from January 1960 to

December 2019 (719 monthly observations), and only variables with all observations

in the sample period are used (119 variables). The dataset is divided into eight

groups: (i) output and income; (ii) labor market; (iii) housing; (iv) consumption,

orders and inventories; (v) money and credit; (vi) interest and exchange rates; (vii)

prices; and (viii) stock market. Finally, all series are transformed in order to become

approximately stationary as in McCracken and Ng (2016).

6.2.2. Setup and Methodology. In order to highlight the gains of exploring all relevant

information in the the dataset, we construct one-step forecasts for each one of the

119 variables in the dataset according to the following models:

9https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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(1) Autoregressive model (AR):

pY
pARq

i,t`1|t “
pφi0 ` pφi1pYi,t ` . . .` pφippYi,t´p`1, i “ 1, . . . , n,

where pφi0, pφi1, . . . , pφip, i “ 1, . . . , n, are OLS estimates. This model will be

also the first-stage model in our methodology.

(2) AR + Sparse regression (SR):

pY
pSRq

i,t`1|t “
pY
pARq

i,t`1|t `
pRi,t`1|t,

where pRi,t “ Yi,t ´ pY
pARq

i,t|t´1, i “ 1, . . . , n, pRt “

´

pR1,t, . . . , pRn,t

¯

, and

pRi,t`1|t “
pβ0i `

pβ
1

1i
pRt ` . . .` pβ

1

pi
pRt´p`1, i “ 1, . . . , n,

pβ0i, pβ1i . . . ,
pβpi, i “ 1, . . . , n, are LASSO estimates. The parameters are es-

timated equation-wise for each one of the 119 variables in the dataset. The

penalty parameter is selected by BIC as discussed in Section 4.

(3) AR + Principal Component Regression (PCR):

pY
pPCRq

i,t`1|t “
pY
pARq

i,t`1|t `
pλ
1

i
pF t,

where pF t is the estimate of the pkˆ 1q vector of factors F t given by principal

component analysis of pRt, the residuals of the first-stage regression. The

parameter λi is computed by OLS regression of pRi,t on pF t in-sample.

(4) AR + Full Information (FarmPredict):

pY
pFarmPredictq

i,t`1|t “ pY
pPCRq

i,t`1|t `
pUi,t`1|t

where
pUi,t`1|t “

pθ0i `
pθ
1

1i
pU t ` . . .` pθ

1

pi
pU t´p`1,

pU t “

´

pU1,t, . . . , pUn,t

¯1

and pUi,t “ Yi,t ´ pY
pPCRq

i,t|t´1, i “ 1, . . . , n. The estimates

pθ0i, pθ1i . . . , pθpi, i “ 1, . . . , n, are given by LASSO.

The forecasts are based on a rolling-window framework of fixed length of 480 ob-

servations, starting in January 1960. Therefore, the forecasts start on January 1990.

The last forecasts are for December 2019. Note that the AR model only considers

information concerning the own past of the variable of interest. SR and PCR expand

the information by two opposing routes. While SR uses a sparse combination of the

set of variables, PCR considers only a factor structure (dense model). FarmPredict

combines these two approaches and uses the full information available.
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6.2.3. Brief In-Sample Analysis. We start by looking at the full sample in order

to analyze the structure of dependence among the variables. We first estimate an

autoregressive model of order 4, AR(p), for each transformed series. Panel (a) in

Figure 7 reports the empirical distribution of the OLS estimators of the AR coefficients

and Panel (b) in the figure shows the distribution of the absolute value of the sum

of the estimates. This gives an idea of the persistence of each series. Only one series

has estimated persistence above one. This is the case for NONBORRES: Reserves of

Depositary Institutions, which belongs to group (v): Money and Credit. The reason

for such high persistence if due to a major structural break present in the second half

of the series. However, 82.35% of the series have estimated persistence below 0.9.10

We continue by estimating the number of factors when the full sample is used.

We consider two different situations. In the first, we do not include any lag in the

basket of variables used to compute the factors. In the second approach, we include

four lags of each variable as well. The eigenvalue ratio procedure selects either two

(no lags) or a single factor (with lags). The four information criteria of Bai and Ng

(2002) estimate for the case with no lags (with lags) the following number of factors:

six (one), five (one), nine (one), and one (one). Note that the factors are estimated

for the residuals of the first-step AR filter. If we remove the NONBORRES variable

from the sample the results to not change for the eigenvalue ratio procedure. On the

other hand, the new numbers of factors selected by the information criteria are as

follows: seven (one), six (one), eleven (one), and one (one).

Finally, we apply the testing approach developed in this paper to check for re-

maining (partial) covariance structure in the data. The tests strongly reject the null

of a diagonal matrix when applied to the residuals either of the first or the second

stages of the methodology. This serves as evidence that FarmPredict may be a useful

modeling approach for this macroeconomic dataset.

6.2.4. Forecasting Results. For each of the models above, we report a number of

performance metrics in Table 4. The table presents the frequency each model has

the best performance among the four alternatives. Numbers between parentheses

indicates the frequency each model is the second, third, and fourth best. We report

the results for each one of the eight sectors as well as for the set of all 119 variables.

We show the results for two methods to determine the number of factors. Panel

(a) reports the results for the eigenvalue ratio method while Panel (d) presents the

10Conventional unit-root tests also reject the null of unit-root for all but one of the series.



BRIDGING FACTOR AND SPARSE MODELS 31

results for the information criterion IC4. Criteria IC1, IC2, and IC3 select a very large

number of factors. Panels (c) and (d) in the table show the results for the cases where

the number of factors are kept fixed (r “ 1 or r “ 2).

FarmPredict is the model which is ranked first more frequently when all the series

are considered. It is also the best model for the following groups: output and income,

labor market, housing, and consumption, orders and inventories. The AR model is best

for the following groups: money and credit and stock market. The sparse regression

is superior also for two groups: interest and exchange rates and prices.

7. Conclusions

In this paper we propose a new methodology which bridges the gap between sparse

regressions and factor models and evaluate the gains of increasing the information set

via factor augmentation. Our proposal consists in several steps. In the first one, we

filter the data for known factors (trends, seasonal adjustments, covariates). In the

second step, we estimate a latent factor structure. Finally, in the last part of the

procedure we estimate a sparse regression for the idiosyncratic components. We also

propose a new test for remaining structure in both high-dimensional covariance and

partial covariance matrices. Our test can be used to evaluate the benefits of adding

more structure in the model. Our paper has also a number of important side results.

First, we proved consistency of kernel estimation of long-run covariance matrices in

high-dimensions where both the number of observations and variables grows. Second,

we derive the theoretical properties of factor estimation on the residuals of a first step

process. Third, the proposed test can be used as a diagnostic tool for factor models.

We evaluate our methodology with simulations and real data. The simulations

show the test has good size and power properties even when the true number of fac-

tors is unknown and must be determined from the data. If the number of factors is

underestimated, we observe size distortions. This is specially the case when the eigen-

value ratio test is used to determine the number of latent factors. The simulations

also show that there are major informational gains when combining factor models

and sparse regressions in a forecasting exercise. Two applications are considered.
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Table 1. Simulation Results: Size with φ “ 0.

The table reports the empirical size of the test of remaining covariance structure. Panel (a)

reports the case where the factors are known, whereas Panel (b) considers that the factors

are unknown but the number of factors is known. Panels (c) and (d) present the results

when the number of factors are determined, respectively, by the eigenvalue ratio test and

the information criterion IC1. Factors are estimated by the usual principal component

algorithm. Three nominal significance levels are considered: 0.01, 0.05, and 0.10. The

table reports the results for the case where φ “ 0 in (5.3).

Panel(a): Known factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.08 0.03 0.01 0.10 0.05 0.01 0.09 0.04 0.01
n “ 1ˆ T 0.06 0.02 0.00 0.07 0.03 0.01 0.10 0.05 0.01
n “ 2ˆ T 0.07 0.02 0.00 0.07 0.02 0.00 0.08 0.04 0.00
n “ 3ˆ T 0.05 0.01 0.00 0.08 0.04 0.01 0.07 0.04 0.01

Panel(b): Known number of factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.23 0.13 0.02 0.14 0.06 0.02 0.11 0.05 0.01
n “ 1ˆ T 0.13 0.06 0.01 0.09 0.04 0.01 0.12 0.05 0.01
n “ 2ˆ T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n “ 3ˆ T 0.06 0.02 0.00 0.08 0.04 0.01 0.07 0.03 0.01

Panel(c): Information criterion (IC1)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.24 0.14 0.03 0.14 0.06 0.02 0.11 0.05 0.01
n “ 1ˆ T 0.14 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n “ 2ˆ T 0.10 0.05 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n “ 3ˆ T 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

Panel(d): Eigenvalue ratio

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.47 0.38 0.25 0.14 0.06 0.02 0.11 0.05 0.01
n “ 1ˆ T 0.14 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n “ 2ˆ T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n “ 3ˆ T 0.06 0.02 0.00 0.08 0.04 0.01 0.07 0.03 0.01
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Table 2. Simulation Results: Power (φ “ 0).

The table reports the empirical power of the test of remaining covariance structure. Panel

(a) reports the case where the factors are known, whereas Panel (b) considers that the

factors are unknown but the number of factors is known. Factors are estimated by the

usual principal component algorithm. Three nominal significance levels are considered:

0.01, 0.05, and 0.10.

Panel(a): Known factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 1 1 1 1 1 1 1 1 1
n “ 1ˆ T 1 1 1 1 1 1 1 1 1
n “ 2ˆ T 1 1 1 1 1 1 1 1 1
n “ 3ˆ T 1 1 1 1 1 1 1 1 1

Panel(b): Known number of factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.33 0.18 0.03 0.99 0.97 0.83 0.99 0.99 0.94
n “ 1ˆ T 0.20 0.08 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n “ 2ˆ T 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n “ 3ˆ T 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34

Panel(c): Eigenvalue ratio

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.15 0.09 0.02 0.99 0.97 0.83 0.99 0.99 0.94
n “ 1ˆ T 0.19 0.07 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n “ 2ˆ T 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n “ 3ˆ T 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34

Panel(d): Information criterion (IC1)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.15 0.09 0.02 0.99 0.97 0.83 0.99 0.99 0.94
n “ 1ˆ T 0.19 0.07 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n “ 2ˆ T 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n “ 3ˆ T 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34
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Table 3. Simulation Results: Informational Gains

The table reports the average mean squared error (MSE) of three different prediction

models over 5-fold cross-validation subsamples. The goal is to predict the first variable

using information from the remaining n´1. Panel (a) considers the case of Sparse Regres-

sion (SR) where Y1t is LASSO-regressed on all the other variables. Panel (b) shows the

results of Principal Component Regression (PCR). Finally, Panel (c) presents the results

of FarmPredict. “N/A” means “not available”. Note that there is no factor selection for

Sparse Regression. “Known Number” means that the number of factors is known.
Panel(a): Sparse Regression (SR)

Known Number Eigenvalue Ratio Information Criterion (IC1)

T “ 100 T “ 500 T “ 700 T “ 100 T “ 500 T “ 700 T “ 100 T “ 500 T “ 700
n “ 0.5ˆ T 0.57 0.35 0.34 N/A N/A N/A N/A N/A N/A
n “ 1ˆ T 0.40 0.36 0.32 N/A N/A N/A N/A N/A N/A
n “ 2ˆ T 0.39 0.33 0.31 N/A N/A N/A N/A N/A N/A
n “ 3ˆ T 0.35 0.32 0.30 N/A N/A N/A N/A N/A N/A

Panel(b): Principal Component Regression (PCR)

Known Number Eigenvalue Ratio Information Criterion (IC1)

T “ 100 T “ 500 T “ 700 T “ 100 T “ 500 T “ 700 T “ 100 T “ 500 T “ 700
n “ 0.5ˆ T 3.82 3.12 3.01 4.69 3.12 3.01 3.26 3.04 2.34
n “ 1ˆ T 3.09 2.35 2.34 4.05 3.35 3.34 3.22 3.02 2.32
n “ 2ˆ T 3.14 2.97 2.21 4.13 3.97 2.21 3.29 3.21 2.27
n “ 3ˆ T 3.83 3.00 2.33 3.83 3.00 2.33 3.12 3.00 2.28

Panel(c): FarmPredict

Known Number Eigenvalue Ratio Information Criterion (IC1)

T “ 100 T “ 500 T “ 700 T “ 100 T “ 500 T “ 700 T “ 100 T “ 500 T “ 700
n “ 0.5ˆ T 0.50 0.33 0.31 0.52 0.33 0.31 0.50 0.34 0.30
n “ 1ˆ T 0.32 0.29 0.28 0.37 0.29 0.28 0.53 0.28 0.27
n “ 2ˆ T 0.27 0.27 0.26 0.28 0.27 0.26 0.32 0.28 0.28
n “ 3ˆ T 0.22 0.21 0.21 0.22 0.21 0.21 0.34 0.27 0.27
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Table 4. Forecasting Results.

The table reports the frequency each model is ranked the first, second, third and fourth best model

among the four alternatives. Panel (a) considers the case when the factors are selected by the eigen-

value ratio procedure. Panel (b) presents the results when factors are selected by the information

criterion IC1. Panels (c) and (d) consider the cases when the number of factors are pre-specified as

either one or two. We present the results for each individual group of variables as well as for the full

set of macroeconomic variables.
Panel (a): Optimal Factor Selection (eigenvalue ratio)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.125 0.000 0.250 0.625 0.000 0.125 0.625 0.250 0.375 0.500 0.125 0.000 0.500 0.375 0.000 0.125
(ii) labor market 0.032 0.097 0.290 0.581 0.226 0.065 0.516 0.194 0.194 0.516 0.097 0.194 0.548 0.323 0.097 0.032
(iii) housing 0.100 0.100 0.300 0.500 0.400 0.400 0.100 0.100 0.000 0.200 0.400 0.400 0.500 0.300 0.200 0.000
(iv) consumption, orders and inventories 0.000 0.000 0.333 0.667 0.000 0.000 0.667 0.333 0.333 0.667 0.000 0.000 0.667 0.333 0.000 0.000
(v) money and credit 0.429 0.357 0.143 0.071 0.214 0.214 0.357 0.214 0.214 0.286 0.357 0.143 0.143 0.143 0.143 0.571
(vi) interest and exchange rates 0.368 0.211 0.263 0.158 0.526 0.316 0.158 0.000 0.053 0.263 0.211 0.474 0.053 0.211 0.368 0.368
(vii) prices 0.150 0.150 0.600 0.100 0.650 0.100 0.200 0.050 0.050 0.200 0.100 0.650 0.150 0.550 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.000 0.667 0.333 0.000 1.000 0.000 0.000 0.333 0.000 0.333 0.333
(ix) all 0.185 0.134 0.311 0.370 0.311 0.160 0.378 0.151 0.160 0.387 0.168 0.286 0.345 0.319 0.143 0.193

Panel (b): Optimal Factor Selection (IC4)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.125 0.125 0.188 0.563 0.063 0.250 0.500 0.188 0.250 0.375 0.313 0.063 0.563 0.250 0.000 0.188
(ii) labor market 0.032 0.097 0.258 0.613 0.226 0.032 0.548 0.194 0.226 0.581 0.065 0.129 0.516 0.290 0.129 0.065
(iii) housing 0.000 0.000 0.400 0.600 0.200 0.500 0.100 0.200 0.200 0.100 0.500 0.200 0.600 0.400 0.000 0.000
(iv) consumption, orders and inventories 0.000 0.000 0.333 0.667 0.167 0.000 0.500 0.333 0.167 0.667 0.167 0.000 0.667 0.333 0.000 0.000
(v) money and credit 0.571 0.286 0.071 0.071 0.143 0.429 0.357 0.071 0.143 0.286 0.429 0.143 0.143 0.000 0.143 0.714
(vi) interest and exchange rates 0.316 0.105 0.105 0.474 0.368 0.158 0.368 0.105 0.158 0.263 0.474 0.105 0.158 0.474 0.053 0.316
(vii) prices 0.100 0.150 0.650 0.100 0.500 0.300 0.150 0.050 0.100 0.150 0.100 0.650 0.300 0.400 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000 0.333 0.000 0.000 0.667
(ix) all 0.176 0.118 0.277 0.429 0.252 0.227 0.378 0.143 0.176 0.353 0.269 0.202 0.395 0.303 0.076 0.227

Panel (c): Fixed Number of Factors (r “ 1)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.125 0.125 0.188 0.563 0.063 0.250 0.500 0.188 0.250 0.375 0.313 0.063 0.563 0.250 0.000 0.188
(ii) labor market 0.032 0.097 0.258 0.613 0.226 0.032 0.548 0.194 0.226 0.581 0.065 0.129 0.516 0.290 0.129 0.065
(iii) housing 0.000 0.000 0.400 0.600 0.200 0.500 0.100 0.200 0.200 0.100 0.500 0.200 0.600 0.400 0.000 0.000
(iv) consumption, orders and inventories 0.000 0.000 0.333 0.667 0.167 0.000 0.500 0.333 0.167 0.667 0.167 0.000 0.667 0.333 0.000 0.000
(v) money and credit 0.571 0.286 0.071 0.071 0.143 0.429 0.357 0.071 0.143 0.286 0.429 0.143 0.143 0.000 0.143 0.714
(vi) interest and exchange rates 0.316 0.105 0.105 0.474 0.368 0.158 0.368 0.105 0.158 0.263 0.474 0.105 0.158 0.474 0.053 0.316
(vii) prices 0.100 0.150 0.650 0.100 0.500 0.300 0.150 0.050 0.100 0.150 0.100 0.650 0.300 0.400 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000 0.333 0.000 0.000 0.667
(ix) all 0.176 0.118 0.277 0.429 0.252 0.227 0.378 0.143 0.176 0.353 0.269 0.202 0.395 0.303 0.076 0.227

Panel (d): Fixed Number of Factors (r “ 2)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.063 0.125 0.250 0.563 0.063 0.063 0.625 0.250 0.250 0.625 0.063 0.063 0.625 0.188 0.063 0.125
(ii) labor market 0.065 0.129 0.226 0.581 0.226 0.097 0.516 0.161 0.226 0.452 0.097 0.226 0.484 0.323 0.161 0.032
(iii) housing 0.200 0.200 0.000 0.600 0.500 0.400 0.100 0.000 0.000 0.100 0.700 0.200 0.300 0.300 0.200 0.200
(iv) consumption, orders and inventories 0.167 0.167 0.167 0.500 0.167 0.167 0.500 0.167 0.333 0.333 0.333 0.000 0.333 0.333 0.000 0.333
(v) money and credit 0.500 0.357 0.071 0.071 0.214 0.357 0.143 0.286 0.143 0.286 0.429 0.143 0.143 0.000 0.357 0.500
(vi) interest and exchange rates 0.316 0.368 0.000 0.316 0.368 0.263 0.263 0.105 0.105 0.316 0.263 0.316 0.211 0.053 0.474 0.263
(vii) prices 0.100 0.100 0.100 0.700 0.500 0.150 0.250 0.100 0.200 0.150 0.550 0.100 0.200 0.600 0.100 0.100
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000 0.333 0.000 0.000 0.667
(ix) all 0.193 0.193 0.126 0.487 0.286 0.202 0.361 0.151 0.176 0.345 0.311 0.168 0.345 0.261 0.202 0.193
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Figure 1. Correlations of returns.
We estimate the correlations between all pairs of returns from specific sectors. The correlations that

are higher than 0.15 in absolute value are shown as black dots. We consider the sectors: mining,

food, petroleum, construction, manufacturing, utilities, department stores, retail, and financial.
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Figure 2. First-stage coefficient estimates.
The figure shows the empirical distribution of the first-stage regression where each excess returns

are linearly regressed on 16 risk factors.
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Figure 3. Correlations of first-stage residuals.
We estimate the correlations between all pairs of residuals from the first-stage OLS regression on

16 observed risk factors from specific sectors. The correlations that are higher than 0.15 in absolute

value are shown as black dots. We consider the sectors: mining, food, petroleum, construction,

manufacturing, utilities, department stores, retail, and financial.
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Figure 4. Correlations of second-stage residuals.
We estimate the correlations between all pairs of residuals from the second-stage principal component

analysis from specific sectors. The correlations that are higher than 0.15 in absolute value are shown

as black dots. We consider the sectors: mining, food, petroleum, construction, manufacturing,

utilities, department stores, retail, and financial.
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Figure 5. Partial correlations of second-stage residuals.
We estimate the partial correlations between all pairs of residuals from the second-stage LASSO

regression from specific sectors. The correlations that are higher than 0.15 in absolute value are

shown as black dots. We consider the sectors: mining, food, petroleum, construction, manufacturing,

utilities, department stores, retail, and financial.
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Figure 6. Variable Selection Frequency.
We report how often that variables from column sectors are selected in the third-stage LASSO

regression for firms on row sectors . The numbers are normalized by the total number of firms in

each sector.
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(a) AR coefficients.
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Figure 7. Distribution of AR estimates
Panel (a) illustrates the empirical distribution of the ordinary least squares (OLS) estimation of

the coefficients of an fourth-order autoregressive, AR(4), model across the 119 macroeconomic time

series. Panel (b) illustrates the empirical distribution of the absolute sum of the AR(4) coefficients

across the 119 series.
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Figure 8. Estimated number of factors.
The figure illustrates the number of selected factors over the estimation windows. The figure reports

the results for the eigenvalue ratio procedure and the four information criteria discussed in the

paper.
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Appendix A. Additional Simulation Results

Tables 5 and 6 show, respectively, size and power simulations with φ “ 0.5. Table

7 presents additional size results. The table reports the empirical size of the test of

remaining covariance structure. Panels (a)–(c) consider that the number of factors

are determined by information criteria IC2, IC3 and IC4. Factors are estimated

by the usual principal component algorithm. Three nominal significance levels are

considered: 0.01, 0.05, and 0.10.

Appendix B. Proof of the Theorems

Throughout the proofs we use the equivalence }X}ψp ă 8 ðñ Pp|X| ą xq “

Orψ´1
p pxqs, as xÑ 8, for any random variable X and ψp P Ψ (refer to Lemma C.17

below) combined with Lemma 6 in Carvalho et al. (2018) and Lemma 1 in Masini and

Medeiros (2021). The key ingredients of the lemmas are a Marcinkiewicz-Zygmund

type inequality for strong mixing sequences to deal with the polynomial tails (Rio,

1994; Doukhan and Louhichi, 1999) and a Bernstein inequality under strong mixing

conditions to control exponential tails (Merlevède et al. (2009) - Theorem 2).

B.1. Proof of Theorem 1. We first upper bound } pRit ´ Rit}ψ. By subsequent

application of Hölder’s inequality we have

| pRit ´Rit| “ |ppγi ´ γiq
1X it| ď }pγi ´ γi}1}X it}8

“ }pΣ
´1

i pvi}1}X it}8 ď k2
}pΣ

´1

i }max}pvi}8}X it}8,

where pΣi :“X 1
iX i{T and pvi :“X 1

iU i{T . Then, by the Cauchy-Schwartz conjugate

} pRit ´Rit}ψp{4 ď k2
}}pΣ

´1

i }max}ψp}}pvi}8}ψp{2}}X it}8}ψp .

The first term is bounded by Assumption 3(b). For the second term we have:

}Xit`Uit}ψp{2 ď }Xit`}ψp}Uit}ψp ď C2 by Assumption 3(a). Then, tXit`Uitutą0 is a

zero-mean strong mixing sequence with exponential decay (Assumption 3(c)) with

bounded ψp{2-norm. Therefore, }}pvi}8}ψp{2 “ Op1{
?
T q, uniformly in i ď n. The

last term is bounded by the maximal inequality (van der Vaart and Wellner (1996) -

Lemma 2.2.2) and Assumption 3(a). The result follows.

B.2. Proof of Theorem 2. The proof is an adaption of the proof of Theorem 4 and

Corollary 1 in Fan et al. (2013), henceforth FLM, to include the estimation error in

the sample covariance matrix. For part (a), we use expression (A.1) in Bai (2003) to
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Table 5. Simulation Results: Size with φ “ 0.5.

The table reports the empirical size of the test of remaining covariance structure. Panel (a)

reports the case where the factors are known, whereas Panel (b) considers that the factors

are unknown but the number of factors is known. Panels (c) and (d) present the results

when the number of factors are determined, respectively, by the eigenvalue ratio test and

the information criterion IC1. Factors are estimated by the usual principal component

algorithm. Three nominal significance levels are considered: 0.01, 0.05, and 0.10. The

table reports the results for the case where φ “ 0.5 in (5.3).

Panel(a): Known factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.09 0.03 0.01 0.11 0.06 0.01 0.10 0.05 0.01
n “ 1ˆ T 0.07 0.03 0.00 0.07 0.03 0.01 0.11 0.06 0.01
n “ 2ˆ T 0.08 0.02 0.00 0.08 0.03 0.00 0.09 0.05 0.00
n “ 3ˆ T 0.05 0.02 0.00 0.09 0.04 0.01 0.07 0.04 0.01

Panel(b): Known number of factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.24 0.14 0.02 0.15 0.07 0.02 0.12 0.06 0.01
n “ 1ˆ T 0.13 0.07 0.01 0.09 0.04 0.01 0.14 0.06 0.02
n “ 2ˆ T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.05 0.00
n “ 3ˆ T 0.07 0.02 0.00 0.08 0.04 0.01 0.08 0.03 0.01

Panel(c): Information criterion (IC1)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.49 0.42 0.29 0.15 0.07 0.02 0.11 0.06 0.01
n “ 1ˆ T 0.15 0.09 0.02 0.10 0.04 0.01 0.14 0.06 0.01
n “ 2ˆ T 0.09 0.04 0.01 0.09 0.04 0.01 0.09 0.05 0.00
n “ 3ˆ T 0.07 0.03 0.00 0.10 0.04 0.01 0.08 0.03 0.01

Panel(d): Eigenvalue ratio

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.25 0.14 0.04 0.14 0.07 0.02 0.13 0.06 0.01
n “ 1ˆ T 0.15 0.07 0.02 0.10 0.04 0.01 0.13 0.06 0.02
n “ 2ˆ T 0.11 0.05 0.01 0.08 0.05 0.01 0.10 0.05 0.00
n “ 3ˆ T 0.08 0.03 0.01 0.09 0.04 0.01 0.08 0.03 0.01
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Table 6. Simulation Results: Power (φ “ 0.5).

The table reports the empirical power of the test of remaining covariance structure. Panel

(a) reports the case where the factors are known, whereas Panel (b) considers that the

factors are unknown but the number of factors is known. Factors are estimated by the

usual principal component algorithm. Three nominal significance levels are considered:

0.01, 0.05, and 0.10.

Panel(a): Known factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 1 1 1 1 1 1 1 1 1
n “ 1ˆ T 1 1 1 1 1 1 1 1 1
n “ 2ˆ T 1 1 1 1 1 1 1 1 1
n “ 3ˆ T 1 1 1 1 1 1 1 1 1

Panel(b): Known number of factors

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.36 0.18 0.03 1.00 1.00 0.91 1.00 1.00 1.00
n “ 1ˆ T 0.20 0.09 0.02 0.89 0.69 0.13 1.00 0.92 0.39
n “ 2ˆ T 0.18 0.07 0.01 0.98 0.59 0.13 1.00 0.96 0.36
n “ 3ˆ T 0.10 0.03 0.00 0.91 0.66 0.11 1.00 0.92 0.39

Panel(c): Eigenvalue ratio

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.15 0.11 0.03 1.00 1.00 0.96 1.00 1.00 1.00
n “ 1ˆ T 0.22 0.08 0.01 0.99 0.70 0.16 1.00 0.95 0.38
n “ 2ˆ T 0.17 0.07 0.01 0.94 0.62 0.12 0.98 0.88 0.37
n “ 3ˆ T 0.09 0.03 0.00 0.89 0.59 0.11 1.00 0.87 0.40

Panel(d): Information criterion (IC1)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.15 0.11 0.03 1.00 1.00 0.96 1.00 1.00 1.00
n “ 1ˆ T 0.22 0.08 0.01 0.99 0.70 0.16 1.00 0.95 0.38
n “ 2ˆ T 0.17 0.07 0.01 0.94 0.62 0.12 0.98 0.88 0.37
n “ 3ˆ T 0.09 0.03 0.00 0.89 0.59 0.11 1.00 0.87 0.40

obtain the following identity

pf t ´HF t “

ˆ

V

n

˙´1
«

1

T

T
ÿ

s“1

pf s
EpU 1

sU tq

n
`

1

T

T
ÿ

s“1

´

pf s
rζst ` pf srηst `

pf s
rξst

¯

ff

, (B.1)
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Table 7. Simulation Results: Size (Additional Results).

The table reports the empirical size of the test of remaining covariance structure. Panels

(a)–(c) consider that the number of factors are determined by information criteria IC2,

IC3 and IC4. Factors are estimated by the usual principal component algorithm. Three

nominal significance levels are considered: 0.01, 0.05, and 0.10.

Panel(a): Information criterion (IC2)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.25 0.14 0.03 0.14 0.06 0.02 0.11 0.05 0.01
n “ 1ˆ T 0.13 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n “ 2ˆ T 0.10 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n “ 3ˆ T 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

Panel(b): Information criterion (IC3)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.24 0.13 0.03 0.14 0.06 0.02 0.11 0.06 0.01
n “ 1ˆ T 0.13 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n “ 2ˆ T 0.10 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n “ 3ˆ T 0.07 0.03 0.00 0.08 0.04 0.01 0.07 0.03 0.01

Panel(c): Information criterion (IC4)

T “ 100 T “ 500 T “ 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n “ 0.5ˆ T 0.26 0.15 0.04 0.14 0.06 0.02 0.11 0.05 0.01
n “ 1ˆ T 0.14 0.08 0.03 0.09 0.04 0.01 0.12 0.05 0.01
n “ 2ˆ T 0.10 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n “ 3ˆ T 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

where rζst, rηst and rξst are defined before Lemma C.3.

By Assumptions 2(d) and 3(a) and the maximal inequality we have }R}max ď

r}Λ}max}F }max ` }U}max “ OP rψ
´1pnT qs. Applying Lemma C.14 we conclude that

}pΣ ´ rΣ}max “ OP tωrψ
´1pnT q ` ωsu “ OP p1q. Finally, ψ´1pn2q{

?
T “ Op1q also

by assumption. Then, }V
n
}´1 “ OP p1q by Lemma C.6. Using the results (a)-(d) of

Lemma C.5 we can bound in probability each of the terms in brackets of (B.1) in `2

norm, uniformly in t ď T . Result (a) follows.
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For part (b) we use the fact that pΛ :“ pRpF {T and set pF
1
pF “ Ir to write

pλi´Hλi “
1

T

T
ÿ

t“1

HF t
rUit`

1

T

T
ÿ

t“1

pRitppF t´HF tq`H

˜

1

T

T
ÿ

t“1

F tF
1
t ´ Ir

¸

λi. (B.2)

The first term can be upper bounded in `2 norm, uniformly in i ď n, by

?
r}H}max

iďn
max
jďr

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

Fjt rUit

ˇ

ˇ

ˇ

ˇ

ˇ

“ OP p1qOP

”

ψ´1
p{2pnq{

?
T ` ω

ı

,

where the equality follows from Lemma B.6(b) and (e). The `2 norm of the second

term is upper bounded uniformly in i ď n by
˜

max
iďn

1

T

T
ÿ

t“1

pR2
it

1

T

T
ÿ

t“1

}pF t ´HF t}
2

¸1{2

“

"

OP p1qOP

„

1

T
` p1{

?
n` ωq2

*1{2

,

where the first term after the equality follows from Lemma C.6(d) together with

theorem’s assumption and the second term from Lemma C.4(e). Finally, the last

term of (B.2) is upper bounded by

}H}}max
iďn

λi}

›

›

›

›

›

1

T

T
ÿ

t“1

F tF
1
t ´ Ir

›

›

›

›

›

“ OP p1qOp1qOP p1{
?
T q,

where the last term is OP p1{
?
T q by the maximum inequality and Assumption 3.

Plugging the last three displays back into (B.2) yields result (b).

For part (c) we use we have } pU ´ U}max “ }ΛF
1
´ pΛpF

1

` pR ´R}max ď }pΛpF
1

´

ΛF 1}max`}pR´R}max. The last term is OP pωq by assumption. For the first term we

use the decomposition

pλ
1

i
pF t ´ λ

1
iF t “ p

pλi ´Hλiq
1
ppF t ´HF tq ` pHλiq

1
ppF t ´HF tq

` ppλi ´Hλiq
1HF t ` λ

1
ipH

1H ´ IrqF t. (B.3)

Therefore, we can upper bound the left hand side as

|pλ
1

i
pF t ´ λ

1
iF t| ď }

pλi ´Hλi}}pF t ´HF t} ` }Hλi}}pF t ´HF t}

` }pλi ´Hλi}}HF t} ` }λi}}F t}}H
1H ´ Ir}.

Now we bound in probability, uniformly in i ď n and t ď T , each of the four terms

above. The first one is given by part (a) and (b). maxiďn }Hλi} ď }H}maxiďn ||λi} ď

OP p1qr}Λ}max “ OP p1q by Lemma C.6(b) and Assumption 2(d). Thus, the second

term is bounded by part (a). For the third term, maxtďT }HF t} ď }H}maxtďT ||F t} “

OP p1qOP rψ
´1pT qs “ OP rψ

´1pT qs by Lemma C.6(b) and Assumption 2(a). Finally,

}H 1H ´ Ir} “ OP p1{
?
T ` 1{

?
n ` ωq by Lemma C.6(c). Hence, the last term is

OP rψ
´1pT qp1{

?
T ` 1{

?
n` ωqs by Assumptions 2(d) and 3(a).
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B.3. Proof of Theorem 3. We have that Lppθξq`ξ}pθξ}1 ď Lpθq`ξ}θ}1 for all θ P Rn

by definition of pθξ, where Lpθq :“ }puy ´ θ
1
pUx}

2
2{T . Also, since Lpθq is a quadratic

function, it implies that ppθξ´θq
1∇2Lpθqppθξ´θq ď ´∇Lpθq1ppθξ´θq`ξp}θ}1´}pθξ}1q.

By Holder’s inequality we have |∇Lpθq1ppθξ´θq| ď }∇Lpθq}8}pθξ´θ}1. By assumption

ξ ě 2}∇Lpθq}8. Therefore,

ppθξ ´ θq
1∇2Lpθqppθξ ´ θq ď ξ{2}pθξ ´ θ}1 ` ξp}θ}1 ´ }pθξ}1q. (B.4)

For any index set S P rns, by the decomposability of the `1 norm (refer to Definition

1 in Negahban et al. (2012)) followed by the triangle inequality we have } pθξ}1 “

}pθξ,S}1 ` }pθξ,Sc}1 ě }θS}1 ´ }pθξ.S ´ θS}1 ` }pθξ,Sc}1 and }pθξ ´ θ}1 “ }pθξ,S ´ θS}1 `

}pθξ,Sc ´ θSc}1 ď }pθξ,S ´ θS}1 ` }pθξ,Sc ´ θSc}1. Plugging it back in (B.4) yields

2ppθξ ´ θq
1∇2Lpθqppθξ ´ θq ` ξ}pθξ,Sc ´ θSc}1 ď 3ξ}pθξ,S ´ θS}1 ` 4ξ}θSc}1. (B.5)

We then conclude that any minimizer pθξ of (3.6) and θ P Rn obeys pθξ ´ θ P

CpS,θq :“ tx P Rn : }xSc}1 ď 3}xS}1 ` 4}θSc}1u. If we take θ “ θ0 and S “ S0 :“

ti : θ0,i ‰ 0u then pθξ ´ θ0 P C0 :“ CpS0,θ0q. C0 is a cone in Rn that does not

depend on θ0 as }θ0,Sc0} “ 0. Moreover, by definition of the compatibility constant

κ :“ κp pUx
pUx{T,S0, 3q we have that }pθξ,S ´θS}1 ď ppθξ´θq

1∇2Lpθqppθξ´θq
a

|S0|{κ.

Apply this inequality to (B.5) and use the fact that 4ab ă a2 ` 4b2 for non-negative

a, b P R to obtain ppθξ ´θq
1∇2Lpθqppθξ ´θq` ξ}pθξ ´θ}1 ď 4ξ2|S0|{κ. Finally, we have

by assumption that } pU ´U}max ď C1, }U}max ď C2 and C1p2C2 `C1q ď
κ0

32|S| which,

in turn fulfills the assumptions of Lemma C.14 with ζ “ 3 and α “ 1{2. Therefore,

we conclude that κ ě κ0{2 and we have the result.

B.4. Proof of Theorem 4. We use in this proof the following additional notation

for short: For every random vectorX, we denote by ΣX its covariance matrix, dX the

diagonal of ΣX and σ2
X :“ }dX}8. Also, XG denotes zero-mean Gaussian random

vector defined in the same probability space, independent of X and with the same

covariance matrix of X. Finally, for every pair of random vectors X,Y of the same

dimension and scalar s ą 0 define

ρpX,Y q :“ sup
tPR
|Pp}X}8 ď tq ´ Pp}Y }8 ď tq|

∆pX, sq :“ sup
tPR

Ppt ď }X}8 ď t` sq
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Combining equations (83)–(86) in Giessing and Fan (2020) yields

|P rS ď c˚pτqs ´ τ | ď ρprQ, rQGq ` inf
δ1ą0

"

a

δ1
log n

ωmax
` Pp}pΥ´Υ}max ą δ1q

*

` inf
δ2ą0

"

δ2

?
log n

ωmax
` Pp}Q´ rQ}8 ą δ2q

*

(B.6)

where rQ is defined below.

We start by Bounding the first term to the right-hand side of (B.6). We adapt

the classical “big block-small block” which was used in the proof of Theorem E.1 in

Chernozhukov et al. (2018). Consider two sequences of non-negative integers a :“ aT

and b :“ bT such that b ă a, a ` b ď T , minta, bu Ñ 8, a “ opT q and b “ opaq as

T Ñ 8. Let m :“ rT {pa ` bqs and define for j P t1, . . . ,mu consecutive blocks of

size a and b with index set Aj :“ tppj ´ 1qpa ` bq ` 1, . . . , pj ´ 1qpa ` bq ` au and

Bj :“ tpj ´ 1qpa ` bq ` a ` 1, . . . jpa ` bqu. Finally, set C :“ tmpa ` bq ` 1 . . . , T u,

which might be empty. Thus,

Aj :“
1
?
a

ÿ

tPAj

rDt, Bj “
1
?
b

ÿ

tPBj

rDt, and C “
1

a

|C|

ÿ

tPC

rDt,

such that

rQ :“
1
?
T

T
ÿ

t“1

rDt “

c

ma

T

˜

1
?
m

m
ÿ

j“1

Aj

¸

looooooomooooooon

“:V

`

c

mb

T

˜

1
?
m

m
ÿ

j“1

Bj

¸

loooooooomoooooooon

“:L

`

c

T ´mpa` bq

T
C

Let rV :“ 1?
m

řm
j“1

rAj where trAt, 1 ď t ď mu is an independent sequence such

that At and rAt have the same distribution for all 1 ď t ď m. Similarly define
rL :“ 1?

m

řm
j“1

rBj. Lemma C.7 give us for any scalar s ą 0

ρ
´

rQ, rQG

¯

ď ρ
´

rV , rV G

¯

` ρ

ˆ
c

ma

T
rV G, rQG

˙

`∆

ˆ
c

ma

T
rV G, s

˙

` P

˜

c

mb

T
}rL}8 ą s

¸

` ρ
´

V , rV
¯

` ρ
´

L, rL
¯

. (B.7)

Notice that any measurable A Ď R2 we have |PrpA1,A2q P As ´ PrrA1, rA2, s| ď αb

where tαn, n P Nu denote the α-mixing coefficient of the sequence p rDtq which is the

same of the sequence pU tq. Then, the last two terms in (B.7) can be upper bounded

by pm´ 1qαb and pm´ 1qαa respectively by induction. Since αn is non-increasing in

n and a ě b we have that

ρ
´

V , rV
¯

` ρ
´

L, rL
¯

ď 2pm´ 1qαb ď 2T expp´2cbq. (B.8)
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where we use Assumption 3(c) to obtain the last inequality.

For the fourth term we have by the maximal and Markov’s inequalities that

P

˜

c

mb

T
}rL}8 ą s

¸

ď

#

ψ

«

s
?
T

Cψψ
´1
p{2pnq

?
mb

ff+´1

.

By the anti-concentration inequality for Gaussian random vectors (Theorem 7 in

Giessing and Fan (2020) with p “ 8) we have that

∆

ˆ
c

ma

T
rV G, s

˙

À
Ts
?
log n

maσ
rV

.

Set s “
Cψψ

´1
p{2
pnq
?
mb

?
T

ψ´1
p{2pT

γq for some γ ą 0 then

∆

ˆ
c

ma

T
rV G, s

˙

` P

˜

c

mb

T
}rL}8 ą s

¸

À
T

ma

c

mb

T

?
log nψ´1

p{2pnqψ
´1
p{2pT

γq

σ
rV

`
1

T γ
.

(B.9)

For the second term we have from Rio (2013) that, for every ε ą 0,

|rM `sij| “ |Covp rDit, rDj,t´`q| ď 2α
ε{p2`εq
` } rDit}2`ε} rDjt´`}2`ε.

Hence, from Assumption 3 we have that }M `}max À expp´2c ε
2`ε

`q and
›

›

›

ma

T
Σ

rV G
´Σ

rQG

›

›

›

max
ď

´

1´
ma

T

¯

}Σ
rV }max ` }Σ rQ ´Σ

rV }max

ď

ˆ

b

a` b
`
a

T

˙

}Σ
rV }max `

1

a

ÿ

|`|ăa

|`|}M `}max `
ÿ

aď|`|ăT

}M `}max

À
b

a
`
a

T
`

1

a
` T exp

ˆ

´2c
ε

2` ε
a

˙

,

where we use the fact that Σ
rV G

“ Σ
rV “ Σ

rAj
“ ΣAj

“
ř

|`|ăap1 ´ |`|{aqM `,

Σ
rQG

“ Σ
rQ “

ř

|`|ăT p1 ´ |`|{T qM `,
ř

|`|ăa |`|}M `}max ď c for some c ă 8 and
ř

aď|`|ăT }M `}max À T expp´2c ε
2`ε

aq. Finally, we can bound the second term using

Theorem 8 in Giessing and Fan (2020). In particular, for p “ 8 it implies that

ρ

ˆ
c

ma

T
rV G, rQG

˙

À

log n
b

}ma
T

Σ
rV G
´Σ

rQG
}max

a

ma
T
σ
rV _ σ rQ

À

b

T
ma

log n
b

b
a
` a

T
` 1

a
` T expp´ 2cε

2`ε
aq

σ
rV _ σ rQ

.

For the first term we have that } rDit}ψp{2 is uniformly (upper) bounded by Assump-

tion 3(a). Then, so is } rAit}ψp{2 “ }Ait}ψp{2 “ }
1?
a

ř

sPAt
rDis}ψp{2 . Also pEpmaxi | rAit|q

3q1{3 À

}maxi | rAit|}ψp{2 À ψ´1
p{2pnqmaxi } rAit}ψp{2 À ψ´1

p{2pnq. Since t rAt, 1 ď t ď mu is an iid
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sequence of random vectors, Theorem 5 in Giessing and Fan (2020) implies

ρp rV , rV Gq À
plog nq7{6ψ´1

p{2pnq

T 1{6σ
rV

. (B.10)

By the triangle inequality we have that σ2
rV
ě σ2

rQ
´ }d

rQ ´ d
rV }max ě c ´ }Σ

rQ ´

Σ
rV }max Á c ´ 1

a
´ T expp´2c ε

2`ε
aq. By setting a “ r

?
T s, we conclude that σ2

rV
is

eventually bounded away from zero for large enough T . If we further set b “ rlog T {cs

and γ “ 1{4 and apply (B.8)-(B.10) to bound the right-hand side of (B.6), we obtain

ρ
´

rQ, rQG

¯

“ O

«

plog nq7{6ψ´1
p{2pnq

T 1{6
`

?
log T log nψ´1

p{2pnqψ
´1
p{2pT

1{4q

T 1{4

ff

.

Finally, we bound the last two terms appearing in (B.6). Let γ1 and γ2 be positive

sequences depending on n and T such that }pΥ ´Υ}max “ OP pγ1q and }Q ´ rQ}8 “

OP pγ2q. Suppose we can state conditions under which

log3 npγ1 _ γ2q “ op1q T, nÑ 8. (B.11)

Then, the last two terms vanish in probability if we set δ1 “ γ1 log n and δ2 “ γ2 log n

in (B.6). Lemmas C.8 and C.10 give us expressions for γ1 and γ2, respectively, which

combined with the rate assumptions in the theorem implies (B.11).

Appendix C. Additional Lemmas

Lemma C.1. Let aj and bj denote the j-th eigenvalue in decreasing order of Σ and

ΛΛ1 respectively. Then, under Assumption 2(b) and pcq: (a) bj — n for 1 ď j ď r;

(b) maxjďn |aj ´ bj| “ Op1q; and (c) aj — n for 1 ď j ď r.

Proof. Result paq follows from the fact that the r eigenvalues of Λ1Λ are also (the only

r non-zero) eigenvalues of ΛΛ1 and Assumption 2(b). Part pbq follows from Weyl’s

inequality that implies maxjďn |aj ´ bj| ď }Σ´ΛΛ1
} “ Op1q, where the last equality

follows from Assumption 2(c). Finally, result pcq follows from part paq and pbq and

the (reverse) triangle inequality. �

Recall that Σ is the pn ˆ nq covariance matrix of U t “ Zt ´ ΓW t. Let rΣ :“
1
T

řT
t“1U tU

1
t and pΣ the same as rΣ but with Γ replaced by the estimator pΓ. Let paj

denote the j-th eigenvalue in decreasing order of pΣ.

Lemma C.2. Let ω1 be a non-negative sequence of n and T such that }pΣ´ rΣ}max “

OP pω1q. Then, under the Assumptions 2 and 3: (a) }pΣ´Σ}max “ OP rω1`ψ
´1
p{2pn

2q{
?
T s;
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(b) maxjďn |paj ´ aj| “ OP rnpω1 ` ψ
´1
p{2pn

2q{
?
T qs; and (c) paj —P n for j ď r provided

that ω1 ` ψ
´1
p{2pn

2q{
?
T “ OP p1q.

Proof. Part (a) follows by the triangle and maximal inequalities, since }pΣ´Σ}max ď

}pΣ´ rΣ}max`}rΣ´Σ}max “ OP pω1q`OP

”

ψ´1
p{2pn

2q{
?
T
ı

. Part (b) follows from Weyl’s

inequality, the fact that }pΣ´Σ} ď n}pΣ´Σ}max and part paq. Part pcq follows from

the triangle inequality combined with part pbq and Lemma C.1(c). �

The Lemmas C.3-C.6 below are an adaption of Lemmas 8–10 in Fan et al. (2013),

henceforth FLM, to include the estimation error in the sample covariance matrix. To

avoid confusion and make it easier for the reader to follow through the changes we

use the same notation adopted in FLM. In particular, if δit denotes the pi, tq element

of ∆ :“ pR ´ R then rUit “ Uit ` δit for i P rns and t P rT s. We consider that

}∆}max “ OP pωq for some non-negative sequence ω depending on n and T .

Define:

rζst :“
rU
1

s
rU t

n
´

EpU 1
sU tq

n
“

ˆ

U 1
sU t

n
´

EpU 1
sU tq

n

˙

`

ˆ

U 1
sδt
n

`
δ1sU t

n
`
δ1sδt
n

˙

“: ζst ` ζ
˚
st

rηst :“
f 1s

řn
i“1 λi

rUit
n

“
f 1s

řn
i“1 λiUit
n

`
f 1s

řn
i“1 λiδit
n

“: ηst ` η
˚
st

rξst :“
F 1t

řn
i“1 λi

rUis
n

“
F 1t

řn
i“1 λiUis
n

`
F 1t

řn
i“1 λiδis
n

“ ξst ` ξ
˚
st.

Lemma C.3. Under Assumption 3: (a) ζst “ OP p1{
?
nq; (b) ηst “ OP p1{

?
nq; (c)

ξst “ OP p1{
?
nq; (d) ζ˚st “ OP pω ` ω2q and maxs,tďT ζ

˚
st “ OP rψ

´1pnT qω ` ω2s; (e)

η˚st “ OP pωq; and (f) ξ˚st “ OP pωq.

Proof. Parts paq ´ ´pcq are straightforward. For (d) we have that 1
n
U 1
sU t “ OP p1q

and 1
n
δ1sδt ď }∆}2max “ OP pω

2q. Then, the other two terms in parentheses in the

definition of ζ˚st are OP pωq by the Cauchy-Schwartz inequality. Part peq and pfq

follows by similar arguments. Therefore,

max
tďT

1

T

T
ÿ

s“1

ˆ

1

n
δ1sU t

˙2

“ max
tďT

1

n2
U 1
t

˜

1

T

T
ÿ

s“1

δsδ
1
s

¸

U t ď }∆}
2
max

ˆ

max
tďT

}U t}1{n

˙2

and

ζ˚st ď }U s}8}δt}8 ` }U t}8}δs}8 ` }δt}8}δs}8 ď 2}U}max}∆}max ` }∆}
2
max.

�
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Lemma C.4. Under Assumption 3: (a) 1
T

řT
t“1

”

1
nT

řT
s“1

pfjsEpU 1
sU tq

ı2

“ OP p1{T q;

(b) 1
T

řT
t“1

”

1
T

řT
s“1

pfjsrζst

ı2

“ OP

”

p1{
?
n` ω ` ω2q

2
ı

; (c) 1
T

řT
t“1

”

1
T

řT
s“1

pfjsrηst

ı2

“

OP

”

p1{
?
n` ωq

2
ı

; (d) 1
T

řT
t“1

”

1
T

řT
s“1

pfjsξst

ı2

“ OP

”

p1{
?
n` ωq

2
ı

; and finally, (e)

1
T

řT
t“1

›

›

›

pf t ´Hf t

›

›

›

2

“ OP r1{T ` p1{
?
n` ω ` ω2q2s.

Proof. Part (a) is unaltered by the presence of a pre-estimation, so it follows directly

from Lemma 8(a) in FLM. For part (b), we have that for s, l P rns and j P rrs by

Cauchy-Schwartz inequality

1

T

T
ÿ

t“1

«

1

T

T
ÿ

s“1

pfjsrζst

ff2

ď

»

–

1

T 2

T
ÿ

s,l“1

˜

1

T

T
ÿ

t“1

rζstrζlt

¸2
fi

fl

1{2

.

Since rζst “ ζst ` ζ˚st “ OP p1{
?
n ` ω ` ω2q by Lemma C.3, the term in parentheses

is OP rp1{
?
n` ω ` ω2q2s. Result pbq follows. For (c), by the triangle inequality and

Lemma 8(c) in FLM, we have that }
řn
i“1 λjiruit} ď }

řn
i“1 λjiUit} ` }

řn
i“1 λjiδit} “

OP p
?
nq `OP pnωq. Then, we conclude

1

T

T
ÿ

t“1

r
1

T

T
ÿ

s“1

pf srηsts
2
ď

1

Tn2

T
ÿ

t“1

}

n
ÿ

i“1

U itλi}
2
“ OP p1{n` ω{

?
n` ω2

q.

The proof of part (d) is analogous to (c) and is omitted. For (e), let rpf t ´Hf tsj

denote the j-th entry of pf t´Hf t. Since V {n is bounded away from zero by Lemma

C.2(c), the fact that pa` b` c` dq2 ď 4pa2 ` b2 ` c2 ` d2q and using (B.1), we have

that maxjďr T
´1

ř

tr
pf t ´Hf tsj is upper bounded by some constant C ă 8 times

$

&

%

max
jďr

1

T

T
ÿ

t“1

«

1

T

T
ÿ

s“1

pfjs
EpU 1

sU tq

n

ff2

`max
jďr

1

T

T
ÿ

t“1

˜

1

T

T
ÿ

s“1

pfjsrζst

¸2

`max
jďr

1

T

T
ÿ

t“1

˜

1

T

T
ÿ

s“1

pfjsrηst

¸2

`max
jďr

1

T

T
ÿ

t“1

˜

1

T

T
ÿ

s“1

pfjsrξst

¸2
,

.

-

.

The result follows by applying the bounds from (a)–(d) to each of the terms above.

�

Lemma C.5. Under Assumption 2: (a) maxtďT }
1
nT

řT
s“1

pf sEpU 1
sU tq} “ OP p1{

?
T q;

(b) maxtďT }
1
T

řT
s“1

pf s
rζst} “ OP

”
b

ψ´1
p{2pT q{n` ψ

´1pnT qω ` ω2
ı

; (c) maxtďT }
1
T

řT
s“1

pf srηst} “

OP rψ
´1pT q{

?
n` ωs; and (d) maxtďT }

1
T

řT
s“1

pf sξst} “ OP rψ
´1pT qp1{

?
n` ωqs.
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Proof. Part (a) is unaltered by pre-estimation, so it follows directly from Lemma 9(a)

in FLM. For part (b), from the Cauchy-Schwartz inequality we have

max
tďT

›

›

›

›

›

1

T

T
ÿ

s“1

pf s
rζst

›

›

›

›

›

ď

˜

1

T

T
ÿ

s“1

}pf s}
2 max
tďT

1

T

T
ÿ

s“1

rζ2
st

¸1{2

.

The first summation inside the parentheses equal r due to the normalization. For the

second summation, by the triangle inequality, we have maxtďT
1
T

řT
s“1

rζ2
st ď maxtďT

1
T

řT
s“1 ζ

2
st`

2maxtďT
1
T

řT
s“1 ζstζ

˚
st`maxtďT

1
T

řT
s“1 ζ

˚
st

2. For the first term, the maximum inequal-

ity followed by Assumption 2(e) yields

max
tďT

1

T

T
ÿ

s“1

ζ2
st “ OP

„

ψ´1
p{2pT qmax

s,t
}ζ2
}ψp{2



“ OP

„

ψ´1
p{2pT qmax

s,t
}ζ}2ψ



“ OP

«

ψ´1
p{2pT q

n

ff

.

The last one is OP rpψ
´1pnT qw ` ω2q2s by Lemma C.3(d). Then, by Cauchy Schwartz

we have that maxtďT
1
T

řT
s“1

rζ2
st “ OP

”

p

b

ψ´1
p{2pT q{n` ψ

´1pnT qw ` ω2q2
ı

and result

(b) follows.

For (c), by the triangle inequality we have that maxtďT }
1
n

řn
i“1 λi

rUit} ď maxtďT }
1
n

řn
i“1 λiUit}`

maxtďT }
1
n

řn
i“1 λiδit}. For the first term, the maximum inequality followed by As-

sumption 2(f) yields

max
tďT

›

›

›

›

1

n
Λ1U t

›

›

›

›

“ OP

„

ψ´1pT q
?
n

max
t

›

›

›

›

1
?
n

Λ1U t

›

›

›

›



“ OP

“

ψ´1
pT q{

?
n
‰

.

The second term is upper bounded by r}Λ}max}∆}max “ OP pωq by Assumption 2(d).

We obtain the result since

max
tďT

›

›

›

›

›

1

T

T
ÿ

s“1

pf srηst

›

›

›

›

›

ď

›

›

›

›

›

1

T

T
ÿ

s“1

pf sf
1
s

›

›

›

›

›

max
tďT

›

›

›

›

›

1

n

n
ÿ

i“1

λi rUit

›

›

›

›

›

“ OP

„

ψ´1pT q
?
n

` ω



. (C.1)

By the triangle inequality, } 1
nT

ř

s

ř

i λi
rUispf s} ď }

1
nT

ř

s

ř

i λiUis
pf s}`}

1
nT

ř

s

ř

i λiδis
pfis}.

Lemma 9(d) of FLM shows that the first term is OP p1{
?
nq. For the second term, for

each j P rrs:
›

›

›

›

›

1

nT

ÿ

s

ÿ

i

λiδis pfjs

›

›

›

›

›

2

ď

¨

˝

1

T

n
ÿ

s“1

›

›

›

›

›

1

n

n
ÿ

i“1

λiδis

›

›

›

›

›

2

pfjs

˛

‚

˜

1

T

n
ÿ

s“1

pf 2
js

¸

“ OP pω
2
q.

Thus, } 1
nT

ř

s

ř

i λi
rUitpf s} “ OP p1{

?
n` ωq and by Cauchy-Schwartz inequality:

max
tďT

›

›

›

›

›

1

T

T
ÿ

s“1

pf sξst

›

›

›

›

›

ď max
tďT

}F t}

›

›

›

›

›

1

nT

ÿ

s

ÿ

i

λi rUitpf s

›

›

›

›

›

“ OP

“

ψ´1
pT qp1{

?
n` ωq

‰

.

(C.2)

�
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Lemma C.6. Let ω1`ψ
´1pn2q{

?
T “ Op1q where ω1 is defined in Lemma C.2. Then,

under Assumption 3 we have: (a) }V ´1
} “ OP p1{nq; (b) }H} “ OP p1q; (c) }H 1H ´

Ir}F “ OP p1{
?
T`1{

?
n`ωq; (d) maxiďn

1
T

řT
t“1

pR2
it “ OP

”

wpψ´1pnT q ` ωq ` ψ´1
p{2pnq{

?
T ` 1

ı

;

and (e) maxiďnmaxjďr
1
T

řT
t“1 Fjt

rUit “ OP

”

ψ´1
p{2pnq{

?
T ` ω

ı

.

Proof. We have that V ´1
“ diag p1{pa1, . . . , 1{parq and 1{paj —P 1{n for j ď r by

Lemma C.2(c). The result (a) then follows. The normalization tell us }pF } “
?
T ,

Lemma 11(a) in FLM give us }F } “ OP p
?
T q, }Λ1Λ} “ ra1 — n by Lemma C.1(a) and

from part (b) we have }V ´1
} “ OP p1{nq. Result (b) then follows since by definition

H :“ T´1V ´1
pF
1

FΛ1Λ. For (c) we have by the triangle inequality

}H 1H ´ Ir}F ď }H
1H ´H 1F 1F {TH}F ` }H

1F 1F {TH ´ Ir}F

For the first term we have

}H 1
pIr ´ F

1F {T qH}F ď }H}
2
}Ir ´ F

1F {T }F “ OP p1qOP p1{
?
T q.

The second term is equal to }H 1F 1F {TH ´ pF
1
pF {T }F .

For (d) we have

max
iďn

1

T

T
ÿ

t“1

pR2
it ď max

iďn

1

T

T
ÿ

t“1

p pR2
it ´R

2
itq `max

iďn

1

T

T
ÿ

t“1

R2
it ´ EpR2

itq `max
iďn

1

T

T
ÿ

t“1

EpR2
itq

ď max
i,t
| pR2

it ´R
2
it| `max

iďn

1

T

T
ÿ

t“1

R2
it ´ EpR2

itq `max
i,t

EpR2
itq.

The last term is Op1q by Assumption 3(a), the middle term OP pψ
´1
p{2pnq{

?
T q. The

first term is no larger then }∆}maxp2}R}max ` }∆}maxq “ OP pωpψ
´1pnT q ` ωqq. The

result (d) then follows.

For (e) we have for each j ď r:
ˇ

ˇ

ˇ

ˇ

ˇ

T´1
ÿ

t

Fjt rUit

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

T´1
ÿ

t

FjtUit

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

T´1
ÿ

t

Fjtδit

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

T´1
ÿ

t

FjtUit

ˇ

ˇ

ˇ

ˇ

ˇ

`

˜

T´1
ÿ

t

F 2
jtT

´1
ÿ

t

δ2
it

¸1{2

The first term is OP

”

ψ´1
p{2pnq{

?
T
ı

by the maximum inequality and Assumption 3

and the second is OP pωq. �
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Lemma C.7. For every s ą 0:

ρppS,Zq ď ρp

´

rT , rZ
¯

`∆p

ˆ
c

mq

n
rZ, s

˙

` ρp

ˆ
c

mq

n
rZ,Z

˙

` P
ˆ
c

mr

n
}rU}p ą s

˙

` ρp

´

T, rT
¯

` ρp

´

U, rU
¯

.

Proof. We start by showing that for every pair of random variables X and Y defined

in the same probability space taking values in the normed space pS, } ¨ }q and pair of

non-negative reals t, s, we have

Pp}X} ď t´sq´Pp}Y } ą sq ď Pp}X`Y } ď tq ď Pp}X} ď t`sq`Pp}Y } ą sq. (C.3)

Indeed, for the right hand side inequality we use }X`Y } “ }X´p´Y q} ě }X}´}Y }.

Hence, for any t, s ą 0:

Pp}X ` Y } ď tq ď Pp}X} ď t` }Y }q ď Pp}X} ď t` }Y }, }Y } ď sq ` Pp}Y } ą sq

ď Pp}X} ď t` sq ` Pp}Y } ą sq.

For the other side we use }X ` Y } ď }X} ` }Y } to write

Pp}X `Y } ď tq ě Pp}X} ď t´}Y }q ě Pp}X} ď t´}Y }q`Pp}Y } ą sq´Pp}Y } ą sq.

Now replace X and Y by
a

mq
n
T and

a

mr
n
U in (C.3), respectively and set } ¨ } “

} ¨ }p. The right hand side of the resulting expression can be upper bounded by

Pp
a

mq
n
}rT }p ď t`sq`Pp

a

mr
n
}rU} ą sq`ρppT, rT q`ρppU, rUq, whereas the left hand side

can be lower bounded by Pp
a

mq
n
}rT } ď t´sq´Pp

a

mq
r
}rU} ą sq´ρppT, rT q´ρppU, rUq.

Therefore,

P
ˆ
c

mq

n
}rT }p ď t´ s

˙

´ P
ˆ
c

mr

n
}rU}p ą s

˙

´ ρp

´

T, rT
¯

´ ρp

´

U, rU
¯

ď P p}S}p ď tq ď P
ˆ
c

mq

n
}rT }p ď t` s

˙

` P
ˆ
c

mr

n
}rU}p ą s

˙

` ρp

´

T, rT
¯

` ρp

´

U, rU
¯

.

Then, for the right-hand side,

P
ˆ
c

mq

n
}rT }p ď t` s

˙

ď P
ˆ
c

mq

n
} rZ}p ď t` s

˙

` ρp

´

rT , rZ
¯

ď P
ˆ
c

mq

n
} rZ}p ď t

˙

`∆p

ˆ
c

mq

n
rZ, s

˙

` ρp

´

rT , rZ
¯

ď P p}Z}p ď tq ` ρp

ˆ
c

mq

n
rZ,Z

˙

`∆p

ˆ
c

mq

n
rZ, s

˙

` ρp

´

rT , rZ
¯

.

Similarly for the left-hand side and the proof is completed. �
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By the triangle inequality }pΥ ´ Υ}max ď }pΥ ´ rΥ}max ` }rΥ ´ Υ}max where rΥ is

the sample covariance matrix of rDt :“ U1tU´1t. The second term is Opψ´1
p{4pn

2q{
?
T q

while for the first }pΥ ´ rΥ}max ď }D ´ rD}maxp2} rD}max ` }D ´ rD}maxq. The first

term in parentheses is O rψ´1
˚ pnT qs and the second can be upper bounded by } pU ´

U}maxp2}U}max`} pU ´U}maxq which is shown to be OP rηpn, T qψ
´1pnT qs in the proof

of Lemma C.16. Therefore, we conclude that

}pΥ´Υ}max “ OP

´

ηpn, T qψ´1
pnT qψ´1

p{2pnT q ` ψ
´1
p{4pn

2
q{
?
T
¯

.

To leverage on the results of Gaussian approximation, in particular on the work of

Giessing and Fan (2020) we would like to establish some sort of asymptotic linearity

namely

QT “
1
?
T

T
ÿ

t“1

Dt “
1
?
T

T
ÿ

t“1

rDt `RT “: rQT `RT . (C.4)

such that }Rt}8 vanishes in probability at an appropriate rate as n, T Ñ 8. Then

we can approximate the distribution of S “ }Q}8 by the distribution of rS :“ }rQ}p,

which in turn can be approximated by the distribution of S˚ :“ }Q˚}8 with high

probability.

For some ε ą 0 we might set

δ1 “ hrηpn, T qpψ´1
pnT qq3 ` ψ´1

p{4pn
2
q{
?
T s

δ2 “ η1´ε
rψ´1

pnq `
?
Tηs

Lemma C.8. }pΥ´Υ}max “ OP

´

hrηpψ´1
p pnT qq

3 ` ψ´1
p{4pn

4q{
?
T s
¯

Proof. Let i :“ pi1, i2, i3, i4q be a multi-index where i1, i2, i3, i4 P rns. Define for i and

|`| ă T :

rγ`i :“
1

T

T
ÿ

t“|`|`1

Ui1,tUi2,tUi3,t´|`|Ui4,t´|`|; γ`i :“ Erγi,

and pγ`i as rγ`i with U ’s replaced by pU ’s. Also define

rυi :“
ÿ

|`|ăT

kp`{hqrγ`i υi :“
ÿ

|`|ăT

γ`i ,

and pυi as rυi with U ’s replaced by pU ’s. Then we write

rυi ´ υi “
ÿ

|`|ăT

kp`{hqprγ`i ´ γ
`
iq `

ÿ

|`|ăT

pkp`{hq ´ 1qγ`i . (C.5)
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Since }rγ`i ´ γ`i}ψp{4 “ Op
a

T ´ |`|{T q “ Op1{
?
T q, the ψp{4-Orlicz norm of the first

term is bounded by

h
ÿ

|`|ăT

|h´1kp`{hq|}rγ`i ´ γ
`
i}ψp{4 “ O

ˆ

h
?
T

ż

|kpuq|du

˙

“ Oph{
?
T q,

whereas the second term is deterministic and is shown to be Oph{
?
T q by Andrews

(1991). Thus }rυi ´ υi}ψp{4 “ Oph{
?
T q uniformly in i P rns4. Thus, by the maximal

inequality followed by Markov’s inequality we conclude that

max
i
|rυi ´ υi| “ OP pψ

´1
p{4pn

4
qmax

i
}rυi ´ υi}ψp{4q “ OP rψ

´1
p{4pn

4
qh{
?
T s. (C.6)

We now use the fact that for any x,y P Rq we have |
śq

i“1 xi ´
śq

i“1 yi| “

Op
řq´1
i“0 }x´ y}

n´i
8 }y}i8q combined with the fact that } pU ´U}max “ op1q to obtain

max
i,`
|pγ`i ´ rγ`i | ď max

i,t,`
|pUi1,t pUi2,t pUi3,t´|`|

pUi4,t´|`| ´ Ui1,tUi2,tUi3,t´|`|Ui4,t´|`||

“ Op} pU ´U}max}U}
3
maxq

“ OP rηrψ
´1
p pnT qs

3
s

Therefore we conclude

max
i
|pυi´rυi| ď max

i,`
|pγ`i´rγ

`
i |

ÿ

|`|ăT

|kp`{hq| “ OP

ˆ

hηrψ´1
p pnT qs

3

ż

|kpuq|du

˙

“ OP phηrψ
´1
p pnT qs

3
q.

(C.7)

The result then follows from the triangle inequality }pΥ´Υ}max ď maxi |pυi ´ rυi| `

maxi |rυi ´ υi|, expression (C.10) and (C.11). �

Lemma C.9. If }δit}ψp ď C ă 8 where δit :“ pRit ´Rit then

}}pV {nqpF t ´HF tq}2}ψp “ Op
1
?
T
`
ψ´1
p{2pT q
?
n

` ψ´1
p{2pT qCq.

Proof. In this proof we use the fact that for any (possibly random) Ast, by Cauchy-

Schwartz inequality and the normalization pF pF {T “ Ir, we have } 1
T

řT
s“1

pF sAst} ď
?
r
´

1
T

řT
s“1A

2
st

¯1{2

. Thus

gpAstq :“

›

›

›

›

›

}
1

T

T
ÿ

s“1

pF sAst}

›

›

›

›

›

ψ

“ O

»

–

›

›

›

›

›

›

˜

1

T

T
ÿ

s“1

A2
st

¸1{2
›

›

›

›

›

›

ψ

fi

fl .

(a) Set Ast “ EpU 1
sU tq{n, then gpAstq “ Op1{

?
T q.

(b) Set Ast “ rζst :“ pU 1
sU t ´ EpU 1

sU tqq{n, then by maximal inequality gpAstq “

Op}maxsďT |rζst|}ψq “ Opψ´1pT qmaxsďT }rζst}ψq. By the triangle inequality
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}rζst}ψ ď }ζst}ψ ` }ζ
˚
st}ψ. The first term is Op1{

?
nq by Assumption 3(d).

The second can be upper bounded by }U 1
sδt{n}ψ ` }δ

1
sU t{n}ψ ` }δ

1
sδt{n}ψ “

Op}Uis}ψp{2}δit}ψp{2q`Op}δit}
2
ψp{2
q. Thus gpAstq “ Opψ´1pT qp1{

?
n`C`C2qq.

(c) Set Ast “ rηst :“ F 1s
řn
i“1 λipUit` δitq{n, then apply Cauchy-Schwartz twice to

obtain

gpAstq “ Op}p
1

T

T
ÿ

s“1

}F s}
2
q
1{2
}ψp{2}

n
ÿ

i“1

λi
Uit ` δit

n
}ψp{2q “ Op1qOp}

n
ÿ

i“1

λi
Uit
n
}ψp{2`}

n
ÿ

i“1

λi
δit
n
}ψp{2q.

The first term in square brackets is Op1{
?
nq by Assumption 2(d) and 3(e);

the second is OpCq. Hence gpAstq “ Op 1?
n
` Cq.

(d) Set Ast “ rξst :“ F 1t
řn
i“1 λipUis ` δisq{n, then apply Cauchy-Schwartz twice

followed by the maximal inequality to obtain

gpAstq “ Op}}F t}}ψp{2}p
1

T

T
ÿ

s“1

}

n
ÿ

i“1

λi
Uis ` δis

n
}

2
q
1{2
}ψp{2qq

“ Op1qOpψ´1
pT qr}

n
ÿ

i“1

λi
Uis
n
}ψp{2 ` }p

n
ÿ

i“1

λi
δis
n
}ψp{2sq.

The first term in square brackets is Op1{
?
nq by Assumption 2(d) and 3(e);

the second is OpCq. Hence gpAstq “ Opψ´1
p{2pT qr

1?
n
` Csq.

Finally, use the identity (B.1), the triangle inequality twice and the bounds paq ´ pdq

to obtain the result. �

Lemma C.10. If maxi,t }δit}ψ “ OpCq and } pU ´U}max “ OP pηq then
›

›

›

›

1
?
T
p pU pU

1

´UU 1
q

›

›

›

›

max

“ OP

ˆ

?
Tη2

`
r1
?
T
`

r2
?
n
` r3C

˙

where

r1 :“ ψ´1
p pnqψ

´1
p{2pnqψ

´1
p{2pn

2
q

r2 :“ ψ´1
p pnqψ

´1
p{4pT q ` ψ

´1
p{2pnq

r3 :“ ψ´1
p pnqψ

´1
p{4pT q ` ψ

´1
p pnT qψ

´1
p{2pnq.

Proof. By the triangle inequality we have
›

›

›

›

1
?
T
p pU pU

1

´UU 1
q

›

›

›

›

max

ď

›

›

›

›

1
?
T
p pU ´Uqp pU ´Uq1

›

›

›

›

max

` 2

›

›

›

›

1
?
T
Up pU ´Uq1

›

›

›

›

max

.

For the first term we have
›

›

›

›

1
?
T
p pU ´Uqp pU ´Uq1

›

›

›

›

max

ď
?
T } pU ´U}2max “ OP p

?
Tη2

q.
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For the second term we use decomposition (B.3) to write

1
?
T

T
ÿ

t“1

UitppUjt ´ Ujtq “
1
?
T

T
ÿ

t“1

Uitppλ
1

j
pF t ´ λ

1
jF t ` pRjt ´Rjtq

“

”

ppλj ´Hλjq `Hλj

ı1 1
?
T

T
ÿ

t“1

UitppF t ´HF tq

`

”

ppλj ´Hλjq ` pH
1H ´ Irqλj

ı1 1
?
T

T
ÿ

t“1

UitF t ` ppγj ´ γjq
1 1
?
T

T
ÿ

t“1

UitW jt

Apply Cauchy-Schwartz inequality in each term followed by the triangle inequality

we obtain
›

›

›

›

1
?
T
Up pU ´Uq1

›

›

›

›

max

ď

„

max
jďn

}pλj ´Hλj} `
?
r}H}}Λ}max



max
iďn

›

›

›

›

›

1
?
T

T
ÿ

t“1

UitppF t ´HF tq

›

›

›

›

›

`

„

max
jďn

}pλj ´Hλj} `
?
r}H 1H ´ Ir}}Λ}max



max
iďn

›

›

›

›

›

1
?
T

T
ÿ

t“1

UitF t

›

›

›

›

›

`max
jďn

}pγj ´ γj}max
i,jďn

›

›

›

›

›

1
?
T

T
ÿ

t“1

UitW jt

›

›

›

›

›

.

The first term is OP p1qOP pψ
´1pnqr 1?

T
`

ψ´1
p{2
pT q

?
n
` ψ´1

p{2pT qCsq due to Lemma C.6(a),

Lemma C.9 and the maximal inequality; the second term isOP p
ψ´1
p{2
pnq

?
T
` 1?

n
`ψ´1pnT qCqOP pψ

´1
p{2pnqq

since, by the maximal inequality, we might take ω “ ψ´1pnT qC in Theorem 2(b).

The last term is OP pψ
´1pnqψ´1

p{2pnq{
?
T qOP pψ

´1
p{2pn

2qq. Thus,
›

›

›

1?
T
Up pU ´Uq1

›

›

›

max
“

OP pr4q where

r4 :“
ψ´1
p pnqψ

´1
p{2pnqψ

´1
p{2pn

2q
?
T

`
ψ´1
p pnqψ

´1
p{4pT q ` ψ

´1
p{2pnq

?
n

`pψ´1
p pnqψ

´1
p{4pT q`ψ

´1
p pnT qψ

´1
p{2pnqqC.

(C.8)

The result then follows.

�

Lemma C.11. Let } pU´U} “ OP pηq then maxi,j,t |pVij,t´Vij,t| “ OP ps0rη`ξψ
´1pnqsq.

Proof. By the triangle inequality we have

|pVij,t ´ Vij,t| ď |pUi,t ´ Ui,t| ` |pθ
1

i
pU´ij,t ´ θ

1
iU´ij,t|.
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Using Hölder’s inequality, the second term can be further bounded as

|pθ
1

i
pU´ij,t ´ θ

1
iU´ij,t| ď |

pθ
1

ip
pU´ij,t ´U´ij,tq| ` |p

pθi ´ θiq
1U´ij,t|

ď }pθi}1} pU´ij,t ´U´ij,t}8 ` }
pθi ´ θi}1}U´ij,t}8

ď p}θi}1 ` }pθi ´ θi}1q} pU´ij,t ´U´ij,t}8 ` }
pθi ´ θi}1}U´ij,t}8.

Combining the last two expressions with the fact that }θi}1 ď s0}θi}8 ď Cs0 and

}pθ1 ´ θ1}1 “ OP pξs0q “ OP p1q by Assumption 3(f) and the the maximum inequality

yields the result �

Lemma C.12. Let } pU ´U} “ OP pηq then

max
i,j
|

1
?
T

T
ÿ

t“1

ppVij,tpVji,t ´ Vij,tVij,tq| “ OP ts
2
0rr4 ` ξψ

´1
pnq `

?
T pη ` ξψ´1

pnqq2su

.

Proof. By the triangle inequality

max
i,j
|

1
?
T
p pV

1

ij
pV ji´V

1
ijV jiq| ď max

i,j
|

1
?
T
p pV ij´V ijqp pV ji´V jiq|`2max

i,j
|

1
?
T
V 1

ijp
pV ij´V ijq|.

The first term can be bounded using Lemma C.11 since

max
i,j
|

1
?
T
p pV ij ´ V ijqp pV ji ´ V jiq| ď

?
T rmax

i,j,t
ppVijt ´ Vijtqs

2
“ OP p

?
T rs0pη ` ξψ

´1
pnqqs2q.

The second term can be upper bounded by

max
i,j
|

1
?
T
V 1

ijp
pU i ´U iq| `max

i,j
}pθij}1 max

i,j
}

1
?
T
V 1

ijp
pU´ij ´U´ijq}8

`max
i,j
}pθij ´ θij}1 max

i,j
|

1
?
T
V 1

ijU´ij|.

Recall the rate r4 appearing in (C.8).Then the first term is OP ps0r4q, the second

OP ps
2
0r4q and the last term is OP pξs

2
0ψ
´1pnqq. Thus maxi,j |

1?
T
V 1

ijp
pV ij ´ V ijq| “

OP rs
2
0pr4 ` ξψ

´1pnqqs. The result then follows.

�

Lemma C.13. }pΥV ´ΥV }max “ OP

ˆ

hrs0rη ` ξψ
´1
p pnqsps0ψ

´1
p pnT qq

3 ` s0

ψ´1
p{4
pn4q

?
T
s

˙

Proof. The proof is similar to the proof of Lemma C.8, refer to it for details. It

suffices to bound in probability } pV ´V }max and }V }max, where V is pn2ˆ T q matrix

whose entries are Vij,t for i, j P rns and t P rT s. Similar for pV with Vij,t replaced pVij,t.

Lemma C.11 bounds the former, for the later we have }V }max ď maxi,j }θij}1}U}max “

Ops0ψ
´1pnT qq.
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Let i :“ pi1, i2, i3, i4q be a multi-index where i1, i2, i3, i4 P rns. Define for i and

|`| ă T :

rγ`i :“
1

T

T
ÿ

t“|`|`1

Ui1,tUi2,tUi3,t´|`|Ui4,t´|`|; γ`i :“ Erγi,

and pγ`i as rγ`i with U ’s replaced by pU ’s. Also define

rυi :“
ÿ

|`|ăT

kp`{hqrγ`i υi :“
ÿ

|`|ăT

γ`i ,

and pυi as rυi with U ’s replaced by pU ’s. Then we write

rυi ´ υi “
ÿ

|`|ăT

kp`{hqprγ`i ´ γ
`
iq `

ÿ

|`|ăT

pkp`{hq ´ 1qγ`i . (C.9)

Since }rγ`i ´ γ`i}ψp{4 “ Op
a

T ´ |`|{T q “ Op1{
?
T q, the ψp{4-Orlicz norm of the first

term is bounded by

h
ÿ

|`|ăT

|h´1kp`{hq|}rγ`i ´ γ
`
i}ψp{4 “ O

ˆ

h
?
T

ż

|kpuq|du

˙

“ Oph{
?
T q,

whereas the second term is deterministic and is shown to be Oph{
?
T q by Andrews

(1991). Thus }rυi ´ υi}ψp{4 “ Oph{
?
T q uniformly in i P rns4. Thus, by the maximal

inequality followed by Markov’s inequality we conclude that

max
i
|rυi ´ υi| “ OP pψ

´1
p{4pn

4
qmax

i
}rυi ´ υi}ψp{4q “ OP rψ

´1
p{4pn

4
qh{
?
T s. (C.10)

We now use the fact that for any x,y P Rq we have |
śq

i“1 xi ´
śq

i“1 yi| “

Op
řq´1
i“0 }x´ y}

n´i
8 }y}i8q combined with the fact that } pU ´U}max “ op1q to obtain

max
i,`
|pγ`i ´ rγ`i | ď max

i,t,`
|pUi1,t pUi2,t pUi3,t´|`|

pUi4,t´|`| ´ Ui1,tUi2,tUi3,t´|`|Ui4,t´|`||

“ Op} pU ´U}max}U}
3
maxq

“ OP rηrψ
´1
pnT qs3s

Therefore we conclude

max
i
|pυi´rυi| ď max

i,`
|pγ`i´rγ

`
i |

ÿ

|`|ăT

|kp`{hq| “ OP

ˆ

hηrψ´1
pnT qs3

ż

|kpuq|du

˙

“ OP phηrψ
´1
pnT qs3q.

(C.11)

The result then follows from the triangle inequality }pΥ´Υ}max ď maxi |pυi ´ rυi| `

maxi |rυi ´ υi|, expression (C.10) and (C.11). �
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Lemma C.14. Let U ,V be Tˆn matrices such that }U´V }max ď C1 and }V }max ď

C2, then

}ΣU ´ΣV }max ď C3 :“ C1p2C2 ` C1q,

where ΣU :“ U 1U{T and ΣV :“ V 1V {T . Furthermore, if C3 ď ακpΣV ,S, 3q{p|S|p1`
ζq2q for S Ď rns, ζ ą 0 and α P r0, 1s, then

p1´ αqκpΣV ,S, ζq ď κpΣU ,S, ζq ď p1` αqκpΣV ,S, ζq
.

Proof. By the (reverse) triangle inequality we have }U}max ´ }V }max ď }U ´ V }max,

from which we conclude that }U}max ď }U ´ V }max ` }V }max ď C1 ` C2. Now

}ΣU ´ΣV }max “ max1ďi,jďn |T
´1

řT
t“1 UitUjt ´ VitVijt| ď maxi,j,t |UitUjt ´ VitVjt| and

|UitUjt ´ VitVjt| ď |pUit ´ VitqUjt ` pUjt ´ VjtqVit| ď

}U ´ V }maxp}U}max ` }V }maxq ď C1p2C2 ` C1q.

For the second part of the lemma notice that for any x P Rn we have |x1ΣUx ´

x1ΣV x| “ |x1pΣU ´ ΣV qx| ď }ΣU ´ ΣV }max}x}
2
1 ď C3}x}

2
1 by the first part.

Also, if }xSc}1 ď ζ}xS}1 we have that }x}1 “ }xS}1 ` |xSc}1 ď p1 ` ζq}xS}1 ď

p1`ζq
a

x1ΣV x|S|{κpΣV ,S, ζq where the last inequality follows from the definition of

compatibility condition. Thus |x1ΣUx´x
1ΣV x| ď C3p1`ζq

2x1ΣV x|S|{κpΣV ,S, ζq ď
x1ΣV x{2, where the last inequality follows from the definition of compatibility con-

dition. Therefore, we have that p1´ αqx1ΣV x ď x
1ΣUx ď p1` αqx1ΣV x whenever

}xSc}1 ď ζ}xS}1. Take the infimum to conclude. �

Lemma C.15. Let W :“ pU ,V q and Z :“ pX,Y q be T ˆ pn ` 1q matrices such

that }W ´Z}max ď C1 and }Z}max ď C2, then for any δ P Rn we have

}U 1
pV ´Uδq{T ´X 1

pY ´Xδq{T }8 ď p1` }δ}1qC1p2C2 ` C1q

Proof. For convenience let q :“ V ´ Uδ P RT and r :“ Y ´Xδ P RT , then Hölder’s

inequality gives us }r}8 ď p1 ` }δ}1q}Z}max ď p1 ` }δ}1qC2 and }q ´ r}8 ď p1 `

}δ}1q}W ´ Z}max ď p1 ` }δ}1qC1. From the (reverse) triangle inequality we obtain

}q}8 ď }q ´ r}8 ` }r}8 ď p1` }δ}1qpC1 ` C2q. Now, following the same steps in the

proof of previous Lemma, we can upper bound the right hand side of the display by

}U ´X}max}q}8 ` }q ´ r}8}X}max, which in turn can be upper bounded by the left

hand size of the display. �
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Lemma C.16. Under the same conditions of Theorems 1 and 2

}∇Lpθ1q ´∇L0pθ1q}8 “ OP

«

ψ´1pT qψ´1pnT qψ´1pnqψ´1
p{2pnq

T 1{4
`
ψ´1pT qT 1{4

?
n

ff

}∇2Lpθq ´∇2L0pθq}max “ OP

«

ηpn, T q
“

ψ´1
pnT q ` ηpn, T q

‰

`
ψ´1
p{2pn

2q
?
T

ff

,

where ∇L0pθq :“ 2ErU´1tpU1t ´ θ
1U´1tqs and ∇2L0pθq :“ EU´1tU

1
´1t.

Proof. By the triangle inequality we have
1

2
}∇Lpθq ´∇L0pθq}8 “ }p pUx ´Ux `Uxq

1V {T ´ EpU 1
xV {T q}8

ď }U 1
xV {T ´ EpU 1

xV {T q}8 ` }
pUx ´Ux}max}V }8.

Similarly, using Lemma 5.B

}∇2Lpθq ´∇2L0pθq}max ď } pU
1

x
pUx{T ´U

1
xUx{T }max ` }U

1
xUx{T ´ EpU 1

xUx{T q}max

ď } pUx ´Ux}maxp2}Ux}max ` } pUx ´Ux}maxq

` }U 1
xUx{T ´ EpU 1

xUx{T q}max.

By Corollary 1 and Assumption 3 we can bound in probability each of those terms

}U 1
xV {T ´ EpU 1

xV {T q}8 “ OP

«

ψ´1
p{2pnq
?
T

ff

} pUx ´Ux}max “ OP

«

ψ´1pnT qψ´1pnqψ´1
p{2pnq

T 1{4
`
T 1{4

?
n

ff

“: OP rηpn, T qs

}V }8 “ ψ´1
pT q

}Ux}max “ OP rψ
´1
pnT qs

}U 1
xUx{T ´ EpU 1

xUx{T q}max “ OP

«

ψ´1
p{2pn

2q
?
T

ff

.

Therefore

}∇Lpθq ´∇L0pθq}8 “ OP

«

ψ´1
p{2pnq
?
T

`
ψ´1pT qψ´1pnT qψ´1pnqψ´1

p{2pnq

T 1{4
`
ψ´1pT qT 1{4

?
n

ff

and

}∇2Lpθq ´∇2L0pθq}max “ OP

«

ηpn, T q
“

ψ´1
pnT q ` ηpn, T q

‰

`
ψ´1
p{2pn

2q
?
T

ff

�



68 J. FAN, R.P. MASINI, AND M.C. MEDEIROS

Lemma C.17. For p ą 0, let ψp : R` Ñ R` defined by ψppxq :“ x1t0ďxătu `

pexppxpq ´ 1q1tx ě tu where t :“
´

1´p
p

¯1{p

. If }X}ψp ă 8 then there exist constants

C1 ą 0 and C2 ą 0 such that

Pp|X| ą xq ď C1 expp´x
p
{C2q x ą 0.

In particular, if 0 ă }X}ψp ă 8 we might take C1 “ 2 ` 10 ă p ă 1 exppp1 ´ pq{pq

and C2 “ }X}
p
ψp

. Conversely, if there exist constants C1 ą 0 and C2 ą 0 such that

Pp|X| ą xq ď C1 expp´x
p{C2q for x ą 0, then

}X}ψp ď

$

&

%

rp2C1 ` 1qC2s
1{p _ 2C1C

1{p
2 p´1Γp1{pq ; 0 ă p ă 1

rpC1 ` 1qC2s
1{p ; p ě 1,

where Γp¨q denotes the Gamma function.

Proof. If }X}ψp “ 0 then X “ 0 a.s and the inequality holds for any choice of

C1, C2 ą 0. For the case when 0 ă }X}ψp ă 8 we have by Markov inequality and the

fact that x ÞÑ exp a|x|p is non-decreasing for a ą 0

Pp|X| ě xq “ Ppexppa|X|pq ě exppaxpqq ď expp´axpqE exppa|X|pq.

Also

E exppa|X|pq “ E exppa|X|pq1a1{p
|X| ă t` E exppa|X|pq1a1{p

|X| ě t

ď exppp1´ pq{pq10 ă p ă 1` Eψppa1{p
|X|q ` 1.

Set a “ }X}´pψp to conclude that the middle term is less or equal to 1.

For the converse we have for a ą 0, by Fubini’s Theorem

E expp|aX|pq ´ 1 “

ż ż |x|p

0

ap exppapyqdyPpdxq

“ ap
ż 8

0

Pp|X| ě x1{p
q exppapxqdx.

Since Pp|X| ą xq ď C1 expp´x
p{C2q, for a ă C

´1{p
2 , we have

E exprp|aX|qps ´ 1 ď apC1

ż 8

0

exp
”

´xp 1
C2
´ apq

ı

dx ď apC1

C´1
2 ´ap

.

Also

E|X| “
ż 8

0

Pp|X| ą xqdx ď C1

ż 8

0

expp´xp{C2qdx “
C1

pC
´1{p
2

Γp1{pq.
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Therefore using the last two displays we have, for 0 ă a ă C
´1{p
2

Eψppa|X|q ď E|aX|10 ă p ă 1` E exprp|aX|qps ´ 1

ď aC1

pC
´1{p
2

Γp1{pq10 ă p ă 1` apC1

C´1
2 ´ap

.

When p ě 1 the right hand side is less or equal than 1 for a ď rp1`C1qC2s
´1{p hence

}X}ψp ď rp1 ` C1qC2s
1{p. For 0 ă p ă 1, the right hand side is less or equal than

1 for a ď tC
´1{p
2 rp2C1 ` 1q´1{p ^ 2C1p

´1Γp1{pqsu´1 then }X}ψp ď p2C1 ` 1qC2s
1{p _

2C1C
1{p
2 p´1Γp1{pq.

�

Lemma C.18. For p ą 0, there is a constant Cp only depending on p such that

}XY }ψp{2 ď Cp
`

}X}ψp _ }Y }ψp
˘

,

where ψp defined as per Lemma (C.17).

Proof. If }X}ψp “ 0 or }Y }ψp “ 0 then XY “ 0 a.s and the inequality hold trivially.

Similarly if }X}ψp “ 8 or }Y }ψp “ 8. So we assume that 0 ă }X}ψp ă 8 and

0 ă }Y }ψp ă 8 and from Lemma (C.17) we have for x ą 0

Pp|X| ą xq ď Kp expr´px{}X}ψpq
p
s

Pp|Y | ą xq ď Kp expr´px{}X}ψpq
p
s,

where Kp :“ 2` 10 ă p ă 1 exppp1´ pq{pq. Then

Pp|XY | ě xq ď Pp|X| ě
?
xq ` Pp|Y | ě

?
xq ď Kp expp´z

p{2
{}X}pψpq `Kp expp´z

p{2
{}Y }pψpq

ď 2Kp expp´z
p{2
{Dp

pq

where Dp :“ }X}ψp _ }Y }ψp . Apply once again Lemma (C.17) to conclude that

}XY }ψp{2 ď CpDp where Cp “ p2Kp ` 1q1{p for p ě 1 otherwise p4Kp ` 1q1{p _

8KpΓp2{pqp
´1. �
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