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Abstract

We introduce the concept of the ignorance equivalent to effectively sum-
marize the payoff possibilities in a finite Rational Inattention problem. The
ignorance equivalent is a unique fictitious action that is weakly preferable to
all existing learning strategies and yet generates no new profitable learning
opportunities when added to the menu of choices. We fully characterize the
relationship between the ignorance equivalent and the optimal learning strate-
gies. Agents with heterogeneous priors self-select their own ignorance equiva-
lent, which gives rise to an expected-utility analogue of the Rational Inattention
problem. The approach provides new insights for menu expansion, the forma-
tion of consideration sets, the value of information, and belief elicitation. In a
strategic game of contract choice, the ignorance equivalent emerges naturally in
equilibrium.
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1 Introduction

In the face of risk and incomplete information, agents typically seek and acquire
information and thus effectively shape the uncertainty that they take on. Yet, the ex-
act details of this information acquisition process are usually unobservable. Rational
Inattention (RI) posits that agents can condition their choice on any state-dependent
signal, but face an additive cost from generating, accessing, processing or “learning”
that information. The result is an endogenous information structure that responds
to incentives and changes in the environment. RI has been documented to reproduce
empirical regularities in a variety of contexts, from portfolio design to price setting.

The agent’s rich learning possibilities are at once a strength and a hindrance to
the integration of the RI framework in broader economic models. Learning introduces
complementarities between actions, since a diverse menu allows the agent to better
tailor her action choice to the realized state. This gives rise to interesting behavioral
predictions: For example, even actions that are unattractive by themselves can open
up new learning opportunities when used in combination with the existing actions,
and can considerably reshape behavior. Similarly, even a small information shock
may lead the agent to reassess her learning strategy entirely. However, the ability to
generate such complex behavior comes at a cost. Outside a handful of special cases
that admit a closed-form solution, the sheer size of the information structure — each
learning strategy is a joint probability distribution of actions and states — can make
it hard to identify and communicate the key insights.

We introduce the concept of an ignorance equivalent to summarize the most per-
tinent features of a finite RI problem for a broad class of information costs. The
ignorance equivalent is a fictitious action with state-dependent payoffs that makes
the agent no better or worse off whether added to or in place of the original menu of
choices. That is, the ignorance equivalent is just attractive enough for the agent to
forgo all existing learning opportunities and yet generates no new profitable learning
opportunities when added to the menu. We show that the ignorance equivalent exists
and is unique, and argue that it is a parsimonious way to compare across learning
strategies, menus, and beliefs.

The ignorance equivalent is reminiscent of the certainty equivalent for choice prob-
lems under risk. Both preserve key properties of the original problem but reduce its
complexity by abstracting from learning and risk, respectively. Both remove the im-
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portance of (possibly subjective) beliefs about the state: Regardless of their priors,
two agents with the same ignorance equivalent use the same learning strategies, and
two agents with the same certainty equivalent purchase the same lotteries. And just
as the certainty equivalent naturally emerges when a risk-neutral company designs
the most profitable insurance contract, so the ignorance equivalent emerges when the
menu itself is strategically designed.

The primary challenge to characterizing the ignorance equivalent is to ensure that
no new profitable learning opportunities arise when it is added to the menu. Starting
with an optimal strategy over the original menu, we show that it is possible to design
a fictitious action that qualifies as an ignorance equivalent and is no more attractive
than the original strategy at all possible posterior beliefs about the state. Quite
naturally, this is sufficient to rule out any new profitable learning opportunities and,
more surprisingly, it is also necessary due to the rich learning possibilities in the RI
framework. Together with the agent’s indifference at the prior, this dominance ‘across
beliefs’ proves instrumental to derive the key properties of the ignorance equivalent.
The first of those is quite immediate now: Agents with different priors self-select into
their appropriate ignorance equivalent.

By drawing on the self-selection property, one can transform any finite RI prob-
lem into a standard expected utility maximization. We construct what we term the
learning-proof menu from the collection of ignorance equivalents across all priors. The
key observation is that, by the previous paragraph, adding an ignorance equivalent
to the menu generates no profitable learning opportunities regardless of the agent’s
prior. Any agent is thus indifferent between the original and the learning-proof menu
— and since it is always optimal to choose the agent’s own ignorance equivalent, the
RI problem effectively turns into a standard expected utility maximization over the
learning-proof menu.

The expected-utility representation of the RI problem is helpful when determining
the value that an agent assigns to a specific signal structure. This value depends
not just on the precision of the signal, but also on whether the new information is
‘actionable’ given the menu at the agent’s disposal. Even an informative signal may
not induce any changes in the ignorance equivalent and thus may have no effect on
her optimal behavior.

The learning-proof menu also simplifies the comparative statics of menu expansion.
First, a researcher may want to know whether an agent will adjust her learning
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strategy if a new action becomes available. To do so, it is sufficient to consider a
simplified menu consisting of the original ignorance equivalent and the new action—
resulting in a much smaller set of learning strategies to evaluate. Second, a newly
available action may increase the appeal of a previously unchosen action due to the
learning complementarities. The learning-proof menu allows us to identify which
existing, but currently not chosen, actions may ever be used in response to a menu
expansion. Quite simply, actions that belong to the learning-proof menu will be
chosen if the right new action is made available; actions that do not will remain
unchosen for all expanded menus.

In addition, the learning-proof menu has relevance for experimental design. For
instance, it is helpful to elicit private beliefs without generating belief-distorting learn-
ing incentives. Offering actions in the learning-proof menu represents the least-cost
way for increasing the reporting accuracy of prior beliefs in the presence of agent
learning.

Strategic menu design also occurs in contracting games. We study a formal out-
sourcing game between two rationally inattentive agents with exogenous informa-
tion shocks and show that the learning-proof menu naturally emerges in the Perfect
Bayesian Equilibrium. We provide here a simplified example of the game to highlight
the strategic role of the ignorance equivalent.

Example 1. An investor (she) is looking to place her wealth in one of several different
assets with state-dependent returns. Being a rationally inattentive agent, the investor
will typically exert some effort into learning more about the state before making her
investment choices.

Consider an asset manager (he) who is free to design a fund α that delivers return
αi in state i. The asset manager seeks the investor’s business and has no information
costs. When designing the fund, the asset manager realizes that the investor may
first learn some information about the state and then decide whether to invest in
the offered fund – which could lead the asset manager to miss out on some of the
investor’s business and create adverse selection issues. The manager also realizes that
the investor might learn from the design of the fund itself if he tailors the payouts
to his information about the state – which would increase the investor’s information
rents.

The ignorance equivalent is the answer to all the manager’s problems. It does
not reveal any free information and ensures that the investor willingly forgoes any
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learning and participates unconditionally — thus enabling the manager to extract
the maximal information rents. �

Related literature. Rational inattention was first introduced into economics by
Sims [2003], deploying the ideas of information theory to a model of learning.1 Ra-
tional inattention models rapidly found their way into a variety of fields, from finance
to monetary economics.2

While the basic idea of the RI model is elegant and simple, the model typically
does not admit an analytic solution. As a result, Mutual Information (based on
Shannon entropy) has become the de-facto cost structure for its tractability, with most
applied research relying on special cases (e.g., a Linear-Quadratic Gaussian setup) or
approximations. In Armenter et al. [2021], we propose a geometric approach to finite
RI problems with Mutual Information costs that is well suited for numerical solution
methods and computing the ignorance equivalent.

On a more conceptual level, theory developments have characterized optimal RI
behavior in various ways. Caplin and Dean [2013] and Caplin et al. [2018a] solve the
general finite model using a “posterior-based” approach; Matějka and McKay [2015]
highlight the structural similarity with multinomial logit models; Caplin and Dean
[2015] broaden the class of RI cost functions beyond Shannon entropy and conduct an
empirical exploration of their validity; and Maćkowiak et al. [2018a] explore dynamic
learning in an RI context. Alongside, a rich literature discusses the relative strengths
of a variety of cost functions, including Bloedel and Zhong [2020], Denti et al. [2019],
Hébert and Woodford [2020], Mensch [2018] and Pomatto et al. [2018], highlighting in
particular that perceptual distance may make some states more difficult to disinguish
than others. Our cost assumptions are compatible with some, but not all, of these
parametrizations, and rely heavily on Bloedel and Zhong [2020]’s idea to study costs
that are sequential learning proof. All of these papers focus directly on specific
learning strategies rather than condensing the ‘payoff possibilities’ into a single vector
in the spirit of our ignorance-equivalent approach.

RI models are also helpful to study the formation of endogenous consideration
sets, which contain actions that are chosen with positive probability. Caplin et al.

1Of course, information theory traces back to the groundbreaking work of Claude Shannon, and
information economics to George J. Stigler [Stigler, 1961].

2We cannot hope to properly review what is by now a large literature. See Maćkowiak et al.
[2018b] for a survey of both theoretical and applied work with rational inattention models.
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[2018b] characterize the optimal consideration sets in the case of Mutual Information
costs. There is a strong sense for why our learning-proof menu can be seen as a
‘latent’ consideration set: First, all actions of the optimal consideration set are part
of the learning-proof menu. Second, all actions that are in the learning-proof menu
become part of the optimal consideration set if either the agent’s prior changes, or
the right new action is added to the menu. As such, our results provide novel insight
regarding the comparative statics of these consideration sets for more general costs.

Finally, our contract-design game is related to Bayesian Persuasion with costly
information acquisition [Gentzkow and Kamenica, 2014] where a sender strategically
provides information to influence the receiver’s choice. Instead of a sender-receiver
structure, we focus on outsourcing where a manager offers state-contingent pay-
ments to an agent in return for getting access to the choice problem itself. Whereas
the potential of receiver learning pushes the sender to reveal information up front
[Matyskova, 2018], our manager avoids early information revelation by offering the
same (learning-proof) terms unconditionally.3 However, both their sender and our
manager seek to undercut the incentives for receiver/agent learning as this would
reduce their payoff.

Paper structure. We describe the standard Rational Inattention problem in Sec-
tion 2 and discuss what cost functions are compatible with our framework. We
then introduce the ignorance equivalent in Section 3, along with its key properties.
In Section 4, we define the learning-proof menu and discuss its relevance for de-
termining welfare-enhancing menu expansions, the value of information and robust
belief-elicitation. In Section 5, we describe a strategic two-player game between two
RI agents and show that the ignorance equivalent and learning-proof menu naturally
emerge in the Perfect Bayesian Equilibrium. Section 6 concludes. With the exception
of some immediate corollaries, all proofs are in the Appendix.

3In that sense, our unconditional contract offers remind of Myerson [1983]’s ‘inscrutable’ mecha-
nism choices.
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2 Rational Inattention Model

The rationally inattentive decision maker has to implement an action from the finite
menu A.4 Payoffs of each action depend on an unknown state of the world i ∈ I :=

{1, ..., I}. The prior probabilities for each state are strictly positive, π ∈ int(∆I).5

No two actions are payoff equivalent, and we identify an action a ∈ A by its state-
dependent payoffs (a1, ..., aI) ∈ RI .

The agent can condition her choice on the outcome of a costly signal S = 〈S, q〉,
where S refers to a finite signal realization space and q ∈ (∆S)I denotes the con-
ditional probabilities qi(s) of realization s in state i. We denote the cost of signal
S under belief ρ ∈ ∆I by c(S,ρ) ≥ 0. This cost is finite for all signals except
possibly for those that rule out some state i with certainty, i.e. when qi(s) = 0

for some s ∈ support(q). Upon observing a signal realization s, the agent updates
her belief to πs according to Bayes’ rule and selects a utility-maximizing action in
arg maxa∈A a · πs.

For each choice problem (A,π, c), we denote the maximal welfare by

W (A,π, c) = max
S=〈S,q〉

∑
s∈S

(
I∑
i=1

qi(s)πi

)(
max
a∈A

I∑
i=1

aiπ
s
i

)
− c(S,π). (RI)

Because of the obedience principle, it is without loss of generality to restrict attention
to signals where the signal returns a ‘recommended action’, S = A, and the agent
implements the signal recommendation.6 For simplicity, we use the term ‘learning
strategy’ to refer to situations where the agent follows such a signal. We say that
“unconditional implementation of a is optimal” if the degenerate strategy with q(a) =

1 is optimal, and that “it is optimal to implement a with positive probability” if at
least one strategy with q(a) > 0 is optimal. Since adding additional actions only
increases the space of learning strategies, welfare is menu-monotone, W (A′,π, c) ≥
W (A,π, c) whenever A′ ⊇ A.

4Our results carry over to compact menus, as long as it is without loss of generality to assume
that the optimal signal is finite. In particular, we will use the same notation when we discuss the
learning-proof menu in Section 4.

5The open simplex can be written as int(∆I) :=
{
π ∈ RI | π � 0 and π · 1 = 1

}
. Throughout,

we use the convention that v ≥ w if and only if vi ≥ wi ∀i, that v > w if and only if v ≥ w and
v 6= w, and that v � w if and only if vi > wi ∀i.

6Lemma A.1 in Appendix A.1 provides a formal statement of this standard result in the infor-
mation design literature.
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Admissible costs. A common family of cost functions that is compatible with our
model is known as uniformly posterior-separable costs [Caplin et al., 2022], where

c(S,π) =
∑
s∈S

(π · q(s))φ(πs)− φ(π), (UPS)

for any potential function φ : ∆I → R ∪ {∞} that assigns finite values to a convex
open set J ⊇ int(∆I), is twice differentiable and convex over J , and ensures that
c is weakly concave in the prior.7 Within that class, leading examples are Mutual
Information [Sims, 2003], some variants of the Tsallis costs [Caplin et al., 2022] and
Total Information [Bloedel and Zhong, 2020], which subsumes the Wald cost by Morris
and Strack [2019] and the Fisher Information of Hébert and Woodford [2020].

In order to highlight the specific properties that drive our results, we characterize
the (possibly larger) set of admissible cost functions with five specific conditions.
For each property, we start with the formal definitions, then provide the intuition
behind each assumption and discuss some key implications that are proven formally
in Appendix A.1. We finish the section by formally establishing that (UPS) costs
satisfy all conditions. The reader who already has one of the above-mentioned cost
functions in mind may feel free to jump ahead to Section 3.

(C1) The cost function is continuous wherever finite: For any prior π and signal
S = 〈S, q〉 with c(S,π) < ∞ and for any ε > 0, there exists δ > 0 such
that |c(〈S, q̃〉, π̃) − c(S,π)| < ε whenever ‖q̃ − q‖ + ‖π − π̃‖ < δ under the
Euclidean norm ‖ · ‖.

Continuity rules out any sudden cost jumps due to marginal changes in either the
prior or the signal. It ensures that the choice problem (RI) locally satisfies all the
conditions of Berge’s Theorem of the maximum, so that the optimum exists and
indirect utility is locally continuous in the prior belief (Lemma A.2).

(C2) The agent can freely dispose of information: Cost function c(·,π) is non-
decreasing in the Blackwell order8 and c(S, ·) is weakly concave in the prior
for all S.

7Bloedel and Zhong [2020] provide a check for prior-concavity based on the Hessian of any twice-
differentiable potential φ.

8Formally, signal S = 〈S, q〉 is Blackwell more informative than signal S̃ = 〈S̃, q̃〉 if for each
s ∈ S, there exists a lottery ms ∈ ∆S̃ such that q̃ =

∑
s∈Sm

sq(s). Equivalently, the distribution
over posteriors generated by S forms a mean-preserving spread of that generated by S̃.
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Free disposal of information (C2) is best explained by introducing an ‘assistant’ to
the decision maker. For Blackwell monotonicity, suppose the assistant draws a signal
〈S, q〉 and then, depending on its realization s ∈ S, communicates a garbled message
ms ∈ ∆S ′ to the agent. Since the garbling is uncorrelated with the state, the agent
is weakly less informed than the assistant, and thus should incur a weakly lower cost.
For prior-concavity, suppose the assistant privately observes a free signal about the
state. The concavity of c(S, ·) then simply states that it should be no more expensive
(in expectation) for the agent to implement a particular learning strategy S with
access to the assistant’s information, than it is without. Prior-concavity implies in
particular that welfare W is convex in the prior belief (Lemma A.3).

(C3) Sequential information acquisition brings no cost savings: For any contingency
plan where the agent first draws S = 〈S, q〉 and upon observing s ∈ S draws
signal Ss = 〈Ss, qs〉, a one-shot implementation of the same process, S̃ = 〈S ×⋃
s∈S S

s, q̃〉 with q̃i(s, s̃) = qi(s)q
s
i (s̃), costs no more than the expected cost of

the contingency plan, c(S̃,π) ≤ c(S,π) +
∑

s∈S(π · q(s)) c(Ss,πs).

As argued by Bloedel and Zhong [2020], an optimizing agent without delay costs
would always exploit any cost savings associated with sequential information acquisi-
tion. Condition (C3) simply assumes that c(S,π) is already the cost-minimizing en-
velope over all sequential information strategies, avoiding more cumbersome notation.
Condition (C3) also implies that if the agent implements a ∈ A at some posterior ρ,
then she would do so unconditionally if her prior is set to ρ (Lemma A.4).

The next condition requires that the marginal cost of the first bit of information
is zero, ruling out fixed costs of learning. We define the ε-precision dilution of a
signal S = 〈S, q〉 at prior π ∈ ∆I as S(ε,π) = 〈S, q(ε,π)〉 with q(ε,π)

i (s) = εqi(s) + (1−
ε)(q(s) · π). Intuitively, the ε-precision dilution is obtained by having an assistant
draw signal S with probability ε and otherwise default to a pure noise signal with
probabilities equal to S’s marginals π ·q. The assistant only communicates the signal
realization s ∈ S, and does not reveal whether it stems from the pure noise signal.
Thus, if πs denotes the agent’s posterior upon observing s ∈ S from signal S, the
same observation from S(ε,π) leads to posterior επs + (1− ε)π.

(C4) Learning costs are negligible at zero information: For any signal S = 〈S, q〉,
belief π ∈ ∆I, and constant c̄ > 0, there exists ε ∈ (0, 1] such that the cost of
the ε-precision dilution of signal S is bounded above by εc̄, c(S(ε,π),π) < εc̄.
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Condition (C4) has several important implications: Pure noise is always free (Lemma A.5)
and the agent can randomize between strategies at no additional cost. And if two
actions achieve the same expected consumption utility, condition (C4) guarantees
that there exists a noisy enough signal whose expected benefits outweigh the cost by
any arbitrary factor (Lemma A.6). In combination with condition (C3), this implies
in particular that under an optimal signal, all posterior-optimal actions are welfare
equivalent with probability one (Lemma A.7), or she could improve upon her payoff
with a sequential strategy that draws another signal.

Henceforth, whenever we talk of an RI problem (A,π, c), we implicitly assume
that A ⊂ RI , π ∈ int(∆I) and c satisfies conditions (C1) to (C4).

When sequential information acquisition is neither more nor less costly than one-
shot information acquisition, the ignorance equivalent has additional sufficiency prop-
erties when it comes to menu expansion. We impose this additional condition only
when we talk about menu expansion in Section 4, but list it here for easy reference.

(C5) Sequential information acquisition incurs no extra costs: For any contingency
plan where the agent first draws S = 〈S, q〉 and upon observing s ∈ S draws
signal Ss = 〈Ss, qs〉, a one-shot implementation of the same process, S̃ = 〈S ×⋃
s∈S S

s, q̃〉 with q̃i(s, s̃) = qi(s)q
s
i (s̃), costs no less than the expected cost of the

contingency plan, c(S̃,π) ≥ c(S,π) +
∑

s∈S(π · q(s)) c(Ss,πs).

Together with (C3), this condition implies that the agent is exactly indifferent across
all Blackwell-equivalent contingency plans.

Some of our conditions on the cost function are more prevalent in the literature
than others. Continuity (C1) and Blackwell monotonicity (C2) are satisfied by virtu-
ally all commonly used cost functions. Prior-concavity (C2) is less often mentioned,
but satisfied in particular by all cost functions that are prior-free [Denti et al., 2019,
Gentzkow and Kamenica, 2014, Mensch, 2018, Pomatto et al., 2018]. Sequential
learning-proofness (C3) has been introduced and characterized by Bloedel and Zhong
[2020] and is linked to the dynamic information-sampling formulation of Hébert and
Woodford [2019]. In addition, Frankel and Kamenica [2019] show that Conditions
(C3) and (C5) jointly restrict costs exactly to the uniformly posterior-separable fam-
ily. While we are not aware of other papers that explicitly impose Condition (C4),
all of our conditions are jointly satisfied by the class of prior-concave and smooth
uniformly posterior-separable functions according to (UPS).
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Lemma 1. Any uniformly posterior-separable cost within the family defined by For-
mulation (UPS) satisfies Conditions (C1) to (C5).

The proof draws heavily on Bloedel and Zhong [2020]’s characterization of sequen-
tial learning-proof cost functions, and refers to them verbatim for properties (C2),
(C3) and (C5). The remaining properties follow from the differentiability of the cost
potential function.

3 Ignorance Equivalent

The central concept of our paper is the notion of the ignorance equivalent. The
ignorance equivalent of an RI problem (A,π, c) is a payoff vector α ∈ RI that, as
a fictitious action, leaves the agent no worse as a replacement of menu A and yet
delivers no welfare gains as an addition to the menu A.

Definition 1. The payoff vector α ∈ RI is an ignorance equivalent of RI problem
(A,π, c) if and only if

W ({α} ,π, c) ≥ W (A,π, c) and W (A,π, c) ≥ W (A ∪ {α} ,π, c).

Intuitively, the first condition means the agent would be willing to commit to
always implement α, forgoing any learning opportunities that are present in A. The
second condition means that she would also commit to never implement α, forgoing
any learning opportunities that arise when α is added to the original menu. Together,
the two conditions imply that W ({α} ,π, c) ≥ W (A ∪ {α} ,π, c), but since larger
menus weakly raise welfare, all inequalities are binding. In this sense, the payoff vector
α is such that the agent can forgo all learning opportunities, old or new, without loss
or gain. It is thus appropriately called an ‘ignorance equivalent’.

The ignorance equivalent is reminiscent of the certainty equivalent for lotteries.
Neither is typically available to the agent, unless we are considering degenerate lot-
teries or a decision problem where no learning is optimal. Yet, both concepts allow
us to abstract from the crux of the underlying economic problem (risk, learning) to
reduce its complexity, all while preserving its key properties to enable comparative
statics. The similarity between the two concepts extends to their construction: Just
like the certainty equivalent is equal to the highest payment that is dominated by the
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{x | x - S}

π

c(S,π)

ρ

c(S,ρ)

a1

a2

α

aS

Figure 1: Dominated payoff vectors and construction of the ignorance equivalent.

lottery, we now show that the ignorance equivalent is equal to the payoff vector with
the highest expected utility that is dominated by an optimal learning strategy.

Formally, this is what we mean with dominance by a learning strategy: An agent
with belief ρ ∈ ∆I obtains expected utility ρ · x from implementing action x un-
conditionally, and incurs no learning costs. If instead the agent follows the learning
strategy S = 〈A, q〉, she achieves expected consumption utility aSi =

∑
a∈A qi(a)ai

in each state i. Welfare is obtained by weighing these state-wise expectations by
the agent’s belief and subtracting the signal cost. Payoff vector x is dominated by
learning strategy S if the latter yields weakly larger welfare for any belief ρ. As we
shall see later, the reference to other beliefs is what rules out profitable new learning
opportunities that may arise from the addition of x to the menu.

Definition 2. Payoff vector x is dominated by a learning strategy S = 〈A, q〉,
denoted x - S, if and only if

ρ · x ≤ ρ · aS − c(S,ρ) ∀ρ ∈ ∆I.

Figure 1 sketches a sample RI problem (A,π, c) with two states (on either axis)
and two actions (a1 and a2) to illustrate the concept of dominance. The learning
strategy S implements action a2 with probability 1/4 in state 1 and with probability
1 in state 2, leading to expected consumption utility aS1 = 1

4
a2

1 + 3
4
a3

1 and aS2 = a2
2. For

each belief, the signal cost determines the maximal expected utility for any dominated

12



payoff vector. We indicate this upper bound for prior π as a dashed line, and for
belief ρ as a dotted line. The intersection of all such lower half-spaces forms the set
of dominated payoff vectors, which is thus naturally closed, convex and unbounded
below. The concavity of c(S, ·) determines the curvature of the boundary, and the
cost c(S, ·) determines its distance to aS .

Our first result shows how to obtain the ignorance equivalent of (A,π, c) from any
optimal signal using the dominance relationship, and establishes the existence and
uniqueness of the ignorance equivalent.

Theorem 1. Each RI problem (A,π, c) admits a unique ignorance equivalent α ∈ RI .
It is obtained from any optimal learning strategy S as the payoff vector that maximizes
expected utility over all S-dominated payoff vectors, arg maxx-S π · x.

Four arguments are key to the result:
First, an optimal strategy S exists by continuity of the cost (C1). Second, uncon-

ditional implementation of the most attractive S-dominated payoff vector α achieves
the same welfare as S, establishing thatW ({α} ,π, c) = π·aS−c(S,π) = W (A,π, c).
These steps are mostly technical. Continuity of the cost (C1) ensures existence
of an optimal signal by a standard application of Berge’s Theorem, spelled out in
Lemma A.2 in the appendix. Prior-concavity of the cost (C2) ensures that for any
prior and signal, the inequality in Definition 2 is binding for at least one dominated
payoff vector. We prove this by relying on the finite intersection property from topol-
ogy. Applied to π and S, this implies that the dashed line in Figure 1, which describes
the net utility from implementing S under prior π, touches the set of dominated pay-
off vectors {x | x - S}. Equivalently, unconditional implementation of α achieves
welfare W (A,π, c).

Third, dominance α % S is sufficient to rule out new learning opportunities that
arise from adding α to the original menu A: Whenever a potential strategy over
menu A ∪ {α} recommends implementation of α at some posterior ρ, the agent is
just as well off by continuing with strategy S instead and relying only on actions in
menu A. By sequential optimality (C3), a one-shot implementation of this two-step
strategy is weakly cheaper and the agent can thus achieve at least as much welfare
by restricting attention to menu A, W (A∪{α} ,π, c) = W (A,π, c). Together, these
three steps construct a payoff vector that satisfies both conditions of Definition 1 and
thus establish existence of the ignorance equivalent.
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The final step establishes that the ignorance equivalent is unique, even if the (RI)
problem admits multiple optimal signals. The proof relies on cost conditions (C2)
to (C4): Proceeding by contradiction, we assume that there are two distinct candidate
ignorance equivalents α1 6= α2 and construct a two-step strategy where a binary
signal helps the agent choose between strategy S or unconditional implementation
of an ignorance equivalent. We show that the welfare gains are at least linear in
precision and thus initially outweigh the extra costs by (C4), implying that the agent
can improve upon the previously optimal strategy. Indeed, the two candidate payoff
vectors must achieve the same expected utility W (A,π, c) at prior π by Definition 1,
yet differ in expected utility for some other belief ρ 6= π. Suppose that the agent
initially draws a binary signal S0 that updates her belief either towards or away
from ρ with small precision ε. If the agent implements the more attractive of α1

and α2 after each realization of signal S0, consumption utility increases linearly with
precision and the agent incurs no costs in the second step. If the agent follows strategy
S after each realization, consumption utility remains π · aS but the expected cost
of S decreases with the access to extra information by (C2). Ultimately, we are
interested in sequential learning strategies that rely on menu A∪

{
αk
}
for one of the

two candidates, with the agent implementing the more favorable of αk or S after each
realization. By the above, at least one of these strategies (say k = 1) brings second-
step welfare benefits that scale linearly with precision ε, at a first-step signal cost that
is negligible next to ε by (C4). The one-shot implementation of the same strategy
is no more costly by (C3), and thus indicates a profitable learning opportunity that
arises from adding α1 to the menu, reaching a contradiction with Definition 1.

Necessity of dominance. Theorem 1 implies that dominance is not just sufficient
to rule out learning opportunities – it is also necessary. This may surprise at first;
after all, it requires that an optimal signal needs to be preferable to the unconditional
implementation of α for all beliefs.9 However, if there are any welfare gains ∆ > 0

from implementing α rather than S at some posterior ρ, the local perturbation ρε :=

(1− ε)π+ ερ also yields first-order welfare gains by prior-concavity of the cost (C2),

ρε · aS − c(aS ,ρε) ≤ (1− ε) [π · aS − c(aS ,π)]︸ ︷︷ ︸
=π·α by Definition 1

+ε [ρ · aS − c(aS ,ρ)]︸ ︷︷ ︸
=ρ·α+∆

= ρε ·α+ ε∆.

9In situations with multiple optimal signals, Theorem 1 requires that each of them dominates α.
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In the same way as in the uniqueness argument above, the agent could then initially
draw a noisy signal to help her choose between α or S by updating her belief either
towards or away from πε. The marginal cost of this additional signal vanishes with ε
by (C4) and is thus eventually outweighed by the gains. A one-shot implementation
would do even weakly better by (C3) and would thus improve upon the welfare of S.

Connection with optimal strategies. While the ignorance equivalent is always
unique for any RI problem (A,π, c), there may exist multiple optimal learning strate-
gies. Nevertheless, there is a tight connection thanks to Theorem 1: From any optimal
learning strategy S, the ignorance equivalent is obtained as the most attractive dom-
inated payoff vector, and given an ignorance equivalent α, the set of optimal signals
are exactly those that dominate α. Since the dominance relationship does not de-
pend on the prior π, any two RI problems (A,π, c) and (A,π′, c) that share the same
ignorance equivalent also share all optimal learning strategies.

Corollary 1. If the ignorance equivalent of RI problems (A,π, c) and (A,π′, c) is
the same, then so is the set of optimal learning strategies.

Continuity of the ignorance equivalent is another consequence of this one-to-one
correspondence linking the ignorance equivalent and the set of optimal learning strate-
gies. Since the optimal RI signals are upper hemicontinuous by Berge’s Theorem
(Lemma A.2), the ignorance equivalent is continuous in the prior.

Corollary 2. The mapping π 7→ α(A,π,c) is continuous at any prior π ∈ int(∆I).

Self-selection. By definition, the ignorance equivalent generates no additional learn-
ing under the agent’s prior. Theorem 1 further implies that the ignorance equivalent
musts be dominated, and thus it generates no additional learning opportunities under
any prior, whether it is the one it was designed for or not. We refer to this result
as the ‘self-selection’ property of the ignorance equivalent, for the following reason:
Suppose two RI agents with different priors face the same menu and cost function.
Adding both their respective ignorance equivalents to the menu would not be welfare-
enhancing for either agent, yet each would be willing to implement their appropriate
ignorance equivalent unconditionally.
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Corollary 3. Let α denote the ignorance equivalent of RI problem (A,π, c). For any
belief ρ ∈ ∆I,

W (A,ρ, c) = W (A ∪ {α} ,ρ, c).

Moreover, the ignorance equivalent of (A,ρ, c) is equal to that of (A ∪ {α} ,ρ, c) for
any prior ρ ∈ int(∆I).

4 Learning-Proof Menu

By design, adding the ignorance equivalent does not generate any profitable learning
opportunities but makes it optimal to forgo learning. By the self-selection property,
the same is true if we include ignorance equivalents across all priors. The result is a
reformulation of the agent’s RI problem as a standard expected-utility maximization
problem over a modified menu. In essence, the agent’s capacity to learn is as if she
had access to additional, fictitious actions – and including these actions renders her
learning capacity obsolete. Thanks to the reduced complexity, this perspective allows
for clearer intuition on several topics, including the value of exogenous information
and eliciting beliefs.

Formally, we define the learning-proof menu as the set of all such fictitious actions.

Definition 3. Lettingα(A,π,c) denote the ignorance equivalent of RI problem (A,π, c),
the learning-proof menu for menu A under cost c is given by

Ā :=
{
α(A,π,c) | π ∈ int(∆I)

}
.

The menu Ā is ‘learning-proof’ because an RI agent, when faced with Ā, would
forgo learning no matter her prior, and it shares key properties with the original menu
because their ignorance equivalents always agree.

Theorem 2. For any menu A and cost function c, the learning-proof menu Ā is the
smallest set such that

(a) Ignorance is always an optimal strategy in (Ā,π, c) for any π ∈ int(∆I),

W (Ā,π, c) = max
a∈Ā

π · a.
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Ā

S0 S1 S2

π

α

Figure 2: Construction of the Learning-Proof Menu Ā (thick solid line) for an RI
problem with two states and three actions (action payoffs are indicated as black
dots).

(b) The menus A and Ā share the same ignorance equivalent at any prior π ∈
int(∆I), α(A,π,c) = α(Ā,π,c).

Because each ignorance equivalent is uniquely maximal in some direction π ∈
int(∆I), the learning-proof menu represents the upper boundary10 of the strictly
convex set ⋂

π∈int(∆I)

{
x ∈ RI | π · x ≤ W (A,π, c)

}
. (1)

Any change in the problem parameters that raise agent welfare W across all priors
will move this boundary outwards. Examples of such changes include the addition of
new actions to the menu A, or reductions in the learning cost c.

Similarly, Theorem 1 shows that each ignorance equivalent is obtained by max-
imizing expected utility across all dominated payoff vectors and across all learning
strategies. The upper boundary of the union over all dominated payoff vectors,⋃

q∈(∆A)I

{
x ∈ RI | x - 〈A, q〉

}
(2)

is thus also equal to the learning-proof menu Ā. Figure 2 illustrates this construction
10Point x is part of the upper boundary of X ⊆ RI if and only if x ∈ X and x + y /∈ X for any

y > 0.
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of the learning-proof menu by plotting Ā in a simple RI problem with two states and
three actions, along with three sample strategies Sk. For each learning strategy, the
solid labeled line indicates the upper boundary of all dominated payoff vectors x - Sk.
Strategies S1 and S2 rely only on actions in the original menu and are feasible in RI
problem (A,π, c). They are therefore included in the union of Equation (2). Strategy
S1 is optimal at π since it is tangent to Ā at that prior. Strategy S2 is optimal at
a prior that leans more toward state 1. There are other learning strategies that are
not optimal at any prior: For those, the set of dominated payoff vectors lies strictly
below Ā. Strategy S0 implements α unconditionally at no cost. It is an example of a
new learning strategy that becomes feasible in menu Ā. Strategy S0, too, is optimal
at prior π. Yet by the self-selection property (Corollary 3), none of the newly feasible
learning strategies dominate additional payoffs vectors.

Expected-utility approach. Conceptually, the learning-proof menu allows us to
identify the solution to the original (RI) problem in two steps by first locating the igno-
rance equivalent α through the expected utility maximization problem arg maxa∈Ā π ·
a. Corollary 1 then identifies the full set of optimal learning strategies in a way that
is independent of the prior belief.

Anchor Actions. The intersection A = A ∩ Ā contains all actions that are im-
plemented unconditionally under at least one prior. We call these actions anchors,
because they connect the ‘conceptual’ learning-proof menu Ā to the ‘physical’ menu
A. There are several equivalent characterizations for these actions.

Corollary 4. Fix a menu A and a cost function c. For any available action a ∈ A,
the following are equivalent:

(a) Action a is an anchor of the learning-proof menu, a ∈ Ā.

(b) It is optimal to implement a unconditionally for some prior π ∈ int(∆I).

(c) It is optimal to implement a with positive probability for some prior π∈ int(∆I).

(d) There exists no prior ρ ∈ int(∆I) such that the ignorance equivalent of (A,ρ, c)
dominates a statewise, α(A,ρ,c) > a.
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Characterization (c) points out that the RI agent always restricts her attention to
anchor actions, even at priors where ignorance is not an optimal strategy. The liter-
ature uses the term consideration set [Caplin et al., 2018b] to refer to the (typically
small) submenu of actions that are implemented with positive probability. Corol-
lary 4 implies that the union of consideration sets across priors yields exactly the set
of anchors.

Characterization (d) describes in what sense non-anchor actions a ∈ A \ Ā are
suboptimal: It is not just that each RI agent, depending on her prior, finds some
other learning strategy more attractive. It is also true that the learning-proof menu
contains a payoff vector α(A,ρ,c) that dominates a statewise. By Theorem 1, this also
implies that there exists a specific learning strategy (any one that is optimal under
prior ρ) which all agents, irrespective of their prior, strictly prefer to implementing
a.

4.1 Menu Expansion

When new actions are added to the menu, the RI agent re-calibrates her entire learning
strategy. This can lead to patterns of behavior that are absent in fixed-information
models: Matějka and McKay [2015] show by example that adding a new action to
the menu may ‘activate’ a previously unchosen action which now is implemented with
positive probability. This suggests that the comparative statics of the consideration
set can depend in complex ways on the geometry of the full menu A and its interaction
with the cost function.

Fortunately, the ignorance equivalent and the learning-proof menu bring structure
to menu expansion, as long as the agent is indifferent across all sequential implemen-
tations of a given signal. To ensure this, we here impose condition (C5) in addition
to (C1) to (C4).

If one is interested purely in whether the new action is implemented with positive
probability, it is without loss of generality to replace the menu with its ignorance
equivalent.11 Since the ignorance equivalent can be derived from the optimal learning
strategy (Theorem 1), the result also means that unchosen actions do not affect
whether or not a new action is attractive. However, the diversity of action payoffs
in the full menu A presents more opportunities for profitable learning, and so the

11In the case of Shannon entropy costs, this result is mathematically related to the ‘market entry
condition’ in Caplin and Dean [2015].
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absolute welfare gains from the new addition can be larger in the full menu. As such,
previously unchosen actions may affect how often and in which contingencies the new
action is implemented.

Theorem 3. Let α denote the ignorance equivalent of RI problem (A,π, c) that
satisfies (C5). The following hold for any payoff vector a+ ∈ RI :

(a) W (A ∪ {a+} ,π, c) > W (A,π, c) ⇐⇒ W ({α,a+} ,π, c) > W ({α} ,π, c).

(b) W (A ∪ {a+} ,π, c) ≥ W ({α,a+} ,π, c).

The sufficiency of the ignorance equivalent for menu expansion can be used in
reverse to check whether ignorance is optimal: Unconditional implementation of an
available action a ∈ A is optimal if and only if there exists no profitable learning
opportunities in any binary submenu {a,a′} ⊆ A. The agent does not need to worry
about more complicated learning deviations that incorporate multiple other actions.

Corollary 5. Consider an RI problem (A,π, c) that satisfies (C5). An available
payoff vector a ∈ A is implemented with probability 1 if and only if

W ({a,a′} ,π, c) ≤ W ({a} ,π, c) ∀ a′ ∈ A.

Proof. The core of the proof is an inductive application of Theorem 3(a), as detailed
in Appendix A.3.

If an available action a ∈ A is implemented without learning, then it is also the
ignorance equivalent of the RI problem; conversely, if the ignorance equivalent belongs
to the original menu A, then no learning is optimal.

There is another sense in which anchor actions describe a ‘latent’ consideration
set. In Corollary 4(c), we pointed out that appropriate changes in the prior can induce
the agent to implement any anchor action with positive probability. The same is true
if we keep the prior fixed and instead introduce a new action to the menu.

Theorem 4. Fix any RI problem (A,π, c) that satisfies (C5) and consider anchor
action a ∈ A ∩ Ā. There exists a payoff vector a+ ∈ RI such that it is optimal to
implement a with positive probability in RI problem (A ∪ {a+} ,π, c).
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By Corollary 4(d), each non-anchor action is dominated by a learning strategy
across all beliefs. This implies that the converse to Theorem 4 also holds, and it is
exactly the anchor actions that can be activated through menu expansion in the sense
of Matějka and McKay [2015].

It is worth highlighting that it is too vague to ask whether a novel action a+

would be attractive to an agent facing RI problem (A,π, c): The answer may be
negative if only a+ is added to the menu, but positive if a+ is added alongside other
actions. Indeed, learning introduces strong complementarities between actions and
the attractiveness of an individual action depends on the agent’s other options. If
a+ offers higher payoff under some extreme belief than all existing options in A, it
increases the consumption gain of sufficiently informative signals. Still, the cost of
these signals may remain prohibitive until the agent also receives access to an action
that does well in the opposite contingency.

By combining Theorems 3 and 4, we nevertheless obtain a comprehensive answer
for both interpretations of the question: To identify actions that are attractive if
added in isolation, one has to look no further than the ignorance equivalent. To
identify actions that are attractive in some supermenu A′ ⊆ A, the learning-proof
menu is the answer: If a+ is located on or above Ā, the action becomes an anchor
in A ∪ {a+}, and as such can be activated by the simultaneous addition of some
complementary action. Conversely, if a+ is located below Ā, activation is impossible.

4.2 Value of information

Since the learning-proof menu transforms the RI model into a standard expected util-
ity maximization problem, it is particularly well suited to study the welfare impacts
of exogenous information.

Corollary 6. An agent facing RI problem (A,π, c) is willing to pay at most∑
s∈S

(π · q(s)) max
a∈Ā

(πs · a)−max
a∈Ā

π · a

for access to a signal S = 〈S, q〉 that does not definitively rule out any state, so that
the posterior after observing each s ∈ S has full support, πs ∈ int(∆I).

In particular, this means that at any prior π, the local geometry of the learning-
proof menu determines whether the agent benefits from free access to noisy informa-
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tion. The ignorance equivalent is located at the intersection of Ā with the supporting
hyperplane orthogonal to π, and the tangent space of the surface Ā at this point, V ,
determines what local information is actionable for the agent. If a signal realization
updates her belief orthogonally, πs − π ⊥ V , then for small enough changes in the
prior, the supporting hyperplane merely rotates around V but remains tangent at α.
In other words, such a signal realization changes the agent’s belief about the world,
but not in a way that causes her to change her ignorance equivalent or, by Corol-
lary 1, her optimal implementation strategy. In particular, if this is true for all signal
realizations, then the agent does not benefit from the noisy information, nor is she
persuaded to behave any differently; her conditional choices remain exactly as they
were before.

4.3 Eliciting beliefs

The learning-proof menu can also offer insight for an analyst who seeks to identify
an agent’s unknown prior belief. For example, a marketing company may want to
gauge the subjective beliefs about a new product within a representative sample of
consumers. Unincentivized belief elicitation is subject to all the standard pitfalls of
stated preference, but too strong incentives might lead the agent to invest in learning,
making her less representative of the population as whole. Tsakas [2020] shows that
in order to obtain truth-telling but discourage learning, the analyst needs to tailor
the state-dependent payments to the agent’s information cost function.

This design problem is tightly connected to the learning-proof menu. For con-
creteness, suppose that the analyst is familiar with the agent’s information cost (c)
and her state-dependent payoffs from a set of ‘outside options’ (A). By offering the
agent the full learning-proof menu Ā, the analyst removes all learning incentives.12

Moreover, the analyst’s task is much simpler, as the agent’s choice now depends on
her prior in the same way it does in a standard expected utility maximization prob-
lem. Figure 2 can be read this way: If the agent can select any point on the solid
black line, her unconditional choice of α reveals that her prior is π, orthogonal to
the unique tangent hyperplane. More generally, the agent’s prior is uniquely pinned

12We here assume that whenever the agent is exactly indifferent across multiple learning strategies,
she picks the least informative one — for example, if the agent is exactly indifferent between un-
conditional implementation and learning, she picks ignorance. The analyst can always place payoffs
slightly above the surface of the learning-proof menu to favor no learning.
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down when there is a unique tangent hyperplane at the chosen action, and with some
pooling at the kinks (or points of non-differentiability) of Ā. It is particularly con-
venient that the analyst needs only a single observation to identify the set of priors
consistent with the agent’s choices.

In practice, the challenges of belief elicitation are many and beyond the scope of
this paper. However, the learning-proof menu does prove useful even if the analyst
may not have a perfect grasp of the agent’s state-dependent payoffs or learning costs,
or if design constraints limit the number of additional options that can be offered
to the agent. Starting with the latter, suppose that the agent’s original options
correspond to the three actions marked as black dots in Figure 2, and the analyst
can add just one intermediate option. What conditional payoffs should he choose?
Clearly, payoffs below the learning-proof menu are useless because the agent would
never choose such an option by Corollary 4(d). Payoffs within the learning-proof
menu, say α as depicted in Figure 2, are a least-cost way to increase the accuracy of
the belief-elicitation because agents with priors close to π would now mostly select
the new option. Arguably though, this experimental design is not very robust if
the analyst is uncertain about the agent’s payoff, as he then cannot pinpoint the
exact location of the actions (black dots). Similarly, uncertainty about the agent’s
learning costs affects the hashed sets that mark dominated payoff vectors. Payoffs like
α can easily fall below the learning-proof menu even for small perturbations of the
black dots or hashed sets. To gain robustness, the analyst can make the new option
slightly more attractive; this increases costs but also dampens the impact of model
misspecification. Yet, the analyst wants to exercise moderation: If he makes the new
option too attractive, he risks removing one of the outside options as an anchor and
thus rendering it useless for belief elicitation.

5 Application to Bilateral Contracting

The ignorance equivalent naturally emerges in strategic interactions between risk-
neutral RI agents. Generalizing Example 1 from the introduction, we here define a
two-player contracting game between two RI agents called Abigail and Bertrand.

Abigail is an RI decision maker with cost function c who has access to a menu
A ⊂ RI of outside options, each a ∈ A representing a vector of state-dependent
monetary payoffs. If left to her own devices, Abigail thus faces the standard RI
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problem (A,π, c). Bertrand on the other hand is a manager with weakly lower cost
function c̃ ≤ c who, if given a mandate by Abigail, can select from a weakly larger
menu Ã ⊇ A. Both agents initially share a common prior π about the state of
the world. The setup fits a broad range of applications where a potential manager
has an operational or informational advantage. In finance, a fund manager may
invest in funds that are inaccessible to a retail consumer like Abigail; in production
management, a major supplier may have access to technology that is out of reach for
smaller businesses. In both situations, the manager may also have an informational
advantage due to his connections and his experience in interpreting relevant evidence.

We want to identify the contract terms that emerge if the manager can make Abi-
gail a take-it-or-leave-it offer, taking into account that the manager is free to acquire
information both before designing contract terms and after obtaining the mandate,
and that Abigail can condition her acceptance on privately acquired information.

Basic setup. We formally define this outsourcing game as follows:

• At time zero, manager Bertrand privately draws a signal S0 = 〈S0, q
0〉 at cost

c̃(S0,π) and, upon observing its realization s ∈ S0, publishes a menu of con-
tracts Bs ⊂ RI . Each b ∈ Bs represents an agreement whereby Abigail gives the
choice mandate to Bertrand in return for receiving a state-dependent transfer
b. We denote the set of all such menus by B̄ = {Bs | s ∈ S0} .

• At time one, Abigail observes a menu of contract terms B = Bs ∈ B̄, updates
her belief to πB according to Bayes’ rule, and follows a learning strategy SB =

〈A ∪ B, qB〉 at cost c(SB,πB). If Abigail selects an outside option a ∈ A, the
game ends and Bertrand receives a payoff of zero. If Abigail retains Bertrand’s
services by selecting b ∈ B, the game proceeds to time two.

• At time two, Bertrand updates his belief to π(s,b) based on his time-zero draw
s ∈ S0 and Abigail’s selection b ∈ Bs, and follows a learning strategy S(s,b) =

〈Ã, q(s,b)〉 at cost c̃(S(s,b),π(s,b)). Once the state i is revealed, Bertrand transfers
bi to Abigail.

By unconditionally offering the ignorance equivalent α of (A,π, c), Bertrand incurs
no initial learning costs and ensures that he always receives the mandate, since un-
conditional selection of α is optimal in RI problem (A ∪ {α} ,π, c). At time two,
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Bertrand then faces the RI problem (Ã − α,π, c̃), and achieves an overall payoff of
W (Ã,π, c̃) − π · α. The next result shows unconditional agreement on a contract
with terms α constitutes a Perfect Bayesian Equilibrium of the game.

Theorem 5.A. The outsourcing game admits a manager-preferred Perfect Bayesian
Equilibrium where the ignorance equivalent α is offered and accepted unconditionally.

Proof. See Online Appendix B.

The result relies on three key factors: First, offering Abigail the ignorance equiv-
alent transfer is the least-cost way for Bertrand to get hired unconditionally. Second,
any tailoring of his menu offer only serves as a free signal to Abigail and increases
the required transfers. Third, Bertrand indirectly pays for any information revealed
by Abigail’s contract choice, as she only acquires additional information if the extra
transfers raise her consumption utility. Since it is weakly cheaper for him to obtain
the same information directly, contracting on the ignorance equivalent is Bertrand’s
preferred equilibrium.

Information shocks. We now generalize the game by allowing for free public in-
formation to arrive at the beginning of each time period, and refer to the resulting
game as outsourcing with information shocks. Some shocks affect the equilibrium
more than others: Any information that arrives at time zero merely alters the ini-
tial prior π. Similarly, any information that arrives at time two merely increases
Bertrand’s net payoff, but does not affect the expected transfer between the agents or
any strategic decision in earlier rounds. The most interesting case is information that
arrives at time one, after contract terms have been offered but before Abigail accepts.
If the free information is precise enough, Abigail no longer unconditionally accepts
the ignorance-equivalent contract offer, leading to an adverse-selection problem for
Bertrand.

Luckily, Bertrand can hedge against such information shocks by unconditionally
offering the entire learning-proof menu Ā for menu A and cost c in period zero. At
time one, Abigail observes a draw from the free public signal, updates her belief to ρ
and then self-selects the terms corresponding to the ignorance equivalent of (A,ρ, c).
As such, this menu offer ensures that Abigail forgoes all costly information acquisition
and Bertrand always receives the mandate.

25



Theorem 5.B. The outsourcing game with information shocks admits a manager-
preferred Perfect Bayesian Equilibrium where the learning-proof menu Ā is offered
unconditionally and contracting happens at the ignorance equivalent under the public
time-one posterior.

Proof. See Online Appendix B.

The key ideas are the same as above: If Bertrand leaves any learning up to Abigail,
he will indirectly pay for her information-acquisition costs either by missing out on a
contract or by paying higher transfers. Offering the learning-proof menu lets Bertrand
do any learning ‘in house’ while paying only minimal rents to Abigail.

It is worth noting that our analysis assumes that agents fully incorporate strate-
gic information in the game. If signal costs are interpreted purely as information-
acquisition costs, it is natural to assume that agents incorporate all information that
can be inferred from previous choices in the game. On the other hand, if signals costs
are at least partly capturing information-processing constraints, agents may not fully
incorporate this freely available information. If they do not, this generates a dif-
ference in beliefs for the same publicly observable information, and then there exist
terms that both Abigail and Bertrand consider strictly preferable to the ignorance
equivalent α.

6 Conclusion

The ignorance-equivalent approach simplifies the description of optimal agent behav-
ior under costly learning. In essence, it points out that the agent’s ability to learn
acts as if she instead had access to a fictitious action whose payoffs are given by the
ignorance equivalent. In strategic games where one agent designs the menu of the
other, this ignorance-equivalent action often emerges as an actual option. The same
is true in experimental settings where the analyst is free to design payoffs in a way
that boosts his ability to, for instance, identify the agent’s prior. Yet, even in menus
where the ignorance equivalent is only a conceptual shortcut, it characterizes the full
set of optimal signals and allows for parsimonious comparisons across learning strate-
gies, menus, and beliefs. Much like the certainty equivalent reduces the complexity
of economic problems with exogenous uncertainty, the ignorance equivalent allows us
to apply standard expected-utility techniques to problems with learning.
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A Proofs

A.1 Properties of the cost function

Lemma A.1. Under (C2), it is without loss of generality in RI problem (RI) to
restrict attention to learning strategies 〈A, q〉.

Proof. For any signal S = 〈S, q〉 and conditional selection as ∈ A for each s ∈ S,
we can define the learning strategy Ŝ = 〈A, q̂〉 with q̂i(a) =

∑
s∈S:as=a qi(s) for each

a ∈ A. This learning strategy achieves the same expected consumption utility and
is Blackwell less informative than the original signal S. By (C2), it thus achieves a
weakly higher welfare. It is therefore without loss of optimality to restrict attention
to learning strategies only.

Lemma A.2. Under (C1) and (C2), the indirect utility W is continuous in the
prior belief at any interior prior π. Moreover, there exists an upper hemicontinuous
correspondence Q∗ : int(∆I) → (∆A)I with nonempty and compact values, such
that a learning strategy S = 〈A, q〉 is optimal in RI problem (A,π, c) if and only if
q ∈ Q∗(π).

Proof. Since π is interior, there exists δ > 0 such that the closed ball B̄δ(π) is strictly
in the interior of the simplex. Pick any action a ∈ A and consider the straightfor-
ward strategy where the agent picks an uninformative signal S0 = 〈A, δa1〉 that
recommends unconditional implementation of a. For any π′ ∈ Bδ(π), the achieved
welfare π′ · a − c(S0,π′) yields a lower bound on the optimal welfare. At the same
time, the consumption utility of the agent is bounded above in each state i by
āi = maxa∈A ai. As a consequence, S0 is strictly preferable to any signal S with
cost c(S,π′) > π′ · (ā− a) + c(S0,π′).

Since it is without loss of generality to restrict attention to learning strategies
(Lemma A.1), this allows us to restate the optimization problem locally as a choice
over marginal probabilities

W (A,π′, c) = max
q∈Q(π′)

∑
a∈A

∑
i∈I

π′iqi(a)ai − c(〈A, q〉,π′) ∀π′ ∈ B̄δ(π)

over a domain Q(π′) =
{
q ∈ (∆A)I | c(〈A, q〉,π′) ≤ π′ · (ā− a) + c(S0,π′)

}
that

is non-empty and compact. By continuity of the cost function (C1), the objective
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function is continuous and the correspondence Q is continuous with nonempty and
compact values. The claim then follows by Berge’s Theorem of the Maximum.

Lemma A.3. Under (C2), indirect utility W is convex in the prior belief.

Proof. Convexity follows readily from the linearity of the consumption utility and the
fact that signal costs are prior-concavity (C2). Formally, let S be the optimal direct
signal for RI problem (A, tπ+ (1− t)π′). The welfare is bounded above by the linear
interpolation of the welfare achieved in (A,π) and (A,π′) when the same strategy is
used.

W (A,tπ + (1− t)π′, c) =
I∑
i=1

(tπi + (1− t)π′i)
∑
a∈A

q(a|i)ai − c(S, tπ + (1− t)π′)

≤ t

[
I∑
i=1

πi
∑
a∈A

q(a|i)ai − c(S,π)

]
+ (1− t)

[
I∑
i=1

π′i
∑
a∈A

q(a|i)ai − c(S,π′)

]
≤ tW (A,π, c) + (1− t)W (A,π′, c).

Lemma A.4. Suppose (C3) holds. Consider an optimal learning strategy S = 〈A, q〉
to RI problem (A,π, c). Let a ∈ support(q) be an action that is implemented with
positive probability, and πa the associated posterior belief, πai = πiqi(a)

π·q(a)
. In RI problem

(A,πa, c), unconditional implementation of a is optimal, W (A,πa, c) = πa · a.

Proof. Since unconditional implementation is feasible, clearly W (A,πa, c) ≥ πa · a.
By contradiction, suppose W (A,πa, c) > πa · a and consider the sequential strategy
where the agent first draws S and follows its recommendation except for when it
evaluates to a, when she instead continues with an optimal strategy for (A,πa, c).
This sequential strategy achieves utility

I∑
i=1

πi
∑

a′∈A\{a}

qi(a
′)a′i + (π · q(a))W (A,πa, c)− c(S,π).

Since W (A,πa, c) > πa · a, this is strictly larger than

I∑
i=1

πi
∑
a∈A

qi(a)ai − c(S,π),

which implies that this sequential strategy achieves strictly higher utility than signal
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S alone. By (C3), the same is true for its one-shot equivalent, contradicting the
optimality of S in (A,π, c).

Lemma A.5. Assumption (C4) implies that any pure-noise signal S = 〈S, q〉 with
qi(s) ≡ qj(s) ∀i, j ∈ I and s ∈ S is free.

Proof. Since the marginal and conditional probabilities for each realization are the
same across states, S = S(ε,π) for any ε. Consequently, condition (C4) requires that
for any c̄ > 0, there exists ε ∈ (0, 1) such that c(S,π) ≤ c̄ε < c̄, and so by taking the
limit c̄→ 0, c(S,π) = 0.

Lemma A.6. Consider any belief π ∈ ∆I and any two actions with the same expected
utility, a ·π = a′ ·π, that differ in at least one positive probability state. Under (C4),
and any L > 0, there exists a learning strategy 〈{a,a′} , q〉 such that the change in
consumption utility outweighs the signal cost by more than a factor L,

I∑
i=1

πi(qi(a)ai + qi(a
′)a′i)− u > L c(〈{a,a′} , q〉,π).

Proof. Consider a signal S = 〈{a,a′} , q〉 with qi(a) = 1 − qi(a
′) ≡ 1

2
+ δ(ai − a′i)

for some δ > 0 small enough such that all probabilities are nondegenerate. Now
suppose that the agent follows the ε-precision dilution S(ε,π). The change in expected
consumption utility is linear in ε,

I∑
i=1

πi

[
q

(ε,π)
i (a)ai + q

(ε,π)
i (a′)a′i

]
− u = ε

[
I∑
i=1

πi [qi(a)ai + qi(a
′)a′i]− u

]

= ε

[
δ

I∑
i=1

πi(ai − a′i)2

]
> 0.

Letting c̄ := δ
L

∑I
i=1 πi(ai − a′i)2, (C4) implies that for some ε ∈ (0, 1), the benefits

outweigh the cost by more than a factor L since c(S(ε,π),π) < εc̄.

Lemma A.7. Under any optimal posterior πs, all optimal actions are payoff-equivalent
with probability one, a1,a2 ∈ arg maxa∈A π

s·a if and only if a1
i = a2

i whenever πsi > 0.

Proof. By contradiction, suppose that there exist two actions a,a′ ∈ A that both
maximize expected utility under posterior πs but differ in at least one positive-
probability state. Let S be the learning strategy that satisfies the conditions of
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Lemma A.6 for L = 1. Now suppose that the agent, after observing s, follows S
rather than implementing one of the available actions. This sequential approach
strictly improves the agent’s welfare, contradicting the optimality of πs by (C3).

Proof of Lemma 1: Continuity of c (C1) follows directly from that of the potential
φ since

|c(〈S, q̃〉, π̃)− c(S,π)| ≤
∑
s∈S

|(π · q̃(s))φ(π̃s)− (π · q(s))φ(πs)|+ |φ(π)− φ(π̃)| .

Bloedel and Zhong [2020] establish Blackwell monotonicity and prior-concavity (C2)
for this class of cost functions, and show that any (UPS) cost satisfies indifference to
sequential learning, implying that the inequalities in (C3) and (C5) both hold.

For the zero-marginal cost condition (C4), let πs denote the posteriors after draw-
ing s from S = 〈S, q〉 under prior π. Observing s from the noisy signal S(ε,π) leads to
posterior επs+(1−ε)π, but the marginal likelihood for each outcome s is unchanged.
And since

lim
ε→0

1

ε
c(S(ε,π),π) =

∑
s∈S

(π · q(s)) lim
ε→0

φ(επs + (1− ε)π)− φ(π)

ε

= ∇φ(π) ·

[∑
s∈S

(π · q(s))(πs − π)

]
= ∇φ(π) · 0 = 0,

for any c̄ > 0, ∃ε > 0 such that c(S(ε,π),π) < εc̄.

A.2 Ignorance equivalent

Preliminaries. The following mathematical property is key to many of our core
results. It states that if the achievable expected payoff is limited by a convex function
of the belief, it is without loss of generality to impose limits across all beliefs at once:
Doing so does not reduce the achievable payoff under any prior.

Lemma A.8. Let Φ : ∆I → R ∪ {∞} denote a convex function that is finite-valued
over int(∆I). Then for any π ∈ int(∆I), the optimization problem

arg max {π · x | ρ · x ≤ Φ(ρ) ∀ρ ∈ ∆I}

admits a maximum at some x(Φ,π) ∈ RI with objective value π · x(Φ,π) = Φ(π).

30



Proof. Key to the proof is the finite intersection property, which states that a col-
lection of subsets on a compact space has nonempty intersection if and only if the
intersection of every finite subcollection is nonempty.

To apply the finite intersection property, we define first the compact set C ⊆ RI

as follows: Start with a finite set of priors Q ⊂ int(∆I) whose convex cone contains
a closed ball around π, B̄δ(π) ⊂ {

∑
ρ∈Q z(ρ)ρ | z : Q→ [0,∞)} for some δ > 0. Let

C be defined as

C :=
{
x ∈ RI | π · x ≥ Φ(π) and ρ · x ≤ Φ(ρ) ∀ρ ∈ Q

}
.

As the intersection of closed half-spaces, C convex and closed. Further, a known
result in geometry states that any such intersection can be written as the Minkowski
sum of a convex bounded polytope and a cone [e.g. Theorem 1.2 in Ziegler, 2012].
This implies that C is compact if and only if there does not exist a point x0 ∈ C

and a direction v ∈ RI \{0} such that the ray {x0 + zv | z ≥ 0} is entirely contained
in C. There exists no such direction here: Without loss of generality, assume that
‖v‖ = δ. If ρ · v > 0 for any ρ ∈ Q, the constraint ρ · (x0 + zv) ≤ Φ(ρ) is
violated for z large enough. Conversely, if ρ · v ≤ 0 for all ρ ∈ Q, the same holds
for any ρ ∈ B̄δ(π) and in particular for π + v. From there, it then follows that
π · v = (π + v) · v − v · v ≤ 0 − v · v < 0. This in turn implies that the constraint
π · (x0 + zv) ≥ Φ(π) is violated for z large enough. Thus, C is compact.

Consider now any arbitrary finite set of priors R ⊆ ∆I, and denote any intersec-
tion of lower half-spaces as

XR := {x | ρ · x ≤ Φ(ρ) ∀ρ ∈ R} .

To establish that the intersection C ∩ XR is nonempty, we look at the larger cone
XR∪Q. This closed cone contains the point z1 for z ≤ minρ∈R∪Q Φ(ρ) large enough,
and thus is nonempty. Moreover, since π can be written as a convex combination
over Q, π =

∑
ρ∈Q z(ρ)ρ, the set is bounded above in direction π by

∑
ρ∈Q z(ρ)Φ(ρ).

As a result, the set contains an extremal point x0 ∈ arg maxx∈XR∪Q
π · x. Let R0

identify which half-spaces are binding at x0, R0 := {ρ ∈ R ∪Q | ρ · x0 = Φ(ρ)} . To
show that x0 ∈ C, we establish two properties:

(i) π is contained in the convex hull of R0.
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By contradiction, suppose {π} ∩ conv.hull(R0) = ∅. The separating hyperplane
theorem then implies the existence of a nonzero vector v such that v · π > 0

and v ·ρ < 0 for all ρ ∈ R0, or equivalently, ρ · (x0 +εv) ≤ Φ(ρ) for all ρ ∈ XR0

and all ε ≥ 0.13 The finitely many non-binding inequalities ρ · (x0 +εv) < Φ(ρ)

for ρ ∈ (R∪Q) \R0 are all maintained for ε > 0 small enough. In other words,
the point x0 + εv is contained in XR∪Q yet achieves strictly higher expected
utility than x0 under π, contradicting the optimality of x0.

(ii) π · x0 ≥ Φ(π).

Write π as a convex combination
∑
ρ∈R0 m(ρ)ρ, and note that

π · x0 =
∑
ρ∈R0

m(ρ)(ρ · x0) =
∑
ρ∈R0

m(ρ)Φ(ρ) ≥ Φ(π)

by definition of R0 and convexity of Φ.

From the last observation, it follows that C∩XR = {x | π · x ≥ Φ(x)}∩XR∪Q contains
x0 and thus is nonempty.

Applying now the finite intersection property, there exists a point x(Φ,π) in the
intersection C ∩ X∆I . By virtue of belonging to C, π · x(Φ,π) is weakly larger than
Φ(π), and by virtue of belonging to X{π} ⊇ X∆I , it is weakly smaller. Together, the
two inequalities imply that the two are equal and x(Φ,π) is maximal in direction π
over X∆I .

Existence and Uniqueness. By following a learning strategy S = 〈A, q〉, the
agent achieves expected consumption utility

aSi :=
∑
a∈A

qi(a)ai (3)

conditional on state i, irrespective of her prior belief. We define the set of S-dominated
payoff vectors as

ĀS :=
⋂
ρ∈∆I

{
x ∈ RI | ρ · x ≤ ρ · aS − c(S,ρ)

}
. (4)

13Formally, the separating hyperplane theorem assures that there exists a vector w ∈ RI and real
numbers c < c̄ that separate the two disjoint nonempty compact convex sets, w ·π ≥ c̄ and w ·ρ ≤ c
for all ρ ∈ R0. Letting v = w− c+c̄

2 1, note that v ·π = w ·π− c+c̄
2 > 0 and v ·ρ = w ·ρ− c+c̄

2 < 0.
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The decision maker would always weakly prefer to follow the costly advice of signal
S rather than unconditionally implement a ∈ ĀS , no matter her belief. Still, the
previous result implies that for every belief, one of these payoff vectors leaves the
agent exactly indifferent. Indeed, the limit function Φ(ρ) = ρ ·aS − c(S,ρ) is convex
by prior-concavity of the cost function (C2). Lemma A.8 thus ensures that no matter
the agent’s prior, there always exists a S-dominated payoff vector that, if implemented
unconditionally, achieves the same welfare as S.

Corollary 7. Under (C2), for any learning strategy S and any interior belief π ∈
int(∆I), the payoff vector a(S,π) = arg maxx∈ĀS π · x exists and satisfies

π · a(S,π) = π · aS − c(S,π). (5)

Of particular interest is the case where S is optimal under a specific prior π, in
which case Corollary 7 asserts that there exists a point α ∈ ĀS that achieves expected
utility W (A,π, c). We now show that α constitutes the ignorance equivalent.

Proof of Theorem 1: We start with existence of the ignorance equivalent, and then
focus on uniqueness.

Existence. Continuity of the cost function (C1) ensures that the RI problem (A,π, c)
admits an optimal learning strategy S (Lemma A.2). By Corollary 7, there exists
a point α ∈ ĀS such that π · α = W (A,π, c). (In other words, the inequality
in Definition 2 holds and binds at prior π.) We now show that α is an ignorance
equivalent of (A,π, c).

(i) W ({α} ,π, c) ≥ W (A,π, c).

This follows simply because an agent faced with RI problem ({α} ,π, c) can
achieve utility π ·α = W (A,π, c) by implementing α unconditionally.

(ii) W (A ∪ {α} ,π, c) ≤ W (A,π, c).

Let S̃ = 〈A ∪ {α} , q〉 denote an optimal learning strategy for RI problem
(A∪{α} ,π, c). If q(α) = 0, then the strategy does not rely on the presence of
α, and is thus also feasible in problem (A,π, c). If q(α) > 0, let ρ denote the
agent’s posterior belief upon observing realization α. Consider the sequential
strategy where the agent draws S̃ and follows its recommendation except for
realization α, when she instead draws and follows S. The only change in the
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agent’s payoff occurs conditional on realization α, when she achieves expected
utility ρ · aS − c(S,ρ) rather than ρ · α. Since α ∈ ĀS and hence ρ · α ≤
ρ · aS − c(S,ρ), the sequential strategy weakly increases welfare. A one-shot
implementation of this same strategy is weakly cheaper by (C3) and thus forms
a lower bound for W (A,π, c) that weakly exceeds W (A ∪ {α} ,π, c).

Uniqueness. By contradiction, suppose that there exist α1 6= α2 that both satisfy
Definition 1. Since

u := W (
{
α1
}
,π, c) = W (A,π, c) = W (

{
α2
}
,π, c), (6)

the two payoff vectors achieve the same expected utility u.
By Lemma A.6, there exists a signal S0 = 〈{α1,α2} , q0〉 such that

I∑
i=1

πi(q
0
i (α

1)α1
i + q0

i (α
2)α2

i )− u > 2c(S0,π). (7)

We use this signal to construct an improved strategy in menu A∪
{
αk
}
for either

k = 1 or k = 2. Specifically, suppose that the agent first draws signal S0. If its
realization α` is available, ` = k, the agent implements that action, and otherwise
proceeds with the optimal strategy for (A,π`, c), where π` is the posterior belief after
observing α`. The welfare of this strategy in menu A ∪

{
αk
}
is

V k :=

[
I∑
i=1

πiq
0
i (α

k)αki

]
+ (q0(α¬k) · π)W (A,π¬k, c)− c(S0,π).

It is comprised of the agent’s expected continuation utility after either of the two
outcomes of the binary signal S0, net its information costs.

The sum can be written as

V 1 + V 2 =
I∑
i=1

πi
[
q0
i (α

1)α1
i + q0

i (α
2)α2

i

]
− 2c(S0,π) (8)

+ (q0(α1) · π)W (A,πα1

, c) + (q0(α2) · π)W (A,πα2

, c).

The first line is strictly larger than W (A,π, c) by Equation (7), and the second is
weakly larger than that by prior-convexity of W (Lemma A.3). As a consequence,
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V k > W (A,π, c) for at least one k. Since the strategy is feasible, it also follows
that W (A∪

{
αk
}
,π, c) ≥ V k. Because the addition of αk to the menu A generates

additional learning opportunities, it is not an ignorance equivalent.

Corollaries.

Proof of Corollary 1: Let α denote the ignorance equivalent, and consider any
learning strategy S. Uniqueness of the ignorance equivalent implies that α is domi-
nated by any optimal signal according to Definition 2. So when this inequality does
not hold, S cannot be not optimal in either RI problem.

Conversely, unconditional implementation of the ignorance equivalent must, by
Definition 1, achieve at least as much utility as following signal S under both priors
π and π′. Dominance α - S implies that the opposite inequality also holds at both
π and π′, and so S achieves maximal welfare in both RI problems.

Proof of Corollary 2: Consider a sequence of beliefs {πn}∞n=0 that converges to
a prior π0 ∈ int(∆I), and let αn denote the ignorance equivalent of RI problem
(A,πn, c), and Sn an optimal learning strategy. By Lemma A.2, the correspondence
of optimal learning strategies is upper hemicontinuous with nonempty and compact
values. In other words, there exists a convergent subsequence Snk such that S0 =

limk→∞ Snk is optimal in RI problem (A,π0, c). The S0-dominated payoff vector that
maximizes expected payoff under π is thus, by Theorem 1, equal to the ignorance
equivalent α0.

Moreover, by uniqueness of the ignorance equivalent, any convergent subsequence
of signals generates the exact same limit vector α0. It is a well-known result from real
analysis that uniqueness of the limit implies that any bounded sequence,14 and hence
{αn}∞n=0 itself, converges to α0.

Proof of Corollary 3: Let S and S+ denote optimal learning strategies for RI prob-
lems (A,π, c) and (A∪{α} ,ρ, c) respectively. By Theorem 1, α is weakly dominated
by S under any belief. In particular, this implies that whenever S+ recommends im-
plementation of α at some posterior σ, the agent achieves weakly higher welfare by

14By contradiction, suppose the sequence {αn}∞n=0 does not converge. By definition, this implies
that there exists ε > 0 and a subsequence {αnk} with ‖αnk − α0‖ > ε for all k ∈ N. Still, the
associated learning strategies have bounded conditionals, and thus admit a convergent subsequence.
The Bolzano-Weierstrass Theorem asserts that this bounded subsequence admits a convergent sub-
subsequence, but its limit payoff vector must be different from α0.

35



relying on S instead. The one-shot implementation Sρ of this strategy is admissible
in (A,ρ, c), yet achieves weakly higher welfare than S+ by (C3). This implies

W (A,ρ, c) ≥ ρ · aSρ − c(Sρ,ρ) ≥ ρ · aS+ − c(S+,ρ) = W (A ∪ {α} ,ρ, c),

with the opposite inequality binding by menu-monotonicity. In particular, Sρ is opti-
mal in both RI problems (A,ρ, c) and (A∪ {α} ,ρ, c). By Theorem 1, the ignorance
equivalent for both problems is thus equal to the unique arg maxx-Sρ π · x.

A.3 Learning-Proof Menu

Proof of Theorem 2: Under any prior π ∈ int(∆I), Ā needs to contain its own
ignorance equivalents (Ā,π, c) by property (a). Moreover, this ignorance equivalent
has to be equal to that of (A,π, c) by property (b). As such, the elements included
in Ā per Definition 3 are jointly required by the two conditions, and no smaller set
can satisfy both.

Conversely, fix any interior belief π and note that unconditional implementation
of α(A,π,c) is available to the agent and achieves welfare W (A,π, c). Suppose by
contradiction that the agent can do strictly better by relying on a learning strategy
S∗ that recommends actions a ∈ Ā. At any realized posterior ρ, unconditional
implementation of α(A,ρ,c) achieves weakly higher expected utility than any other
available action a ∈ Ā by Corollary 3, and this same expected utility can be achieved
by instead drawing and following an optimal learning strategy for RI problem (A,ρ, c)
by Definition 1. By implementing the one-shot version of this learning strategy, the
agent implements only actions from menu A yet obtains a welfare above W (A,π, c),
contradicting the optimality of W . In other words, unconditional implementation
of α(A,π,c) ∈ Ā is optimal in RI problem (Ā,π, c), establishing that the ignorance
equivalent of (A,π, c) also represents the unique ignorance equivalent of (Ā,π, c).

Proof of Corollary 4: We proceed in steps.
(a) ⇔ (b): Definition 3 states that a ∈ Ā if and only if it is the ignorance

equivalent of (A,π, c) for some prior π ∈ int(∆I). Since a ∈ A, Definition 1 collapses
to just requiring that unconditional implementation of a is optimal, W (A,π, c) =

W ({a} ,π, c).
(b) ⇔ (c): Since unconditional implementation implies that a is chosen with
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positive probability, (b) trivially implies (c). Lemma A.4 formalizes the converse
claim.

(b) ⇒ (d): Proving the contrapositive claim, assume also that there exists ρ ∈
int(∆I) such that α(A,ρ,c) > a. In particular, for any prior π, we have π · a <

π ·α(A,ρ,c). By self-selection of the ignorance equivalent (Corollary 3), adding α(A,ρ,c)

to the menu is not welfare-enhancing under π, implying in particular that its uncon-
ditional implementation can achieve at most utility W (A,π, c). Taken together, at
any prior π,

π · a < π ·α(A,ρ,c) ≤ W (A,π, c),

proving that unconditional implementation of a is suboptimal.
(d) ⇒ (a): Proving the contrapositive claim, assume that a is not part of the

learning-proof menu Ā. Since we can write the learning-proof menu as the upper
boundary of an intersection of half-spaces with positive orthogonality vectors by
Equation (1), a lies strictly below each individual half-space. As a consequence,
the ray {a+ t1 | t ≥ 0} crosses the learning-proof menu at some point α ∈ Ā, and
by Definition 3, this point represents the ignorance equivalent under some prior.

Proof of Corollary 6: The agent’s willingness to pay is equal to the expected change
in welfare,

∑
s∈S(π · q(s))W (A,πs, c) −W (A,π, c). The claim then follows because

Theorem 2 implies that for all priors ρ ∈ int(∆I),

W (A,ρ, c) = ρ ·α(A,ρ,c) 2(b)
= ρ ·α(Ā,ρ,c) = W (Ā,ρ, c) 2(a)

= max
a∈Ā

ρ · a.

Menu Expansion. In this subsection, we impose all cost conditions (C1) to (C5).
For any RI problem (A,π, c), we define the set of π-dominated payoff vectors

Āπ =
{
x ∈ RI | W (A ∪ {x} ,π, c) ≤ W (A,π, c)

}
(9)

as those that do not increase the welfare of an agent with prior π when added to
the menu. We first establish Theorem 3, which ensures that Āπ can equivalently be
stated by replacing all references to A with the ignorance equivalent {α}.

Proof of Theorem 3: We start by proving part (b). Let S0 denote an optimal
learning strategy for RI problem ({α,a+} ,π, c) and S1 an optimal learning strategy
for (A,π, c). Consider a sequential strategy where the agent first draws S0 and
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follows its recommendation except for when it evaluates to α, when she draws and
follows S1. By the now-familiar argument,15 this weakly enhances welfare, and implies
W (A ∪ {a+} ,π, c) ≥ W ({α,a+} ,π, c).

We now establish part (a). The backwards implication is a direct consequence of
the argument we just made, since W ({α,a+} ,π, c) > W ({α} ,π, c) implies that

W (A ∪
{
a+
}
,π, c) ≥ W (

{
α,a+

}
,π, c) > W ({α} ,π, c) = W (A,π, c),

where the first inequality restates claim (b) and the last equality follows from the
definition of the ignorance equivalent.

Next, we provide a direct proof of the forward implication,

W (A ∪
{
a+
}
,π, c) > W (A,π, c) =⇒ W (

{
α,a+

}
,π, c) > W ({α} ,π, c).

To do so, let S+ = 〈A∪{a+} , q+〉 denote an optimal learning strategy for RI problem
(A ∪ {a+} ,π, c), and S = 〈A, q〉 one for (A,π, c). Let ∆ = W (A ∪ {a+} ,π, c) −
W (A,π, c) > 0 denote the difference in the welfare between the two strategies.

Consider an agent who relies on S+ with probability ε and on S otherwise. Since
the gains from S+ are realized only with probability ε, this strategy yields welfare
W (A,π, c) + ε∆. Note also that mixing changes the marginal likelihood that a+ is
implemented, but not its associated posterior π+.

We now suggest a Blackwell-equivalent implementation strategy that proceeds in
two steps: First, the agent draws a binary signal S0

ε = 〈{−,+} , q0
ε〉 which pools all

realizations other than a+ by returning − with probability q0
ε(−) = 1− εq+(a+). If

S0
ε evaluates to +, the agent implements a+ at the same posterior π+ as above. If S0

ε

evaluates to −, the agent updates her belief to π−ε and draws S1
ε , which conditions on

‘not a+’ by returning a ∈ A with probability εq+i (a)+(1−ε)qi(a)

1−εq+i (a)
in state i. Since the agent

is indifferent across all Blackwell-equivalent sequential information strategies under
(C3) and (C5), this strategy too yields welfare W (A,π, c) + ε∆. Welfare can only
increase if we replace signal S1

ε by the ignorance equivalent αε of the corresponding
RI problem (A,πε−, c), hence

(π · q0
ε(−))(π−ε ·αε) + (π · q0

ε(+))(π+ · a+)− c(S0
ε ,π) ≥ W (A,π, c) + ε∆. (10)

15See the proofs of Theorem 1 or Corollary 3.
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By the law of total probability, the average posterior is equal to the prior, allowing
us to express the posterior π−ε as a function of the prior π and the posterior π+,

(π · q0
ε(−))π−ε = π − (π · q0

ε(+))π+ = π − ε(π · q+(a+))π+,

with both π and π+ independent of ε.
We now show that replacing αε with α still achieves a positive welfare gain for

small enough ε. First, prior-continuity of the ignorance equivalent (Corollary 2)
implies that there exists ε > 0 such that

(π · q+(a+))π+ · (α−αε) < ∆

2
.

Second, the self-selection property of the ignorance equivalent (Corollary 3) further
implies that π · (α − αε) ≥ 0, and so the welfare loss of replacing αε with α is
bounded below by

(π · q0
ε(−))π−ε · (α−αε) = π · (α−αε)− ε(π · q+(a+))π+ · (α−αε) > −ε∆

2
. (11)

Taken together, Equations (10) and (11) imply that the agent can achieve welfare

(π · q0
ε(−))π−ε ·α+ (π · q0

ε(+))(π+ · a+)− c(S0
ε ,π) ≥ W (A,π, c) + ε

∆

2

by drawing S0
ε and implementing α upon realization − and a+ otherwise. Since

this strategy is feasible in RI problem ({α,a+} ,π, c), it implies in particular that
W ({α,a+} ,π, c) > W ({α} ,π, c).

Inductive application of this result yields a binary characterization of situations
where ignorance is optimal.

Proof of Corollary 5: Suppose first that unconditional implementation of a ∈ A is
optimal in RI problem (A,π, c). By optimality, W ({a} ,π, c) = W (A,π, c), and by
menu-monotonicity, the latter is weakly larger than W ({a,a′} ,π, c) for each a′ ∈ A.

Conversely, suppose conditionW ({a,a′} ,π, c) ≥ W ({a} ,π, c) hold for each a′ ∈
A. We prove by induction that unconditional implementation of a is optimal in RI
problem (A,π, c), starting with the trivial case A = {a} and adding actions one-
by-one. For the inductive step, assume W ({a} ,π, c) = W (A,π, c) for some subset
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A ⊆ A, and consider what happens when a′ ∈ A \ A is added to the menu. Since
a ∈ A, the assumption satisfies all the conditions of Definition 1, and a denotes the
ignorance equivalent of (A,π, c). By Theorem 3(a), the condition W ({a,a′} ,π, c) ≤
W ({a} ,π, c) then implies that W (A ∪ {a′} ,π, c) ≤ W (A,π, c). Menu-monotonicity
implies the opposite inequality and thus

W (A ∪ {a′} ,π, c) = W (A,π, c) = W ({a} ,π, c).

We now turn back to our definition of π-dominated payoff vectors in Equation (9),
and rewrite it in a way that fits Lemma A.8. To do so, we let S(k,σ)

π denote the binary
signal that, starting from prior π, reaches posterior σ with marginal likelihood k ∈
(0, 1). By the law of total probability, the same signal reaches posterior 1

1−kπ−
k

1−kσ

with marginal likelihood 1 − k. For k > 0 small enough, all probabilities are non-
degenerate. We also define function Φπ : ∆I → R as

Φπ(σ) := σ ·α(A,π,c) + lim
k↓0

1

k
c(S(k,σ)

π ,π), (12)

and use it to restate Āπ.

Lemma A.9. The function Φπ given in Equation (12) is convex and finite-valued,
and Āπ =

{
x ∈ RI

∣∣σ · x ≤ Φπ(σ) ∀σ ∈ ∆I
}
.

Proof. By Theorem 3(a), Āπ can be stated with reference to the ignorance equivalent
α = α(A,π,c) alone, Āπ =

{
x ∈ RI | W ({α,x} ,π, c) ≤ W ({α} ,π, c)

}
. And since

the menu {α,x} is binary, any feasible strategy can be described as drawing S(k,σ)
π

for a small enough k, and implementing x at posterior ρ and α otherwise. Relative
to unconditional implementation of α, relying on this costly signal improves welfare
by

kσ · x+ (π − kσ) ·α− c(S(k,σ)
π ,π)− π ·α = kσ · (x−α)− c(S(k,σ)

π ,π),

which has the same sign as σ · (x− α)− 1
k
c(S(k,σ)

π ,π). As k converges to zero from
above, k ↓ 0, the weighted cost term shrinks. This is because for any t ∈ [0, 1],
S(tk,σ)
π can be implemented in two steps by an uninformative coin flip that triggers a

draw of S(k,σ)
π with probability t, and otherwise recommends action α. By Blackwell

monotonicity (C2) and sequential learning-proofness (C3), this implies the monotonic
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ranking 1
tk
c(S(tk,σ)

π ,π) ≤ 1
k
c(S(k,σ)

π ,π). In other words, the signal is welfare-enhancing
for any k > 0 if and only if

σ · x > inf
k>0

{
σ ·α+

1

k
c(S(k,σ)

π ,π)

}
= Φπ(σ) ∀σ ∈ ∆I,

warranting the suggested formula for Āπ. And since costs are finite for any small
enough k > 0, the infimum Φπ(σ) is finite-valued.

It remains to show that the function Φπ : ∆I → R is convex. Consider a two-
stage process that first flips an uninformative coin that triggers a draw of S(k,σ)

π

with probability t, and otherwise triggers a draw of S(k,σ′)
π . Overall, this process

recommends action x at posterior tσ+(1−t)σ′ with marginal likelihood k. Again, the
one-shot implementation is weakly cheaper by (C2) and (C3), c(S(k,tσ+(1−t)σ′),π) ≤
tc(S(k,σ)

π ,π) + (1− t)c(S(k,σ′)
π ,π). Convexity follows since

Φπ(tσ + (1− t)σ′) = (tσ + (1− t)σ′) ·α+ lim
k↓0

1

k
c(S(k,tσ+(1−t)σ′)

π ,π)

≤ t

[
σ ·α+ lim

k↓0

1

k
c(S(k,σ)

π ,π)

]
+ (1− t)

[
σ′ ·α+ lim

k↓0

1

k
c(S(k,σ′)

π ,π)

]
= tΦπ(σ) + (1− t)Φπ(σ′).

We now show that under any other prior ρ, the set Āπ contains a point that is
implemented unconditionally when present.

Lemma A.10. For any prior ρ ∈ int(∆I), unconditional implementation of the
payoff vector aρ = arg max

{
ρ · x | x ∈ Āπ

}
is optimal in any RI problem (A′,ρ, c)

where the finite menu A′ ⊆ A ∪ Āπ contains aρ.

Proof. By Lemmas A.8 and A.9, the point aρ satisfies ρ · aρ = Φπ(ρ). By contra-
diction, assume that there exists a learning strategy S = 〈A′, q〉 that achieves higher
welfare than unconditional implementation of aρ under prior ρ,∑

i∈I

ρi
∑
a∈A′

qi(a)ai − c(S,ρ) > ρ · aρ = Φπ(ρ).

By definition of Φπ, this implies that there exists k > 0 small enough such that
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∑
i∈I ρi

∑
a∈A′ qi(a)ai− c(S,ρ) > ρ ·α+ 1

k
c(S(k,ρ)

π ,π). Rearranging terms, we obtain

k
∑
i∈I

ρi
∑
a∈A′

qi(a)ai + (π − kρ) ·α− c(S(k,ρ)
π ,π)− kc(S,ρ) > π ·α.

This strict inequality implies that unconditional implementation of α is not optimal
in RI problem (A′ ∪ {α} ,π, c); it is strictly dominated by a sequential strategy
where S(k,ρ)

π is drawn first, and upon realization x, the agent draws and follows signal
S, otherwise she implements α. This contradicts the binary characterization for
optimality of ignorance (Corollary 5) since by definition of Āπ, none of the actions
a ∈ A′ ⊆ A ∪ Āπ yields a welfare improvement by itself.

Building on this, we prove Theorem 4 which states that any anchor can be ‘acti-
vated’ by adding the right action to the menu.

Proof of Theorem 4: Since anchor a is part of the learning-proof menu, there ex-
ists a prior ρ ∈ int(∆I) such that a is implemented unconditionally in (A,ρ, c), and
thus denotes the ignorance equivalent. Fix any k ∈ (0, 1) small enough such that the
belief ρ+ = 1

1−kπ−
k

1−kρ has full support. By Lemmas A.8 and A.9, there exist payoff
vectors α,a+ ∈ Āρ such that π · α = Φρ(π) and ρ+ · a+ = Φρ(ρ

+). Moreover, by
Lemma A.10, unconditional implementation of α and a+ is optimal in RI problems
(A ∪ {a+,α} ,π, c) and (A ∪ {a+,α} ,ρ+, c) respectively. In particular,

W (A ∪
{
a+
}
,π, c) ≤ W (A ∪

{
a+,α

}
,π, c) = π ·α.

We now show that the agent can achieve this upper bound for welfare by following
a learning strategy S(t,ρ)

π that implements action a at posterior ρ with marginal
likelihood t, and otherwise implements action a+ at posterior ρ+.

To do so, note that for any k > 0 small enough, the following two sequential
learning strategies are Blackwell equivalent for an agent with prior ρ:

• Draw S(k,π)
ρ and then, conditional on reaching posterior π, draw S(t,ρ)

π .

• Flip an uninformative coin that triggers a draw of S(k(1−t)/(1−tk),ρ+

ρ with proba-
bility 1− tk and reveals no information otherwise.

Since sequential implementation yields neither gains nor losses by (C3) and (C5),
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both strategies have the same expected cost,

c(S(k,π)
ρ ,ρ) + kc(S(t,ρ)

π ,π) = (1− tk)c(S(k(1−t)/(1−tk),ρ+)
ρ ,ρ).

Rearranging terms and taking the limit t ↓ 0, we find

c(S(t,ρ)
π ,π) = (1− t) lim

k↓0

1− tk
k(1− t)

c(S(k(1−t)/(1−tk),ρ+)
ρ ,ρ)− lim

k↓0

1

k
c(S(k,π)

ρ ,ρ)

= (1− t)[Φρ(ρ+)− ρ+ · a]− [Φρ(π)− π · a]

= (1− t)ρ+ · (a+ − a)− π · (α− a).

Subtracting this cost from the consumption utility tρ · a+ (1− t)ρ+ · a+, we obtain
the welfare under signal S(t,ρ)

π ,

tρ · a+ (1− t)ρ+ · a+ − [(1− t)ρ+ · (a+ − a)− π · (α− a)]

= [tρ+ (1− t)ρ+]︸ ︷︷ ︸
=π

·a+ π · (α− a) = π ·α.

As a result, it is optimal for the agent to implement a with positive probability t > 0

in RI problem (A ∪ {a+} ,π, c).
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B Online Appendix

Outsourcing Games

Proof of Theorem 5.A:. Let α denote the ignorance equivalent of RI problem
(A,π, c). If a contract with these terms is offered and accepted unconditionally,
the resulting equilibrium payoff for manager Bertrand is equal to W (Ã,π, c̃)−π ·α,
and that for agent Abigail is equal to π ·α = W (A,π, c). We consider the following
candidate equilibrium, and then verify that these strategies and beliefs form a Perfect
Bayesian Equilibrium (PBE).

• At time zero, Bertrand draws a free uninformative signal and unconditionally
offers the singleton menu {α}.

• At time one on the equilibrium path, Abigail maintains the prior belief π and
selects the contract α unconditionally. For off-equilibrium menu offers B 6=
{α}, we distinguish two cases: If there exists a prior ρ ∈ int(∆I) such that
W (A ∪ {α} ∪ B,ρ, c) = W (A,ρ, c), Abigail updates her belief16 to one such ρ
and proceeds with an optimal strategy for RI problem (A,ρ, c). In doing so, she
effectively ends the game. If no such belief exists, then it is in particular never
optimal to implement α unconditionally, and by Corollary 4(b) and (d), there
exists some belief σ such that the ignorance equivalent α(A∪{α}∪B,σ,c) dominates
α statewise. Abigail then updates her belief to σ and proceeds with an optimal
strategy for RI problem (B,σ, c).

• At time two, regardless if on or off the equilibrium path, Bertrand maintains the
prior belief π and follows an optimal learning strategy for RI problem (Ã,π, c̃).
Once the state realizes, he executes the required transfer to Abigail.

Bayes-Plausibility. On the equilibrium path, no information is obtained until the
last round and each agent selects a degenerate strategy. By endowing each agent with
the belief π, we trivially ensure that Bayes rule holds.

Sequential Rationality. We treat each time period in a separate paragraph.
16We directly assign a likelihood to each state i, but note that any such interior belief ρ can be

generated within the game. One way is to assume that Bertrand draws and follows a binary signal
〈{B, {α}} , q0〉 with q0

i (B) = ερi/πi for ε ∈ (0, 1) small enough to ensure all probabilities are interior.
Bayes rule then dictates that the resulting likelihood for state i is equal to ρi =

πiq
0
i (B)

π·q0(B) .
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At time two, Bertrand incurs the additive transfer irrespective of his choice. Since
W (Ã − {b} ,π, c̃) = W (Ã,π, c̃)− π · b, the suggested strategy is optimal.

At time one, Abigail’s choice directly determines her final payoff and in that sense,
she too is facing a standard RI problem. If her belief ρ is such that W (A ∪ {α} ∪
B,ρ, c) = W (A,ρ, c) then any solution to the latter RI problem is clearly optimal.
If no such belief exists, then not only is unconditional implementation of α never
optimal, the same can be said of any a ∈ A. By Corollary 4(b) and (c), none of these
actions is chosen in any optimal solution to RI problem (A∪ {α} ∪ B,σ, c). In turn,
this implies that Abigail is just as well off if she restricts attention to submenu B
and proceeds with an optimal RI strategy for (B,σ, c) as the candidate equilibrium
suggests. In passing, note that this also implies that α(A∪{α}∪B,σ,c) = α(B,σ,c).

At time zero, Bertrand guarantees himself an expected payoff of

UB = W (Ã,π, c̃)− π ·α

by following the suggested strategy. If he instead deviates by drawing a signal S0 =

〈S, q0〉 and offering Bs conditional on observing s ∈ S, one of two things happens:
Either Abigail ends the game or W (A ∪ {α} ∪ Bs,ρ, c) strictly exceeds W (A,ρ, c)
for all priors ρ. We will argue that no matter what, Bertrand is just as well off
by offering {α} instead of Bs. In the former case, offering Bs yields a payoff of zero,
whereas offering {α} ensures that Bertrand obtains the mandate unconditionally and
then achieves a net payoff of W (Ã,πs, c̃) − πs · α. By self-selection (Corollary 3),
unconditional implementation of α yields at most W (A,πs, c), imposing the lower
bound

W (Ã,πs, c̃)− πs ·α ≥ W (Ã,πs, c̃)−W (A,πs, c)

which in turn is nonnegative by menu- and cost-monotonicity of W . In the latter
case, Abigail follows a learning strategy Ss = 〈Bs, q1〉 and hires Bertrand at different
terms depending on the signal realization. While α < α(Bs,σ,c) trivially implies that
Bertrand could secure the mandate more cheaply with menu {α} rather than Bs, the
latter includes the draw of Ss at no additional cost to Bertrand. The main difficulty
here is that Abigail evaluates the cost of Ss at a different prior than Bertrand, S 6= πs,
which complicates a direct comparison with Bertrand’s own ‘in-house’ cost of learning.
However, Corollary 7 implies that, as long as πs has full support, there exist contract
terms xs = maxx∈ĀSs πs · x such that the expected transfer under terms xs equals
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the expected transfer under Ss net of learning costs,

πs · xs = πs · aSs − c(Ss,πs),

where āSsi =
∑
b∈B q

1
i (b)bi denotes the average transfer in state i under Ss. The set

ĀSs also includes α(Bs,σ,c) by optimality of Ss (Theorem 1). And since it is only
bounded above, statewise dominance α < α(Bs,σ,c) also implies that α ∈ ĀSs . In
particular, πs · x ≤ πs · x. Together, this allows us to conclude that

πs ·α+ c̃(Ss,πs) ≤ πs · x+ c̃(Ss,πs) = πs · aSs − c(Ss,πs) + c̃(Ss,πs) ≤ πs · aSs ,

and so Bertrand would be better off offering only terms α and acquiring signal Ss by
himself rather than incurring expected transfer πs ·aS1 and obtaining Ss for free. By
continuity, the same holds even if πs does not have full support. Taken together, we
have shown that Bertrand is weakly better off by drawing S0, unconditionally offering
contract menu {α} and then potentially drawing additional signals Ss before solving
the time-two RI problem (Ã,π(s,b), c̃) under some updated belief π(s,b). Since it is
weakly cheaper to acquire all information in one shot by (C3), and transfers are now
always equal to α, the net payoff for Bertrand is thus weakly smaller than under the
candidate equilibrium strategy.

Together, Bayes-plausibility and sequential rationality establish the suggested
strategies as a PBE. To show that no other PBE achieves a higher expected payoff
for Bertrand, we refer the reader to the more general version in the next proof.

Proof of Theorem 5.B:. Let Ā denote the ignorance equivalent of RI problem
(A,π, c). Let further F t = 〈F t, rt〉 denote the free public signal at the beginning
of each round t = 0, 1, 2. We denote the history dependence of the public beliefs
and the optimal strategies as πh̃,h and S h̃,h respectively, where history h̃ refers to
the strategic choices observed in earlier rounds, and h to the public signals drawn
at the beginning of each round. Since each draw from F0 essentially defines a dif-
ferent game, we simplify notation by fixing an arbitrary draw f0 and dropping the
dependence superscript — so π henceforth refers to the updated belief πf0 .

Our candidate equilibrium is as follows:

• At time zero, Bertrand draws a free uninformative signal and unconditionally
offers the contract menu Ā.
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• At time one on the equilibrium path, Abigail updates her belief to πf1 and un-
conditionally accepts the contract with terms equal to the ignorance equivalent
of RI problem (A,π(Ā,f1), c). For off-equilibrium menu offers B 6= A, Abigail’s
beliefs and actions are as in the equilibrium without shocks.

• At time two, regardless if on or off equilibrium path, Bertrand’s belief equals
π(f1,f2) and he draws and follows an optimal learning strategy for RI problem
(Ã,π(f1,f2), c̃). Once the state realizes, he executes the required transfer to
Abigail.

We now verify that these strategies and beliefs form a Perfect Bayesian Equilibrium.
Bayes-Plausibility. On the equilibrium path, only public information is revealed

until the last round and each agent selects a degenerate strategy at each information
set. By endowing each agent with the public belief at each point in time, we trivially
ensure that Bayes rule holds.

Sequential Rationality. We treat each time period in a separate paragraph.
At time two, Bertrand incurs the additive transfer irrespective of his choice. Since

W (Ã − {b} ,π(f1,f2), c̃) = W (Ã,π(f1,f2), c̃) − π(f1,f2) · b, the suggested strategy is
optimal.

At time one, Abigail’s choice directly determines her final payoff and in that
sense, she too is facing a standard RI problem. On the equilibrium path, picking the
appropriate ignorance equivalent is optimal by Theorem 2(b). Off the equilibrium
path, the same arguments as in the previous proof establish optimality of her strategy.

At time zero, Bertrand can guarantee himself an expected payoff of

UB =
∑
i∈I

πi
∑
f1∈F1

r1
i (f1)

[∑
f2∈F2

r2
i (f2)W (Ã,π(f1,f2), c̃)−W (A,πf1 , c)

]

by following the suggested strategy. If he instead deviates by drawing a signal S0 =

〈S, q0〉 and offering Bs conditional on observing s ∈ S, one of two things happens:
Either Abigail ends the game or W (A ∪ {α} ∪ Bs,ρ, c) strictly exceeds W (A,ρ, c)
for all priors ρ. We will argue that no matter what, Bertrand is just as well off
by offering Ā instead of Bs. In the former case, offering Bs yields a payoff of zero,
whereas offering Ā ensures that for any f1 draw, Bertrand obtains the mandate at
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terms α(A,πf1 ,c) and achieves a conditional payoff of∑
f2∈F2

r2
i (f2)W (Ã,π(f1,f2), c̃)− π(s,f1) ·α(A,πf1 ,c).

By convexity of the welfare function (Lemma A.3), the former term is weakly larger
than W (Ã,π(f1,f2), c̃), and by self-selection (Corollary 3), the latter term is weakly
smaller than W (A,π(s,f1), c). The difference is thus nonnegative by menu- and cost-
monotonicity ofW . In the latter case, Abigail follows a learning strategy Ss = 〈Bs, q1〉
and hires Bertrand at different terms depending on the signal realization. By the same
argument as in the previous proof, Bertrand is weakly better off by contracting at
terms α(A,πf1 ,c) unconditionally and acquiring Ss by himself. Offering Ā achieves
exactly that. Taken together, we have thus shown that Bertrand is weakly better off
by drawing S0, unconditionally offering contract menuA and then potentially drawing
additional signals Ss before solving the time-two RI problem (Ã,π(s,b,f1,f2), c̃) under
some updated belief π(s,b,f1,f2). Since it is weakly cheaper to acquire all information in
one shot at time two by (C2) and (C3) and Ā is offered unconditionally, the net payoff
for Bertrand is thus weakly smaller than under the candidate equilibrium strategy.

We now show that no other PBE achieves a higher expected payoff for Bertrand.
For this, we only have to consider on-path strategies and payoffs. We consider an
arbitrary time-zero strategy (S0, {Bs | s ∈ S0}) for Bertrand. At time one, Abigail
observes the public draw f1 and a contract offer B ∈ B̄ and updates her belief to π(B,f1)

according to Bayes rule. Her optimal equilibrium strategy S(B,f1) is determined by
RI-problem (A∪B,π(B,f1), c), and by menu-monotonicity, Abigail expects a payoff of
at least W (A,π(B,f1), c),

∑
i∈I

π
(B,f1)
i

[ ∑
a∈A∪B

q
(B,f1)
i (a)ai

]
− c(S(B,f1),π(B,f1)) ≥ W (A,π(B,f1), c) (13)

for all B ∈ B̄ and f1 ∈ F1. If the game proceeds to time two, Bertrand’s optimal
strategy is determined by RI problem (Ã,π(s,b,f1,f2), c̃) for each s ∈ S0 and b ∈ Bs
because the additive transfer −b is incurred irrespective of his choice.
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Overall, Bertrand obtains an equilibrium payoff of

U ′B =
∑

(i,s,f1,f2)

πiq
0
i (s)r

1
i (f1)r2

i (f2)
∑
b∈Bs

q
(Bs,f1)
i (b)

[
W (Ã,π(s,b,f1,f2), c̃)− bi

]
− c̃(S0,π), (14)

where the first sum is taken over the Cartesian product I×S0×F1×F2.We compare
this payoff to a situation where Bertrand personally draws all the signals at time
two. More specifically, he first obtains the mandate by offering A unconditionally.
He then first draws S0 and observes its realization s, for a cost of c̃(S0,π(f1,f2)).
Next, Bertrand draws S(Bs,f1) and observes its realization a ∈ A ∪ Bs, for a cost of
c̃(S(Bs,f1),π(s,f1,f2)). If a ∈ A, Bertrand follows its recommendation, and otherwise
solves the RI problem (Ã,π(s,a,f1,f2), c̃). He then pays Abigail the required transfer
α(A,πf1 ,c). A one-shot implementation of this information strategy costs weakly less
by (C3) and is admissible in RI problem (Ã,π(f1,f2), c̃), yielding the lower bound

UB ≥
∑

(i,s,f1,f2)

πiq
0
i (s)r

1
i (f1)r2

i (f2)

[∑
a∈A

q
(Bs,f1)
i (a)ai +

∑
a∈Bs

q
(Bs,f1)
i (a)W (Ã,π(s,a,f1,f2), c̃)

− c̃(S0,π(f1,f2))− c̃(S(Bs,f1),π(s,f1,f2))− α(A,πf1 ,c)
i

]
.

In particular, the difference in payoff across the two equilibrium payoffs is at least

UB − U ′B ≥
∑

(i,s,f1,f2)

πiq
0
i (s)r

1
i (f1)r2

i (f2)

[∑
a∈A

q
(Bs,f1)
i (a)ai +

∑
b∈Bs

q
(Bs,f1)
i (b)bi − α(A,πf1 ,c)

i

+ c̃(S0,π)− c̃(S0,π(f1,f2))− c̃(S(Bs,f1),π(s,f1,f2))

]
.

We can get rid of the dependence on s by letting Q0
i (B) =

∑
s∈S0:Bs=B q

0
i (s) denote

the likelihood of menu offer B in state i. By prior-concavity of the cost function (C2),
acquiring the same signal under better information is less costly on average. As a
consequence, the lower bound gets weakly smaller when we replace c̃(S0,π(f1,f2)) with
c̃(S0,π), and c̃(S(Bs,f1),π(s,f1,f2)) with c̃(S(Bs,f1),π(Bs,f1)). And since c̃ ≤ c, replacing
any of the negative cost terms with c only lowers the bound further and drops the
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dependence on f2,

UB − U ′B ≥
∑

(i,B,f1)

πiQ
0
i (B)r1

i (f1)

[ ∑
a∈A∪B

q
(B,f1)
i (a)ai − α(A,πf1 ,c)

i − c(S(B,f1),π(B,f1))

]
. (15)

Optimality of Abigail’s strategy SB implies that this bound can further be relaxed
by Equation (13),

UB − U ′B ≥
∑

(i,B,f1)

πiQ
0
i (B)r1

i (f1)

[
W (A,π(B,f1), c)− α(A,πf1 ,c)

i

]
.

By convexity of W , this in turn gets weakly smaller if we drop the reference to B,

UB − U ′B ≥
∑
(i,f1)

πir
1
i (f1)

[
W (A,πf1, c)− α(A,πf1 ,c)

i

]

= (π · r1(f1))

[
W (A,πf1, c)− πf1 ·α(A,πf1 ,c)

]
= 0.

In other words, there exists no Perfect Bayesian Equilibrium where Bertrand achieves
a higher payoff than in the one described at the beginning of this proof.
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