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Abstract

This paper studies efficient estimation of causal effects when treatment is (quasi-)
randomly rolled out to units at different points in time. We solve for the most efficient
estimator in a class of estimators that nests two-way fixed effects models and other
popular generalized difference-in-differences methods. A feasible plug-in version of the
efficient estimator is asymptotically unbiased with efficiency (weakly) dominating that
of existing approaches. We provide both t-based and permutation-test based methods
for inference. We illustrate the performance of the plug-in efficient estimator in simula-
tions and in an application to Wood et al. (2020a)’s study of the staggered rollout of a
procedural justice training program for police officers. We find that confidence intervals
based on the plug-in efficient estimator have good coverage and can be as much as five
times shorter than confidence intervals based on existing state-of-the-art methods. As
an empirical contribution of independent interest, our application provides the most
precise estimates to date on the effectiveness of procedural justice training programs
for police officers.
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1 Introduction

Researchers are often interested in the causal effect of a treatment that is first implemented
for different units at different times. In some cases, such as our application to the rollout of a
police training program, the timing of the treatment can be explicitly randomized. In other
settings, the researcher does not explicitly control the timing of treatment, but may argue
that the timing of the treatment was determined by idiosyncratic, quasi-random factors.1

Staggered rollouts are commonly analyzed using methods that extend the simple two-
period difference-in-differences (DiD) estimator to the staggered setting. This includes two-
way fixed effects (TWFE) regression models, as well as recent alternatives that yield a
more intuitive causal parameter when there are heterogeneous treatment effects (Callaway
and Sant’Anna, 2020; de Chaisemartin and D’Haultfœuille, 2020; Sun and Abraham, 2020).
These methods all exploit a generalized parallel trends assumption for estimation. Although
(quasi-) random treatment timing implies the parallel trends assumption, however, it has
additional implications beyond parallel trends.

In this paper we exploit these additional implications to obtain estimators that are more
efficient than DiD-based approaches under (quasi-) random treatment timing. We derive the
most efficient estimator in a large class of estimators that nests many existing DiD-based
approaches, and show how to conduct both t-based and permutation-based inference. Our
results are complementary to the active literature on staggered DiD, since we provide more
efficient estimates when treatment is (quasi-) randomly assigned, but our results may not be
applicable in observational settings where the researcher is confident in parallel trends but
not in (quasi-) random treatment timing.

We begin by introducing a design-based framework that formalizes the notion that treat-
ment timing is (quasi-) randomly assigned. There are T periods, and unit i is first treated
in period Gi P G Ď t1, ..., T,8u, with Gi “ 8 denoting that i is never treated (or treated
after period T ). We make two key assumptions in this model. First, we assume that the
treatment timing Gi is (quasi-) randomly assigned. Second, we rule out anticipatory effects
of treatment — for example, a unit’s outcome in period two does not depend on whether it
was first treated in period three or in period four.

Within this framework, we show that pre-treatment outcomes play a similar role to fixed
covariates in a randomized experiment, and generalized DiD estimators can be viewed as
applying a crude form of covariate adjustment. To see this, it is instructive to first consider

1For example, Lafortune et al. (2018) “exploits the apparent randomness of reform timing”; Rossin-Slater
(2017) “leverages quasi-experimental variation in the timing of IHVPE program initiation across states and
years”; and Denning (2017) writes that “the assumption is that timing of a vote authorizing annexation is
exogenous.”
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the special case where we observe data for two periods pT “ 2q, some units are first treated
in period 2 pGi “ 2q, and the remaining units are treated in a later period or never treated
pGi “ 8q. This special case is analogous to conducting a randomized experiment in period
2, with the outcome in period 1 serving as a pre-treatment covariate. The commonly used
difference-in-differences estimator is θ̂DiD “ pȲ22´ Ȳ28q´ pȲ12´ Ȳ18q, where Ȳtg is the mean
outcome for treatment group g at period t. It is clear that θ̂DiD is a special case of the class
of estimators of the form

θ̂β “ pȲ22 ´ Ȳ28q
looooomooooon

Post-treatment diff

´β pȲ12 ´ Ȳ18q
looooomooooon

Pre-treatment diff

(1)

which adjust the post-treatment difference in means by β times the pre-treatment difference
in means. Under the assumption of (quasi-) random treatment timing, the estimator θ̂β is
unbiased for the average treatment effect (ATE) for any β, since the post-treatment difference
in means is unbiased for the ATE and the pre-treatment difference in means is mean-zero.
The value of β that minimizes the variance of the estimator depends on the covariances of
the potential outcomes between periods, however. Intuitively, we want to put more weight
on lagged outcomes when they are more informative about post-treatment outcomes. DiD,
which imposes the fixed weight β “ 1, will thus generally be inefficient, and one can obtain an
(asymptotically) more efficient estimator by estimating the optimal weights from the data.

Our main theoretical results extend this logic to the case of staggered treatment timing,
and provide formal methods for efficient estimation and inference. We begin by introducing
a flexible class of causal parameters that can highlight treatment effect heterogeneity across
both calendar time and time since treatment. Following Athey and Imbens (2021), we define
τt,gg1 to be the average effect on the outcome in period t of changing the initial treatment date
from g1 to g. For example, in the simple two-period case described above, τ2,28 corresponds
with the average treatment effect (ATE) on the second-period outcome of being treated
in period two relative to never being treated. We then consider the class of estimands
that are linear combinations of these building blocks, θ “

ř

t,g,g1 at,g,g1τt,gg1 . Our framework
thus allows for arbitrary treatment effect dynamics, and accommodates a variety of ways of
summarizing these dynamic effects, including several aggregation schemes proposed in the
recent literature.

We then consider the large class of estimators that start with a sample analog to the target
parameter and adjust by a linear combination of differences in pre-treatment outcomes. More
precisely, we consider estimators of the form θ̂β “

ř

t,g at,g,g1 τ̂t,gg1 ´ X̂
1β, where the first term

is a sample analog to θ, and the second term adjusts linearly using a vector X̂ that compares
outcomes for cohorts treated at different dates at points in time before either was treated.
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For example, in the simple two-period case described above, X̂ “ Ȳ12´ Ȳ18 is the difference-
in-means in period 1. We show that several estimation procedures for the staggered setting
are part of this class for an appropriately defined estimand and X̂, including the classical
TWFE estimator as well as recent procedures proposed by Callaway and Sant’Anna (2020),
de Chaisemartin and D’Haultfœuille (2020), and Sun and Abraham (2020). All estimators
of this form are unbiased for θ under the assumptions of random treatment timing and no
anticipation.

We then derive the most efficient estimator in this class. The optimal coefficient β˚

depends on covariances between the potential outcomes over time, and thus the estimators
previously proposed in the literature will only be efficient for special covariance structures.
Although the covariances of the potential outcomes are generally not known ex ante, one can
estimate a “plug-in” version of the efficient estimator that replaces the “oracle” coefficient
β˚ with a sample analog β̂˚. We show that the plug-in efficient estimator is asymptotically
unbiased and as efficient as the oracle estimator under large population asymptotics similar
to those in Lin (2013) and Li and Ding (2017) for covariate adjustment in cross-sectional
experiments.

Our results suggest two complementary approaches to inference. First, we show that
the plug-in efficient estimator is asymptotically normally distributed in large populations,
which allows for asymptotically valid confidence intervals of the familiar form θ̂β̂˚ ˘ 1.96ŝe.2

Second, an appealing feature of our (quasi-) random treatment timing framework is that it
permits us to construct Fisher randomization tests (FRTs), also known as permutation tests.
Following Wu and Ding (2020) and Zhao and Ding (2020) for cross-sectional randomized
experiments, we consider FRTs based on a studentized version of our efficient estimator.
These FRTs have the dual advantages that they are finite-sample exact under the sharp null
of no treatment effects, and asymptotically valid for the weak null of no average effects. In
a Monte Carlo study calibrated to our application, we find that both the t-based and FRT-
based approaches yield reliable inference, and CIs based on the plug-in efficient estimator
are substantially shorter than those for the procedures of Callaway and Sant’Anna (2020),
Sun and Abraham (2020), and de Chaisemartin and D’Haultfœuille (2020).3

As an illustration of our method and standalone empirical contribution, we revisit the
randomized rollout of a procedural justice training program for police officers in Chicago.
The original study by Wood et al. (2020a) found large and statistically significant reductions
in complaints and officer use of force, and these findings were influential in policy debates

2As is common in finite-population settings, the covariance estimate may be conservative if there are
heterogeneous treatment effects.

3The R package staggered allows for easy implementation of the plug-in efficient estimator, available at
https://github.com/jonathandroth/staggered.
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about policing (Doleac, 2020). Unfortunately, an earlier version of our analysis revealed a
statistical error in the analysis of Wood et al. (2020a) which led their estimates to be inflated.
In Wood et al. (2020b), we collaborated with the original authors to correct this error, finding
no significant effects on complaints against police officers and borderline significant effects
on officer use of force, but with wide confidence intervals that included both near-zero and
meaningfully large treatment effects estimates. We find that the use of the methodology
proposed in this paper allows us to obtain substantially more precise estimates of the effect of
the training program. Although we again find no statistically significant effects on complaints
and borderline significant effects on force, the standard errors from using our methodology are
between 1.3 and 5.6 times smaller than from the Callaway and Sant’Anna (2020) estimator
used in Wood et al. (2020b). For complaints, for example, we are able to rule out reductions
larger than 11% of the pre-treatment mean, compared with an upper bound of 26% in the
previous analysis. Our confidence intervals for the effects on complaints are also three times
smaller than those for a smaller pilot study in Seattle (Owens et al., 2018).

Related Literature. This paper contributes to an active literature on DiD and related
methods in settings with staggered treatment timing. Several recent papers have demon-
strated the failures of TWFE models to recover a sensible causal estimand under treat-
ment effect heterogeneity and have proposed alternative estimators with better properties
(Borusyak and Jaravel, 2017; Goodman-Bacon, 2018; de Chaisemartin and D’Haultfœuille,
2020; Callaway and Sant’Anna, 2020; Sun and Abraham, 2020). Most of this literature has
focused on obtaining consistent estimates under a generalized parallel trends assumption,
whereas we focus on efficient estimation under the stronger assumption of (quasi-) random
treatment timing.

Two related papers that have studied (quasi-) random treatment timing are Athey and
Imbens (2021) and Shaikh and Toulis (2019). The former studies a model of random treat-
ment timing similar to ours, but focuses on the interpretation of the TWFE estimand. The
latter paper adopts a different framework of randomization in which treatment timing is
random only conditional on observables, and no two units can be treated at the same time.
Neither paper considers the efficient choice of estimator as we do.

Our technical results extend results in statistics on efficient covariate adjustment in cross-
sectional experiments (Freedman, 2008a,b; Lin, 2013; Li and Ding, 2017) to the setting
of staggered treatment timing, where pre-treatment outcomes play a similar role to fixed
covariates in a cross-sectional experiment. In the special two-period case, our results are
related to McKenzie (2012), who showed that DiD is inefficient under random treatment
assignment in a model with homogeneous treatment effects; see Remark 3 for additional

5



details.
Our paper also relates to the literature on clinical trials using a stepped wedge design,

which is a staggered rollout in which all units are ultimately treated (Brown and Lilford,
2006; Davey et al., 2015; Turner et al., 2017; Thompson et al., 2017). Until recently, this
literature has focused on estimation using mixed effects regression models. Lindner and
Mcconnell (2021) points out, however, that such models may be difficult to interpret under
heterogeneity, and recommends using DiD-based approaches like Sun and Abraham (2020)
instead. Our approach has the potential to offer large gains in precision relative to such DiD-
based approaches. Our paper is also complementary to Ji et al. (2017), who propose using
randomization-based inference procedures to test Fisher’s sharp null hypothesis in stepped
wedge designs. By contrast, we consider Neymanian inference on average treatment effects,
and also show how an FRT with a studentized statistic is both finite-sample exact for sharp
nulls and asymptotically valid for inference on average effects.

Finally, our work is related to Xiong et al. (2019) and Basse et al. (2020), who consider
how to optimally design a staggered rollout experiment to maximize the efficiency of a fixed
estimator. By contrast, we solve for the most efficient estimator given a fixed experimental
design.

2 Model and Theoretical Results

2.1 Model

There is a finite population of N units. We observe data for T periods, t “ 1, .., T . A
unit’s treatment status is denoted by Gi P G Ď t1, ..., T,8u, where Gi is the first period
in which unit i is treated, and Gi “ 8 denotes that a unit is never treated (or treated
after period T ). We assume that treatment is an absorbing state.4 We denote by Yitpgq

the potential outcome for unit i in period t when treatment starts at time g, and define the
vector Yipgq “ pYi1pgq, ..., YiT pgqq

1 P RT . We let Dig “ 1rGi “ gs. The observed vector of
outcomes for unit i is then Yi “

ř

iDigYipgq.
Following Neyman (1923) for randomized experiments and Athey and Imbens (2021) for

settings with staggered treatment timing, our model is design-based: We treat as fixed (or
condition on) the potential outcomes and the number of units first treated at each period
pNgq. The only source of uncertainty in our model comes from the vector of times at which
units are first-treated, G “ pG1, ..., GNq

1, which is stochastic.
4If treatment turns on and off, the parameters we estimate can be viewed as the intent-to-treat effect of

first being treated at a particular date; see Sun and Abraham (2020) and de Chaisemartin and D’Haultfoeuille
(2021) for related discussion for DiD models.
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Remark 1 (Design-based uncertainty). Design-based models are particularly attractive in
settings where it is difficult to define the super-population, such as when all 50 states are
observed (Manski and Pepper, 2018), or in our application where the near-universe of police
officers in Chicago is observed. Even when there is a super-population, the design-based
view allows for valid inference on the sample average treatment effect (SATE); see Abadie
et al. (2020), Sekhon and Shem-Tov (2020) for additional discussion.

Our first main assumption is that the treatment timing is (quasi-) randomly assigned,
meaning that any permutation of the treatment timing vector is equally likely.

Assumption 1 (Random treatment timing). Let D be the random N ˆ |G| matrix with
pi, gqth element Dig. Then P pD “ dq “ p

ś

gPG Ng!q{N ! if
ř

i dig “ Ng for all g, and zero
otherwise.

We discuss extensions to clustered and conditional random assignment in Section 2.8.

Remark 2 (Comparison to parallel trends). The random timing assumption in Assumption
1 is stronger than the usual parallel trends assumption, which only requires that treatment
probabilities are orthogonal to trends in the potential outcomes (see Rambachan and Roth
(2020) for a discussion of parallel trends in design-based models). However, Assumption 1 can
be ensured by design in settings where treatment timing can be explicitly randomized, such as
our application in Section 4. Moreover, we show in Roth and Sant’Anna (2021) that without
random treatment timing, the parallel trends assumption will be sensitive to functional form
unless one imposes strong assumptions about the distribution of the potential outcomes.
Thus, parallel trends will typically be most plausible in contexts where Assumption 1 is
plausible, and indeed researchers often justify the parallel trends assumption in practice by
arguing that treatment is timing is “quasi-random” or “quasi-experimental.”

We also assume that the treatment has no causal impact on the outcome in periods before
it is implemented. This assumption is plausible in many contexts, but may be violated if
individuals learn of treatment status beforehand and adjust their behavior in anticipation
(Abbring and van den Berg, 2003; Lechner, 2010; Malani and Reif, 2015).5

Assumption 2 (No anticipation). For all i, Yitpgq “ Yitpg
1q for all g, g1 ą t.

Note that this assumption does not restrict the possible dynamic effects of treatment –
that is, we allow for Yitpgq ‰ Yitpg

1q whenever t ě minpg, g1q, so that treatment effects can
arbitrarily depend on calendar time and the time that has elapsed since treatment. Rather,

5If anticipatory behavior is only possible within m periods of treatment (e.g., because treatment is an-
nounced m periods in advance), the initial treatment can be re-defined as Gi ´m.
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we only require that, say, a unit’s outcome in period one does not depend on whether it was
ultimately treated in period two or period three.

Example 1 (Special case: two periods). Consider the special case of our model in which
there are two periods pT “ 2q and units are either treated in period two or never treated
pG “ t2,8uq. Under random treatment timing and no anticipation, this special case is
isomorphic to a cross-sectional experiment where the outcome Yi “ Yi2 is the second period
outcome, the binary treatment Di “ 1rGi “ 2s is whether a unit is treated in period
two, and the covariate Xi “ Yi1 ” Yi1p8q is the pre-treatment outcome (which by the No
Anticipation assumption does not depend on treatment status). Covariate adjustment in
cross-sectional randomized experiments has been studied previously by Freedman (2008a,b),
Lin (2013), and Li and Ding (2017), and our results will nest many of the existing results
in the literature as a special case. The two-period special case also allows us to study the
canonical difference-in-differences estimator, while avoiding complications discussed in the
recent literature related to extending this estimator to the staggered case. We will therefore
come back to this example throughout the paper to provide intuition and connect our results
to the previous literature.

Notation. All expectations pE r¨sq and probability statements pP p¨qq are taken over the
distribution of G conditional on the potential outcomes and the number of units treated
at each period, pNgqgPG, although we suppress this conditioning for ease of notation. For
a non-stochastic attribute Wi (e.g. a function of the potential outcomes), we denote by
Ef rWis “ N´1

ř

iWi and Varf rWis “ pN ´ 1q´1 ř

ipWi´Ef rWisqpWi´Ef rWisq
1 the finite-

population expectation and variance of Wi.

2.2 Target Parameters

In our staggered treatment setting, the effect of being treated may depend on both the
calendar time (t) as well as the time one was first treated (g). We therefore consider a
large class of target parameters that allow researchers to highlight various dimensions of
heterogeneous treatment effects across both calendar time and time since treatment.

Following Athey and Imbens (2021), we define τit,gg1 “ Yitpgq ´ Yitpg
1q to be the causal

effect of switching the treatment date from date g1 to g on unit i’s outcome in period t. We
define τt,gg1 “ N´1

ř

i τit,gg1 to be the average treatment effect (ATE) of switching treatment
from g1 to g on outcomes at period t. We will consider scalar estimands of the form

θ “
ÿ

t,g,g1

at,gg1τt,gg1 , (2)
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i.e. weighted sums of the average treatment effects of switching from treatment g1 to g, with
at,gg1 P R being arbitrary weights. Researchers will often be interested in weighted averages
of the τt,gg1 , in which case the at,gg1 will sum to 1, although our results allow for arbitrary
at,gg1 .6 The results extend easily to vector-valued θ’s where each component is of the form
in the previous display; we focus on the scalar case for ease of notation. The no anticipation
assumption (Assumption 2) implies that τt,gg1 “ 0 if t ă minpg, g1q, and so without loss of
generality we make the normalization that at,gg1 “ 0 if t ă minpg, g1q.

Example 1 (continued). In our simple two-period example, a natural target parameter is
the average treatment effect (ATE) in period two. This corresponds with setting θ “ τ2,28 “

N´1
ř

i Yi2p2q ´ Yi2p8q.

We now describe a variety of intuitive parameters that can be captured by this framework
in the general staggered setting. Researchers are often interested in the effect of receiving
treatment at a particular time relative to not receiving treatment at all. We will define
ATEpt, gq :“ τt,g8 to be the average treatment effect on the outcome in period t of being
first-treated at period g relative to not being treated at all. The ATEpt, gq is a close analog
to the cohort average treatment effects on the treated (ATTs) considered in Callaway and
Sant’Anna (2020) and Sun and Abraham (2020). The main difference is that those papers
do not assume random treatment timing, and thus consider ATTs rather than ATEs (in a
sampling-based framework). In some cases, the ATEpt, gq will be directly of interest and
can be estimated in our framework.

When the dimension of t and g is large, however, it may be desirable to aggregate
the ATEpt, gq both for ease of interpretability and to increase precision. Our framework
incorporates a variety of possible summary measures that aggregate the ATEpt, gq across
different cohorts and time periods. We briefly discuss a few possible aggregations which may
be relevant in empirical work, mirroring proposals for aggregating the ATT pt, gq in Callaway
and Sant’Anna (2020).

When researchers are interested in how the treatment effect evolves with respect to the
time elapsed since treatment started, they may want to consider “event-study” parameters
that aggregate the ATEs at a given lag l since treatment (l “ 0, 1, ...),

θESl “
1

ř

g:g`lďT Ng

ÿ

g:g`lďT

NgATEpg ` l, gq.

Note that the instantaneous parameter θES0 is analogous to the estimand considered in
6This allows the possibility, for instance, that θ represents the difference between long-run and short-run

effects, so that some of the at,gg1 are negative.
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de Chaisemartin and D’Haultfœuille (2020) in settings like ours where treatment is an ab-
sorbing state (although their framework also extends to the more general setting where
treatment turns on and off).

In other situations, it may be of interest to understand how the treatment effect differs
over calendar time (e.g. during a boom or bust economy), or by the time that treatment
began. In such cases, the summary parameters

θt “
1

ř

g:gďtNg

ÿ

g:gďt

NgATEpt, gq and θg “
1

T ´ g ` 1

ÿ

t:těg

ATEpt, gq,

which respectively aggregate the ATEs for a particular calendar time or treatment adoption
cohort, may be relevant.

Finally, researchers may be interested in a single summary parameter for the effect of a
treatment. In this case, it may be instructive to consider a simple average of the ATEpt, gq
(weighted by cohort size),

θsimple “
1

ř

t

ř

g:gďtNg

ÿ

t

ÿ

g:gďt

NgATEpt, gq,

or to consider a weighted average of the time or cohort effects,

θcalendar “
1

T

ÿ

t

θt or θcohort “
1

ř

g:g‰8Ng

ÿ

g:g‰8

Ngθg.

Since the most appropriate parameter will depend on context, we consider a broad frame-
work that allows for efficient estimation of all of these (and other) parameters.7

2.3 Class of Estimators Considered

We now introduce the class of estimators we will consider. Intuitively, these estimators start
with a sample analog to the target parameter and linearly adjust for differences in outcomes
for units treated at different times in periods before either was treated.

Let Ȳg “ Ng
´1 ř

iDigYi be the vector of sample means of the outcome for treatment
group g, and let τ̂t,gg1 “ Ȳg,t ´ Ȳg1,t be the sample analog of τt,gg1 . We define

θ̂0 “
ÿ

t,g,g1

at,gg1 τ̂t,gg1 ,

7We note that if 8 R G, then ATEpt, gq is only identified for t ă maxG. In this case, all of the sums
above should be taken only over the pt, gq pairs for which ATEpt, gq is identified.
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which replaces the population means in the definition of θ with their sample analogues.
We will consider estimators of the form

θ̂β “ θ̂0 ´ X̂
1β, (3)

where, intuitively, X̂ is a vector of differences-in-means that are guaranteed to be mean-
zero under the assumptions of random treatment timing and no anticipation. Formally, we
consider M -dimensional vectors X̂ where each element of X̂ takes the form

X̂j “
ÿ

pt,g,g1q:g,g1ąt

bjt,gg1 τ̂t,gg1 ,

where the bjt,gg1 P R are arbitrary weights. There are many possible choices for the vector
X̂ that satisfy these assumptions. For example X̂ could be a vector where each component
equals τ̂t,gg1 for a different combination of pt, g, g1q with t ă g, g1. Alternatively, X̂ could be a
scalar that takes a weighted average of such differences. The choice of X̂ is analogous to the
choice of which variables to control for in a cross-sectional randomized experiment. In prin-
ciple, including more covariates (higher-dimensional X̂) will improve asymptotic precision,
yet including “too many” covariates may lead to over-fitting, leading to poor performance in
practice.8 For now, we suppose the researcher has chosen a fixed X̂, and will consider the
optimal choice of β for a given X̂. We will return to the choice of X̂ in the discussion of our
Monte Carlo results in Section 3 below.

Several estimators proposed in the literature can be viewed as special cases of the class
of estimators we consider for an appropriately-defined estimand and X̂, often with β “ 1.

Example 1 (continued). In our running two-period example, X̂ “ τ̂1,28 corresponds with
the pre-treatment difference in sample means between the units first treated at period two
and the never-treated units. Thus,

θ̂1 “ τ̂2,28 ´ τ̂1,28 “ pȲ22 ´ Ȳ28q ´ pȲ12 ´ Ȳ18q

is the canonical difference-in-differences estimator, where Ȳtg represents the sample mean of
Yit for units with Gi “ g. Likewise, θ̂0 is the simple difference-in-means (DiM) in period two,
pȲ22 ´ Ȳ28q. More generally, the estimator θ̂β takes the simple difference-in-means in period
two and adjusts by β times the difference-in-means in period one. Thus, for β P p0, 1q, θ̂β is a

8Lei and Ding (2020) study covariate adjustment in randomized experiments with a diverging number
of covariates. In principle the vector X̂ could also include pre-treatment differences in means of non-linear
transformations of the outcome as well; see Guo and Basse (2020) for related results on non-linear covariate
adjustments in randomized experiments.
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weighted average of the DiM and DiD estimators. In this special case, the set of estimators of
the form θ̂β is equivalent to the set of linear covariate-adjusted estimators for cross-sectional
experiments considered in Lin (2013); Li and Ding (2017).9

Example 2 (Callaway and Sant’Anna (2020)). For settings where there is a never-treated
group (8 P G), Callaway and Sant’Anna (2020) consider the estimator

τ̂CStg “ τ̂t,g8 ´ τ̂g´1,g8,

i.e. a difference-in-differences that compares outcomes between periods t and g ´ 1 for the
cohort first treated in period g relative to the never-treated cohort. Observe that τ̂CStg can
be viewed as an estimator of ATEpt, gq of the form given in (3), with X̂ “ τ̂g´1,g8 and
β “ 1. Likewise, Callaway and Sant’Anna (2020) consider an estimator that aggregates
the τ̂CStg , say τ̂CSw “

ř

t,g wt,g τ̂t,g8, which can be viewed as an estimator of the parameter
θw “

ř

t,g wt,gATEpt, gq of the form (3) with X̂ “
ř

t,g wt,g τ̂g´1,g8 and β “ 1.10 Similarly,
Callaway and Sant’Anna (2020) consider an estimator that replaces the never-treated group
with an average over cohorts not yet treated in period t,

τ̂CS2
tg “

1
ř

g1:g1ątNg1

ÿ

g1:g1ąt

Ng1 τ̂t,gg1 ´
1

ř

g1:g1ątNg1

ÿ

g1:g1ąt

Ng1 τ̂g´1,gg1 , for t ě g.

It is again apparent that this estimator can be written as an estimator of ATEpt, gq of the
form in (3), with X̂ now corresponding with a weighted average of τ̂g´1,gg1 and β again equal
to 1.

Example 3 (Sun and Abraham (2020)). Sun and Abraham (2020) consider an estimator
that is equivalent to that in Callaway and Sant’Anna (2020) in the case where there is
a never-treated cohort. When there is no never-treated group, Sun and Abraham (2020)
propose using the last cohort to be treated as the comparison. Formally, they consider the
estimator of ATEpt, gq of the form

τ̂SAtg “ τ̂t,ggmax ´ τ̂g´1,ggmax ,

where gmax “ maxG is the last period in which units receive treatment. It is clear that τ̂SAtg
9Lin (2013) and Li and Ding (2017) consider estimators of the form τpβ0, β1q “ pȲ1´β

1
1pX̄1´X̄qq´pȲ0´

β10pX̄0´ X̄qq, where Ȳd is the sample mean of the outcome Yi for units with treatment Di “ d, X̄d is defined
analogously, and X̄ is the unconditional mean of Xi. Setting Yi “ Yi,2, Xi “ Yi,1, and Di “ 1rGi “ 2s, it is
straightforward to show that the estimator τpβ0, β1q is equivalent to θ̂β for β “ N2

N β0 `
N8
N β1.

10This could also be viewed as an estimator of the form (3) if X̂ were a vector with each element corre-
sponding with τ̂t,g8 and the vector β was a vector with elements corresponding with wt,g8.
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takes the form (3), with X̂ “ τ̂g´1,ggmax and β “ 1. Weighted averages of the τ̂SAtg can likewise
be expressed in the form (3), analogous to the Callaway and Sant’Anna (2020) estimators.

Example 4 (de Chaisemartin and D’Haultfœuille (2020)). de Chaisemartin and D’Haultfœuille
(2020) propose an estimator of the instantaneous effect of a treatment. Although their es-
timator extends to settings where treatment turns on and off, in a setting like ours where
treatment is an absorbing state, their estimator can be written as a linear combination of
the τ̂CS2

tg . In particular, their estimator is a weighted average of the Callaway and Sant’Anna
(2020) estimates for the first period in which a unit was treated,

τ̂ dCH “
1

ř

g:gďT Ng

ÿ

g:gďT

Ng τ̂
CS2
gg .

It is thus immediate from the previous examples that their estimator can also be written in
the form (3).

Example 5 (TWFE Models). Athey and Imbens (2021) consider the setting with G “

t1, ...T,8u. Let Ait “ 1rGi ď ts be an indicator for whether unit i is already treated by
period t. Athey and Imbens (2021, Lemma 5) show that the coefficient on Ait from the
two-way fixed effects specification

Yit “ αi ` λt ` Aitθ
TWFE

` εit (4)

can be decomposed as

θ̂TWFE
“
ÿ

t

ÿ

pg,g1q:
minpg,g1qďt

γt,gg1 τ̂t,gg1 `
ÿ

t

ÿ

pg,g1q:
minpg,g1qąt

γt,gg1 τ̂t,gg1 (5)

for weights γt,gg1 that depend only on the Ng and thus are non-stochastic in our framework.
Thus, θ̂TWFE can be viewed as an estimator of the form (3) for the parameter θTWFE “
ř

t

ř

pg,g1q:minpg,g1qďt γt,gg1τt,gg1 , with X “ ´
ř

t

ř

pg,g1q:minpg,g1qąt γt,gg1 τ̂t,gg1 and β “ 1. As noted
in Athey and Imbens (2021) and other papers, however, the parameter θTWFE may not have
an intuitive causal interpretation under treatment effect heterogeneity, since the weights γt,gg1
may be negative.

2.4 Efficient “Oracle” Estimation

We now consider the problem of finding the best estimator θ̂β of the form introduced in (3).
We first show that θ̂β is unbiased for all β, and then solve for the β˚ that minimizes the
variance.
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Notation. We begin by introducing some notation that will be useful for presenting our
results. Recall that the sample treatment effect estimates τ̂t,gg1 are themselves differences in
sample means, τ̂t,gg1 “ Ȳt,g ´ Ȳt,g1 . It follows that we can write

θ̂0 “
ÿ

g

Aθ,gȲg and X̂ “
ÿ

g

A0,gȲg

for appropriately defined matrices Aθ,g and A0,g of dimension 1ˆT and M ˆT , respectively.
Additionally, let Sg “ pN ´ 1q´1

ř

ipYipgq´Ef rYipgqsqpYipgq´Ef rYipgqsq1 be the finite pop-
ulation variance of Yipgq and Sgg1 “ pN ´ 1q´1

ř

ipYipgq´Ef rYipgqsqpYipg1q´Ef rYipg1qsq1 be
the finite-population covariance between Yipgq and Yipg1q.

Our first result is that all estimators of the form θ̂β are unbiased, regardless of β.

Lemma 2.1 (θ̂β unbiased). Under Assumptions 1 and 2, E
”

θ̂β

ı

“ θ for any β P RM .

We next turn our attention to finding the value β˚ that minimizes the variance.

Proposition 2.1. Under Assumptions 1 and 2, the variance of θ̂β is uniquely minimized at

β˚ “ Var
”

X̂
ı´1

Cov
”

X̂, θ̂0

ı

, (6)

provided that Var
”

X̂
ı

is positive definite. Further, the variances and covariances in the
expression for β˚ are given by

Var

«˜

θ̂0

X̂

¸ff

“

˜

ř

gNg
´1Aθ,g Sg A

1
θ,g ´N

´1Sθ,
ř

gNg
´1Aθ,g Sg A

1
0,g

ř

gNg
´1A0,g Sg A

1
θ,g,

ř

gNg
´1A0,g Sg A

1
0,g

¸

“:

˜

Vθ̂0 Vθ̂0,X̂
VX̂,θ̂0 VX̂

¸

,

where Sθ “ Varf
”

ř

g Aθ,gYipgq
ı

. The efficient estimator has variance given by Var
”

θ̂β˚
ı

“

Vθ̂0 ´ pβ
˚q1V ´1

X̂
pβ˚q.

Equation (6) shows that the variance-minimizing β˚ is the best linear predictor of θ̂0 given
X̂. This formalizes the intuition that it is efficient to place more weight on pre-treatment
differences in outcomes the more strongly they correlate with the post-treatment differences
in outcomes.

Example 1 (continued). In our ongoing two-period example, the efficient estimator θ̂β˚ de-
rived in Proposition 2.1 is equivalent to the efficient estimator for cross-sectional randomized
experiments in Lin (2013) and Li and Ding (2017). The optimal coefficient β˚ is equal to
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N8
N
β2 `

N2

N
β8, where βg is the coefficient on Yi1 from a regression of Yi2pgq on Yi1 and a

constant. Intuitively, this estimator puts more weight on the pre-treatment outcomes (i.e.,
β˚ is larger) the more predictive is the first period outcome Yi1 of the second period potential
outcomes. In the special case where the coefficients on lagged outcomes are equal to 1, the
canonical difference-in-differences (DiD) estimator is optimal, whereas the simple difference-
in-means (DiM) is optimal when the coefficients on lagged outcome are zero. For values of
β˚ P p0, 1q, the efficient estimator can be viewed as a weighted average of the DiD and DiM
estimators.

2.5 Properties of the plug-in estimator

Proposition 2.1 solves for the β˚ that minimizes the variance of θ̂β. However, the efficient
estimator θ̂β˚ is not of practical use since the “oracle” coefficient β˚ depends on the covari-
ances of the potential outcomes, Sg, which are typically not known in practice. Mirroring
Lin (2013) for cross-sectional randomized experiments, we now show that β˚ can be approx-
imated by a plug-in estimate β̂˚, and the resulting estimator θ̂β˚ has similar properties to
the “oracle” estimator θ̂β in large populations.

2.5.1 Definition of the plug-in estimator

To formally define the plug-in estimator, let

Ŝg “
1

Ng ´ 1

ÿ

i

DigpYipgq ´ ȲgqpYipgq ´ Ȳgq
1

be the sample analog to Sg, and let V̂X̂,θ̂0 and V̂X̂ be the analogs to VX̂,θ̂0 and VX̂ that replace
Sg with Ŝg in the definitions. We then define the plug-in coefficient

β̂˚ “ V̂ ´1

X̂
V̂X̂,θ̂0 ,

and will consider the properties of the plug-in efficient estimator θ̂β̂˚ .

Example 1 (continued). In our ongoing two-period example, which we have shown is anal-
ogous to a cross-sectional randomized experiment, the plug-in estimator θ̂β̂˚ is equivalent to
the efficient plug-in estimator for cross-sectional experiments considered in Lin (2013). As
in Lin (2013), θ̂β̂˚ can be represented as the coefficient on Di in the interacted ordinary least
squares (OLS) regression,

Yi2 “ β0 ` β1Di ` β2
9Yi1 ` β3Di ˆ 9Yi1 ` εi, (7)
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where 9Yi1 is the demeaned value of Yi1.11 Intuitively, this fully-interacted specification fits
one linear model to estimate the mean of Yi2p2q and another to estimate Yi2p8q, and then
computes the difference, and thus is analogous to an augmented inverse propensity weighted
(AIPW) estimator (Glynn and Quinn, 2010).

Remark 3 (Connection to McKenzie (2012)). McKenzie (2012) proposes using an estimator
similar to the plug-in efficient estimator in the two-period setting considered in our ongoing
example. Building on results in Frison and Pocock (1992), he proposes using the coefficient
γ1 from the OLS regression

Yi2 “ γ0 ` γ1Di ` γ2
9Yi1 ` εi, (8)

which is sometimes referred to as the Analysis of Covariance (ANCOVA I). This differs from
the regression representation of the efficient plug-in estimator in (7), sometimes referred to as
ANCOVA II, in that it omits the interaction termDi

9Yi1. Treating 9Yi1 as a fixed pre-treatment
covariate, the coefficient γ̂1 from (8) is equivalent to the estimator studied in Freedman
(2008a,b). The results in Lin (2013) therefore imply that McKenzie (2012)’s estimator will
have the same asymptotic efficiency as θ̂β̂˚ under constant treatment effects. Intuitively,
this is because the coefficient on the interaction term in (7) converges in probability to 0.
However, the results in Freedman (2008a,b) imply that under heterogeneous treatment effects
McKenzie (2012)’s estimator may even be less efficient than the simple difference-in-means
θ̂0, which in turn is (weakly) less efficient than θ̂β̂˚ .

12

2.5.2 Asymptotic properties of the plug-in estimator

We will now show that in large populations, the plug-in efficient estimator θ̂β̂˚ is asymptot-
ically unbiased for θ and has the same asymptotic variance as the oracle estimator θ̂β˚ . To
derive the properties of the plug-in efficient estimator in large finite populations, we consider
a sequence of finite populations of increasing sizes, as in Lin (2013) and Li and Ding (2017),
among other papers. More formally, we consider sequences of populations indexed by m

where the number of observations first treated at g, Ng,m, diverges for all g P G. For ease of
notation, we leave the index m implicit in our notation for the remainder of the paper. We
assume the sequence of populations satisfies the following regularity conditions.

Assumption 3. (i) For all g P G, Ng{N Ñ pg P p0, 1q.

11We are not aware of a representation of the plug-in efficient estimator as the coefficient from an OLS
regression in the more general, staggered case.

12Relatedly, Yang and Tsiatis (2001), Funatogawa et al. (2011), and Wan (2020) show that β̂1 from (7) is
asymptotically at least as efficient as γ̂1 from (8) in sampling-based models similar to our ongoing example.

16



(ii) For all g, g1, Sg and Sgg1 have limiting values denoted S˚g and S˚gg1, respectively, with S
˚
g

positive definite.

(iii) maxi,g ||Yipgq ´ Ef rYipgqs ||2{N Ñ 0.

Part (i) imposes that the fraction of units first treated at Ng converges to a constant bounded
between 0 and 1. Part (ii) requires the variances and covariances of the potential out-
comes converge to a constant. Part (iii) requires that no single observation dominates the
finite-population variance of the potential outcomes, and is thus analogous to the familiar
Lindeberg condition in sampling contexts.

With these assumptions in hand, we are able to formally characterize the asymptotic
distribution of the plug-in efficient estimator. The following result shows that θ̂β̂˚ is asymp-
totically unbiased, with the same asympototic variance as the “oracle” efficient estimator
θ̂β˚ . The proof exploits the general finite population central limit theorem in Li and Ding
(2017).

Proposition 2.2. Under Assumptions 1, 2, and 3,

?
Npθ̂β̂˚ ´ θq Ñd N

`

0, σ2
˚

˘

, where σ2
˚ “ lim

NÑ8
NVar

”

θ̂β˚
ı

.

2.6 Inference

We now introduce two methods for inference on θ, the first using conventional t-based con-
fidence intervals, and the second using Fisher randomization tests.

2.6.1 t-based Confidence Intervals

To construct confidence intervals using the asymptotic normal distribution derived in Propo-
sition 2.2, one requires an estimate of the variance σ2

˚. We first show that a simple Neyman-
style variance estimator is conservative under treatment effect heterogeneity, as is common
in finite population settings. We then introduce a refinement to this estimator that adjusts
for the part of the heterogeneity explained by X̂.

Recall that σ2
˚ “ limNÑ8NVar

”

θ̂β˚
ı

. Examining the expression for Var
”

θ̂β˚
ı

given in
Proposition 2.1, we see that all of the components of the variance can be replaced with sample
analogs except for the ´Sθ term. This term corresponds with the variance of treatment
effects, and is not consistently estimable since it depends on covariances between potential
outcomes under treatments g and g1 that are never observed simultaneously. This motivates
the use of the Neyman-style variance that ignores the ´Sθ term and replaces the variances
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Sg with their sample analogs Ŝg,

σ̂2
˚ “

˜

ÿ

g

N

Ng

Aθ,g Ŝg A
1
θ,g

¸

´

˜

ÿ

g

N

Ng

Aθ,g Ŝg A
1
0,g

¸˜

ÿ

g

N

Ng

A0,g Ŝg A
1
0,g

¸´1 ˜
ÿ

g

N

Ng

Aθ,g Ŝg A
1
0,g

¸

.

Since Ŝg Ñp S
˚
g (see Lemma A.2), it is immediate that the estimator σ̂2

˚ converges to an
upper bound on the asymptotic variance σ2

˚, although the upper bound is conservative if
there are heterogeneous treatment effects such that S˚θ “ limNÑ8 Sθ ą 0.

Lemma 2.2. Under Assumptions 1, 2, and 3, σ̂2
˚ Ñp σ

2
˚ ` S

˚
θ ě σ2

˚.

When the estimand θ does not involve any treatment effects for the cohort treated in
period one, the estimator σ̂2

˚ can be improved by using outcomes from earlier periods. The
refined estimator intuitively lower bounds the heterogeneity in treatment effects by the part
of the heterogeneity that is explained by the outcomes in earlier periods. The construc-
tion of this refined estimator mirrors the refinements using fixed covariates in randomized
experiments considered in Lin (2013) and Abadie et al. (2020), with lagged outcomes play-
ing a similar role to the fixed covariates.13 To avoid technical clutter, we defer the technical
derivation of the refinement to Appendix A.1, and merely state the sense in which the refined
estimator improves upon the Neyman-style estimator introduced above.

Lemma 2.3. The refined estimator σ̂˚˚, defined in Lemma A.4, satisfies σ̂2
˚˚ Ñp σ

2
˚ ` S˚

θ̃
,

where 0 ď S˚
θ̃
ď S˚θ , so that σ̂˚˚ is asymptotically (weakly) less conservative than σ̂˚.

It is then immediate that the confidence interval, CI˚˚ “ β̂˚ ˘ z1´α{2ŝe is a valid 1´ α level
confidence interval for θ, where ŝe “ σ̂˚˚{

?
n is the standard error and z1´α{2 is the 1´ α{2

quantile of the normal distribution.

2.6.2 Fisher Randomization Tests

An alternative approach to inference uses Fisher randomization tests (FRTs), otherwise
known as permutation tests. We will show that an FRT using a studentized version of the
efficient estimator has the dual advantages that it 1) has exact size under the sharp null of
no treatment effects for all units, and 2) is asymptotically valid for the weak null that θ “ 0.

To derive the FRT, recall that the observed data is pY,Gq, where Y collects all of the Yit
and G “ pG1, ..., GNq

1. Let T “ T pY,Gq denote a statistic of the data, and let Tπ “ T pY,Gπq

13Aronow et al. (2014) provide sharp bounds on the variance of the difference-in-means estimator in
randomized experiments, although these bounds are difficult to extend to other estimators and settings like
those considered here.
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be the statistic using the transformed data in which G is replaced with a permutation Gπ.14

A Fisher randomization test (FRT) computes the p-value

pFRT “ Pπ„UpΠqpTπ ě T pY,Gqq,

where the probability is taken over the uniform distribution on the set of permutations Π.15

Under the sharp null hypothesis that Yipgq “ Yipg
1q for all i, g, g1, the distribution of Tπ is

the same as the distribution as T pY,Gq, and thus by standard arguments the FRT is exact
in finite samples (see, e.g., Imbens and Rubin (2015)).

The sharp null hypothesis of no treatment effect will often be too restrictive in practice,
however, as we may be more interested in the hypothesis that the average effect is zero, i.e.
H0 : θ “ 0. Unfortunately, in general FRTs may not have correct size for such weak null
hypotheses even asymptotically (Wu and Ding, 2020).

We now show, however, that when the FRT is based on the studentized statistic T pY,Gq “
θ̂β̂˚{ŝe, it has asymptotically correct size under the weak null. In fact, we will show that
asymptotically the FRT is equivalent to testing that 0 falls within the t-based confidence
interval CI˚˚ derived in the previous section. Thus, this FRT based on the studentized
statistic is in some sense the “best of both worlds” of Fisherian and Neymanian inference in
that it has exact size under the sharp null hypothesis while having asymptotically correct
size under the weak null.

The following regularity condition imposes that the means of the potential outcomes have
limits, and that their fourth moment is bounded.

Assumption 4. Suppose that for all g, limNÑ8 Ef rYipgqs “ µg ă 8, and there exists L ă 8
such that N´1

ř

i ||Yipgq ´ Ef rYipgqs ||4 ă L for all N .

With this assumption in hand, we can make precise the sense in which the FRT is
asymptotically valid under the weak null.

Proposition 2.3. Suppose Assumptions 1-4 hold. Let tπ “ pθ̂˚{ŝeqπ be the studentized
statistic under permutation π. Then tπ Ñd N p0, 1q, PG-almost surely. Hence, if pFRT is
the p-value from the FRT associated with |tπ|, then under H0 : θ “ 0,

lim
NÑ8

P ppFRT ď αq ď α,

PG-almost surely, with equality if and only if S˚θ “ 0.
14Formally, a permutation π is a bijective map from t1, ..., Nu onto itself, and Gπ “ pGπp1q, ..., GπpNqq1.
15It is often difficult to calculate the p-value over all permutations exactly, so the p-value is approximated

via simulation. We use 500 simulation draws in our implementation of the FRT below.
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Proposition 2.3 implies that the FRT using the studentized version of the efficient estima-
tor asymptotically controls size under the weak null of no average treatment effects. Indeed,
the proposition implies that the FRT is asymptotically equivalent to the test that the t-
based confidence interval CI˚˚ includes 0. Proposition 2.3 extends the results in Wu and
Ding (2020) and Zhao and Ding (2020), who consider permutation tests based on a studen-
tized statistic in cross-sectional randomized experiments.16 Given the desirable properties
of the FRT under both the sharp and weak null hypotheses, we recommend that researchers
report p-values from the FRT alongside the usual t-based confidence intervals.

2.7 Implications for existing estimators

We now discuss the implications of our results for estimators previously proposed in the
literature. We have shown that in the simple two-period case considered in Example 1,
the canonical difference-in-differences corresponds with θ̂1. Likewise, in the staggered case,
we showed in Examples 2-4 that the estimators of Callaway and Sant’Anna (2020), Sun
and Abraham (2020), and de Chaisemartin and D’Haultfœuille (2020) correspond with the
estimator θ̂1 for an appropriately defined estimand and X̂. Our results thus imply that,
unless β˚ “ 1, the estimator θ̂β˚ is unbiased for the same estimand and has strictly lower
variance under random treatment timing. Since the optimal β˚ depends on the potential
outcomes, we do not generically expect β˚ “ 1, and thus the previously-proposed estimators
will generically be dominated in terms of efficiency. Although the optimal β˚ will typically
not be known, our results imply that the plug-in estimator θ̂β̂˚ will have similar properties
in large populations, and thus will be more efficient than the previously-proposed estimators
in large populations under random treatment timing.

We note, however, that the estimators in the aforementioned papers are valid for the
ATT in settings where only parallel trends holds but there is not random treatment tim-
ing, whereas the validity of the efficient estimator depends on random treatment timing.17

Although parallel trends is often justified in practice by arguing that treatment is (quasi-)
randomly assigned, in some observational settings the researcher may be more comfortable
imposing parallel trends than quasi-random treatment timing. We thus view the the plug-in
efficient estimator to be complementary to the estimators considered in previous work, since
it is more efficient under stricter assumptions that will not hold in all cases of interest.

16Permutation tests based on a studentized statistic have been considered in other contexts as well, for
example Janssen (1997); Chung and Romano (2013, 2016); DiCiccio and Romano (2017); Bugni et al. (2018);
Bai et al. (2019); MacKinnon and Webb (2020).

17The estimator of de Chaisemartin and D’Haultfœuille (2020) can also be applied in settings where
treatment turns on and off over time.
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2.8 Extensions and practical considerations

We now discuss several extensions and practical considerations that may be useful for ap-
plying our methods.

Remark 4 (Conditional Random Treatment Timing). For simplicity, we have considered the
case of unconditional random treatment timing. In some experiments, the treatment timing
may be randomized among units with some shared observable characteristics (e.g. counties
within a state). In this case, the methodology described above can be applied within each
randomization stratum, and the stratum-level estimates can be pooled to form aggregate
estimates for the population. Likewise, in quasi-experimental contexts, the assumption of
quasi-random treatment timing may be more plausible among sub-groups of the population
(e.g. within units of the same gender and education status), or among groups of units that
were treated at similar times (e.g. within a decade). The units can then be partitioned into
strata based on observable characteristics, and the analysis we describe can be conducted
within each stratum.18

Remark 5 (Clustered Treatment Assignment). Likewise, in some settings there may be
clustered assignment of treatment timing — e.g. treatment is assigned to families f , and all
units i in family f are first treated at the same time. This violates Assumption 1, since not
all vectors of treatment timing are equally likely. However, note that any average treatment
contrast at the individual level, e.g. 1

N

ř

i Yitpgq ´ Yitpg
1q, can be written as an average

contrast of a transformed family-level outcome, e.g. 1
F

ř

f Ỹftpgq ´ Ỹftpg
1q, where Ỹftpgq “

pF {Nq
ř

iPf Yitpgq. Thus, clustered assignment can easily be handled in our framework by
analyzing the transformed data at the cluster level.

Remark 6 (Testing the randomization assumption). In non-experimental settings, it may
be desirable to test the assumption of quasi-random treatment timing. One intuitive ap-
proach which mirrors the common practice of testing for pre-existing trends is to estimate
an event-study, treating the initial time of treatment as Gi´k for some k ą 0, and then test
whether the treatment effects corresponding with the leads 1, ..., k are different from zero.
Alternatively, a permutation test (as in Section 2.6) using any test statistic depending only
on pre-treatment outcomes will have exact size in finite samples; for instance, one could use
an F -statistic for the equality of the mean pre-treatment outcomes for all cohorts in periods
prior to treatment adoption. We caution, however, that as with tests of pre-existing trends
(cf. Roth, 2020), such tests may have limited power to detect violations of the randomization

18It also seems feasible to adapt some of our procedures to alternative randomization schemes such as
the covariate-adaptive randomization described in Bugni et al. (2019), though a formal treatment of this
extension is beyond the scope of this paper.
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assumption, and thus it is best to additionally motivate the randomization assumption based
on context-specific knowledge.

Remark 7 (Fixed pre-treatment covariates). In some settings, researchers may also have
access to fixed covariates Wi. Differences in the mean of Wi between adoption cohorts can
then be added to the vector X̂ to further increase precision.

3 Monte Carlo Results

We present two sets of Monte Carlo results. In Section 3.1, we conduct simulations in
a stylized two-period setting matching our ongoing example to illustrate how the plug-in
efficient estimator compares to the classical difference-in-differences and simple difference-
in-means (DiM) estimators. Section 3.2 presents a more realistic set of simulations with
staggered treatment timing that is calibrated to our application, comparing the plug-efficient
estimator to recent DiD-based estimators proposed for the staggered treatment case.

3.1 Two-period Simulations.

Specification. We follow the model in Example 1 in which there are two periods (t “
1, 2) and units are treated in period two or never-treated pG “ t1, 2uq. We first generate
the potential outcomes as follows. For each unit i in the population, we draw the never-
treated potential outcomes Yip8q “ pYi1p8q, Yi2p8qq1 from a N p0, Σρq distribution, where
Σρ has 1s on the diagonal and ρ on the off-diagonal. The parameter ρ is the correlation
between the untreated potential outcomes in period t “ 1 and period t “ 2. We then set
Yi2p2q “ Yi2p8q ` τi, where τi “ γpYi2p8q ´ Ef rYi2p8qsq. The parameter γ governs the
degree of heterogeneity of treatment effects: if γ “ 0, then there is no treatment effect
heterogeneity, whereas if γ is positive then individuals with larger untreated outcomes in
t “ 2 have larger treatment effects. We center by Ef rYi2p8qs so that the treatment effects
are 0 on average. We generate the potential outcomes once, and treat the population as
fixed throughout our simulations. Our simulation draws then differ based on the draw of
the treatment assignment vector. For simplicity, we set N2 “ N8 “ N{2, and in each
simulation draw, we randomly select which units are treated in t “ 1 or not. We conduct
1000 simulations for all combinations of N2 P t25, 1000u, ρ P t0, .5, .99u, and γ P t0, 0.5u.

Results. Table 1 shows the bias, standard deviation, and coverage of 95% confidence
intervals for the plug-in efficient estimator θ̂β̂˚ , difference-in-differences θ̂

DiD “ θ̂1, and simple
differences-in-means θ̂DiM “ θ̂0. It also shows the size (null rejection probability) of the FRT
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using a studentized statistic introduced in Section 2.6. Confidence intervals are constructed
as θ̂β̂˚˘1.96σ̂˚˚ for the plug-in efficient estimator, and analogously for the other estimators.19

For all specifications and estimators, the estimated bias is small, and coverage is close to
the nominal level. Table 1 facilitates comparison of the standard deviations of the different
estimators by showing the ratio relative to the plug-in estimator. The standard deviation
of the plug-in efficient estimator is weakly smaller than that of either DiD or DiM in nearly
all cases, and is never more than 2% larger than that of either DiD or DiM. The standard
deviation of the plug-in efficient estimator is similar to DiD when auto-correlation of Y p0q
is high pρ “ 0.99q and there is no heterogeneity of treatment effects pγ “ 0q, so that β˚ « 1

and thus DiD is (nearly) optimal in the class we consider. Likewise, it is similar to DiM
when there is no autocorrelation pρ “ 0q and there is no treatment effect heterogeneity
pγ “ 0q, and thus β˚ « 0 and so DiM is (nearly) optimal in the class we consider. The
plug-in efficient estimator is substantially more precise than DiD and DiM in many other
specifications: the standard deviation of DiD can be as much as 1.7 times larger than the
plug-in efficient estimator, and the standard deviation of the DiM can be as much as 7 times
larger. These simulations thus illustrate how the plug-in efficient estimator can improve on
DiD or DiM in cases where they are suboptimal, while retaining nearly identical performance
when the DiD or DiM model is optimal.

Bias SD Coverage FRT Size

N1 N0 ρ γ PlugIn DiD DiM PlugIn DiD DiM PlugIn DiD DiM PlugIn DiD DiM

1000 1000 0.99 0.0 0.00 0.00 ´0.00 0.01 0.01 0.04 0.95 0.95 0.95 0.05 0.05 0.05
1000 1000 0.99 0.5 0.00 0.00 ´0.00 0.01 0.01 0.06 0.95 0.95 0.95 0.04 0.06 0.05
1000 1000 0.50 0.0 0.00 0.00 0.00 0.04 0.04 0.05 0.94 0.95 0.94 0.06 0.05 0.05
1000 1000 0.50 0.5 0.00 0.00 0.00 0.05 0.05 0.06 0.95 0.95 0.95 0.06 0.05 0.05
1000 1000 0.00 0.0 ´0.00 0.00 ´0.00 0.04 0.07 0.04 0.95 0.94 0.95 0.05 0.06 0.05
1000 1000 0.00 0.5 ´0.00 0.00 ´0.00 0.06 0.07 0.06 0.95 0.95 0.95 0.04 0.05 0.05

25 25 0.99 0.0 0.00 0.00 ´0.03 0.04 0.04 0.27 0.94 0.94 0.94 0.04 0.05 0.06
25 25 0.99 0.5 0.00 ´0.01 ´0.04 0.05 0.08 0.34 0.92 0.93 0.93 0.06 0.06 0.06
25 25 0.50 0.0 ´0.01 0.02 ´0.02 0.24 0.29 0.26 0.94 0.95 0.94 0.04 0.04 0.05
25 25 0.50 0.5 ´0.01 0.01 ´0.03 0.30 0.32 0.33 0.94 0.95 0.94 0.04 0.04 0.05
25 25 0.00 0.0 ´0.03 ´0.02 ´0.03 0.28 0.38 0.27 0.93 0.95 0.93 0.06 0.04 0.06
25 25 0.00 0.5 ´0.04 ´0.02 ´0.04 0.35 0.42 0.34 0.93 0.94 0.94 0.06 0.05 0.06

Table 1: Bias, Standard Deviation, and Coverage for θ̂β̂˚ , θ̂
DiD, θ̂DiM in 2-period simulations

19For θ̂β , we use an analog to σ̂˚˚, except the unrefined estimate σ̂˚ is replaced with the sample analog to
the expression for Var

”

θ̂β

ı

implied by Proposition 2.1 rather than Var
”

θ̂β˚
ı

.
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SD Relative to Plug-In

N1 N0 ρ γ β˚ PlugIn DiD DiM

1000 1000 0.99 0.0 0.99 1.00 1.00 7.09
1000 1000 0.99 0.5 1.24 1.00 1.71 7.07
1000 1000 0.50 0.0 0.52 1.00 1.13 1.15
1000 1000 0.50 0.5 0.65 1.00 1.04 1.15
1000 1000 0.00 0.0 ´0.03 1.00 1.45 1.00
1000 1000 0.00 0.5 ´0.03 1.00 1.31 1.00
25 25 0.99 0.0 0.97 1.00 0.99 6.58
25 25 0.99 0.5 1.22 1.00 1.47 6.31
25 25 0.50 0.0 0.41 1.00 1.21 1.10
25 25 0.50 0.5 0.51 1.00 1.08 1.10
25 25 0.00 0.0 0.10 1.00 1.35 0.98
25 25 0.00 0.5 0.13 1.00 1.22 0.98

Table 1: Ratio of standard deviations for θ̂DiD and θ̂DiM relative to θ̂β̂˚ in 2-period simula-
tions

3.2 Simulations Based on Wood et al. (2020b)

To evaluate the performance of our proposed methods in a more realistic staggered setting,
we conduct simulations calibrated to our application to Wood et al. (2020b) in Section 4.
The outcome of interest Yit is the number of complaints against police officer i in month t for
police officers in Chicago. Police officers were randomly assigned to first receive a procedural
justice training in period Gi. See Section 4 for more background on the application.

Simulation specification. We calibrate our baseline specification as follows. The number
of observations and time periods in the data exactly matches the data from Wood et al.
(2020b) used in our application. We set the untreated potential outcomes Yitp8q to match
the observed outcomes in the data Yi (which would exactly match the true potential outcomes
if there were no treatment effect on any units). In our baseline simulation specification, there
is no causal effect of treatment, so that Yitpgq “ Yitp8q for all g. (We describe an alternative
simulation design with heterogeneous treatment effects in Appendix Section B.) In each
simulation draw s, we randomly draw a vector of treatment dates Gs “ pGs

1, ..., G
s
Nq such

that the number of units first treated in period g matches that observed in the data (i.e.
ř

1rGs
i “ gs “ Ng for all g). In total, there are 72 months of data on 7785 officers. There

are 48 distinct values of g, with the cohort size Ng ranging from 6 to 642. In an alternative
specification, we collapse the data to the yearly level, so that there are 6 time periods and 5
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larger cohorts.
For each simulated data-set, we calculate the plug-in efficient estimator θ̂β̂˚ for four

estimands: the simple weighted average ATE pθsimpleq; the calendar- and cohort-weighted
average treatment effects (θcalendar and θcohort), and the instantaneous event-study parameter
pθES0 q.20 (See Section 2.2 for the formal definition of these estimands). In our baseline
specification, we use as X̂ the scalar weighted combination of pre-treatment differences used
by the Callaway and Sant’Anna (2020, CS) estimator for the appropriate estimand (see
Example 2). In the appendix, we also present results for an alternative specification in
which X̂ is a vector containing τ̂t,gg1 for all pairs g, g1 ą t. For comparison, we also compute
the CS and Sun and Abraham (2020, SA) estimators for the same estimand. Recall that
for θES0 , the CS estimator coincides with the estimator proposed in de Chaisemartin and
D’Haultfœuille (2020) in our setting, since treatment is an absorbing state. Confidence
intervals are calculated as θ̂β̂˚ ˘ 1.96σ̂˚˚ for the plug-in efficient estimator and analogously
for the CS and SA estimators.21

Baseline simulation results. The results for our baseline specification are shown in
Tables 2 and 3. As seen in Table 2, the plug-in efficient estimator is approximately unbiased,
and 95% confidence intervals based on our standard errors have coverage rates close to the
nominal level for all of the estimands, with size distortions no larger than 3% for all of our
specifications. The size for the FRT is also close to the nominal level, which is intuitive
since our baseline specification imposes the sharp null hypothesis, and thus the FRT should
be exact up to simulation error. The CS and SA estimators are also both approximately
unbiased and have good coverage for all of the estimands as well.

Table 3 shows that there are large efficiency gains from using the plug-in efficient estima-
tor relative to the CS or SA estimators. The table compares the standard deviation of the
plug-in efficient estimator to that of the CS and SA estimators. Remarkably, using the plug-
in efficient estimator reduces the standard deviation relative to the CS estimator by a factor
of nearly two for the calendar-weighted average, and by a factor between 1.36 and 1.67 for

20We do not report results for the estimand of TWFE specifications, in light of the recent literature
showing that these estimands do not have an intuitive causal interpretation in settings with staggered
treatment timing (e.g. Borusyak and Jaravel (2017); Athey and Imbens (2021); Goodman-Bacon (2018);
de Chaisemartin and D’Haultfœuille (2020); Sun and Abraham (2020)). The results for the DiD estimator
in the previous section illustrate the performance of TWFE in a simple setting where it has an intuitive
estimand.

21The variance estimator for the CS and SA estimators is adapted analogously to that for the DiD and
DiM estimators, as discussed in footnote 19. We note that these design-based standard errors differ slightly
from those proposed in the original CS and SA papers, which adopt a sampling-based framework; using
design-based standard errors makes the CIs for these estimators the more directly comparable to those for
the plug-in efficient estimator.
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Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar 0.00 0.93 0.06 0.27 0.29
PlugIn cohort 0.00 0.92 0.06 0.24 0.24
PlugIn ES0 0.01 0.94 0.05 0.26 0.27
PlugIn simple 0.00 0.92 0.06 0.22 0.22
CS calendar 0.00 0.94 0.05 0.55 0.55
CS cohort -0.01 0.95 0.05 0.41 0.41
CS/dCDH ES0 0.01 0.94 0.07 0.36 0.36
CS simple -0.01 0.96 0.05 0.41 0.40
SA calendar 0.06 0.93 0.04 1.30 1.30
SA cohort 0.05 0.92 0.05 1.34 1.38
SA ES0 0.03 0.94 0.06 0.83 0.89
SA simple 0.06 0.92 0.04 1.46 1.49

Table 2: Results for Simulations Calibrated to Wood et al. (2020b)

Note: This table shows results for the plug-in efficient and CS and SA estimators in simulations calibrated
to Wood et al. (2020b). The estimands considered are the calendar-, cohort-, and simple-weighted average
treatment effects, as well as the instantaneous event-study effect (ES0). The CS estimator for ES0 corre-
sponds with the estimator in de Chaisemartin and D’Haultfœuille (2020). Coverage refers to the fraction
of the time a nominal 95% confidence interval includes the true parameter, and FRT size refers to the null
rejection rate of a Fisher Randomization Test. Mean SE refers to the average estimated standard error, and
SD refers to the actual standard deviation of the estimator. The bias, Mean SE, and SD are all multiplied
by 100 for ease of readability.

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.92 4.57
cohort 1.67 5.68
ES0 1.36 3.33
simple 1.82 6.76

Table 3: Comparison of Standard Deviations – Callaway and Sant’Anna (2020) and Sun and
Abraham (2020) versus Plug-in Efficient Estimator

Note: This table shows the ratio of the standard deviation of the CS and SA estimators relative to the
plug-in efficient estimator, based on the simulation results in Table 2.

the other estimands. Since standard errors are proportional to the square root of the sample
size, these results suggest that using the plug-in efficient estimator is roughly equivalent to
multiplying the sample size by a factor of four for the calendar-weighted average. The gains
of using the plug-in efficient estimator relative to the SA estimator are even larger, with
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reductions in the standard deviation by a factor of three or more. The reason for this is that
the SA estimator uses only the last-treated units (rather than not-yet-treated units) as a
comparison, but in our setting less than 1% of units are treated in the final period, leading
to an efficiency loss.

Extensions. Appendix B contains several extensions to the baseline simulation specifica-
tion, such as incorporating heterogeneous effects, annualizing the monthly data, using other
choices of X̂, and considering the other two outcomes in our application.22

4 Application to Procedural Justice Training

4.1 Background

Reducing police misconduct and use of force is an important policy objective. Wood et al.
(2020a) studied the Chicago Police Department’s staggered rollout of a procedural justice
training program, which taught police officers strategies for emphasizing respect, neutral-
ity, and transparency in the exercise of authority. Officers were randomly assigned a date
for training.23 Wood et al. (2020a) found large and statistically significant impacts of the
program on complaints and sustained complaints against police officers and on officer use of
force. However, our re-analysis in Wood et al. (2020b) highlighted a statistical error in the
original analysis of Wood et al. (2020a), which failed to normalize for the fact that groups of
officers trained on different days were of varying sizes. In Wood et al. (2020b), we re-analyzed
the data using the procedure proposed by Callaway and Sant’Anna (2020) to correct for the
error. The re-analysis found no significant effect on complaints or sustained complaints, and
borderline significant effects on use of force, although the confidence intervals for all three
outcomes included both near-zero and meaningfully large effects. Owens et al. (2018) studied
a small pilot study of a procedural justice training program in Seattle, with point estimates
suggesting reductions in complaints but imprecisely estimated.

22As in the baseline specification, the plug-in efficient estimator has good coverage and offers efficiency
gains relative to the other methods in nearly all specifications. The one exception is one specification
(calendar aggregation for sustained complaints), which has a rare outcome and puts large weight on small
cohorts, in which t-based CIs for the plug-in efficient estimator undercover (79%); see Appendix B for details.

23See the Supplement to Wood et al. (2020a) for discussion of some concerns regarding non-compliance,
particularly towards the end of the sample. We explore robustness to dropping officers trained in the last
year in Appendix Figure 2. The results are qualitatively similar, although with smaller estimated effects on
use of force.
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4.2 Data

We use the same data as in the re-analysis in Wood et al. (2020b), which extends the data
used in the original analysis of Wood et al. (2020a) through December 2016. As in Wood et
al. (2020b), we restrict attention to the balanced panel of 7,785 who remained in the police
force throughout the study period. The data contain three outcome measures (complaints,
sustained complaints, and use of force) at a monthly level for 72 months (6 years), with the
first cohort trained in month 13 and the final cohort trained in the last month of the sample.

4.3 Estimation

We apply our proposed plug-in efficient estimator to estimate the effects of the procedural
justice training program on the three outcomes of interest. We estimate the simple-, cohort-
, and calendar-weighted average effects described in Section 2.2 and used in our Monte
Carlo study. We also estimate the average event-study effects for the first 24 months after
treatment, which includes the instantaneous event-study effect studied in our Monte Carlo
as a special case (for event-time 0). For comparison, we also estimate the Callaway and
Sant’Anna (2020) estimator as in Wood et al. (2020b).24

4.4 Results

Figure 1 shows the results of our analysis for the three aggregate summary parameters. Table
4 compares the magnitudes of these estimates and their 95% confidence intervals (CIs) to
the mean of the outcome in the 12 months before treatment began. It also reports p-values
from the FRT.

For all outcomes, the CIs for the plug-in efficient overlap with those of the Callaway and
Sant’Anna (2020, CS) estimator but are substantially narrower. Indeed, the final column
of Table 4 show that the standard errors range from 1.3 to 5.6 times smaller depending on
the specification. As in Wood et al. (2020b), we find no significant impact on complaints
using any of the aggregations. Our bounds on the magnitude of the treatment effect are
substantially tighter than before, however. For instance, using the simple aggregation we
can now rule out reductions in complaints of more than 11%, compared with a bound of
26% using the CS estimator. Using the simple aggregation scheme our standard errors for
complaints are 1.9 times smaller than when using CS and over three times smaller than those
in Owens et al. (2018) (normalizing both estimates as a fraction of the pre-treatment mean).
For use of force, the point estimates are somewhat smaller in magnitude than when using

24For direct comparability, we calculate design-based standard errors for the CS estimator using the analog
to σ̂˚˚, and thus the reported SEs differ slightly from the sampling-based SEs reported in Wood et al. (2020b).
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Figure 1: Effect of Procedural Justice Training Using the Plug-In Efficient and Callaway
and Sant’Anna (2020) Estimators

Note: this figure shows point estimates and 95% CIs for the effects of procedural justice training on com-
plaints, force, and sustained complaints using the CS and plug-in efficient estimators. Results are shown for
the calendar-, cohort-, and simple-weighted averages.

Table 4: Estimates and 95% CIs as a Percentage of Pre-treatment Means

Note: This table shows the pre-treatment means for the three outcomes. It also displays the estimates and
95% CIs in Figure 1 as percentages of these means, as well as the p-value from a Fisher Randomization Test
(FRT). The final column shows the ratio of the length of the CI for the CS estimator relative to that for the
plug-in efficient estimator.
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the CS estimator and the upper bounds of the confidence intervals are all nearly exactly 0; p-
values using the FRT are all between 0.05 and 0.1. Although precision is substantially higher
than when using the CS estimator, the CIs for force still include effects between near-zero
and 29% of the pre-treatment mean. For sustained complaints, all of the point estimates are
near zero and the CIs are substantially narrower than when using the CS estimator, although
the plug-in efficient estimate using the calendar aggregation is marginally significant (FRT
p “ 0.1). If we were to Bonferroni-adjust all of the CIs in Figure 1 for testing nine hypotheses
(three outcomes times three aggregations), none of the confidence intervals would rule out
zero.

Figure 2 shows event-study estimates for the first two years after treatment using the
plug-in efficient estimator, and Appendix Figure 1 shows the analogous results using the CS
estimator. In dark blue, we present point estimates and pointwise confidence intervals, and
in light blue we present sup-t simultaneous confidence bands (Olea and Plagborg-Møller,
2019).25 It has been argued that simultaneous confidence bands are more appropriate for
event-study analyses since they control size over the full dynamic path of treatment effects
(Freyaldenhoven et al., 2019; Callaway and Sant’Anna, 2020). Figure 2 shows that the
simultaneous confidence bands include zero for nearly all periods for all three outcomes.
Inspecting the results for force more closely, we see that the point estimates are positive
(although typically not significant) for most of the first year after treatment, but become
consistently negative around the start of the second year from treatment. This suggests that
the negative point estimates in the aggregate summary statistics are driven mainly by months
after the first year. Although it is possible that the treatment effects grow over time, this
runs counter to the common finding of fadeout in educational programs in general (Bailey
et al., 2020) and anti-bias training in particular (Forscher and Devine, 2017). Appendix C
contains additional results for our application, including the dynamic event-study results for
CS and other robustness checks.

Our analysis provides the most precise estimates to date on the effectiveness of proce-
dural justice training for police officers. Unfortunately, our results are consistent with the
hypothesis of near-zero effects on all outcomes, and provide substantially tighter bounds
on the maximum effectiveness of such programs relative to prior work. Given the low cost
of such training programs, however, these programs may nevertheless clear a cost-benefit
analysis at the upper bounds of our CIs for their effectiveness (e.g. an 11% reduction in
complaints). Thus, while our results suggest that these programs are likely not as effective
as was initially hoped, there may yet be a role for procedural justice training in reducing
police misconduct.

25We use the suptCriticalValue R package developed by Ryan Kessler.
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Figure 2: Event-Time Average Effects Using the Plug-In Efficient Estimator

5 Conclusion

This paper considers efficient estimation in settings with staggered adoption and (quasi-)
random treatment timing. The assumption of (quasi-) random treatment timing is stronger
than parallel trends, but is often the justification given for the parallel trends assumption, and
it can be ensured by design in experimental contexts like our application. We derive the most
efficient estimator in a large class of estimators that nests many existing approaches. The
“oracle” efficient estimator is not known in practice, but we show that a plug-in sample analog
has similar properties in large populations, and we derive both t-based and permutation-
based approaches to inference. We find in simulations that the proposed plug-in efficient
estimator is approximately unbiased, yields reliable inference, and substantially increases
precision relative to existing methods. We apply our proposed methodology to obtain the
most precise estimates to date of the causal effects of procedural justice training programs
for police officers.
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Supplement to “Efficient Estimation for Staggered Rollout
Designs”

A Proofs

Proof of Lemma 2.1

Proof. By Assumption 1, E rDigs “ pNg{Nq. Hence,

E
”

θ̂0

ı

“ E

«

ÿ

g

Aθ,g
1

Ng

ÿ

i

DigYi

ff

“
ÿ

g

Aθ,g
1

Ng

ÿ

i

E rDigsYipgq “
ÿ

g

Aθ,g
1

Ng

ÿ

i

Ng

N
Yipgq “ θ.

Likewise,

E
”

X̂
ı

“ E

«

ÿ

g

A0,g
1

Ng

ÿ

i

DigYi

ff

“
ÿ

g

A0,g
1

N

ÿ

i

Yipgq “
1

N

ÿ

i

ÿ

g

A0,gYipgq “ 0,

since
ř

g A0,gYipgq “ 0 by Assumption 2. The result follows immediately from the previous
two displays.

Proof of Proposition 2.1

Proof. First, observe that

min
β

Var
”

θ̂β

ı

“ min
β

Var
”

θ̂0 ´ X̂
1β
ı

“ min
β

E
„

´

pθ̂0 ´ θq ´ pX̂ ´ E
”

X̂
ı

q
1βq

¯2


.

From the usual least-squares formula, the unique solution is

E
”

pX̂ ´ E
”

X̂
ı

qpX̂ ´ E
”

X̂
ı

q
1
ı´1

loooooooooooooooooooomoooooooooooooooooooon

VarrX̂s
´1

E
”

pX̂ ´ E
”

X̂
ı

qpθ̂0 ´ θq
ı

looooooooooooooomooooooooooooooon

CovrX̂,θ̂0s

,

which gives the first result.

To derive the form of the variance, let Aτ,g “

˜

Aθ,g

A0,g

¸

. Define

τ̂ :“
ÿ

g

Aτ,gȲg “

˜

θ̂0

X̂

¸

.
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Since Assumption 1 holds, we can appeal to Theorem 3 in Li and Ding (2017), which implies
that Var rτ̂ s “

ř

gNg
´1Aτ,gSgA

1
τ,g ´ N´1Sτ , where Sτ “ Varf

”

ř

g Aτ,gYipgq
ı

. The result
then follows immediately from expanding this variance, as well as the observation that Sτ “
˜

Sθ 0

0 0

¸

, where the 0 blocks are obtained by noting that
ř

g A0,gYipgq “ 0 for all i by

Assumption 2.

Proof of Proposition 2.2 To establish the proof, we first provide two lemmas that char-
acterize the asymptotic joint distribution of pθ̂0, X̂

1q1, and show that Ŝg is consistent for S˚g
under Assumption 3. Both results are direct consequences of the general asymptotic results
in Li and Ding (2017) for multi-valued treatments in randomized experiments.

Lemma A.1. Under Assumptions 1, 2, and 3,

?
N

˜

θ̂0 ´ θ

X̂

¸

Ñd N p0, V ˚q ,

where

V ˚ “

˜

ř

g pg
´1Aθ,g S

˚
g A

1
θ,g ´ S

˚
θ

ř

g pg
´1Aθ,g S

˚
g A

1
0,g

ř

g pg
´1A0,g S

˚
g A

1
θ,g

ř

g pg
´1A0,g S

˚
g A

1
0,g

¸

“:

˜

V ˚
θ̂0

V ˚
θ̂0,X̂

V ˚
X̂,θ̂0

V ˚
X̂

¸

,

and S˚θ “ limNÑ8 Sθ (where Sθ is defined in Proposition 2.1).

Proof. As in the proof to Proposition 2.1, we can write

τ̂ “
ÿ

g

Aτ,gȲg “

˜

θ̂0

X̂

¸

.

The result then follows from Theorem 5 in Li and Ding (2017), combined with the observation

noted in the proof to Proposition 2.1 that Sτ “

˜

Sθ 0

0 0

¸

and hence Sτ Ñ

˜

S˚θ 0

0 0

¸

.

Lemma A.2. Under Assumptions 1, 2, and 3, Ŝg Ñp S
˚
g for all g.

Proof. Follows immediately from Proposition 3 in Li and Ding (2017).

To complete the proof of Proposition 2.1, recall that β̂˚ “ V̂ ´1

X̂
V̂X̂,θ̂0 . It is clear that β̂˚

is a continuous function of V̂X̂ and V̂X̂,θ̂0 , and that V̂X̂ and V̂X̂,θ̂0 are continuous functions of
Ŝg. From Lemma A.2 along with the continuous mapping theorem, we obtain that β̂˚ Ñp

pV ˚Xq
´1V ˚

X̂,θ̂0
. Lemma A.1 together with Slutsky’s lemma then give that

?
Npθ̂β̂˚ ´ θq Ñd

2



N
´

0, V ˚
θ̂0
´ V ˚1

X̂,θ̂0
pV ˚

X̂
q´1V ˚

X̂,θ̂0

¯

. From Proposition 2.1, it is apparent that the asymptotic

variance of θ̂β̂˚ is equal to the limit of NVar
”

θ̂β˚
ı

, which completes the proof.

Proof of Lemma 2.2

Proof. Immediate from the fact that Ŝg Ñp S
˚
g (see Lemma A.2) combined with the contin-

uous mapping theorem.

Proof of Proposition 2.3

Proof. Note that, conditional on G, the distribution of tπ corresponds with the distribution
of
?
Nθ̂˚{σ˚˚ in a population with potential outcomes Y ˚p¨q, where Y ˚i pgq “ YipGiq for all

i, g. To prove the first assertion, it thus suffices to show that the populations defined by Y ˚p¨q
satisfy Assumption 3, PG-almost surely, in which case the result follows from Proposition
2.2 and Lemma A.4 applied to the population with potential outcomes Y ˚p¨q.

Since the set of observations with Gi “ g is a simple random sample from a finite
population, Lemma A5 in Wu and Ding (2020) implies that

Ȳg “
1

Ng

ÿ

i

1rGi “ gsYipgq Ña.s. lim
NÑ8

Ef rYipgqs “: µ˚g

1

Ng ´ 1

ÿ

i

1rGi “ gspYipgq ´ Ȳgq
2
Ña.s. lim

NÑ8
Varf rYipgqs “: S˚g

In a slight abuse of notation, we will denote by Ef rY ˚i pgqs the finite-population expectation
in the population with potential outcomes Y ˚i pgq, where Y ˚i pgq “ YipGiq. Now,

Ef rY ˚i pgqs “
1

N

ÿ

i

Yi “
ÿ

g

Ng

N

1

Ng

ÿ

i

1rGi “ gsYipgq Ña.s.

ÿ

g

pgµ
˚
g
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Similarly,

Varf rY ˚i pgqs “
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i
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N
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¨
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¸2
˛

‚

where we obtain the convergence from the previous displays and the continuous mapping
theorem (and we use the shorthand Y 2 for Y Y 1). The first term in the limit is positive defi-
nite, since S˚g is positive definite for each g by Assumption 3, and the second term is positive
definite by Jensen’s inequality. Hence, Assumption 3(ii) is satisfied for the population with
potential outcomes Y ˚i Pg-almost surely. Finally, Assumption 3(iii) is satisfied Pg-almost
surely by Lemma A6 in Wu and Ding (2020).

The second assertion then follows immediately from the fact that
?
Npθ̂β̂˚ ´ θq{σ̂˚˚ Ñd

N p0, cq, for c “ σ2
˚{pσ

2
˚ ` S

˚
θ q ď 1, by Proposition 2.2 and Lemma A.4.

A.1 Derivation of Variance Refinement

We now provide a derivation for the refined variance estimator discussed in Lemma 2.3, as
well as a formal proof of its validity. First, recall that the Neyman-style variance estimator
was conservative by S˚θ “ limNÑ8 Sθ. We first provide a lemma which gives a consistently
estimable lower bound on Sθ. Intuitively, this is the component of the treatment effect
heterogeneity that is explained by lagged outcomes.

Lemma A.3. Suppose that Aθ,g “ 0 for all g ă gmin. If Assumption 2 holds, then

Sθ “ Varf
”

θ̃i

ı

`
N ` 1

N ´ 1

˜

ÿ

gěgmin

βg

¸1

pMSgmin
M 1
q

˜

ÿ

gěgmin

βg

¸

, (9)

where M is the matrix that selects the rows of Yi corresponding with t ă gmin; βg “
pMSgM

1q´1MSgA
1
θ,g is the coefficient from projecting Aθ,gYipgq on MYipgq (and a constant);

and θ̃i “
ř

gěgmin
Aθ,gYipgq ´

ř

gěgmin
pMYipgqq

1βg.
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Proof. For any g and functions of the potential outcomes Xi P RK and Zi P R, let 9Xi “

Xi ´ Ef rXis, 9Zi “ Zi ´ Ef rZis, and βXZ “ Varf rXis
´1 Ef

”

9Xi
9Zi

ı

. Observe that

Varf rZi ´ β1XZXis “
1

N ´ 1
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i

´

9Zi ´ β
1
XZ

9Xi

¯2

“
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1
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The result then follows from setting Zi “
ř

gěgmin
Aθ,gYipgq “ θi and Xi “ MYipgminq,

and noting that under Assumption 2, MYipgminq “ MYipgq for all g ě gmin, and hence
Varf rMYipgminqs “MSgmin

M 1 “MSgM
1 “ Varf rMYipgqs.

We now formally define the refined estimator σ̂˚˚ and give a more detailed statement of
Lemma 2.3.

Lemma A.4. Suppose that Aθ,g “ 0 for all g ă gmin and Assumptions 1-3 hold. Let M be
the matrix that selects the rows of Yi corresponding with periods t ă gmin. Define

σ̂2
˚˚ “ σ̂2

˚ ´

˜

ÿ

gągmin

β̂g

¸1
´

MŜgmin
M 1

¯

˜

ÿ

gągmin

β̂g

¸

, (10)

where β̂g “ pMŜgM
1q´1MŜgA

1
θ,g. Then σ̂2

˚˚ Ñp σ
2
˚ ` S˚

θ̃
, where 0 ď S˚

θ̃
ď S˚θ , so that

σ̂˚˚ is asymptotically (weakly) less conservative than σ̂˚. (See Lemma A.3 for a closed-form
expression for S˚

θ̃
“ Varf

”

θ̃i

ı

.)

Proof of Lemma A.4

Proof. Note that β̂g is a continuous function of Ŝg. Lemma A.2 together with the continuous
mapping theorem thus imply that

˜

ÿ

gągmin

β̂g

¸1
´

MŜgmin
M 1

¯

˜

ÿ

gągmin

β̂g

¸

´

˜

ÿ

gągmin

βg

¸1

pMSgmin
M 1
q

˜
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gągmin

βg

¸

Ñp 0.

From Lemmas 2.2 and A.3, it is then immediate that σ2
˚˚ Ñp σ2

˚ ` S˚
θ̃
, where S˚

θ̃
“

limNÑ8Varf
”

θ̃i

ı

ď limNÑ8 Sθ “ S˚θ .
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B Additional Simulation Results

This section presents results from extensions to the simulations in Section 3.

Other outcomes. Appendix Tables 1-4 show results analogous to those in the main text,
except using the other two outcomes considered in our application (use of force and sus-
tained complaints). We again find that the plug-in efficient estimator has minimal bias and
is substantially more precise than the CS and SA estimators for nearly all specifications (with
reductions in standard deviations relative to CS by a factor of over 3 for some specifications).
Likewise, both t-based and FRT-based approaches yield reliable inference in nearly all spec-
ifications. The one exception to the good performance of the plug-in efficient estimator is
the calendar-weighted average for sustained complaints when using the monthly data: the
coverage of t-based CIs for the plug-in efficient estimator is only 79% in this specification
(although the FRT has size of only 6%). Two distinguishing features of this specification
are that the outcome is very rare (pre-treatment mean 0.004) and the aggregation scheme
places the largest weight on the earliest three cohorts, which were small (sizes 17,15,26).
This finding aligns with the well-known fact that the central limit theorem may be a poor
approximation in finite samples with a binary outcome that is very rare. The t-based CI
for the plug-in efficient estimator again has good coverage (94%) when considering the an-
nualized data where the cohort sizes are larger (see below). We thus urge some caution in
using the plug-in efficient estimator with t-based CIs (or any procedure based on a normal
approximation) when cohort sizes are small (<30) and the outcome is rare (mean ă 0.01).
If average effects are of interest in such settings, we recommend collapsing the data to a
higher level of aggregation so that the cohorts are larger before using the plug-in estimator.
Alternatively, if the sharp null hypotheses is of interest, one can rely on the FRT, which is
exact (up to simulation error) under the sharp null.

Annualized data. Appendix Tables 5-10 present simulations from an alternative specifi-
cation where the monthly data is collapsed to the yearly level, so that there are six total time
periods and five (larger) cohorts. The plug-in efficient estimator has minimal bias and both
t-based and FRT-based methods yield reliable inference for all specifications, including the
calendar-weighted average for sustained complaints. The plug-in efficient estimator again
dominates the other estimators in efficiency, although the gains are smaller (e.g. 24 to 30%
reductions in standard deviation relative to CS for complaints). The smaller efficiency gains
in this specification are intuitive: the CS and SA estimators over-weight the pre-treatment
periods (relative to the plug-in efficient estimator) in our setting, but the penalty for doing
this is smaller in the collapsed data, where the pre-treatment outcomes are averaged over

6



more months and thus have lower variance.

Augmented X̂. Appendix Table 11 shows results for an alternative version of the plug-in
efficient estimator where X̂ is now a vector that contains the difference in means between
cohort g and g1 in all periods t ă minpg, g1q.26 We find poor coverage of t-based CIs for
this estimator in the monthly specification, where the dimension of X̂ is large relative to the
sample size (1987, compared with N “ 7785), and thus the normal approximation derived
in Proposition 2.2 is poor.27 By contrast, when the data is collapsed to the yearly level,
and thus the dimension of X̂ constructed in this way is more modest (10), the coverage
for this estimator is good, and it offers small efficiency gains (up to 3%) over the scalar X̂
considered in the main text. These findings align with the results in Lei and Ding (2020),
who show (under certain regularity conditions) that covariate-adjustment in cross-sectional
experiments yields asymptotically normal estimators when the dimensions of the covariates
is opN´ 1

2 q. We thus recommend using the version of X̂ with all potential comparisons only
when its dimension is small relative to the square root of the sample size.

Heterogeneous Treatment Effects. Appendix Tables 12 and 13 show simulation results
for a modification of our baseline specification in which there are heterogeneous treatment
effects. In the baseline specification, Yipgq “ Yip8q for all g. In the modification, we set
Yipgq “ Yip8q`1rt ą“ gs ¨ui. The ui are mean-zero draws drawn from a normal distribution
with standard deviation equal to the standard deviation of the untreated potential outcomes.
We draw the ui once and hold them fixed throughout the simulations, which differ only in the
assignment of treatment timing. The relative efficiency of the estimators is similar to those
for the main specification, although as expected, both t-based and FRT-based approaches
to inference tend to be conservative.

26Calculation is more intensive using the longer X̂, so we use 50 simulated permutations for the FRT,
instead of the 500 used for the other specifications.

27The reported standard deviations of the estimator with augmented X̂ are extremely large in the top
panel of Appendix Table 11. However, this is mainly the result of a small number of outliers, possibly driven
by numerical precision errors in computing β̂˚ (which is more difficult in larger dimensions). For example,
the first row the table reports an SD of 23.89, but the same SD would be only 4.5 if we excluded the most
extreme 1% in either direction. Nevertheless, the poor coverage of t-based confidence intervals cannot be
driven only by outliers.

7



Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar 0.03 0.94 0.06 0.30 0.32
PlugIn cohort 0.02 0.92 0.05 0.28 0.29
PlugIn ES0 0.01 0.96 0.05 0.28 0.28
PlugIn simple 0.01 0.93 0.06 0.26 0.27
CS calendar 0.03 0.95 0.04 0.59 0.60
CS cohort 0.01 0.96 0.04 0.45 0.44
CS/dCDH ES0 0.01 0.96 0.04 0.37 0.37
CS simple 0.01 0.96 0.04 0.45 0.44
SA calendar 0.05 0.92 0.05 1.39 1.50
SA cohort 0.03 0.90 0.05 1.43 1.54
SA ES0 0.02 0.96 0.05 0.84 0.89
SA simple 0.04 0.89 0.05 1.54 1.68

Appendix Table 1: Results for Simulations Calibrated to Wood et al. (2020b) – Use of Force

Note: This table shows results analogous to Table 2, except using Use of Force rather than Complaints as
the outcome.

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.88 4.72
cohort 1.51 5.25
ES0 1.34 3.23
simple 1.65 6.26

Appendix Table 2: Comparison of Standard Deviations – Callaway and Sant’Anna (2020)
and Sun and Abraham (2020) versus Plug-in Efficient Estimator – Use of Force

Note: This table shows results analogous to Table 3, except using Use of Force rather than Complaints as
the outcome.
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Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar 0.00 0.79 0.06 0.06 0.07
PlugIn cohort 0.00 0.92 0.06 0.03 0.03
PlugIn ES0 0.01 0.95 0.05 0.08 0.08
PlugIn simple 0.00 0.92 0.06 0.03 0.03
CS calendar 0.01 0.95 0.06 0.14 0.17
CS cohort 0.01 0.95 0.05 0.11 0.11
CS/dCDH ES0 0.01 0.94 0.06 0.11 0.12
CS simple 0.01 0.96 0.04 0.11 0.12
SA calendar 0.00 0.83 0.05 0.33 0.39
SA cohort 0.00 0.61 0.05 0.33 0.41
SA ES0 0.01 0.97 0.05 0.22 0.27
SA simple 0.00 0.63 0.05 0.35 0.44

Appendix Table 3: Results for Simulations Calibrated to Wood et al. (2020b) – Sustained
Complaints

Note: This table shows results analogous to Table 2, except using Sustained Complaints rather than Com-
plaints as the outcome.

Ratio of SD to Plug-In

Estimand CS SA

calendar 2.58 5.82
cohort 3.58 13.24
ES0 1.42 3.35
simple 3.74 14.45

Appendix Table 4: Comparison of Standard Deviations – Callaway and Sant’Anna (2020)
and Sun and Abraham (2020) versus Plug-in Efficient Estimator – Sustained Complaints

Note: This table shows results analogous to Table 3, except using Sustained Complaints rather than Com-
plaints as the outcome.
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Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar 0.11 0.95 0.05 1.99 1.96
PlugIn cohort 0.15 0.95 0.04 2.53 2.49
PlugIn ES0 0.03 0.96 0.05 1.65 1.60
PlugIn simple 0.14 0.95 0.04 2.41 2.37
CS calendar 0.20 0.96 0.05 2.65 2.56
CS cohort 0.26 0.96 0.05 3.24 3.13
CS/dCDH ES0 0.04 0.96 0.05 2.05 1.98
CS simple 0.27 0.96 0.05 3.17 3.05
SA calendar 0.32 0.95 0.05 4.10 3.95
SA cohort 0.40 0.96 0.04 4.36 4.22
SA ES0 0.21 0.96 0.04 3.31 3.26
SA simple 0.41 0.95 0.05 4.58 4.43

Appendix Table 5: Results for Simulations Calibrated to Wood et al. (2020b) – Annualized
Data

Note: This table shows results analogous to Table 2, except the data is collapsed to the annual level.

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.30 2.01
cohort 1.26 1.69
ES0 1.24 2.04
simple 1.29 1.87

Appendix Table 6: Comparison of Standard Deviations – Callaway and Sant’Anna (2020)
and Sun and Abraham (2020) versus Plug-in Efficient Estimator – Annualized Data

Note: This table shows results analogous to Table 3, except the data is collapsed to the annual level.
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Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar -0.01 0.94 0.06 2.23 2.27
PlugIn cohort 0.01 0.93 0.05 2.81 2.84
PlugIn ES0 -0.01 0.95 0.04 1.76 1.78
PlugIn simple 0.00 0.93 0.05 2.70 2.73
CS calendar -0.03 0.94 0.06 2.83 2.88
CS cohort -0.01 0.94 0.05 3.46 3.48
CS/dCDH ES0 -0.05 0.94 0.06 2.10 2.11
CS simple 0.00 0.95 0.05 3.41 3.42
SA calendar 0.05 0.94 0.05 4.38 4.39
SA cohort 0.09 0.95 0.05 4.76 4.72
SA ES0 0.07 0.95 0.05 3.54 3.48
SA simple 0.10 0.95 0.05 4.99 4.95

Appendix Table 7: Results for Simulations Calibrated to Wood et al. (2020b) – Use of Force
& Annualized Data

Note: This table shows results analogous to Table 2, except using Use of Force rather than Complaints as
the outcome, and in simulations where data is collapsed to the annual level.

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.27 1.94
cohort 1.23 1.66
ES0 1.19 1.95
simple 1.25 1.81

Appendix Table 8: Comparison of Standard Deviations – Callaway and Sant’Anna (2020)
and Sun and Abraham (2020) versus Plug-in Efficient Estimator – Use of Force & Annualized
Data

Note: This table shows results analogous to Table 3, except using Use of Force rather than Complaints as
the outcome, and in simulations where data is collapsed to the annual level.
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Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar 0.00 0.95 0.05 0.43 0.44
PlugIn cohort -0.01 0.94 0.05 0.53 0.55
PlugIn ES0 0.01 0.95 0.05 0.45 0.45
PlugIn simple -0.01 0.94 0.05 0.51 0.52
CS calendar 0.02 0.96 0.04 0.69 0.66
CS cohort 0.03 0.96 0.04 0.81 0.78
CS/dCDH ES0 0.01 0.96 0.04 0.61 0.60
CS simple 0.02 0.96 0.04 0.80 0.77
SA calendar 0.01 0.95 0.05 1.08 1.06
SA cohort 0.02 0.96 0.04 1.11 1.08
SA ES0 0.00 0.95 0.05 0.96 0.99
SA simple 0.02 0.96 0.04 1.18 1.16

Appendix Table 9: Results for Simulations Calibrated to Wood et al. (2020b) – Sustained
Complaints & Annualized Data

Note: This table shows results analogous to Table 2, except using Sustained Complaints rather than Com-
plaints as the outcome, and in simulations where data is collapsed to the annual level.

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.51 2.42
cohort 1.42 1.97
ES0 1.34 2.19
simple 1.47 2.23

Appendix Table 10: Comparison of Standard Deviations – Callaway and Sant’Anna (2020)
and Sun and Abraham (2020) versus Plug-in Efficient Estimator – Sustained Complaints &
Annualized Data

Note: This table shows results analogous to Table 3, except using Sustained Complaints rather than Com-
plaints as the outcome, and in simulations where data is collapsed to the annual level.
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(a) Monthly Data

Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn - Long X calendar 1.39 0.01 0.06 0.13 23.89
PlugIn - Long X cohort 0.46 0.01 0.07 0.04 31.49
PlugIn - Long X ES0 1.18 0.02 0.07 0.21 104.97
PlugIn - Long X simple 1.07 0.00 0.07 0.04 33.23
PlugIn calendar 0.00 0.93 0.06 0.27 0.29
PlugIn cohort 0.00 0.92 0.06 0.24 0.24
PlugIn ES0 0.01 0.94 0.05 0.26 0.27
PlugIn simple 0.00 0.92 0.06 0.22 0.22

(b) Annual Data

Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn - Long X calendar 0.33 0.94 0.06 1.93 1.95
PlugIn - Long X cohort 0.37 0.93 0.06 2.47 2.49
PlugIn - Long X ES0 0.25 0.95 0.06 1.59 1.56
PlugIn - Long X simple 0.38 0.94 0.06 2.33 2.36
PlugIn calendar 0.11 0.95 0.05 1.99 1.96
PlugIn cohort 0.15 0.95 0.04 2.53 2.49
PlugIn ES0 0.03 0.96 0.05 1.65 1.60
PlugIn simple 0.14 0.95 0.04 2.41 2.37

Appendix Table 11: Performance of Plug-In Efficient Estimator Using Augmented X̂

Note: This table shows the bias, coverage, mean standard error, and standard deviation of two versions of
the plug-efficient estimator. The estimator with the label “Long X” uses an augmented version of X̂ that
includes the difference in means between all cohorts g, g1 in periods t ă minpg, g1q. The estimator labeled
PlugIn uses a scalar X̂ such that the CS estimator corresponds with β “ 1, as in the main text. The
simulation specification in panel (a) is the baseline specification considered in the main text; in panel (b),
the data is collapsed to the annual level.
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Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar -0.03 0.96 0.03 0.55 0.52
PlugIn cohort 0.00 1.00 0.00 0.33 0.24
PlugIn ES0 0.01 0.99 0.01 0.35 0.27
PlugIn simple -0.01 1.00 0.00 0.33 0.23
CS calendar -0.03 0.96 0.03 0.74 0.68
CS cohort -0.01 0.97 0.03 0.47 0.41
CS/dCDH ES0 0.01 0.98 0.02 0.43 0.36
CS simple -0.01 0.98 0.02 0.47 0.41
SA calendar 0.03 0.96 0.03 1.39 1.36
SA cohort 0.05 0.93 0.06 1.36 1.38
SA ES0 0.03 0.95 0.04 0.86 0.89
SA simple 0.06 0.92 0.06 1.48 1.49

Appendix Table 12: Results for Simulations Calibrated to Wood et al. (2020b) – Heteroge-
neous Treatment Effects

Note: This table shows results analogous to Table 2, except the DGP adds heterogeneous treatment effect
as described in Section B.

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.88 4.72
cohort 1.51 5.25
ES0 1.34 3.23
simple 1.65 6.26

Appendix Table 13: Comparison of Standard Deviations – Callaway and Sant’Anna (2020)
and Sun and Abraham (2020) versus Plug-in Efficient Estimator – Heterogeneous Treatment
Effects

Note: This table shows results analogous to Table 3, except the DGP adds heterogeneous treatment effect
as described in Section B.
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C Additional Application Results

This section contains additional results pertaining to our application in Section 4. Appendix
Figure 1 shows an event-plot analogous to Figure 2 except using the CS estimator.

Appendix Figure 1: Event-Time Average Effects Using the CS Estimator

In Appendix Figure 2, we present results analogous to those in Figure 1 except removing
officers who were treated in the last 12 months of the data. The reason for this is, as discussed
in the supplement to Wood et al. (2020a), there was some non-compliance towards the end of
the study period wherein officers who had not already been trained could volunteer to take
the training at a particular date. The qualitative patterns after dropping these observations
are similar, although the estimates for the effect on use of force are closer to zero and not
statistically significant at conventional levels.
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Appendix Figure 2: Effect of Procedural Justice Training Using the Plug-In Efficient and
Callaway and Sant’Anna (2020) Estimators – Dropping Late-Trained Officers

Note: This figure is analogous to Figure 1, except we remove from the data officers trained in the last 12
months of the data owing to concerns about treatment non-compliance.
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