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Abstract
We investigate the determinants of insurance demand under uncertainty about

underlying risks. We use demand elicitation surveys on a representative sample of
US households in which we vary risks and the degree of uncertainty about them.
We find that uncertainty in the form of compound and ambiguous risks can lead
to large increases in individual demand for insurance. We also find that risk
aversion and uncertainty aversion are negatively related in the population. We
show that preferences that rely on expected utility for the evaluation of known
(objective) risks cannot explain the data. In contrast, we prove that second-order
anticipated utility exhibiting probability weighting can rationalize the observed
patterns and be tractably estimated. Our preference estimates imply substantial
overweighting of small probabilities and underweighting of large probabilities. We
find that preference heterogeneity is largely driven by substantial heterogeneity
of probability weighting of known (objective) risks.
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1 Introduction

Insurance markets play a central role in the economy. In the United States, insurance
premiums amount to $1.2 trillion each year, or about 7% of gross domestic product.1

Arguably the most critical task faced by consumers in these markets is the assessment
of their underlying risks in the presence of uncertainty and complex information about
those risks. In this context, laboratory experiments using lottery choices have docu-
mented that individuals are ambiguity averse and have difficulty reducing compound
lotteries (Halevy, 2007). This suggests that willingness-to-pay (WTP) for insurance
should be higher under uncertainty than under known risks. That is, uncertainty averse
consumers would be willing to pay an “uncertainty premium” to obtain insurance, on
top of the risk premium associated with aversion to known risks.

However, while there is a growing literature on the estimation of risk preferences
from insurance data, little is known about the nature of uncertainty preferences in the
population and the overall impact of uncertainty on insurance demand. This paper
aims to fill this gap by analyzing the demand for insurance under uncertainty and by
estimating the distribution of uncertainty preferences in the population. We overcome
the inherent lack of observability of demand determinants using an incentivized survey
on a representative sample of the U.S. population that elicits individual demand under
different risk and uncertainty scenarios.

The paper makes three main contributions. First, we quantify the impact of uncer-
tainty on insurance demand and document key empirical regularities of WTP for in-
surance under uncertainty. Second, we theoretically identify conditions on uncertainty
preferences needed to explain these patterns and characterize a class of preferences that
can rationalize the data. Finally, equipped with this characterization, we estimate the
distribution of uncertainty preferences in the population and examine the degree and
sources of preference heterogeneity. We also show how to partially identify uncertainty
preferences and do welfare analysis using field data from insurance markets.

In our survey, over 4,000 individuals representative of the U.S. population are given
monetary incentives to reveal their WTP to fully insure a hypothetical product that has
a known value. Respondents make a series of decisions in which we exogenously vary
both the risk probability that the product looses its value and the degree of uncertainty
about the risk probability. We introduce uncertainty by making risk probability a
random variable, and either inform agents about its distribution (compound risks) or its
possible range of values (ambiguous risks). We elicit agents’ WTP under both known

1See https://www.iii.org/fact-statistic/facts-statistics-industry-overview.
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risks, in which agents are given the actual risk probability, and unknown risks (we
split the sample of respondents between compound and ambiguous risks). The survey
includes rich sociodemographic information, including measures of financial literacy
and cognitive ability.

Our data reveals several key patterns of demand behavior. First, uncertainty sig-
nificantly increases individuals’ willingness to pay (WTP) for insurance. To measure
its magnitude, we define the uncertainty premium as the difference in WTP between a
given unknown risk and the known risk whose probability equals the mean probability
of the unknown risk. We observe uncertainty premia as high as 100% of the actuar-
ially fair price of insurance, especially at low risk probabilities. Importantly, we find
that the uncertainty premium is negatively correlated to the risk premium across indi-
viduals, implying that the more risk averse agents tend to be less uncertainty averse.
Finally, we find that both the uncertainty premium and the risk premium go down as
risk probabilities go up, with the risk premium becoming significantly negative at high
risk probabilities. To check for external validity we implement a laboratory experiment
and analyze existing experimental data from previous studies on risk and ambiguity
attitudes. In both cases we find similar patterns as those exhibited by our survey data.

We explore the ability of different models of choice under uncertainty to explain
the data. We show that uncertainty preferences that reduce to expected utility for the
evaluation of known risks cannot rationalize agents’ choices, as is the case for most
models of ambiguity aversion (e.g., maximin expected utility (Gilboa and Schmeidler,
1989) and smooth ambiguity aversion (Klibanoff et al., 2005)). This is because prob-
ability weighting is needed to explain the fact that a majority of individuals switch
from risk averse (positive risk premium) to risk loving (negative risk premium) as risk
probabilities go up. Accordingly, we propose a simple generalization of recursive an-
ticipated utility (Segal, 1987), which we call second-order anticipated utility, featuring
two probability weighting functions, one for risk probabilities and another for the un-
certainty distribution (of risk probabilities). We identify natural conditions for such
preferences to be consistent with observed patterns. Specifically, an individual will ex-
hibit a positive uncertainty premium if on average she weighs uncertain distributions
more than an expected utility maximizer. In addition, we show that a negative correla-
tion between uncertainty and risk premia arises if more risk averse individuals are less
sensitive to changes in risk probabilities, while the switch between risk aversion and
risk loving can be explained by overweighting (resp. underweighting) of small (large)
risk probabilities.

The paper, to the best of our knowledge, provides the first estimate of the distribu-
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tion of uncertainty preferences in the US population. To do so, we propose a Bayesian
hierarchical model in which individual WTP for insurance is determined by second
order anticipated utility preferences. We use a flexible functional form for probability
weighting functions, given by the two-parameter Prelec function (Prelec, 1998) com-
monly used in the experimental literature. The hierarchical structure of the model
assumes that individual-level preference parameters are drawn from population-level
distributions. Our Bayesian approach yields an estimate of the full distribution of
preference parameters at the individual level, enabling us to do an in-depth analysis
of sources of heterogeneity and their relationship with socio-demographic charteristics.
We find that individuals’ attitudes toward uncertainty are much more homogeneous
than their risk attitudes, and that preference heterogeneity is largely driven by wide
heterogeneity in the probability weighting of known risks. Nonetheless, the vast major-
ity of individuals exhibit overweighting of low to moderate probabilities, regardless of
whether such probabilities correspond to know risks or are associated with uncertainty
distributions. Individuals with higher levels of financial literacy and cognitive ability
tend to exhibit lower probability distortions, suggesting that less sophisticated agents
are over-represented in insurance markets.

Our estimation exploits the observed variation of risk and uncertainty of our data,
which is typically absent in insurance market data. To overcome these data limitations,
we also provide a theoretical characterization of the uncertainty premium that does not
require full identification of the probability weighting function for uncertain distribu-
tions. We illustrate how this characterization reduces the data requirements needed
to estimate the preference parameters governing insurance demand under uncertainty,
making it amenable to empirical work using field data.

The paper’s results have several implications. First, uncertainty can lead to a sub-
stantial misallocation of insurance by increasing aggregate demand and by introducing
selection effects in insurance markets. Higher demand is associated with the presence
of an uncertainty premium, while its negative correlation with risk attitudes can in-
duce more risk averse agents not to buy insurance while less risk averse agents do so.
We explore the welfare and policy implications of these effects in a companion paper
(Gandhi et al., 2020). Second, abstracting from uncertainty in the empirical estima-
tion of risk preferences can introduce significant biases. From a modeling perspective,
our results highlight the need to incorporate probability weighting in both risk and
uncertainty preferences. Finally, our estimation approach highlights the advantages of
generating distributional estimates of individual preferences, since they provide a much
more comprehensive picture of the determinants of insurance demand.
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In what follows, Section 2 provides a discussion of our contribution to related work.
Section 3 summarizes the survey design. Section 4 describes our main empirical find-
ings. Section 5 identifies preferences that account for the empirical patterns. We
estimate the distribution of uncertainty preferences in Section 6. Section 7 concludes.

2 Related Literature

This paper contributes to the literature that uses insurance take-up and claims data to
study the demand for insurance (Einav et al., 2010; Jaspersen, 2016) by studying the
impact of uncertainty. Most of existing work focus on estimating risk preferences under
the assumption that consumers do not face uncertainty about underlying risks (Sydnor,
2010; Barseghyan et al., 2011; Einav et al., 2012), or that preferences are unrelated to
information frictions (Handel and Kolstad, 2015; Handel et al., 2019). Our results
highlight the need to account for uncertainty in order to obtain unbiased preference
estimates. In addition, we provide a direct, non-parametric evidence of the need for
preferences to incorporate probability weighting, which supports existing results that
rely on the structural estimation of risk preferences (Barseghyan et al., 2013).

Our study is related to the experimental literature exploring the relationship be-
tween risk and uncertainty preferences. Existing work has looked at the relationship
between ambiguity and risk attitudes (Cohen et al., 1987; Einhorn and Hogarth, 1986;
Di Mauro and Maffioletti, 2004; Chapman et al., 2020) and has documented a positive
association between compound lottery aversion and ambiguity aversion (Halevy, 2007;
Abdellaoui et al., 2015; Chew et al., 2017). We build on this literature by providing a
comprehensive empirical analysis of these relationships in the US population. Specif-
ically, our dataset covers most of the spectrum of risk probabilities and includes rich
variation in uncertainty, allowing us to look at the impact of uncertainty on insurance
demand and to measure the correlation of risk and uncertainty premia at different
underlying risk probabilities.

Regarding the theoretical literature on risk and uncertainty preferences, the major-
ity of models reduce to expected utility when risks are known. Two notable exceptions
exhibiting probability weighting of known risks are recursive anticipated utility (Segal,
1987) and the model of Dean and Ortoleva (2017). We build on the work of Segal
(1987) by proposing a variant of recursive anticipated utility that allows for probabil-
ity weighting functions to be different across risk and uncertainty domains. This class
of preferences are well-suited for empirical work, since they allow for both under- and
over-weighting of probabilities, which we show is necessary to explain the data, and

4



can be tractably estimated using flexible functional forms.

3 Data

We conducted an incentivized survey with a representative sample of the U.S. popu-
lation who are part of the online panel Understanding America Study (UAS) at the
University of Southern California. Over four thousand respondents participated in the
survey, which included rich socio-demographic information as well as measures of cog-
nitive ability and financial literacy.2 Appendix A provides summary statistics of the
respondents.

In the survey, we asked each participant to make a series of 10 decisions. Each
participant was told to be the owner of a machine, which was described to have some
probability p of being damaged. An undamaged machine paid out 100 virtual dollars
(equivalent to 5 USD) to the subject at the end of the survey, while damaged machines
paid out nothing. The probability of damage, including information I given to the par-
ticipant about p, was varied in each decision. Specifically, we considered the following
information environments:

(i) known risks : I represents the underlying risk probability, i.e., I = p.

(ii) Unknown risks : I represents either a range of probabilities centered around p

(ambiguous risk) or the uniform distribution on such a range (compound risk),
i.e., I = [p− ε, p+ ε] or I = U [p− ε, p+ ε], with ε ∈ (0,min{p, 1− p}].

We elicited maximum willingness to pay for full insurance using the Becker-
DeGroot-Marschak mechanism (Becker et al., 1964),3 where the actual price of in-
surance was drawn at random from the uniform distribution on (0, 100). Appendix I
contains the survey instructions. We divided participants into four groups, as described
in Table 1. Participants received a block of decisions with 5 risk probabilities under
known risk, and a block of decisions with 5 probability ranges under unknown risks.
The order of blocks was randomized, but the order of probabilities within each block
was kept constant and was ordered from smallest to largest. In addition, half of the par-
ticipants received a range noting that ‘all numbers within this range are equally likely’

2All 5,674 UAS panel members were recruited to complete the survey online, and 4,534 respondents
accessed and completed the survey. 62 respondents started but did not complete the survey and are
excluded from our analysis.

3This is a common mechanism in similar experiments, for instance see Halevy (2007).
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Table 1: Summary of Decisions Presented to Respondents, Survey 1

Group Decision #
(within block)

(1) Probability of
Loss (%)

(2) Range
Probability (%)

1 5 3-7
2 10 1-19

1 3 20 13-27
4 50 46-54
5 80 68-92
1 5 1-9
2 10 3-17

2 3 20 18-22
4 40 28-52
5 70 61-79
1 2 1-3
2 10 6-14

3 3 20 8-32
4 40 38-42
5 90 83-97
1 2 0-4
2 10 8-12

4 3 20 16-24
4 30 21-39
5 60 48-72

Notes: Respondents were assigned to one of four groups, and were presented both the probabilities described
in (1) and (2) in the order displayed here. Half of respondents were told that each probability in the range is
equally likely, while half were not given information about the probability distribution within a range.

while the other half did not receive this information. Hence, the former group was
subject to compound risk, while the latter group faced ambiguous risks. This design
feature allowed us to check for potential differences in attitudes towards two common
sources of uncertainty in insurance markets, the perception of risks as the realization
of a series of bad shocks and the lack of precise information about the distribution of
shocks, respectively.

One decision from each block was randomly chosen to be actually implemented. At
the end of the survey participants were asked a question eliciting their ability to reduce
compound lotteries, and received $1 for a correct answer. Participation in all parts of
the survey required approximately 15 minutes, and participants earned $10 for survey
completion plus $8.6 on average on incentives associated with insurance questions.4

4It is common in the UAS to combine multiple studies in one survey session. As such, prior to
completing the experiment, participants also received a series of un-incentivized questions designed to
evaluate understanding of annuity products for another project (?).

6



4 Empirical Analysis

This section presents the main empirical patterns of determinants of insurance demand
under uncertainty. First, we illustrate the magnitude of risk and uncertainty premia
and estimate their correlation structure, correcting for potential bias due to measure-
ment error in WTP. In what follows, to facilitate comparisons, we report underlying
risk probability p, WTP, as well as risk and uncertainty premia in percentages. Note
that, since the magnitude of the potential loss is 100 virtual dollars, the actuarially
fair price of insurance against known risk p ∈ (0, 100) is given by p.

We denote by W (I) the WTP for insurance given information I. The risk premium
associated with risk p is given by µ(p) := W (p)− p. Finally, we define the uncertainty
premium associated with compound risk I = U [p − ε, p + ε] or ambiguous risk I =

[p−ε, p+ε] as µ(I) := W (I)−W (p). Accordingly WTP for insurance against unknown
risk I can be decompose as the sum of the actuarially fair price of insurance, the risk
premium and the uncertainty premium:

W (I) = p+ µ(p) + µ(I).

4.1 Risk Premium

Figure 1 displays the average risk premium at each possible p, both for the overall
sample and by household income. The 0 line represents risk neutrality. A clear pattern
emerges from the figure: average risk aversion decreases as losses become more likely,
suggesting that agents transition from exhibiting significant risk aversion at small prob-
abilities to becoming risk lovers at very high p. Table B.2 in Appendix B reports the
estimates and their statistical significance. In addition, we find risk premium to be
widely heterogeneous: its standard deviation ranges from 25% to 30%. Despite the
heterogeneity, the switch from risk averse to risk loving seems to be around 60% for
most income levels. While the figure shows a swtich from positive to negative of the
average risk premium, we find that roughly 50% of individuals exhibit a mix of risk
aversion, neutrality and risk loving at different probabilities.

4.2 Uncertainty premium

Turning to the impact of uncertainty, as we show in Appendix B, we do not find major
differences in uncertainty premium across compound and ambiguous risks. Accordingly,
we pool the data of both types of unknown risks together in the empirical analysis
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Figure 1: Average Risk Premium at Different Probabilities (bars represent 95% confidence intervals).

and, unless noted otherwise, use I(p, ε) to denote compound and ambiguous risks with
support [p− ε, p+ ε].

Figure 2 presents the average uncertainty premium at each possible p. Each data
point shows the size of the range of probabilities associated with it, given by 2ε. Since
our design includes two range sizes for most of the probabilities, the graph displays two
lines, respectively associated with small and big ranges.5

On average, agents exhibit significantly large uncertainty premia at p < 50% when
range sizes are big, leading to an increase in WTP as high as 100% of the expected loss.
Smaller range sizes still elicit a strong response for p < 50%. Uncertainty premium
decreases with risk probability p, which is consistent with the finding by Abdellaoui
et al. (2015) that aversion to compound and ambiguous lotteries increases as winning
probability goes up. Uncertainty premium is less heterogeneous than risk premia, with
a standard deviation between 14% and 20%. We do not find major differences in
the uncertainty premium by ability to reduce compound lotteries (see Table B.5 in
Appendix B).

Since the typical probability of filing an insurance claim in most insurance markets
is substantially lower than 50%, the fact that we observe large uncertainty premia at
p < 50% points to a strong effect of uncertainty on insurance demand.

4.3 Relationship Between Risk and Uncertainty premium

We next look at the correlation between the risk premium and the uncertainty premium,
normalized by range size. We do so for each probability p separately to control for the
negative relationship between p and both µ(p) and µ(I).

5Table B.2 in Appendix B shows the average uncertainty premium at each p by group.

8



Figure 2: Uncertainty premium at Different Probabilities (point labels represent range size and bars
represent 95% confidence intervals).

Figure 3 plots the correlation coefficients, showing that risk and uncertainty premia
are negatively correlated at all risk probabilities, with all coefficients being significant
at the 1% level. Furthermore, the correlation coefficient is remarkably invariant to un-
derlying risk p regardless of whether we control for individual characteristics (partial
correlation) or not (total correlation): it consistently lies between −0.24 and −0.35,
even after controlling for cognitive ability, financial literacy and demographic back-
ground.6

An important concern with the estimates of the correlation between risk and un-
certainty premia is that they may be biased downward due to measurement error in
WTP induced by the elicitation mechanism. The effect of such measurement error
goes beyond the typical attenuation bias, given that W (p) enters with a positive sign
in µ(p) = W (p) − p while it enters with a negative sign in µ(I) = W (I) −W (p). To
correct for these biases, we follow the obviously related instrumental variable (ORIV)
approach proposed by Gillen et al. (2019), which is based on the idea of using additional
measures of the same variable as instruments. Appendix C.0.1 describes the derivation
of the ORIV estimator for corr(µ(p), µ(I)) and presents the estimates for different p.
We obtain similar magnitudes and significance levels as those shown in Figure 3.

6Table C.6 in ?? reports the total correlation coefficients in columns two and four and shows that
they are highly significant. The partial correlation coefficients are virtually identical and therefore
omitted.
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Figure 3: Correlation Coefficients between Risk Premium and Uncertainty Premium.

4.4 External Validity

Our empirical results are confirmed by a companion laboratory experiment with about
120 undergraduate students at the University of Wisconsin-Madison and by the analysis
of publicly available experimental data. The experiment design included a similar set of
decision questions. We also added an additional treatment for all subjects, multiplica-
tive risks to check the robustness of our results to alternative forms of compound risks.
Elicitation mechanisms and payments were similar to those in the survey. Appendix H
provides a full description of the experiment as well as detailed results.

We find that both risk and uncertainty premia are decreasing in risk probability
p (Figure H.5). The only major difference is that subjects in the experiment were
significantly less risk averse. In addition, risk and uncertainty premia exhibit a neg-
ative correlation of similar magnitude: estimates lie between −0.24 and −0.35, even
after controlling for both measurement error and personal characteristics (Table H.10).
Finally, we analyze covariates of uncertainty premium with the experimental data and
find that qualitatively similar results (see Appendix H.4).

Our analysis of the correlation between risk and uncertainty premium using data
from three prominent experimental studies on uncertainty preferences (Halevy, 2007;
Abdellaoui et al., 2015; Chew et al., 2017) shows that correlation coefficients are sig-
nificantly negative and large in magnitude (see Appendix C.0.2). In a recent paper,
Chapman et al. (2020) find a mild negative correlation using objective lotteries and
bets on ambiguous urns.
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5 Uncertainty Preferences

We focus on two main families of preferences, namely, EU-based preferences, i.e., those
that reduce to expected utility (EU) when evaluating known risks, and probability-
weighting preferences which apply non-identity weights to probabilities.

The family of EU-based preferences includes most of the proposed models of uncer-
tainty preferences: α-maximin expected utility and variational preferences (Maccheroni
et al., 2006), which include maximin expected utility (Gilboa and Schmeidler, 1989)
and multiplier preferences (Hansen and Sargent, 2001) as special cases, as well as
smooth ambiguity preferences (Klibanoff et al., 2005) and uncertainty averse prefer-
ences Cerreia-Vioglio et al. (2011). Since preferences reduce to EU under known risks.
That is, the value of binary risk (p,−1; 1− p, 0) involving a loss of −1 with probability
p for an agent with initial wealth w is given by

EU(p) = pu(w − 1) + (1− p)u(w). (1)

As show below, EU-based preferences cannot explain the data on WTP for insur-
ance against known risks, unless we resort to non-standard functional forms of utility.
In contrast, uncertainty preferences involving probability-weighting can generate risk
premium patterns similar to those illustrated in Figure 1. Two leading examples are
recursive anticipated utility (Segal, 1987) and multiple priors–multiple weighting pref-
erences (Dean and Ortoleva, 2017). We restrict attention to the former since it allows
for flexible weighting functions, whereas the latter requires concave probability weight-
ing functions, which we show below cannot explain the risk premium data.

The idea behind recursive anticipated utility is to represent unknown risks as a
two-stage lottery and to apply probability weights recursively. The second-stage lot-
tery represents know risks, in our case (p,−1; 1 − p, 0), while the first stage lottery is
a probability distribution over p, e.g., U [p− ε, p + ε], representing the decision maker
(DM) beliefs about p. Recursive anticipated utility evaluates unknown risks by first
obtaining certainty equivalents of second-stage lotteries, and then evaluate the distri-
bution over certainty equivalents induced by the first-stage lottery. In order to apply
these preferences to ambiguous risks, it is assumed that the DM has a subjective prob-
ability distribution F (p) over known risks.

While recursive anticipated utility uses the same weighting function for both stages,
we allow for different probability weighting functions across stages. We call such prefer-
ences second order anticipated utility (SOAU)and they are characterized by probability-
weighting functions πk and utility functions ui at each stage k = 1, 2. Both πk and uk
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are increasing with πk(0) = 0 and πk(1) = 1.

Known risks (p,−1; 1−p, 0) are evaluated by applying weighting function π2 to loss
probability p and by using u2 to evaluate changes to final wealth.7 Accordingly, the
DM’s valuation of p is given by

V (p) = π2(p)u2(w − 1) + (1− π2(p))u2(w). (2)

To isolate the effect of probability weighting, consider the case of linear utility u2(x) =

x. The certainty equivalent of risk p is −π2(p) and thus the risk premium is given by
µ(p) = π2(p)− p.

The evaluation of unknown risk I given by probability distribution F (p) over known
risks involves the evaluation of certainty equivalents using utility u1 and the application
of weighting function π1 to the distribution of certainty equivalents induced by F.

Let y(p) be the certainty equivalent of risk p, and G(y) the distribution of certainty
equivalents. If G is continuous and has full support in [y, ȳ], the value of I is given by

V (I) = u1(y) +

ȳ∫
y

u′1(y)(1− π1(G(y))dy. (3)

The next proposition characterizes the value of unknown risks of the form I(p, ε) =

U [p−ε, p+ε] with ε ∈ (0,min{p, 1−p}] under SOAU with linear utility u1(x) = u2(x) =

x. Assuming linear utility isolates the role of probability weighting in explaining the
data. All proofs are in Appendix D.

Proposition 1. The value of unknown risk I(p, ε) under SOAU with linear utility is
given by

Vw(I(p, ε)) = −π2(p− ε)− 2ε

1∫
0

π′2(p+ ε(2z − 1))π1 (1− z) dz. (4)

In addition, the uncertainty premium of I(p, ε) is

µ(I(p, ε)) = ε

1∫
0

[
π′2(p+ εz)π1

(
1− z

2

)
− π′2(p− εz)

(
1− π1

(
1 + z

2

))]
dz. (5)

7The weighting function is applied over the cdf of outcomes. Alternative formulations involve
applying weights π̂k(z) = 1−πk(1− z) to the decumulative distribution of outcomes. Following Segal
(1987), we use this formulation since it is more convenient when dealing with binary risks.
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Since the functional form of the uncertainty premium does not lend itself to an easy
interpretation, we define the “marginal uncertainty premium” µ0(p) as the limit of the
uncertainty premium, normalized by range size, as ε → 0. The uncertainty premium
associated with unknown risk I(p, ε) can be well approximated by εµ0(p) as long as π2

exhibits little curvature in the range [p− ε, p+ ε].

Proposition 2. Let µ0(p) := limε→0
µ(I(p,ε))

ε
denote the marginal uncertainty premium

at p. SOAU with linear utility implies that

µ0(p) = π′2(p)(2Eπ1 − 1), (6)

where Ew1 =
∫ 1

0
π1(z)dz is the expected value of first-stage probability weights.

Expression (6) shows that the marginal uncertainty premium only depends on the
sensitivity of the risk premium to changes in p, measured by the slope of π2, and on the
average of first stage weights (Eπ1). In particular, µ0(p) is increasing in the average
first-stage weight π1, being positive whenever there is overweighting on average, i.e.,
Ew1 > 0.5. In addition, the more sensitive the risk premium is to changes in p the larger
the magnitude of µ0(p). Intuitively, individuals whose risk attitudes are insensitive to
changes in loss probability exhibit little variation in WTP for insurance across different
p, and thus do not react strongly to the (initial) introduction of uncertainty.

Next, we provide a series of results showing that, while EU-based preferences cannot
explain the pattern exhibited by risk premium, SOAU preferences can rationalize the
three key empirical facts documented above.

5.1 Risk Premium

As the next proposition formally establishes, EU-based models cannot explain the
switch from risk aversion to risk loving as p goes up without resorting to non-standard
utility functions involving concave-then-convex utility at small stakes. We also show
in Appendix E that adding a reference point (deterministic or stochastic) to the utility
function does not help reconcile the model with the data. In contrast, a probability
weighting function featuring overweighting of small probabilities and underweighting of
large ones can rationalize the behavior of the risk premium. An example is the inverted
s-shaped weighting function commonly found in experiments on risk prefrences (e.g.,
Gonzalez and Wu, 1999).

Proposition 3. Assume that there exists p∗ ∈ [0, 1] such that µ(p) > 0 for p < p∗ and
µ(p) < 0 for p > p∗.
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(i) Expected utility: if the DM has initial wealth w and maximizes expected util-
ity under known risks then the upper convex envelope of u(x) is below the line
connecting u(w − 1) and u(w) for all x ∈ (w − 1, w − p∗) and its lower concave
envelope is above such line for all x ∈ (w − p∗, w).

(ii) Probability-weighting: if the DM maximizes anticipated utility with linear util-
ity then π2(p) > p for p ∈ [0, p∗) and π2(p) < p for p ∈ (p∗, 1].

5.2 Uncertainty premium

SOAU preferences can rationalize the pattern illustrated in Figure 2. To see how, recall
that the marginal uncertainty premium at small ranges is given by π′2(p)(2Eπ1 − 1).

Hence, if preferences exhibit overweighting of 1st-stage probabilities on average (Eπ1 >

0.5) and a 2nd-stage weighting function π2(p) that is steeper at smaller p, then the
marginal uncertainty premium is larger at smaller p.

5.3 Correlation between Risk and Uncertainty Premia

The next result provides two possible ways by which a population of individuals with
SOAU preferences can exhibit a negative correlation between risk and uncertainty
premia. The first one involves more risk averse individuals being less sensitive to
changes in risk than comparatively less risk averse individuals. This seems like a natural
behavioral explanation: more risk averse individuals have a stronger incentive to avoid
risks and thus might be less sensitive to variation in underlying risks. Intuitively, they
may be cautious and willing to ‘overpay’ for insurance, regardless of whether underlying
risks turn out to be smaller or larger than expected. The second explanation is less
plausible since it involves a negative relationship between probability weighting across
stages, i.e., individuals who have higher second order weights exhibit lower first-order
weights. Such negative relation is hard to reconcile with the notion that risk averse
agents dislike ‘randomness.’

Proposition 4. Consider two DM i, j satisfying π2i(p) > π2j(p) for some p ∈ (0, 1).

Then µi(p) > µj(p) and

(i) if π′2i(p) < π′2j(p) and Eπ1i ≤ Eπ1j then µ0i(I(p, ε)) < µ0j(I(p, ε));

(ii) if π′2i(p) ≤ π′2j(p) and Eπ1i < Eπ1j then µ0i(I(p, ε)) < µ0j(I(p, ε)).

The proof is immediate and therefore omitted.
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One way to test whether SOAU can generate the negative correlation is to estimate
the slope of π2 and the average of first-stage weights Eπ1 at the individual level using
the following two-step approach. First, for each subject i we estimate π′i2 by running the
following linear regression using the observations t = 1, · · · , 5 on WTP for insurance
against known risks:

Wit = ai + bipit + νit, t = 1, · · · , 5. (7)

Since W (p) = π2(p), b̂i is an estimate of π′i2(p). Second, we regress b̂i on the uncer-
tainty premium associated with unknown risks, normalized by range size:

µit
εit

= αkb̂it + ξit. (8)

Since µ0 = π′2(p)(2Eπ1 − 1) we can estimate Eπ1 using Êπi1 = α̂k+1
2
. Table 2 presents

the average estimates of π′i2(p) and Eπ1 in the population, as well as its cross-sectional
correlation with risk and uncertainty premia. The latter confirms the hypothesis that
risk averse agents exhibit lower sensitivity to changes in underlying risk probabilities,
inducing a negative correlation between risk and uncertainty premia. Figure 4 shows
that such negative correlation is mostly driven by individuals with the lowest sensitivity.
Specifically, individuals with π′i2 estimates at the bottom quintile of its distribution
exhibit significantly higher risk premium and significantly lower uncertainty premium
than the rest of subjects.

Table 2: Components of uncertainty premium

Regression Estimates

Estimate Average Std. error

π′2(p) 0.61 0.59
Eπ1 0.52 1.06

Correlationa

Risk premium Info premium
π′2(p) -0.15∗∗∗ 0.12∗∗∗
Eπ1 -0.01 0.02∗∗∗

No. Obs. 4,442
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
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Figure 4: Average Risk and uncertainty premium at different estimates of π′i2.

6 Preference Estimation

This section presents our approach to estimate the distribution of SOAU preferences
in the population and analyzes some of its key features, namely, the typical shape of
weighting functions, the degree of heterogeneity and the distribution of preferences
across different socio-demographic characteristics.

Our approach is based on the decomposition of WTP into the sum of risk and
uncertainty premium, which under linear utility takes on the following form by Propo-
sition 1:

W (I(p, ε)) = p+ µ(p) + µ(I(p, ε))

= π2(p) + ε

1∫
0

[
π′2(p+ εz)π1

(
1− z

2

)
− π′2(p− εz)

(
1− π1

(
1 + z

2

))]
dz. (9)

We impose a parametric form on πk and estimate them at the individual level using
a hierarchical Bayesian model. Specifically, we assume that weighting functions in (9)
have a 2-parameter Prelec functional form:

πk(p) = e−βk(− log(p))αk , αk, βk > 0, k = 1, 2. (10)

This functional form is commonly used to model rank-dependent utility and allows for
linear, concave, convex, as well as s-shaped and inverted s-shaped weighting functions,
as illustrated by Table 3 and Figure 5. Lower values of βk globally lead to higher
weights πk(p), i.e., to comparatively higher risk aversion, while parameter αk mostly
affects the shape of πk, determining whether small probabilities are overweighted and
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large probabilities underweighted (α < 1) or vice versa (α > 1).8 The Prelec weighting

Table 3: Prelec weighting function

Shape of πk αk βk
Linear 1 1
Concave 1 < 1
Convex 1 > 1

Inverted s-shape < 1 any
s-shape > 1 any

function crosses the diagonal once at p∗ = e−β
1/(1−α) for all α 6= 1. Accordingly, α < 1

implies overweighting of probabilities in [0, p∗]. Note that e−β1/(1−α) is decreasing in β
for all α < 1, implying that smaller β lead to a larger interval [0, p∗] of overweighted
probabilities. Let θ = (α1, β1, α2, β2) be the parameter vector of Prelec weighting

αk = 1 βk = 1

Figure 5: Prelec weighting functions for different values of βk (left) and αk (right).

functions (10) and let W (·; θ) denote the resulting WTP function given by (9). Our
goal is to estimate the distribution of θ in the population. To do so, we assume that
agent i’s observed WTP for insurance against Iit = I(pit, εit) is given by the random
variable Wit whose mean is determined by W (Iit; θi), where θi represents the agent’s
weighting function parameters. Letting Wit to be random allows for the possibility of

8Specifically, the slope of πk(p) at p = 0 is infinity for αk < 1 and zero for αk > 1, whereas the
opposite is true at p = 1.
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mistakes or for random preferences. Notice that, sinceW (Iit; θi) falls inside the interval
(0, 1) for p ∈ (0, 1), we could assume that Wit follows a continuous distribution with
support in (0, 1) such as the beta distribution. However, a non-negligible subset of
subjects sometimes report WTP of zero or one. Accordingly, we instead assume that
Wit follows a flexible zero-one inflated beta distribution, which allows for the possibility
that Wit takes on values in {0, 1}. The distribution has two point masses, at 0 and 1,
and follows a beta distribution on (0, 1). That is, Wit follows mixture distribution

f(w|Iit, θi, q, q1, φ) =


q(1− q1) w = 0

qq1 w = 1

(1− q)Beta(W (Iit; θi)φ, (1−W (Iit; θi))φ) w ∈ (0, 1),

(11)

where q = Pr(Wit ∈ {0, 1}), q1 = Pr(Wit = 1|Wit ∈ {0, 1}), and φ is the precision
of the beta distribution. Unlike the weighting function parameter vector θi, which is
allowed to vary across individuals, we set these three parameters at the population
level since we only have ten observations per individual.

We next build a hierarchical model by assuming that αik and βik are drawn from
population-level distributions with support on the positive real line. Specifically, we
set the prior distribution of αik for k = 1, 2 to be lognormal, with the population-level
mean and standard deviation of logαik given by α and σα, respectively. Similarly, the
prior distribution of βik is lognormal with parameters β and σβ.

We close the model by specifying hyperprior distributions for population-level pa-
rameters. First, we assume a standard normal prior for α and β, which is centered
around the values associated with linear probability weighting and its unit variance
yields an informative but dispersed prior.9 Second, we choose a half t-student prior for
standard deviations of Prelec parameters θi. Third, we choose a gamma prior for the
precision of the Beta distribution φ. Finally, we let the probability parameters q0 and
q1 to have beta priors given by Beta(1, 1).10

9For values of α or β larger than five the weighting function becomes very close to a step function,
so having a vague hyperprior that places a substantial mass above those values is not going to lead to
significantly different weighting functions while affecting the ability of the model to converge.

10We have tried alternative hyperprior specifications and have not found significant differences in
our estimates.
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Accordingly, our hierarchical model is given by

Wit ∼ f(·|Iit, θi, q0, q1, φ), θi = (α1i, β1i, α2i, β2i)

αik ∼ Lognormal(α, σα), k = 1, 2

βik ∼ Lognormal(β, σβ), k = 1, 2

α ∼ Normal(0, 1)

β ∼ Normal(0, 1) (12)

σα ∼ Half-student t(3, 0, 2.5)

σβ ∼ Half-student t(3, 0, 2.5)

φ ∼ Gamma(1, 2)

qh ∼ Beta(1, 1), h = 0, 1.

Our main goal is to estimate the posterior distribution of θi for each subject in the
sample, and use the estimated posteriors to learn about the distribution of uncertainty
preferences in the population, e.g., the distribution of the individual median values
of θi. In order to do so, we excluded 245 individuals (5.4% of the sample) reporting
WTP of always zero or always one in all their choices. Such choices either reflect non-
truthfull responses or are associated with infinite degrees of risk love and risk aversion,
respectively.

The estimation involves two main hurdles. First, the model is a high-dimensional
non-linear model. Second, computing the distribution of WTP involves an integral
with no closed-form solution. These features make the model difficult to estimate and
computationally demanding. To overcome these hurdles we code and fit our model in
Stan (Stan Development Team, 2019), a probabilistic modeling language that allows
for Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling. Stan is
ideally suited for non-linear models and provides built-in functions such as numerical
integration. In addition, it has an adaptive sampling algorithm (No U-turn sampler
or NUTS) that facilitates MCMC convergence and allows for within-chain parallel
computing to speed up the estimation.11 The estimation involved two chains with
different starting values and 2,000 iterations each. Standard convergence tests were
satisfactory, with almost all parameters exhibiting effective sample sizes greater than
0.75 (see Appendix F for details).

Figure 6 depicts the posterior distributions of individual median values for the four
Prelec parameters and the distribution of individual-level standard deviations, while

11We fit our model using the R interface CmdStanR (Gabry and Češnovar, 2021).
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Table 4 presents the population-level estimates.12 The distributions of medians give a
measure of heterogeneity of weighting functions in the population while the std. devia-
tion distributions reflect the precision of individual-level estimates. Summary statistics
of these distributions are presented in Table 4. The distribution of median values re-

Median Std. Deviation

Figure 6: Posterior density of median values (left) and standard deviations (right) of θi. Red lines
represent distribution medians.

veals several aspects of risk and uncertainty preferences. First, α2i and β2i exhibit
substantial dispersion, implying that the 2nd-stage weighting function π2i. In contrast,
median values of α1i and β1i are much more concentrated leading to a relatively ho-
mogeneous 1st-stage weighting function π1i. Second, individual estimates of 2nd-stage
weighting parameters are much more precise than 1st-stage estimates given that the
former exhibit much lower standard deviations. This is likely due to the fact that, since
1st-stage weights only affect the uncertainty premium while 2nd-stage weights affect
both the risk and uncertainty premia, all individual observations are effectively used to
estimate α2i, β2i while one half of the observations contain information about α1i, β1i.

The population-level parameter estimates in Table 4 help us measure the tendency
to report extreme values of WTP as well as the degree of randomness/deviations of
WTP responses with respect to SOAU preferences. On average, the estimated proba-

12We obtain similar results using mean rather than median values.
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Table 4: Model Estimates: Population-level Parameters

Parameter Median Std. deviation

q0 0.0688 0.0012
q1 0.852 0.0071
φ 16.2 0.140
α -0.831 0.0137
β -0.222 0.0096
σα 0.768 0.0122
σβ 0.639 0.0076
Log Probabilitya 6560 137

No. Obs. 39,950
No. Individuals 4,268
a Unnormalized log density of the model.

bility of reporting WTP of 0 or 1 is about 7%, with most of these choices being one
(85%). This gives us a rough measure of irrationality, in the sense that such values
imply a violation of stochastic dominance. The precision of the beta distribution is
about 16, which suggests that, while WTP is clearly informed by preferences it exhibits
substantial randomness.13

What do these parameter distributions tell us about the distribution of individual
preferences? First, they show that the vast majority of individuals exhibit inverted
S-shape weighting functions in both probability stages, given that median values of α1i

are below one, while α2i is lower than one for 93% of individuals. In addition, almost
all median values of β1i and a majority of β2i are below one, implying overweighting of
probabilities in a range [0, p∗] with p∗ > e−1 ≈ 0.368.14

To learn more about the distribution of SOAU preferences we look at the joint den-
sity of weighting parameters (αik, βik) for k = 1, 2, shown in the top row of Figure 7.
Confirming the above results regarding marginal distributions, the joint distribution of
(αi2, βi2) is highly dispersed, with most of the mass roughly placed in the lower triangle
of rectangle [0, 1.5] × [0, 3]. This implies that, despite wide heterogeneity of risk pref-
erences, virtually no agent exhibits risk love at low probabilities and αi2 and βi2 are
negatively correlated. The peak of the joint density, depicted in the bottom-left graph
of Figure 7, occurs at αi2 = 0.86, βi2 = 0.92, leading to a weighting function relatively

13For instance, if the mean WTP is 0.5, the interquartile range associated with a precision of 16.2
is [0.416, 0.584].

14Since p∗ = e−β
1/(1−α)

is decreasing in β for all α < 1, the smallest p∗ when β ≤ 1 is associated
with b = 1.
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close to the risk neutral benchmark. Nonetheless, the joint distribution is quite asym-
metric, with αi2 typically falling well below one, i.e., most agents exhibit substantial
risk aversion (overweighting) at low probabilities and risk loving (underweighting) at
high probabilities. This is illustrated by the weighting function associated with the
median (of median) values of αi2 and βi2 (see bottom-left graph of Figure 7).

In contrast, the joint density of (αi1, βi1) is highly concentrated along the diagonal
of rectangle [0.4, 0.5] × [0.5, 1], with the mode given by αi1 = 0.44, βi1 = 0.8. Accord-
ingly, these estimates suggest that all agents in the population significantly overweigh
(underweighs) 1st-stage probabilities below (above) 0.5, as illustrated in bottom-right
graph of Figure 7).

Figure 7: Top panel: Posterior joint density of median values of (αi2, βi2) (left) and (αi1, βi1) (right);
white lines represent median values of each parameter. Bottom panel: 2nd-stage weighting function
(left) and 1st-stage weighting function (right); the mode represents the weighting function associated
with the mean of the distribution and the median refers to the weighting function associated with the
median (of median) values of each parameter.

The dispersion of 2nd-stage weighting functions leads to wide heterogeneity in risk
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preferences. Since 1st-stage weighting functions are very homogeneous one might con-
clude that heterogeneity in risk preferences drives heterogeneity in uncertainty pref-
erences. However, this is unclear because the uncertainty premium depends on the
slope of π2 and the level of π1. One way to understand the relative contribution of
each weighting function to the heterogeneity of uncertainty preferences is to look
at their relative contribution to the variation of the marginal uncertainty premium
µ0(p) = π′2(p)(2Eπ1 − 1). Using the above joint distribution we compute the standard
deviation of π′2(p) for p ∈ (0.1, 0.9) and the standard deviation of 2Eπ1.

15 We find that
the standard deviation of π′2(p) ranges between 0.26 and 0.44, while the std. deviation
of 2Eπ1 is about 0.12. These differences are much smaller than the large differences
in heterogeneity between π2 and π1 exhibited by the joint distributions in Figure 7,
although 2nd-stage weights still contribute between two to four times more to the
heterogeneity of marginal uncertainty premia than 1st-stage weights.

6.1 Sociodemographic Differences

We next analyze potential differences in the distribution of preferences across different
sociodemographic characteristics. Specifically, we plot the joint distribution of 2nd-
stage weighting parameters by income, age and gender (Figure 8), and also by financial
literacy and cognitive ability (Figure 9).

There are some differences across groups, with higher income individuals and men
exhibiting less probability mass at low values of (αi2, βi2) than lower income individuals
and women respectively, but overall heterogeneity remains substantial across groups.
The starkest differences appear when we compare groups by financial literacy and
cognitive ability test scores. The distribution of (αi2, βi2) is more concentrated at
higher values for individuals with scores above the median, with very little mass in
the rectangle [0, 0.5] × [0, 1]. In addition, both have a peak close to linear weighting.
In contrast, the distribution of those with scores lower than the median score exhibit
substantial mass in [0, 0.5]× [0, 1].

We do not find any meaningful differences in the joint distribution of 1st stage
weights across these characteristics, and thus we do not present them here. This is not
surprising, given that the distribution (αi1, βi1) is very concentrated.

These results are confirmed by the estimates from regressing risk and uncer-
15We avoid extreme values of p since the slope of π2 tends to infinity (or zero) under the Prelec

functional form.
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Figure 8: Joint distribution of median values of (α2i, β2i) by selected demographics.
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Figure 9: Joint distribution of median values of (α2i, β2i) by financial literacy (top) and cognitive
ability (bottom).

tainty premia on various sociodemographic characteristics, which are presented in Ap-
pendix G. They also suggest that policy interventions aimed at reducing uncertainty,
i.e., by requiring insurers to provide simple risk estimates to consumers, might have a
disproportionate positive impact on less sophisticated consumers.

6.2 Partial Identification with Limited Data

Our preference estimation takes advantage of the richness of our incentivized survey
data. However, data from insurance markets often lacks information about the uncer-
tainty about risks faced by individuals. In such contexts, is it even possible to estimate
individual preferences? One approach would be to use data from insurance choices
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across domains, e.g., auto insurance and home insurance, to partially estimate pref-
erences by using a linear approximation of the 2nd-stage weighting function π2. Since
information and uncertainty about risks varies across domains, we can use them as
proxies for uncertainty, while the linear approximation makes the uncertainty premium
proportional to the slope of π2. Specifically, under linear approximation π2(p) = a+ bp,
the WTP for insurance against unknown risk (p, ε) is given by

W (p, ε) = π2(p) + εµ0(p) = a+ bp+ εb(2Eπ1 − 1) = a+ bp+ cε. (13)

In principle, we can estimate this linear regression from data {Wit, pit, εt}i, where t
represents the insurance domain. While pit and εt are not observed, pit can be measured
using empirical claim rates, as is the typically done in the empirical insurance literature,
and the volatility of claim rates in each domain can serve as a proxy for εt.

Expression (13) also serves to illustrate the potential effects of abstracting from
the presence of uncertainty in the estimation of risk preferences. As an example, not
including εt in the linear regression implied by (13) translates into omitted variable
bias, leading to a biased intercept and a higher (lower) slope estimates depending on
whether risk p and uncertainty ε are positively or negatively correlated.

7 Conclusion

Our study uncovers the impact of uncertainty on insurance demand and uncovers key
features about the nature and distribution of risk and uncertainty attitudes. There are
several takeaways from our analysis, which point to methodological changes, policy in-
terventions and potential avenues for future research. Such implications of our analysis
acquire particular relevance given that we find similar patterns across multiple data
sources.

Methodologically, our work emphasizes the need to account for uncertainty in the
estimation of preferences and suggests ways to do so even with limited data. It also
highlights the need to develop models of uncertainty preferences that incorporate prob-
ability weighting and proposes a class of preferences amenable to empirical estimation.
From an econometrics perspective, our preference estimation exercise illustrates the po-
tential of Bayesian hierarchical methods to obtain distributional estimates that allow
for a comprehensive analysis of agent heterogeneity.

The paper highlights that different types of information frictions affect markets in
different ways. Whereas frictions about insurance contracts (e.g., information about
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coverage, pricing, transaction costs) tend to depress demand for those contracts (Handel
and Kolstad, 2015; Bhargava et al., 2017; Handel et al., 2019; Domurat et al., 2019), we
show that uncertainty about risks increases insurance demand and can lead to selection
effects. These differences imply that friction-mitigation policies aimed at improving
welfare need to be tailored to the specific frictions being targeted. In particular, policies
aimed at regulating disclosure of known risk estimates can have large welfare effects,
primarily benefiting less-sophisticated lower-income consumers. While conducting a
welfare analysis is beyond the scope of this paper, we do so in a companion paper
Gandhi et al. (2020).

Finally, the sources of agents’ reaction to unknown risks remain elusive. Most of the
sociodemographic variables traditionally associated with risk attitudes, such as income
or education, lack explanatory power when it comes to uncertainty preferences. This
implies that information frictions cannot be controlled for in empirical work by simply
conditioning on observable characteristics.
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Appendix A Descriptive Statistics
Table A.1 presents the summary statistics of the main sociodemographic variables of
households in the UAS in Surveys 1 and 2.

Table A.1: Descriptive Statistics - UAS

Variable Mean Std. Dev.
Age 48.34 15.52
Female 0.57 0.49
Married 0.59 0.49
Some College 0.39 0.49
Bachelor’s Degree or Higher 0.36 0.48
HH Income: 25k-50k 0.24 0.43
HH Income: 50k-75k 0.20 0.40
HH Income: 75k-100k 0.13 0.34
HH Income: Above 100k 0.20 0.40
Black 0.08 0.27
Hispanic/Latino 0.10 0.29
Other Race 0.10 0.30
Financial Literacy (range: 0-100) 67.52 22.11
Cognitive Ability 50.70 8.66
No. Individuals 4,442

Appendix B Statistical Analysis of WTP
In this section we present the average WTP under known risk (W (p)) and the uncer-
tainty premium. We report both averages for the whole sample, and also distinguishing
by whether decisions involved ambiguous ranges. Finally, we use our incentivized quiz
about reducing compound risks, to contrast average WTP by subjects’ ability to reduce
compound lotteries.

Table B.2 presents whole sample averages and reports both whether WTP are dif-
ferent from risk probabilities and whether uncertainty premium is significantly different
from zero using one-sided paired t-tests.

Ambiguity Tables B.3 and B.4 show the effect of presenting agents with non-
ambiguous versus ambiguous ranges. There is no clear effect of ambiguity on the
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Table B.2: WTP for Insurance: Pooled Compound and Ambiguous Risk

Group 1 Group 2 Group 3 Group 4
p W (p)a µ(I)b,c W (p) µ(I) W (p) µ(I) W (p) µ(I)

2 28.2∗∗∗ 2.5∗∗∗ 28.3∗∗∗ 3.0∗∗∗
(2) (4)

5 25.8∗∗∗ 2.8∗∗∗ 28.9∗∗∗ 4.4∗∗∗
(4) (8)

10 28.5∗∗∗ 3.6∗∗∗ 31.4∗∗∗ 3.5∗∗∗ 31.4∗∗∗ 2.2∗∗∗ 30.9∗∗∗ 2.3∗∗∗
(18) (14) (8) (4)

20 34.1∗∗∗ 3.5∗∗∗ 36.8∗∗∗ 2.5∗∗∗ 36.6∗∗∗ 4.6∗∗∗ 37.1∗∗∗ 2.0∗∗∗
(14) (4) (24) (8)

30 42.4∗∗∗ 3.0∗∗∗
(18)

40 48.1∗∗∗ 3.5∗∗∗ 49.1∗∗∗ 1.7∗∗∗
(24) (4)

50 54.7∗∗∗ -0.6∗
(8)

60 60.3 2.2∗∗∗
(24)

70 66.5∗∗∗ -0.6
(18)

80 69.8∗∗∗ -0.1
(4)

90 77.9∗∗∗ -1.1∗∗
(14)

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
c Range sizes in parenthesis.

uncertainty premium. Overall, effects seem to be quantitatively of the same order of
magnitude.

Ability to reduce compound lotteries. Table B.5 shows the average WTP asso-
ciated with the range used in the incentivized question that asked subjects to compute
the underlying failure probability. There are no substantial differences in uncertainty
premia between those who answered correctly and those who did not correctly reduce
the range, except for the last 2 ranges, in which those who reduced the range properly
actually exhibit a higher WTP.
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Table B.3: WTP for Insurance: Compound Risk I = U [p− ε, p+ ε]

Group 1 Group 2 Group 3 Group 4
p W (p)a µ(I)b,c W (p) µ(I) W (p) µ(I) W (p) µ(I)

2 29.2∗∗∗ 2.3∗∗ 28.5∗∗∗ 2.8∗∗∗
(2) (4)

5 25.3∗∗∗ 2.6∗∗∗ 29.2∗∗∗ 3.4∗∗∗
(4) (8)

10 27.6∗∗∗ 4.1∗∗∗ 32.0∗∗∗ 2.9∗∗∗ 32.0∗∗∗ 2.1∗∗∗ 30.1∗∗∗ 3.0∗∗∗
(18) (14) (8) (4)

20 32.8∗∗∗ 3.6∗∗∗ 37.6∗∗∗ 1.7∗∗∗ 37.2∗∗∗ 4.4∗∗∗ 35.9∗∗∗ 2.7∗∗∗
(14) (4) (24) (8)

30 41.5∗∗∗ 4.0∗∗∗
(18)

40 48.4∗∗∗ 3.9∗∗∗ 49.9∗∗∗ 1.4∗∗
(24) (4)

50 53.0∗∗∗ 0.03
(8)

60 60.3 3.1∗∗∗
(24)

70 66.8∗∗∗ 0.0
(18)

80 67.7∗∗∗ 0.8∗
(4)

90 78.2∗∗∗ -0.8∗
(14)

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
c Range sizes in parenthesis.
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Table B.4: WTP for Insurance: Ambiguous Risk I = [p− ε, p+ ε].

Group 1 Group 2 Group 3 Group 4
p W (p)a µ(I)b,c W (p) µ(I) W (p) µ(I) W (p) µ(I)

2 27.2∗∗∗ 2.8∗∗∗ 28.1∗∗∗ 3.3∗∗∗
(2) (4)

5 26.2∗∗∗ 2.9∗∗∗ 28.7∗∗∗ 5.4∗∗∗
(4) (8)

10 29.4∗∗∗ 3.1∗∗∗ 30.7∗∗∗ 4.1∗∗∗ 30.7∗∗∗ 2.4∗∗∗ 31.7∗∗∗ 1.6∗∗∗
(18) (14) (8) (4)

20 35.4∗∗∗ 2.9∗∗∗ 36.1∗∗∗ 3.3∗∗∗ 36.1∗∗∗ 4.7∗∗∗ 38.2∗∗∗ 1.2∗∗
(14) (4) (24) (8)

30 43.3∗∗∗ 2.0∗∗∗
(18)

40 47.8∗∗∗ 3.1∗∗∗ 48.3∗∗∗ 2.0∗∗∗
(24) (4)

50 56.4∗∗∗ -1.2∗∗
(8)

60 60.3 1.2∗∗
(24)

70 66.3∗∗∗ -1.2∗∗
(18)

80 71.9∗∗∗ -1.1∗∗
(4)

90 77.5∗∗∗ -1.4∗∗
(14)

a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
c Range sizes in parenthesis.

Table B.5: WTP by Ability to Reduce Compound Lotteries

Correct Incorrect
Decision p W (p)a µ(I)b n W (p) µ(I) n

Range
3-7 5 22.6∗∗∗ 2.7∗∗∗ 658 34.2∗∗∗ 2.7∗∗ 247
3-17 10 26.3∗∗∗ 3.3∗∗∗ 484 37.3∗∗∗ 3.3∗∗∗ 417
8-32 20 30.6∗∗∗ 5.2∗∗∗ 523 42.4∗∗∗ 3.9∗∗∗ 539
21-39 30 38.7∗∗∗ 4.0∗∗∗ 655 48.5∗∗∗ 1.2∗ 406
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
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Appendix C Robustness and External Validity
C.0.1 Measurement Error Correction

This section provides estimates of the correlation between risk and uncertainty premium
that correct for potential biases due to measurement error. To formally show the
problem, let Ŵ (I) = W (I) + εI be the elicited WTP under information I, where εI is
a random variable representing classical measurement error. Accordingly, the elicited
risk premium is given by µ̂(p) = µ(p) + εp and the elicited uncertainty premium is
given by µ̂(I) = µ(I) + εI − εp. Assuming that measurement errors are independently
drawn and that they are independent of W (·), the correlation between µ̂(I) and µ̂(p)
is given by

corr(µ̂(I), µ̂(p)) =
cov(µ(I), µ(p))− V ar(εp)√

(V ar(µ(I) + V ar(εI − εp))(V ar(µ(p) + V ar(εp))
.

Hence, the numerator is negatively biased while the denominator is biased upwards,
making both the direction and the size of the bias indeterminate.

However, if we have duplicate measures of the risk premium, µ̂(p) and µ̂d(p) =
µ(p) + εdp we can use µ̂d(p) as an instrument for µ̂(p) in a regression of µ̂(I) on µ̂(p).
Since errors are independent across measures the measurement error in µ̂(I), given by
εI − εp, is independent of the measurement error εdp in µ̂d(p), making the latter a valid
instrument. Accordingly, the regression coefficient β̂ delivers a consistent estimate of
cov(µ(I), µ(p))

V ar(µ(p))
. If, in addition, we have an additional measure µ̂d(I) of the uncertainty

premium, the correlation between the risk and uncertainty premia can be consistently
estimated using

ĉorr(µ(p), µ(I)) = β̂

√
ĉov(µ̂(p), µ̂d(p))

ĉov(µ̂(I), µ̂d(I))
, (14)

where ĉorr and ĉov represent sample correlation and covariance, respectively.
Gillen et al. (2019) exploit the use of duplicate measures or replicas to obtain not

only consistent but also efficient estimates via stacked IV regressions, one per available
replica, with the remaining replicas acting as instruments. They call their approach
an obviously related instrumental variable (ORIV) regression and show how to obtain
consistent correlation estimates and bootstrapped standard errors.

To obtain replicas of risk and uncertainty premia, we take advantage of the fact
that our experimental design elicits subjects’ WTP for insurance for multiple risk
probabilities. Specifically, we use the linear interpolation of risk premium associated
with the probability points adjacent to p as the second measure of µ(p). That is, if
p′ < p and p′′ > p are the loss probabilities closest to p in the experimental design, the
replicas of risk and uncertainty premia are given by

µ̂d(p) = µ(p′)
p′′ − p
p′′ − p′

+ µ(p′′)
p− p′

p′′ − p′
,
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µ̂d(I) = µ(I ′)
p′′ − p
p′′ − p′

+ µ(I ′′)
p− p′

p′′ − p′
,

where I ′ and I ′′ represent the unknown risks respectively associated with p′ and p′′.
We normalize uncertainty premium by dividing it by range size and perform the linear
interpolation using the normalized premia.

Table C.6 shows the ORIV correlation for probabilities with adjacent probabilities
on both sides (column three). The estimates are of similar magnitude if not slightly
more negative. These results indicate that the negative relationship between risk and
uncertainty premia is not an artifact of measurement error.

Table C.6: Correlation between risk and insurance premia

p correlationa ORIV correlationb

2 -0.312∗∗∗ -
5 -0.291∗∗∗ -
10 -0.276∗∗∗ -0.310∗∗∗
20 -0.241∗∗∗ -0.319∗∗∗
30 -0.329∗∗∗ -0.324∗∗∗
40 -0.256∗∗∗ -0.353∗∗∗
50 -0.347∗∗∗ -0.306∗∗∗
60 -0.284∗∗∗ -
70 -0.309∗∗∗ -
80 -0.267∗∗∗ -
90 -0.276∗∗∗ -
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.

C.0.2 Correlation in Existing Experimental Data

The remarkable invariance of our correlation estimates raises the question whether
we have uncovered a robust feature of uncertainty preferences or whether they are
just a byproduct of our specific survey design. We address this question by replicating
our analysis in our companion laboratory experiment, which is described below, and by
computing the correlation between risk premium and compound risk premia in the data
of some of the most prominent studies looking at the relationship between ambiguity
and compound risk attitudes, namely the papers by Halevy (2007), Abdellaoui et al.
(2015) and Chew et al. (2017).

As Table C.6 shows, correlation coefficients are significantly negative in all the
datasets. Interestingly, since the data in Abdellaoui et al. (2015) includes three different
probabilities we were able to calculate the ORIV correlation for p = 1/2, which turns
out to be identical to the ORIV correlation of −0.3 in our data.16

16Abdellaoui et al. (2015) use compound lotteries in their ‘hypergeometric CR’ treatment, preventing
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Table C.7: Correlation between risk and insurance premia

p Study N correlation ORIV correlation
50 This paper - UAS 1,043 -0.347∗∗∗ -0.306∗∗∗
50 This paper - Experiment 119 -0.401∗∗∗ -0.299∗∗∗
50 Halevy (2007) - $2 treatment 104 -0.557∗∗∗ -
50 Halevy (2007) - $20 treatment 38 -0.542∗∗∗ -
8.33 Abdellaoui et al. (2015)c 115 -0.418∗∗∗ -
50 Abdellaoui et al. (2015)d 115 -0.365∗∗∗ -0.310∗∗
91.67 Abdellaoui et al. (2015) 115 -0.518∗∗∗ -
50 Chew et al. (2017) 188 -0.493∗∗∗ -
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.
c Correlation between the known risk premium and hypergeometric CR premium.
d ORIV correlation from the Abdellaoui et al. (2015) dataset is computed using the average risk premium under
simple lotteries with winning probabilities 1/12 and 11/12 as a replica for the risk premium at probability 1/2.

Appendix D Omitted Proofs
Proof of Proposition 1. Under linear utility u(x) = x the certainty equivalent of known
risk (q,−1; 1− q, 0) is −π2(q). Since this expression is decreasing in q, the distribution
of certainty equivalents induced by the uniform distribution on [p− ε, p+ ε] is given by

G(y) = Pr(q ≥ π−1
2 (−y)) = 1− π−1

2 (−y)− p+ ε

2ε
=
p+ ε− π−1

2 (−y)

2ε
,

where π−1
2 denotes the inverse of π2. In addition, the lowest and highest certainty

equivalents are respectively associated with the highest and lowest loss probabilities,
i.e., y = −π2(p+ ε) and ȳ = −π2(p− ε). Accordingly, expression (3) leads to

Vw(I(p, ε)) = −π2(p− ε)−
−π2(p−ε)∫
−π2(p+ε)

π1

(
p+ ε− π−1

2 (−y)

2ε

)
dy.

Applying the change of variable t = π−1
2 (−y) we obtain

Vw(I(p, ε)) = −π2(p− ε)−
p+ε∫
p−ε

π′2(t)π1

(
p+ ε− t

2ε

)
dt.

A second change of variable z = t−p+ε
2ε

implies that 2εdz = dt and that the new limits
of integration are z = 0 and z̄ = 1, leading to expression (4).

To prove the second part of the proposition, note that the uncertainty premium

us from obtaining a replica of the uncertainty premium given that such lotteries are hard to compare
across p. Nonetheless, the ORIV correction can still be performed by using a replica of the risk
premium at 1/2, obtained via linear interpolation with probabilities 1/12 and 11/12.
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satisfies Vw(I(p, ε)) = −µ(I(p, ε))− µ(p)− p. Since µ(p) = π2(p)− p, we have that

µ(I(p, ε)) = −π2(p) + π2(p− ε) + 2ε

1∫
0

π′2(p+ ε(2z − 1))π1 (1− z) dz.

By the fundamental theorem of calculus we can express π2(p) as

π2(p) = π2(p− ε) +

0∫
−ε

π′2(p+ t)dt = π2(p− ε) + 2ε

1/2∫
0

π′2(p+ ε(2z − 1))dz,

where the last equality follows from the change of variable z = t+ε
2ε
. Hence,

µ(I(p, ε)) = −2ε

1/2∫
0

π′2(p+ ε(2z − 1))dz + 2ε

1∫
0

π′2(p+ ε(2z − 1))π1 (1− z) dz

= −2ε

1/2∫
0

π′2(p+ ε(2z − 1)) (1− π1 (1− z)) dz + 2ε

1∫
1/2

π′2(p+ ε(2z − 1))π1 (1− z) dz.

The last expression leads to (5) by applying the change of variable z′ = 1− 2z to the
first integral and z′ = 2z − 1 to the second integral.

Proof of Proposition 2. Dividing both sides of (5) and taking the limit as ε → 0 we
obtain

lim
ε→0

µ(I(p, ε))

ε
= π′2(p)

 1∫
0

π1

(
1− z

2

)
dz +

1∫
0

π1

(
1 + z

2

)
dz − 1



= π′2(p)

2

1/2∫
0

π1 (z′) dz′ + 2

1∫
1/2

π1 (z′) dz′ − 1

 = π′2(p)

2

1∫
0

π1 (z′) dz′ − 1

 .

Proof of Proposition 3. Part (i): We prove first the condition regarding the lower
concave envelope. The expected utility of risk (p,−1; 1 − p, 0) is given by pu(w −
1) + (1 − p)u(w). A positive risk premium for p ∈ (0, p∗) involves u(w − p) >
pu(w − 1) + (1 − p)u(w). Letting x = w − p we get that u(x) > x(u(w) − u(w −
1)) + u(w)(1 − w) + wu(w − 1). Since the RHS is linear in x the strict inequality
implies that we can always find a concave function g(x) satisfying u(x) ≥ g(x) >
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x(u(w)− u(w − 1)) + u(w)(1− w) + wu(w − 1) for all x ∈ (w − p∗, w). The proof for
the upper convex envelope is similar and therefore omitted.

Part (ii): The risk premium under linear utility u(x) = x is given by µ(p) = π2(p)−p
so the condition is immediate.

Appendix E Reference-Dependent Preferences
We show in this section that adding reference dependence to EU-based uncertainty
preferences cannot explain the risk premium patterns without resorting to non-standard
functional forms of the utility function.

Reference-dependent preferences involve taking expectations over the utility of
changes w.r.t. a reference point x∗, given by the function v(x − x∗). Reference points
can be deterministic or stochastic. Regarding stochastic reference points, which were
introduced by Kőszegi and Rabin (2006), when evaluating WTP for full insurance, it is
natural to make the lottery (p,−1; 1− p, 0) the reference point. In this case, Sprenger
(2015) has shown that stochastic reference point leads to risk neutrality when choosing
a deterministic outcome (full insurance), thereby predicting a risk premium equal to
zero for all p. Accordingly, we focus on deterministic reference points.

The value of known risk (p,−1; 1−p, 0) for a DM with initial wealth w and reference
point x∗ is given by

Vr(p) = pv(w − 1− x∗) + (1− p)v(w − x∗). (15)

Two popular choices of reference points are either initial wealth (x∗ = w) or expected
final wealth (x∗ = w−p) as in the model of dissapointment aversion (Bell, 1985; Loomes
and Sugden, 1986; Gul, 1991). They respectively lead to

Vr(p) = pv(−1) + (1− p)v(0) (16)

and
Vr(p) = pv(−1 + p) + (1− p)v(p). (17)

The next results shows that for reference-dependent preferences to explain the risk
premium data we would need to resort to non-standard utility functions that switch
between concavity/convexity or between loss averse/gain loving as wealth changes go
above some threshold p∗ ∈ (0, 1).

Proposition 5. Assume that there exists p∗ ∈ [0, 1] such that µ(p) > 0 for p < p∗ and
µ(p) < 0 for p > p∗. If the DM maximizes expected utility v(x− x∗) over gains/losses
with respect to reference point x∗ then

(iii.a) if x∗ = w then the upper convex envelope of v(z) is below the line connecting
v(−1) and v(0) for all z ∈ (−1,−p∗) and then its lower concave envelope above
the line for all z ∈ (−p∗, 0);

(iii.b) if x∗ = w − p then v(0)−v(p−1)
1−p > v(p)−v(0)

p
(loss averse) for all p ∈ [0, p∗) and

v(0)−v(p−1)
1−p < v(p)−v(0)

p
(gain loving) for all p ∈ (p∗, 1].
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Proof. Part (iii.a): If the reference point is current wealth, then the expected value
of risk (p,−1; 1 − p, 0) is given by pv(−1) + (1 − p)v(0). A positive risk premium
implies v(−p) > pv(−1)+(1−p)v(0). Hence, the proof follows from applying the same
argument in the proof of part (i) of Proposition 3 to v instead of u for the range of
losses (−p∗, 0).

Part (iii.b): If the reference point is expected final wealth y− p, then the expected
value of risk (p,−1; 1−p, 0) is given by pv(p−1)+(1−p)v(p). A positive risk premium
implies

v(0) > pv(p− 1) + (1− p)v(p)⇒ p (v(0)− pv(p− 1)) > (1− p) (v(p)− v(0)) ,

which proves the condition.

Appendix F Bayesian Estimation
This section presents some convergence tests of the MCMC sampling both within and
between chains. Initial values for chain 1 were set to α = −0.7, β = −0.36, σα = σβ =
0.4, φ = 4, q = 0.1, q1 = 0.8 and αi = β = i = 0.5 for all i. Initial values for chain 2
were set to α = β = 0.1, σα = σβ = 2, φ = 2, q = 0.3, q1 = 0.6 and αi = β = i = 1.1 for
all i.

Figure F.1 shows that the traces of the last (post warm-up) 1,000 iterations of both
chains mix well, with the two chains exploring the same region of parameter values.
Overall, there was only one divergent iteration out of 2,000.

Figure F.1: Traces of selected parameters.

A typical statistic to check for convergence to a common distribution is the split-
R̂, which measures the ratio of the average variance of draws within each chain to
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the variance of the pooled draws across chains. Such ratios should be one if the chains
have converged. If the chains have not converged to a common distribution, the split-R̂
statistic will be greater than one. A common threshold for divergence is 1.05. Figure F.2
shows the values of split-R̂ for all the parameters (over 17, 000). All of the values are
extremely close to 1.

Figure F.2: Split-R̂ of model parameters.

Figure F.3: Energy distributions for chain 1 (left) and chain 2 (right).

Figure F.3 plots for each chain the marginal energy distribution πE and the first-
differenced distribution π∆E. Both histograms overlap nicely and show an absence of
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heavy tails, which are challenging for sampling.
Finally, Figure F.4 shows the ratio of effective sample size (Neff ) to actual sample

size (N) for all model parameters. this ratio estimates the fraction of independent
draws from the posterior distribution. The ratio is larger than 0.75 for almost all
parameters, implying low autocorrelation of MCMC draws.17

Figure F.4: Effective sample size ratio of model parameters.

Appendix G Covariates of WTP
Table G.8 shows the results of regressing uncertainty premium on range size, whether
the information about the range is ambiguous, the error in the quiz regarding reducing
compound risk (normalized by range size), financial literacy and cognitive ability, as
well as sociodemographic variables. All the regressions control for risk probability p
and for whether the known risk scenario was presented before uncertain risks or if the
order was reversed (p-values are adjusted to control for multiple hypothesis testing).
The first column shows the regression estimates without controlling for risk attitudes
(µ(p)), while the second column does control for risk attitudes.

Several conclusions emerge from these estimates. First, risk attitudes are by far the
most important covariate of uncertainty premium: Risk premium accounts for about
9% of the overall variation of the uncertainty premium, while the rest of variables com-
bined only account for a R2 of 3%. Second, the table reflects the relationship between
risk probabilities and range sizes depicted in Figure 2, namely, the wider the range
and the lower the risk probability the higher the uncertainty premium. In contrast,

17A ratio greater than one implies negative autocorrelation leading to a smaller variance of the mean
estimate than the one obtained from independent draws of the true posterior.
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Table G.8: Covariates of uncertainty premium and Risk Premium

µ(I) µ(I) µ(p)
Risk Probability -0.06*** -0.14*** -0.41***

(0.01) (0.01) (0.01)
Range Size 0.11*** 0.11***

(0.01) (0.01)
Ambiguity 0.54 0.50

(0.33) (0.32)
µ(p) -0.19***

(0.01)
Financial literacy -0.15 -0.45 -1.71**

(0.23) (0.23) (0.50)
Average Cognitive Score 0.49 0.30 -1.34*

(0.24) (0.23) (0.48)
Quiz Error -0.06 0.22

(0.09) (0.09)
Age -0.05 -0.04 0.08

(0.07) (0.06) (0.14)
Age2/100 0.04 -0.01 -0.24

(0.07) (0.06) (0.13)
Female -0.64 0.11 3.90***

(0.35) (0.35) (0.76)
Married -0.60 -0.73 -0.59

(0.37) (0.36) (0.83)
Some College 0.29 0.01 -1.22

(0.48) (0.47) (1.02)
Bachelor’s Degree or Higher 0.28 -0.15 -2.19

(0.54) (0.54) (1.16)
Hh Income: 25k-50k 0.45 0.53 0.21

(0.54) (0.53) (1.16)
Hh Income: 50k-75k 0.38 -0.11 -2.82

(0.60) (0.58) (1.26)
Hh Income: 75k-100k 0.75 0.59 -0.97

(0.62) (0.62) (1.41)
Hh Income: Above 100k 0.29 -0.85 -6.38***

(0.62) (0.62) (1.33)
Non-Hispanic Black -1.70 -1.21 2.58

(0.75) (0.71) (1.53)
Spanish/Hispanic/Latino 0.31 0.30 0.04

(0.70) (0.70) (1.37)
Other Race/Ethnicity -0.12 0.10 1.23

(0.66) (0.63) (1.24)
Reverse Order 4.64*** 4.13*** -2.51***

(0.33) (0.32) (0.71)
R2 0.03 0.13 0.20
N 19,050 19,050 19,432
All regressions include a constant and standard errors are clustered. Regressions including µ(p)
are IV regressions with the linear interpolation of adjacent risk premia as the instrument for µ(p).
Bonferroni-adjusted p-values: *p < 0.10, **p < 0.05, ***p < 0.01



whether the range is ambiguous or not does not lead to significant differences in the
uncertainty premium. Information attitudes do not seem to be driven by misperception
of risks, as measured by the error in the incentivized quiz about reducing compound
risk (normalized by range size). Third, cognitive and socio-demographic variables do
not seem to significantly drive information attitudes. In contrast, gender, income, as
well as cognitive ability and financial literacy are significantly associated with risk at-
titudes. The third column in Table G.8 shows that individuals with higher financial
literacy and cognitive ability are less risk averse. Similarly, being male and earning an
income above $100k are associated with lower risk aversion. These relationships are
consistent with previous studies about risk attitudes (Outreville, 2014).

Finally, we find significant order effects, with higher uncertainty premia associated
with the reverse order, i.e., when agents were asked about WTP for unknown risks
first. This may suggest that being exposed to known risk may have an anchoring effect
on WTP for insurance against unknown risks.18

Appendix H Experiment

H.1 Design

The laboratory experiment was conducted at the BRITE Laboratory for economics re-
search and computerized using ZTree (Fischbacher, 2007). Participants were recruited
from a subject pool of undergraduate students at the University of Wisconsin-Madison.
A total of 119 subjects participated in 9 sessions, with an average of 13 subjects par-
ticipating in each session. Upon arriving to the lab, subjects were seated at individual
computers and given copies of the instructions. After the experimenter read the in-
structions out loud, she administered a quiz on understanding (see Appendix I for the
complete instructions and quiz provided to subjects).

Each participant made 52 insurance decisions individually and in private. In each
decision period, the subject was the owner of a unit called the A unit. The A unit
had some chance of failing, and some chance of remaining intact. Intact A units paid
out 100 experimental dollars to the subject at the end of the experiment, while failed
A units paid out nothing. The probability of A unit failure, including the information
available about said probability, was varied in each decision.

In each decision period, we elicited the maximum willingness to pay for full in-
surance using the Becker-DeGroot-Marschak mechanism. Subjects moved a slider to
indicate how much of their 100 experimental dollar participation payment they would
like to use to pay for insurance. Then, the actual price of insurance was drawn at
random using a bingo cage from a uniform distribution on (0,100). If WTP was equal
to or greater than the actual price, the subject paid the actual price, which assured
that the A unit would be replaced if it failed. On the other hand, if WTP was less
than the actual price, the subject did not pay for insurance and lost the A unit if there
was a failure.

We randomized subjects to two different treatments; No Ambiguity group and
18No such order effects seem to be present in our lab experiment (see Table H.11 in Appendix H.4).

44



Ambiguity group. All subjects faced multiple information environments; in that sense,
our design includes both within- and between- subject components.

We start by explaining the decisions faced by the No Ambiguity group. We divide
the decisions into 4 different ‘blocks’ of 13 decisions each. In each ‘block’ of decisions, we
asked subjects to state their maximum WTP for an expected rate of failure of between
2% and 98%, as described in Table H.9. The four ‘blocks’ were as follows: 1) Probability
of Loss, which provided full information about the failure rate, 2) Range Small, which
provided a small range of possible probabilities of failure, 3) Range Big, which provided
ranges of greater size, and 4) Multiplicative Risks.19 It was clearly explained that
within the Range blocks, the actual probability of failure would be chosen from within
the range with all integer numbers equally likely. Multiplicative Risks imply a loss
only if both probabilities are realized. As can be noted from Table H.9, each decision
within the block has a corresponding decision with the same expected probability across
information environments for ease of comparison.

Both Multiplicative Risks and Range blocks constitute a decision that involves
solving a compound risk problem. Along the range treatments, we chose Small and
Big range in order to vary levels - Big Range is somewhat more imprecise than Small
range.

The Ambiguity group faced similar decisions to the No Ambiguity group (as denoted
by Table H.9, except that the actual selection of the probability of failure for the Range
‘blocks’ was left ambiguous. Specifically, subjects were told that the actual probability
is within the range but is unknown.

Subjects made decisions one at a time, but had a record sheet in front of them
summarizing the ranges and probabilities for all 52 decisions. To control for any order
effects, we conducted the experiment using 4 different possible orders, assigned at
random to each session: (1, 2, 3, 4); (2, 3, 4, 1)’ (3, 4, 1, 2) and (4, 1, 2, 3). Following
the decision rounds, subjects also completed a quiz testing their ability to reduce
compound lotteries and a short demographic questionnaire.

At the end of the experiment, only one of the decisions was selected at random and
paid out, and no feedback on outcomes was given until the end, so we consider each
decision made an independent decision. At the end of the experiment, we first randomly
selected one decision to be the ‘decision-that-counts.’ Then, we randomly selected the
actual price of insurance. Finally, we used the reported probability of failure in the
‘decision-that-counts’ to randomly choose whether or not the A unit would fail. All
random selections were carried out using a physical bingo cage and bag of orange and
white balls rather than a computerized system to assure transparency.

Earnings in experimental dollars were converted to US dollars at the rate of 10
experimental dollars = $1. Participation required approximately one hour and subjects
earned an average of about $29.5 each.20

19In the experiment itself, these were called ‘Known Failure Rate’ (1), ‘Uncertain Failure Rate’ (2
and 3), and ‘Failure Rate Depends on Environmental Conditions’ (4)

20In this paper, we report only on the insurance choice experiment, which was conducted at the be-
ginning of the session. However, subjects stayed to participate in another risk task after the insurance
task was over. The time and earnings reported above exclude the additional task time and payout.
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Table H.9: Experiment Treatments

Decision #
(within block)

(1) Probability of
Loss (%)

(2) Range
Small (%)

(3) Range
Big (%)

(4) Multiplicative Risks
1st; 2nd, (%)

1 2 1-3 0-4 40; 5
2 5 3-7 1-9 10; 50
3 10 3-17 1-19 40; 25
4 20 16-24 8-32 25; 80
5 30 29-31 21-39 85; 35
6 40 38-42 28-52 50; 80
7 50 46-54 38-62 66; 76
8 60 58-62 48-72 86; 70
9 70 69-71 61-79 75; 93
10 80 76-84 68-92 95; 84
11 90 83-97 81-99 92; 98
12 95 93-97 91-99 99; 96
13 98 97-99 96-100 99; 99

H.2 Risk and Uncertainty Premium

The experiment confirms the results found in both surveys. Both risk premium and
uncertainty premium are decreasing in risk probability p, as shown in Figure H.5. The
only difference is that subjects in the experiment were significantly less risk averse.
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Figure H.5: Average Risk and Uncertainty Premia at Different Probabilities.

The effects of multiplicative risks are much stronger than those associated with
ranges. Figure H.6 shows the comparison of uncertainty premia for multiplicative risk
and range treatments. Whereas the uncertainty premium associated with multiplicative
risks also declines as p goes up, it is still large at p ≤ 80%. A possible explanation for
this disparity is that multiplicative risks are perceived as more complex. Using the
incentivized quiz about reducing both range and multiplicative risks, Table H.14 shows
that the inability to reduce lotteries seems to increase WTP under multiplicative risks.
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Figure H.6: uncertainty premium of Big Range and Multiplicative Risk Treatments

H.3 Relationship Between Risk and Uncertainty Premium

Table H.10 presents the correlation coefficients for different p between risk and un-
certainty premia, as well as the ORIV correlation coefficients. To perform the ORIV
correction we use the linear interpolation of adjacent risk premia as a replica of risk
premium. We do not use replicas of the uncertainty premium given the lack of a direct
comparability of uncertainty premium between different multiplicative risks.21

Table H.10: Correlation between risk and insurance premia – Experiment

Range Multi-Risk
p correlationa ORIV correlationb correlation ORIV correlation

2 -0.197∗∗ - -0.249∗∗ -
5 -0.120 -0.059 -0.166∗∗ -0.012
10 -0.214∗∗ 0.210 -0.304∗∗∗ -0.333∗
20 -0.394∗∗∗ -0.405∗∗∗ -0.315∗∗∗ -0.268∗∗∗
30 -0.567∗∗∗ -0.499 -0.388∗∗∗ -0.301∗∗∗
40 -0.203∗∗ -0.428∗ -0.239∗∗∗ -0.192∗∗∗
50 -0.401∗∗∗ -0.299∗∗∗ -0.378∗∗∗ -0.366∗∗∗
60 -0.240∗∗∗ -0.289∗∗ -0.347∗∗∗ -0.254∗∗∗
70 -0.374∗∗∗ -0.299∗∗∗ -0.372∗∗∗ -0.373∗∗∗
80 -0.388∗∗∗ -0.425∗∗∗ -0.402∗∗∗ -0.373∗∗∗
90 -0.459∗∗∗ -0.529∗∗∗ -0.525∗∗∗ -0.530∗∗∗
95 -0.538∗∗∗ -0.596∗∗∗ -0.539∗∗∗ -0.529∗∗∗
98 -0.569∗∗∗ - -0.587∗∗∗ -
a Statistical significance: *p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b p-values for ORIV correlation are computed using bootstrapped standard errors.

21Not having a replica for the uncertainty premium implies that the ORIV correlation is consistent
as long as the variation in each replica of the risk premium due to measurement error is identical
(Gillen et al., 2019).
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Table H.11: Covariates of uncertainty premium and Risk Premium - Experiment

µ(I) µ(p)
Range Multi-Risk

Risk Probability -0.04* -0.07*** -0.07 -0.15*** -0.12***
(0.01) (0.01) (0.04) (0.04) (0.03)

Probability Range 0.25** 0.18
(0.08) (0.08)

(Probability Range)2 -0.01 -0.01
(0.00) (0.00)

1st Stage Probability -0.04 0.00
(0.03) (0.03)

Ambiguity -0.28 0.17
(1.21) (1.24)

Quiz Score -0.12 -0.26 0.39 0.30
(0.47) (0.46) (0.48) (0.51)

Quantitative Major 1.35 0.88 -2.11 -3.10 -2.84
(1.41) (1.49) (2.17) (2.34) (3.02)

Statistics Course 1.88 1.52 -2.73 -3.11 -3.22
(1.97) (1.86) (2.74) (2.94) (4.04)

Cumulative GPA 0.88 1.30 -0.12 0.28 1.20
(0.96) (0.91) (1.53) (1.47) (1.59)

CRT Score -0.46 -0.28 -3.09*** -3.35*** 0.15
(0.56) (0.55) (0.86) (0.90) (1.13)

µ(p) -0.15*** -0.31***
(0.04) (0.07)

Age -0.20 -0.18 1.48*** 1.62*** 0.15
(0.09) (0.09) (0.18) (0.16) (0.22)

Female 0.27 -0.19 3.63 1.88 -4.56
(1.43) (1.54) (1.87) (1.99) (2.63)

Years in College -0.18 -0.13 -0.36 -0.27 0.96
(0.76) (0.81) (1.16) (1.29) (1.69)

Black/African American -2.51 -2.69 -2.92 -2.12 -0.19
(3.88) (4.03) (8.40) (9.38) (3.86)

Asian -1.97 -2.21 -1.61 -1.44 0.94
(1.53) (1.40) (2.14) (2.20) (3.45)

Hispanic 3.14 5.50 0.71 4.47 10.30
(1.66) (2.23) (3.18) (3.81) (6.07)

Reverse Order -2.21 -1.64 -1.67 -1.34 4.08
(1.21) (1.24) (1.64) (1.65) (2.42)

R2 0.04 0.13 0.14 0.28 0.09
N 3094 2618 1547 1309 1547
All regressions include a constant and standard errors are clustered. Regressions including µ(p)
are IV regressions with the linear interpolation of adjacent risk premia as the instrument for µ(p).
Bonferroni-adjusted p-values: *p < 0.10, **p < 0.05, ***p < 0.01
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H.4 Covariates of Uncertainty Preferences in the Laboratory

Table H.11 presents the regression estimates from the experiment. We run separate
regressions for the range and multiplicative risk treatments. In the latter regressions
we include the first stage risk probability since it is associated with negative skewe-
ness (Dillenberger and Segal, 2017).22 We also include as proxies for financial literacy
whether the subject’s major is quantitative (life sciences, natural sciences, economics
and business, and engineering majors) and whether she took an economic course. GPA
and the number of correct answers in the cognitive reflection test (CRT) (Frederick,
2005) are proxies for cognitive ability.

The results in terms of the explanatory power of risk premium largely replicate the
findings using the UAS data. The regression R2 goes from 0.03 to 0.14 in the range
treatment and from 0.14 to 0.28 for multiplicative risks. Neither ambiguity nor skewe-
ness seem to significantly affect uncertainty premia. Interestingly, a higher cognitive
ability (CRT score) is significantly associated with a lower uncertainty premium only
in the multiplicative risks treatment, potentially reflecting the fact that these risks are
more complex than range risks and thus elicit a higher reaction in subjects with lower
ability. In terms of demographics only age is statistically significant in the multi-risk
treatment.

Unlike the field experiment, order effects are not significant. To measure them we
consider whether the subjects answered the known risk questions first or faced the
reverse order, meaning that the answer questions of the respective treatment (range or
multiplicative risks) first.

H.5 Analyisis of WTP

Table H.12 presents the average WTP under known risk as well as the uncertainty
premium across treatments. The table also reports both whether W (p) is different
from p and whether the uncertainty premium is different from zero according to one-
sided paired t-tests.

Table H.13 shows the comparison of presenting agents with non-ambiguous versus
ambiguous ranges. No clear pattern emerges, with uncertainty premium being some-
times smaller and other times larger under ambiguity.

Finally, we check whether the results might be solely driven by subjects’ lack of
understanding of how to reduce compound lotteries. The next table shows the WTP
and risk premia of subjects that answered correctly an incentivized quiz asking them
to compute the underlying failure probability of some of the above scenarios. There
were six questions in the quiz, three for ranges and three regarding compound risks.
Table H.14 presents the results. While the magnitude of µ(I) is higher on average
for those who respond incorrectly, subjects that reduce compound risks still exhibit
significant uncertainty premia, especially under multiplicative risks.
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Table H.12: WTP for Insurance

Range Multi-Risk
p W (p)a µ(I)b (size) µ(I) (size) µ(I)

2 3.98∗∗ 0.14 (2) 1.29 (4) 6.74∗∗∗
5 5.51 2.55∗∗ (4) 5.37∗∗∗ (8) 10.88∗∗∗
10 13.38∗∗ 2.70∗∗∗ (14) 5.20∗∗∗ (18) 11.28∗∗∗
20 23.27∗∗ 0.94 (8) 3.27∗∗∗ (24) 12.23∗∗∗
30 31.38 -0.51 (2) 2.11∗ (18) 9.41∗∗∗
40 38.94 1.78∗∗ (4) 5.41∗∗∗ (24) 13.88∗∗∗
50 50.29 -0.45 (8) 1.53 (24) 9.47∗∗∗
60 58.11 0.83 (4) 0.92 (24) 9.10∗∗∗
70 65.80∗∗ 1.68∗∗ (2) -0.08 (18) 7.86∗∗∗
80 75.58∗∗ -1.66∗ (8) -1.52 (24) 3.60∗∗
90 82.92∗∗∗ -1.34∗ (14) -1.19 (18) 2.05
95 86.61∗∗∗ -1.29 (4) 0.57 (8) 1.25
98 89.04∗∗∗ -0.42 (2) -0.80 (4) 1.29
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

Table H.13: WTP by Ambiguity

Non-ambiguous Range Ambiguous range
p W (p)a µ(I)b (size) µ(I) (size) W (p) µ(I) (size) µ(I) (size)

2 3.48∗ -0.45 (2) -0.05 (4) 4.46∗ 0.15 (2) 2.56∗ (4)
5 4.77 2.41 (4) 3.55∗∗ (8) 6.21 2.67∗ (4) 7.10∗∗∗ (8)
10 12.40 3.21∗∗ (14) 4.40∗∗∗ (18) 14.31∗∗ 2.21∗∗ (14) 5.97∗∗∗ (18)
20 22.21 1.79∗ (8) 2.59∗ (24) 24.28∗∗ 0.13 (8) 3.92∗∗ (24)
30 31.05 -0.21 (2) 1.28 (18) 31.69 -0.80 (2) 2.90∗ (18)
40 38.05 2.55∗∗ (4) 5.90∗∗∗ (24) 39.79 1.05 (4) 4.95∗∗∗ (24)
50 50.28 -0.97 (8) 0.24 (24) 50.31 0.05 (8) 2.75 (24)
60 56.84 0.62∗ (4) 1.47 (24) 59.31 1.03 (4) 0.41 (24)
70 63.97∗∗ 1.97∗ (2) 0.31 (18) 67.54 1.41 (2) -0.44 (18)
80 72.72∗∗∗ -0.12 (8) -0.69 (24) 78.30 -3.13∗∗∗ (8) -2.31 (24)
90 80.14∗∗∗ -1.19 (14) -0.48 (18) 85.56∗∗ -1.49 (14) -1.87 (18)
95 83.26∗∗∗ 0.57 (4) 2.02 (8) 89.79∗∗ -3.07∗∗ (4) -0.80 (8)
98 86.74∗∗∗ -0.33 (2) 0.05 (4) 91.23∗∗∗ -0.51 (2) -1.61 (4)
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

22It can be shown that lotteries with p1 < (>) 0.5 are negatively skewed.
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Table H.14: WTP by Ability to Reduce Compound Lotteries - Lab

Correct Incorrect
Decision p W (p)a µ(I)b n W (p) µ(I) n

Range
0-4 2 3.18∗∗ 0.31 105 10.00 8.64 14
3-17 10 13.02∗ 2.13∗∗ 88 14.39∗ 4.32∗∗ 31
61-79 70 64.56∗∗∗ 0.32 89 69.47 -1.24 30

Multi-Risk
10; 50 5 4.69 9.50∗∗∗ 84 7.49 14.20∗∗∗ 35
50; 80 40 37.61 11.47∗∗∗ 77 41.38 18.31∗∗∗ 42
95; 84 80 73.88∗∗ 4.10∗∗ 50 76.81∗ 3.23∗ 69
a Statistical significance of one-sided paired t-test with null hypothesis W (p) > (<) p:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.
b Statistical significance of one-sided paired t-test with null hypothesis µ(I) > (<) 0:
*p-value < 0.10, **p-value < 0.05, ***p-value < 0.01.

51



Appendix I Instructions

I.1 Survey

You can earn up to $10 for the next part. The amount you earn depends on the
decisions you make, so you should read carefully!

We will ask you to make decisions about insurance in a few different scenarios. This
time, at the end of the survey, one of the scenarios will be selected by the computer
as the “scenario that counts.” The money you earn in the “scenario that counts” will
be added to your usual UAS payment. Since you won’t know which scenario is the
“scenario that counts” until the end, you should make decisions in each scenario as if
it might be the one that counts.

We will use virtual dollars for this part. At the end of the survey, virtual dollars
will be converted to real money at the rate of 20 virtual dollars = $1. This means that
200 virtual dollars equals $10.00.

Each Scenario

• You have 100 virtual dollars

• You are the owner of a machine worth 100 virtual dollars.

• Your machine has some chance of being damaged, and some chance of remaining
undamaged, and the chance is described in each decision.

• You can purchase insurance for your machine. If you purchase insurance, a
damaged machine will always be replaced by an undamaged machine.

• At the end, in the scenario-that-counts, you will get 100 virtual dollars for an
undamaged machine. You will not get anything for a damaged machine.

Paying for Insurance
You will move a slider to indicate how much you are willing to pay for insurance,

before learning the actual price of insurance. To determine the actual price of insurance
in the “scenario that counts”, the computer will draw a price between 0 and 100 virtual
dollars, where any price between 0 and 100 virtual dollars is equally likely.

If the amount you are willing to pay is equal to or higher than the actual price,
then:

• You pay for the insurance at the actual price, whether or not your machine gets
damaged

• If damage occurs, your machine is replaced at no additional cost

• If there is no damage, your machine remains undamaged

• You get 100 virtual dollars for your machine
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• That means you would earn 100 virtual dollars (what you start with) PLUS 100
virtual dollars (amount you get for machine) MINUS the price of insurance.

If the amount you are willing to pay for insurance is less than the actual price, then:

• You do not pay for the insurance

• If damage occurs, your machine is damaged and you do not get any money for
your machine. That means you would earn 100 (what you start with) but you
would not earn anything for your machine.

• If there is no damage, your machine remains undamaged and you get 100 virtual
dollars. That means you would earn 100 virtual dollars (what you start with)
PLUS 100 virtual dollars (amount you get for the machine).

This means that the higher your willingness to pay, the more likely it is that you
will buy insurance.

BASELINE BLOCK: ALL TREATMENTS
Remember: You can earn up to $10 for the next part. The amount you earn depends

on the decisions you make, so you should read carefully!
KNOWN DAMAGE RATE: The chance of your machine being damaged is 5% [10,

20, etc].
Please move the slider to indicate the maximum amount you are willing to pay for

insurance.
Remember, if the amount you are willing to pay is higher than the actual price,

then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and you will get 100
virtual dollars for it. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and you will not get any money for it.

[ Slider moves from 0 to 100 in integer increments. ]
CONFIRMATION MESSAGE
You have indicated you are willing to pay up to X for insurance. Continue? Y / N
RANGE BLOCK: AMBIGUOUS RANGE
UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is

between 3% and 7% [8-32 etc]. The exact rate of damage within this range is unknown.
Please move the slider to indicate the maximum amount you are willing to pay for

insurance.
Remember, if the amount you are willing to pay is higher than the actual price,

then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

[ Slider moves from 0 to 100 in integer increments. ]
RANGE BLOCK: NON-AMBIGUOUS RANGE
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UNCERTAIN DAMAGE RATE: The chance of your machine being damaged is
between 3% and 7% [8-32 etc]. All damage rates in this range are equally likely.

Please move the slider to indicate the maximum amount you are willing to pay for
insurance.

Remember, if the amount you are willing to pay is higher than the actual price,
then you will pay for insurance at the actual price, whether or not your machine is
damaged. Should there be damage, your machine will be replaced and will pay out
100 virtual dollars. If the amount you are willing to pay is less than the actual price,
then you will not pay for insurance, but if damage occurs, your machine will not be
replaced and will not pay out any money.

[ Slider moves from 0 to 100 in integer increments. ]
QUESTION
Before we finish, we’d like you to answer a final question. You will receive $1 for a

correct answer.
Suppose a machine has a chance of being damaged between X and Y%. All damage

rates in this range are equally likely. What is the average rate of damage for this
machine?

The ranges to use in the question are: Group 1: range 3-7%; group 2: range 3-17%;
group 3: 8-32%; group 4: 21-39%

END SCREEN
Thank you for participating!
The computer selected scenario X to be the “scenario that counts”
The computer selected the price of X virtual dollars for the insurance. Since the

maximum you were willing to pay for insurance was X virtual dollars, you [bought/did
not buy] insurance at the price of X.

The likelihood of damage for scenario X was [X%/between X% and Y%]. Your
machine [was / was not] damaged and you got [ nothing / amount ] for your machine.

Based on the scenario the computer selected, your earnings for this part are X
virtual dollars.

Converted to real money, your earnings are $X (X virtual dollars divided by 20).
You also earned $0 / $1 in the previous question.
A total of $X will be added to your usual UAS payment.
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I.2 Laboratory Experiment: Order 1, No Ambiguity

Instructions for different orders are the same, except for the order of presentation.

In this part, we will use experimental dollars as our currency. At the end of
the experiment, your experimental dollars will be converted to US dollars and paid
out to you in CASH with the following conversion rate:

10 experimental dollars = $1. This means 100 experimental dollars = $10.

You will start with 100 experimental dollars – this is your participation payment
for this part of the experiment ($10).

You will make a series of 52 different decisions. Once all decisions have been
made, we will randomly select one of those to be the decision-that-counts by drawing
a number at random from a bingo cage with balls numbered from 1 to 52. Note, that
since all decisions are equally likely to be chosen, you should make each decision as if
it will be the decision-that-counts. Please pay close attention because you can earn
considerable money in this part of the experiment depending on the decisions you
make. You should think of each decision as separate from the others.

Each Decision Period
In each decision period, you will be the owner of a unit called an A unit. Your A

unit has some chance of failing, and some chance of remaining intact. The probability
of failure differs for different decision periods, so you should pay careful attention
to the instructions in each decision period. In each decision period, you will have
the opportunity to purchase insurance for your A unit. You can use up to 100
experimental dollars from your participation payment to purchase the insurance. If
you purchase insurance, a failed A unit will always be replaced for you. At the end of
the experiment, in the decision-that-counts, intact A units (those that have not failed)
will pay out 100 experimental dollars. Failed A units will pay out 0 experimental
dollars.

Paying for Insurance
You will indicate how much you are willing to pay for insurance in each decision by

moving a slider. You will indicate your willingness to pay before learning the actual
price of insurance for that round. To determine the actual price of insurance in the
‘decision that counts’, a number will be drawn at random from a bingo cage with
numbers from 1 to 100. Any number is equally likely to be drawn.

If the maximum amount you were willing to pay for insurance is equal to or higher
than the actual price of insurance, then: You pay for the insurance at the actual price,
whether or not a failure occurs. If a failure occurs, your A unit is replaced at no
additional cost to you. If there is no failure, your A unit remains intact. Your A unit
always pays out 100 experimental dollars.

If the maximum amount you were willing to pay for insurance is less than the actual
price of insurance, then: You do not pay for the insurance. If a failure occurs, your A
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unit will fail and you get no experimental dollars. If there is no failure, your A unit
will remain intact and pays out 100 experimental dollars.

If you indicate you are willing to pay 0 experimental dollars for insurance, then
you will never buy the insurance.

Failure of the A unit
After learning whether you have purchased insurance, you will find out whether

your A unit has failed or not in the ‘decision that counts’. The likelihood of failure
depends on the specific directions in each decision. In some decisions, the likelihood
of failure is known, and in some decisions, the likelihood of failure is uncertain. Let’s
go through some examples:

Known Failure Rate
In decisions with a known failure rate, the failure rate will be given to you. For

example, suppose the failure rate is 15%. To determine whether your A unit will fail,
we will place 100 balls in this bag. 15 will be orange and 85 will be white. Then, you
will draw a ball at random. If the ball you drew is orange, your A unit will fail. If it
is white, your A unit will remain intact (will not fail).

As another example, suppose the failure rate is 50%. To determine whether your
A unit will fail, we will place 100 balls in this bag. 50 will be orange and 50 will be
white. Again, if the ball you drew is orange, your A unit will fail and if it is white
your A unit will remain intact (will not fail). In this type of decision, drawing an
orange ball means your A unit fails.

Uncertain Failure Rate
In decisions with an uncertain failure rate, the failure rate will be given to you as a

range. For example, suppose the failure rate is in the range 5% to 25%. To determine
whether your A unit will fail, we will place 100 balls in this bag. Between 5 and 25
of the balls will be orange, and the remaining balls will be white. All failure rates in
this range will be equally likely - a separate bingo draw will determine the number of
orange balls before they are put in the bag. This means it is equally likely that there
are 5, 6, 7...through 25 orange balls in the bag. Then, you will draw a ball at random.
If the ball you drew is orange, your A unit will fail. If it is white, your A unit will
remain intact (will not fail).

As another example, suppose the failure rate is in the range 40%-60%. To
determine whether your A unit will fail, we will place 100 balls in this bag. Between 40
and 60 of the balls will be orange, and the remaining balls will be white. All numbers
in this range will be equally likely. Again, if the ball you drew is orange, your A unit
will fail and if it is white your A unit will remain intact (will not fail). In this type of
decision, drawing an orange ball means your A unit fails.

Failure Rate Depends on Environmental Conditions
In decisions where the failure rate depends on environmental conditions, the A

unit may only fail if environmental conditions are poor, but not if the environmental
conditions are good. The likelihood of poor environmental conditions and the actual
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likelihood of failure are known and given to you. For example, suppose that the chance
of poor environmental conditions is 50%. If the environment is poor, then there is a
30% chance of failure of the A unit. This means that we will have 2 bags with 100
balls each. In the first bag, we will put 50 orange balls and the remaining balls will
be white. You will draw a ball at random from the first bag. If the ball is white, the
environmental conditions are good and your A unit will not fail. If the ball is orange,
the environmental conditions are poor and you will draw from the second bag. In the
second bag, we will put 30 orange balls and the remaining balls will be white. You will
draw a ball at random from the second bag. If the ball you drew from the second bag
is orange, your A unit will fail. If it is white, your A unit will remain intact (will not
fail).

As another example, suppose that the chance of poor environmental conditions
is 70%. If the environment is poor, then there is a 50% chance of failure of the
A unit. This means that the first bag will have 100 balls - 70 orange and the
remaining white. You will draw a ball from the first bag at random. If it is white,
your A unit will remain intact. If it is orange, we will prepare the second bag.
The second bag will have 100 balls - 50 orange and the remaining white. You will
draw a ball from the second bag at random. If the ball you drew from the second
bag is orange, your A unit will fail. If it is white, your A unit will remain intact
(will not fail). In this type of decision, both balls must be orange for your A unit to fail.

In summary
Each decision is equally likely to be the decision-that-counts. Therefore you should

pay close attention to each decision you make. The likelihood of failure may be different
in each decision period. Pay close attention and reference the instructions if you need
to. Intact A units pay out 100 experimental dollars at the end of the experiment.
Failed A units pay out nothing. In each decision period, you will decide how much you
are willing to pay for insurance. If your willingness to pay is greater than or equal to
the actual price of insurance, then you will buy insurance. If your willingness to pay
is less than the actual price of insurance, then you will not buy insurance. This means
that the higher your willingness to pay, the more likely it is that you will buy insurance.
Insurance guarantees that your A unit will be replaced at no cost and will pay out 100
experimental dollars. If you bought insurance, you pay for insurance whether or not
your A unit fails.

Before you begin making decisions, you will answer the next set of questions on
your screen to confirm your understanding. You may refer back to instructions at any
time. Please answer the questions on your screen now.

Your decisions
You will now have 30 minutes for this part. Please take your time when making

each of the 52 decisions. There will be a 5-second delay before you can submit each of
your decisions on the screen. Please also record your decisions on the record sheet.
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I.3 Laboratory Experiment: Order 1, Ambiguity in Ranges

Instructions are the same as those without ambiguity, except for the ’uncertain failure
rate’ scenario. We provide just the instructions that are different from Appendix I.2.

Uncertain Failure Rate In decisions with an uncertain failure rate, the fail-
ure rate will be given to you as a range. For example, suppose the failure rate is in
the range 5% to 25%. To determine whether your A unit will fail, we will place 100
balls in this bag. Between 5 and 25 of the balls will be orange, and the remaining
balls will be white. The exact number of orange balls is unknown and could be any
number between 5 and 25. Then, you will draw a ball at random. If the ball you drew
is orange, your A unit will fail. If it is white, your A unit will remain intact (will not
fail).

As another example, suppose the failure rate is in the range 40%-60%. To determine
whether your A unit will fail, we will place 100 balls in this bag. Between 40 and 60 of
the balls will be orange, and the remaining balls will be white. Again, if the ball you
drew is orange, your A unit will fail and if it is white your A unit will remain intact
(will not fail). In this type of decision, drawing an orange ball means your A unit fails.

58


	Introduction
	Related Literature
	Data
	Empirical Analysis
	Risk Premium
	Uncertainty premium
	Relationship Between Risk and Uncertainty premium
	External Validity

	Uncertainty Preferences
	Risk Premium
	Uncertainty premium
	Correlation between Risk and Uncertainty Premia

	Preference Estimation
	Sociodemographic Differences
	Partial Identification with Limited Data

	Conclusion
	Descriptive Statistics
	Statistical Analysis of WTP
	Robustness and External Validity
	Measurement Error Correction
	Correlation in Existing Experimental Data


	Omitted Proofs
	Reference-Dependent Preferences
	Bayesian Estimation
	Covariates of WTP
	Experiment
	Design
	Risk and Uncertainty Premium
	Relationship Between Risk and Uncertainty Premium
	Covariates of Uncertainty Preferences in the Laboratory
	Analyisis of WTP

	Instructions
	Survey
	Laboratory Experiment: Order 1, No Ambiguity
	Laboratory Experiment: Order 1, Ambiguity in Ranges


