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Abstract. We introduce a Random Choice Model which randomizes over choice
types that are possibly boundedly rational. This model can explain a rich set of
stochastic choices. We further impose a progressive structure on the collection of
choice types in order to capture heterogeneity due to varying level of a behavioral
trait such as limited attention, willpower stock, shortlisting constraint, degree of
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type and to perform an improved welfare analysis. As a showcase, we provide the
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simple-mistake”. We provide a set of axioms for unique identification of the reference
ordering for a progressive representation when it is not exogenously given.
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1. Introduction

In empirical analysis of human behavior, the data often comes in stochastic form
indicating the frequencies a certain choice is observed either in a population (inter-
personal) or from an agent choosing in multiple occasions (intrapersonal). While a
Random Utility Model (RUM) is mostly utilized for such analysis by embedding het-
erogeneous preference types in the model, it assumes each type to be rational and to
act in accordance with a utility maximization. Since this assumption is often violated,1

one may want the model to allow for boundedly rational types. In this paper we in-
troduce a model that allows individual choice types to exhibit choice patterns outside
of rational preference maximization framework. Our model has a collection of choice
types, rather than preference types, endowed with a probability distribution. We call
this the Random Choice Model (RCM).2

When the stochastic choice is generated by a collection of behavioral types, in
many circumstances the types are naturally sorted according to how closely their be-
havior is aligned with an ordering induced by an ingrained characteristic. For example,
in policy settings the tax policies are ordered by the revenue they generate (Roberts
[1977]), public goods are ordered by the provision levels (Epple et al. [2001]), insur-
ance offers are ordered by deductibles (Barseghyan et al. [2019]), policies are ordered
by surplus they generated (Epple and Platt [1998]), and scheduled payments are or-
dered by the present value based on an interest rate (Manzini and Mariotti [2006a]);
some well studied decision theoretic settings include lotteries ordered according to the
second stochastic dominance, two-color Ellsberg urns ordered by the minimum num-
ber of balls in certain color (Chew et al. [2017]), options ordered according to their

1There is an abundance of evidence against utility maximization across several fields, including law,
economics, psychology, and marketing, e.g. see Huber et al. [1982], Ratneshwar et al. [1987], Tversky
and Simonson [1993], Kelman et al. [1996], Prelec et al. [1997], Echenique et al. [2011], Trueblood
et al. [2013].
2In an independently developed paper, Dardanoni et al. [2020a] works with a model of randomization
over choice functions. Their focus is mostly on the identification of preferences and cognitive distri-
butions in specific models of choice by assuming an observable mixture of choice functions. Instead,
our focus is on the representation of stochastic choice by a random choice model. Hence, our works
are complementary.
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temptation levels (Shiv and Fedorikhin [1999]), and uncertain payments ordered by a
maximum loss amount. Economists often perform comparative statics comparing the
heterogeneous types in terms of the alignment with respect to the underlying ordering
such as one type choosing more pro-social policy or avoiding loss more than the other
type. The empirical analysis of type distributions also relies of ordered heterogeneous
types. For example, Chiappori et al. [2019] identifies the distribution of individual risk
attitudes from aggregate data and Barseghyan et al. [2019] show how the heterogeneity
in consideration sets and risk aversion can be identified.

We apprehend the idea of sorted types by focusing on a special case of RCM where
the alternatives are sorted with respect to a reference ordering and the choice types
are ordered in terms of how much the behavior of a type is aligned with this ordering.
For example, consider a situation where the policies can be ranked by a social norm
such as being environmental friendly. If the heterogeneity in the data is due to the
agents’ environmental cautiousness, then the choice of more “green” types will be more
aligned with the reference ranking of the policies. In other words, the choice of a higher
indexed type will be at least as green as the policy chosen by a lower indexed type. We
call this structure progressive with respect to a reference ordering.3 The random choice
model where the collection of choice types is progressive is called Progressive Random
Choice (PRC).

Our progressive structure is a generalization of a well-known concept called the
single crossing property.4 Indeed, the two concepts are the same if each choice type is
generated by a preference/utility maximization. The single crossing property has been
recently applied to RUM by Apesteguia et al. [2017].5 In comparison to RUM, one

3The reference ordering in this example is the greenness of a policy but in other examples it may also
correspond to the decision maker’s preferences, a temptation ranking, or a measure of salience (see
examples in the main text). While, initially, we take the reference ordering exogenous, later we make
a revealed ordering analysis to endogenize it and provide conditions for unique identification of this
ordering.
4The single crossing property plays important roles in economics: see Mirrlees [1971], Roberts [1977],
Grandmont [1978], Rothstein [1990], Milgrom and Shannon [1994], Gans and Smart [1996].
5Apesteguia and Ballester [2020] builds on Apesteguia et al. [2017] within RUM, by applying the
single crossing idea locally and only on alternatives that exist in the same choice problem.
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advantage of having progressiveness structure in RCM framework is that we no longer
need to commit to a particular functional form to order types.

Our first result identifies the type distribution given a stochastic choice data. We
show with the minimal restriction on the distribution of choice types (progressiveness),
one can uniquely identify the PRC representation –both the collection of choice func-
tions and the probability weight assigned to each choice function in the collection. This
result also shows the richness of the PRC representation because any stochastic choice
has a PRC representation. We also provide a notion of comparative statics which allow
us to rank any two PRCs within our framework.

Our framework enables us to study phenomena that are outside of the utility
maximization paradigm. Since our PRC algorithm fully and uniquely identifies the
choice types that generates the data, a researcher who wants to study a certain sorted
behavioral trait can use it in identification and then analyze the implications of the
behavioral property of interest on the stochastic choice data. For example, one can
study the properties of data that is generated by behavioral types who choose more
green policies on smaller set of policy options. We illustrate how to do this on two
types of bounded rationality applications: (i) “no-simple-mistakes” (i.e., not choosing
an option that has never been chosen in binary comparisons on triplets) and (ii) “less-
is-more” (i.e., being more aligned with the ordering on smaller sets). For each of cases
(i) and (ii), we provide the necessary and sufficient conditions on the stochastic choice
in order to have a PRC representation with heterogeneity in the form of interest.

The empirical validity of our axioms can be investigated by designing careful
experiments. Manzini and Mariotti [2006b] provides a rare opportunity to test our
model. Our analysis of their data confirms that progressive structure exists in these
observed collection types, and moreover the types in one of the data sets in that study
satisfy the less-is-more property. One may check the progressive structure on other
rich data sets when types are observed in contexts such as decision making under risk,
time preferences, and portfolio allocation. With such fine data, we can also observe
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the types of bounded rationality of the choice types and question the implications of
those types on the stochastic choice data.

Besides showing the usefulness of our PRC model, the two applications we have
capture some well studied behavioral phenomena in decision science. No-simple-mistake
addresses choice behavior where if x is chosen from {x, y, z} then it must be chosen
from either {x, y} or {x, z}. Behavior violating this is called difficult choice in decision
theory. We show that weakening both the standard regularity axiom and the centrality
axiom of Apesteguia et al. [2017] are necessary and sufficient conditions for having a
PRC with types making no-simple-mistake.

One of the most studied behavioral phenomena is so-called choice overload which
may include situations where the complexity caused by abundance of alternatives may
lead to choosing alternatives that are ranked lower by the reference ordering (see e.g.
Iyengar and Lepper [2000], Chernev [2003], Iyengar et al. [2004], and Caplin et al.
[2009]). Such choice overload is inevitable given the trend of abundance of options
offered to consumers.6 Chernev et al. [2015] argue that choice overload might have
negative welfare consequences, hence, having less options can lead to an increase in
consumer welfare: “less-is-more”. One may choose unhealthy but tempting dishes on
a large restaurant menu while she controls herself better on smaller menus. The less-
is-more property is rich enough to accommodate models such as shortlisting (Manzini
and Mariotti [2007]), rationalization (Cherepanov et al. [2013]), preferred personal
equilibrium (Kőszegi and Rabin [2006]), limited attention (Lleras et al. [2017]) and
categorization (Manzini and Mariotti [2012]). Moreover, the less-is-more property is
satisfied by the types observed in the choice data of Manzini and Mariotti [2006b]
eliciting the time preferences of subjects on four payment schedules covering three
periods.7 We show that one simple axiom, U-regularity, is necessary and sufficient for
having a PRC representation with types satisfying less-is-more property.

6For example, colgate.com offers fifty-three different kinds of toothpaste, and the typical supermarket
in the United States carries 40,000 to 50,000 items nowadays, where as this number was 7,000 items
as late as the 1990s.
7We considered only the choice types appeared at least 3% of the data set.
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In the first part of the paper, the reference ordering defining the progressive struc-
ture is assumed to be exogenously given. In some applications, the reference ordering is
conceivably observable to the researcher (for example a social norm of a society) or the
researcher may be the one designing the menu of options in a controlled experiment so
that an objective ordering (such as first order domination, riskiness of the options, or
the time schedule of payment) is imposed. However, in some other contexts, especially
when the ordering corresponds to the underlying preferences, it is crucial to derive it
from the stochastic choice. This would improve the applicability of the model. We
show to what extend the reference ordering can be revealed from the data. We also
show that the axioms used in the two aforementioned applications are sufficient for
unique identification of the reference ordering under a mild restriction.

Our theoretical contribution complements Apesteguia and Ballester [2020] and
Dardanoni et al. [2020a] which utilize models of randomization over choice functions
for empirical applications to identify heterogeneity in the data. Dardanoni et al. [2020a]
prove usefulness of random choice model in identification of preferences and cognitive
distributions in specific models of choice. As in Apesteguia et al. [2017], Apesteguia
and Ballester [2020] work with preference types, but they apply progressive structure
only locally and allow for limited data. Our paper is also related to the recent lit-
erature which combines decision theory and econometric analysis. The most closely
related papers in this literature are Abaluck and Adams [2017], Barseghyan, Cough-
lin, Molinari, and Teitelbaum [2018], and Dardanoni, Manzini, Mariotti, and Tyson
[2020b]. In a general setup, Abaluck and Adams [2017] show that, by exploiting asym-
metries in cross-partial derivatives, consideration set probabilities and utility can be
separately identified from observed choices when there is rich exogenous variation in
observed covariates. Barseghyan et al. [2018] provide partial identification results when
exogenous variation in observed covariates is more restricted. Lastly, similar to previ-
ous papers, Dardanoni et al. [2020b] study choices from a fixed menu of alternatives.
They consider aggregate choice where individuals might differ both in terms of their
consideration capacities and preferences.
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The rest of the paper is organized as follows. Section 2 introduces the random
choice model and the progressiveness notion. We provide three distinct classes of
models and general conditions that guarantee the progressive structure for each class.
Section 3 provides comparative statics between any two models within our framework.
Section 4 commits to one of two types of bounded rationality: less-is-more and no-
small-mistake. This section provides a characterization theorem for each condition.
Section 5 shows that, under less-is-more, the unique identification of the ordering is
possible with mild assumptions. Hence, the reference is order endogenously inferred.
Section 6 summarizes how our models relates to other well-known stochastic choice
models. Section 7 concludes.

2. Model

Let X be a non-empty set of alternatives where X denotes all of its non-empty
subsets. A stochastic choice function is a mapping π ∶ X × X → [0,1] such that for
any S ⊆ X, (i) π(x∣S) > 0 only if x ∈ S; (ii) ∑

x∈S
π(x∣S) = 1. π(x∣S) is interpreted as

the probability of choosing x from alternative set S. π(T ∣S) is the sum of all choice
probabilities in T , i.e. π(T ∣S) = ∑

x∈T
π(x∣S). A choice function on X is a mapping

c ∶ X →X such that c(S) ∈ S for any S ⊆X. C is the set of all choice functions on X.

We now introduce a Random Choice Model (RCM) where an individual stochas-
tically engages with a choice function, c, from the collection of all choice functions, C.
Let µ be a probability distribution on C. µ(c) represents the probability of c being
realized as the choice function. µ constitutes a stochastic choice function πµ such that

πµ(x∣S) = ∑
c(S)=x

µ(c)

The stochastic choice induced by µ sets the probability of an alternative x being chosen
from an alternative set S as the sum of probabilities of choice functions which select
x from S. We call the choices in the support of µ (the choice functions with strictly
positive weights) the choice types. Hence, the probability of x being chosen from S is
the frequency of those choice types who choose x from S.
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We say that a stochastic choice function π has a Random Choice representation
if there exists µ such that π = πµ. If the support of µ consists of only distinct choice
functions generated by some utility maximization, then πµ becomes the well-known
Random Utility Model (RUM). Hence RUM is a special case of RCM. RCM enjoys
a high explanatory power: any stochastic choice function can be represented within
random choice framework. However, the representation is not unique in general as it
is implied by the well-known non-uniqueness result of RUM. We will address this issue
by studying RCM on more structured domains and show that this generates not only
an interpretable relation between choice types but also deliver uniqueness.

We consider the set of alternatives that are naturally ordered by a linear order ▷.
Examples of such domains are in abundance as discussed in the introduction. In the
problem of public good provision, ▷ may order the alternatives based on the level of
public good, in the problem of choosing a dish at a restaurant, ▷ may sort the dishes
based on the temptation levels.

We now propose a condition to relate the heterogeneity among choice types allowed
by RCM with the order on the domain. We do this by sorting the heterogeneous types
in terms of how much the behavior is in line with the reference ordering. In the public
good provision problem, the level of public good picked by a more pro-social types
will be above the level chosen by the less pro-social types. In the restaurant example,
if an individual with less self-control resists a temptation, someone with more self-
control will resist that too. Formally, we say a collection of distinct choice types
C ⊆ C is progressive with respect to ▷ if C can be sorted {c1, c2, . . . , cT} such that
ct(S) ⊵ cs(S) for all S and for any t ≥ s.8 Progressiveness imposes an ordered structure
on the collection of choices types such that a higher indexed type cannot choose an
alternative that is dominated by the choice of a lower indexed type from the same set.
In other words, progressiveness requires type t to be more aligned with ▷ than type s
for t ≥ s. The idea of progressive types reduces the heterogeneity of types in RCM into
one dimension. That dimension of heterogeneity could be caused by the magnitudes of

8The betweenness property defined by Albayrak and Aleskerov [2000], Horan and Sprumont [2016] in
a different context is a closely related concept.
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willpower, levels of being pro-social, attention capacities, or loss aversion coefficients.
Hence, the progressive structure will allow to study the heterogeneity within a given
phenomena of interest. We now define progressive random choice formally.

Definition 1. π has a progressive random choice representation with respect to ▷,
(PRC▷), if there exists µ on C such that π = πµ and the support of µ is progressive
with respect to ▷.

We view our novel progressive structure as a strength of the model because it
provides a meaningful interpretation for the support of RCM. Recall that the support
of RCM (or its special case, RUM) consists of several independent types and there is
no immediate comparison between them. In contrast, PRC orders the choice types
with respect to a natural order ▷ on the domain. This is interpreted as choice types
gradually becoming more aligned with the reference type induced by ▷.

One might wonder when the progressive structure holds within a class of models.
In the case of utility maximization, this question has been extensively studied (see
e.g. Mirrlees [1971], Roberts [1977], Grandmont [1978], Rothstein [1990], Milgrom and
Shannon [1994], Gans and Smart [1996]). In this class, each choice type operates as a
utility maximizer and hence it is denoted by {ut}.9 Hence, for every type t there exists
a utility function, ut, such that for all S,

(Class 1) ct(S) = argmax
x∈S

ut(x)

The well-known single crossing property of utility functions guarantees the pro-
gressive structure (see Lemma 1 in Appendix) which is studied by Apesteguia et al.
[2017] in the stochastic choice context. A collection of {ut} satisfies Single Crossing
Property with respect to ▷ if for any x▷ y and t > s,

us(x) > us(y)⇒ ut(x) > ut(y)

9We assume that ut is strict so that the choice is unique.



10

Answering the same question is not straightforward when we step out the utility
maximization paradigm. Next, we perform this task for two other classes of models
covering different bounded rationality models. We then provide sufficient conditions
for these classes to have the progressive structure.

The next one is the class of two-stage procedures which contain several well-studied
decision making models as listed below. In this class, the first stage determines a
constrained set induced by a particular behavioral limitation and then the decision
maker optimizes over this constraint. An RCM where each type performs a two-stage
procedure and the heterogeneity is due to the variation in the behavioral limitation
of different types while the utilities are type independent is denoted by (u,{Γt}).10

Formally, for every type t and for all S,

(Class 2) ct(S) = argmax
x∈Γt(S)

u(x)

The models of Limited Attention by Masatlioglu et al. [2012], Lleras et al. [2017],
Shortlisting by Manzini and Mariotti [2007], Rationalization by Cherepanov et al.
[2013], Categorization by Mariotti and Manzini [2012], Willpower by Masatlioglu et al.
[2020], and Preferred Personal Equilibrium by Kőszegi and Rabin [2006] can be written
as in Class 2 formulation. Here, all types maximize the same utility function. In an
intrapersonal decision setting, this can be thought as a person with fixed preferences
but facing an idiosyncratic behavioral constraint such as having idiosyncratic levels
of attention, willpower, loss-aversion etc.. In a multi-individual setting, this can be
thought as (i) the existence of a common attribute that ranks the alternatives such as
the lowest price in shopping or the shortest distance in route choice, or (ii) having an
objective ranking among the alternatives such as first-order stochastic dominance.

Next, we provide a sufficient condition on the class of two stage procedures for
having a progressive structure in RCM. Let Lu(T ) denote the collection of alternatives

10We assume that u is strict, i.e., u(x) ≠ u(y) for all x ≠ y to be in line with our earlier assumption
of the reference ordering being linear order.
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which have weakly lower utility than some element of T , i.e., Lu(T ) = {x ∈ X ∣u(x) ≤
u(y) for some y ∈ T}. Our condition is a monotonicity requirement on how the con-
straints of each type evolve. Particularly, higher types’ feasible set contains higher
utility options than that of lower types.

Condition 1: For any types t < s, Lu(Γt(S)) ⊆ Lu(Γs(S)).

Note that Condition 1 is weaker than requiring the higher types to consider more
options. In other words, attention sets growing by types also satisfies this condition.

Remark 1. For a collection of choice functions defined by (u,{Γt}), Condition 1 implies
progressive structure with respect to the order induced by u.11

The proof is easy to see and provided in Appendix. Note that when a type with a
lower index chooses an alternative, it has to be in the constraint set of that type. Then
by Condition 1, a higher type must consider some alternatives that weakly dominate
the choice of the lower type. Therefore, the choice of higher type can only be weakly
better as well. This provides an ordered structure on the choice types as required by
the progressiveness.

Interpretation of Condition 1 on well-known models is intuitive:

● Shortlisting of Manzini and Mariotti [2007]. In this model, a decision maker
first eliminates dominated alternatives with respect to a binary relation to form
a shortlist (constraint) and then she maximizes a preference ordering on the
shortlist. If the first stage binary relation gets more incomplete, the shortlists
get gradually richer as Condition 1 requires.

● Shortlisting of Tyson [2013]. As opposed to the above model, here, the alterna-
tives are naturally ordered according to their salience- the property of standing
out from the rest. A decision maker’s preferences are imperfectly perceived
due to cognitive or information-processing constraints. This determines the al-
ternatives she dislikes for sure. Among the ones that survive, she chooses the

11One can easily show that Condition 1 is not only sufficient but also a necessary condition.
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most salient option. If the information processing gets gradually more costly
for higher types, then the shortlists get larger and Condition 1 is satisfied.

● Preferred Personal Equilibrium of Kőszegi and Rabin [2006]. Alternatives are
ordered with respect to the consumption utility of a person. The constraint
in this two stage interpretation is the set of personal equilibrium for each type
and the utility is the consumption utility. Types have different loss aversion
coefficients and their personal equilibrium contains the alternatives that are
optimal conditional on them being the reference point (rational expectation).
As the individual becomes more loss averse, the set of personal equilibrium
enlarges, hence, Condition 1 is satisfied.

● Willpower of Masatlioglu et al. [2020]. Consider a decision maker with limited
willpower facing visceral urges. The alternatives are ordered with respect to the
commitment utility. The constraint of each type contains those she overcomes
visceral urges with her willpower. As her willpower increases, she is able to
overcome visceral urges more successfully and able to choose from a richer
constraint set. Hence, this collection of choices also satisfies Condition 1.

● Limited Attention of Masatlioglu et al. [2012]. In this example, an individual
maximizes her preferences on what she pays attention. Different types are
able to attend to different set of alternatives. If the awareness of types extend
gradually then Condition 1 is satisfied since the attention sets become nested.

● Rationalization of Cherepanov et al. [2013]. The decision maker who is endowed
with a set of rationales maximizes her preferences among alternatives that she
can rationalize. A rationale can be intuitively understood as a story that states
that some options are better than others. The choice types differ in terms of
the set of rationales they use for that choice. As the set of rationales gradually
gets larger, the corresponding collection of choices satisfies Condition 1.
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The final class is the class of models with a menu-dependent behavioral cost. In
this class, each type maximizes a utility function minus a menu-dependent cost func-
tion. The heterogeneity is due to the variation in the behavioral cost but the utilities
are type independent. Hence, we are interested in collection of choices described by
(u,{kt}). Formally, for every type t and for all S,

(Class 3) ct(S) = argmax
x∈S

u(x) − kt(x,S)

where kt is the menu-dependent cost function.12

The models of Temptation and Self Control by Gul and Pesendorfer [2001], Fu-
denberg and Levine [2006], Dekel et al. [2009], Noor and Takeoka [2010] and Social
Norms and Shame by Dillenberger and Sadowski [2012] fall into this class. An individ-
ual with a fixed commitment utility but idiosyncratic cost of self control generating the
stochastic choice data is in this class. Alternatively, a population of individuals who
are choosing a public policy and while they all have the same selfish utility (for exam-
ple minimizing cost), they differ how much they care about following a norm (such as
being pro-social or minimizing inequality) also within Class 3.

Let ▷ be the order defined by a behaviorally motivated norm such as a social
norm or temptation. Here, ▷ is possibly different than the common utility function.
In order to get a progressive structure, we impose that the marginal costs of switching
to an alternative ranked higher in the social norm is decreasing. In other words, it is
easier for higher types to follow the norm. Formally,

Condition 2: Let ▷ be an order. For any types s > t and alternatives x▷ y,

kt(x,S) − kt(y,S) ≥ ks(x,S) − ks(y,S)

Remark 2. For a collection of choice functions defined by (u,{kt}), Condition 2 with
respect to ▷ implies a progressive structure for the choice types with respect to ▷.

The proof of Remark 2 is in Appendix and it is based on the intuition that when a
lower indexed type chooses an alternative, say y, it means that y provides the highest
12We assume that this maximization problem has a unique solution, hence, the choice is unique.
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net utility. Then by Condition 2, it is not optimal for a higher type to switch to a lower
ranked alternative according to ▷. Hence, the higher type will choose an alternative
that is ranked weakly higher than y. This provides an ordered structure on the choice
types as required by PRC▷.

The interpretation of Condition 2 on some well-known models is intuitive, as
discussed below.

● Costly Self-Control. In this model the decision maker chooses from a menu with
tempting alternatives according to the following maximization:

ct(S) = argmax
x∈S

{u(x) − αtf(max
y∈S

v(y) − v(x))}

When f is a linear function, this is equivalent to the model of Gul and Pe-
sendorfer [2001] and when it is an increasing and convex function, it becomes
the model of Fudenberg and Levine [2006], Noor and Takeoka [2010]. These
models of Class 3 can be thought as a decision maker with a temptation or-
dering and her cost of temptation is randomly determined. Note that here
the heterogeneity of types is captured by the temptation cost parameter αt.
If αt increases by the type, then Condition 2 is satisfied with respect to the
temptation order, v.

● Ashamed to be Selfish of Dillenberger and Sadowski [2012]. Consider a decision
maker facing a trade-off between choosing her best allocation and minimizing
shame caused by not choosing the best allocation according to a social norm.
Assume each type differs only in terms of how much it is influenced by the
social norm. Formally,

ct(S) = argmax
x∈S

{u(x) − (max
y∈S

ψ(y) − ψ(x))βt}

where u is a utility function over allocations, ψ represents the norm, and βt

is the shame parameter of type t. The amount, (maxy∈Aψ(y) − ψ(x))βt , is
interpreted as the shame from choosing x in comparison to the alternative that
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maximizes the norm. Condition 2 restricts how the cost of deviation from a
social norm varies by the type.

Note that in all the examples of Class 3 models above, the reference order is not
determined by the consumption utility, u, of an alternative but instead determined
by temptation level or social norm utility. Condition 2 requires the heterogeneity
parameters to have certain structure.

The aforementioned examples illustrate how the progressive structure can be in-
terpreted on archetypical models of two stage procedures and behavioral cost models.
In each example, committing to a specific model, we demonstrated that the PRC struc-
ture allows for a substantial degree of heterogeneity of choice behavior. In each case,
the alternatives are naturally ordered either by an attribute, common utility, temp-
tation ranking, or shared norm. The types are sorted according to how closely their
behavioral concern or bounded rationality allow them to follow this order. Moreover,
we provided sufficient conditions for these classes of models to have the progressive
structure.

PRC imposes some compatibility among all the choice functions in a collection
because the choices in the support gradually become more and more aligned with the
choice induced by ▷. It also allows a substantial degree of heterogeneity of choice
behavior as we will see in Theorem 1. Our first result below states that PRC is capable
of explaining all stochastic choices for a given preference ordering. In other words,
PRC enjoys high explanatory power.

Theorem 1. Let ▷ be a reference ordering. Every stochastic choice π has a PRC▷

representation. Moreover, the representation is unique.

The proof of Theorem 1 is constructive and hence provides an algorithm generating
the heterogeneous types and their weights uniquely from a given stochastic choice data
set. The construction is based on the choice probabilities of lower contour sets with
respect to ▷. We first calculate all cumulative probabilities on lower contour sets
derived from the stochastic choice. Next we define an ordering function which sorts
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these cumulative probabilities from the lowest to the highest, 0 < k1 < k2 < ⋯ < kT .
Finally, we construct the collection of choices, C, step by step. The first choice function
assigns each alternative set its worst element with respect to ▷.13 The probability mass
of this first choice, c1, is the lowest cumulative probability driven by the aforementioned
ordering, k1. In the second step, for each alternative set, we check if the cumulative
probability of the lower contour set of the chosen alternative of c1 equals to k1 or it
is strictly larger than k1. For the former case, we assign the second worst alternative
as the choice by c2; for the latter case, we keep c2 equal to c1. Note that such a
construction assigns the same or better alternative to each alternative set in c2 than
c1. The probability assigned to c2 is k2−k1. This procedure continues and defines each
ci based on ci−1 while respecting progressiveness as the choices in each step gradually
choose weakly better alternatives on any given set.

Note that Theorem 1 also states a uniqueness result, and the construction of
the representation identifies the exact nature of heterogeneity and provides a unique
weight for each choice type in this heterogeneity. This feature allows a regulator/firm
to calculate the effect of a policy on each type of agent in a heterogeneous population
and aggregate those effects with uniquely determined weights. In addition to that,
the uniqueness result of Theorem 1 can also be used for parameter estimations for the
examples mentioned in Classes 2 and 3 above. Once the choice types are uniquely
defined within a behavioral class committed by the researcher, she can estimate the
parameters of the model. Uniqueness of PRC is in sharp contrast to both the general
RCM and RUM, which are well-known to admit multiple representations (see Fishburn
[1998] for the RUM).

To appreciate the uniqueness result, note that, for example with three alternatives,
while there are six possible preference orderings, there are twenty four possible choice
functions. Even after fixing an exogenous reference order, one can generate a large
number of possible collections with the progressive structure with respect to this refer-
ence ordering. The uniqueness comes from the fact that each collection can only have

13This worst element needs to be chosen from among the ones which are chosen with positive proba-
bility.
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a maximum of six elements due to the progressive structure.14 Hence, the stochastic
choice data has enough information to uniquely identify the right collection of types.
When the alternative set is larger than three elements, even though the number of
possible choice functions grow extensively, the maximum number of choice functions in
a progressive collection cannot surpass the information given by the stochastic choice
data. On the contrary, in RUM model, the maximum number of preference orderings
exceeds the number of choice data, which causes undesirable non-uniqueness of RUM.

3. Comparative Statics

Next we discuss how the comparative statics exercise can be performed to order any
two PRCs. Note that this discussion requires only progressiveness on the random choice
model; hence, it automatically applies to any PRC model with additional behavioral
conditions, such as those considered in Section 4. To do this, first we introduce an
ordering relation between distributions of choices in Definition 2. Before defining the
order, we define, for all α ∈ (0,1], µ−1

α ∶= ci ∈ C such that µ(c1) + .. + µ(ci−1) < α ≤
µ(c1) + .. + µ(ci) for given C = {c1, ..., cT} and µ. Hence, µ−1

α identifies the choice
function in the collection at which the cumulative distribution weakly exceeds α.

Definition 2. Probability distribution µ defined on C is higher than probability dis-
tribution η defined on C′ if ∀α ∈ (0,1] and ∀S ⊂X, µ−1

α (S) ≿ η−1
α (S).

Definition 2 compares two probability distributions and identifies the one which
is more in line with the underlying ordering, ▷, as the higher distribution. Note that
the compared distributions do not need to have the same support. This allows us to
order two PRCs, πµ and πη, with different choice collections as their supports or having
the same support with different weights on choices in the support. If it is the latter
case, then a distribution being higher simply means it first order stochastic dominates

14The progressive structure is the main driver behind the uniqueness result. A weaker condition,
called non-reversing property, is introduced by Dardanoni et al. [2020a]. However, the non-reversing
property is not sufficient for a unique random choice representation.
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the other distribution. Note that the comparison is based on ▷; hence, the compared
models should have the same underlying ▷.

We order two stochastic choices in the standard first order stochastic domination
sense, i.e. one dominates the other if it assigns higher probability of choice to all the
upper contour sets defined by ▷ when choosing from a set. This is formally stated
below.

Definition 3. Stochastic choice π first order stochastic dominates stochastic choice π′

if for any set S and any x ∈ S,

π(U(x)∣S) ≥ π′(U(x)∣S)

Now we can state our result on comparative statics between any two PRCs.

Theorem 2. Let πµ and πη be two PRC▷. πµ first order stochastic dominates πη if
and only if µ is higher than η.

Note that if the choices in the support of PRC are rational and represented by
a collection of preferences, our model becomes equivalent to SCRUM (as stated by
Lemma 1 in Appendix.) For such models Definition 2 is equivalent to Definition of
"a SCRUM being higher" in Apesteguia et al. [2017] (see page 667). Hence, their
Proposition 2 is a special case of our Theorem 2.

Also note that if two decision makers (or two populations) have PRCs with the
same underlying ▷ and the same collection of choices in the support, the stochastic
choice of decision maker 1 first order stochastic dominates that of decision maker 2
if and only if the cumulative weighting function of the first decision maker first order
stochastic dominates that of the second decision maker. This means that the second
decision maker more often engages with choices that are less aligned with the choice
rationalized by ▷. In other words, she makes worse mistakes (in the sense of not being
aligned with ▷) more often.

As previously mentioned, two decision makers’ PRC▷ may have different supports.
For example, say two decision makers use limited attention models of Masatlioglu et al.
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[2012]. Assume that the first decision maker considers the worst element of a set in her
first choice function in the support, then considers the worst two elements in her second
choice function and so on. So this person’s consideration sets gradually extend and her
choice becomes more aligned with ▷. The second person’s support has a single choice
which relies on the full consideration set (she is not boundedly rational) and chooses
according to the underlying ▷ (so her choice is degenerate, she is fully attentive and
her choice satisfies WARP). Then the stochastic choice of the more attentive person
(the second person) will first order stochastic dominate the stochastic choice of the less
attentive one (the first person).

4. Applications of PRC for Certain Types of Bounded Rationality

The RCM allows us to address behavior that is possibly inconsistent with utility
maximization because the choice types do not have to be in line with a preference
maximization. Behavioral Economics literature provides abundance of evidence outside
of the utility maximization framework. The examples listed under Class 2 and Class
3 in Section 2 illustrate several types of bounded rationality with PRC structure. A
natural question to ask is how one may characterize a certain behavioral phenomena
demonstrated by each type in our PRC framework. If each choice type acts according
to a behavioral bias at a differentiated degree what kind of stochastic choice they
would generate in the aggregate data. We show how to address this question on two
examples in Subsection 4.1 and 4.2. In each subsection, we commit to one type of
bounded rationality and find the corresponding necessary and sufficient conditions on
stochastic choice in order to have that kind of bounded rationality. Thanks to Theorem
1, we already have a uniqueness result for these applications, so we will only focus on
the characterization.

4.1. Less is More. One of the most studied deviations from the rational model is the
choice overload phenomenon, i.e. the welfare improving effect of having less options
(see Schwartz [2005], Iyengar and Lepper [2000], Chernev [2003], Iyengar et al. [2004],
Caplin et al. [2009]). This phenomenon is called “less-is-more.” While the classical
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rational choice theory concludes that the exuberance of choice has positive welfare
implications, the idea of less-is-more is based on the evidence that the decision makers
may not benefit from having too much choice in many situations. Due to their limited
attention spans, cognitive capacities, or reference dependent evaluations, they may
under-perform and deviate from their underlying preferences when they choose from
very large set of options.

In this section we interpret the reference ordering of a PRC model as the common
underlying preferences. Then each choice type can be viewed as a type of bounded
rationality with a certain level of choice overload. Less options might be better for
these types since they may choose sub-optimally on larger alternative sets and act
more in line with the preferences on subsets. Then each choice type in the progressive
collection of choice functions represents how severely that type of decision maker is
affected from having too much choice.

As in the previous section, we first assume that the reference ordering, ▷, is
observable. This assumption is reasonable in situations where there is a single common
attribute to rank all alternatives, such as the lowest price, shortest distance, the amount
of carbon footprint, etc. We say that a collection of choice functions, C, satisfies less-
is-more with respect to ▷ if for all t and for all T ⊂ S, ct(S) ∈ T ⇒ ct(T ) ⊵ ct(S).
In other words, ct(T ) is more aligned with ▷ than ct(S) when T ⊂ S, because the
choice from a larger set is dominated by the choice from a smaller set. Note that if
the choice functions in the support of randomization are rationalizable by a preference
ordering, then the less-is-more property trivially holds.15 This new concept restricts
each possible choice function to be either rational or boundedly rational in the sense
of less-is-more.

All the examples discussed under Classes 1-3 in Section 2 can be modified to
accommodate the less-is-more structure. For the shortlisting example, where shortlists
get gradually longer, imagine that the initial shortlist orders the alternatives based
on a linear order that is completely opposite of ▷, say ▷̃. Such a shortlist would
15One should note that this observation makes SCRUM▷ a special case of PRC▷ with the less-is-more
property.
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report only the worst alternatives as undominated. Clearly, the choice implied by
this shortlist would satisfy “less-is-more” since only a weakly better alternative can be
shortlisted and chosen on a smaller set than on a larger set. When the shortlists in
that example get gradually longer, due to reverse ordering implied by ▷̃, each choice
satisfies less-is-more.

We should note that there are some well known examples that do not satisfy the
less-is-more structure. For example, if the attention correspondences of the model
described within Class 2 are attention filters (see Masatlioglu et al. [2012]), then the
choice functions that are used in the PRC would not satisfy the less-is-more property.
Due to the existence of such examples, this more demanding structure will improve the
prediction power of our model.

Next we state our only axiom for the characterization of boundedly rational types
in the sense of less-is-more. This axiom is closely related to the well-known regularity
axiom: For all x ∈ T ⊂ S ⊆ X, π(x∣S) ≤ π(x∣T ). If the inequalities are strict, this is
called strict regularity. This standard regularity axiom states that the choice frequency
of an alternative is higher on smaller sets. Our first axiom requires the regularity
condition to hold on upper counter sets. Let U(x) = {y ∈X ∣ y ⊵ x} denotes the upper
contour set of an alternative, x.

Axiom 1. (U-regularity) For all x ∈ T ⊂ S ⊆X such that π(x∣S) ≠ 0

π(U(x)∣S) ≤ π(U(x)∣T )

Regularity and U-regularity coincide for the best alternative in any set. However,
U-regularity allows for other regularity violations.

In deterministic case, the regularity condition is equivalent to WARP. But U-
regularity is weaker than WARP. Note that if we have a deterministic choice which
satisfies WARP than it can be represented by a preference relation. In such a case,
U-regularity holds with respect to that preference relation. On the other hand, if a de-
terministic choice does not satisfy WARP, it may still satisfy U-regularity with respect
to a linear ordering. For example, consider the choices summarized by π(z∣{x, y, z}) =
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1, π(x∣{x, y}) = 1, π(y∣{y, z}) = 1, and π(x∣{x, z}) = 1. This choice behavior does not
satisfy WARP but it satisfies U-regularity with respect to x▷ y▷ z.

We now state our characterization result for the less-is-more type of bounded
rationality.

Theorem 3. Let ▷ be a reference ordering. A stochastic choice π satisfies U-regularity
with respect to ▷ if and only if there exists a unique PRC▷ representation of π where
each choice satisfies less-is-more condition.

Note that Theorem 3 not only provides a necessary and sufficient condition for
less-is-more representation but also concludes that the representation is unique. The
algorithm generating the unique representation is the one provided in the proof of
Theorem 1. The proof provided in the Appendix shows that the random choice model
generated by this algorithm not only satisfies progressiveness (as shown by Theorem
1) but also satisfies less-is-more given U-regularity.

4.2. No Simple Mistakes. One of the very basic rationality requirements is that if
an alternative is never chosen in binary comparisons against some alternatives, then it
should not be chosen from the set either. This requirement is quite demanding since
the decision makers can make mistakes when they face with many options. Indeed,
one may want to allow for such deviations from rationality when the choice environ-
ment is cognitively too demanding but require it for smaller set. The minimal of such
requirements is to make this assumption for sets of three alternatives. In this subsec-
tion, we characterize the stochastic choice generated by types who may be boundedly
rational but capable of avoiding mistakes on small choice sets. Formally, we say a
collection of choice types, C, satisfies no-simple-mistake if for all t, ct({x, y}) ≠ x and
ct({x, z}) ≠ x ⇒ ct({x, y, z}) ≠ x. Rejecting an alternative over two different alterna-
tives separately in binary comparisons indicates that this alternative is not desirable.
Then choosing this alternative when all alternatives are simultaneously available is
identified as a mistake. In this subsection, we eliminate such simple mistakes.16

16A more stronger version of this property could be that if an alternative is never chosen in binary
comparisons, then it cannot be chosen in a grand set of any size. Note that such a stronger property
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The definition of no-simple-mistake allows for bounded rationality without having
extreme irrationality. Note that if the choice functions in the support of randomization
are rationalizable by a preference ordering, then this property trivially holds. This
new concept restricts each possible choice function to be either rational or boundedly
rational in the sense of no-simple-mistake.

Next, we provide two axioms on a stochastic choice function, π, with respect to
an ordering ▷.

Axiom 2. (Binary Weak Regularity) If x▷ y▷ z, then

π(x∣{x, y, z}) ≤ max{π(x∣{x, y}), π(x∣{x, z})}

and
π(z∣{x, y, z}) ≤ max{π(z∣{x, z}), π(z∣{y, z})}

This axiom is a weaker version of regularity written only for the best and the worst
alternatives of a tripleton. By replacing the max operator with the min operator,
one could get the classical regularity condition: π(x∣{x, y, z}) is smaller than both
π(x∣{x, y}) and π(x∣{x, z}). Our axiom is weakening that by only requiring it to be
smaller than at least one of them.

Axiom 3. (Weak Centrality) Let x ▷ y ▷ z and π(y∣{x, y, z}) > 0. If π(y∣{x, y}) +
π(y∣{y, z}) < 1, then π(x∣{x, y}) ≤ π(x∣{x, y, z}) or π(z∣{y, z}) ≤ π(z∣{x, y, z}).

This axiom states that in a tripleton, when the intermediate alternative is chosen
with positive probability but relatively unattractive to the decision-maker in the sense
that its total choice probability in binary comparisons is less than 1, then removing
one of the extreme alternatives will weakly lower the other extreme alternative’s choice
probability.

could be in conflict with the idea of less-is-more where people could make mistakes when they face a
large choice sets.
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Theorem 4. Let ▷ be a reference ordering. A stochastic choice π satisfies Binary Weak
Regularity and Weak Centrality with respect to ▷ if and only if there exists a unique
PRC▷ representation of π where each type in the support makes no-simple-mistake.

5. Endogenous Reference Order

Up to now, we have taken the reference ordering, ▷, as given. This was reasonable
in some applications where the true reference ordering (such as a social norm or a com-
mon attribute such as price or carbon footprint) is observable to the researcher. Our
axioms are stated in terms of ▷, a component of the model. Hence, they should be seen
as a test that inputs both a stochastic choice and an order. For example, U-regularity
tests whether the data has a PRC representation with less-is-more condition for a
given reference order. The order might convey much (but not all) of the psychology
that PRC captures. For example, say an outside observer believes that the heterogene-
ity is due to being environmental friendly at differentiated levels, however she cannot
decide which attribute (carbon emission or sustainability) sorts environmental friend-
liness. U-regularity makes it straightforward to determine whether π constitutes a
PRC representation with less-is-more under either of these two orders. This helps the
outside observer endogenously pick the order which passes the test. The next remark
makes this point for both bounded rationality conditions we studied earlier.

Remark 3. [Characterization] A stochastic choice π has an endogenous PRC represen-
tation satisfying less-is-more (no-simple-mistake) condition if and only if there exist
preferences ▷ such that (π,▷) satisfies Axiom 1 (Axioms 2-3).

It is also possible that the outside observer does not have a prior knowledge about
the reference ordering. We now describe to what extend one can identify the reference
ordering of a given stochastic choice for a PRC representation. Note that this exercise
only makes sense for a subclass of stochastic choice because otherwise from Theorem 1
every data has a PRC representation with respect to an arbitrary ordering. We perform
this task for the bounded rationality restrictions described in the previous section.



25

For the revelation of the reference ordering, we assume that the model is correct
and ask when we can infer the underlying reference order. First, observe that if remov-
ing an alternative z from a set causes a regularity violation π(y∣{x, y, z}) > π(y∣{x, y}),
we infer that x is ranked above y. To see this, for a contradiction assume there exists
an ordering ▷ with y ▷ x and PRC▷ represents π with a support of types satisfying
less-is-more. Since U-regularity must hold for ▷, we have

π(U(y)∣{x, y, z}) ≤ π(U(y)∣{x, y})

This yields π(y∣{x, y, z}) ≤ π(y∣{x, y}), which contradicts with the assumption. Hence,
π has no PRC representation for any reference ordering that ranks y above x. Similarly,
we can show that the observation π(y∣S) > π(y∣{x, y}) where x ∈ S also reveals y is
ranked above x, which is denoted by xPy.

There are two other choice patterns revealing xPy. Specifically, if there exists
a z revealing zPy (i.e., π(y∣{x, y, z}) > π(y∣{y, z})) and π(x∣{x, y, z}) < π(x∣{x, y}),
we must have x is revealed to be better than y. To see this, assume x is not ranked
above y, then there exists an ordering ▷ with y ▷ x and PRC▷ represents π with a
support satisfying less-is-more. Since we must have zPy, we must have z▷y▷x. Since
π(y∣{x, y, z}) ≠ 0, U-Regularity for y with respect to ▷ implies that π(x∣{x, y, z}) ≥
π(x∣{x, y}), a contradiction. Hence x must be ranked above y in every PRC represen-
tation, i.e., xPy.

The second choice pattern is more involved. We assume that there exists z
such that π(z∣{x, y, z}) > π(z∣{y, z}), π(x∣{x, y, z}) < π(x∣{x, y}), π(z∣{x, y, z}) <
π(z∣{x, z}), and π(x∣{x, y, z}) ≠ 0. Assume that x is not ranked above y. The for-
mer inequality implies that yPz. Hence, there are two possible reference orderings:
y ▷1 z ▷1 x or y ▷2 x▷2 z. Since π(z∣{x, y, z}) ≠ 0, U-Regularity for z with respect
to ▷1 implies that π(x∣{x, y, z}) ≥ π(x∣{x, y}). Similarly, since π(x∣{x, y, z}) ≠ 0, U-
Regularity for x with respect to ▷2 implies that π(z∣{x, y, z}) ≥ π(z∣{x, z}). Both cases
imply a contradiction. Hence x must be ranked above y in every PRC representation,
i.e., xPy.
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We now formally state the above observations: For any distinct x and y, define
the following binary relation,

xPy if (i) π(y∣S) > π(y∣{x, y}) for some S ∋ x,

(ii) ∃z s.t. π(y∣{x, y, z}) > π(y∣{y, z}) and π(x∣{x, y, z}) < π(x∣{x, y})

(iii) ∃z s.t. π(z∣{x, y, z}) > π(z∣{y, z}), π(x∣{x, y, z}) < π(x∣{x, y}),

π(z∣{x, y, z}) < π(z∣{x, z}), and π(x∣{x, y, z}) ≠ 0

If we have xPz and zPy revealed, we must have x to be ranked above y by
transitivity even though xPy is not revealed. The transitive closure of P , denoted
by PT , includes these additional revelations as well as P itself. The next proposition
summarizes this observation.

Proposition 1. If π has a PRC▷ representation satisfying the less-is-more property,
then PT must be included in ▷.

Next example illustrates that by having only the less-is-more structure in the PRC,
there might be multiple reference orderings representing the same stochastic choice.
Nevertheless, PT is still in the intersection of those orders as stated by Proposition 1.

Example 1. The following table provides a set of of parametric stochastic choice
described by πλ where λ ∈ [−0.10,0.10].

When λ > 0, we have πλ(z∣{x, y, z}) > πλ(z∣{y, z}) and πλ(z∣{x, y, z}) > πλ(z∣{x, z}),
which imply yPz and xPz. However, we cannot conclude the ordering between x and
y. Notice that we only employ the first part of definition of P since the rest of the
conditions does not apply in this case. Therefore, πλ has multiple PRC representations
satisfying less-is-more property with respect to both x▷1 y▷1 z and y▷2 x▷2 z, when
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λ > 0.17

πλ {x, y, z} {x, y} {x, z} {y, z}
x 0.10 + λ 0.30 0.40 −
y 0.30 − 2λ 0.70 − 0.55
z 0.60 + λ − 0.60 0.45

When −0.10 < λ < 0, we have πλ(z∣{x, y, z}) > πλ(z∣{y, z}) revealing yPz, but
πλ(z∣{x, y, z}) < πλ(z∣{x, z}). However, part (iii) of the definition of P implies that we
must have xPy(Pz). We have a unique revelation.18

When λ = −0.10, part (iii) of the definition of P no longer applies since πλ(x∣{x, y, z}) =
0. In that case, we only reveal yPz. Multiple orders containing yPz would give a PRC
representation satisfying less-is-more property.

As the above Example 1 illustrates, the less-is-more condition may not be enough
for unique identification of the reference ordering. Note that in all the cases without
uniquely defined ordering in Example 1, we have either a violation of Axiom 2 (when
λ > 0) or the stochastic choice has zero probability in it (when λ = −0.10). The next
theorem shows that when we impose more restrictions, then the unique identification
of the ordering is possible for the less-is-more type of bounded rationality. We call a
stochastic choice strict if for all x,S,S′, p(x∣S) ≠ p(x∣S′) > 0.19

Theorem 5. If a strict stochastic choice π has PRC representation satisfying less-
is-more with respect to ▷1 and ▷2 and Axiom 2 holds for both orders, ▷1 must be
equivalent to ▷2, hence the reference order is unique.

Proposition 1 is an identification result for the possible reference ordering. Theo-
rem 5 is on the other hand a uniqueness result, stating that there is a unique completion
of PT acting as the reference order. One can use these results to provide a procedure
17It is straight forward to check these are the only reference orderings representing π even when λ = 0.
18This is surprising since there is only one regularity violation in this case. In other words, while there
is less direct revelation compared to the case λ > 0, the revelation is unique.
19This assumption cannot be rejected by any finite data set. In addition, it is usually made for
estimation purposes.
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to test endogenously whether the stochastic choice satisfies Axioms 1-3 (i.e., it has a
PRC with less-is-more and no-simple mistake properties with respect to the orderings.)

Given π, we can first derive P as described above. If there is a cycle, then this
means that π cannot be represented by PRC satisfying less-is-more. If it does not have
any cycle, then the implied PT restricts the set of all reference orders which might be
compatible with π. Then one may check Axioms 1-3 on this restricted set of orders.
If there is an order satisfying axioms, then this order must be unique by Theorem
5. Hence there is no further need to check others. If none of them satisfies all the
axioms, this implies that π cannot be represented by any PRC satisfying less-is-more
and no-simple mistake conditions.

6. Related Literature

In this section, we compare our model with other well-known models of stochas-
tic choice from the literature. First, note that in terms of explanatory power, PRC
includes all the other models (see Theorem 1). Since PRC with less-is-more and/or
no-simple-mistake condition impose testable restrictions, we now compare these spe-
cial sub-classes to other stochastic choice models. As we mentioned before, SCRUM
of Apesteguia et al. [2017] is a special case of this class. Moreover, the PRC satisfying
less-is-more and no-simple mistake conditions includes other RUM choices other than
SCRUM.

Manzini and Mariotti [2014], Brady and Rehbeck [2016], and Cattaneo et al. [2019]
provide stochastic models where randomness comes from random consideration rather
than random preferences. While the first two provide parametric random attention
models, the last offers a non-parametric restriction on the random attention rule. The
first two models require the existence of a default option for their models. To provide an
accurate comparison, we consider versions of those without an outside/default option.20

The random attention model (RAM) of Cattaneo et al. [2019] covers the model of Brady

20See Horan [2018a] for an axiomatic characterization of the Manzini and Mariotti [2014] model when
there is no default option.
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and Rehbeck [2016] (BR), which in turn contains the model of Manzini and Mariotti
[2014] (MM). All these models include an preference ordering as one of the components
of their models. First, we state the differences of these models for a given reference
ordering. In that case, RAM includes RUM, BR, SCRUM and MM. However, RAM,
PRC satisfying less-is-more, and PRC satisfying no-simple-mistake are independent
models because neither one is a subset of the other. When we consider endogenous
reference ordering, RAM still includes RUM, BR, SCRUM and MM. In addition, it
is still true that PRC satisfying less-is-more and no-simple-mistake is different from
RAM. For example, consider the following stochastic choice with three alternatives, π:
π(z∣{x, y, z}) = π(y∣{x, y, z}) = π(z∣{y, z}) = 0.3, and π(y∣{x, y}) = π(z∣{x, z}) = 0.2.
π is a PRC satisfying less-is-more and no-simple-mistake conditions but not RAM.
Indeed, this example is outside of any models discussed above. Moreover, it is routine to
show PRC satisfying less-is-more is independent of PRC satisfying no-simple-mistake.

In the model of Gul, Natenzon, and Pesendorfer [2014] the decision maker first
randomly picks an attribute using the Luce rule given the weights of all attributes.
Then she picks an alternative using the Luce rule given the intensities of all alternatives
in that attribute. Gul, Natenzon, and Pesendorfer [2014] show that any attribute rule is
a random utility model. Hence, their model is distinct from the PRC model satisfying
less-is-more and no-simple mistake conditions.

Echenique and Saito [2019] consider a general Luce model (GLM) where the deci-
sion maker uses the Luce rule to choose from among alternatives in her (deterministic)
consideration set instead of the whole choice set.21 GLM reduces to the Luce rule when
all alternatives are chosen with positive probability in all menus. Hence, GLM is also
distinct from our model in terms of observed choices.

Echenique, Saito, and Tserenjigmid [2018] propose a model (PALM) which uses
violations of Luce’s IIA to reveal perception priority of alternatives. For an example of
stochastic choice data which can be explained by our model but not PALM, consider
any data where the outside option is never chosen. When the outside option is never

21See Ahumada and Ulku [2018] and Horan [2018b] for related models.
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chosen, PALM reduces to the Luce rule. However, PRC with less-is-more and no-simple
mistake properties allows for violations of Luce’s IIA in the absence of an outside option.

Fudenberg, Iijima, and Strzalecki [2015] consider a model of Additive Perturbed
Utility (APU) where agents randomize, as making deterministic choices can be costly.
In their model, choices satisfy regularity. Since L-PRC allows for violations of regular-
ity, they are distinct models.

Aguiar, Boccardi, and Dean [2016] consider a satisficing model where the decision
maker searches until she finds an alternative above a satisficing utility level. If there
is no alternative above the satisficing utility level, the decision maker picks the best
available alternative. They focus on two special cases of this model: (i) the Full Support
Satisficing Model, where in any menu each alternative has a positive probability of
being searched first, and (ii) the Fixed Distribution Satisficing Model. They show
that the second model is a subset of RUM. On the other hand, the first model has
no restrictions on observed choices if all alternatives are always chosen with positive
probability. Hence, ours is distinct from these, too.

7. Conclusion

We have introduced a novel PRC model which not only uniquely identifies the
random choices utilized but also has an intuitive progressive structure. As the exam-
ples we have provided throughout the article suggest, this model may prove useful in
economic contexts where one wishes to investigate interpersonal or intrapersonal varia-
tion in choice and the variation is based on a sorted behavioral trait such as willpower,
loss aversion, attention, or limited cognitive ability.

We see several directions in which the present work can be extended. We inves-
tigated two extensions in this paper imposing the less-is-more and no-simple mistake
structures on the choices of a PRC model. These models have stronger prediction
power and still apply to many examples covered by the literature. However, there are
still some well-studied bounded rationality models such as the limited attention model
with attention filter (Masatlioglu et al. [2012]) that can be explained in our framework.
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Hence, one obvious avenue for exploration is to study other bounded rationality struc-
tures on the choices in the collection and their behavioral implications. Additionally,
one might gradually impose more structure on PRC. In our Theorem 5, we perform
this exercise for adding additional mild restrictions on less-is-more and get uniqueness
of the endogenous reference ordering. Finally, several empirical queries arise from the
present work. It would certainly be useful to conduct experimental tests comparing
the explanatory power of competing models that we reviewed in this paper.
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Appendix

Single Crossing and Progressiveness. As mentioned in the main text, progres-
siveness generalizes the single-crossing idea recently studied by Apesteguia et al. [2017]
within the RUM framework. A collection of preferences, {P1, ..., PT}, satisfies the
single-crossing property with respect to ▷ if for every x▷ y and every s > t, xPty im-
plies xPsy. As the next Lemma shows, if the choices in the support of a random choice
model are rational and generated by maximization of preferences, then progressiveness
is equivalent to the support of the corresponding RUM satisfying the single crossing
property.

Lemma 1. Let {c1, ..., cT} be a collection of choices where each ci is derived from
maximization of a complete and transitive ordering Pi. Then {P1, ..., PT} satisfies the
single-crossing property with respect to ▷ if and only if {c1, ..., cT} satisfies the progres-
siveness property with respect to ▷.

Proof. Assume that {P1, ..., PT} satisfies the single-crossing property with respect to ▷.
For contradiction, suppose the corresponding choice collection does not satisfy the pro-
gressiveness property. Then there exist s, t ∈ {1, ..., T} such that s > t and S ⊂X where
ct(S)▷ cs(S). Since each Pi represents the corresponding ci, we have cs(S)Psct(S)
and ct(S)Ptcs(S). Note that since ct(S)▷ cs(S) by single crossing property we must
have ct(S)Ptcs(S)⇒ ct(S)Pscs(S), which is a contradiction.

For the other direction of the proof, assume that the collection of choices satis-
fies the progressiveness property with respect to ▷. For contradiction, suppose the
corresponding set of preferences does not satisfy the single-crossing property. Then
there exists x, y ∈ X such that x ▷ y, s, t ∈ {1, ..., T} with s > t and while xPty we
have yPsx. Then ct({x, y}) = x and cs({x, y}) = y. By progressiveness, we should have
cs({x, y}) ⊵ ct({x, y}) or equivalently, y ⊵ x. This is a contradiction. �

Proof of Remark 1. Assume Condition 1 on a collection of (u,{Γt}) within Class
2. Let s > t and S ⊆ X then by definition of this class, ct(S) ∈ Γt(S). Then ob-
serve that ct(S) ∈ Lu(Γt(S)) ⊆ Lu(Γs(S)). This implies existence of y ∈ Γs(S) s.t.
u(y) ≥ u(ct(S)). Since u(cs(S)) ≥ u(x) for any x ∈ Γs(S), in particular we must have
u(cs(S)) ≥ u(y) ≥ u(ct(S)). Hence, {ct} is a progressive collection with respect to u.
◻

Proof of Remark 2. Assume Condition 2 on a collection (u,{kt}) within Class 3.
For contradiction assume there are two types s > t and S ⊆X such that ct(S)▷ cs(S).
then by Condition 2, we have

kt(ct(S), S) − kt(cs(S), S) ≥ ks(ct(S), S) − ks(cs(S), S)
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Since ct(S) is chosen by type t, we have the followings:

u(ct(S)) − kt(ct(S), S) ≥ u(cs(S)) − kt(cs(S), S)
u(ct(S)) − u(cs(S)) ≥ kt(ct(S), S) − kt(cs(S), S) ≥ ks(ct(S), S) − ks(cs(S), S)
Since we assumed that the choice of each type is unique, the inequality above is strict.
Then type s would choose ct(S) as well, giving us a contradiction. Hence, the collection
{ct} must be progressive with respect to ▷. ◻

Proof of Theorem 1. Let ▷ be an ordering and a stochastic choice function π be
given. We will construct a collection of choice functions, C, with the desired structure
with respect to ▷ and a probability distribution µ on C such that πµ = π.

Define
K = {π(L̄(x) ∪ x∣S) ∣ S ⊆X and x ∈ S}22

where L̄(x) = {y ∈ X ∣ x▷ y} (strict lower counter set). This defines a collection of all
cumulative probabilities on lower contour sets derived from the stochastic choice. K
is a finite subset of [0,1]. Next we sort the strictly positive elements of K from the
lowest to the highest, i.e., 0 < k1 < k2 < ⋯ < km = 1.23 Note that since X is finite, m is
finite.

Next we will construct the set of choice functions, C, recursively. Before that,
we define a minimizing operator minπ+(▷, S), which selects the worst alternative in S
according to ▷ with strictly positive choice probability. That is,

min
π+

(▷, S) = {x ∈ S ∣ π(x∣S) > 0 and y▷ x whenever π(y∣S) > 0 and y ≠ x}

For any set §, follow the steps below:

Step 1: Define
c1(S) = min

π+
(▷, S) and µ(c1) = k1

Note that µ(c1) is positive and for any S, π(c1(S)∣S) = π(L̄(c1(S)) ∪ c1(S)∣S) ≥ k1 as
π(c1(S)∣S) is an element of K and by definition k1 is the smallest of those probabilities.
Moreover, there exists a subset S such that π(L̄(c1(S)) ∪ c1(S)∣S) = k1 since k1 ∈K.

Step 2: Define the second choice type as

c2(S) = { c1(S) if π(L̄(c1(S)) ∪ c1(S)∣S) > k1
minπ+(▷, S ∖ c1(S)) if π(L̄(c1(S)) ∪ c1(S)∣S) = k1

and µ(c2) = k2 − k1

This is well-defined because by the construction in the first step: π(L̄(c1(S)) ∪
c1(S)∣S) ≥ k1. Note that µ(c2) is strictly positive as k1 < k2, and by step 1, c1 is different
from c2. Observe that for any S, c2(S) ⊵ c1(S) by definition of c2 and hence, {c1, c2}
22We abuse the notation and write A ∪ x instead of A ∪ {x}.
23km is always equal to 1 since π(L̄(x) ∪ x∣{x}) = 1.
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satisfies progressiveness with respect to ▷. Note that µ(c1) + µ(c2) = k2. Moreover,
there exists a subset S such that π(L̄(c2(S)) ∪ c2(S)∣S) = k2 since k2 ∈K.

Step i: Define the ith choice as

ci(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ci−1(S) if π(L̄(ci−1(S)) ∪ ci−1(S)∣S) > ki−1

minπ+(▷, S ∖
i−1
⋃
k=1
ci−k(S)) if π(L̄(ci−1(S)) ∪ ci−1(S)∣S) = ki−1

and µ(ci) = ki − ki−1

This is well-defined because by construction in first i − 1 steps
π(L̄(ci−1(S)) ∪ ci−1(S)∣S) = ∑

y⊴ci−1(S)
y∈S

π(y∣S) ≥ ki−1

Note that by step i − 1, ci−1 ≠ ci, and by construction ci(S) ⊵ ci−1(S) ⊵ ci−2(S) ⊵
... ⊵ c1(S) for all S. Hence, {c1, c2,⋯, ci} consists of distinct elements and satisfies
progressiveness with respect to ▷. Note that ∑i

t=1 µ(ct) = ki. This construction stops
when we reach mth step.

Define C = {c1, ..., cm} where each ci is defined in Step i above. Since C satisfies
progressiveness with respect to ▷, and ∑m

t=1 µ(ct) = k1 +∑m
t=2(kt − kt−1) = km = 1, (µ,C)

constitutes a PRC, denoted by πµ. That is,
πµ(x∣S) = ∑

x=ck(S)
ck∈C

µ(ck)

We need to show that the representation holds, i.e, πµ = π. Note that by construc-
tion πµ(x∣S) = 0 for any x ∈ S such that π(x∣S) = 0.

Let x ∈ S be an element with π(x∣S) ≠ 0. Let π(L̄(x) ∪ x∣S) = ki and π(L̄(x)∣S) =
kj. Since L̄(x) ⊂ L̄(x) ∪ x and π(x∣S) ≠ 0, ki is strictly greater than kj. Then by
construction, we have cj+1(S) = ⋯ = ci(S) = x. In addition, for all k ≤ j, x▷ ck(S) and
x◁ ck(S) for all k ≥ i + 1. Then we have

πµ(x∣S) =
i

∑
t=j+1

µ(ct) =
i

∑
t=j+1

(kt − kt−1) = ki − kj
= π(L̄(x) ∪ x)∣S) − π(L̄(x)∣S)
= π(x∣S)

Hence, πµ and π are the same.

(Uniqueness): Let µ1 with support C1 = {c1
1, ...c

1
n1} and µ2 with support C2 = {c2

1, ...c
2
n2}

be two PRC representations of the same stochastic data described by π such that C1

and C2 satisfy progressiveness. We want to show that C1 = C2 and µ1 = µ2.
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For contradiction, suppose µ1 ≠ µ2. Define the c.d.f. implied by µi as Mi(cit) =
∑
s≤t
µi(cis) for i = 1,2. Let M−1

i be the inverse choice defined from the c.d.f such that

M−1
i (α) = {cit∣Mi(cit−1) < α ≤Mi(cit)}

for i = 1,2. Since µ1 ≠ µ2, then there must be an α ∈ (0,1) such thatM−1
1 (α) ≠M−1

2 (α).
Let M−1

1 (α) = {c1
t} and M−1

2 (α) = {c2
s}. These two choice functions should disagree on

some sets, i.e. there must be S ⊂ X such that y = c1
t (S) and x = c2

s(S). Without loss
of generality assume x▷ y. By progressiveness, for any k ≤ t, c1

k(S) ⊴ y and for any
l ≥ s, c2

l (S) ⊵ x. Then πµ2(L̄(y) ∪ y∣S) < α ≤ πµ1(L̄(y) ∪ y∣S) which is a contradiction
because πµ1 = πµ2 as both represent the original stochastic choice described by π. ◻

Proof of Theorem 2. Let πµ and πη be two L-PRC≻ with supports C and C′, respec-
tively.

First we show the sufficiency. Let µ be higher than η; and for contradiction
assume that πµ does not first order stochastically dominates πη, i.e. there exists a set
S = {a1, ..., an} and for some 1 ≤ i ≤ n

πµ({ai, ai+1, ..., an}, S) < πη({ai, ai+1, ..., an}, S)
.

Define α and β as the probability of choosing the strict lower contour set of ai in
S by using πµ and πη, respectively, i.e. α = πµ(L̄(ai), S) and β = πη(L̄(ai), S); then
α > β.

Since C and C′ are ordered choice collections satisfying progressiveness, there exists
t and t′ such that µ(c1)+...+µ(ct) = α and ct(S)◁ai; η(c′1)+...+η(c′t′) = β and ai▷c′t′(S).
Let c′k = η−1

α , then k > t′ since α > β. Note that by the assumption of µ being higher than
η, we must have µ−1

α (S) = ct(S) ⊵ c′k(S) = η−1
α (S). Then we have ai▷ct(S) ⊵ c′k(S) ⊵ ai.

The last relation follows from the fact that t′ is the highest index choice in C′ which
chooses an element from the lower contour set of ai and any choice with higher index
chooses an element weakly better than ai. This gives us the contradiction that needed
for the proof.

Next we show the necessity. Let πµ first order stochastic dominate πη but µ not
be higher than η. Then ∃S ⊂ X and α ∈ (0,1] such that η−1

α (S)▷ µ−1
α (S). Define x

and y as x = η−1
α (S) and y = µ−1

α (S), then x▷ y. Then we have
πµ(L(y) ∪ {y}, S) ≥ α > πη(L(y) ∪ {y}, S)

Then we have
πµ(U(y), S) < πη(U(y), S)

which contradicts with the assumption that πµ first order stochastic dominates πη. ◻
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Proof of Theorem 3. (Necessity of U-Regularity): Let ▷ be the reference order-
ing and (µ,C) represent π such that C satisfies less-is-more condition. Let x ∈ T ⊂ S ⊆X
and π(x∣S) ≠ 0. First, we will show that for any ci ∈ C, x▷ ci(T ) ⇒ x▷ ci(S). As-
sume not, there exists i such that ci(S) ⊵ x▷ ci(T ). If ci(S) ∈ T then the less-is-more
property immediately yields a contradiction. Now consider ci(S) ∉ T . Then, since
π(x∣S) ≠ 0, there must be an index j ≤ i such that cj(S) = x. Then cj(S) = x ∈ T ⊂ S.
By the less-is-more property we have cj(T ) ⊵ cj(S). Since j ≤ i, by progressiveness,
ci(T ) ⊵ cj(T ) ⊵ cj(S) = x which contradicts with x▷ ci(T ). Therefore, we prove our
claim that x▷ ci(T )⇒ x▷ ci(S). This implies the following relation:

∑
x▷ci(T )

µ(ci) ≤ ∑
x▷ci(S)

µ(ci)

Hence,
πµ(U(x)∣T ) ≥ πµ(U(x)∣S)

(Sufficiency of U-Regularity): We assume that the stochastic choice function π
satisfies U-regularity with respect to▷ and will show that the construction of C given in
the proof of Theorem 1 satisfies the less-is-more property with respect to this ordering.

Before we proceed, we note that U-regularity can be expressed by strict lower
counter sets. That is, for all x ∈ T ⊂ S,

π(U(x)∣T ) ≥ π(U(x)∣S)⇐⇒ π(L̄(x)∣T ) ≤ π(L̄(x)∣S)

We first show c1 satisfies the less-is-more property. Let c1(S) ∈ T ⊂ S. By con-
struction, π(c1(S)∣S) ≠ 0 and for all x such that c1(S)▷x we have π(x∣S) = 0. Hence,
π(L̄(c1(S))∣S) = 0. By U-regularity, π(L̄(c1(S))∣T ) = 0. Hence, for all x such that
c1(S)▷ x, we have π(x∣T ) = 0. Since π(c1(T )∣T ) ≠ 0 by construction, we must have
c1(T ) ⊵ c1(S).

Assume that all ct satisfy the less-is-more property for all t < i. We now show that
ci also satisfies it. Let ci(S) ∈ T ⊂ S. For contradiction, assume ci(S)▷ ci(T ). We
consider two possible changes that may happen from Step i − 1 to Step i.

Case 1) ci−1(S) = ci(S). By the progressiveness property, ci−1(S) = ci(S)▷ ci(T ) ⊵
ci−1(T ). Then transitivity implies ci−1(S)▷ ci−1(T ), which contradicts the fact that
ci−1 satisfies the less-is-more property.

Case 2) ci−1(S) ≠ ci(S). Then the following relations hold according to the proof of
Theorem 1;
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ki ≤ π(L̄(ci−1(T )) ∪ ci−1(T )∣T )
≤ π(L̄(ci(T )) ∪ ci(T )∣T ) since ci(T ) ⊵ ci−1(T )
≤ π(L̄(ci(S))∣T ) since ci(S)▷ ci(T )
≤ π(L̄(ci(S))∣S) since U-regularity
= ki−1 since the choice on S changed in step i

This observation contradicts with ki being strictly increasing in i. Hence, we have
ci(T ) ⊵ ci(S). This shows the less-is-more condition holds for ci. ◻

Proof of Theorem 4. (Necessity of Axioms 2-3): Let ▷ be the reference ordering
and (µ,C) represent π such that C satisfies the no-simple-mistake condition. We show
that π satisfies Axiom 2 and Axiom 3 with respect to ▷.

We first show that Axiom 2 is necessary. For a contradiction, assume that there are
three distinct alternatives x▷ y▷ z s.t. π(x∣{x, y, z}) > max{π(x∣{x, y}), π(x∣{x, z})}.
Then, π(x∣{x, y, z}) > 0 and hence, there exists ci such that ci(x∣{x, y, z}) = x and,
for any k < i, ck(x∣{x, y, z}) is different from x. In other words, i is the smallest
index type choosing x from {x, y, z}. Since π(x∣{x, y, z}) > π(x∣{x, y}), we must have
ci({x, y}) = y. Similarly, π(x∣{x, y, z}) > π(x∣{x, z}) implies ci({x, z}) = z. These
imply that ci violates the no-simple-mistake condition. This establishes the first part
of Axiom 2.

We now show the second part of Axiom 2. For a contradiction, we assume that
π(z∣{x, y, z}) > max{π(z∣{x, z}), π(z∣{y, z})}. Then, π(z∣{x, y, z}) > 0, and hence,
there exists cj such that cj(z∣{x, y, z}) = z and, for any k > j, ck(z∣{x, y, z}) is
different from z. In other words, j is the largest indexed type choosing z from
{x, y, z}. Since π(z∣{x, y, z}) > π(z∣{x, z}), we must have cj({x, z}) = x. Similarly,
π(z∣{x, y, z}) > π(z∣{y, z}) implies cj({y, z}) = y, which implies cj violates the no-
simple-mistake condition. Hence, Axiom 2 is satisfied for the best and worst alterna-
tives.

We now show that Axiom 3 is necessary. Let x ▷ y ▷ z, π(y∣{x, y, z}) > 0
and π(y∣{x, y}) + π(y∣{y, z}) < 1, but π(x∣{x, y}) > π(x∣{x, y, z}) and π(z∣{y, z}) >
π(z∣{x, y, z}). Since π(y∣{x, y, z}) > 0, there exist two types i ≤ j such that ci({x, y, z}) =
cj({x, y, z}) = y and, for any k < i or j < k, ck({x, y, z}) is different from y. In
other words, i and j are the smallest and largest indexed types choosing y from
{x, y, z}, respectively. π(x∣{x, y}) > π(x∣{x, y, z}) implies that cj({x, y}) = x. Similarly,
π(z∣{y, z}) > π(z∣{x, y, z}) implies that ci({y, z}) = z. Then π(y∣{x, y})+π(y∣{y, z}) < 1
guarantees that there exists t such that ct({x, y}) = x and ct({y, z}) = z. If t is be-
tween i and j, then by the assumption ct({x, y, z}) = y, which yields a contradiction
for the no-simple-mistake condition. If t < i, then the progressive structure implies
ci({x, y}) = x since cj({x, y}) = x = ct({x, y}), and t < i ≤ j. Then ci violates the
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no-simple-mistake condition. Similarly, if t > j, cj violates it too. This completes the
proof of necessity.

(Sufficiency of Axioms 2-3): We assume the stochastic choice function π satisfies
Axiom 2 and Axiom 3 with respect to ▷ and will show that the construction of C given
in the proof of Theorem 1 satisfies the no-simple-mistake condition.

If ∣S∣ = 2, the model has no restriction. Hence assume ∣S∣ ≥ 3. For a contradiction,
assume that there exists ci ∈ C such that ci({x, y, z}) = x, ci({x, y}) = y, and ci({x, z}) =
z for three distinct alternatives.

If x is the worst alternative among {x, y, z}, then by the representation, we must
have π(x∣{x, y, z}) ≥ µ(ci) +

i−1
∑
t=1
µ(ct) >

i−1
∑
t=1
µ(ct) ≥ π(x∣T ) for all T ⊂ S since µ(ci) > 0

and µ is a PRC representation of π. This contradicts to Axiom 2.

If x is the best alternative among {x, y, z}, the representation implies that π(x∣{x, y, z}) ≥
µ(ci) +

n

∑
t=i+1

µ(ct) >
n

∑
t=i+1

µ(ct) ≥ π(x∣T ) for all T ⊂ S since µ(ci) > 0 and µ is a PRC
representation of π. Axiom 2 is violated.

If x is the middle alternative among {x, y, z}, w.l.o.g. assume y ▷ x▷ z. Since
µ(ci) > 0, we have π(x∣{x, y, z}) ≠ 0. By the PRC structure, we must have

i

∑
t=1
µ(ct) >

π(x∣{x, y}) and
n

∑
t=i+1

µ(ct) ≥ π(x∣{x, z}). Hence 1 > π(x∣{x, y}) + π(x∣{x, z}). Axiom 3
implies π(y∣{x, y}) ≤ π(y∣{x, y, z}) or π(z∣{x, z}) ≤ π(z∣{x, y, z}). The former inequal-
ity does not hold since π(y∣{x, y, z}) <

n

∑
t=i
µ(ct) ≤ π(y∣{x, y}). On the other hand, since

ci({x, z}) = z and ci({x, y, z}) = x, we must have π(z∣{x, z}) > π(z∣{x, y, z}). This
means the second inequality does not hold either, giving us a contradiction.

This completes the proof of sufficiency. ◻

Proof of Theorem 5. Before we proceed with the proof, we prove one lemma.

Lemma 2. If xPy and xPz for the revealed preferences corresponding to the stochas-
tic choice function assumed in Theorem 5, then either π(y∣{x, y, z}) > π(y∣{y, z}) or
π(z∣{x, y, z}) > π(z∣{y, z}).

Proof. Since π has a PRC representation and xPy and xPz are assumed, there are
two possible reference orderings between y and z: x ▷1 y ▷1 z or x ▷2 z ▷2 y. If
PRC▷1 represents π then π satisfies U-Regularity with respect to ▷1 implying that
π({x, y}∣{x, y, z}) ≤ π(y∣{y, z}). Then, π(z∣{x, y, z}) ≥ π(z∣{y, z}). Similarly, if PRC▷2

represents π then π satisfies U-Regularity with respect to ▷2 implying π(y∣{x, y, z}) ≥
π(y∣{y, z}). Since π is strict, we have the desired result. �
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Next we will prove Theorem 5, i.e., the uniqueness of the reference ordering for
PRC satisfying less-is-more. For a contradiction, assume that π has two such PRC
representations: PRC▷1 and PRC▷2 , both satisfying Axioms 1-2 with respect to the
corresponding orderings, ▷1 ≠ ▷2. Then there exist two alternatives x and y such
that x is ranked above y in one representation (x▷1 y) and y is ranked above x in
another representation (y▷2x). This implies that we cannot have xPy or yPx because
P ⊆▷1 ∩▷2. Hence, for any alternative z, we must have

(1) π(y∣{x, y, z}) ≤ π(y∣{x, y}) and π(x∣{x, y, z}) ≤ π(x∣{x, y})

This is true because otherwise the construction of P in part (i) would imply xPy
or yPx and that would give a contradiction. Note also that the inequalities in Equation
1 are actually strict because π is strict.

We analyze four cases depending on whether Ax ∶= π(x∣{x, y}) − π(x∣{x, z}) and
Ay ∶= π(y∣{x, y}) − π(y∣{y, z}) are positive or negative. For the first two cases where
Ax,Ay > 0 and Ax,Ay < 0, we assume π(z∣{x, z}) < π(z∣{y, z}). This assumption is
without loss of generality since the same argument applies if the inequality is reversed.
For the last two cases where Ax < 0 < Ay and Ax > 0 > Ay are symmetric so the proofs
of these cases follow by symmetric arguments, hence, we will only illustrate it for the
case of Ax < 0 < Ay.
Case 1: Ax < 0 and Ay < 0.

By Equation (1) and Ax,Ay < 0, both x and y satisfy strict regularity in {x, y, z}.
Since π satisfies U-regularity, there exists at least one regularity violations (the worst
alternative among x, y, z in the corresponding ordering will violate regularity.) Since x
or y do not violate it, z must be the worst alternative. Since we assumed π(z∣{x, z} <
π(z∣{y, z}), together with Axiom 2, we must have π(z∣{x, z}) < π(z∣{x, y, z}) < π(z∣{y, z}).
By part (iii) of the construction of P , we get yPx. by Proposition 1, P ⊆ ▷1, giving
us a contradiction.

Case 2: Ax > 0 and Ay > 0.

Case 2(a): π(x∣{x, z}) < π(x∣{x, y, z})
If π(x∣{x, z}) < π(x∣{x, y, z}) then zPx. Moreover, this case also implies that

π(z∣{x, z}) > π(y∣{x, y, z})+π(z∣{x, y, z}). Hence, π(z∣{y, z}) > π(z∣{x, z}) > π(z∣{x, y, z})
implying that z satisfies strict regularity. This gives us two possibilities: (i) π(y∣{y, z}) <
π(y∣{x, y, z}), or (ii) π(y∣{x, y, z}) < π(y∣{y, z}). From (i), we must have zPy. Since
we also have zPx, either π(y∣{x, y, z}) > π(y∣{x, y}) or π(x∣{x, y, z}) > π(x∣{x, y}) by
Lemma 2 contradicting with Equation 1. If (ii) holds, then π(y∣{x, y, z}) < π(y∣{y, z}) <
π(y∣{x, y}) (by Ay) > 0) and π(x∣{x, y, z}) > π(x∣{x, z}) together implying that yPx
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from part (ii) of the construction of P . By Proposition 1, P ⊆ ▷1, giving us a contra-
diction.

Case 2(b): π(x∣{x, z}) > π(x∣{x, y, z}).
Since Ax > 0, x satisfies the strict regularity in {x, y, z}. y must also satisfies

it because otherwise, if y violates it, then we have π(y∣{y, z}) < π(y∣{x, y, z}). Then
by applying part (ii) of the construction of P , we get xPy. Then by Proposition 1,
P ⊆▷2, giving us a contradiction. Then z must violate the regularity and be the worst
alternative among x, y and z in any ordering used for PRC. Since we assumed that
π(z∣{x, z}) < π(z∣{y, z}), together with Axiom 2, we have π(z∣{x, z}) < π(z∣{x, y, z}) <
π(z∣{y, z}). Then, together with the observation above that y satisfies strict regularity,
we can apply part (iii) of the construction of P and conclude yPx. By Proposition 1,
this implies P ⊆▷1, giving us a contradiction.

Case 3: Ax < 0 < Ay. By Equation (1) and Ax < 0, x satisfies the strict regularity
in {x, y, z}. We consider two sub-cases: π(z∣{x, z}) < π(z∣{y, z}), and π(z∣{x, z}) >
π(z∣{y, z}).
Case 3(a): Assume π(z∣{x, z}) < π(z∣{y, z}).

If π(y∣{y, z}) > π(y∣{x, y, z}), then y also satisfies the strict regularity in {x, y, z}
by Ay > 0. Since π satisfies U-regularity, z must violate the regularity and be the worst
alternative in any ordering used for PRC. By applying Axiom 2 together with the as-
sumption of π(z∣{x, z}) < π(z∣{y, z}), we get π(z∣{x, z}) < π(z∣{x, y, z}) < π(z∣{y, z}).
Then by applying part (iii) of the construction of P , we get yPx. By Proposition 1,
P ⊆▷1, giving us a contradiction.

If π(y∣{y, z}) < π(y∣{x, y, z}), then zPy. Given that, we have two possibilities: (i)
π(z∣{x, z}) < π(z∣{x, y, z}), or (ii) π(z∣{x, y, z}) < π(z∣{x, z}). From (i), we must have
xPz. Then, transitivity implies xPTy. By Proposition 1, it must be PT ⊆▷2, giving us
a contradiction. If (ii) holds, then both x and z satisfy the strict regularity in {x, y, z}.
Then y must violate it due to U-regularity and hence, y must be the worst alternative
in every ordering representing the stochastic choice. This gives us a contradiction since
y▷2 x.

Case 3(b): Assume π(z∣{x, z}) > π(z∣{y, z}). Since x satisfies strict regularity then
either y or z must violate it.

If z violates the strict regularity, then by the assumption of Case 3(b), we must
have π(z∣{x, y, z}) > π(z∣{y, z}) or equivalently, π({x, y}∣{x, y, z}) < π(y∣{y, z}). Then,
π(y∣{x, y, z}) ≤ π({x, y}∣{x, y, z}) < π(y∣{y, z}) < π(y∣{x, y}). This means that y satis-
fies strict regularity. Then by U-regularity, z must be the worst alternative among x, y
and z in any ordering used for a PRC representation. By applying Axiom 2, we get
π(z∣{x, y, z}) < π(z∣{x, z}). Together with x satisfying strict regularity, part (iii) of the
construction of P implies xPy. By Proposition 1, P ⊆▷2, giving us a contradiction.
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If y violates strict regularity, then π(y∣{x, y, z}) > π(y∣{y, z}) since Ay > 0. This is
equivalent to π({x, z}∣{x, y, z}) < π(z∣{y, z}) implying that π(z∣{x, y, z}) ≤ π({x, z}∣{x, y, z}) <
π(z∣{y, z}) < π(z∣{x, z}). This means, z satisfies strict regularity which makes y the
worst alternative among x, y and z in any ordering used for a PRC representation due
to U-regularity. This contradicts with the assumption that y▷2 x.

Case 4: Ax > 0 > Ay. The proof of this case follows the same argument in the proof
of Case 3, hence it is omitted. ◻
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