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Abstract

This paper studies platform competition in the app-based transportation industry. I present a model

of competing platforms in transport equilibrium, characterizing analytically the profit-maximizing al-

locations and prices, and estimate it using high-frequency data on the operations of the two main

platforms in New York City. One main issue associated with the growth of these platforms is their

impact on traffic volumes. I argue that this is exacerbated by missed economies of density from plat-

form competition. I use the model to simulate the impact of a merger, finding that it would reduce

the average number of idle vehicles in the Central Business District by 30%, improving efficiency and

reducing vehicle traffic by 12%. I also use the model to study common policies aimed at reducing traffic

volumes, such as congestion pricing and entry restrictions.
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1 Introduction

Digital platforms connecting customers and independent service providers have become more and more

prevalent in the economic landscape, one main example being the app-based transportation industry.

Transportation Network Companies (TNCs) such as Uber and Lyft provide a large and growing share of

vehicle trips in major cities in the United States, recently raising concerns about their impact on traffic

in major urban areas.1 Regulating digital platforms involves trade-offs due to the presence of “network

effects”, also known as “economies of density” in spatial contexts: on the one hand, users benefit from

joining larger (or denser) platforms, taking advantage from a larger (or denser) pool of trading partners;

on the other hand, concentration comes at the cost of higher platform market power. Moreover, to be

competitive, platforms must achieve a large enough scale so to realize economies of density at a sufficient

level. In the context of transportation, this generates complex trade-offs between competition, economic

efficiency, and the externalities imposed by traffic on the rest of society. This paper seeks to measure

these trade-offs in New York City, one of the world’s largest markets for TNCs, generating more than 15

million trips each month, dispatching more than 80,000 drivers.

To do so, I collect high-frequency data on prices, waiting times, and drivers’ dynamic geolocations

throughout a dense grid of observation points, and match them with publicly accessible trip records,

obtaining a complete picture of the operations of the two main platforms during a period of two months.

Building on this data, I develop a model of competing platforms in transport markets. The model has

two main layers: a dynamic passenger-driver economy, and an oligopolistic sector of profit-maximizing

platforms competing to attract both types of users. The first layer is described by means of a transport

equilibrium model: on the demand side, passengers seek transportation between different regions of the

city, facing waiting times which depend on the nearby density of drivers available on different platforms; on

the supply side, drivers solve a dynamic problem where they enter, exit, switch platforms, move between

regions searching for trips requests, and transport passengers across the city; the spatial allocation of de-

mand and supply across platforms is determined by a dynamic equilibrium of this process. Spatial models

of this kind, dating back to Lagos [2000], have recently become popular in the transportation literature,

allowing to capture central features such as geographic spill-overs and the spatial frictions inherent to the
1Congestion taxes on ride-hail are currently in place in Chicago, New York City, Seattle and under discussion in San

Francisco.
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matching process, while prices are usually either taken as given, or determined by means of decentralized

bargaining.2 To model the market’s endogenous price response to changes in the environment, I nest

on top of this structure an oligopolistic sector of profit-maximizing platforms, implementing equilibrium

allocations by setting dynamic prices and compensations for trips between different regions. Platforms

seek to attract users on both sides as in Rochet and Tirole [2003], and can avoid coordination failures,

but complexities arise from the dynamics and the geographic spill-overs.3

I derive an implementation cost function pinning down drivers’ equilibrium compensations at any

given allocation, and use it to characterize platforms’ best response as an allocation choice problem.

Intuitively, platforms choose the quantity and “quality” of trips on different routes, where the latter is

captured by the car supply in different regions, which in turn determines passengers’ value for the service

through their expected waiting times. Platforms distort à la Spence [1975], under-providing quantities,

and internalizing only the value of quality for marginal customers (the Spence distortion).4

This characterization yields simple computational algorithms, and an analytical expression for the

profit-maximizing two-sided prices. Drivers’ compensations are set so to align their expected dynamic

matching surpluses with platforms’ marginal revenues from quality in different regions, while passenger

prices are the sum of three components: a “static” marginal cost based on time and distance, a classic

market power distortion, and a dynamic component trading off drivers’ marginal profitability at origin

with the marginal benefit of expanding supply at destination.

I structurally estimate the model combining variation from different sources.5 On the supply side I

estimate drivers’ dynamic discrete choice model exploiting variation in the number of available drivers in

time and space. Standard methodologies for estimating dynamic models rely on observing the frequencies

at which agents make alternative choices in different states (i.e. agents’ conditional choice probabilities).6
2Spatial models have been used, for instance, to study search frictions in taxi markets (Buchholz [2020] and Frechette et al.

[2019]) and oceanic transportation (Brancaccio et al. [2020b]), the role of network effects on trade costs (Brancaccio et al.
[2020a]), welfare improvements from centralization (Shapiro [2018] and Liu et al. [2019]), demand and supply imbalances
(Ghili and Kumar [2020]), and the welfare effects of dynamic pricing Castillo [2019].

3Coordination failures in two-sided markets might arise when users do not join the platform because they expect users
on the other side to not join as well (and these expectations are self-fulfilled), but these are usually assumed away. of See
for instance Armstrong [2006] and Weyl [2010].

4The fact that two-sided platforms might generate this type of distortions in a static pricing model has been previously
noted by Weyl [2010].

5Papers estimating demand and supply elasticities on specific ride-sharing platforms include Cohen et al. [2016a], Buchholz
et al. [2020], Angrist et al. [2017], and Castillo [2019], among others. Other papers have studied specific aspects of labor
supply (e.g. Hall et al. [2019], Chen et al. [2019], Cook et al. [2018]).

6See for instance Pakes [1986] and Rust [1987] for single agent models and Bajari et al. [2007] and Pakes et al. [2007] for
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This requirement is not easily met in studies of this type of markets, where usually drivers’ actions (i.e.

decisions to enter/exit in different regions and relocation movements) are not observed. On the other

hand, my data allows to measure the frequency at which drivers visit different states, i.e., the frequency

at which they are available on different platforms in different regions. I show that these frequencies can

be inverted for drivers’ equilibrium payoffs, provide a simple algorithm implementing this inversion by

means of successive tâtonnements, and exploit it to estimate drivers’ parameters.

On the demand side, I estimate a nested logit model of discrete choice of transport mode, relying

on high-frequency variation in prices, waiting times and trip requests, and dealing with endogeneity by

exploiting a policy change as a natural experiment.

Finally, I recover a numerical representation of platforms’ matching technology by simulating a func-

tion associating different densities of idle drivers to passenger waiting times in different regions, and

validate it from the observation of platform-reported waiting times.7

I use the estimated model to simulate the market equilibria under different scenarios. In the first

counterfactual, I simulate the impact of a merger. This allows me to quantify the competitive trade-

offs due the the presence of economies of density: customers’ value for the service depends on waiting

times determined by the nearby density of idle drivers, while drivers’ wages increase with the density

of customers. This raises the question of whether more competition is efficient, as it comes at the

cost of lower density within each platform. This question is of broader relevance than the ride-sharing

industry, speaking to the literature on network externalities and two-sided markets, and to the emerging

literature on competition between digital platforms.8 I find that merging the two platforms would produce

substantial efficiency gains, of about 150 M$ per year, although all gains are captured by the monopolist

through increased profits, leaving users on both sides worse off. This crucially relies on several factors,

such as passengers’ sensitivity to prices and waiting times, as well as the level of concentration and market

density and prior to the merger, as it can bee seen by looking at the variation of the effects across regions.

In particular, the negative effect on customer welfare is inversely related to the previous market density.

strategic setups.
7Frechette et al. [2019] use a similar idea to simulate a matching function for NYC taxicabs.
8Several papers study competition in traditional two-sided markets, such as yellow pages (Rysman [2004]), software and

video games (e.g. Clements and Ohashi [2005], Lee [2013], Corts and Lederman [2009], Gandal et al. [2000]), newspapers and
radio industry (e.g. Chandra and Collard-Wexler [2009], Kaiser and Wright [2006], Jeziorski [2014]), among others, while
Cao et al. [2018] study platform competition in bike-sharing.
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This is because the monopolist can profitably expand car supply in less dense regions, where the benefit

for customers of reduced waiting times more than offsets the price increase.

This inefficiency has significant effects on traffic volumes. I find that merging the two platforms would

reduce the average number of TNC vehicles on the streets by 12%. This is due to the fact that, in order

to be profitable, both TNCs must achieve a large enough size so to achieve sufficient density. On the

other hand, the monopolist makes a more efficient use of drivers, as reflected by the fact that the average

number of idle drivers in the city drops by 26%, while passenger trips decrease by only 1.4%.

In the second and third counterfactuals, I compare congestion pricing schemes targeting fixed and

variable costs of accessing the Central Business District, by simulating the effects of charging drivers on a

per-minute basis, and comparing these with the effects of charging drivers a fixed amount at every entry.

I find that fees targeting fixed costs, such as the NYC’s proposed congestion pricing plan, have small

effects on TNC traffic.9 Intuitively, this is a consequence of the fact that the CBD is a “net attractor” of

trips during daytime, meaning that it receives more trips than those it generates. Hence car supply in the

CBD draws mainly on drivers who remain idle after drop-off, rather than on a net inflow of idle drivers

from outer regions. In contrast, per-minute fees can have a significant effect, by providing platforms with

the right incentives to reduce vehicles’ idling time. In particular, charging drivers 5$ per hour driven in

the CBD would reduce traffic by 8.5%, and idling time by 20%, with mild effects on customer surplus.

In the last counterfactual I study the impact of entry restrictions, by simulating the impact of in-

creasing drivers’ licensing costs to 10,000$ per year. As a result, the number of licensed drivers drops to

about 13,500, providing a basis for comparison with the medallion system (the total number of medallions

is currently 13,587 in NYC). Economies of density provide an argument against the introduction of this

type of policies.10 In particular, it is often argued that these would have the drawback of excluding from

service peripheral regions where economies of density are harder to realize, while inducing platforms to

concentrate activities in the denser, most congested regions. Interestingly, I find that this is not the case,

but instead platforms are able to coordinate the smaller pool of drivers so to avoid a concentration of

activities in central regions. I use the results of the simulation to argue that economies of density are

not crucial to understand the geographical variation in the impact of such policies, which can instead be
9In a recent paper, Kreindler [2020] studies Peak-Hour Road Congestion Pricing. It is important to stress that my results

concern the traffic generated by TNCs, and not by private vehicles.
10In a recent paper, Frechette et al. [2019] made this case for entry restrictions on NYC taxicabs.

4



explained by looking at the network of travel patterns. In the aggregate, the policy generates a sizable

welfare loss, of about 200 M$ per year, reducing TNC traffic by about 7%.

Outline

The paper is structured as follows. Section 2 describes the industry and the data used; Section 3 provides

some some descriptive evidence; Section 4 presents the model; Section 5 describes the estimation; Section

6 presents the counterfactuals; Section 7 concludes.

2 Market and Data

2.1 Market Overview

The app-based segment of the for-hire vehicle industry (ride-sharing) in New York City is operated

by four companies, whose services consist in connecting independent drivers with passengers through

smartphones.11 Uber introduced its flagship service UberX in 2012, subsequently joined by Via in 2013,

Lyft in 2014, and Juno in 2016. The market has expanded rapidly since 2012, including about 85,000

drivers, dispatching more than 15 million trips each month. This rapid growth has generated benefits for

riders by means of low fares and the extension of taxi services to peripheral regions. It has also created

new jobs for drivers, whose majority today is made of full-time workers, independent contractors setting

their own schedule and providing their own vehicles.12 On the other hand, it has diverted passengers from

mass transit, contributing to substantial declines in New York City subway and bus ridership.13 It has also

contributed to the worsening of congestion in the Manhattan Central Business District (CBD), summing

with other factors such as tourism and population growth.14 To tackle these issues, the city implemented

a congestion fee on ride-sharing trips, and authorized a congestion pricing plan to be implemented in

2022. As a temporary measure, the city also limited the extension of new for-hire-vehicle licenses.
11As of today, Juno has been acquired by Lyft.
12See Parrott and Reich [2018].
13In its 2017, 2018 and 2019 Citywide Mobility Surveys of over 3,300 residents each, the NYC Department of Transportation

found that app trips are more often replacing transit than any other mode of travel. For cities in the United States, Graehler
et al. [2019] found that in the TNCs entry is usually associated with a significant decrease in transit ridership.

14In a recent paper, Molnar and Mangrum [2018] analyze of the impact of TNCs on congestion in NYC in depth.
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2.1.1 Policy change

In my empirical strategy, I take advantage of two policies that went into effect in New York City on

February 1, 2019: a 2.75$ tax on all ride-sharing trips crossing the CBD, and a minimum pay standard

for ride-sharing drivers. The latter established a minimum payment per mile and per minute spent

transporting passengers, which is adjusted quarterly in order to ensure that drivers receive an overall

wage of at least 17.22$ per hour.

2.1.2 Proposed Congestion Pricing Plan

The framework for congestion pricing was implemented in the 2019 New York State budget. It consists in

a fee, whose exact amount is still to be decided, that will charge all vehicles traveling into the CBD. This

will go into effect by 2022, and will be the first congestion pricing scheme enacted in the United States.

2.2 Data

I collect data on the two largest platforms operating in the market, covering more than 90% of the total

market share, measured in passenger trips. In what follows, I will refer to them as platform a and platform

b. I gather information on the operations of these platforms by leveraging their client apps.15 After a

user opens the app and authenticates with the platform, the app sends messages to the platform’s server

every few seconds. Each message includes the geographic coordinates of the user’s origin and desired

destination, and the server responds with a JSON-encoded list of information which includes: a price

estimate; the expected waiting time; a list of the nearest eight drivers available to receive trip requests;

information about the surge multiplier at origin, time and distance of the trip, which can be used to

calculate drivers’ compensations.16 Each driver is represented by a unique identifier and a list of GPS

coordinates and timestamps tracing its recent trajectory.17 I write scripts emulating the exact behavior of

the apps, sending messages every few seconds and recording the responses. By controlling the coordinates
15This type of data has already been used in previous studies, informing official reports by the San Francisco County

Transportation Authority. See Chen et al. [2015], Jiang et al. [2018], SFCTA [2017] and Castiglione et al. [2018].
16During my sample period, drivers’ compensations were obtained as the product of a component based on time and

distance and the surge multiplier. The latter is a dynamic origin-specific factor that “clears the market”, changing depending
on demand and supply conditions.

17These identifiers are randomized each time a car becomes available, hence they do not allow me to track individual
drivers over time.
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sent by the script, I can collect data for arbitrary origin-destination pairs.

2.2.1 High-Frequency Data

I cover a vast geographic area with observation points. To make sure that I record the trajectories of all

idle drivers, I let the space between two points be less than the minimum distance to the furthest car

they observed over a two-week experimentation period. Each point makes a request every 20 seconds

for two months, from May 15, 2019 to July 16, 2019, recording the trajectories of the eight closest cars,

waiting times, surge multipliers, and the price quotes to different destinations, where the destination

rotates among a fixed grid of locations. I match this data with the records of origin, destination, time of

pick-up and time of drop-off all ride-sharing trips in the the same period, which are published monthly

by the Taxi and Limousine Commission (TLC).

To construct dynamic estimates of different variables, I discretize time in 10-minute intervals, and

space by dividing the area in 39 regions obtained by aggregating the taxi-zones defined by the TLC. For

each interval, I compute the average passenger price, waiting time, driver compensation, time and distance

for trips between every pair of regions. I also measure car supply in each region, by simply counting the

total number of unique cars observed across all observation points. Finally, I exploit drivers’ trajectories

to construct dynamic estimates of the traffic speed in different regions.

Figure 1: Observation points represent the locations from which data requests are made. The distance
between them reflects the observed density of idle drivers. Hence points are closer in central regions
than in the periphery, and closer for the larger platform. Each point requests price quotes rotating
among different destinations. Regions represent my geographical subdivision of the market, obtained by
aggregating the TLC’s taxi zones.
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2.2.2 Pre-post Policy Data

I also collect data at lower frequency before and after the policy change described in Section 2.1.1, from

January 25, 2019 until February 8, 2019. During this period, I collect the waiting times and price quotes

for trips between every pair of destinations in Figure 1 every 10 minutes. I then average these observations

to construct hourly estimates of the average waiting time and passenger price for trips between every pair

of regions in my geographical subdivision. Matching this data with the TLC trip records for the same

period allows me to measure changes in prices, waiting times and trip requests at the weekday, hour and

origin-destination level for the weeks before and after the policy.

2.2.3 MTA Travel Survey

I complement this dataset with information on the travel behavior of New Yorkers from the 2008 New

York Customer Travel Survey conducted by Metropolitan Transportation Authority (MTA).18 This survey

interviewed a random sample 16,186 NYC residents May through November 2008. It collected data on

time, origin, destination, and other characteristics of all trips each member of the respondent’s household

took during the day previous to the interview. Weighting for economic and demographic characteristics

of the households, I expand this data to obtain estimates, at the weekday and hour level, of the total

number of trips undertook by NYC residents on all transport modes, between different regions in my

geographical subdivision. In this way, I can obtain estimates of the share of ride-sharing trips out of the

total number of trips on all modes.

2.2.4 Other Information

I integrate this information with the TLC’s Monthly Data Reports, from which I obtain estimates of the

total number of unique ride-sharing drivers (the total number of unique drivers who provided at least one

trip in the course of a month). Finally, I use routing information provided by the client apps to obtain

estimates of the average time and distance of trips between all regions in my geographical subdivision, at

the weekday-hour level.
18As soon as it becomes available, I will substitute this with data from an analogous survey conducted in 2019.

8



3 Descriptive Evidence

In this section I provide some descriptive evidence about the functioning of the market; my findings

motivate the model and counterfactuals. I start by presenting some statistics of the intra-day variation in

prices, wages, waiting times and profit margins. I then document the intra-day and geographical variation

in car supply, and discuss the mechanism generating this variation. I conclude by describing the matching

process and simulation, and by analyzing drivers’ multi-homing behavior.

3.1 Prices, Wages and Match Qualities

A distinctive feature of this market is that platforms adjust passenger prices and driver compensations

dynamically. This variation is partly due to platforms’ objective to achieve market clearing, but is also

explained by variation in platforms’ profit margins. Figure 2 displays the patterns in prices, average

mark-ups and driver hourly wages.

Figure 2: Intra-day patterns of prices, profit margins and hourly wages. Prices and profit margins
are unweighted averages across all origin-destination pairs. Hence they reflect dynamic variation in
platforms’ pricing behavior and not intra-day changes in travel patterns. The average hourly wage is
computed as total driver compensations over total drivers’ working time.

Platforms charge an average mark-up of about 30%, while driver wages are usually around 23$ per

hour. Figure 3 displays the intra-day variation in passenger waiting times and drivers’ utilization rates,

defined as the share of time during which drivers are matched with a passenger out of the total time they

are active on different platforms
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Figure 3: The left panel shows the average passenger waiting time, in minutes, averaged across trips.
The right panel shows drivers’ utilization rate, defined as the time that drivers spend matched with a
passenger as a fraction of the total time they spend working.

Waiting times and utilization rates are quite stable during the day, indicating an effective coordination

between demand and supply. Comparing with Figure 2, variations in driver wages are not explained by

variations in the utilization rate, leaving room for variation in drivers’ compensations. Interestingly,

waiting times and utilization rates are inversely related, indicating the presence of economies of density.

The average waiting time is very low, ranging between 2 and 3 minutes. On the other hand, driver

utilization rates are also low, ranging between 30% and 65%.

3.2 Car Supply and its Determinants

Figure 4 displays the average supply patterns in a typical day (including weekends). In particular, it

shows direct estimates of the number of idle drivers, obtained from GPS trajectories as the average total

number of cars observed in a given instant. From these estimates and the number of trip requests,

using information on waiting and travel times, I can also compute the total number of active drivers

that are either idle or matched with a passenger at any given instant. The first thing to note is that

drivers’ activity is generally well below capacity (during my sample period there were about 85000 active

ride-sharing drivers in New York City). Second, substantial intra-day variation in drivers’ activity exists.
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Figure 4: Intra-day supply patterns. The number of idle drivers is obtained as the average number of
idle drivers observed in a typical instant from any observation point. Using information on trip requests
and average travel and waiting times, I compute the average number of drivers that are matched with a
passenger. Active drivers are obtained as the sum of idle and matched drivers.

The majority of vehicles are observed in the CBD, generating a substantial amount of traffic. Assuming

an average speed of 7 miles per hour, TNC drivers account for about 508,000 miles driven in the CBD

per day, 178,000 of which are due to empty vehicles.

There are two main determinants of supply in different regions: net arrivals and relocation movements

of idle drivers. Net arrivals are defined as the number of drop-offs minus the number of pick-ups. In-

tuitively, a region receiving more trips than those it generates can draw from many drivers who remain

idle after drop-off. The geographic distribution of net arrivals and its intra-day variation in the CBD are

displayed in Figure 5. Notice that the CBD is a “net attractor” of trips during daytime. This implies that

car supply in this region largely draws from drivers who remain idle after drop-off, and it does not need

to be actively supported by drivers relocating inside. This observation has implications for the effects of

congestion pricing, as I will argue in Section 6.2. Travel patterns also generate the need for drivers to

actively relocate across regions in order to meet passenger needs.

Figure 6 displays the relationship between drivers’ relocation patterns and net arrivals, and that the

final balance between these two determines the net total inflow of drivers in different regions, hence the

variation in car supply.
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Figure 5: Net arrivals per hour, defined as the difference between the number of incoming trips and the
number of outgoing trips. The right panel shown the average by hour of day in the Manhattan CBD. The
maps show the distribution in different regions: darker regions are associated with more net arrivals.

Figure 6 : In the left panel, the horizontal axis measures the net outflow of idle drivers in different
regions, obtained from the GPS trajectories, averaged across hours of the day. The vertical axis
measures the net arrivals of trips (difference between arrivals and departures), again averaged across
hours of day. In the right panel, the horizontal axis measures the total net inflow of drivers in different
regions, obtained as the sum of net inflow of idle drivers and net arrivals, averaged across hours of day.
The vertical axis measures the average hourly changes in the number of idle drivers in different region.

3.3 Matching

In this section I explore the relationship between the waiting time that a customer faces, and the total

number of available idle drivers nearby. This is important to quantify, since it affects platforms’ incentives

to maintain a more or less large pool of idle drivers in order to affect customers’ valuations. I use my data
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to obtain a non-parametric estimate of this relationship, which will be later be an input of the model.

When they receive a trip request, platforms immediately match it with the closest driver available.19

It then takes some time for the driver to meet the passenger, depending on the travel time between

them, and meanwhile the passenger must wait. For any given number of drivers, I simulate different

configurations of their positions and the position of a passenger in the region as in Figure 7. For each

configuration I compute the driving time between the passenger and the closest driver, depending on

their distance and on the observed traffic speed. I then average the driving time across a large number of

simulated configurations to find the expected waiting time.

Figure 7: A graphical representation of the simulation of the matching function in a region. It displays
two random configurations of 20 idle drivers and a passenger, and the associated travel times. The average
waiting time corresponding to a given number number of idle drivers is obtained by averaging the travel
times across a large number of random configurations.

In this way, fo every region, I construct a function associating an expected waiting time to any number

of idle drivers. To validate this procedure, Figure 8 compares the simulated waiting times with the average

waiting times reported by platforms in different regions at different hours and weekdays.
19Platforms later switched to more sophisticated technologies, where trip requests are let waiting for a short time interval

and then matched in batches with nearby drivers.
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Figure 8: Comparison between the simulated waiting times and the expected waiting times reported by
platforms (45 degree lines). Each point represents the average waiting time at the weekday-hour level in
a particular region.

3.4 Drivers’ Multi-Homing

In two-sided markets, the term multi-homing usually refers to the possibility for users of joining multiple

platforms. In the current context, on the one hand, a substantial number of drivers work for both

platforms, periodically switching the platform they work for. On the other hand, most drivers are not

shared, meaning that they do not work for both platforms simultaneously (i.e. by running their driver

apps concurrently). The first fact can be easily established by looking at public data sources.20 This

section provides suggestive evidence for the second.21 These observations will later inform how I model

drivers’ multi-homing.

To identify shared drivers I study vehicles’ GPS trajectories. If a driver is shared, one should observe

two vehicles on different platforms with coincident trajectories, as depicted in Figure 9. To compare GPS

trajectories across platforms, I aggregate time into windows of t seconds and space into squares of m

squared meters. I represent a trajectory by means of the sequence ((s1, w1), ..., (sn, wn)) of the squares

s1, ..., sn visited by the vehicle during the time windows w1, ..., wn. I consider two trajectories as coincident

if their intersection covers at least a fraction ε of the shortest one. t, m and ε are the parameters of the
20According the the monthly industry reports published by the TLC, in June 2019 the two platforms dispatched about

76500 and 52000 unique vehicles, repectively, while all platforms combined dispatched about 85500 vehicles in total. This
implies that at least 43000 vehicles were dispatched by both platforms, about 50% of the total fleet.

21Jiang et al. [2018] performed a similar analysis, reaching similar conclusions.
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test, determining the degree of similarity between trajectories which is required for them to be considered

coincident.

Figure 9: Two pairs of GPS trajectories observed on different platforms. On the left panel the trajectories
are coincident, suggesting that one driver is working simultaneously on both platforms. On the right panel
they are not, suggesting that they belong to distinct drivers.

I experiment with different values of t,m, ε for a one-week period, computing the share of coincident

trajectories between vehicles observed on different platforms. The results, reported in Table 1, should

be considered an upper bound.22 The results suggest that the greatest majority of drivers are active

on a single platform at a time. This could be due to several reasons, such as technical challenges in

operating both apps at the same time, and to the fact that platforms offer promotions that disincentivize

multi-homing.23

22I consider the results as upper bounds since I allow for double counting, meaning that a trajectory on one platform can
be matched with multiple trajectories on the other.

23Both platforms have promotions that incentivize drivers to make consecutive trips, by offering extra money for completing
a series of trips without canceling, rejecting, or going offline. On the technical side, operating both platforms simultaneously
requires drivers to log out from one app whenever they receive a trip request from the other, and log in again once they
complete the trip. Moreover, these apps communicate the driver’s position to the server at short intervals, making an
intensive use of data, which might require the driver to operate them on separate phones and to purchase larger data plans.
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m t ε % Shared Drivers

50 10 .8 4%
50 10 .9 1.7%
50 30 .8 5.2%
50 30 .9 2.4%
50 60 .8 5.3%
50 60 .9 2.4%
100 10 .8 7.2%
100 10 .9 4%
100 30 .8 8.7%
100 30 .9 5.4%
100 60 .8 8.7%
100 60 .9 5.5%

Table 1: The results of the test for shared drivers. Higher values of m, t and lower values of ε correspond to lower
degree of similarity between GPS trajectories required for them to be considered the same driver.

4 Model

4.1 Model Overview

I model a transport economy populated by two types of agents, drivers and passengers. A finite set of

companies m ∈ M compete to attract agents on their platforms (marketplaces). For a generic m, I will

use the notation −m ≡M \ {m} to denote the set of m’s competitors.

Time and Space Time is continuous, denoted by t, and measured in minutes. There is a finite set of

regions denoted by i ∈ I, and each pair of regions ij ∈ I2 is connected by a single route.

Demand Potential passengers, also referred to as customers, can request trips on different platforms,

specifying a desired route. Demand for trips on each route is a function of prices, expected waiting times,

and an aggregate demand shifter ξ(t) following an exogenous Markov process, which is meant to capture

the intra-day variation in travel patterns documented in Section 3.

Drivers There is a large pool of potential drivers who can choose whether to hold a driving license.

This decision captures the extensive margin of labor supply, determining the number of licensed drivers
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in the economy. Licensed drivers can work for a single platform at a time. They can enter, exit, switch

platforms, and re-locate across regions. In particular, they solve a dynamic problem where they face two

types of decisions: entry/exit and movement decisions. The former capture the intensive margin of labor

supply, modeling how often drivers work for different platforms, conditional on holding a license. The

latter capture their search behavior, modeling how idle drivers relocate across regions while they wait

for trip requests. When making entry/exit decisions, licensed drivers trade-off the expected profits of

working on different platforms with a flow opportunity cost of time ν(t). ν plays the role of an aggregate

supply shifter, following an exogenous Markov process which is meant to capture the intra-day variation

in drivers’ utility from leisure and wages associated with their outside options. The expected profits of

working on different platforms are a function of drivers’ compensations for trips on different routes, and

of the rate at which they expect to receive trip requests in different regions.

To model the extensive margin, that is, potential drivers’ decision of whether to hold a license, I

assume that licensed drivers do not discount future payoffs. Intuitively, this means that they solve for

a policy maximizing the expected long-run average (Cesaro mean) of their payoffs.24 This criterion has

the advantage that it allows to capture the value of the dynamic program facing drivers by means of a

single number, its optimal expected average payoff flow, which can be interpreted as the amortized value

of holding a driving license. This allows me to model the extensive margin by means of a simple free

entry condition, where potential drivers trade off the license value with a fixed outside option, capturing

the amortized licensing costs (e.g. period vehicle inspections, renewal taxes, and so on).

Pricing Platforms maximize their profits, which are given by the difference between revenues from

passenger prices and costs from driver compensations. They do so by changing prices and compensations

depending on the conditions of demand and supply, which are captured by the demand and supply shifters

ξ(t) and ν(t).

Information In order to make decisions agents form expectations about match qualities and prices/compensations.

I assume that ξ(t), ν(t) is public information, and that agents form expectations conditional on it. So, in

particular, they are able to infer the distribution of prices and compensations in the network. ξ(t), ν(t)
24The full scope of this assumption is discussed in depth in Section 4.10.
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can be thought as changing by hour of the day, in which case it simply captures the intra-day variation in

travel patterns and drivers’ utility from leisure. Otherwise it can be thought as capturing other exogenous

factors shifting supply and demand, such as weather conditions. The idea is that endogenous variables

such as prices, trip requests and the distribution of vehicles in the network co-move with ξ(t), ν(t), depend-

ing on pricing strategies and agents’ behavior. Hence ξ(t), ν(t) provides information about the economic

conditions, so that agents can form expectations of the payoff-relevant variables conditional on it.

Equilibrium Platforms can avoid coordination failures by committing to achieve given match qualities,

facing a truthfulness constraint. This constraint requires the commitment to be consistent with the

expectations that agents can form based on their information. At equilibrium, all platforms’ commitments

and pricing strategies are optimal, given those of the competitors. The equilibrium pins down a dynamic

distribution of demand and supply in the network. Moreover, on the supply side, it pins down the number

of licensed drivers, and the distribution of potential entrants (licensed drivers that are currently inactive,

but potentially can start working from specific regions) in time and space.

Outline The presentation is organized as follows. I start by describing the matching process, agents’

information and the pricing process. I then describe agents’ optimal behavior conditional on expectations

and prices, and the associated long-run distribution of drivers. I then define the Transport Equilibrium,

which describes the equilibrium of the passenger-driver economy for any given profile of platforms’ pricing

strategies. Finally, I describe platforms’ optimizing behavior, characterize the profit-maximizing alloca-

tions and prices, and describe the full equilibrium of the model. I conclude the section with a detailed

discussion of the main assumptions of the model.

4.2 Matching Process

At time t, trip requests on route ij for platformm arrive at Poisson rate qmij (t), while the number of drivers

working for m available at i is denoted by smi (t). q and s are determined endogenously by agents’ optimal

behavior, as described later. Platforms instantaneously match trip requests with drivers available at origin.

Their matching technology is described by a convex and differentiable function wi(smi (t)), capturing the

relationship between car supply and waiting time as in Section 3.3. If a trip request arrives on ij,m, a
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random driver available at i on m is matched instantly. Hence drivers available at i on m receive trip

requests to j at the endogenous matching rates qmij (t)/smi (t). In what follows, I will refer to passenger

waiting times and driver matching rates as match qualities, since these affect the attractiveness of joining

a platform for users on both sides.

4.3 Information

The evolution of the demand and supply primitives is captured by the exogenous Markov process

x(t) = (ξ(t), ν(t))

of demand and supply shifters. I assume that x(t) is irreducible and it can assume a finite set of values.

Abusing notation, I denote these values by x ∈ X, so that x denotes both the process and its realizations.

In what follows I refer to x as “the state”, and denote by ξ(x) and ν(x) its demand and supply components.

Its evolution is governed by the exogenous transition rates

χ = (χx,x′)x,x′∈X

where χx,x′ denotes the rate at which it jumps from x to x′. For each x, I will denote by χx ≡
∑
x′ χx,x′

the rate at which the state jumps. Given irreducibility, χ admits a unique stationary distribution µ over

X such that, for all states x,

µ(x)χx =
∑
x′

µ(x′)χx′,x

I assume that x(t) is public information at time t. I also assume that it is the only source of information

for agents, that is, at time t, agents only know x(t). Conditional on this information, agents form

expectations about the match qualities prevailing on different platforms. The expected match qualities on

platform m are represented by a system Em = (wm, θm) where, for every x, ij, wmi (x) and θmij (x) denote

the expected passenger waiting time and the expected driver matching rate conditional on x, respectively.

In equilibrium, these expectations are required to be consistent with the true market dynamics. The

profile of expected match qualities on all platforms will be denoted by E = (Em)m∈M .
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4.4 Pricing

Platforms change prices and compensations depending on the demand and supply primitives, which are

captured by the state x. Hence prices are measurable with respect to the state, so that agents’ information

is sufficient to predict them. A two-sided price system on platform m is denoted by Pm = (pm, rm) where,

for every x, ij, pmij (x) and rmij (x) denote the price paid by passengers and the compensation received by

drivers for trips on ij,m in state x, respectively. The profile of two-sided price systems on all platforms

will be denoted by P = (Pm)m∈M .

4.5 Demand

In state x, trip requests on ij,m arrive at the endogenous rate

qmij (x) = qmij (pij(x), wi(x), ξ(x)).

In particular, the demand rates depend on time only through the state, since prices and expected waiting

times are measurable with respect to it. For all ij, qij denotes the demand curve for trips on ij, a function

of prices, expected waiting times and the demand shifter. It is kept general for now, while in the empirical

specification in Section 5.1 it will be derived from a nested logit choice model of transport mode.

4.6 Supply

This Section describes how drivers’ behavior determines the long-run dynamic distribution of car supply

in the network. I start by taking the number of drivers in the economy (the number of licensed drivers)

as given, describe the dynamic problem they face under a given process of compensations and expected

matching rates, and how their optimal behavior determines the intensive margin of supply. I later make

the number of licensed drivers in the economy endogenous, thus modeling the extensive margin as well. In

order to do so, I assume that drivers do not discount future payoffs, which allows me to model the extensive

margin by means of a simple free entry condition. For those unfamiliar with undiscounted dynamic

problems, in order to provide some intuition, I start by describing drivers’ problem with discounting, and

derive the optimality conditions for patient drivers by taking the limit of the Bellman equations as the
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discount rate goes to zero. I then describe the long-run frequency at which drivers visit different regions

associated with the optimal solution, which will later be used to define rationality of agents’ expectations.

I conclude the section by presenting the free entry condition.

4.6.1 Licensed Drivers with Discounting

Consider a licensed driver with discount rate ρ. At a given instant, he can be engaged in one of the following

activities: working for platform m, searching at some region i; working for platform m, transporting a

passenger on some route ij; inactive (potential entrant) at some region i. The driver’s individual state is

given by the combination of the exogenous state x, and the activity he is engaged in. In what follows, I

refer to drivers’ individual states as “searching at x, i,m”, “traveling on x, ij,m”, and “inactive at x, i”.

There are two types of decisions that the driver makes: entry/exit and direction decisions. Start by

considering a driver facing the entry/exit decision at i, x. The inclusive value of this choice is

Vi(x) = E max
m∈M∪{out}

[Wm
i (x) + ηm

ρ+ χx
] (1)

Where η is an i.i.d. preference shock with continuous density and full support, and E is the expectation

with respect to its realization.25 In words, the driver can choose whether to: i) stay inactive, in which

case he gets ηout/(ρ + χx) and becomes inactive at x, i, whose continuation value is W out
i (x), or ii)

start working for some platform m, in which case he gets ηm/(ρ + χx) and starts searching at x, i,m,

whose continuation value is Wm
i (x). I assume that all drivers in the economy face the entry/exit choice

simultaneously whenever the state jumps, which happens at the exogenous rates χ.

A driver inactive at x, i simply waits until the opportunity to enter arrives, hence the value of being

inactive satisfies the Bellman equation

ρW out
i (x) =

∑
x′

χx,x′ [Vi(x′)−W out
i (x)]. (2)

25Formally, ηm is interpreted as a shock to the flow payoff of working for platform m (or being inactive, if m = out). The
driver receives it until he faces the next entry/ext choice, which happens at rate χx. Hence the present discounted value of
the flow payoffs due to the shock is given by∫ ∞

0
ηme

−(ρ+χx)tdt = ηm/(ρ+ χx)
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When a driver starts searching at x, i,m, he chooses a direction of motion (heading) h from a finite set

H.26 He then starts “searching at x, i,m, headed towards h”: while moving, he is available to receive trip

requests from m originating at i. He then starts moving, paying the flow cost of time ν(x) until either of

the following events occur:

• At rate θmij (x), he receives a trip request to a destination j and starts traveling on x, ij,m. The rate

at which the driver gets matched to some destination is then given by

θmi (x) ≡
∑
j

θmij (x)

• At an exogenous rate τh,ij , which depends on where he is heading, he relocates to an adjacent region

j, and faces the direction decision there.

• At rate λ−∑j τh,ij he can change direction, facing again the direction choice at i. λ is an exogenous

parameter, capturing the frequency at which drivers re-optimize the direction of movement.

• At the exogenous rate χx,x′ , the state jumps to x′ and the driver faces the entry/exit choice at x′, i.

Intuitively, the driver is allowed to move while he waits for trip requests, and the direction in which he

moves affects the probability according to which he reaches different nearby regions. The inclusive value

of the direction choice is given by

Wm
i (x) = Emax

h∈H
[Umi,h(x) + εh

ρ+ θmi (x) + λ+ χx
] (3)

where ε is an i.i.d. taste shock with continuous density and full support, and E is the expectation with

respect to its realization.27 Umi,h(x) is the value of searching at x, i,m, headed towards h, which satisfies
26In the empirical specification I let H = {North, South,East,West,∅}, where ∅ represents the choice of waiting, i.e. not

moving in any direction.
27Similarly to the case of the entry/exit choice, εh is interpreted as a shock to the flow payoff of searching headed towards

h. The driver receives it until he either gets matched, re-optimizes the direction of movement, or faces the entry/exit choice.
Either of these events occurs at rate θmi (x) +λ+χx. Hence the present discounted value of the flow payoffs due to the shock
is given by ∫ ∞

0
εhe
−(ρ+θm

i (x)+λ+χx)tdt = εh/(ρ+ θmi (x) + λ+ χx)
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the Bellman equation

ρUmi,h(x) = −ν(x) +
∑
j

θmij (x)[rmij (x)− cddij + Jmij (x)− Umi,h(x)]

+
∑
j

τh,ij [Wm
j (x)− Umi,h(x)] + (λ−

∑
j

τh,ij)[Wm
i (x)− Umi,h(x)] +

∑
x′

χx,x′ [Vi(x′)− Umi,h(x)] (4)

If the driver receives a trip request towards j he receives the compensation rmij (x), and pay a lump-sum

travel cost cddij , which is a function of the distance dij between origin and destination and a cost cd per

unit of distance. He then starts traveling on x, ij,m, whose continuation value is Jmij (x), which satisfies

(1 + ρtij)Jmij (x) = −tijν(x) +
∑
x′

tijχx,x′Vj(x′) + (1− tijχx)Wm
j (x) (5)

where tij denotes the travel time between i and j. In words, if a driver gets matched he travels to

destination, paying the cost of time ν(x) for tij time units. At arrival there are two possibilities: with

probability tijχx,x′ the state jumps to some x′ ∈ X, in which case he faces the entry/exit choice at x′, j,

otherwise he starts searching at x, j,m.28

4.6.2 No-Discounting Limit

Equations 1-5 define the solution of the dynamic problem of licensed drivers under discount rate ρ. The

undiscounted solution can be defined analogously by means of Bellman-like equations. In this section I

show how these can be derived by taking the limit of the Bellman equations with discounting as ρ → 0.

I am not going to provide formal proofs, referring the reader to Rosaia [2020] for more details. For an

exhaustive treatment of undiscounted dynamic problems, see also Bertsekas [1995].

Start by considering the equation defining the value of being inactive at x, i (Equation 2), making the
28Formally, the travel time of a trip as stochastic. A driver keeps traveling on ij until either of the following events occur:

he arrives at destination, or the state jumps to some x′ ∈ X. The first event occurs at rate 1/tij − χx, in which case the
driver starts searching at x, j,m. The second event occurs at rate χx. In this case, all traveling drivers simoultaneously face
the entry/exit choice at destination. The value of travelling on ij must then satisfy the Bellman equation

ρJmij (x) = −ν(x) +
∑
x′

χx,x′ [Vj(x′)− Jmij (x)] + ( 1
tij
− χx)[Wm

j (x)− Jmij (x)].

Rearranging terms yelds Equation 5.
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dependence of the valuation on the discount rate explicit:

ρW out
i (x|ρ) =

∑
x′

χx,x′ [Vi(x′|ρ)−W out
i (x|ρ)]

The term in the left hand side is the expected average of the stream of payoffs generating from the

individual state “inactive at x, i”, weighted according to the discount rate ρ. To take the no-discounting

limit, one can pick an arbitrary valuation, for instance the value of being inactive at an arbitrary pair

i0, x0 ∈ I ×X, and write

ρW out
i (x|ρ) =

∑
x′

χx,x′{[Vi(x′|ρ)−W out
i0 (x0|ρ)]− [W out

i (x|ρ)−W out
i0 (x0|ρ)]}.

It can be shown that, as ρ→ 0, the limits of all three terms in this equation are well defined. In particular

we can write

Vi(x) ≡ lim
ρ→0

[Vi(x|ρ)−W out
i0 (x0|ρ)] and W out

i (x) ≡ lim
ρ→0

[W out
i (x|ρ)−W out

i0 (x0|ρ)].

Intuitively, the differences between valuations grow at similar rates as the discount rate decreases, due to

the fact that the state space is “connected”, meaning that every individual state can be reached in finite

time from any other individual state. This also implies that the limit of the average expected payoff on

the left hand side is independent of the initial state. That is, there exists a scalar u such that for every

x, i and m ∈M ∪ {out} we have

u = lim
ρ→0

ρWm
i (x|ρ)

Hence, in the limit, u defines the optimal expected average payoff flow associated with drivers’ dynamic

problem, which is independent of the initial state. Rearranging terms, the limit of the Bellman equation

can be written as

W out
i (x) = − u

χx
+
∑
x′

χx,x′

χx
Vi(x′) (6)

Intuitively, the amount of time the driver spends waiting is stochastic. On average it takes 1/χx periods

before he faces the entry/exit choice, and in the meantime he “discounts” the optimal payoff u. Conditional

on the state jumping, it assumes value x′ with probability χx,x′/χx, and the driver weights all possible
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continuation values according to these probabilities.

Using a similar logic one can take the limit of Equation 4. To do this, define

λmi (x) = θmi (x) + λ+ χx

Intuitively, the amount of time the driver spends driving headed towards h is stochastic, and λmi (x) is the

rate at which “something happens”. While searching the driver pays the cost of time and discounts the

optimal value u. Conditional on something happening, the probabilities of different events are proportional

to the respective rates, so that in the limit we have

Umi,h(x) =− ν(x) + u

λmi (x) +
∑
j

θmij (x)
λmi (x) [rmij (x)− cddij + Jmij (x)] (7)

+
∑
j

τh,ij
λmi (x)W

m
j (x) +

λ−
∑
j τh,ij

λmi (x) Wm
i (x) +

∑
x′

χx,x′

λmi (x)Vi(x
′)

Finally, the limits of Equations 5, 1 and 3 can be written as

Jmij (x) = −tij(ν(x) + u) + tij
∑
x′

χx,x′Vj(x′) + (1− tijχx)Wm
j (x) (8)

Vi(x) = E max
m∈M∪{out}

[Wm
i (x) + ηm

χx
] (9)

Wm
i (x) = Emax

h∈H
[Umi,h(x) + εh

θmi (x) + λ+ χx
] (10)

Taken together, Equations 6-8 define the solution of the dynamic problem with no discounting, as a

function of drivers’ compensations r and expected matching rates θ on different platforms. I make this

dependence explicit, denoting by

u ≡ u(r, θ)

the optimal expected average payoff associated with the dynamic problem under r, θ.

Drivers’ optimal behavior is captured by the probabilities by which drivers’ choose to entry, exit and

move in different directions. I denote by σ = σ(r, θ) the optimal system of choice probabilities defined by
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σmi (x) = Pr{[Wm
i (x) + ηm

χ
] = max

m′∈M∪{out}
[Wm′

i (x) + ηm′

χ
]} m ∈M ∪ {out} (11)

and

σ
h|m
i (x) = Pr{[Umi,h(x) + εh

λmi (x) ] = max
h′∈H

[Umi,h′(x) + εh′

λmi (x) ]} h ∈ H, m ∈M (12)

Given the assumption that the idiosyncratic shocks η and ε have full support, it is easy to see that the

optimal choice probabilities σ(r, θ) have also full support, as defined below.

Definition 1. A system σ of conditional choice probabilities has full support if it gives strictly positive

weight to all possible choices, that is, for every x, i,m, h:

σmi (x) > 0 and σ
h|m
i (x) > 0

Aggregating the behavior of all licensed drivers defines the evolution of supply in the network. The

next section describes the long-run distribution associated with this process.

4.6.3 Long-Run Distribution

Licensed drivers visit different individual states according to an endogenous Markov process which depends

on the matching rates θ and the choice probabilities σ. The frequency according to which they visit

different states in the long-run is described by a stationary distribution π of this process. For every

x, ij,m, let π(smi , x), π(mm
ij , x) and π(ei, x) denote the probabilities that a licensed driver is searching at

x, i,m, traveling at x, ij,m and inactive at x, i in the long run, respectively. Their marginals over x must

be given by µ, the stationary distribution of the exogenous state. That is, for every x we must have

∑
m,i

π(smi , x) +
∑
m,ij

π(mm
ij , x) +

∑
i

π(ei, x) = µ(x) (13)
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Moreover, they must satisfy the following stationarity constraints:

π(mm
ij , x) 1

tij
= π(smi , x)θmij (x) (14)

π(ei, x)χx =
∑
x′

[
∑
m

π(smi , x′) +
∑
m,j

π(mm
ji , x

′) + π(ei, x′)]χx′,xσouti (x)

π(smi , x)[
∑
j

θmij (x) +
∑
h,j

σ
h|m
i (x)τh,ij + χx] =

∑
j

π(smj , x)
∑
h

σ
h|m
j (x)τh,ji

+
∑
j

π(mm
ji , x)( 1

tji
− χx) +

∑
x′

[
∑
m

π(smi , x′) +
∑
m,j

π(mm
ji , x

′) + π(ei, x′)]χx′,xσmi (x).

Intuitively, these constraints require the long-run rates at which drivers exit and enter different individual

states to balance. The first constraint applies this logic to the state “traveling on x, ij,m”. The left hand

side is the rate at which drivers exit from this state, given by the probability of being traveling times the

arrival rate. The right hand side is the rate at which drivers get matched, given by the probability of being

searching times the matching rate. The second constraint applies the same logic to the individual state

“inactive at x, i”. The rate at which drivers exit from such state is given the probability of being inactive

times the rate at which x jumps, while the rate at which drivers become inactive is given by the product

between the rate at which they face the entry/exit choice times the probability according to which they

choose to be inactive. Finally, the last constraint applies this to the individual state “searching at x, i,m”.

Drivers exit from such state if either they receive a trip request, they move to an adjacent region, or x

jumps. On the other hand, drivers can start searching either by relocating from a different region or by

facing the entry/exit choice at x, i and choosing to work for m.

It can be shown that these probabilities are unique, as stated below.

Proposition 1. If σ has full support then there is a unique stationary distribution π ≡ π(σ, θ) satisfying

constraints 13 and 14.

Proof. Given my previous assumption that χ is irreducible, if σ has full support then drivers’ Markov

process is irreducible as well, hence it admits a unique stationary distribution.

The long-run supply distribution s̄(σ, θ,N) associated with σ, θ,N is obtained by aggregating π(σ, θ)
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across N licensed drivers:

∀x, ij,m : s̄mi (x|σ, θ,N) ≡ N π(smi , x;σ, θ)
µ(x) (15)

For every x, i,m, s̄mi (x|σ, θ,N) is the expected number of drivers searching at i,m conditional on the

state being x, consistent with the behavior of N licensed drivers under σ. Slightly abusing notation, in

what follows I will denote by

s̄(r, θ,N) ≡ s̄(σ(θ, r), θ,N)

the distribution associated with drivers’ optimal choice probabilities under θ, r. Function s̄(r, θ,N) can

be interpreted as the supply curve for this economy, under a fixed N . Analogously, we can define the

long-run distribution of potential entrants ē(σ, θ,N) associated with σ, θ,N :

∀x, ij,m : ēi(x|σ, θ,N) ≡ N π(ei, x;σ, θ)
µ(x)

For every x, i, ēmi (x|σ, θ,N) is the expected number of drivers inactive at i conditional on the state being

x, consistent with the behavior of N licensed drivers under σ. It is worth stressing the difference of

this framework with respect to standard entry and exit models, where the measure of potential entrants

in different states is usually taken as exogenous. In contrast, by endogenizing the measure of potential

entrants in different regions, the model can better capture the geographical constraints imposed by the

urban network.

4.6.4 Free Entry

The advantage of the no-discounting criterion is that the value of drivers’ dynamic problem is captured

by u(r, θ), which does not depend on drivers’ initial state. This allows to model the extensive margin of

labor supply by imposing a simple free entry condition

u(r, θ) = ū.

ū is a fixed outside option, interpreted as the amortized cost of holding a license. It captures costs asso-

ciated to maintaining a vehicle, periodic inspections from regulatory agencies, and in the counterfactuals
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it will be used to model a tax on driving licenses.

It is worth stressing once more that this framework allows to separate the intensive and extensive

margin of labor supply, which are captured by licensed drivers’ entry/exit decisions and by the free entry

condition, respectively. In the current environment, this is important since drivers are shared among

platforms on the extensive margin (licensed drivers can switch the platform they are working for) but

they are not on the intensive one (licensed drivers can work for a single platform at a time).

4.7 Transport Equilibrium

In equilibrium, the expected match qualities must be consistent with the endogenous market dynamics.

Intuitively, agents can compute the long-run frequency of different realizations of demand and supply

conditional on realizations of the information state. Consistency requires these long-run frequencies to be

compatible with the expected match qualities.

Formally, I let an allocation of platform m be a pair

Am = (qm, s̄m)

of demand rates qmij (x) an expected car supply s̄mi (x) on all platforms across the network, conditional on

different realizations of x, and denote by A = (Am, m ∈M) a profile of allocations on all platforms.

Definition 2. Em is consistent with Am if for all x, ij

qmij (x) = s̄mi (x)θmij (x)

wmi (x) = wi(s̄mi (x))

Given P, E , m’s allocation is pinned down by agents’ optimal behavior. Denote optimal allocations

by

Am(N,P, E) ≡ (qm(p, w), s̄m(r, θ,N)).

At equilibrium, expectations are consistent with the optimal allocations, and the free entry condition

must be satisfied.
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Definition 3. An outcome P, E , N,A is a transport equilibrium if:

i) Optimality: For all m, Am = Am(N,P, E)

ii) Consistency: For all m, Em is consistent with Am

iii) Free entry: u(r, θ) = ū

Optimality requires the equilibrium allocation to be consistent with the optimal behavior of passengers

and drivers. In particular, the expected supply distribution s̄ must be consistent with the long-run

frequencies resulting from drivers’ dynamics as discussed in previous section.

Consistency requires the expected match qualities to be consistent with the true allocation. For

drivers, it requires the expected matching rates to be consistent with their true long-run averages. For

passengers, it states that they form expectations consistently with the average car supply. Notice that, if

w is not linear, the expected passenger waiting times need not be equal to their long-run averages. Instead,

I assume that passengers form expectations about car supply in different regions, and from these they

compute the expected waiting times according to w. This assumption is important since it allows me to

focus on the expected values captured by s̄, making higher moments of the ergodic distribution of drivers

irrelevant for passengers. Anyway, the magnitude of this discrepancy is irrelevant in my application, since

conditioning on x captures most of the variation in car supply across the network.

The free entry condition requires drivers’ optimal expected average payoff to be equal to the outside

option ū, as discussed in Section 4.6.4.

4.8 Platform Competition

Conditional on x, m makes profits at rate ∑ij q
m
ij (x)[pmij (x) − rmij (x)], given by the difference between

revenues from passengers’ prices and costs from drivers’ compensations. m’s long-run average profit flow

can be obtained by taking the expectation according to the stationary distribution µ of x:

Π(qm, pm, rm) = Eµ
∑
ij

qmij (pmij − rmij ). (16)

I assume that platforms maximize their average long-run profits in 16 in a simultaneous move game, where

each platform m commits to a pair Pm, Em. m’s commitment must be truthful, as stated below.
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Definition 4. Pm, Em truthful under P−m, E−m if

i) There exists N such that Em is consistent with Am(N,P, E)

ii) P, E satisfies the free entry condition u(r, θ) = ū

In words, m takes the two-sided prices P−m and expected match qualities E−m of the competitors as

given. In particular, m expects the competitors to provide passengers with expected waiting times w−m,

and expects drivers working for the competitors to be matched according to θ−m. Then, predicting agents’

optimal choice, m can compute the allocation Am(N,P, E) associated to any N,Pm, Em. Intuitively, this

means that m knows its own residual demand and supply curves. Truthfulness requires the platform’s

commitment to be feasible, internalizing free entry and consistency of the expected match qualities with

an optimal allocation.

Definition 5. A transport equilibrium P, E , N,A is a platform equilibrium if, for every m, Pm, Em solves

max
Pm,Em

Π(qm(p, w), pm, rm)

s.t. Pm, Em is thruthful under P−m, E−m (17)

In words, at equilibrium all platforms best respond, choosing a truthful commitment maximizing their

average profits, taking competitors’ commitments as given. In particular, by selecting Em, platforms can

avoid possible coordination failures arising from the fact that, for any Pm, there are multiple Em consistent

with Am(N,P, E). This feature is widespread in two-sided markets, where typically users on one side join

a platform only if they expect users on the other side to join as well, hence multiple equilibria might arise

depending on whether users on different sides coordinate to participate or not. Intuitively, platforms deal

with this multiplicity by “selecting an equilibrium in their own marketplace”. A more detailed discussion

is presented is Section 4.10.

4.9 Characterization of Platforms’ Best Response

This section provides a more insightful characterization of Problem 17, and more suitable for computation.

In what follows, consider a generic platform m and take P−m, E−m as given. The idea is to characterize

the set of allocations that the platform can truthfully implement, and the profits associated to such
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allocations, so that 17 can be re-stated as an allocation choice problem.

Definition 6. Pm, Em implements Am if it is truthful and there exists N such that Am = Am(N,P, E)

On the demand side I assume that, for every x, ij, there exists a differentiable inverse demand curve

pmij (x) = pmij (qmij (x), wmi (x)|p−mij (x), w−mi (x), ξ(x)) (18)

whose domain is the entire R2
+. That is, for every expected waiting time wmi (x) and every demand rate

qmij (x), function pmij pins down a price pmij (x) such that qmij (x) = qmij (pij(x), wi(x), ξ(x)). Conditions for

the invertibility of demand are well known in the literature, hence I will not pursue them here. Under this

assumption the demand side does not impose constraints on the allocations that platforms can implement.

On the supply side, platforms face constraints imposed by the network structure. Define the set of feasible

long-run allocations as follows.

Definition 7. The set of feasible long-run allocations L(θ−m) is the set of all qm, s̄m > 0 such that,

defining θmij (x) = qmij (x)/s̄i(x) for every x, ij,m, we have s̄m = s̄m(σ, θ,N) for some system of choice

probabilities σ with full support.29

That is, L(θ−m) is the set of all allocations that can be supported in the long-run by some behavior of

drivers, hence it captures the constraints on implementation imposed by the network structure. The next

result shows that these are the only constraints that platforms face, and that the total drivers’ revenue

are pinned down by the allocation.

Theorem 1. For every allocation qm, s̄m ∈ L(θ−m) there exists Pm, Em implementing it. Moreover,

there exists a convex and differentiable function Cm(·|r−m, θ−m) over L(θ−m) such that, for every such

Pm, Em:

i) Drivers’ compensations satisfy

Eµ
∑
ij

qmij r
m
ij = Cm(qm, s̄m|r−m, θ−m).

29Inequalities between functions are interpreted point wise, so that qm, s̄m > 0 means that qmij (x), s̄mi (x) > 0 for every
x, ij.
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ii) Letting V,W,U be drivers’ value functions under r, θ, for every x, ij we have

dCm(qm, s̄m|r−m, θ−m)
dqmij (x) =Wm

i (x) + cddij − Jmij (x) (19)

dCm(qm, s̄m|r−m, θ−m)
ds̄mi (x) =

∑
j

θmij (x)[rmij (x)− cddij + Jmij (x)−Wm
i (x)] (20)

Function Cm can be interpreted as the technological frontier for the platform. The Appendix shows

that it is the value of an optimization problem, which consists in choosing a system of drivers’ choice

probabilities consistent with qm and s̄m in order to minimize total cost arising from drivers’ activities.

This can be seen as a first welfare theorem, restricted to drivers’ behavior conditional on supporting a

given allocation. The relationship between Cm and drivers’ costs gives rise to the equivalence between

marginal costs and drivers’ valuations in Equations 19 and 20. Intuitively, Cm measures drivers’ total

costs, hence its gradient measures the costs for a single driver. In particular its gradient with respect to q

measures the dynamic cost for a driver of receiving trip requests on different routes, while its gradient with

respect to s̄ measures the dynamic cost for a driver of being searching in different regions. Compensations

must fully compensate drivers’ for these costs. This can be seen from Equation 20, where the left hand

side is the expected dynamic cost for a driver of being searching at x, i,m, while the right hand side is

his expected dynamic matching surplus. Equation 19 is also intuitive, showing that the dynamic cost

for a driver of receiving a trip request trades off the missed earning opportunities at origin with the

continuation value of being matched.

Theorem 1 implies that Problem 17 is equivalent to the following allocation choice problem:

max
qm,s̄m∈L(θ−m)

Eµ
∑
ij

qmij p
m
ij (qmij ,wi(s̄mi )|p−mij , w−mi , ξ)−Cm(qm, s̄m|r−m, θ−m). (21)

In words, the platform can choose the quantity and “quality” of trips on every route. The latter is

captured by the expected supply in different regions, which in turn determines passengers’ value for

the service through the expected waiting times. That is, platforms in this model behave as (residual)

Spence’s monopolists, which implies that there are two sources of inefficiency. The first is the classic

market power distortion, implying that quantities are always locally under provided. The second is the

Spence’s distortion, implying that vehicles might be either under or over provided depending on the
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characteristics of passengers’ demand curve. For more details, see Spence [1975].

This allows for a simple characterization of platforms’ optimality conditions, which provide nice in-

sights into platforms’ price-setting behavior, as discussed in the next section. Moreover notice that, if

revenues are concave, 21 is a concave maximization problem with a known gradient, hence platforms’ best

response can be computed through standard algorithms.

4.9.1 Optimal Prices

Taking the first order conditions with respect to s̄ we can see that, at optimum, compensations are set so

to align drivers’ expected matching surpluses with the marginal revenues from quality:

dwi(s̄mi (x))
ds̄mi

∑
j

qmij (x)
dpmij
dwmi

(x) =
∑
j

θmij (x)[rmij (x)− cddij + Jmij (x)−Wm
i (x)].

This is reminiscent of familiar conditions in the search and matching literature. In particular, it is well

known that efficiency in search models typically requires that the matching surpluses of individual agents

be equal to the marginal social value of an additional agent joining the search pool.30 The difference is

that, in this case, platforms maximize their private profits instead of social welfare, hence at optimum

drivers’ incentives are aligned with profit maximization.

The first order conditions with respect to q yield a closed for expression for the optimal prices in terms

of drivers’ value functions. Using the definition of Jmij (x) in equation 8, these can be written as

pmij (x) =tij(ν(x) + ū) + cddij + qmij (x)
∣∣∣∣∣dp

m
ij

dqmij
(x)
∣∣∣∣∣

+Wm
i (x)− (1− tijχx)Wm

j (x)− tij
∑
x′

χx,x′V
m
j (x′) (22)

from which it can be seen that the optimal prices are the sum of three components: a “static” marginal

cost based on time and distance, a classic market power distortion, and a dynamic component trading off

the marginal profitability of drivers at origin with the marginal benefit of expanding supply at destination.
30In models with bargaining, this condition is equivalent to the familiar Hosios [1990] conditions. See also Brancaccio et al.

[2020b] for an example related to transport markets.
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4.10 Discussion

This Section discusses more in depth three critical aspects of the model: i) the assumption that drivers

do not discount future payoffs, ii) the assumptions on information and pricing, and iii) the way in which

platform competition in modeled.

No Discounting The no discounting assumption has two main advantages. First, as already discussed,

it allows to model labor supply on the extensive margin. Second, it allows to simplify the treatment of

platform optimization. Intuitively, the simplification comes from the fact that drivers and platforms only

care about the distribution of their payoffs in the long-run, which allows to ignore the whole trajectory of

the dynamic process, focusing directly on its ergodic distributions - however notice that the latter are not

associated to steady states, since in the long-run the expected prices, supply and demand still fluctuate

depending depending on the exogenous information state x. On the theoretical side, this assumption

is not crucial, what is crucial instead is that drivers and platforms discount future payoffs in the same

way. If the former assumption was removed but the latter was maintained, a similar treatment would

be possible, but more cumbersome, due to the fact that platform maximization would become state-

dependent - platforms would implement a dynamic trajectory of supply and demand over the network

conditional on any initial state of demand and supply. The need of dealing with all possible trajectories

would also raise challenges on the computational side, due to a curse of dimensionality.

One line of defense of the no-discounting criterion is as an approximation of models with discounting.

Indeed, it can be shown that drivers’ choice probabilities under no-discounting are the limit of those with

discounting, and in particular there is no selection involved in taking the limit. Intuitively, this is due

to the fact that drivers’ idiosyncratic preference shocks have full support, ruling out “extreme points” as

solutions of the undiscounted model. Another line of defense is as a good description of the true optimizing

behavior of drivers. For instance, drivers might learn what is the best policy in order to maximize their

average weekly earnings. In general, the no-discounting criterion is appealing in situations where agents

face frequent decisions in a recurrent fashion.

Information and Pricing The model assumes that platforms set prices conditional on public infor-

mation, and that the latter is limited to an exogenous information source. In the empirical specification
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I take this state to be hour and weekday, and the reasons for this choice are discussed at the beginning

of Section 5. To better understand this assumption it is useful to conceptually separate this information

from the endogenous state, describing the distribution of demand and supply in the network. Given this,

the assumption can be separated in two components: i) public information is limited to the exogenous

state, and ii) prices do not reveal additional information on top of the public source. For theory purposes

the first component could be relaxed in several ways. It is introduced mainly for empirical reasons, since

my estimation strategy requires observing the expected prices, demand and supply conditional on all

realizations of public information. To understand the second, notice that platforms might have access to

additional information on top of what is observed by agents, and might condition prices on it. In this

case, observing the current prices would provide drivers with additional information about the future

path of compensations and matching rates, informing them about the current state of platforms’ private

information. In particular, current prices would provide drivers with information which is not already

captured by the public source. I have not experimented generalizing the model to the case in which agents

and platforms have access to different information, and I leave this to future work.

Platform Competition To better isolate the assumptions on platform competition it is useful to

discuss first the monopoly case, that is, the case in which the set of platforms M is a singleton. In

this case, the main assumption is that, by selecting agents’ expected match qualities (consistently with

rational expectations) the monopolist platform can solve coordination failures. Intuitively, coordination

failures might arise when drivers do not join the platform because they expect passengers not to join, and

vice-versa, and these expectations are self-fulfilled in equilibrium. This implies that, for any given pricing

strategy of the monopolist, multiple equilibria might arise. Setting the expected match qualities gives

the monopolist the power to select one of these equilibria. Assumptions of this this kind are common

in the literature on two-sided platforms. For instance, Armstrong [2006] assumes that, instead of the

two-sided prices, the platform can choose the utility levels provided to users on different sides, thus ruling

out the multiplicity. Weyl [2010] makes another step, showing that the platform can select an equilibrium

by committing to change prices depending on users’ participation levels, thus “insulating” the utility of

users different sides. In this paper I do not take the step of deriving these insulating tariffs, but instead
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I assume that platforms can credibly commit to achieve given match qualities.31 Moving to platform

competition, an additional assumption is introduced: when considering whether to deviate, platforms

take agents’ expectations about the match qualities of the competitors as given. In particular, platforms

only internalize consistency of the allocation with their own match qualities, but not the consistency

constraints of the competitors. This implies that the allocation resulting from a platform’s deviation

might not be consistent with agents’ expectations about the match qualities of the competitors. Hence,

by deviating, a platform forces its competitors to deviate as well. A a platform equilibrium is a rest point

of this process, where the consistency constraints are simultaneously internalized by all platforms. This is

only one of many possible ways of modeling competition in this setup. For instance, one alternative would

be to assume that platforms have instruments to insulate their users’ participation rates against deviations

of the competitors, which would be equivalent to Cournot competition in quantities and qualities. In

this case it can be shown that platforms face a slightly different cost function than the one derived in

Section 4.9, which takes into account the effect of a platform’s deviation on the compensations set by

its competitors. A more thoughtful approach would be to model explicitly the pricing instruments that

platforms might use to achieve equilibrium selection, an approach that is not pursued in this paper but

is left for future work.

5 Estimation

As anticipated, when I bring the model to the data I assume that the demand and supply shifters are a

function of hour and weekday, so that states x are identified by different weekday-hour pairs. Formally,

x jumps on average every 60 minutes, and its stationary distribution µ is uniform. Intuitively, the

assumption is that demand and supply primitives (i.e. travel patterns and drivers’ value of time) differ

across day of the week and hour of the day, and that drivers make dynamic decisions knowing only what

day and hour it is, forming correct conditional expectations about the payoff relevant variables.

The assumption on information is not literally verified in practice, where drivers have access to a

variety of real-time signals through platforms’ applications. However, conditioning on hour and weekday
31On the one hand, Weyl’s tariffs could be adapted to insulate the demand side. On the supply side complexities arise due

to the dynamic structure of drivers’ problem, hence additional instruments might be needed.
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captures most of the observed variation in the data, with different weeks displaying almost identical

patterns.

5.1 Demand Estimation

To estimate demand, I use two different sources of variation. First, I identify how customers substitute

between platforms by exploiting high-frequency variation in prices, waiting times, and trip requests.

Second, I identify how the total number of ride-sharing trips reacts to changes in prices and waiting

times by exploiting the policy change as a natural experiment, which allows me to deal with endogeneity.

Formally, I estimate a nested logit discrete choice model of transport mode at the origin-destination level,

whose parameters vary depending on the average trip length. I group routes in 5-minute bins depending

on their average trip length, and let tij denote the bin (rounded average trip length) of route ij. At

weekday-hour x, the utility of passengers facing prices p and expected waiting times w for taking a trip

from i to j on platform m is given by

ξij(x) + v(tij) · 1{m = a} − α(tij)pmij − β(tij)wmi + εm

where 1{m = a} is an indicator equal to 1 if m = a and 0 otherwise. For every weekday-hour pair x, the

demand shifter ξij(x) is interpreted as the average gross customer valuation for a ride-sharing trip. This

valuation is unobservable to the econometrician, but perfectly observable by passengers and platforms.

v(tij) is a “brand effect” capturing the difference between passengers’ valuations for trips on platform a

and trips on platform b, which depends on the average trip length tij . α(tij) and β(tij) also vary according

to the average trip length, capturing passengers’ disutilities for price and waiting time, respectively.

Potential passengers considering ride-sharing travel on route ij arrive at an exogenous rate nij(x). For

every weekday-hour x, nij(x) represents the typical number of trips per minutes on route ij, on all modes,

which is estimated from the MTA travel survey as described in Section 2.2.3. Potential passengers can

choose between different ride-sharing platforms m = a, b and an outside option representing alternative

travel modes, whose utility is given by ε0.

ε is an idiosyncratic shock capturing variance in tastes across passengers, whose distribution is chosen

so to yield the familiar nested logit shares. This distribution is parameterized by a scalar γ(tij), capturing
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(one minus) the correlation between the logit shocks for alternative platforms. This is a function of the

average trip length, which is to be estimated. The nested logit share of platform m is given by the product

of its within market share (the share of trips on m out of all ride-sharing trips) and the market share

(the share of passengers taking a ride sharing trip out of all potential passengers). These shares can be

written as follows. Denote by ṽ, α̃ and β̃ the parameter ratios defined by

ṽ(tij), α̃(tij), β̃(tij) = v(tij)/γ(tij), α(tij)/γ(tij), β(tij)/γ(tij)

for every tij . The within market share of platform m can be written as

Pij(m|M ; p, w; ṽ, α̃, β̃) ≡
exp[ṽ(tij) · 1{m = a} − α̃(tij)pmij − β̃(tij)wmi ]∑
m′ exp[ṽ(tij) · 1{m′ = a} − α̃(tij)pm′ij − β̃(tij)wm′i ]

(23)

whereas the market share can be written as

Pij(M ;V ; γ, ξ(x)) ≡ exp[ξij(x) + γ(tij)Vij ]
1 + exp[ξij(x) + γ(tij)Vij ]

(24)

Vij , defined below, can be seen as the inclusive value of the within market choice

Vij = log
∑
m

exp[ṽ(tij) · 1{m = a} − α̃(tij)pmij − β̃(tij)wmi ] (25)

Intuitively, the parameter ratios ṽ, α̃ and β̃ govern how passengers substitute between platforms, trading

off prices and waiting times, while parameter γ measures the sensitivity of total ride-sharing demand to

the inclusive value. The unobservable demand shifter ξij can be used to formalize the endogeneity problem

in this model: it is correlated with prices, since platforms can condition prices on it; it is also correlated

with waiting times, since it determines demand for trips thus affecting car supply at origin. Notice that

ξij does not depend on m, hence it enters the outer layer in Equation 24, but it does not affect the inner

layer in Equation 23. In words, I assume that unobservable factors might affect total ride-sharing demand,

but not how passengers substitute between platforms. This allows me to estimate the model in two stages.

In the first stage, I estimate the inner layer via maximum likelihood on the high-frequency data. In this

way I can exploit high-frequency variation to estimate how customers substitute between platforms, and
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how they trade off prices and waiting times. In the second stage, I estimate the outer layer exploiting the

variation in the pre-post policy data, thus dealing with endogeneity.

5.1.1 Inner Layer

In the first stage, I estimate the parameter ratios ṽ, α̃ and β̃ entering the inner layer. I do so simply

by running maximum likelihood on the high-frequency data described in Section 2.2.1. Recall that the

sample period is discretized into 10-minute intervals, and that for each interval t I observe the average

prices pmij (t), reported waiting times wmi (t), and number of trip requests qmij (t) on every platform m and

origin-destination pair ij. This allows me to compute the log-likelihood

l(ṽ, α̃, β̃) =
∑
t

∑
ij,m

qmij (t) logPij(m|M ; p(t), w(t); ṽ, α̃, β̃)

associated to each candidate set of parameter ratios, and maximize it to obtain consistent estimates.

5.1.2 Outer Layer

To estimate the outer layer, I exploit the pre-post policy data described in Section 2.2.2. Recall that this

data consists in the pre-post policy estimates of prices, waiting times and trip requests at the weekday-

hour level for every platform and origin-destination pair. From these, I can use the parameter ratios

estimated in the first stage to obtain consistent estimates V pre
ij (x) and V post

ij (x) of the inclusive values

defined in Equation 25, before and after the policy. Also, using arrival the rates of potential passengers

estimated from the MTA survey, I can obtain estimates of the market shares before and after the policy.

Given this notice that, for k = pre, post, 24 can be written as a linear equation

ykij(x) = γ(tij)V k
ij(x) + ξkij(x)

where the dependent variable is the log of the ratio between the market share and the share of the outside

option, and all variables except ξkij(x) are observed.32 To estimate γ I impose that, for every average trip
32Formally, for k = pre, post, the dependent variable is defined as ykij(x) ≡ logP kij(M ;x)− log[1− P kij(M ;x)].
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length l, we have

E[ξpostij (x)− ξpreij (x)|tij = l] = 0

where the expectation is with respect to both the weekday-hour pair x and the route ij. In words the

exclusion restriction is that, although there might be differences in unobservable factors affecting demand

before and after the policy, these must average out across routes and weekday-hour pairs. Under this

assumption I can obtain consistent estimates of γ simply by comparing pre-post policy averages

γ(l) =
E[ypostij (x)− ypreij (x)|tij = l]
E[V post

ij (x)− V pre
ij (x)|tij = l]

for every average trip length l. Finally, given the estimates of all parameters, I can recover the average

customer trip valuations represented by ξ.

5.1.3 Estimates

Table 2 shows the estimates of v, α, β and γ as a function of the average trip length. The demand

sensitivity to both prices and waiting times is lower for longer trips. This is intuitive, since longer trips

are associated with higher prices and higher travel times on average. This implies that, for longer trips,

a marginal increase in price is associated to a lower percentage increase in the total cost, and a marginal

increase in waiting time is associated to a lower percentage increase in the total time of the trip (including

both travel and waiting time).

Average Trip Length v α β γ

< 15 min 0.776 (0.055) 0.028 (0.002) 0.218 (0.015) 0.762 (0.051)
15 min - 20 min 0.659 (0.055) 0.020 (0.001) 0.136 (0.011) 0.648 (0.045)
20 min - 25 min 0.614 (0.035) 0.019 (0.001) 0.119 (0.006) 0.604 (0.031)
25 min - 30 min 0.590 (0.033) 0.020 (0.001) 0.090 (0.005) 0.587 (0.029 )
30 min - 35 min 0.539 (0.035) 0.016 (0.001) 0.013 (0.000) 0.530 (0.028)
35 min - 40 min 0.522 (0.058) 0.013 (0.001) 0.012 (0.001) 0.513 (0.039)

> 40 min 0.467 (0.108) 0.011 (0.002) 0.011 (0.002) 0.459 (0.058)

Table 2: Nested Logit Coefficients as a function of the average trip length. v is the brand effect, α and β represent
passengers’ sensitivity to prices and waiting times, respectively. γ captures (one minus) the correlation between the
logit shocks for different platforms. The standard errors are in parentheses.
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To better compare these estimates with previous studies, Table 3 shows the associated demand elas-

ticities. I find that price elasticities increase with the trip length, ranging from about 0.5 to about 1

for the larger platform. In contrast, waiting time elasticities decrease sharply with trip the average trip

length, from a maximum value of 0.56 for trips shorter than 15 minutes to a minimum value of 0.03 for

trips of 45 minutes or longer for the larger platform. The elasticities for the smaller platform follow a

similar pattern but they are higher, which is a mechanical consequence of the specification of the model

specification.

Platform a Platform b
Average Trip Length Price Waiting Time Price Waiting Time

< 15 min 0.55 0.560 0.78 0.963
15 min - 20 min 0.62 0.362 0.88 0.626
20 min - 25 min 0.82 0.317 1.21 0.552
25 min - 30 min 1.07 0.251 1.53 0.441
30 min - 35 min 1.08 0.063 1.53 0.101
35 min - 40 min 1.08 0.061 1.54 0.100

> 40 min 1.09 0.028 1.56 0.050

Table 3: Average demand elastiticies with respect to prices and waiting times as a function of the average trip
length for the larger platform (platform a) and the smaller platform (platform b) corresponding to the estimated
nested logit parameters. The averages are weighted with respect to the number of trip requests.

One useful benchmark for price elasticities is the study by Cohen et al. [2016b], which covers several

cities in the United States including New York City. They find price elasticities between .35 and and 1.02

for the main platform, which are roughly in line with my estimates. Buchholz et al. [2020] estimate the

waiting times elasticities for a ride-sharing platform in Prague, finding that price elasticities are four to

ten times as large as waiting-time elasticities. Hence their estimates are roughly consistent with mine,

considering trips of 25 minutes or longer.

5.2 Drivers’ Parameters

Drivers’ parameters are identified from the number of licensed drivers, and from the observed variation in

the number of idle drivers, compensations and matching rates in time and space. Formally I prove that,

given the observed number of licensed drivers N and expected matching rates θ, the equilibrium long-
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run distribution of idle drivers s̄ can be inverted to recover a function of drivers’ payoffs, which in turn

identifies the parameters. In particular, these are identified even though the equilibrium distribution of

potential entrants and the optimal choice probabilities are not observed. In order to understand this result,

it is useful to cast it in the broader literature of estimation of dynamic discrete choice models. While

standard estimation algorithms are based on the observation of the optimal choice probabilities in different

states, my estimation algorithm is based on the observation of the long-run frequencies at which agents

visit a subset of all states. Indeed, recall that in Section 4.6.3 s̄mi (x) was defined as probability according

to which, conditional on state x, a driver is observed searching at region i on platform m in the long-run.

In particular, observing the long-run frequencies at which drivers’ are inactive in different regions is not

required for identification, hence this strategy is particularly appealing in the current context.

On top of the formal identification result, I provide an algorithm that can be used to recover the

identified set of payoffs from s̄. The algorithm consists in a simple tâtonnement procedure, which is

reminiscent of inversion techniques commonly used for demand estimation.

In what follows I take N, θ and r as given. I start by defining the identified set of drivers’ payoff.

Then I state the inversion theorem and illustrate the inversion algorithm. Finally I show how this allows

to recover drivers’ parameters.

5.2.1 Mean Payoffs

Define the expected payoff flow of searching or, more briefly, the mean payoff at x, i,m, by

δmi (x) = −ν(x) +
∑
j

θmij (x)[rmij (x)− ν(x)tij − cddij ] (26)

and notice that drivers’ value functions depend on r, ν, cd only through δ. Intuitively, a driver searching at

x, i,m expects to receive utility at rate δmi (x) before facing the next choice. In particular we can re-write

drivers’ value of searching while moving in different directions (Equation 7) as

Umi,h(x) = δmi (x)− u
λmi (x) +

∑
j

θmij (x)
λmi (x) [−tij ū+ tij

∑
x′

χx,x′Vj(x′) + (1− tijχx)Wm
j (x)]

+
∑
j

τh,ij
λmi (x)W

m
j (x) +

λ−
∑
j τh,ij

λmi (x) Wm
i (x) +

∑
x′

χx,x′

λmi (x)Vi(x
′) (27)
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The solution to drivers’ dynamic problem is then defined by Equations 6, 8, 9, 10, and 27, non of which

involves r, ν, cd. Intuitively, one can specify an equivalent problem where drivers do not face any cost of

time and transport cost, and they do not receive compensations for specific trips, receiving instead δmi (x)

per unit of time they spend searching in different states, regions and platforms. The two problems are

equivalent, meaning that they generate the same dynamic behavior and average payoffs. In particular,

they generate the same expected long-run distribution of idle drivers and the same optimal expected

average payoffs, which can be derived from the optimal solution as in Section 4.6.3. Hence we can write

s̄ = s̄(δ) and u = u(δ)

Given this, we can expect to identify at most δ from the observation of s̄. Next section shows that this

is the case. More formally, it shows that function s̄ is invertible, and provides an algorithm for inversion.

5.2.2 Inversion

In what follows denote by S the set of supply distributions that are feasible under θ. Formally, S is

defined as the set of all s̄ > 0 such that there exists a system of choice probabilities σ of full support such

that s̄ = s̄(x|σ, θ,N)

Theorem 2. For every s̄ ∈ S there exists a unique δ ≡ δ(s̄) such that s̄(δ) = s̄. Moreover, function u(δ)

is strictly convex, differentiable, and such that N∇u(δ) = s̄(δ). Finally, for every s̄ ∈ S we have

δ(s̄) = arg min
δ

[Nu(δ)−
∑
x,i,m

smi (x)δmi (x)] (28)

In words, the long-run distribution of idle drivers identifies the mean payoffs, and the latter can be

recovered by solving a convex minimization problem. Moreover, the characterization of the objective

function’s gradient allows to solve this problem by means of standard convex optimization algorithms.

For instance, consider gradient descent applied to Problem 28. Given a small positive constant k, starting

from any initial guess δ0, this generates the sequence δ1, δ2, ...δn, ... defined by

δn+1,m
i (x) = δn,mi (x)− k[s̄mi (δn)(x)− s̄mi (x)]
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That is, gradient descent corresponds to a simple tâtonnement algorithm where δn,mi (x) is increased (resp.

decreased) if s̄mi (δn)(x) is smaller (resp. higher) than s̄mi (x). At each step, s̄(δ) can be computed by

solving drivers’ dynamic problem, and computing the stationary distribution associated with the optimal

choice probabilities under δ. For k small enough, δn → δ(s̄) as n→∞.

A reader familiar with the literature of demand estimation might notice the similarity with standard

algorithms performing static demand inversion, as in Berry et al. [1995]. The logic is similar. Intuitively,

in the case of demand estimation, the mean payoffs associated with different products can be recovered by

tâtonnement from the observation of the frequencies according to which customers choose these products.

In this case, the mean payoffs associated with different activities can be recovered by tâtonnement from the

observation of the frequency at which agents perform these activities in the long-run. The key difference

is that in this case the function to be inverted, i.e. s̄(δ), does not satisfy the gross substitutes property,

but instead invertibility is guaranteed by convex conjugacy. See the Appendix for more details on this,

and Berry et al. [2013] for the theory behind demand inversion algorithms.

5.2.3 Estimating Drivers’ Parameters

To estimate drivers’ parameters, I assume that the i.i.d. shocks at every decision node follow a standard

logit distribution, yielding the familiar logit shares for the entry/exit and direction choice probabilities

Equations 11 and 12. On movement I assume that, when they start searching in different regions, drivers

can choose a direction of motion from the set {North,East,South,West,∅}. Direction ∅ represents the

choice of waiting, meaning not moving in any direction, so that τ∅,ij ≡ 0 for every origin-destination

pair ij. For h 6= ∅, I estimate the relocation rates τh,ij from the observed cars’ GPS trajectories, as

the probability that a driver at i moving in direction h enters region j within one minute. I allow these

estimates to vary depending on hour and weekday, in order to capture the dynamic variation in traffic

speeds.

The remaining parameters to estimate are the time cost ν(x) for each weekday-hour x, the per-mile

transport cost cd, and drivers’ outside option ū. Allowing for a measurement error εmi (x), Equation 26
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yields a simple linear equation

∑
j

θmij (x)rmij (x) = δmi (x) + ν(x)[1 +
∑
j

θmij (x)tij ] + cd
∑
j

θmij (x)dij + εmi (x)

All variables on the left and right hand sides are observed. In particular, the mean payoffs δmi (x) can be

recovered from observed quantities by exploiting the inversion algorithm described in previous section.

The only unknowns are the parameters ν(x) and cd, which I estimate by means of a simple linear regression.

Finally, drivers’ outside option can be recovered from the equilibrium free entry condition u(δ) = ū, where

u(δ) can be computed by solving drivers’ dynamic problem under δ.

5.2.4 Estimates

Figure 10 plots ν(x) by day of the week and hour of the day. On average, drivers face an opportunity

cost of time of about 35$ per hour. This cost is highest at night and on weekends, and lowest during

mid-day and on weekdays, which supports an interpretation of it in terms of utility from leisure. Another

interpretation is in terms of wages associated to drivers’ outside options. One good benchmark is the

hourly wage of construction workers in the state of New York, which averaged about 38$ per hour in June

2019 according to official statistics.33

Figure 10: Drivers’ value of time as a function of hour and weekday (the shaded lines represent the 95%
confidence intervals)

33See https://labor.ny.gov/stats/ceshourearn2.asp
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I find an estimated driving cost per mile of 0.57$. As a benchmark, the IRS standard rate for computing

deductible costs of operating an automobile for business was 0.58$ per mile in 2019.34 The estimated

drivers’ outside option is 919$ per year. Recall that this is interpreted as the direct cost for drivers of

holding a license. As a comparison, the direct cost of getting a TLC Drivers License ranges between 600$

and 700$, while I estimate that the direct costs of maintaining such license are of about 400$ per year.35

5.3 Estimating Platforms’ Objective

In my empirical specification I do not assume that platforms fully maximize profits, but instead I estimate

an objective function which is a convex combination of profits and customers’ welfare. I let λm be m’s

weight on profit maximization, which is to be estimated. Assumptions of this type has been used before in

the empirical literature, when profit margins are observed.36 The reason for estimating such an objective

is that, in practice, platforms face incentives to keep prices lower that the full profit maximization level,

such as regulatory and media scrutiny. Castillo [2019] argued that such an objective might also capture

platforms’ incentive to keep prices lower in the short run in order to expand the market in the long

run. Moreover notice that, thanks to the observation of prices on both sides, the model primitives were

estimated without imposing any assumption on platforms’ optimizing behavior. Hence estimating an

objective function also allows to model to better fit the observed mark-ups.

Under this objective, platforms set prices according to the equation

pmij (x) =tij(ν(x) + ū) + cddij + λmqmij (x)
∣∣∣∣∣dp

m
ij

dqmij
(x)
∣∣∣∣∣

+Wm
i (x)− (1− tijχx)Wm

j (x)− tij
∑
x′

χx,x′V
m
j (x′) (29)

This is the same formula as the one obtained under profit maximization (Equation 22), except for the

weights λm, m = a, b on the market power distortion, which are to be estimated. I estimate Equation 29

via OLS, finding λa = 0.301 and λb = 0.382. For comparison, Castillo [2019] finds a profit maximization
34See https://www.irs.gov/tax-professionals/standard-mileage-rates. I thank Frank Pinter for pointing this out.
35For the cost of getting a license, see https://www1.nyc.gov/site/tlc/drivers/get-a-tlc-drivers-license.page. For the yearly

costs maintaining a license, a TLC driver license costs 252$ every three years to renew, and all drivers must bring car in for
inspection every other year, paying a TLC vehicle renewal fee of 550$ and and inspection fee of 75$.

36See Castillo [2019] for instance.
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weight of about 0.48 for the monopolist ride-sharing platform in Houston.

6 Counterfactuals

6.1 Merger

In the first counterfactual, I simulate the impact of a merger between the two platforms. I operationalize

the merger by assuming that the monopolist platform keeps providing both services a and b to customers,

while the driver platforms are integrated in a single one.37 This allows to abstract from changes in

customer welfare due to service variety, focusing instead on the welfare impact due to changes in prices

and waiting times.

I begin by an aggregate comparison of the observed equilibrium and the simulated equilibrium under

monopoly. The results are shown in Table 4. As reported the first row, the aggregate customer surplus

decreases by 2% after the merger. This is the result of a trade-off between a 10% increase in prices and

a 10% decrease in waiting times. Both the number of licensed drivers and the number of active drivers

(drivers working in a given instant, either matched or idle) drop by 12%. The number of idle drivers drops

by 26%, more than twice as much as the number of active drivers, meaning that drivers spend a lower

share of their working time waiting for trip requests. This is reflected by an increase in the utilization

rate (the fraction of time drivers spend transporting a passenger out of the total time they are active) of

about 10%. The annual profits of the monopolist are 29% higher than the total profits observed before

the merger, an increase of about 269 M$ per year, which more than compensates for the annual loss in

customer welfare. Finally, recall that the average driver payoff associated with holding a driving license is

pinned down by the free entry condition, so that the total welfare of the potential drivers in the economy

remains constant by assumption. A proxy for drivers’ welfare loss can be obtained by looking at the drop

in the gross drivers’ payoff. There are about 10,200 fewer licensed drivers under monopoly, and each

license generates a gross payoff of about 900$ per year (drivers’ outside option). Hence the decrease in

gross drivers’ payoffs is about 9 M$ per year.

These results relay an important message: merging the two platforms produces substantial efficiency

gains (of about 150 M$ per year), although all gains are captured by the monopolist through increased
37In particular, I let the monopolist’s profit-maximization weight be equal to the one estimated for the largest platform.
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Change Post-Merger

Annual Customer Surplus -2% (-117 M$)
Annual Profits +29% (+269 M$)
Passenger Prices +10%
Waiting Times -10%
Licensed Drivers -12%
Active Drivers -12%
Idle Drivers -26%
Driver Utilization Rate +9.9%
Passenger Trips -1.4%

Table 4: Merger counterfactual. Changes in market outcomes with respect to their pre-merger values.

profits, leaving users on both sides worse off. These gains are due to the inter-operability of drivers across

services that results from the merger. By joining drivers’ platforms into a single one, the monopolist can

simultaneously increase drivers’ matching rates on one side, and decrease passengers’ waiting times on

the other side.

On aggregate, the efficiency gains resulting from the more efficient use of drivers more than compensate

the distortion from increased market power. This crucially relies on several factors, such as market density,

passengers’ sensitivity to prices and waiting times, and the market concentration prior to the merger. This

can be seen from the maps in Figure 12, showing the breakdown of the effects across different regions in

the city, and Figure 13, showing correlations explaining the geographical variation. Looking at Figure

12, it can be seen that passengers in peripheral regions gain from the merger. More precisely, Figure 13

shows that the percentage customer welfare loss in different regions is inversely related to the average

waiting time before the merger. This is due to the fact that the monopolist draws from a larger pool

of drivers with respect to individual platforms, and can exploit this to improve service availability in

peripheral regions. Indeed, Figure 13 shows that passengers in regions where supply was scarcer before

the merger (higher waiting times) experience a higher percentage decrease in waiting times. The effect

on prices, hence the geography of customer welfare loss, also relates to geographical differences in market

concentration before the merger. Indeed Figure 13 shows that the average price increase is inversely

related to (and well predicted by) the pre-merger market concentration.
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Figure 12: Geography of the effects of the merger. Percentage changes are with respect to pre-merger
levels.

Figure 13: Explaining the geography of the impact of the merger. Average waiting times per-merger
can be taken as a proxy for the market density in different regions. Passengers’ surplus and waiting
times are less affected in less dense regions. Differences in price changes are well-explained by the market
concentration prior to the merger.
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Finally, there is a significant geographical variation in the decrease in idle drivers, which is higher for

the more central and denser regions. Idle vehicles in the CBD decrease by 30%, while the number of trips

decrease by only 2.7%. Hence the monopolist provides almost the same number trips as before, but he

does so drawing from a significantly lower number of active vehicles. This has a substantial direct impact

on traffic emissions. Assuming an average speed of 5 miles per hour, the total distance driven by TNC

vehicles in the CBD drops by about 48,000 miles per day. Assuming an average emission of 400 grams of

co2 per mile, this translates into a decrease of co2 emissions of bout 19 tons per day in the CBD alone.

The same calculation shows that co2 emissions decrease by about 44 tons per day in the whole sample

region. This has a significant impact on traffic congestion as well. Schaller [2017] estimates that taxis

and TNCs combined comprise 50 percent to as much as 75 percent of all traffic in the CBD, depending

on time of day. Taking 40% as a conservative estimate of the average share of TNCs implies that CBD

traffic (including all vehicles, not just TNCs) would decline by 5% percent after the merger.

6.2 Congestion Pricing

In recent years, several authors, agencies and media have expressed concerns about the impact of the rise

of TNCs on traffic congestion in major US cities. Moreover, it has been shown that TNCs mostly divert

passengers from public transit systems, with a consequent lack of financing for transit improvements. In

order to fight congestion and provide a financial source for improving public transit, a congestion pricing

tax is expected to be implemented in NYC in 2022. The proposed scheme targets fixed costs of access

to the CBD, by charging vehicles entering the area. In this section I argue that this type of schemes are

unlikely to substantially affect TNCs activity in the CBD. I do so by comparing congestion pricing schemes

targeting fixed and variable costs of access. In particular, I simulate the impact of charging drivers 8.3¢

per minute they spend in the CBD (5$ per hour), and compare it with the impact of a tax of 5$ per access

to the CBD.38 Both taxes are charged only between 8 am and 8 pm. As we will see shortly, these tax

amounts happen to generate similar revenues in equilibrium, providing a basis for comparison between

them. In what follows, I will refer at these schemes as “Per-Minute Tax” and “Entry Tax”, respectively.
38The Manhattan meter parking rates, ranging from 4$ to 7.5$ per hour for passenger vehicles, provide a good benchmark.

51



Under the per-minute tax, drivers are incentivized to reduce the total time they spend inside the CBD,

since they are taxed on a per-minute basis regardless on how many times they cross the border. Under

the entry tax, they are disincentivized to access the area, but once inside there is no incentive to move

out.39

Table 5 shows the results. As reported the first row, the two schemes generate a similar tax revenue,

of about 60 M$ per year. The pass-through (percentage of the tax revenues paid by passengers through

higher prices) is higher for the entry tax than the per-minute tax. Consequently, the entry tax produces

a higher passenger welfare loss and a lower reduction in total profits.

The results show that the per-minute tax is significantly more successful at reducing the number of

vehicles in the CBD, achieving a 8.5% reduction, compared to a 1.3% reduction under the entry tax. This

is obtained primarily by generating a consistent reduction in the number of idle drivers: these drop by

20% under the per-minute tax, compared to 8.5% under the entry-tax.

Entry Tax Per-Minute Tax

Annual Tax Revenue 60 M$ 55 M$
Annual Passenger Surplus -1.2% (-69 M$) -1% (-57 M$)
Annual Profits -2.6% (-24 M$) -4% (-38 M$)
Active Drivers in the CBD (8 am - 8pm) -1.3% -8.5%
Idle Drivers in the CBD (8am - 8pm) -3% -20%
Driver Utilization Rate in the CBD (8am - 8pm) +0.9% +6.8%
Licensed Drivers -1.2% -2.7%
Waiting Times in the CBD (8am - 8pm) +0.6% +5.6%
Trips to the CBD (8am - 8pm) -2.6% -2.4%
Trips from the CBD (8am - 8pm) -0.5% -2.8%
Average Price for Trips to the CBD (8am - 8pm) +4.5% +2.7%
Average Price for Trips from the CBD (8am - 8pm) +0.7% +2.9%
Net trip arrivals to the CBD (8am - 8pm) 209 per hour (-42%) 377 per hour (+4.7%)

Table 5: Congestion pricing counterfactuals. Changes in market outcomes with respect to their pre-tax values.

To see why the entry tax is unsuccessful at reducing TNC traffic in the CBD one must look at travel

patterns, and in particular to the number of net trip arrivals - defined as the difference between trip
39In recent years several cities in Europe have introduced similar schemes. For comparison, non residents are taxed 5€ for

accessing Milan’s Area C, and 15£ for accessing London’s Congestion Charge zone. One slight difference is that these taxes
are on a daily basis, while in my simulation drivers are taxed at every access.
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arrivals and departures. By increasing the costs of incoming trips, the entry tax reduces net arrivals by

42%. However these remain positive, averaging 209 per hour. This implies that the number of empty

vehicles in the CBD remains high even though no idle driver actively relocates inside. Intuitively, car

supply in the CBD draws mainly on drivers who remain idle after drop-off, rather than on a net inflow of

idle drivers from outer regions. This implies that, in order to reduce the number of vehicles in the CBD,

the entry tax must be strong enough to reverse the natural commuting patterns. In contrast, a per-minute

tax incentivizes a more efficient use of drivers in the CBD by targeting idling time. By forcing idle drivers

to relocate outside the CBD right after drop-off, a mild per-minute tax achieves a substantial traffic

reduction simply by providing platforms the right incentives to increase waiting times. This situation

is shown in detail by the maps in Figure 14, which displays the geographic breakdown of the effects on

prices, waiting times and passenger surplus.

Figure 14: Geography of the effects of congestion pricing. Percentage changes are with respect to pre-tax
levels.
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From the maps in the first row, it can be seen very clearly how the entry tax reduces the net arrivals

in the CBD by raising the prices of incoming trips from outer regions. This produces a loss in passenger

surplus in the outer regions, while the passenger surplus in the CBD is not affected. This figure is

reversed under the per-minute tax, which has the effect of increasing prices for incoming and outgoing

trips symmetrically. Within the CBD, prices increase more for regions in the interior than for regions at

the border, and the same is true for waiting times and for the passenger welfare loss.

In conclusion, these results relay a simple message: different congestion pricing schemes will be more

or less successful at decreasing TNC traffic in the CBD depending on whether they provide the right

incentives to platforms to decrease drivers’ idling time. These incentives are provided by schemes targeting

variable costs of access to the CBD. Schemes targeting fixed costs, such as the one which which will go

into place in 2022, are likely to not produce a significant change in TNC activity in the CBD, but instead

they are likely to affect ridership and customer welfare mostly in outer regions.

6.3 Entry Restrictions

In the last counterfactual, I study the impact of measures restricting driver supply. I do so by simulating

the market equilibrium under a tax on driving licenses of 10,000$ per year.40 This is operationalized

through the free entry condition, by imposing that in equilibrium the annualized optimal expected average

payoff of licensed drivers must be equal to the license tax . The aggregate results are presented in Table

6. The first thing to note is that the number of licensed drivers drops by 84%, from about 85,000 to

13,757 licensed drivers. This provides a basis for comparison with the current medallion system in place

for yellow taxi cabs (the total number of medallions is currently 13,587 in NYC). From the first three rows

we can see that, according to the simulation, such tax would produce a total welfare loss of about 200M$

per year, trading off a sizable tax revenue with large reductions in customers’ surplus and platforms’

profits. Under the tax, however, drivers’ utilization rate increases by 3.3%, producing a sizable reduction

in the number of active vehicles in the city. This is achieved primarily through a large decrease in empty

vehicles, but also through a sizable decrease in customer trips. Finally, note that the decrease in the

average number of active vehicles is one order of magnitude lower than the decrease in the number of
40For comparison, the current lease cap rate for yellow taxi cab medallions is about 600$ per week, corresponding to about

30000$ per year. See https://www1.nyc.gov/assets/tlc/downloads/pdf/rule_book_current_chapter_58.pdf

54



licenses, meaning that the latter are used more intensively under the new tax, which is intuitive.

Change Post-Tax

Annual Tax Revenue 124 M$
Annual Customer Surplus -3.9% (-233 M$)
Annual Profits -9.4% (-88 M$)
Passenger Prices +6.1%
Waiting Times +3.7%
Licensed Drivers -84%
Active Drivers -6.7%
Idle Drivers -12%
Driver Utilization Rate +3.3%
Passenger Trips -3.8%

Table 6: License Tax. Changes in market outcomes with respect to their pre-tax values.

Figure 15: Geography of the effects of a license tax. Percentage changes with respect to pre-tax levels.
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Figure 15 shows the effects disaggregated by region. One concern which is often raised in relation to

policies restricting supply, is that these would disproportionately affect customers in peripheral regions.

Indeed, one main benefit associated with ride-sharing platforms is that these have been able to expand the

access of taxi services to regions in the periphery that were previously excluded. One argument supporting

this concern is that markets of this type feature “economies of density”, meaning that the quality of the

match increases with the market size, hence this type of policies would produce a concentration of the

activities in the densest central regions. Figure 15 shows that this is not the case under this simulation.

Although there is a considerable degree of dispersion in how the tax impacts different quantities, there is

no clear pattern across different boroughs.

To understand why this is the case, notice first that the maps in Figure 15 are specular images one

of another. This is shown by the scatter plots in Figure 16. Figures 16.a and 16.b show that regions

where outgoing prices increase more are those where incoming prices increase less, and the same is true for

incoming and outgoing trips. That is, regions can be partitioned in two sets: regions that are penalized as

trip origins, and regions that are penalized as trip destinations. Figure 16.c shows that regions penalized

as origins are also those where car supply decreases the most - which mechanically translates into a higher

increase in waiting times as well, hence a higher customer welfare loss.

Figure 16: Explaining the geography of the effects of a license tax. The maps in Figure 15 are the
specular images one of another, meaning that certain regions are penalized as origins, while other regions
are penalized as destinations.

The cause of this lies in the network of commuting patterns, and the driver movements that these
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patterns induce. The most affected regions are the “trip attractors”, meaning those regions that attract

more trips that they originate. This is because supply in these regions largely draws on drivers who

remain idle after drop-off. Intuitively, before the tax, these regions were able to capture those drivers who

dropped a passenger and did not receive a new request. After the tax the number of trips generally drops,

meaning that these regions are not able to capture a large number of net arrivals anymore. Symmetrically,

regions generating a large number of net departures are the least affected by the tax. This is because

these regions draw mainly on a net inflow of idle drivers, a source of supply which is less affected by the

price increase. This situation is shown in Figure 17. Figure 17.a shows that the license tax does not affect

the direction of drivers’ net relocation flows. This is intuitive, since drivers’ movements must balance

passenger’s commuting patterns, whose direction is not affected by the price increase. Figure 17.b shows

that regions who draw their car supply from a net inflow of idle drivers (as opposed to net trip arrivals)

are the least affected by the tax.

Figure 17: Explaining the geography of the effects of a license tax. Regions that draw their supply
from relocating drivers (hence are “trip generators”) are less affected. In particular, they keep receiving
relocating drivers (panel a) and experience a lower percentage reduction of car supply (panel b).

In summary, these pictures reach to a simple conclusion: in the current context, it is not clear that

policy measures restricting car supply would affect mostly the periphery, since platforms are able to

coordinate a smaller pool of licensed drivers so to avoid a concentration of activities in central regions.

To understand the geographical variation in the impact of such policies market density is not crucial, but

instead it is important to understand how car supply relates to travel patterns.
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7 Conclusion

This paper studies competition in the app-based transportation industry. I present a model of compet-

ing platforms in transport equilibrium, characterizing analytically the profit-maximizing allocations and

prices. I construct a novel dataset covering two months of high-frequency data on the operations of the

two main platforms in New York City, and estimate the model exploiting a novel methodology and a

policy change. I then use the model to study different regulations, and a merger between platforms. My

counterfactuals suggest that, realizing economies of density, a merger would improve efficiency and reduce

traffic volumes. They also indicate the importance of targeting variable instead of fixed costs of access

in order to reduce traffic volumes in central areas, and they suggest that entry restrictions do not dis-

proportionately affect the peripheries, but can generate a large efficiency loss. Finally, they indicate the

importance of market density and the network of travel patterns to understand the geographic variation

of the outcomes of regulation.
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A Proofs

A.1 Preliminaries

A.1.1 Williams-Daly-Zachary

This section introduces results from optimal transport theory applied to discrete choice, which will be

later used in the proofs, drawing from Galichon [2018]. The result of this section is a slight re-statement of

the well-known Williams-Daly-Zachary Theorem, an analogous to Roy’s identity in discrete-choice models

which has been used, for instance, by McFadden [1978], Rust [1994, Theorem 3.1] and Chiong et al. [2016].

Abstracting from dynamic considerations for now, consider a driver facing the entry/exit decision

problem at x, i, and let v = (vm)m∈M∪{out} be a vector of continuation values associated to different

choices. The inclusive value of the entry/exit choice under v is given by

V (v) = E max
m∈M∪{out}

(vm + ηm

χx
)

and the optimal vector of entry/exit choice probabilities p = (pm)m∈M∪{out} must satisfy

pm = P[vm + ηm

χx
= max

m′∈M∪{out}
(vm′ + ηm

′

χx
)] ∀m ∈M ∪ {out} (30)

For any given vector a ∈ RM∪{out}+ , define the choice probabilities p(a) associated with it by

pm(a) = am∑
m′∈M∪{out} a

m′
∀m ∈M ∪ {out}

and say that V, v, a is optimal for the entry/exit choice at x, i if p(a) satisfies 30 and V = V (v). Intuitively

the sum ∑
m∈M∪{out} a

m can be seen as representing the total number of drivers facing the entry/exit

choice at x, i, which is taken as exogenous for now, while later it will be determined endogenously by

drivers’ movements. p(a) represents the probabilities according to which these drivers choose to start

working on different platforms m (or become inactive if m = out). v and V represent the vector of contin-

uation values associated to different choices and the inclusive value of the entry/exit choice, respectively.

Optimality requires V, v, a to be consistent with a static discrete choice setup. Next result characterizes
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optimality if V, v, a in terms of convex conjugacy. For every vector of probabilities p define the function:

ge(p) ≡ max
v∈RM∪{out}

[
∑

m∈M∪{out}
pmvm − E max

m′∈M∪{out}
(vm′ + ηm

′)]

and for every a ∈ RM∪{out}+ define the function

Ge(a) =
∑

m∈M∪{out}
amge(p(a))

Proposition 2. Ge is strictly convex, differentiable and such that

∑
m

am
dGe(a)
dam = Ge(a)

Moreover, V, v, a is optimal for the entry/exit choice at x, i if and only if

dGe(a)
dam = χx(vm − V ) ∀m ∈M ∪ {out}

Proof. That Ge is strictly convex and differentiable follows from the assumption that η has continuous

density and full support (See Galichon [2018, Proposition D.14]). For the second part, denote by dge(p)
dp ⊆

RM∪{out} the super-gradient of ge at p.41 From Galichon [2018, Propositions 9.8 and D.13] it follows that

V, v, a is optimal if and only if

χxv ∈
dge(p(a))

dp (31)

and that the latter is equivalent to

ge(p(a)) + χxV = χx
∑

m∈M∪{out}
pm(a)vm (32)

41Formally function ge is not differentiable, but it can be shown that it is such that, for every x, y ∈ dge

dp , there exists a
scalar k ∈ R such that x = y + k. Therefore for every x, y ∈ dge

dp we have

−
∑
m′

pm
′
(a)xm

′
+ xm = −

∑
m′

pm
′
(a)ym

′
+ ym

which justifies notation in CIT.
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Notice that, in turn, this is equivalent to

χx(vm − V ) = ge(p(a))−
∑
m′

pm′(a)dg
e(p(a))
dpm′ + dge(p(a))

dpm (33)

Indeed, note that if 31 and 32 hold then

gentry(p(a))−
∑
m′

pm′(a)dg
entry(p(a))
dpm′ + dgentry(p(a))

dpm

= gentry(p(a))− χx
∑
m′

pm′(a)vm′ + χxv
m

= gentry(p(a))− [gentry(p(a)) + χxV ] + χxv
m

= χx(vm − V )

and conversely, if 33 holds then

χx[
∑
m

pm(a)vm − V ]

=
∑
m

pm(a)[gentry(p(a))−
∑
m′

pm′(a)dg
entry(p(a))
dpm′ + dgentry(p(a))

dpm ]

= gentry(p(a))

Hence the result follows by noting that

dGe(a)
dam = ge(p(a))−

∑
m′

pm′(a)dg
e(p(a))
dpm′ + dge(p(a))

dpm .

For every x, i,m, optimality of drivers’ direction choices at x, i,m can be analogously characterized.

Formally, for every vector of direction choice probabilities p = (ph)h∈H define the convex conjugate

gd(p) ≡ max
v∈RH

[
∑
h∈H

phvh − Emax
h′∈H

(vh′ + εh
′)]
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and for every vector s ∈ RH+ define the function

Gd(s) =
∑
h∈H

shgd(p(s))

where ph(s) ≡ sh/
∑
h′ s

h′ for each h ∈ H. Say that V, v, s is optimal for the direction choice at x, i, ,m

if p(s) satisfies

ph(s) = P[vh + εh

θmi (x) + λ+ χx
= max

h′∈H
(vh′ + εh

′

θmi (x) + λ+ χx
)]

and V is given by

V = Emax
h∈H

[vh + εh

θmi (x) + λ+ χx
]

Similarly to the case of the entry/exit choice, the sum∑
H s

h can be seen as representing the total number

of drivers searching at x, i,m, which is taken as exogenous for now, while later it will be determined

endogenously by drivers’ movements, and p(s) represents the probabilities according to which these drivers

are headed to different directions. Optimality requires V, v, a to be consistent with a static discrete choice

setup. Proceeding as in the proof of previous proposition one can show the following.

Proposition 3. Gd is strictly convex, differentiable and such that

∑
h

sh
dGe(h)
dsh = Ge(s).

Moreover, V, v, s is optimal for the direction choice at x, i,m if and only if

dGd(s)
dsh = [θmi (x) + λ+ χx](vh − V ) ∀h ∈ H

A.1.2 Drivers’ Optimal Dual Pairs

Consider the long-run distribution of N drivers across activities in the network associated with σ, θ.

This distribution is described by: i) the request rates q, capturing the frequency at which drivers start

transporting passengers on different routes; ii) the long-rung distribution of idle drivers s̄ and potential
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entrants ē. This distribution must be such that ē = ē(σ, θ,N), s̄ = s̄(σ, θ,N), and for every x, ij,m

qmij (x) = s̄mi (x)θmij (x)

Aggregating Constraints 13 and 14 across N drivers, this is the case if and only if q, s̄, ē, σ satisfies the

following constraints for every x, ij,m:

µ(x)qmij (x) = µ(x)s̄mi (x)θmij (x) (34)

µ(x)ēi(x)χx =
∑
x′

µ(x′)[
∑
m

s̄mi (x′) +
∑
m,j

qmji (x′)tji + ēi(x′)]χx′,xσouti (x)

µ(x)
∑
ij

qmij (x) + µ(x)s̄mi (x)[
∑
h,j

σ
h|m
i (x)τh,ij + χx] = µ(x)

∑
j

s̄mj (x)
∑
h

σ
h|m
j (x)τh,ji

+ µ(x)
∑
j

qmji (x)(1− χxtji) +
∑
x′

µ(x′)[
∑
m

s̄mi (x′) +
∑
m,j

qmji (x′)tji + ēi(x′)]χx′,xσmi (x)

∑
m,i

s̄mi (x) +
∑
m,ij

qmij (x)tij +
∑
i

ēi(x) = N

First, I show that the last set of constraints is equivalent to

∑
x

µ(x)[
∑
m,i

s̄mi (x) +
∑
m,ij

qmij (x)tij +
∑
i

ēi(x)] = N

To see this, note that summing the second and third set of constraints across i,m implies that for every x

µ(x)[
∑
m,i

s̄mi (x) +
∑
m,ij

qmij (x)tij +
∑
i

ēi(x)]χx

=
∑
x′

µ(x′)[
∑
m,i

s̄mi (x′) +
∑
m,ij

qmij (x′)tij +
∑
i

ēi(x′)]χx′,x

Hence defining

µ̃(x) =
µ(x)[∑m,i s̄

m
i (x) +∑

ij q
m
m,ij(x)tij +∑

i ēi(x)]∑
x′ µ(x′)[∑m,i s̄

m
i (x′) +∑

m,ij q
m
ij (x′)tij +∑

i ēi(x′)]
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We have ∑x µ̃(x) = 1 and µ̃(x) = ∑
x′ µ̃(x′)χx′,x, hence µ̃ is a stationary distribution for χ. This implies

that ∑
m,i

s̄mi (x) +
∑
m,ij

qmij (x)tij +
∑
i

ēi(x) =
∑
m,i

s̄mi (x′) +
∑
m,ij

qmij (x′)tij +
∑
i

ēi(x′)

for every x, x′m because otherwise we would have µ̃ 6= µ, contradicting the fact that χ has a unique

stationary distribution.

Second, notice that, for any given q, s̄, ē, σ, we can define:

• The long-run entry/exit rates at every x, i

αmi (x) =
∑
x′

µ(x′)[
∑
m

s̄mi (x′) +
∑
m,j

qmji (x′)tji + ēi(x′)]χx′,xσmi (x) (35)

Intuitively, αmi (x) is the rate at which drivers choose to start working for m in state x (or to become

inactive, if m = out), which is the product of the rate at which they face the entry/exit decision

times the probability according to which they choose m.

• The expected number smi,h(x) of drivers searching at x, i,m headed towards h, in the long-run

smi,h(x) = s̄mi (x)σh|mi (x) (36)

For what follows, it is convenient to work with α, s instead of s̄, σ. Substituting 35 and 36 into the

stationarity constraints in 34, feasibility requires q, s, ē, α to satisfy the following constraints for every
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x, ij,m

µ(x)qmij (x) = µ(x)
∑
h

smi,h(x)θmij (x) (37)

µ(x)ēi(x)χx = αouti (x) (38)

µ(x)[
∑
j

qmij (x) +
∑
h

smi,h(x)(
∑
j

τh,ij + χx)] (39)

= µ(x)
∑
j,h

smj,h(x)τh,ji + µ(x)
∑
j

qmji (x)(1− χxtji) + αmi (x)

∑
m

αmi (x) =
∑
x′

µ(x′)[
∑
m,h

smi,h(x′) +
∑
m,j

qmji (x′)tji + ēi(x′)]χx′,x (40)

∑
x

µ(x)[
∑
m,i,h

smi,h(x) +
∑
m,ij

qmij (x)tij +
∑
i

ēi(x)] = N (41)

To be consistent with drivers’ optimal response to r, θ, q, s, ē, α must be such that the associated choice

probabilities σ are optimal, where the latter can be defined from

σmi (x) = αmi (x)∑
m′∈M∪{out} α

m′
i (x)

and σ
h|m
i (x) =

smi,h(x)∑
h′∈H s

m
i,h′(x) (42)

In particular, there must exist a system of drivers’ value functions W,V,U, J and an optimal average

payoff flow u satisfying the Bellman Equations 6-8 such that σ is optimal under W,U (i.e. it satisfies

Equations 11 and 12). For what follows, it is convenient to slightly re-write the Bellman equations as

follows. For every x, ij,m define drivers’ dynamic surplus of receiving a trip request by

∆m
ij (x) = rmij (x)− cddij + Jmij (x)−Wm

i (x)

Intuitively, after receiving a trip request the driver gets the lump-sum payoff rmij (x) − cddij and the

continuation value Jmij (x), but gives up the opportunity of searching at x, i,m, whose continuation value

if given by Wm
i (x). Given this, Equations 6-8 can be re-written as
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W out
i (x) = − u

χx
+
∑
x′

χx,x′

χx
Vi(x′) (43)

[λ+ θmi (x) + χx][Umi,h(x)−Wm
i (x)] = −ν(x)− u+

∑
j

θmij (x)∆m
ij (x) (44)

+
∑
x′

χx,x′ [Vi(x′)−Wm
i (x)] +

∑
j

τh,ij [Wm
j (x)−Wm

i (x)]

∆m
ij (x) = rmij (x)− cddij − tij(ν(x) + u) (45)

+ tij
∑
x′

χx,x′Vj(x′) + (1− tijχx)Wm
j (x)−Wm

i (x)

Moreover, using the results of previous section, optimality of σ and the definitions of the inclusive values

in Equations 9 and 10 are equivalent to the following

dGd(smi (x))
dsmi,h(x) = [θmi (x) + λ+ χx][Umi,h(x)−Wm

i (x)] ∀m ∈M,h ∈ H (46)

dGe(α(x))
dαmi (x) = χx[Wm

i (x)− Vi(x)] ∀m ∈M ∪ {out} (47)

This yields the following definition.

Definition 8. (q, s, ē, α), (W,V,∆, u) is an optimal dual pair under r, θ,N if:

1. q, s, ē, α satisfies the stationarity constraints 37-41

2. Defining U from W,V,∆, u as in Equation 44, W,V,∆, u, U satisfy the Equations 43-47

In words, (q, s, ē, α), (W,V,∆, u) is an optimal dual pair if it fully describes the optimal long-run dis-

tribution of drivers under r, θ, and the associated drivers’ value functions. Next Section provides a

straightforward characterization of such pairs in terms of a regularized linear program.
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A.1.3 Characterization

Define drivers’ welfare at q, s, ē, α by

f(r, q, s, ē, α) =
∑
x

µ(x){
∑
m,ij

qmij (x)[rmij (x)− cddij − tijν(x)]−
∑
m,i,h

smi,h(x)ν(x)}

−
∑
x,i,m

µ(x)Gd(smi (x))−
∑
x,i

1
χx
Ge(αi(x))

Intuitively, conditional on state x: i) qmij (x) drivers get matched on ij,m each instant on average, receiving

rmij (x) − cddij lump-sum and paying the time cost ν(x) for tij time periods; ii) ∑h s
m
i,h(x) drivers are

searching at i,m, headed towards h, paying the time cost flow ν(x); and iii) The sum on the second line

captures drivers’ utility flow from the idiosyncratic preference shocks. Consider the problem of maximizing

this welfare subject to the stationarity Constraints 37-41:

max
q,s,ē,α

f(r, q, s, ē, α) (48)

s.t.37− 41

Theorem 3. (q, s, ē, α), (W,V,∆, u) is an optimal dual pair under r, θ,N if and only if:

i) q, s, ē, α solves Problem 48

ii) for very x, ij,m, ∆m
ij (x), W out

i (x), Wm
i (x), Vi(x) and u are the optimal Lagrange multipliers

associated with constraints 37, 38, 39, 40, and 41, respectively.

iii) Nu = f(r, q, s, ē, α)

Proof. Notice that Problem 48 is strictly convex and differentiable, hence its solution is characterized by

the first order conditions. It is easy to see that these are given by Equations 43-47. In particular:

• Equation 45 is the first order condition with respect to µ(x)qmij (x)

• Equations 44 and 46 are equivalent to the first order condition with respect to µ(x)smi,h(x)

• Equation 43 is the first order condition with respect to µ(x)ēi(x)

• Equation 47 is the first order condition with respect to αmi (x)

Hence (q, s, ē, α), (W,V,∆, u) is an optimal dual pair if and only if i) and ii) hold. To show that this

implies iii) notice that summing the complementary slackness conditions of Constraints 37-40 and using

70



Constraint 41 gives

Nu =
∑
x

µ(x){
∑
m,ij

qmij (x)[rmij (x)− cddij − tijν(x)]−
∑
m,i,h

smi,h(x)ν(x)}

−
∑
x,i,m

µ(x)
∑
h

smi,h(x)dG
d(smi (x))
dsmi,h(x) −

∑
x,i

1
χx

∑
m

αmi (x)dG
e(α(x))

dαmi (x)

From the results of Section A.1.1, this is equivalent to Nu = f(r, q, s, ē, α), completing the proof.

A.2 Proof of Theorem 1

In what follows take r−m, θ−m as given. Note that, on the demand side, every qm, s̄m > 0 can be

implementing by setting customer prices according to Equation 18. Hence in this proof I focus on the

supply side only. Notice that rm, θm implements qm, s̄m if and only if there exists q−m, s, ē, α,N and

W,V,∆ such that (q, s, ē, α), (W,V,∆, ū) is an optimal dual pair under r, θ,N . If this is the case for some

rm, θm,W, V,∆, I will say that q−m, s, ē, α,N supports qm, s̄m. Define

c(r−m, q, s, ē, α,N) =
∑
x

µ(x){
∑
m′,ij

qm
′

ij (x)[cddij + tijν(x)] +
∑
m′,i,h

sm
′

i,h(x)ν(x)}

+
∑
x,i,m′

µ(x)Gd(sm′i (x)) +
∑
x,i

1
χx
Ge(αi(x)) +Nū

−
∑
x

µ(x)
∑

m′ 6=m,ij
qm
′

ij (x)rm′ij (x)

From Theorem 3 it follows that, at optimum, we must have

∑
x

µ(x)
∑
ij

qmij (x)rmij (x) = c(r−m, q, s, ē, α,N)

Intuitively, platform m must compensate drivers for their residual costs after taking into account the

payments already received from other platforms. Hence the m’s expenses associated with qm, s̄m are
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pinned down by the tuple q−m, s, ē, α,N supporting it, if any. Define the cost function

C(qm, s̄m|r−m, θ−m) = min
q−m,s,ē,α,N

c(r−m, q, s, ē, α,N) (49)

s.t.38− 41

µ(x)qm′ij (x) = µ(x)
∑
h

sm
′

i,h(x)θm′ij (x) for every x, ij and m′ 6= m (50)

s̄mi (x) =
∑
h

smi,h(x) for every x, i (51)

Notice that, by definition of L(θ−m), Problem 49 is feasible whenever qm, s̄m ∈ L(θ−m). Moreover,

q−m, s, ē, α,N supports qm, s̄m if and only if it solves Problem 49. To see this, for every x, ij, let ∆m
i (x)

be the optimal Lagrange multiplier associated with Constraint 51, and define θmij (x) ≡ qmij (x)/s̄mi (x),

∆m
ij (x) = ∆m

i (x)/θmi (x), and

rmij (x) = ∆m
ij (x) + cddij + tij(ν(x) + u)

− tij
∑
x′

χx,x′Vj(x′)− (1− tijχx)Wm
j (x)−Wm

i (x)

For very x, ij,m′, let W out
i (x), Wm

i (x), Vi(x) be the optimal Lagrange multipliers associated with con-

straints 37, 38, 39, and 40, and if m′ 6= m, let ∆m′
ij (x) be the optimal Lagrange multiplier of Constraint

50. Proceeding as in the proof of Theorem 3, it is easy to see that the optimality conditions of Problem

Problem 48 hold. In particular, the optimality conditions of Problem 48 with respect to q−m, s−m, ē, α

are identical to those of Problem 49, the optimality conditions with respect to qm hold by definition of r,

while the optimality conditions of Problem 49 with respect to sm and N are given by

dGd(smi (x))
dsmi,h(x) = −ν(x)− u+ ∆m

i (x)

+
∑
x′

χx,x′ [Vi(x′)−Wm
i (x)] +

∑
j

τh,ij [Wm
j (x)−Wm

i (x)]

and

u = ū
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respectively. This implies that every qm, s̄m ∈ L(θ−m) is supported by some q−m, s, ē, α,N , and for any

such q−m, s, ē, α,N we have c(r−m, q, s, ē, α,N) = C(qm, s̄m|r−m, θ−m). This proves the first statement

of Theorem 1, while the second statement follows by the Envelope Theorem.

A.3 Proof of Theorem 2

Notice that, substituting 37 into 38-41, constraints 37-41 are equivalent to the following

µ(x)ēi(x)χx = αouti (x) (52)

µ(x)
∑
h

smi,h(x)[θmi (x) +
∑
j

τh,ij + χx]

= µ(x)
∑
j,h

smj,h(x)[τh,ji + θmji (x)(1− χxtji)] + αmi (x)

∑
m

αmi (x) =
∑
x′

µ(x′)[
∑
m,h

smi,h(x′) +
∑
m,j,h

smj,h(x′)θmji (x′)tji + ēi(x′)]χx′,x

∑
x

µ(x)[
∑
m,i,h

smi,h(x) +
∑
m,ij,h

smi,h(x)θmij (x)tij +
∑
i

ēi(x)] = N

For every s̄ define

F (s̄) = min
s,ē,α

∑
x,i,m

µ(x)Gd(smi (x)) +
∑
x,i

1
χx
Ge(αi(x))

s.t. 52

µ(x)s̄mi (x) = µ(x)
∑
h

smi,h(x)

where I use the convention that F ∗(s̄) = +∞ if the above problem is not feasible, and let F be its convex

conjugate, defined by

F (δ) = max
s̄

[
∑
x

µ(x)
∑
i,m

s̄mi (x)δmi (x)− F ∗(s̄)] (53)

Function F (δ) is strictly convex and differentiable.42 By the Fenchel’s duality Theorem, the following are

equivalent:43

i) s̄ solves Problem 53
42See for instance Galichon [2018, Proposition D.14]
43See for instance Galichon [2018, Proposition D.13]
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ii) δ solves

min
δ

[F (δ)−
∑
x

µ(x)
∑
i,m

s̄mi (x)δmi (x)]

iii) s̄ = ∇F (δ)

Notice that, under the definition of δ in Equation 26, Problem 53 is equivalent to Problem 48. The

result then follows from Theorem 3.

B Algorithms

B.1 Drivers’ Problem

Rosaia [2020] provides an algorithm to compute undiscounted dynamic discrete choice models in discrete

time. In this section I show how drivers’ problem is equivalent to an analogous problem in discrete

time, so that a discrete-time algorithm can be applied. Recall the drivers’ value functions under δ, θ are

characterized by the following system of equations

W out
i (x) = − u

χx
+
∑
x′

χx,x′

χx
Vi(x′) (54)

Umi,h(x) = δmi (x)− u
λmi (x) +

∑
j

θmij (x)
λmi (x) [−tij ū+ tij

∑
x′

χx,x′Vj(x′) + (1− tijχx)Wm
j (x)]

+
∑
j

τh,ij
λmi (x)W

m
j (x) +

λ−
∑
j τh,ij

λmi (x) Wm
i (x) +

∑
x′

χx,x′

λmi (x)Vi(x
′)

Vi(x) = E max
m∈M∪{out}

[Wm
i (x) + ηm

χx
]

Wm
i (x) = Emax

h∈H
[Umi,h(x) + εh

θmi (x) + λ+ χx
]

where

λmi (x) = λ+ θmi (x) + χx

Let

φ = max
x,i,m

max{ λmi (x)
1 +∑

j θ
m
ij (x)tij

, χx}
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and for every x, ij,m define ũ ≡ u
φ and

δmi (x), θ̃mij (x), τ̃h,ij , λ̃, χ̃x,x′ ≡
δmi (x), θmij (x), τh,ij , λ, χx,x′

φ[1 +∑
j θ

m
ij (x)tij ]

Notice that Equations 54 can be re-written as

W out
i (x) = −ũ+

∑
x′

χx,x′

φ
Vi(x′) + (1− χx

φ
)W out

i (x)

Umi,h(x) = −ũ+ δ̃mi (x) +
∑
j

θ̃mij (x)[tij
∑
x′

χx,x′Vj(x′) + (1− tijχx)Wm
j (x)]

+
∑
j

τ̃h,ijW
m
j (x) + (λ̃−

∑
j

τ̃h,ij)Wm
i (x) +

∑
x′

χ̃x,x′Vi(x′) + [1− λ̃mi (x)]Umi,h(x)

Vi(x) = E max
m∈M∪{out}

[Wm
i (x) + ηm

χx
]

Wm
i (x) = Emax

h∈H
[Umi,h(x) + εh

θmi (x) + λ+ χx
]

The above are the Bellman equations of an undiscounted dynamic discrete choice problem in discrete

time. Hence W,V,U, ũ can be computed by exploiting the algorithm in Rosaia [2020]. Given these, u can

be obtained from u = φũ.

B.2 Equilibria

This section describes the algorithm I use to find Platform Equilibria. The idea is very simple, and it can

be described as a simultaneous gradient descent across platforms.

Algorithm. Start from a transport equilibrium P, E , N,A

1. Compute δ from P, E as in Equation 26, an compute the drivers’ value functions associated with

δ, θ

2. For every m ∈M , use these value functions and the characterization of the cost functions’ gradient

in Equations 19 and 20 to compute the gradient of platforms’ objective functions in 21 with respect to

qm, s̄m

3. For every m, increase/decrease qm, s̄m in the direction given by the gradient by a small amount.

Let the new allocation be A+1
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4. Compute the new match qualities E+1 consistent with A+1

5. Find P+1, N+1 such that P+1, E+1, N+1,A+1 is a Transport Equilibrium

6. Continue until the gradients of platforms’ objectives are close enough to zero

Hence the algorithm stops at a Transport Equilibrium where the first order conditions of platforms’

best response problem are all satisfied, that is, a Platform Equilibrium. The only step which is still

unexplained is 5. To perform this step first notice that, on the demand side, the prices implementing q, s̄

can simply be obtained from the inverse demand curves in 18. On the supply side notice that, for given N ,

we can compute the mean payoffs δ = δ(s̄) such that s̄ = s̄(δ) using the tâtonnement procedure described

in Section 5.2.2, and compute the associated optimal average payoff flow u(δ). Then N is increased (resp.

decreased) by a small amount if u(δ) > (resp. <)ū. This procedure can be iterated until an N is found

under which u(δ) is close enough to ū.
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