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Abstract

This paper considers the asymptotic theory of a semiparametric M-estimator

that is generally applicable to models that satisfy a monotonicity condition

in one or several parametric indexes. We call this estimator the two-stage

maximum score (TSMS) estimator, since our estimator involves a first-stage

nonparametric regression when applied to the binary choice model of Manski

(1975, 1985). We characterize the asymptotic distribution of the TSMS es-

timator, which features phase transitions depending on the dimension of the

first-stage estimation. We show that the TSMS estimator is asymptotically

equivalent to the smoothed maximum-score estimator (Horowitz, 1992) when

the dimension of the first-step estimation is relatively low, while still achieving

partial rate acceleration relative to the cubic-root rate when the dimension is

not too high. Effectively, the first-stage nonparametric estimator serves as an

imperfect smoothing function on a non-smooth criterion function, leading to

the pivotality of the first-stage estimation error with respect to the second-stage

convergence rate and asymptotic distribution.
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1 Introduction

In a sequence of papers Manski (1975, 1985) proposed and analyzed the maximum-

score estimator for semiparametric discrete choice models, e.g.,

yi = 1

{

X
′

iθ0 + ǫi ≥ 0
}

based on a median normalization med (ǫi|Xi) = 0 and the consequent observation

h0 (Xi) := E

[

yi − 1

2

∣

∣

∣

∣

Xi

]

≷ 0 ⇔ X
′

iθ0 ≷ 0. (1)

Specifically, the maximum-score estimator is defined as any solution to the problem

max
θ

1

n

n
∑

i=1

(

yi − 1

2

)

1

{

X
′

iθ ≥ 0
}

.

Subsequently, Kim and Pollard (1990) demonstrated the cubic-root asymptotics of

the maximum-score estimator with a non-normal limit distribution, and Horowitz

(1992) showed the asymptotic normality of the smoothed maximum score estimator1

with a faster-than-n−1/3 but slower-than-n−1/2 convergence rate.

In this paper we consider yet another estimator of the model above, which we call

the two-stage maximum score (TSMS) estimator, defined as any solution to

max
θ

1

n

n
∑

i=1

ĥ (Xi)1
{

X
′

iθ ≥ 0
}

,

where ĥ is a consistent first-stage nonparametric estimator of h0. Essentially, the

TSMS estimator encodes the logical relationship (1) in a more literal way: we simply

replace h0 in (1) with its estimator ĥ. We focus on analyzing the asymptotic properties

of the TSMS estimator in this paper.

The applicability of the TSMS estimator, however, extends far beyond the binary

choice model considered above. Consider any model such that some nonparametrically

identified function of data h0 and a finite-dimensional parameter of interest θ0 satisfy

the following multi-index monotonicity condition (at zero): with X := (X1, ..., XJ),

X
′

jθ0 > 0 for every j = 1, ..., J ⇒ h0 (X) > 0,

X
′

jθ0 < 0 for every j = 1, ..., J ⇒ h0 (X) < 0. (2)

1The smoothed maximum score estimator is defined as the solution to
maxθ

1
n

∑n

i=1

(

yi − 1
2

)

Φ
(

X
′

iθ/bn

)

with a chosen smooth function Φ and bandwidth bn.
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Clearly (2) nests (1) as special case with J = 1. However, as we move to multi-index

settings with J ≥ 2, the logical equivalence relationship between the sign of h0 (X)

and the sign of the parametric indexes encoded in (1) is broken. Instead, (2) are

stated as logical implications, whose converses may not be generally true for J ≥ 2:

h0 (X) > 0 6⇒ X
′

jθ0 > 0 for every j = 1, ..., J,

h0 (X) < 0 6⇒ X
′

jθ0 > 0 for every j = 1, ..., J.

On the other hand, instead of using the logical converses above, we can leverage the

logical contrapositions of (2) as proposed in Gao and Li (2020):

h0 (X) > 0 ⇒ NOT
(

X
′

jθ0 < 0 for every j = 1, ..., J
)

,

h0 (X) < 0 ⇒ NOT
(

X
′

jθ0 > 0 for every j = 1, ..., J
)

, (3)

which serve as identifying restrictions on θ0, given that h0 is directly identified and

can be nonparametrically estimated from data. The TSMS estimator in the monotone

multi-index setting can then be formulated as any solution to

max
θ

− 1

n

n
∑

i=1







[

ĥ (Xi)
]

+

J
∏

j=1

1

{

X
′

ijθ < 0
}

+
[

−ĥ (Xi)
]

+

J
∏

j=1

1

{

X
′

ijθ > 0
}







,

where [·]+ is the positive part (or “rectifier”) function. It is important to note that

the right hand sides of (3) are not negations of each other, i.e.,

J
∏

j=1

1

{

X
′

ijθ < 0
}

6= 1 −
J
∏

j=1

1

{

X
′

ijθ > 0
}

,

thus we have to multiply
[

ĥ (Xi)
]

+
and

[

−ĥ (Xi)
]

+
with indicators of very different

sets. Hence, there are no counterparts of the original maximum score or smoothed

maximum score estimators in this setting, while the TSMS estimator will still be

consistent (under conditions for point identification).

For example, Gao and Li (2020) considers a semiparametric panel multinomial

choice model, where infinite-dimensional fixed effects are allowed to enter into con-

sumer utilities in an additively nonseparble way. Despite the complexity of the in-

corporated unobserved heterogeneity, a certain form of intertemporal differences in

conditional choice probabilities satisfy (3). In another paper, Gao, Li, and Xu (2020)

study a dyadic network formation with nontransferable utilities, where the forma-

tion of a link requires bilateral consent from the two involved individuals. With a

technique called logical differencing that cancels out the nonadditive unobserved het-
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erogeneity terms in the model, a nonparametrically estimable function can again be

constructed to satisfy (3). In both papers, the TSMS estimators are used to provide

consistent estimates for the parameter of interest. There are likely to be many other

applications where the TSMS estimators can be particularly useful, given that the

logical implication relationships in (3) can arise naturally in economic models that

possess certain monotonicity properties.

Motivated by the reasons discussed above, we seek to analyze the asymptotic proper-

ties of the TSMS estimator in this paper. Since the key differences between the TSMS

estimator and the (smoothed) maximum score estimator in terms of their asymptotic

properties do not really depend on the number of indexes J2, we first focus on deriving

the convergence rate and asymptotic distribution of the TSMS estimator in a simple

binary choice model, where the key drivers of the non-standard asymptotics for the

TSMS estimator can be best explained and compared.

Using a kernel first-step estimator, we find that the asymptotics for the TSMS

estimator feature two phase transitions, the thresholds of which depends on the di-

mensionality and the order of smoothness built in the model.

First, when the dimension of covariates is low relative to the order of smoothness,

the TSMS estimator is asymptotically equivalent to the smoothed maximum score es-

timator, achieving the same convergence rate and a corresponding normal asymptotic

distribution. This is a case where the first-stage nonparametric estimator serves as a

smoothing function on the discrete indicator function in the best possible manner, de-

livering full “speed-up” from the n−1/3 rate of the original maximum score estimator

and attaining the minimax-optimal rate of the smooth maximum score estimator.

Second, when the dimension of covariates is moderate, the TSMS estimator con-

verges at a rate slower than n−2/5 but faster than n−1/3, and has an asymptotic

distribution characterized by the maximizer of a Gaussian process plus a linear (bias)

and a quadratic drift terms. This is a scenario where the first-stage nonparametric

estimation plays a partially effective role as a smoothing function: it dampens the

effect of the discreteness of the indicator function, but the estimation error from the

first-stage is too large (due to the dimension of the first-stage estimation) to be neg-

ligible. It turns out that a composite mean-zero error term of partial smoothing on

2The difference in asymptotic properties should not be confused with the differences in identifi-
cation strategies, which are discussed above.
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indicator function is asymptotically at the same order of the bias from the first-stage

estimation, hence leading to a Gaussian process as well as a bias term in the limit.

Third, when the dimension of covariates is relatively high, the TSMS estimator

converges at a rate slower than n−1/3 that decreases with the dimension of covariates,

and its asymptotic distribution (without debiasing) is degenerate at a bias term.

The (mean-zero) disturbance term stays roughly at n−1/3-rate, but it is dominated

by the bias from the first-stage estimation. The result is intuitive, given that the

performance of TSMS must be fundamentally dependent on the performance of the

first-stage nonparametric estimation.

Lastly, we extend the results on convergence rate beyond the binary choice setting

to monotone mult-index models.

As discussed above, our paper contributes to the line of econometric literature on

maximum score or rank-order estimation that exploits monotonicity restrictions, as

studied in Manski (1975, 1985), Kim and Pollard (1990), Han (1987), Horowitz (1992)

and Abrevaya (2000), for example. Relatedly, the analysis of the discreteness effects of

indicator functions and the feature of phase transition in asymptotic theories are also

present in threshold and change-point models: e.g. Banerjee and McKeague (2007),

Lee and Seo (2008), Kosorok (2008), Song, Banerjee, and Kosorok (2016), Lee et al.

(2018), Hidalgo, Lee, and Seo (2019), Lee, Liao, Seo, and Shin (Forthcoming) and

Mukherjee, Banerjee, and Ritov (2020).

The technical part of this paper builds upon and contributes to the large line

of econometric literature on semi/non-parametric estimation. General methods and

techniques used in this paper are based on Andrews (1994), Newey (1994), Newey and McFadden

(1994), Van Der Vaart and Wellner (1996), Chen (2007), Hansen (2008) and Kosorok

(2008). More specifically, the handling of the non-smooth criterion functions is also

studied in Kim and Pollard (1990), Chen, Linton, and Van Keilegom (2003), Seo and Otsu

(2018) and Delsol and Van Keilegom (2020). However, our asymptotic theory cov-

ers an intermediate case of non-smoothness that leads to a convergence rate faster

than cubic-root-style rate obtained in Kim and Pollard (1990), Seo and Otsu (2018)

and the example considered in Delsol and Van Keilegom (2020), but faster than the

root-n rate considered by Chen, Linton, and Van Keilegom (2003). This is due to a

pivotal interplay between the smoothing provided by the first-stage nonparametric

estimation and its estimation error, which appears to be an interesting feature unique
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to our TSMS estimator.

Lastly, this paper complements the work in Gao and Li (2020) and Gao, Li, and Xu

(2020) by providing a formal analysis of the asymptotic theory for the TSMS estima-

tor.

2 TSMS Estimator in Binary Choice Model

We start with an analytical illustration of the two-stage maximum score estimator

in a binary choice setting, where the TSMS estimator can be very clearly related

to and compared with existing results in the literature, in particular Manski (1975,

1985), Kim and Pollard (1990), Horowitz (1992) and Seo and Otsu (2018). To better

convey the key ideas, in this section we will impose several simplifying assumptions

that are stronger than necessary. We refer the readers to Section for a more general

treatment.

2.1 Model Setup

Consider the following model a la Manski (1975, 1985):

yi = 1

{

X
′

iθ0 + ǫi ≥ 0
}

, (4)

where yi is an observed binary outcome variable, Xi is a vector of observed covariates

taking values in Rd, θ0 ∈ Rd is the unknown true parameter, and ǫi is an unobserved

scalar random variable that satisfies the conditional median restriction med (ǫi|Xi) =

0. Defining

Q0 (θ) := E

[(

yi − 1

2

)

1

{

X
′

iθ ≥ 0
}

]

, (5)

we know by Manski (1975, 1985), under appropriate conditions, θ0 is the unique

maximizer of Q0 on Sd−1 :=
{

u ∈ Rd : ‖u‖ = 1
}

. based on which the maximum score

(MS thereafter) estimator is constructed as

θ̂MS :∈ arg max
θ∈Sd−1

1

n

n
∑

i=1

(

yi − 1

2

)

1

{

X
′

iθ ≥ 0
}

. (6)

Kim and Pollard (1990) demonstrated the cubic-root asymptotics of the MS estimator

n
1
3

(

β̂MS − β0

)

d−→ arg maxs∈SD−1 Z (s) . Alternatively, Horowitz (1992) considered
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the smoothed maximum score (SMS thereafter) estimator

θ̂SMS := arg max
θ:|θ1|=1

1

n

n
∑

i=1

(

yi − 1

2

)

Φ

(

X
′

iθ

bn

)

(7)

under the alternative normalization |θ1| = 1, where Φ : R → [0, 1] is a smooth

kernel function and bn is a tuning parameter that shrinks towards 0 as n → ∞.

By Horowitz (1992) the SMS estimator is asymptotically normal with a convergence

rate of n−2/5 when, say, the kernel function Φ is taken to be the CDF of the stan-

dard normal distribution. More precisely, writing θ̂SMS ≡
(

θ̂1,SMS, θ̃SMS

)

, we have

n− 2
5

(

θ̃SMS − θ̃0

)

d−→ N (µSMS,ΣSMS) for some deterministic µSMS and ΣSMS . More-

over, with high-order kernel functions, the rate could be improved to be arbitrarily

close to n−1/2.

In this paper we consider yet another form of estimator, which we call “two-step

maximum score (TSMS) estimator”, based on exactly the same population criterion

function Q0 defined above in (5). Observing that Q0 can be equivalently written as

Q0 (θ) = E

[

h0 (Xi)1
{

X
′

iθ ≥ 0
}]

with h0 (x) := E [yi|Xi = x] − 1
2
, we define the TSMS estimator as

θ̂ :∈ arg max
θ∈Sd−1

1

n

n
∑

i=1

ĥ (Xi)1
{

X
′

iθ ≥ 0
}

, (8)

where ĥ is any first-stage nonparametric estimator of h0.

Assumption 1. Suppose θ0 ∈ Sd−1 together with the following:

(a) (yi, Xi, ǫi)
n
i=1 is i.i.d. and satisfies model (4).

(b) ǫi ⊥ Xi, median (ǫi) = 0 and the (unknown) CDF F of ǫi is twice continuously

differentiable on R with uniformly bounded first and second derivatives.

(c) Xi is uniformly distributed with support X := B
d, the unit ball in R

d.

Under Assumption (1), it is easy to show that θ0 is point identified as the uniquer

maximizer of Q0 over Sd−1.

2.2 Asymptotic Theory

Before presenting the formal results, we first explain how our TSMS estimator differs

from the MS and the SMS estimator, and provide some intuitions about the key
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features of the asymptotics of the TSMS estimator. For this purpose we write

gMS
i (θ) :=

(

yi − 1

2

)

1

{

X
′

iθ ≥ 0
}

,

gSMS
i (θ) :=

(

yi − 1

2

)

1

{

X
′

iθ ≥ 0
}

,

gTSMS
i (θ) := ĥ (Xi) 1

{

X
′

iθ ≥ 0
}

,

which are the (random) functions of θ being averaged into the sample criterion for

the MS, TMS and TSMS estimators above in (6), (7) and (8).

Notice first that the indicator function 1

{

X
′

iθ ≥ 0
}

in gTSMS
i (θ) is not smoothed

out by a CDF-type kernel function as in gSMS
i (θ). Consequently, our TSMS sample

criterion is discontinuous in θ while having zero derivative with respect to θ almost

everywhere, and thus we cannot characterize the TSMS estimator by first-order con-

ditions as in Horowitz (1992). More generally, we cannot directly existing asymptotic

theories based on the (Lipschitz) continuity and differentiability of the criterion func-

tion in parameters.

In the meanwhile, the TSMS sample criterion is also very different from the original

MS sample criterion, as in gMS
i (θ), the term

(

yi − 1
2

)

is also discrete in addition to

the indicator function 1

{

X
′

iθ ≥ 0
}

. As explained in Kim and Pollard (1990), for θ

close to θ0, the expected squared difference between gMS
i (θ) and gMS

i (θ0):

E

∣

∣

∣gMS
i (θ) − gMS

i (θ0)
∣

∣

∣

2
= E

∣

∣

∣1

{

X
′

iθ ≥ 0
}

− 1

{

X
′

iθ0 ≥ 0
}∣

∣

∣ = O (‖θ − θ0‖) (9)

is of the same order of magnitude as ‖θ − θ0‖, which becomes the key driver for the

cubic-root asymptotics. However, in our case

E

∣

∣

∣gTSMS
i (θ) − gTSMS

i (θ0)
∣

∣

∣

2
= E

[

ĥ2 (Xi)
∣

∣

∣1

{

X
′

iθ ≥ 0
}

− 1

{

X
′

iθ0 ≥ 0
}∣

∣

∣

]

where ĥ2 (Xi) enters as a weighting on the discrete difference in indicators.

As it turns out, ĥ (Xi) will actually help smooth out the indicator function and

making the expected squared difference above to be smaller than ‖θ − θ0‖, even

though ĥ (Xi) itself does not depend on θ. To see this, keep in mind that when-

ever 1 {x′θ ≥ 0} 6= 1 {x′θ0 ≥ 0} occurs, 0 must lie between x′θ and x′θ0. For θ very

close to θ0 (‖θ − θ0‖ ≈ 0), the difference between x′θ and x′θ0 must also be small.

Then if 0 lies between x′θ and x′θ0, we can infer that both x′θ and x′θ0 must be closer

to 0. Together,

1 {x′θ ≥ 0} 6= 1 {x′θ0 ≥ 0} ⇒ x′θ0 ≈ 0. (10)

8



Now, since h0 (x) = F (x′θ0) − 1
2

with F (0) = 1
2
, we have

x
′

θ0 ≈ 0 ⇒ h0 (x) ≈ 0. (11)

Combining (11) and (10), we deduce that for θ close to θ0,

h2
0 (x)

∣

∣

∣1

{

x
′

θ ≥ 0
}

− 1

{

x
′

θ0 ≥ 0
}∣

∣

∣ ≈ 0,

i.e., h0 (x) automatically shrinks any nonzero difference between the two indicators

1

{

x
′
θ ≥ 0

}

and 1

{

x
′
θ0 ≥ 0

}

as θ gets closer to 0, resulting in

E

[

h2
0 (Xi)

∣

∣

∣1

{

X
′

iθ ≥ 0
}

− 1

{

X
′

iθ0 ≥ 0
}∣

∣

∣

]

= o (‖θ − θ0‖) ,

which contrasts sharply with (9) and “removes” the cubic-root asymptotics from

our problem. Since ĥ approaches h in the limit, ĥ will play the role of h0, albeit

imperfectly, as an effective smoothing function.

We now proceed to a formal development of the TSMS asymptotic theory. For any

θ ∈ Θ and any (deterministic) function h : Rd → R in L2(X), write

gθ,h (x) := h (x)1
{

x
′

θ > 0
}

, ∀x ∈ R
d,

P gθ,h :=
∫

gθ,h (x) dP (x) ,

Pngθ,h :=
1

n

n
∑

i=1

gθ,h (Xi) .

Gngθ,h :=
√
n (Pngθ,h − Pgθ,h)

so that

Pn

(

gθ,ĥ − gθ0,ĥ

)

=
1√
n
Gn (gθ,h0 − gθ0,h0)

+
1√
n
Gn

(

gθ,ĥ − gθ0,ĥ
− gθ,h0 + gθ0,h0

)

+ P
(

gθ,ĥ − gθ0,ĥ

)

(12)

and we proceed to deal with the three terms on the right hand side of (12) separately.

Lemma 1 below presents a maximal inequality about the first term, and formalizes

our previous discussion that the smoothness of the function gθ,h0 with respect to θ in

a small neighborhood of θ0:

9



Lemma 1. Under Assumption 1, for some constant M1 > 0,

P sup
‖θ−θ0‖≤δ

|Gn (gθ,h0 − gθ0,h0)| ≤ M1δ
3
2 . (13)

The term δ
3
2 on the right hand side of (13) is in sharp contrast with, and much smaller

than, the corresponding term δ
1
2 under the usual setting with n−1/3-asymptotics, such

as in Kim and Pollard (1990) and Seo and Otsu (2018). In fact, the smoothing by

h0 is so strong that δ
3
2 is even of a smaller magnitude than δ, which corresponds

to the standard n−1/2-asymptotics. This implies that, if we knew the true h0, then

any point estimator from arg maxθ∈Θ Pngθ,h0 would actually converge to θ0 at the

n-rate. Such “super-consistent” rate would be reminiscent of the super-consistent

least-square estimator in change-point models Kosorok (2008); Lee and Seo (2008);

Song, Banerjee, and Kosorok (2016, Section 14.5.1). Of course, since h0 needs to be

estimated in practice, we need to account for the estimation error as captured by the

remaining two terms in (12). As it turns out, the term δ
3
2 is negligible in comparison

with those terms.

We now turn to the second term in (12), which corresponds to the usual stochastic

equicontinuity term in the semiparametric estimation literature. We impose the fol-

lowing standard smoothness condition on the functional space of h0 and the sup-norm

convergence of the first-stage estimator ĥ. Specifically, let C⌊d⌋+1
M (X ) denote a class

of functions on X that possess uniformly bounded derivatives up to order ⌊d⌋ + 1.

Assumption 2. (i) h0 ∈ H ⊆ C⌊d⌋+1
M (X ) (ii) ĥ ∈ H with probability approaching 1

and (iii)
∥

∥

∥ĥ− h0

∥

∥

∥

∞
= Op (an).

See, for example, Hansen (2008), Belloni et al. (2015) and Chen and Christensen

(2015) for results on the sup-norm convergence of kernel and sieve estimators. Lemma

2 below then allows us to control the second term in (12).

Lemma 2. Under Assumptions 1-2 with H := C⌊d⌋+1
M (X ) , for some constant M2 > 0,

P sup
θ∈Θ,h∈H:‖θ−θ0‖≤δ,‖h−h0‖∞≤Kan

|Gn (gθ,h − gθ0,h − gθ,h0 + gθ0,h0)| ≤ M2an
√
δ. (14)

We note that the term
√
δ due to the non-smoothness of the indicator function now

shows up on the right hand side of (14) , but it is weighted down by an, the sup-norm

rate at which ĥ converges to h0. This formalizes our intuition above that the first

stage estimator serves as an imperfect smoother on the discrete indicator function.
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Lastly, we turn to the third term P
(

gθ,ĥ − gθ0,ĥ

)

in (12), which is a familiar term in the

standard asymptotic theory for semiparametric estimation. Usually(Newey and McFadden,

1994; Chen, Linton, and Van Keilegom, 2003) such a term can be written into an

asymptotically linear form based on the functional derivative of gθ,h in h, contribut-

ing an additional component to the asymptotic variance of the n−1/2 asymptotically

normal semiparametric estimator. However, this will not be the case with our current

TSMS estimator.

The behavior of the third term can be most clearly illustrated if we take ĥ to be

the (adapted) Nadaraya-Watson kernel estimator defined by

ĥ (x) :=
1

px
· 1

nbdn

n
∑

i=1

(

yi − 1

2

)

φd

(

x−Xi

bn

)

(15)

where bn is a (sequence of positive) bandwidth parameter shrinking towards zero, φd

is taken to be the standard d-dimensional Gaussian PDF, and px = π−d/2Γ (d/2 + 1)

is the reciprocal of the volume of the unit ball Bd (with Γ being the Gamma function),

since the true density of X is assumed to be known and uniform on B
d.3 In this case,

Pgθ,ĥ =
∫

ĥ (x)1
{

x
′

θ ≥ 0
}

pxdx

=
∫

1

nbdn

n
∑

i=1

(

yi − 1

2

)

φd

(

x−Xi

bn

)

1

{

x
′

θ ≥ 0
}

dx

=
1

n

n
∑

i=1

(

yi − 1

2

) ∫ 1

bdn
1

{

x
′

θ ≥ 0
}

φd

(

x−Xi

bn

)

dx

=
1

nbDn

n
∑

i=1

(

yi − 1

2

) ∫

φd (u)1
{

(Xi + bnu)
′

θ ≥ 0
}

bdndu with u :=
x−Xi

bn

=
1

n

n
∑

i=1

(

yi − 1

2

) ∫

1

{

(Xi + bnu)
′

θ ≥ 0
}

φd (u) du

=
1

n

n
∑

i=1

(

yi − 1

2

) ∫

1

{

u
′

θ ≥ −X
′

iθ

bn

}

φd (u) du

=
1

n

n
∑

i=1

(

yi − 1

2

)

PU

(

U
′

θ ≥ −X
′

iθ

bn

)

where U ∼ N (0, Id)

=
1

n

n
∑

i=1

(

yi − 1

2

)

PU

{

U ≥ −X
′

iθ

bn

}

with U := U
′

θ ∼ N
(

0, θ
′

θ = 1
)

3The density, if unknown, can be estimated by the standard kernel density estimator p̂ (x) =
1

nbd
n

∑n

i=1 φd

(

x−Xi

bn

)

, so that ĥ (x) = 1
nbd

n

∑n

i=1

(

yi − 1
2

)

φd

(

x−Xi

bn

)

1
p̂(x) . We note that the additional

density estimation does not change the convergence rate of ĥ, so we leave it out for simpler notation.

11



=
1

n

n
∑

i=1

(

yi − 1

2

)

(

1 − Φ

(

−X
′

iθ

bn

))

=
1

n

n
∑

i=1

(

yi − 1

2

)

Φ

(

X
′

iθ

bn

)

which is exactly the same as sample criterion for the SMS estimator in (7).

Notably, Pgθ,ĥ is now (twice) differentiable in θ, allowing us to exploit the Taylor

expansion of Pgθ,ĥ around the true parameter θ0. Hence, the essence of the asymptotic

theory for the SMS estimator in Horowitz (1992) applies. Nevertheless, we formally

present the following results, given that we are working with different normalization

and support assumptions than those in Horowitz (1992).4

Formally, define Zi := (yi, Xi) and ψn,θ (z) :=
(

y − 1
2

)

Φ
(

x
′
θ/bn

)

, and consider

the following decomposition:

P
(

gθ,ĥ − gθ0,ĥ

)

= Pn (ψn,θ − ψn,θ0) =
1√
n
Gn (ψn,θ − ψn,θ0) + P (ψn,θ − ψn,θ0) ,

the right hand side of which can be controlled via the following lemma, which is very

similar to Horowitz (1992, Lemma 5).

Lemma 3. With ĥ given by (15), for some positive constants M3,M4,M5 and C > 0:

(i) P sup‖θ−θ0‖≤δ |Gn (ψn,θ − ψn,θ0)| ≤ M3b
−1
n (δ + bn)

1
2 δ.

(ii) Writing δ := ‖θ − θ0‖,

P (ψn,θ − ψn,θ0) = − (θ − θ0)
′

V (θ − θ0) + b2
nA1 (θ − θ0)

+ o
(

δ2
)

+ o
(

b2
nδ
)

+O
(

b−1
n δ3

(

1 + b−2
n δ−2

))

≤ −Cδ2 +M4b
2
nδ +M5b

−1
n δ3

(

1 + b−2
n δ−2

)

where the inequality on the second line holds for sufficiently large n with some

A1 and some positive semi-definite matrix V of rank d− 1.

Combining the results from Lemma 1, 2 and 3, we obtain the following theorem

regarding the convergence rate of the TSMS estimator.

4Horowitz (1992) normalizes |θ1| = 1 and assumes that the conditional distribution of Xi,1 given
any realization of (Xi,2, ..., Xi,d) has everywhere positive density on the real line. In contrast, we
assume that θ ∈ Sd−1 and Supp (Xi) = Bd, and will work with differential geometry on Sd−1.
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Theorem 1 (Rate of Convergence). With ĥ given by the Nadaraya-Watson estimator

(15), for any bn → 0 and nbdn/ logn → ∞,

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

max
{

b2
n, (nbn)− 1

2 ,
(

n2bdn/ logn
)− 1

3

})

. (16)

For d < 4, with the optimal bandwidth choice bn ∼ n− 1
5 ,

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

n−2/5
)

.

For 4 ≤ d < 6, with the optimal (up to log factors) bandwidth choice bn ∼ n− 2
d+6 ,

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

n− 4
d+6 (log n)

1
3

)

.

For d ≥ 6, with the optimal (up to log factors) bandwidth choice bn ∼
(

n/ log2 n
)− 1

d ,

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

n− 2
d (log n)

4
d

)

.

If the bandwidth is chosen to optimize the first-stage convergence rate an, the final

convergence rate for θ̂ is characterized by the following Corollary:

Corollary 1. Let a∗
n := n− 2

d+4
√

logn denote the optimal sup-norm convergence rate

of ĥ to h (with respect to the first-stage estimation only). Then:

(i) With bn optimally chosen as in Theorem 1,
∥

∥

∥θ̂ − θ0

∥

∥

∥ = op (a∗
n).

(ii) With bn ∼ n− 1
d+4 so that an = a∗

n, then
∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

n− 2
d+4

)

.

First, we observe that the bias and variances induced by P
(

gθ,ĥ − gθ0,ĥ

)

are of order

b2
n and (nbn)−1/2, which do not depend on the dimension d as in Horowitz (1992).

Setting bn ∼ n−1/5 balances these two terms, b2
n ∼ (nbn)−1/2 ∼ n−2/5. However,

in our current setting, we also need an to be sufficiently small so as to control the

disturbances induced by the first-stage nonparametric estimation of h, whose sup-

norm convergence rate an =
(

nbdn/ logn
)−1/2

+ b2
n depends on the dimension d. This

leads to the last term
(

n2bdn logn
)− 1

3 in (16), which in comparison is not required for

the SMS estimator. For d < 4, this term is negligible with bn ∼ n− 1
5 , but for d ≥ 4

this term becomes pivotal. It turns out that for d ≥ 4 but d < 6, the optimal choice

of bn ∼ n− 2
d+6 balances b2

n with
(

n2bdn log n
)− 1

3 while guaranteeing that the sup-norm

consistency of the first-stage estimator

(nbn)−1/2 <<
∥

∥

∥θ̂ − θ0

∥

∥

∥ ∼ b2
n << an ∼

(

nbdn/ logn
)−1/2

= o (1) .
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In other words, the choice of bn ∼ n− 2
d+6 is “over-smooth” relative to the SMS optimal

bandwidth, while being “under-smooth” relative to the optimal d-dimensional kernel

regression bandwidth. However, if d ≥ 6, then it is no longer possible to even balance

b2
n with

(

n2bdn log n
)− 1

3 , so we minimize b2
n subject to the consistency constraint that

an =
(

nbdn/ logn
)−1/2 → 0 by setting bn to be slightly larger than n− 1

d . In this case,

the dominant term in
∥

∥

∥θ̂ − θ0

∥

∥

∥ is a deterministic bias, while the disturbances are still

of the order
(

n2bdn/ logn
)− 1

3 ∼ (n log n)− 1
3 .

Of course, in this illustration we used the Gaussian density kernel. If smoothness

condition of order p is imposed along with the adoption of a kernel of order p, then

the generalization of (16) would look like

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

max
{

bpn, (nbn)− 1
2 ,

(

n2bdn log n
) 1

3

})

,

corresponding to an optimal rate of

∥

∥

∥θ̂ − θ0

∥

∥

∥ ∼























n− p

2p+1 , for d < p+ 2,

n− 2p

3p+d (logn)
1
3 , for p+ 2 ≤ d < 3p,

n− p

d (logn)
2p

d for d ≥ 3p.

Lastly, we note in Corollary (1) that the optimal rates are all strictly faster than

the optimal first-stage convergence rate a∗
n.

We now turn to the asymptotic distribution of θ̂, which has phase transitions at

d = p+ 2 = 4 and d = 3p = 6 (in our current setting) given the discussion above.

Theorem 2 (Asymptotic Distribution). There exists a positive semi-definite matrix

V that is invertible in the (d− 1)-dimensional tangent space of Sd−1 at θ0, as well

as a constant vector A1 orthogonal to θ0, such that:

(i) If d < 4 and bn ∼ n−1/5, then θ̂ is asymptotically normal:

n
2
5

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

d−→ N
(

V +A1, cV
+
)

(17)

for some constant c > 0.

(ii) If 4 ≤ d < 6 and bn ∼ n− 2
d+6 , then

n
4

d+6 (logn)− 1
3

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

d−→ arg max
s∈Rd:s

′
θ0=0

(

G (s) + A
′

1s− 1

2
s

′

V s
)

,

(18)
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where G is some d-dimensional zero-mean Gaussian process.

(iii) If d ≥ 6 and bn ∼
(

n/ log2 n
)− 1

d , then

n
2
d (logn)− 4

d

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

p−→ V +A1. (19)

As expected, for small d such that the n−2/5 convergence rate is attainable, the

influence from the first-stage nonparametric regression ĥ is asymptotically negligible,

making the TSMS estimator asymptotically equivalent to the SMS estimator. The

asymptotic normality result in (17) parallels the Horowitz (1992) result, but is stated

through projection onto the tangent space of the unit sphere at θ0 (which is essentially

Rd−1 and can be locally mapped back to the unit sphere).

For intermediate 4 ≤ d < 6, the disturbances from the first-stage estimation of h0

kick in, leading to asymptotic randomness in the form of a Gaussian process. Such

disturbances, corresponding to the term of order an
√
δn in Lemma 2, are the joint

product of the first-stage estimation error (of order an) and the discreteness of the

indicator function (or the order
√
δn). The magnitude of randomness in the final

Gaussian process G (s) induced by this term is balanced with the asymptotic bias

A
′

1s produced by the (optimally chosen level of) kernel smoothing, both of which

survives in the final asymptotic distribution along with usual quadratic identifying

information
(

−1
2
s

′
V s
)

.

In the standard asymptotic theory for n−1/2-normal semiparametric estimators

(e.g. Newey and McFadden, 1994, and Chen, Linton, and Van Keilegom, 2003), this

term will generally be negligible under the standard version of stochastic equicontinu-

ity conditions. Moreover, the term P
(

gθ,ĥ − gθ,h0

)

can usually be linearized based on

its functional derivative with respect to h0 and shown (or assumed) to be n−1/2-normal

(Theorem 8.1 in Newey and McFadden, 1994, and Condition 2.6 in Chen et al., 2003)

under the assumption of an = op
(

n−1/4
)

. In comparison, we note that in our current

setting such n−1/2-normality is unattainable.

On the other hand, the corresponding term in the local cubic-root asymptotics

considered in Seo and Otsu (2018) is of the order
√
anδ, which is larger than our

an
√
δ term. Hence, Seo and Otsu (2018) obtain convergence rates generally slower

than n−1/3 due to the additional lack of smoothness with respect to the nonparamet-

ric function h. The example considered in Delsol and Van Keilegom (2020) about

missing data does not feature non-smoothness with respect to h, but the function
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h does not serve a “smoothing role” on the indicator function involving the finite-

dimensional parameter of interest, thus still achieving an n−1/3 convergence rate. Cor-

respondingly, the asymptotic distributions obtained in their settings take the form of

arg maxsG (s) − s
′
V s, where the Gaussian noise dominates all other errors or biases.

In summary, our setting features a pivotal interplay between the smoothing of h0

and the finite estimation error of h0, leading to a partially accelerated rate between

n−1/2 and n−1/3, and an asymptotic distribution that features both the usual Gaussian

noise component and a bias component.

Finally, for d ≥ 6, the bias actually becomes the dominant term, resulting in a

degenerate asymptotic distribution. In principle, if we further symmetrize around the

asymptotic bias, the disturbances of the induced mean-zero process would be of the

order n− 1
3a

2
3
n ∼ (n logn)− 1

3 , or roughly the cubic-root rate. We leave the asymptotic

theory with various debiasing methods for future research.

3 TSMS in Monotone Multi-Index Models

We now turn to the more general setting of monotone index models, where the TSMS

estimator naturally arises without direct counterparts of the MS or SMS estimators.

Let (yi,Xi)
n
i=1 be a random sample of data with X := Supp (Xi) ⊆ RJ×d and

the dimension of yi unrestricted. Let h0 : X → R be an unknown function that

is directly identified from data. Usually h0 (x) is defined via a known functional of

the conditional distribution of yi given Xi = X, e.g. h0 (X) = E [yi|Xi = X] − 1
2

in

the binary choice model above. Let θ0 ∈ Θ ⊆ R
d be an unknown finite-dimensional

parameter of interest, which is related to h0 via the following assumption.

Assumption 3 (Multivariate Monotonicity). For any X = (X1, ..., XJ)
′ ∈ RJ×d,

X
′

jθ0 > 0 ∀j = 1, ..., J ⇒ h0 (X) > 0,

X
′

jθ0 = 0 ∀j = 1, ..., J ⇒ h0 (X) = 0, (20)

X
′

jθ0 < 0 ∀j = 1, ..., J ⇒ h0 (X) < 0.

In fact, Assumption 3 only assumes multivariate monotonicity around Xθ0 = 0, so it

can be interpreted as a “single-crossing” condition. Again we normalize θ0 ∈ SD−1,

as 3 imposes no restriction on the scale of θ0.
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Based on Assumption 3, we may define the following population and sample cri-

terion functions Q, Qn by

Q (θ, h) := E [γ (h (Xi))λ (Xi, θ0) + γ (−h (Xi))λ (−Xi, θ0)] , (21)

Qn (θ, h) :=
1

n

n
∑

i=1

[

γ
(

ĥ (Xi)
)

λ (Xi, θ0) + γ
(

−ĥ (Xi)
)

λ (−Xi, θ0)
]

(22)

for any θ ∈ Θ and any function h : Rd → R, where

λ (Xi, θ0) := −
J
∏

j=1

1

{

X
′

ijθ0 > 0
}

,

while γ is a smooth one-sided sign-preserving function s.t.

γ (t)











> 0, if t > 0,

= 0, if t ≤ 0.

Given a first-stage estimator ĥ of h0, we define the TSMS estimator as

θ̂ :∈ arg max
θ∈Sd−1

Qn

(

θ, ĥ
)

.

We can then extend our analysis of the asymptotic theory for the TSMS estimator in

the binary choice setting to the current multi-index setting under.

Assumption 4 (Sufficient Conditions for Point Identification).

(i) 0 is an interior point of X , and X is a convex and compact subset of RJ×d.

(ii) The probability density function p (X) of Xi is uniformly bounded and also uni-

formly bounded away from zero on X .

(iii) The one-sided sign-preserving function γ is uniformly bounded and twice differ-

entiable (except possibly at 0) with uniformly bounded derivatives.

The point identification of θ0 and the consistency of θ̂ can then be established:

Lemma 4. Under Assumptions 3 and 4, θ0 = arg maxθ∈ΘQ (θ, h0) .

Lemma 5. Under Assumptions 2, 3 and 4,
∥

∥

∥θ̂ − θ0

∥

∥

∥

p−→ 0.

We first provide a general bound on the rate of convergence of θ̂ without further

assumptions on the first-stage estimator ĥ.
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Lemma 6 (General Bound on the Rate of Convergence). Under Assumptions 3-4,
∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op (an) .

To obtain sharper bounds on the rate of convergence, we need to analyze the term

P
(

gθ,ĥ − gθ0,ĥ

)

more closely.

Theorem 3. Suppose Assumptions 3-4 hold and furthermore

P
(

gθ,ĥ − gθ0,ĥ

)

= unA (θ − θ0) + vnWn (θ − θ0) − (θ − θ0)
′

V (θ − θ0) + op
(

unδ + vnδ + δ2
)

with A and V being constant vector and matrix, Wn = Op (1), and un, vn = o (1).

Then:
∥

∥

∥θ̂ − θ0

∥

∥

∥ = max
{

n− 1
3a

2
3
n , un, vn

}

.

Again, un and vn will be dependent on the specific forms of the first-stage estimator

ĥ, and we are currently investigating representative special cases based on kernel

(Nadaraya-Watson) and sieve (linear series) first stages.

4 Conclusion

This paper considers the asymptotic theory of the TSMS estimator that is applica-

ble in semiparametric models that a general form of monotonicity in one or several

parametric indexes. We show that the first-stage nonparametric estimator effectively

serves as an imperfect smoothing function on a non-smooth criterion function, leading

to the pivotality of the first-stage estimation error with respect to the second-stage

convergence rate and asymptotic distribution.

The current analysis is mostly focused on a kernel first-stage regression, but it

would be interesting and informative to replicate the analysis with a sieve first stage,

say, based on the general results obtained in Belloni et al. (2015) and Chen and Christensen

(2015). Moreover, a full-fledged distribution theory and inferential procedure that

fully accommodates the dimension d, the smoothness s, and various kernel/sieve

first-stage estimators still require considerable work to be developed.
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Appendix

A Main Proofs

A.1 Lemma on Entropy Integrals

Define G := {gθ,h − gθ0,h : θ ∈ Θ, h ∈ H}, which is uniformly bounded since H is

uniformly bounded. We first establish the finiteness of the following uniform entropy

integral.

Lemma 7. J := supQ
∫ 1

0

√

log N (ǫ,G, L2 (Q))dǫ < ∞.

Proof. The collection of indicators for half spaces 1

{

x
′
θ ≥ 0

}

across θ ∈ Sd−1 is a

VC-subgraph class of functions with VC dimension d+ 2, so by VW Lemma 2.6.18,
{

1

{

x
′

θ ≥ 0
}

− 1

{

x
′

θ0 ≥ 0
}

: θ ∈ Θ
}

is also VC-subgraph class, which thus have bounded uniform entropy integrals. More-

over, since H ⊆ C⌊d/2⌋+1
M (X ), we know by VW Theorem 2.7.1 that log N (δ,H, ‖·‖∞) ≤

Cδ−d/(⌊d⌋+1) and thus also have bounded uniform entropy integrals
∫ 1

0
sup
Q

√

1 + log N (ǫ,G2, L2 (Q))dǫ < ∞.

21



By Kosorok (2008) Theorem 9.15, we deduce G also has uniformly bounded entropy

integral.

Alternatively, we could follow Chen, Linton, and Van Keilegom (2003) and work

with the following bracketing integral.

Lemma 8. J[] :=
∫ 1

0

√

1 + log N[] (ǫ,G, L2 (P ))dǫ < ∞.

Proof. Since H ⊆ C⌊d/2⌋+1
M (X ), we know by VW Theorem 2.7.1 that log N (δ,H, ‖·‖∞) ≤

Cδ−d/(⌊d⌋+1) so that
∫ 1

0

√

1 + log N (ǫ,G2, L2 (P ))dǫ < ∞. Moreover, for any (θ, h) ,
(

θ̃, h̃
)

∈
Θ × H, we have

∣

∣

∣(gθ,h − gθ0,h) −
(

gθ̃,h̃ − gθ0,h̃

)∣

∣

∣

≤
∣

∣

∣gθ,h − gθ̃,h

∣

∣

∣+
∣

∣

∣

(

gθ̃,h − gθ0,h

)

−
(

gθ̃,h̃ − gθ0,h̃

)∣

∣

∣

= |h (x)|1
{∣

∣

∣x
′

θ
∣

∣

∣ ≤ ‖x‖
∥

∥

∥θ̃ − θ
∥

∥

∥

}

+
∣

∣

∣h (x) − h̃ (x)
∣

∣

∣1

{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖
∥

∥

∥θ̃ − θ0

∥

∥

∥

}

≤M1

{∣

∣

∣x
′

θ
∣

∣

∣ ≤ ‖x‖
∥

∥

∥θ̃ − θ
∥

∥

∥

}

+
∥

∥

∥h̃− h
∥

∥

∥

∞

so that

P
(

(gθ,h − gθ0,h) −
(

gθ̃,h̃ − gθ0,h̃

))2

≤P
(

(

M2 + 2M
∥

∥

∥h̃− h
∥

∥

∥

∞

)

1

{∣

∣

∣x
′

θ
∣

∣

∣ ≤ ‖x‖
∥

∥

∥θ̃ − θ
∥

∥

∥

}

+
∥

∥

∥h̃− h
∥

∥

∥

2

∞

)

=
(

M2 + 2M
∥

∥

∥h̃− h
∥

∥

∥

∞

)

P
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖
∥

∥

∥θ − θ̃
∥

∥

∥

}

+
∥

∥

∥h̃− h
∥

∥

∥

2

∞

≤M ′
∥

∥

∥θ̃ − θ
∥

∥

∥+
∥

∥

∥h̃− h
∥

∥

∥

2

∞

Hence, following the proof of Theorem 3 (with Conditions 3.2 and 3.3) in Chen, Linton, and Van Keilegom

(2003), for any Θǫ that is an ǫ-cover of Θ and Hǫ that is an ǫ-cover of H, we deduce

that Θǫ × Hǫ is a
√
M ′ǫ+ ǫ2 ≤

√
M ′′ǫ bracket for (G, L2 (P )), implying that

log N[] (ǫ,G, ‖·‖∞) ≤ log N

(

ǫ2,×, ‖·‖
)

+log N

(

ǫ2,H, ‖·‖∞

)

≤ 2d (C − log ǫ)+ǫ−
2d

⌊d⌋+1

and hence

J :=
∫ 1

0

√

1 + log N[] (ǫ,G2, L2 (P ))dǫ ≤
∫ 1

0

√

2d (C − log ǫ) + ǫ−
2d

⌊d⌋+1dǫ ≤ C
′
∫ 1

0
ǫ−

d
⌊d⌋+1dǫ < ∞.

22



A.2 Proof of Lemma 1

Proof. Define G1,δ := {gθ,h0 − gθ0,h0 : ‖θ − θ0‖ ≤ δ}, which has an envelope G1,δ:

|gθ,h0 − gθ0,h0| = |h0 (x)|
∣

∣

∣1

{

x
′

θ ≥ 0
}

− 1

{

x
′

θ0 ≥ 0
}∣

∣

∣

= |h0 (x)|
(

1

{

x
′

θ ≥ 0 > x
′

θ0

}

+ 1

{

x
′

θ0 ≥ 0 > x
′

θ
})

= |h0 (x)|
(

1

{

x
′

θ0 + x
′

(θ − θ0) ≥ 0 > x
′

θ0

}

+ 1

{

x
′

θ0 ≥ 0 > x
′

θ0 + x
′

(θ − θ0)
})

≤ |h0 (x)|
(

1

{

x
′

θ0 + ‖x‖ ‖θ − θ0‖ ≥ 0 > x
′

θ0

}

+ 1

{

x
′

θ0 ≥ 0 > x
′

θ0 − ‖x‖ ‖θ − θ0‖
})

= |h0 (x)|
(

1

{

0 > x
′

θ0 ≥ − ‖x‖ ‖θ − θ0‖
}

+ 1

{

‖x‖ ‖θ − θ0‖ > 1

‖x‖x
′

θ0 ≥ 0

})

= |h0 (x)|
(

1

{

0 > x
′

θ0 ≥ − ‖x‖ ‖θ − θ0‖
}

+ 1

{

‖x‖ ‖θ − θ0‖ > 1

‖x‖x
′

θ0 ≥ 0

})

= |h0 (x)|
(

1

{

0 > x
′

θ0 ≥ − ‖x‖ ‖θ − θ0‖
}

+ 1

{

‖x‖ ‖θ − θ0‖ > 1

‖x‖x
′

θ0 ≥ 0

})

= |h0 (x)|1
{

− ‖x‖ ‖θ − θ0‖ ≤ x
′

θ0 < ‖x‖ ‖θ − θ0‖
}

≤
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

1

{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ ‖θ − θ0‖
}

=
∣

∣

∣0 + f (ξ (x)) x
′

θ0

∣

∣

∣1

{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ ‖θ − θ0‖
}

for some ξ (x) between 0 and x
′

θ0

≤ C
∣

∣

∣x
′

θ0

∣

∣

∣1

{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ ‖θ − θ0‖
}

since f is bounded

≤ C ‖x‖ ‖θ − θ0‖1
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ ‖θ − θ0‖
}

≤ C ‖θ − θ0‖1
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ ‖θ − θ0‖
}

since ‖x‖ ≤ 1

≤ Cδ1
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ δ
}

=: G1,δ

and, as Xi/ ‖Xi‖ is uniformly distributed on Sd−1,

PG2
1,δ = E

[

C2δ2
1

{∣

∣

∣X
′

iθ0

∣

∣

∣ ≤ ‖Xi‖ δ
}]

= C2δ2
P

(∣

∣

∣

∣

∣

X
′

i

‖Xi‖
θ0

∣

∣

∣

∣

∣

≤ δ

)

≤ C2δ3

Now, since G1,δ ⊆ G, we have N (ǫ,G1,δ, L2 (P )) ≤ N (ǫ,G, L2 (P )) and by Lemma 7

J1,δ :=
∫ 1

0

√

1 + log N (ǫ,G1,, L2 (P ))dǫ ≤ J < ∞.
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Then, by VW Theorem 2.14.1, we have

P sup
g∈G1,δ

|Gn (g)| ≤ J1,δ

√

PG2
1,δ ≤ J1Cδ

√
δ = M1δ

√
δ.

A.3 Proof of Lemma 2

Proof. Define G2,δ,n := {gθ,h − gθ0,h − gθ,h0 + gθ0,h0 : ‖θ − θ0‖ ≤ δ, ‖h− h0‖∞ ≤ Kan},

which has an envelope function G2,δ,n given by

|gθ,h − gθ0,h − gθ,h0 + gθ0,h0|
= |h (x) − h0 (x)|

∣

∣

∣1

{

x
′

θ ≥ 0
}

− 1

{

x
′

θ0 ≥ 0
}∣

∣

∣

≤ |h (x) − h0 (x)|1
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ ‖θ − θ0‖
}

≤Kan1
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ δ
}

=:G2,n,δ

with

PG2
2,n,δ = K2a2

nP

(∣

∣

∣

∣

∣

X
′

i

‖Xi‖
θ0

∣

∣

∣

∣

∣

≤ δ

)

≤ Ca2
nδ.

Since G2,δ,n ⊆ G −G1,δ := {g − g̃ : g ∈ G, g̃ ∈ G1,δ}, by Lemma 9.14 of Kosorok (2008),

G2,δ,n must also have bounded uniform entropy integrals. Hence,

J2 :=
∫ 1

0

√

1 + log N (ǫ,G2, L2 (P ))dǫ < ∞,

and by VW Theorem 2.14.1,

P sup
g∈G2,δ,n

‖Gn (g)‖ ≤ J2,δ

√

PG2
2,n,δ ≤ J2Can

√
δ = Man

√
δ.

A.4 Proof of Lemma 3

We first cite the following result in Absil, Mahony, and Trumpf (2013) about the

extrinsic representation of the Riemannian (surface) gradients and Hessians on S
d−1

via standard gradients and Hessians in the ambient space Rd of Sd.

Lemma 9 (Riemannian (Surface) Gradient and Hessian). Let Ψ : R
d → R be a

differentiable function in the standard sense, and let ψ : Sd−1 → R be the restriction
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of Ψ on S
d−1:

ψ (θ) = Ψ (θ) , ∀θ ∈ S
d−1,

Let ∇θ,∇θθ denote the standard gradient and Hessian in Rd. Let ∇S
θ ,∇S

θθ denotes the

Riemannian (surface) gradient and Hessian on Sd−1. Then, for any θ0 ∈ Sd−1,

∇S
θ ψ (θ0) = ∇θΨ (θ0) − 〈θ0,∇θΨ (θ0)〉 θ′

0 = ∇θΨ (θ0)
(

Id − θ0θ
′

0

)

∇S
θθψ (θ0) =

(

Id − θ0θ
′

0

)

∇θθΨ (θ0)
(

Id − θ0θ
′

0

)

− ∇θΨ (θ0) θ0

(

Id − θ0θ
′

0

)

with ∇S
θ psi (θ0) ,∇θΨ (θ0) written as 1×d row vectors5, ∇S

θθψ (θ0) ,∇θθΨ (θ0) as d×d

matrices, and Id denoting the d× d identity matrix.

We also state the following elementary results on change of coordinates with respect

to an orthonormal basis in Rd, which will be heavily exploited subsequently.

Definition 1 (Change of Coordinates). Let {θ0, ẽ2, .., ẽd} be an orthonormal basis in

R
d. Define Tθ0 to be the d× d basis transformation matrix

Tθ0 := (θ0, ẽ2, .., ẽd) .

so that T
′

θ0
x =

(

θ
′

0x, ẽ
′

2x, .., ẽ
′

dx
)

.

Lemma 10. (i) T
′

θ0
= T−1

θ0
. (ii) |det (Tθ0)| = 1, (iii) u

′
T

′

θ0
θ0 = u1 and

(

I − θ0θ
′

0

)

Tθ0u ≡
(

I − θ0θ
′

0

)

Tθ0u−1, ∀u ∈ R
d

where u−1 :=
(

0, u
′

−1

)′

∈ Rd and u−1 := (u2, ..., ud)
′ ∈ Rd−1.

Proof. (i)(ii) are elementary. (iii)(iv) follow from the observation that T
′

θ0
θ0 = (1, 0, ..., 0)

′

and

(

I − θ0θ
′

0

)

Tθ0 = (θ0, ẽ2, .., ẽd) − (θ0, ẽ2, .., ẽd)

















1

0
...

0

















= (0, ẽ2, .., ẽd) .

5Hence ∇θΨ (θ0) (θ − θ0) is a scalar as θ − θ0 is a column vector. To clarify, all vectors are by
default column vectors in this paper unless otherwise noted.
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Proof of Lemma 3(i)

Proof. Consider the following first-order Taylor expansion of fn,θ around θ0:

ψn,θ (z) − ψn,θ0 (z) =
(

y − 1

2

)

[

Φ

(

x
′
θ

bn

)

− Φ

(

x
′
θ0

bn

)]

=
(

y − 1

2

)

∇S
θ Φ

(

ξ (x)

bn

)

(θ − θ0)

=
(

y − 1

2

)

∇θΦ

(

ξ (x)

bn

)

(

Id − θ0θ
′

0

)

(θ − θ0)

=
(

y − 1

2

)

φ

(

ξ (x)

bn

)

x
′

bn

(

I − θ0θ
′

0

)

(θ − θ0)

for some ξ (x) that lies between x
′
θ and x

′
θ0. Then the function space

Gψ
n,δ := {ψn,θ (z) − ψn,θ0 (z) : ‖ψn,θ (z) − ψn,θ0 (z)‖ ≤ δ}

has an envelope Ψn,δ given b

|ψn,θ (z) − ψn,θ0 (z)| =
∣

∣

∣

∣

y − 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ

(

x
′
θ

bn

)

− Φ

(

x
′
θ0

bn

)∣

∣

∣

∣

∣

=
1

2bn
φ

(

ξ (x)

bn

)

∣

∣

∣x
′
(

I − θ0θ
′

0

)

(θ − θ0)
∣

∣

∣

≤ 1

2bn
φ

(

ξ (x)

bn

) ∣

∣

∣

∣

∣

x
′
(

I − θ0θ
′

0

) θ − θ0

‖θ − θ0‖

∣

∣

∣

∣

∣

δ

≤ 1

2bn
φn,δ

(

x
′

θ0

) ∥

∥

∥

(

I − θ0θ
′

0

)

x
∥

∥

∥ δ (23)

=: Ψn,δ

where the function φn,δ in (23) is defined as

φn,δ
(

x
′

θ0

)

:= max
ǫ:|ǫ|≤δ

φ

(

x
′
θ0 + ǫ

bn

)

= φ (0)1
{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ δ
}

+ φ





∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn





1

{∣

∣

∣x
′

θ0

∣

∣

∣ > δ
}

(24)

given that φ (t) is decreasing in |t|. This ensures the inequality in (23) by φ
(

ξ(x)
bn

)

≤
φn,δ

(

x
′
θ0

)

, because ξ (x) lies between x
′
θ0 and x

′
θ, while

x
′

θ ∈
[

x
′

θ0 − ‖x‖ δ, x′

θ0 + ‖x‖ δ
]

⊆
[

x
′

θ0 − δ, x
′

θ0 + δ
]

,

so that ξ (x) ∈
[

x
′
θ0 − δ, x

′
θ0 + δ

]

.
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Now, impose the change of coordinates to the basis {θ0, ẽ2, .., ẽd} as in Definition

1 with u := T
′

θ0
x and thus x = Tθ0u. Then, by Lemma 10,

PΨ2
n,δ =

δ2

4b2
n

∫

φ
2

n,δ

(

x
′

θ0

)

x
′
(

I − θ0θ
′

0

)

xpxdx

=
δ2

4b2
n

∫

φ
2

n,δ

(

u
′

T
′

θ0
θ0

)

u
′

T
′

θ0

(

I − θ0θ
′

0

)

Tθ0upxdTθ0u

=
δ2

4b2
n

∫

φ
2

n,δ (u1)u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

Tθ0u−1pxdu

=
δ2

4b2
n

∫ ∫

φ
2

n,δ (u1) du1u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

Tθ0u−1pxdu−1

while
∫

φ
2

n,δ (u1) du1 =
∫

φ2 (0)1 {|u1| ≤ δ} du1 +
∫

φ2

(

|u1| − δ

bn

)

1 {|u1| > δ} du1

=2φ2 (0)
∫ δ

0
du1 + 2

∫ 1

δ
φ2

(

u1 − δ

bn

)

du1

=2φ2 (0) δ + 2
∫ b−1

n (1−δ)

0
φ2 (ζ1) d (bnζ1 + δ) with ζ1 :=

u1 − δ

bn

≤2φ2 (0) δ + 2bn

∫ ∞

0
φ2 (ζ1) dζ1

≤C (δ + bn)

and
∫

u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

Tθ0u−1pxdu−1 ∈ (0,∞). Hence,

PΨ2
n,δ ≤ δ2

4b2
n

C (δ + bn) ,

and by VW Theorem 2.14.1, we have

P sup
‖θ−θ0‖≤δ

|Gn (ψn,θ − ψn,θ0)| ≤ J
√

PΨ2
n,δ ≤ M1

δ

bn
(δ + bn)

1
2 .

Proof of Lemma 3(ii)

Proof. First, consider the following second-order Taylor expansion of ψn,θ − ψn,θ0:

ψn,θ (z) − ψn,θ0 (z)

=
(

y − 1

2

)

[

∇S
θ Φ

(

x
′
θ0

bn

)

(θ − θ0) +
1

2
(θ − θ0)

′ ∇S
θθΦ

(

ξ (x)

bn

)

(θ − θ0)

]
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=
(

y − 1

2

)

∇θΦ

(

x
′
θ0

bn

)

(

Id − θ0θ
′

0

)

(θ − θ0)

= +
1

2

(

y − 1

2

)

(θ − θ0)
(

Id − θ0θ
′

0

)

∇θθΦ

(

ξ (x)

bn

)

(

Id − θ0θ
′

0

)

(θ − θ0)

− 1

2

(

y − 1

2

)

∇θΦ

(

ξ (x)

bn

)

θ0

(

Id − θ0θ
′

0

)

(θ − θ0)

=
(

y − 1

2

)

φ

(

x
′
θ0

bn

)

x
′

bn

(

I − θ0θ
′

0

)

(θ − θ0)

+
1

2

(

y − 1

2

)

(θ − θ0)
′ (

Id − θ0θ
′

0

)

φ
′

(

ξ (x)

bn

)

· xx
′

b2
n

(

Id − θ0θ
′

0

)

(θ − θ0)

− 1

2

(

y − 1

2

)

φ

(

ξ (x)

bn

)

x
′

bn
θ0 (θ − θ0)

′
(

Id − θ0θ
′

0

)

(θ − θ0)

for some ξ (x) between x
′
θ0 and x

′
θ. Then:

P (ψn,θ (z) − ψn,θ0 (z))

=
∫

E

[

yi − 1

2

∣

∣

∣

∣

Xi = x
]

(

Φ

(

x
′
θ

bn

)

− Φ

(

x
′
θ0

bn

))

pxdx

=

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ

(

x
′
θ0

bn

)

x
′

bn

(

I − θ0θ
′

0

)

pxdx

]

(θ − θ0) (25)

+
1

2
(θ − θ0)

′

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ
′

(

ξ (x)

bn

)

(

Id − θ0θ
′

0

) xx
′

b2
n

(

Id − θ0θ
′

0

)

pxdx

]

(θ − θ0)

(26)

− 1

2

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ

(

ξ (x)

bn

)

x
′
θ0

bn
pxdx

]

(θ − θ0)
′ (

Id − θ0θ
′

0

)

(θ − θ0) (27)

=:An,1 (θ − θ0) + (θ − θ0)
′

An,2 (θ − θ0) + An,3 (θ − θ0)
′ (

Id − θ0θ
′

0

)

(θ − θ0) (28)

In the following we deal with An,1, An,2, An,3 separately.

First, for An,1, we consider the bracketed term in (25) and expand F (t) around

t = 0:

An,1 :=
∫ (

F
(

x
′

θ0

)

− 1

2

)

φ

(

x
′
θ0

bn

)

x
′

bn

(

I − θ0θ
′

0

)

pxdx

=
1

bn

∫ (

F
(

u
′

T
′

θ0
θ0

)

− 1

2

)

φ

(

u
′
T

′

θ0
θ0

bn

)

u
′

T
′

θ0

(

I − θ0θ
′

0

)

pxdu

=
1

bn

∫ (

F (u1) − 1

2

)

φ
(

u1

bn

)

u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdu1du−1
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=
1

bn

∫ (

F (bnζ1) − 1

2

)

φ (ζ1) u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxd (bnζ1) du−1with ζ1 :=
u1

bn

=
∫

[

f (0) bnζ1 + f
′
(

bnζ̃1

)

(bnζ1)
2
]

φ (ζ1)u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdζ1du−1 for some ζ̃1 between 0 and ζ1

= bn ·
∫ ∫ b−1

n

−b−1
n

ζ1φ (ζ1) dζ1u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdu−1

+ b2
n ·
∫ ∫

f
′
(

bnζ̃1

)

ζ2
1φ (ζ1) dζ1 ·

∫

u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdu−1

= b2
n ·
∫ ∫

f
′
(

bnζ̃1

)

ζ2
1φ (ζ1) dζ1 ·

∫

u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdu−1

since
∫ t

−t ζ1φ (ζ1) dζ1 = 0 for all t ∈ R. Moreover, noting that f
′
(

bnζ̃1

)

→ f
′
(0) > 0

as n → ∞, by the dominated convergence theorem, we have

b−2
n An,1 =

∫ ∫

f
′
(

bnζ̃1

)

ζ2
1φ (ζ1) dζ1u

′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdu−1

→ f
′

(0) ·
∫ ∞

−∞
ζ2

1φ (ζ1) dζ1 ·
∫

u1=0
u

′

−1pxdu−1 · T ′

θ0

(

I − θ0θ
′

0

)

= f
′

(0) · 1 ·
∫

u1=0
u

′

−1pxdu−1 · T ′

θ0

(

I − θ0θ
′

0

)

=: A1

and hence

An,1 = A1b
2
n + o

(

b2
n

)

. (29)

Second, consider An,2 corresponding to (26):

An,2 =
(

I − θ0θ
′

0

)

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ
′

(

ξ (x)

bn

)

xx
′

b2
n

pxdx

]

(

I − θ0θ
′

0

)

=
(

I − θ0θ
′

0

)

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ
′

(

x
′
θ0

bn

)

xx
′

b2
n

pxdx

]

(

I − θ0θ
′

0

)

+
(

I − θ0θ
′

0

)

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ
′

(

ξ (x)

bn

)

− φ
′

(

x
′
θ0

bn

)

· xx
′

b2
n

pxdx

]

(

I − θ0θ
′

0

)

=: An,2,1 + An,2,2

where

An,2,1 =
(

I − θ0θ
′

0

)

[

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ
′

(

x
′
θ0

bn

)

xx
′

b2
n

pxdx

]

(

I − θ0θ
′

0

)

=
(

I − θ0θ
′

0

)

[

∫ (

F (u1) − 1

2

)

φ
′
(

u1

bn

)

Tθ0u−1u
′

−1T
′

θ0

b2
n

pxdu1du−1

]

(

I − θ0θ
′

0

)

=
(

I − θ0θ
′

0

)

Tθ0

[

∫

f
(

bnζ̃1

)

bnζ1φ
′

(ζ1)
u−1u

′

−1

b2
n

bndζ1du−1

]

T
′

θ0

(

I − θ0θ
′

0

)

29



=
(

I − θ0θ
′

0

)

Tθ0

[∫

f
(

bnζ̃1

)

ζ1φ
′

(ζ1) u−1u
′

−1dζ1dz−1

]

T
′

θ0

(

I − θ0θ
′

0

)

→
(

I − θ0θ
′

0

)

Tθ0 · f (0)
∫

ζ1φ
′

(ζ1) dζ1 ·
∫

u1=0
u−1u

′

−1dζ1dz−1T
′

θ0

(

I − θ0θ
′

0

)

= −f (0) ·
(

I − θ0θ
′

0

)

Tθ0

(∫

u1=0
u−1u

′

−1pxdu−1

)

T
′

θ0

(

I − θ0θ
′

0

)

=: −V

since
∫

ζ1φ
′

(ζ1) dζ1 =
∫

ζ1
1√
2π

(−ζ1) e
− 1

2
ζ2

1dζ1 = −
∫

ζ2
1φ (ζ1) dζ1 = −1.

Now for any θ ∈ Sd−1 in a neighborhood of θ0, define

v (θ) :=
(

0, v (θ)
′

−1

)′

:= T
′

θ0

(

I − θ0θ
′

0

)

(θ − θ0)

Vu−1 := f (0)
∫

u1=0
u−1u

′

−1pxdu−1 ∈ R
(d−1)×(d−1) (30)

Vu−1
:=





0 0
′

0 Vu−1



 (31)

so that

V =
(

I − θ0θ
′

0

)

Tθ0Vu−1T
′

θ0

(

I − θ0θ
′

0

)

and thus

(θ − θ0)
′

V (θ − θ0) =v (θ)
′

Vu−1v (θ) = v (θ)
′

−1 Vu−1v (θ)−1

≥λmin

(

Vu−1

) ∥

∥

∥v (θ)−1

∥

∥

∥

2
= λmin

(

Vu−1

)

‖v (θ)‖2

since Vu−1 is positive definite and thus λmin

(

Vu−1

)

> 0. Furthermore, notice that

‖v (θ)‖2 = (θ − θ0)
′ (

I − θ0θ
′

0

)

Tθ0T
′

θ0

(

I − θ0θ
′

0

)

(θ − θ0)

= (θ − θ0)
′
(

I − θ0θ
′

0

)

I
(

I − θ0θ
′

0

)

(θ − θ0)

=
∥

∥

∥

(

I − θ0θ
′

0

)

(θ − θ0)
∥

∥

∥

2
=
∥

∥

∥

(

I − θ0θ
′

0

)

θ
∥

∥

∥

2

=
(

1 − θ
′

0θ
) (

1 + θ
′

0θ
)

= ‖θ − θ0‖2
(

1 − 1

4
‖θ − θ0‖2

)

≥ 3

4
‖θ − θ0‖2 for ‖θ − θ0‖ ≤ 1
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and hence, in a neighborhood of θ0,we have

(θ − θ0)
′

V (θ − θ0) ≥ 3

4
λmin

(

Vu−1

)

‖θ − θ0‖2 = C ‖θ − θ0‖2 . (32)

Now, we turn to An,2 and write δ := ‖θ − θ0‖, then

|An,2,2| ≤
(

I − θ0θ
′

0

)

∫
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ
′

(

ξ (x)

bn

)

− φ
′

(

x
′
θ0

bn

)∣

∣

∣

∣

∣

· xx
′

b2
n

pxdx
(

I − θ0θ
′

0

)

≤
(

I − θ0θ
′

0

)

∫
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

φ
′′

n,δ

(

x
′

θ0

)

∣

∣

∣x
′
θ − x

′
θ0

∣

∣

∣

bn
· xx

′

b2
n

pxdx
(

I − θ0θ
′

0

)

≤
(

I − θ0θ
′

0

)

∫
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

φ
′′

n,δ

(

x
′

θ0

) δ

bn
· xx

′

b2
n

pxdx
(

I − θ0θ
′

0

)

where

φ
′′

n,δ

(

x
′

θ0

)

:= 1







∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn
≤

√
3







+

∣

∣

∣

∣

∣

∣

φ
′′





∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn





∣

∣

∣

∣

∣

∣

1







∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn
>

√
3







guarantees that
∣

∣

∣φ
′′

(t)
∣

∣

∣ ≤ φ
′′

n,δ

(

x
′
θ0

)

for any

t ∈
[

x
′
θ0 − δ

bn
,
x

′
θ0 + δ

bn

]

since φ
′′

(|t|) ≤ 1 and φ
′′

(|t|) is decreasing in |t| for |t| ≥
√

3. Hence,

∣

∣

∣

∣

∣

φ
′

(

ξ (x)

bn

)

− φ
′

(

x
′
θ0

bn

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

φ
′′

(

ξ̃ (x)

bn

)∣

∣

∣

∣

∣

∣

∣

∣x
′
θ − x

′
θ0

∣

∣

∣

bn
≤ φ

′′

n,δ

(

x
′

θ0

)

∣

∣

∣x
′
θ − x

′
θ0

∣

∣

∣

bn

since ξ̃ (x) lies between ξ (x) and x
′
θ0, while ξ (x) ∈

[

x
′
θ0 − δ, x

′
θ0 + δ

]

. Then,

|An,2,2| ≤
(

I − θ0θ
′

0

)

∫
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

∣

∣

∣φ
′′

n,δ

(

x
′

θ0

)∣

∣

∣

δ

bn
· xx

′

b2
n

pxdx
(

I − θ0θ
′

0

)

=
(

I − θ0θ
′

0

)

∫

f (ũ1) |u1|
∣

∣

∣φ
′′

n,δ

(

x
′

θ0

)∣

∣

∣

δ

bn
· xx

′

b2
n

pxdx
(

I − θ0θ
′

0

)

=
δ

b3
n

(

I − θ0θ
′

0

)

∫ [∫

f (ũ1) |u1|φ′′

n,δ (u1) du1

]

Tθ0u−1u
′

−1T
′

θ0
pxdu−1

(

I − θ0θ
′

0

)

where
∫

f (ũ1) |u1|φ′′

n,δ (u1) du1 =
∫

f (ũ1)1

{

|u1| − δ

bn
≤

√
3

}

|u1| du1

+
∫

f (ũ1)

∣

∣

∣

∣

∣

φ
′′

(

|u1| − δ

bn

)∣

∣

∣

∣

∣

1

{

|u1| − δ

bn
>

√
3

}

|u1| du1
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= 2
∫ δ+

√
3bn

0
f (ũ1)u1du1 + 2

∫ 1

δ+
√

3bn

f (ũ1)

∣

∣

∣

∣

∣

φ
′′

(

u1 − δ

bn

)∣

∣

∣

∣

∣

u1du1

≤ M
(

δ +
√

3bn
)2

+ 2M
∫ b−1

n (1−δ)
√

3

∣

∣

∣φ
′′

(ζ1)
∣

∣

∣ (bnζ1 + δ) d (bnζ1 + δ)

= M
(

δ +
√

3bn
)2

+ 2Mb2
n

∫ ∞
√

3

∣

∣

∣φ
′′

(ζ1)
∣

∣

∣ ζ1dζ1 + 2bnδ
∫ ∞

√
3

∣

∣

∣φ
′′

(ζ1)
∣

∣

∣ dζ1

≤ M
′
(

b2
n + δ2

)

and hence

|An,2,2| ≤ M
′ δ

b3
n

(

b2
n + δ2

)

= M
′

b−1
n δ

(

1 + b−2
n δ−2

)

.

Combining An,2,1and An,2,2 we have

An,2 = −A2 + o (1) +O
(

b−1
n δ

(

1 + b−2
n δ−2

))

(33)

We will show that O (b−1
n δ (1 + b−2

n δ−2)) is irrelevant later.

Lastly, consider An,3 corresponding to (27):

An,3 =
1

2

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ

(

ξ (x)

bn

)

x
′
θ0

bn
pxdx.

=
1

2

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ

(

x
′
θ0

bn

)

x
′
θ0

bn
pxdx

+
1

2

∫ (

F
(

x
′

θ0

)

− 1

2

)

[

φ

(

ξ (x)

bn

)

− φ

(

x
′
θ0

bn

)]

x
′
θ0

bn
pxdx

=: An,3,1 + An,3,2

For An,3,1, we have

An,3,1 =
1

2

∫ (

F
(

x
′

θ0

)

− 1

2

)

φ

(

x
′
θ0

bn

)

x
′
θ0

bn
pxdx

=
1

2

∫

f (ũ1)u1φ
(

u1

bn

)

u1

bn
pxdu1du−1

=
1

2

∫

f
(

bnζ̃1

)

bnζ1φ (ζ1) ζ1pxbndζ1du−1

so that

b−2
n An,3,1 → 1

2
f (0)

∫

ζ2
1φ (ζ1) dζ1

∫

u1=0
pxdu−1 := A3

For An,3,2, writing δ = ‖θ − θ0‖, we have

|An,3,2| ≤ 1

2

∫
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ
′

(

ξ̃ (x)

bn

)∣

∣

∣

∣

∣

∣

∣

∣x
′
θ − x

′
θ0

∣

∣

∣

bn

∣

∣

∣x
′
θ0

∣

∣

∣

bn
pxdx
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≤ δ

2b2
n

∫
∣

∣

∣

∣

F
(

x
′

θ0

)

− 1

2

∣

∣

∣

∣

φ′

n,δ

(

x
′

θ0

) ∣

∣

∣x
′

θ0

∣

∣

∣ pxdx

with

φ′

n,δ

(

x
′

θ0

)

: = e− 1
2
1







∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn
≤ 1







+

∣

∣

∣

∣

∣

∣

φ
′





∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn





∣

∣

∣

∣

∣

∣

1







∣

∣

∣x
′
θ0

∣

∣

∣− δ

bn
> 1







since
∣

∣

∣φ
′
(t)
∣

∣

∣ ≤ φ
′
(1) = e− 1

2 and
∣

∣

∣φ
′
(t)
∣

∣

∣ is increasing in |t| for 0 < |t| < 1 and then

decreasing in |t| for |t| > 1. Then,

|An,3,2| ≤ δ

2b2
n

∫

f (ũ1)u
2
1φ

′

n,δ (u1) du1pxdu−1

≤ δ

2bn
M
∫

1 {|u1| ≤ bn + δ}u2
1du1pxdu−1

+
δ

2bn
M
∫

φ
′

(

u1 − δ

bn

)

1 {|u1| > bn + δ} u2
1du1pxdu−1

=
δ

bn
M
∫ ∫ bn+δ

0
u2

1du1pxdu−1 +
δ

bn
M
∫ ∫ 1

bn+δ

∣

∣

∣

∣

∣

φ
′

(

u1 − δ

bn

)∣

∣

∣

∣

∣

u2
1du1pxdu−1

≤ δ

bn
M (bn + δ)3

∫

pxdu−1 +
δ

bn
b3
nM

∫ ∫ b−1
n (1−δ)

1

∣

∣

∣φ
′

(ζ1)
∣

∣

∣ (bnζ1 + δ)2 dζ1pxdu−1

= M
′

(bn + δ)3 + δM
∫ ∫ ∞

1

∣

∣

∣φ
′

(ζ1)
∣

∣

∣

(

b2
nζ

2
1 + 2bnδζ1 + δ2

)

dζ1pxdu−1

≤ M
′′
[

(bn + δ)3 + δ (bn + δ)2
]

= M
′′′

(bn + δ)3

Combing An,3,1 and An,3,2 we have

An,3 = An,3,1 + An,3,2 = A3b
2
n + o

(

b2
n

)

+O
(

(bn + δ)3
)

. (34)

Plugging the results in (29)(33)(34) about An,1, An,2, An,3 into (28), we deduce,

with δ := ‖θ − θ0‖,

P (ψn,θ (z) − ψn,θ0 (z)) = An,1 (θ − θ0) + (θ − θ0)
′

An,2 (θ − θ0) + An,3 (θ − θ0)
′ (

Id − θ0θ
′

0

)

(θ − θ0)

= b2
nA1 (θ − θ0) + o

(

δb2
n

)

− (θ − θ0)
′

V (θ − θ0) + o
(

δ2
)

+O
(

b−1
n δ3

(

1 + b−2
n δ−2

))

+ A3b
2
nδ

2 + o
(

b2
nδ

2
)

+O
(

δ2 (bn + δ)3
)

(35)

= − (θ − θ0)
′

V (θ − θ0) + b2
nA1 (θ − θ0) + o

(

δ2
)

+ o
(

b2
nδ
)

+O
(

b−1
n δ3

(

1 + b−2
n δ−2

))
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A.5 Proof of Theorem 1

Proof. For consistency, we observe that

sup
θ∈Θ

sup
h∈H

|Pngθ,h − Pgθ,h| = op (1) .

since G is Gilvenko-Cantelli given Lemma 7. Moreover,

sup
θ∈Θ

sup
‖h−h0‖∞≤ǫ

|Pgθ,h − Pgθ,h0| ≤ P (|h− h0|) ≤ ǫ → 0 as δ → 0.

As
∥

∥

∥ĥ− h0

∥

∥

∥

∞
= op (1) and ĥ ∈ H with probability approaching 1 by Assumption 2,

we conclude by Theorem 1 of Delsol and Van Keilegom (2020, DvK thereafter) that
∥

∥

∥θ̂ − θ0

∥

∥

∥ = op (1) .

For the rate of convergence, we apply Theorem 2 of DvK by verifying their Con-

ditions B1-B4.

B1 directly follows from the consistency of θ̂ and the assumption that
∥

∥

∥ĥ− h0

∥

∥

∥

∞
=

Op (an).

For their Condition B2, observe that

Gn (gθ,h − gθ0,h) = Gn (gθ,h0 − gθ0,h0) + Gn (gθ,h − gθ0,h − gθ,h0 + gθ0,h0)

and thus, by (1)and (2),

P sup
‖θ−θ0‖≤δ,‖h−h0‖∞≤Kan

|Gn (gθ,h − gθ0,h)| ≤ M1δ
3
2 +M2an

√
δ.

so that Φn (δ) = δ
3
2 + an

√
δ in the notation of DvK.

By Lemma (3)(i), for any M < ∞, we have

P

(

Gn (ψn,θ − ψn,θ0) > Mb−1
n (bn + ‖θ − θ0‖)

1
2 ‖θ − θ0‖

)

≤ P

(

sup
‖θ−θ0‖≤δ,‖h−h0‖∞≤Kan

|Gn (ψn,θ − ψn,θ0)| > Mb−1
n (bn + ‖θ − θ0‖)

1
2 ‖θ − θ0‖

)

≤
P sup‖θ−θ0‖≤δ,‖h−h0‖∞≤Kan

|Gn (ψn,θ − ψn,θ0)|
Mb−1

n (bn + ‖θ − θ0‖)
1
2 ‖θ − θ0‖

by Markov Inequality,

≤ M3b
−1
n (bn + ‖θ − θ0‖)

1
2 ‖θ − θ0‖

Mb−1
n (bn + ‖θ − θ0‖)

1
2 ‖θ − θ0‖

=
M3

M
→ 0 as M → ∞.

Hence, combining with (3)(ii), we have

P
(

gθ,ĥ − gθ0,ĥ

)

=
1√
n
Gn (ψn,θ − ψn,θ0) + P (ψn,θ − ψn,θ0) ,
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≤ Rn
1√
n
b−1
n (bn + ‖θ − θ0‖)

1
2 ‖θ − θ0‖ − C ‖θ − θ0‖2 +M4b

2
n ‖θ − θ0‖

+M5b
−1
n ‖θ − θ0‖3

(

1 + b−2
n ‖θ − θ0‖−2

)

(36)

with Rn = Op (1).

Letting
∥

∥

∥θ̂ − θ0

∥

∥

∥ := Op (δn), we seek to find the smallest δn that verifies Condition

B3 and B4 in DvK6. First, we set the bandwidth bn to be such that

1√
nbn

= b2
n ⇔ bn = n− 1

5 ,

which exactly corresponds to the optimal choice of bandwidth in Horowitz (1992).

This ensures that the second and the third terms in (36) are of the same order of

magnitude
1√
n
b−1
n δn (δn + bn)

1
2 ∼ b2

nδ

provided that δn = o (bn). Setting δn ∼ n−2/5 = o (bn), we see that

b2
n ∼ 1√

n
b−1
n (δn + bn)

1
2 ∼ n− 2

5 = O (δn) ,

and moreover b−1
n δ3

n (1 + b−2
n δ−2

n ) = o (1) δ2
n. Hence, Condition B3 of DvK is verified.

Lastly, for Condition B4, we see that

1

δ2
n

Φn (δn) =
1

δ2
n

(

δ
3
2
n + an

√

δn

)

=
(

δ
− 1

2
n + anδ

− 3
2

n

)

∼ n
1
5 + ann

3
5 ,

which is O (
√
n) provided that an = O

(

n−1/10
)

. Since an =
(

nbdn/ logn
)− 1

2 + b2
n for

the Nadaraya-Watson estimator, with bn ∼ n− 1
5 we have

an = n− 1
2

+ d
10

√

logn = Op

(

n− 1
10

)

⇔ d < 4.

Hence, for d < 4, the impact of the first-stage estimation through an is negligible

with bn ∼ n− 1
5 , and thus

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

n−2/5
)

.

For d ≥ 4, the n−2/5-rate is unattainable due to the higher dimensionality (d) of

the first-stage kernel regression. Optimally, we set bn so as to minimize

max
{

n− 1
3

(

nbdn/ logn
)− 1

2
· 2

3 , b2
n, (nbn)− 1

2

}

, (37)

6δn = r−1
n in DvK’s notation.
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which is solved by setting b2
n ∼ n− 1

3

(

nbdn/ logn
)− 1

2
· 2

3 (up to the logn factor) with

bn ∼ n− 2
d+6

giving an optimal rate of convergence at

δn = n− 4
d+6 (logn)

1
3 ,

provided that the first-stage estimator ĥ is still consistent with an =
(

nbdn/ logn
)−1/2 →

0, or

bn ∼ n− 2
d+6 >> n− 1

d ,

which is possible if d < 6.

For d ≥ 6, b2
n becomes the dominant term in (37), which should be minimized

subject to the constraint an =
(

nbdn/ logn
)−1/2 → 0. This can be roughly achieved

by setting, say, bn ∼
(

n−1 log2 n
) 1

d , in which case an = 1/ logn → 0 and

∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

b2
n

)

= n− 2
d (logn)

4
d .

A.6 Proof of Theorem (2)(i)

Proof. For d < 4, define Mn (θ) := Pngθ,ĥ and M (θ) := − (θ − θ0)
′

V (θ − θ0) so that

δ−1
n

[(

Mn

(

θ̃n
)

− M

(

θ̃n
))

− (Mn (θ0) − M (θ0))
]

=
1√
nδn

Gn

(

gθ̃n,ĥ
− gθ0,ĥ

)

+
1

δn

[

P
(

gθ̃n,ĥ
− gθ0,ĥ

)

− M (θ)
]

=:Bn,1 +Bn,2

for any θ̃n s.t.
∥

∥

∥θ̃n − θ0

∥

∥

∥ = Op (δn) = Op

(

n−2/5
)

. With the optimal choice of band-

width b−1/5
n , we know an = n− 1

2
+ d

10

√
logn = o

(

n− 1
10

)

and thus by Lemma 1 and 2,

we have

P sup
‖ĥ−h0‖≤Kan

1√
nδn

∣

∣

∣Gn

(

gθ̃n,ĥ
− gθ0,ĥ

)∣

∣

∣ ≤ M
1√
nδn

(

δn
√

δn + an
√

δn

)

= O
(

n− 1
2 δn + n− 1

2anδ
− 1

2
n

)

= o (δn) + o
(

n− 1
2n− 1

10

(

n− 2
5

)− 3
2

)

δn = o (δn) + o (1) δn = o (δn)

Hence,

Bn,1 = op (δn) .
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Now, recall that

Bn,2 =
1

δn

[

P
(

gθ̃n,ĥ
− gθ0,ĥ

)

− M (θ)
]

=
1√
nδn

Gn

(

ψn,θ̃n
− ψn,θ0

)

+
1

δn

[

P
(

ψn,θ̃n
− ψn,θ0

)

− M (θ)
]

=: Bn,2,1 +Bn,2,2

First, we analyze Bn,2,1:

Bn,2,1 =
1√
nδn

Gn

(

ψn,θ̃n
− ψn,θ0

)

=
1

nδn

n
∑

i=1

(

ψn,θ̃n
(Zi) − ψn,θ0 (Zi) − P

(

ψn,θ̃n
− ψn,θ0

))

=
1

nδn

n
∑

i=1

[

(

yi − 1

2

)

φ

(

X
′

iθ0

bn

)

X
′

i

bn

(

I − θ0θ
′

0

)

− An,1

]

(

I − θ0θ
′

0

) (

θ̃n − θ0

)

+Rn,θ

= Z
′

n

(

I − θ0θ
′

0

) (

θ̃n − θ0

)

+Rn,θ

with

Z
′

n :=
1

nδn

n
∑

i=1

[

(

yi − 1

2

)

φ

(

X
′

iθ0

bn

)

X
′

i

bn

(

I − θ0θ
′

0

)

− An,1

]

=
1

nδn

n
∑

i=1

[

(

yi − 1

2

)

φ

(

X
′

iθ0

bn

)

X
′

i

bn

(

I − θ0θ
′

0

)

− An,1

]

and

Rn,θ :=
(

θ̃n − θ0

)′ 1

nδn

n
∑

i=1

[

1

2

(

yi − 1

2

)

(

Id − θ0θ
′

0

)

φ
′

(

ξ (Xi)

bn

)

· XiX
′

i

b2
n

(

Id − θ0θ
′

0

)

− An,2

]

(

θ̃n − θ0

)

− 1

nδn

n
∑

i=1

[

1

2

(

yi − 1

2

)

φ

(

ξ (Xi)

bn

)

X
′

i

bn
θ0 − An,3

]

·
(

θ̃n − θ0

)′ (

Id − θ0θ
′

0

) (

θ̃n − θ0

)

Now, since E [Zn] = 0 and

E

[

ZnZ
′

n

]

≤ M

nδ2
n

∫

φ2

(

x
′
θ0

bn

)

(

I − θ0θ
′

0

) xx
′

b2
n

(

I − θ0θ
′

0

)

pxdx

=
M

nb2
nδ

2
n

∫

φ2

(

x
′
θ0

bn

)

(

I − θ0θ
′

0

)

xx
′
(

I − θ0θ
′

0

)

pxdx

=
M

nbnδ2
n

∫

φ2 (ζ1)
(

I − θ0θ
′

0

)

Tθ0u−1u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdζ1du−1

= M
∫

φ2 (ζ1)
(

I − θ0θ
′

0

)

Tθ0u−1u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

pxdζ1du−1

= O (1)
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so Zn = Op (1). Furthermore, the Lindberg condition can be verified as

1

nδ2
n

∫

φ2

(

x
′
θ0

bn

)

(

I − θ0θ
′

0

) xx
′

b2
n

(

I − θ0θ
′

0

)

· 1
{

1

n2δ2
nb

2
n

φ2

(

x
′
θ0

bn

)

x
′
(

I − θ0θ
′

0

)

x ≥ ǫ2
}

pxdx

≤ 1

nbnδ2
n

∫

φ2 (ζ1)
(

I − θ0θ
′

0

)

Tθ0u−1u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

· 1
{

1

nδnbn
φ (ζ1) ≥ ǫ

}

pxdζ1du−1

=
∫

φ2 (ζ1)
(

I − θ0θ
′

0

)

Tθ0u−1u
′

−1T
′

θ0

(

I − θ0θ
′

0

)

· 1 {δnφ (ζ1) ≥ ǫ} pxdζ1du−1

→ 0

for every ǫ > 0 as n → ∞. Hence, by the triangular-array CLT, we have

Zn
d−→ N (0,Σ) , (38)

where

Σ :=
(

I − θ0θ
′

0

)

Tθ0

[

1

2
√
π

∫

u1=0
u−1u

′

−1pxdu−1

]

T
′

θ0

(

I − θ0θ
′

0

)

.

=
(

I − θ0θ
′

0

)

Tθ0

1

2
√
πf (0)

Vu−1T
′

θ0

(

I − θ0θ
′

0

)

(39)

Similarly, we can deduce

‖Rn,θ‖ = Op





1
√

nδ2
nb

3
n





∥

∥

∥θ̃n − θ0

∥

∥

∥

2
= op

(

1

δn

∥

∥

∥θ̃n − θ0

∥

∥

∥

2
)

.

Hence

Bn,2,1 = Z
′

n

(

θ̃n − θ0

)

+ op

(

1

δn

∥

∥

∥θ̃n − θ0

∥

∥

∥

2
)

.

Now, by (35) and the observation that A1 = A1

(

I − θ0θ
′

0

)

,

P
(

ψn,θ̃n
(z) − ψn,θ0 (z)

)

= b2
nA1

(

I − θ0θ
′

0

) (

θ̃n − θ0

)

−
(

θ̃n − θ0

)′

V
(

θ̃n − θ0

)

+ o
(

b2
n

∥

∥

∥θ̃n − θ0

∥

∥

∥

)

and hence

Bn,2,2 =
1

δn

[

P
(

ψn,θ̃n
− ψn,θ0

)

− M (θ)
]

=
1

δn

[

b2
nA1

(

θ̃n − θ0

)

+ o
(

b2
n

)]

= A1

(

I − θ0θ
′

0

) (

θ̃n − θ0

)

+ o
(∥

∥

∥θ̃n − θ0

∥

∥

∥

)

Combining Bn,1, Bn,2,1 and Bn,2,2 we have

δ−1
n

[(

Mn

(

θ̃n
)

− M

(

θ̃n
))

− (Mn (θ0) − M (θ0))
]

= op (δn) + Z
′

n

(

θ̃n − θ0

)

+ op

(

1

δn

∥

∥

∥θ̃n − θ0

∥

∥

∥

2
)

+ A1

(

θ̃n − θ0

)

+ o
(∥

∥

∥θ̃n − θ0

∥

∥

∥

)
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=
(

Z
′

n + A1

) (

I − θ0θ
′

0

) (

θ̃n − θ0

)

+ op

(

∥

∥

∥θ̃n − θ0

∥

∥

∥+
1

δn

∥

∥

∥θ̃n − θ0

∥

∥

∥

2
+ δn

)

=
(

Z
′

n + A1

)

Tθ0T
′

θ0

(

I − θ0θ
′

0

) (

θ̃n − θ0

)

+ op

(

∥

∥

∥θ̃n − θ0

∥

∥

∥+
1

δn

∥

∥

∥θ̃n − θ0

∥

∥

∥

2
+ δn

)

All conditions in VW Theorem 3.2.16 are now satisfied with Vu−1 ∈ R(d−1)×(d−1)

being nonsingular and invertible, where Vu−1 is defined in (30) with the projection

onto the tangent space of Sd−1 via
(

I − θ0θ
′

0

)

and the change of coordinates via T
′

θ0
.

Specifically, noting that

Σ =
(

I − θ0θ
′

0

)

Tθ0

1

2
√
πf (0)

Vu−1T
′

θ0

(

I − θ0θ
′

0

)

= Tθ0

1

2
√
πf (0)

Vu−1T
′

θ0

V =
(

I − θ0θ
′

0

)

Tθ0Vu−1T
′

θ0

(

I − θ0θ
′

0

)

= Tθ0Vu−1T
′

θ0

and writing Au−1 ≡
(

0, Au−1

)

:= f
′
(0) · ∫u1=0 u−1pxdu−1 so that

A1 = Tθ0Au−1

we have

V +ΣV + =
1

2
√
πf (0)

Tθ0





0 0

0 V −1
u−1



 T
′

θ0
=

1

2
√
πf (0)

Tθ0V
+
u−1

T
′

θ0
=

1

2
√
πf (0)

V +

and

V +A1 = Tθ0





0

V −1
u−1

Au−1



 = Tθ0V
+
u−1

Au−1

Hence, by VW Theorem 3.2.16, we have

δ−1
n T

′

θ0

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

= V −1
u−1

(

T
′

θ0
Zn + Au−1

)

+ op (1)

d−→ N








0

V −1
u−1

Au−1



 ,





0 0
′

0 1
2
√
πf(0)

V −1
u−1









and

δ−1
n

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

d−→ N
(

Tθ0V
+
u−1

Au−1 ,
1

2
√
πf (0)

Tθ0V
+
u−1

T
′

θ0

)

.
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A.7 Proof of Theorem 2(ii)

Proof. For 4 ≤ d < 6, we set bn ∼ n− 2
d+6 so that δn = n− 4

d+6 (log n)
1
3 and an =

n− 6−d
2(d+6)

√
logn. In particular,

δn ∼
(

n2bdn/ logn
)− 1

3 ∼ n− 1
3a

2
3
n . (40)

Now, consider the scaled process indexed by any s in the tangent space of Sd−1 at θ0:

1√
nδ2

n

Gn

(

gθ0+sδn,ĥ
− gθ0,ĥ

)

=
1√
nδ2

n

Gn

(

gθ0+sδn,ĥ
− gθ0,ĥ

− g+sδn,h0 + gθ0,h0

)

+
1√
nδ2

n

Gn (gθ0+sδn,h0 − gθ0,h0) +
1

δ2
n

P
(

gθ0+sδn,ĥ
− gθ0,ĥ

)

(41)

= Dn,1 +Dn,2 +Dn,3

For Dn,1, we verify VW Condition 2.11.21 to apply their Theorem 2.11.23. Define

γn,s := n− 1
2 δ−2
n

(

gθ0+sδn,ĥ
− gθ0,ĥ

− gθ0+sδn,h0 + gθ0,h0

)

G2,n :=
{

γn,s : s
′

θ0 = 0, s ∈ R
d
}

Similarly to the proof of Lemma 2, we can show that G2,n has an envelope function

G2,n (x) = Kn− 1
2 δ−2
n an1

{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ δn
}

with, by (40),

PG2
2,n ≤ Cn−1δ−4

n a2
nδn = C

(

n− 1
3a

2
3
nδ−1

n

)3

= O (1) . (42)

Furthermore, since
√
nδn → ∞,

P
[

G2
2,n1

{

G2,n > ǫ
√
n
}]

≤ P
[

Kn−1δ−4
n a2

n1

{∣

∣

∣x
′

θ0

∣

∣

∣ ≤ ‖x‖ δn
}

1

{

n−1δ−4
n a2

n ≥ ǫ
√
n
}]

≤ Cn−1a2
nδ

−3
n 1

{

n−1a2
nδ

−3
n · δ−1

n ≥ ǫ
√
n
}

≤ C
′

1

{

C
′ ≥ ǫ

√
nδn

}

→ 0 as n → ∞ for every ǫ > 0 (43)

In addition, for any s, t,

|γn,s − γn,t| = n− 1
2 δ−2
n |gθ0+sδn,h − gθ0+tδn,h − gθ0+sδn,h0 + gθ0+tδn,h0|

= n− 1
2 δ−2
n

∣

∣

∣ĥ (x) − h0 (x)
∣

∣

∣ ·
∣

∣

∣1

{

x
′

(θ0 + sδn) ≥ 0
}

− 1

{

x
′

(θ0 + tδn) ≥ 0
}∣

∣

∣

≤ Kn− 1
2 δ−2
n an ·

(

1

{∣

∣

∣

∣

x
′

θ0 +
1

2
δnx

′

(s + t)
∣

∣

∣

∣

≤ 1

2
δn
∣

∣

∣x
′

(s− t)
∣

∣

∣

})
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and thus, for any ǫn → 0, we have

sup
‖s−t‖≤ǫn

P (γn,s − γn,t)
2 ≤ Kn−1a2

nδ
−4
n · Cδnǫn = C

′

ǫn → 0. (44)

VW Condition 2.11.21 is thus verified by (42)(43) and (44). Lastly, since
√

log N[]

(

ǫ ‖G2,n‖L2(P ) ,G2,n, L2 (P )
)

≤ M
(

ǫ ‖G2,n‖L2(P )

)− d
⌊d⌋+1

=

(

1

n−1δ−4
n a2

nδn

)− d
⌊d⌋+1

ǫ−
d

⌊d⌋+1 ≤ Cǫ−
d

⌊d⌋+1 .

and thus
∫ ǫn

0

√

log N[]

(

ǫ ‖G2,n‖L2(P ) ,G2,n, L2 (P )
)

dǫ ≤ Cǫ
d

⌊d⌋+1
n → 0.

By VW Theorem 2.11.23, the sequence
{

Gnγn,s : s
′

θ0 = 0, s ∈ R
d
}

is asymptotically tight in l∞
(

Rd ∩ θ⊥
0

)

and converges in distribution to a Gaussian

process G with the covariance function

H (s, t) := lim
n→∞

(Pγn,sγn,t − Pγn,sPγn,t) .

Next, we show that Dn,2 is asymptotically negligible, since by Lemma (1)

Dn,2 :=
1√
nδ2

n

Gn (gθ0+sδn,h0 − gθ0,h0) = Op

(

1√
nδ2

n

δ
3
2
n

)

= Op





√

δn
n



 = op (1)

Finally, for Dn,3 we show that, based on Lemma (3),

Dn,3 =
1

δ2
n

P
(

gθ0+sδn,ĥ
− gθ0,ĥ

)

=
1√
nδ2

n

Gn (ψn,θ0+sδn
− ψn,θ0) +

1

δ2
n

P (ψn,θ0+sδn
− ψn,θ0)

=
1√
nδ2

n

Op

(

b
− 1

2
n δn

)

+
1

δ2
n

(

−s′

V s · δ2
n + b2

nδn · A′

1s+ o
(

δ2
n

)

+ o
(

b2
nδn

))

= − s
′

V s+ A
′

1s+Op

(

1√
nbnδn

)

+ o
(

b2
nδ

−1
n

)

+ o (1)

= − s
′

V s+ A
′

1s+ op (1)

since (nbn)− 1
2 = n− d+4

2(d+6) = o (δn) = o
(

n− 4
d+6 (logn)

1
3

)

.
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Combining Dn,1, Dn,2 and Dn,3, we conclude that

1√
nδ2

n

Gn

(

gθ0+sδn,ĥ
− gθ0,ĥ

)

d−→ G (s) + A
′

1s− s
′

V s

and thus by the argmax continuous mapping theorem (VW Theorem 3.2.2), we have

δ−1
n

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

d−→ arg max
s:s′θ0=0

G (s) + A
′

1s− s
′

V s.

A.8 Proof of Theorem 2(iii)

Proof. For d ≥ 6 with bn ∼ n− 2
d+6 , we note that

δn :=
∥

∥

∥θ̂ − θ0

∥

∥

∥ = Op

(

n− 4
d+6 (log n)

1
3

)

= O
(

b2
n

)

and moreover

δn ∼ b2
n >> (nbn)− 1

2 , δn ∼ b2
n >> n− 1

3a
2
3
n .

The rest of the proof can be obtained by an easy adaption of the proof for Theorem

2(ii) above. Specifically, we observe that for Dn,1, the inequality (42) becomes

PG2
2,n ≤ Cn−1δ−4

n a2
nδn = C

(

n− 1
3a

2
3
nδ−1

n

)3

= o (1) .

Hence,

δ−1
n

(

I − θ0θ
′

0

) (

θ̂ − θ0

)

d−→ arg max
s:s′θ0=0

A
′

1s− s
′

V s = A1.

A.9 Proof of Lemma 6

Proof. The proofs of Lemma 1 and Lemma 2 are essentially unchanged. For the term

P
(

gθ,ĥ − gθ0,ĥ

)

, we note that

P
(

gθ,ĥ − gθ0,ĥ

)

= P
(

gθ,ĥ − gθ0,ĥ
− gθ,h0 + gθ0,h0

)

+ P (gθ,h0 − gθ0,h0)

where

P
∣

∣

∣gθ,ĥ − gθ0,ĥ
− gθ,h0 + gθ0,h0

∣

∣

∣

≤ P
∣

∣

∣γ
(

ĥ (X)
)

− γ (h0 (X))
∣

∣

∣

∣

∣

∣

∣

∣

∣

∏

j

1

{

X
′

jθ ≥ 0
}

−
∏

j

1

{

X
′

jθ0 ≥ 0
}

∣

∣

∣

∣

∣

∣

42



≤ MP
∣

∣

∣ĥ (X) − h0 (X)
∣

∣

∣

∣

∣

∣1

{

X
′

j(X)θ ≥ 0
}

− 1

{

X
′

j(X)θ0 ≥ 0
}∣

∣

∣

for some j (X) with probability 1 for θ sufficiently close to θ0

≤ Can ‖θ − θ0‖

and

P (gθ,h0 − gθ0,h0) = − (θ − θ0)
′

V (θ − θ0) + o
(

‖θ − θ0‖2
)

.

Hence,

P
(

gθ,ĥ − gθ0,ĥ

)

= − (θ − θ0)
′

V (θ − θ0) +O (anδ) + o
(

‖θ − θ0‖2
)

.

Combining this with Lemma 1 and Lemma 2, we conclude that Conditions B1-B4

in DvK can be verified with the smallest δn such that

δn = max
{

n−1, n− 1
3a

2
3
n , an

}

= an.

A.10 Proof of Theorem 3

Proof. Following the proof of Lemma 6, we see now

P
(

gθ,ĥ − gθ0,ĥ

)

= − (θ − θ0)
′

V (θ − θ0) +O (un + vn) δ + o
(

δ2
)

so that

δn = max
{

n−1, n− 1
3a

2
3
n , un, vn

}

= max
{

n− 1
3a

2
3
n , un, vn

}

.
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