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Abstract

We document five novel empirical findings on the well-known potential ordering draw-
back associated with the time-varying parameter vector autoregression with stochastic
volatility developed by Cogley and Sargent (2005) and Primiceri (2005), CSP-SV. First, the
ordering does not affect point prediction. Second, the standard deviation of the predictive
densities implied by different orderings can differ substantially. Third, the average length
of the prediction intervals is also sensitive to the ordering. Fourth, the best ordering for one
variable in terms of log-predictive scores does not necessarily imply the best ordering for
another variable under the same metric. Fifth, the best ordering for variable x in terms of
log-predictive scores tends to put the variable x first while the worst ordering for variable
x tends to put the variable x last. Then, we consider two alternative ordering invariant
time-varying parameter VAR-SV models: the discounted Wishart SV model (DW-SV)
and the dynamic stochastic correlation SV model (DSC-SV). The DW-SV underperforms
relative to each ordering of the CSP-SV. The DSC-SV has an out-of-sample forecasting
performance comparable to the median outcomes across orderings of the CSP-SV.
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1 Introduction

Several studies have shown the benefits of using the time-varying parameter vector autore-

gression with stochastic volatility developed by Cogley and Sargent (2005) and Primiceri

(2005)—henceforth, CSP-SV—in forecasting exercises as well as for obtaining stylized facts of

the U.S. economy.1 To date, this model has become a workhorse framework for reduced-form

and structural analysis. Furthermore, its popularity is likely to increase due to the existence of

Bayesian methods for inference implemented and tested in widespread computer languages such

as MATLAB, e.g., Del Negro and Primiceri (2015).

While the CSP-SV has reached a canonical status, it is well-known that it is not order

invariant: the order of the variables affects the posterior distribution of the model parameters.2

Yet, one important practical question remains unexplored. Is the ordering issue really a problem

for point, density, and interval prediction in macroeconomics? Somewhat surprisingly, such a

question has not been addressed in the macroeconomic forecasting literature where researchers

generally estimate the CSP-SV or variant thereof using only one or a negligible subset of all

possible orderings available.

This paper aims to fill this gap by assessing the pseudo out-of-sample forecasting performance

of a four-variable CSP-SV under all of its orderings, and by contrasting it with two ordering

invariant approaches for modeling stochastic volatility. The former will make clear that there are

important differences across orderings that one can exploit to improve forecasts. The latter is

crucial to highlight that not all ordering invariant models can fit the data as well as the CSP-SV.

We conduct our evaluation using U.S. data for four core macroeconomic variables: output

growth, inflation, the 3-Month T-Bill rate, and the unemployment rate. We document five

novel findings on the well-known potential ordering drawback intrinsic to the CSP-SV. First,

the ordering does not affect point prediction. Second, the standard deviation of the predictive

densities implied by different orderings can differ substantially. Third, the average length of the

prediction intervals is also sensitive to the ordering. Fourth, the best ordering for one variable in

terms of log-predictive scores does not necessarily imply the best ordering for another variable

under the same metric. Fifth, the best ordering for variable x tends to put the variable x first

while the worst ordering for variable x tends to put the variable x last.

Our results imply that the ordering of the variables in the CSP-SV should be justified even

in reduced-form analysis such as macroeconomic forecasting. This may become computationally

intractable as the number of possible orderings in a k-variable CSP-SV is k!. For example,

Carriero, Clark and Marcellino (2019) compute and compare predictive densities based on 1,000

1For example, Clark (2011), D’Agostino, Gambetti and Giannone (2013), Baumeister and Peersman (2013),
and Gaĺı and Gambetti (2015).

2See e.g., Cogley and Sargent (2005), Primiceri (2005), Carriero, Clark and Marcellino (2019), Bognanni
(2018), Hartwig (2020), and Chan et al. (2020).
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randomly selected different variable orderings for a single time period (see Section C of their

Supplementary Appendix). Even so, their large VAR includes 20 variables, and hence 1,000

orderings reflect only about 4× 10−14% of all possible orderings (i.e., 20! = 2.43× 1018).

Given the ordering dependence and the computational cost of checking all possible orderings,

one may wonder if ordering invariant models can forecast as well as some of the orderings in the

CSP-SV. We consider two classes of such models. The first is the ordering invariant dynamic

linear model with discounted Wishart stochastic volatility model (DW-SV) developed by West

and Harrison (1997), Uhlig (1997), Prado and West (2010), and Bognanni (2018). The second is

an approach based on the decomposition of the time-varying reduced-form covariance matrix

introduced by Engle (2002). To place an ordering invariant prior on the time-varying covariance

matrix of a time-varying parameters vector autoregression model (TVP-VAR), we follow Asai

and McAleer (2009) and impose a Wishart process on the correlation dynamics. This results in a

TVP-VAR with dynamic and stochastic correlation-based multivariate stochastic volatility model,

which we label DSC-SV. We sample from this model using the elliptical sampling approach

developed by Murray, Adams and Mackay (2010). The incorporation of theoretically ordering

invariant correlation-based multivariate stochastic volatility into a TVP-VAR complements the

work of Hartwig (2020) who proposes an almost empirically ordering invariant methodology.

The application of Murray, Adams and Mackay’s (2010) approach to models with stochastic

correlation-based multivariate stochastic volatility is new to the literature.

We find that the DW-SV underperforms in terms of point, density, and interval prediction

relative to the other models under analysis. In all but one case, the root mean square error

(RMSE) of the DW-SV is higher than all the RMSEs associated with all the possible ordering of

the CSP-SV. In terms of joint density prediction, the sum of one-quarter-ahead log predictive

score of the DW-SV is about 70 log units lower than that of the median CSP-SV and the

DSC-SV, respectively. This large difference is also a feature of marginal log predictive scores

for each variable. The empirical coverage rates based on the DW-SV model are much higher

than those of other models for all variables and all horizons. Similar results are obtained when

looking at the four- and eight-quarter-ahead forecast horizon. In contrast, in our application,

the DSC-SV has a predictive performance comparable to the CSP-SV in terms of point, density,

and interval prediction.

The rest of the paper is organized as follows. Section 2 briefly describes the CSP-SV. Section

3 gauges the role played by the ordering of the variables in the out-of-sample properties of

the CSP-SV. Section 4 describes the DW-SV and the DSC-SV as well as their out of sample

predictive performance. Section 5 concludes.
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2 The CSP-SV

In this section we present the CSP-SV model and the priors. We also illustrate analytically how

the ordering issue inherent to this model can affect its predictive density.

2.1 Model and Bayesian Inference

The most popular representation of the CSP-SV takes the form

y′t = vec(Bt)
′Xt + ε′tΣtA

′−1
t , εt ∼ N(0n×1, In), for t = 1, . . . , T, (1)

where yt is an n× 1 vector, X ′t = In⊗
[
1,y′t−1, . . . ,y

′
t−p
]

is an n× nm matrix with m = np+ 1,

Bt is an m× n matrix, At is an n× n lower triangular matrix with ones along the diagonal and

Σt is a diagonal matrix. The matrices At and Σt are parameterized as

At =


1 0 . . . 0

α21,t 1
. . .

...
...

. . . . . . 0

αn1,t · · · αnn−1,t 1

 , Σt =


σ1,t 0 . . . 0

0 σ2,t
. . .

...
...

. . . . . . 0

0 · · · 0 σn,t

 ,

where αt = (α21,t,αn1,t, . . . ,αnn−1,t)
′ and σt = (σ1,t, ...,σn,t)

′ are the time-varying parameters

governing the unrestricted entries of these matrices. The time-varying parameters of Bt, At,

and Σt evolve according to random walks

vec(Bt) = vec(Bt−1) + νt, νt ∼ N(0mn×1,Q), (2)

αt = αt−1 + ζt, ζt ∼ N(0n(n−1)/2×1,S), (3)

logσt = logσt−1 + ηt, ηt ∼ N(0n,W ), (4)

where Q and W are unrestricted positive definite matrices, S is a block diagonal positive

definite matrix with each block corresponding to the variance matrix of each j-th row of At for

j = 2, . . . , n, and logσt = (logσ1,t, ..., logσn,t)
′.

In this paper, we use the same priors and simulation method implemented in the companion

MATLAB code of Del Negro and Primiceri (2015). Thus, the initial states B0, α0, and σ0, and

the hyperparameters Q, S, and W are assumed to be independent of each other. The former

are distributed according to the normal distribution and the latter are distributed according to

the inverse-Wishart distribution.
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Prior for B0. More specifically, vec(B0) ∼ N
(
vec(B̂), 4 · V (vec(B̂))

)
where vec(B̂) and

V (vec(B̂)) are the mean and variance OLS point estimates based on a time-invariant VAR

estimated with a pre-sample of T0 = 40 observations. That is, consider the VAR: y′` = x′`B + e′t

for ` ∈ [−T0 + 1, 0] with e′t = ε′t(A
−1)′, εt ∼ N(0,Σ), x′` = [1,y`−1, . . . ,y`−p], and note that B̂ =

(X ′X)−1X ′Y and V (vec(B̂)) = ê′ê
T0
⊗ (X ′X)−1, where ê = Y −XB̂, Y ′ = (y−T0+1, . . . ,y0),

X ′ = (x−T0+1, . . . ,x0).

Prior for α0. The matrix α0 ∼ N(â, 4 · V (â)) where â and V (vec(â)) are obtained using a

pre-sample of T0 observations. In particular, let vechd be an operator that extracts the elements

below the main diagonal of a matrix. Since A0et = εt, it follows that an estimate of vechd(A)

can be obtained by projecting vec(ê) onto In ⊗ ê, where ê′ = (ê−T0+1, . . . , ê0). Then, â is set

equal to the resulting estimate. The variance of α0 is defined by setting V̂ = (û′û/T0)⊗ IT0 ,
where û = vec−1T0,n

(
vec(ê)− Ẑâ

)
, Ẑ = (In⊗ ê), V̆ (â) = (Ẑ ′Ẑ)−1Ẑ ′V̂ Ẑ(Ẑ ′Ẑ)−1, and V (â) is a

n(n−1)
2
× n(n−1)

2
matrix such that given i = 1, for j = 1, n−1, we have V (âj) = V (â)i:i+j−1,i:i+j−1 =

V̆ (â)i:i+j−1,i:i+j−1 with i=i+j, and 0 otherwise.

Prior for log(σ0). The vector log(σ0) ∼ N(log(σ̂0), In) , with σ̂0 = diag(vecd(û′û/T0)))
−0.5,

where vecd(X) creates a vector from the diagonal elements of a matrix M , and diag(x) builds

a diagonal matrix whose diagonal elements are given by x.

Prior for the Hyperparameters. Turning to the prior for the hyperparameters, Q ∼
IW(k2Q · 40 · V (vec(B̂)), 40), where kQ = 0.01, and W ∼ IW(k2W · 4 · In, 4), where kW = 0.01.3

As mentioned S is a block diagonal matrix partitioned with n− 1 blocks where the j-th block is

Sj ∼ IW(k2S · (j + 1) · V (âj), j + 1) j ∈ {1, . . . , n− 1} and kS = 0.1.

Equipped with this prior, Algorithm 2 in Del Negro and Primiceri (2015) simulates the

posterior distribution of the history of volatitities (Σ1, . . . ,ΣT ), the histories of coefficients

(A1, . . . ,AT ) and (B1, . . . ,BT ), and the parameters Q, S, and W . Since the derivation of

Algorithm 2 and its implementation is carefully documented in Del Negro and Primiceri (2015)

and its companion code we refer the reader to their paper and code for additional details.

2.2 The Ordering Issue

As highlighted by Primiceri (2005), in this model the ordering of the variables affects the

posterior distribution of the parameters. In this section, we will first replicate his two-variable

3The inverse-Wishart density is parameterized as follows: IW(ν,Ψ)(Σ) = cIW | Σ |−(ν+n+1)/2 e−0.5tr(ΨΣ−1),

where c−1IW =| Ψ |−ν/2 2νnΓn(ν/2).
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example and then we will make some further assumptions to illustrate analytically how the

ordering affects the predictive density implied by the model.

Let Ωt denote the reduced-form covariance matrix A−1t ΣtΣ
′
tA
−1′
t and notice that

Ωt =

[ (
e(logσ1,t−1+η1,t)

)2 −α21,t

(
e(logσ1,t−1+η1,t)

)2
−α21,t

(
e(logσ1,t−1+η1,t)

)2
(α21,t−1 + ζt)

2
(
e(logσ1,t−1+η1,t)

)2
+
(
e(logσ2,t−1+η2,t)

)2
]
.

The expression above makes clear that, given the states in period t− 1, the distribution of the

first element of the diagonal of Ωt is proportional to a log-normal distribution. In contrast, the

distribution of the second element of the diagonal of Ωt is not proportional to a log-normal

distribution. Hence, inference under different orderings will imply different distributions for

the entries of the reduced-form covariance matrix which could affect the model’s predictive

performance.

To see the latter analytically, assume that in our two-variable example σ1,t = σ2,t = 1,

α21,t
i.i.d∼ N(0, 1), and that there are neither lags nor constant terms. Then, the predictive density

of y1,t is Gaussian while the predictive density of y2,t is non-Gaussian.4 In fact, the latter has

a fatter tail than the former (e.g, Haldane, 1942). This makes clear that the ordering of the

variables affects the predictive performance of the model. The crux of the matter is that we

are placing a prior on the variance of the one-quarter forecast errors, Ωt, after decomposing

it via a Cholesky-decomposition so that Ωt = A−1t ΣtΣtA
′−1
t and A−1t is the lower triangular

matrix. Putting an independent prior on each element of A−1t does not lead to symmetric prior

in terms of the marginal distribution of yt. Instead, imposing an inverse-Wishart prior on Ωt as

in Section 4.1 and using an alternative decomposition of Ωt as in Section 4.2 are order invariant

procedures.

In the next section, we will assess whether the actual predictive performance is an empirical

issue in a standard setting.

3 Out-of-Sample Prediction for the CSP-SV Model

In this section we analyze the out-of-sample prediction of the CSP-SV model. We define the

setup and then analyze point, density, and prediction intervals.

3.1 Setup

We estimate a four-variable quarterly frequency CSP-SV using U.S. data.5 The four variables

included in the model are output growth (real GDP growth), inflation (based on the Core PCE

4Under our simplifying assumptions y1,t = ε1,t ∼ N(0, 1) and y2,t = −α21,tε1,t + ε2,t ∼ N(0, 1)2 + N(0, 1).
5The data was obtained from the FRED-QD Quarterly Database for Macroeconomic Research.

5



Price Index), the 3-Month T-bill rate, and the unemployment rate for the period 1970Q1:2016Q4.

Output growth and inflation are computed using annualized % log-differences, and the 3-

Month T-bill rate and the unemployment rate are expressed in %. We use data for the period

1960Q1:1969Q4 to construct our prior distribution. The model is estimated including two lags.

In a four-variable CSP-SV there are 24 different orderings. For each ordering, we recursively

estimate and generate one-, four-, and eight-quarter-ahead predictions during 120 quarters

starting in 1987Q1, i.e., when generating our first forecast we assume that we have data up to

1987Q1. Thus, our evaluation sample runs from 1987Q1 to 2016Q4. We index the quarters in

which forecasts are made by τ ∈ {1, . . . , 120} and we index the forecast horizon by h ∈ {1, 4, 8}.
Accordingly, our first forecast is for 1987Q2 (when τ = 1 and h = 1) and our latest forecast is

for 2018Q4 (when τ = 120 and h = 8). We evaluate the predictive performance under the 24

orderings through the lens of the RMSE for point prediction, the log predictive score for density

prediction, and the empirical coverage and average length for interval prediction.

Notice that our exercise is non-trivial. We compute 23,040 predictive densities (24× 120× 8)

based on 2,880 posterior distributions (24× 120) of all the possible orderings of the four-variable

CSP-SV. Each predictive distribution and posterior distribution is constructed based on 50,000

Markov chain Monte Carlo (MCMC) draws.

3.2 Point Prediction

Panel (a) in Table 1 shows the range of RMSEs and the median RMSE across the 24 orderings at

one-, four-, and eight-quarter-ahead, where the point estimates are computed using the posterior

mean of the predictive density. The RMSEs are computed over the evaluation sample.6 The

gist of these point prediction outcomes is that, although there are differences in performance,

from the perspective of macroeconomic forecasting the differences in RMSE are not affected by

the ordering in an economically meaningful manner.

Panel (b) in Table 1 reports the results from Diebold-Mariano (Diebold and Mariano, 1995)

tests for equal predictive ability over the evaluation sample. With four variables, for each variable

and horizon we have
(
24
2

)
= 276 possible orderings to compare. Consequently, we focus on testing

the two orderings with the largest MSE difference. As can be seen, the null hypothesis of equal

predictive ability is rejected at a 5% significance level in only 3 out of 12 cases: the p-value

for four- and eight-quarter-ahead inflation forecasts and the p-value for the four-quarter-ahead

3-Month T-Bill forecast are below 0.05. And, even when rejected, these differences are very

small. For example, largest MSE difference for four-quarter-ahead forecasts of inflation across

all orderings is 0.03 percentage point.

While Table 1 shows that for all variables and horizons all the orderings perform similarly,

6Appendix A.3 describes the RMSE for all variables, orderings, and horizons.
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Table 1: RMSE

(a) RMSE

One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Range Median Range Median Range Median

Output Growth [2.46,2.57] 2.51 [2.67,2.73] 2.70 [2.56,2.61] 2.59
Inflation [0.60,0.60] 0.60 [0.77,0.80] 0.78 [0.86,0.92] 0.88
3-Month T-Bill [0.33,0.34] 0.33 [1.14,1.18] 1.16 [1.92,2.01] 1.95
Unemployment [0.20,0.20] 0.20 [0.80,0.83] 0.82 [1.42,1.47] 1.44

(b) Diebold-Mariano Equal Predictive Ability Test

One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Output Growth 0.11 (0.10) 0.06 (0.07) 0.05 (0.17)
Inflation 0.01 (0.23) 0.03 (0.02) 0.06 (0.00)
3-Month T-Bill 0.02 (0.06) 0.05 (0.03) 0.09 (0.20)
Unemployment 0.01 (0.10) 0.03 (0.07) 0.05 (0.16)

Note. Panel (a): Range indicates the minimum and maximum RMSE. Panel (b): Numbers are the
MSE difference. Numbers in parentheses are p-values of Diebold-Mariano equal predictive ability tests.

Figure 1: Relative RMSE
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Figure 1 presents the results of the table in a different format to facilitate a comparison of the

relative magnitude of the differences. In particular, the figure presents the RMSE for each model

at the horizons under analysis relative to the reference ordering. There is a 4% upper bound and

lower bound difference in RMSEs. To see the implication of this number, notice that the RMSE

can be interpreted as the standard deviation of the forecast error. Combining this interpretation

with the RMSEs associated with the first ordering (2.51 for output growth, 0.6 for inflation, 0.33

for the 3-Month T-Bill rate, and 0.2 for the unemployment rate), it follows that a 5% reduction

of the RMSE is equivalent to a reduction of about 0.13 percentage point in terms of RMSE

for annualized output growth, which is modest from a macroeconomic forecasting perspective.

Similarly, the gains that could be obtained in terms of RMSE for inflation, the 3-Month T-Bill

7



rate, and the unemployment rate are small: 0.03 percentage point, 0.02 percentage point, and

0.01 percentage point respectively. Thus, Figure 1 reaffirms the message that in terms of point

estimates the observed differences in terms of RMSE do not translate into relevant economic

discrepancies.

3.3 Density Prediction

In general, macroeconomic forecasters are interested not only in point prediction but also

in density prediction. We evaluate the density prediction performance using the sum of log

predictive scores (LPSs) over the evaluation sample for each of the three horizons under analysis.

We consider the joint predictive density as well as the predictive density for each of the variables.

Table 2: Log Predictive Scores

(a) Sum of Log Predictive Scores

One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Range Median Range Median Range Median

Joint [-371.86,-346.23] -354.31 [-739.69,-716.06] -729.74 [-948.09,-910.97] -931.17
Output Growth [-279.41,-274.29] -276.56 [-290.48,-284.50] -287.11 [-292.80,-283.26] -287.03
Inflation [-111.03,-106.76] -108.68 [-149.13,-142.56] -144.98 [-179.46,-169.80] -174.75
3-Month T-Bill [-33.10,-15.74] -21.22 [-192.47,-183.55] -187.70 [-267.13,-260.09] -262.18
Unemployment [26.94,33.53] 31.84 [-138.68,-123.95] -129.53 [-227.22,-205.30] -212.01

(b) Amisano-Giacomini Equal Predictive Ability Test

One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Joint 25.63 (0.01) 23.63 (0.17) 37.12 (0.31)
Output Growth 5.12 (0.17) 5.99 (0.10) 9.54 (0.04)
Inflation 4.27 (0.03) 6.57 (0.00) 9.65 (0.00)
3-Month T-Bill 17.36 (0.06) 8.92 (0.27) 7.04 (0.23)
Unemployment 6.59 (0.28) 14.73 (0.22) 21.92 (0.34)

Note. Panel (a): Range indicates the minimum and maximum LPS. Panel (b): Numbers are the difference in the sum of
LPSs. Numbers in parentheses are p-values of Amisano-Giacomini equal predictive ability test.

Panel (a) in Table 2 shows that the sum of one-quarter-ahead joint LPSs for the best ordering

and for the worst ordering under this metric are -346.23 and -371.86, respectively.7 Their

difference is about 26, which implies that the LPSs differ by 0.21 every quarter, on average.

When looking at four- and eight-quarter-ahead predictive densities the differences between the

best and worst ordering in terms of the sum of LPSs at each respective horizon are about

35 and 40, therefore in each quarter the LPSs will differ by even more than in the case of

one-quarter-ahead densities.

7Appendix A.3 describes the LPSs for all variables, orderings, and horizons under analysis.
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Panel (b) in Table 2 shows the Amisano-Giacomini equal predictive ability test (Amisano

and Giacomini, 2007) for the sum of joint LPSs and for the sum of the marginal LPSs of each

variable. Similar to the case of point prediction, for each variable specification (i.e., joint LPS

or marginal LPSs) and horizon we have 276 possible orderings to compare. Hence, for ease of

exposition, we only test the difference between the best and worst ordering in terms of the sum

of LPSs associated with each variable specification and horizon.

Let’s begin by examining the Amisano-Giacomini tests for the sum of joint LPSs. The

difference between the best and worst ordering is statistically significant in the case of the

one-quarter-ahead densities, and statistically not different from zero in the case of the four- and

eight-quarter-ahead densities. A roughly similar pattern emerges when looking at the sum of

marginal LPSs for each variable: there is a heterogeneity in the scores and in some cases the

Amisano-Giacomini test tells us that some differences are statistically significant. Altogether,

the null hypothesis of equal predictive ability is rejected at a 5% significance level in only 5 out

of 15 cases.

In contrast to the case of point prediction, we now show that when analyzing predictive

densities the differences are important from an economic point of view. Figure 2 presents

the mean and the standard deviation of the one-quarter-ahead predictive densities computed

recursively over the evaluation sample for the best and worst ordering. The best and worst

ordering are chosen in terms of the sum of marginal LPSs over the evaluation sample of the

corresponding variable under analysis. Hence, the best and worst ordering are kept constant

when producing the figure.

The second moments of the predictive densities implied by each of these orderings portray a

different picture regarding the uncertainty associated with the economic outlook—an important

aspect of macroeconomic forecasting as emphasized by Clark (2011). The green solid lines

with markers represent the predictive densities associated with the worst orderings. The purple

dotted lines represent the predictive densities associated with the best orderings.

The results are striking. The mean predictions are almost identical but the standard

deviations of the predictive densities are quite different.8 As can be seen, for each of the variables

the worst ordering in terms of the sum of marginal LPSs paints a more uncertain outlook than

the best ordering under the same metric. The fact that the mean predictions are almost identical

is not surprising given that as shown in Section 3.2 the point forecasts are almost identical.

Consequently, what it is new here is the extent to which the standard deviations can differ

across orderings. Had the worst ordering been used at a policy institution such as a central

bank for a span of 10 years, it would have offered policymakers a more uncertain outlook for the

unemployment rate on the single basis of a seemingly arbitrary ordering choice.

8As shown in Appendix A.4, the same holds when looking at four- and eight-quarter-ahead predictive
densities.

9



Figure 2: Predictive Densities and Ordering

Note. Mean and standard deviation (SD) of the one-quarter-ahead predictive density.
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All told, the analysis above suggests that the differences in the sum of LPSs reported in

Table 2 are driven by the distributional characteristics beyond the mean and they are large

enough to paint a different economic outlook.

3.3.1 Robustness of the Results

The findings just described raise two questions. First, given that we construct the predictive

densities relying on simulation-based methods, one could wonder if the observed differences

between the standard deviations of the best and worst ordering are driven by the numerical

error. Second, Figure 2 only describes first and second moments, but to what extent does the

ordering affect the entire shape of the predictive density?

To answer these questions, we compute the one-quarter-ahead predictive density for the

unemployment rate for the last period of the evaluation sample based on 30 independent MCMC

chains, each chain consisting of 20,000 draws from the posterior distribution of the model

parameters. We focus on unemployment because it is the variable for which the difference

between the standard deviation of the one-quarter-ahead predictive density of the best and

worst ordering in terms of the sum of one-quarter-ahead marginal LPSs over the evaluation

sample is the largest. Figure 3 shows the results. The green solid lines with markers represent

the predictive densities associated with the worst ordering in each MCMC chain. The purple

dotted lines represent the predictive densities associated with the best ordering in each MCMC

chain. As can be seen, it is unlikely that numerical error drives our results. Second, the observed

difference in the uncertainty in the predictive densities leads to a noticeable difference in tail

probabilities.

Figure 3: One-Quarter-Ahead Predictive Densities and Ordering

Note. One-quarter-ahead predictive densities based on 30 MCMC
chains, each chain consisting of 20,000 posterior draws.
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3.3.2 Deeper Dive into the LPS

This section highlights how the best ordering depends on the variable and the forecast horizon

under analysis: the best ordering for a given variable-horizon pair does not necessarily imply the

best ordering for another variable-horizon pair. Let’s start with the one-quarter-ahead forecast

horizon. Table 3 shows that the best ordering for predicting output growth in terms of the sum

of one-quarter-ahead marginal LPSs is the worst ordering for predicting the 3-Month T-Bill rate.

In addition, it shows that the best (worst) ordering for any variable tends to have the variable

in question ordered first (last).

Table 3: Best and Worst Ordering

Variable Ordering First Second Third Fourth LPS
Output Growth Best y u π i -274.29

Worst i π u y -279.41
Inflation Best π u i y -106.76

Worst u y π i -111.03
3-Month T-Bill Best i u y π -15.74

Worst y u π i -33.10
Unemployment Best u y i π 33.53

Worst π i y u 26.94

To further scrutinize the punchline of Table 3, we compute the Spearman’s rank correlation

coefficients. Table 4 shows the Spearman’s coefficients and the p-values (the null hypothesis is

no-correlation) for the rank correlation between the ranking of orderings in terms of the sum of

one-quarter-ahead marginal LPSs for output growth and the ranking of orderings in terms of

the sum of LPSs for each of the remaining variable specifications and horizons. Hence, this table

shows rankings differ not only across variables but also across horizons. For example, conditional

on output growth, a ranking based in terms of the sum of one-quarter-ahead marginal LPSs has

an about 0.3 correlation with a ranking based on the sum of eight-quarter-ahead marginal LPSs.

Table 4: Spearman Rank Correlation

Correlation p-values
h=1 h=4 h=8 h=1 h=4 h=8

Output Growth 1 0.47 0.29 0 0.02 0.17
Inflation -0.06 -0.02 0.06 0.78 0.93 0.76
3-Month T-Bill -0.27 -0.30 0.01 0.21 0.16 0.95
Unemployment -0.38 -0.16 -0.02 0.07 0.45 0.93
Joint 0.17 -0.25 0.24 0.42 0.24 0.26
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Figure 4: Time-Varying Ranking of one-quarter-ahead LPSs
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While Table 4 is informative about the correlation across variables and horizons, it is silent

on how the ranking of the orderings varies over the evaluation sample. The latter is important

because if the ranking changes frequently researchers would need to rank the orderings often,

which is time consuming. Hence, to conclude this section, we assess the degree of serial correlation

across rankings.

Figure 4 shows the degree of serial correlation in rankings computed recursively since the

beginning of the evaluation sample. In particular, at each quarter of our evaluation sample

we compute a ranking based on the sum of marginal LPS up to such quarter. In Panel (a) we

report the evolution of the best performing ordering in terms of the sum of one-quarter-ahead

marginal LPSs for output growth over the entire evaluation sample, i.e., (y, u, π, i). The panel

plots how this particular ordering ranked throughout the evaluation sample. For example, in

1987Q2 the (y, u, π, i) ordering is the third best ordering while in 2011Q2 it is the fifth. Panel

(b) summarizes this information for the 24 possible orderings using a colormap. The darkest

blue corresponds to the best ordering and the darkest red corresponds to the worst ordering.

The panel pairs (c,d), (d,f), and (g,h) do the same for the rest of the variables.

Clearly, the ranking changes throughout the evaluation sample. For example, in the case

of output growth the (y, u, π, i) ordering ranks in the top 5 during the first 7 quarters, then

its ranking drops to 7th before returning to the top 5 for the remainder of the evaluation

sample. Similar results are obtained for the rest of the variables. Appendix A.4 shows that

analogous results hold when looking at four-quarter-ahead and eight-quarter-ahead forecast

horizons. The main difference is that the ranking in terms of the sum of eight-quarter-ahead

LPSs for unemployment exhibits larger swings.

3.4 Interval Prediction

In addition to the point prediction and density prediction performance based on RMSEs and

LPSs, macroeconomic forecasters are commonly interested in analyzing prediction intervals

constructed using tail quantiles. For each variable, the x% prediction interval is an interval that

covers an outcome with x% posterior probability. Based on this definition, we construct 70%

symmetric probability intervals for each predictive density and we evaluate these intervals by

means of their coverage rate and their average length over the evaluation sample.

Panel (a) in Table 5 presents the empirical coverage rate of 70% prediction intervals for each

variable and horizon under study. Theoretically, we expect the prediction intervals to cover the

realized outcome 70% of the times over our evaluation sample, nevertheless in practice there is

substantial variation across orderings. In addition to the coverage rates, shorter intervals offer

sharper prediction and hence it is important to assess their average length (see, for example,

Askanazi et al., 2018). To see this, Panel (b) in Table 5 shows the average length of the 70%
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prediction intervals. As it was the case in Panel (a), there is heterogeneity across orderings.

Table 5: Interval Prediction Evaluation

(a) Empirical coverage rate of 70% prediction intervals
One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead

Range Median Range Median Range Median

Output Growth [0.68,0.74] 0.70 [0.71,0.79] 0.74 [0.78,0.86] 0.81
Inflation [0.67,0.75] 0.69 [0.83,0.88] 0.86 [0.89,0.94] 0.93
3-Month T-Bill [0.72,0.84] 0.77 [0.67,0.80] 0.72 [0.62,0.72] 0.66
Unemployment [0.64,0.78] 0.69 [0.61, 0.78] 0.68 [0.54,0.65] 0.57

(b) Average length of 70% prediction intervals
One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead

Range Median Range Median Range Median

Output Growth [4.62,5.51] 4.94 [5.11,6.18] 5.51 [5.55,6.82] 5.98
Inflation [1.32,1.47] 1.35 [2.10,2.34] 2.18 [2.83,3.17] 2.99
3-Month T-Bill [0.66,0.87] 0.71 [2.14,2.67] 2.29 [3.45,4.29] 3.68
Unemployment [0.35,0.45] 0.37 [1.13,1.40] 1.22 [1.83,2.22] 1.93

Note. Panel (a): Range indicates the smallest and largest empirical coverage rate of the 70%
prediction interval across the 24 possible orderings. Panel (b): Range indicates the narrowest and
widest prediction interval across the 24 possible orderings.

In parallel to the case of density prediction, the differences across orderings are economically

relevant. Figure 5 shows the average length of the one-quarter-ahead 70% predictive intervals

computed recursively over the evaluation sample. For simplicity, we focus on the prediction

intervals associated with the best and worst ordering, where the best (worst) ordering is the one

with the smallest (largest) difference between the empirical coverage and the nominal coverage

rate over the evaluation sample. Had the worst ordering instead of the best ordering been

systematically used at a central bank for a span of 10 years, it would have persistently offered

policymakers a less sharp prediction. Appendix A.5 shows that the same holds when looking at

four- and eight-quarter-ahead prediction intervals.

3.5 Summary for the CSP-SV model

In this section we have shown that (1) the order of the variables is important for forecasting

performance, (2) if we care about more than point prediction the difference in performance is

economically relevant, (3) the best ordering depends on the variable and forecast horizon of

interest, and (4) the best ordering varies over time. For these reasons as well as due to the

potential infeasibility of checking all possible orderings in larger models, it is interesting to

15



Figure 5: One-Quarter-Ahead Prediction Interval and Ordering

Note. Length of the corresponding intervals. Intervals are computed based on the
one-quarter-ahead predictive density throughout the evaluation sample. The difference
between the empirical coverage and the nominal coverage is largest for the worst ordering
and smallest for the best ordering.

compare the performance of the CSP-SV model with ordering invariant models. We do that in

the next section.

4 Ordering Invariant Models

The ordering dependent forecasting performance documented in Section 3 motivates us to

consider two ordering invariant strategies for modeling stochastic volatility. To be ordering

invariant, one has to start with a prior for the reduced-form covariance matrix that is ordering

invariant. The first modeling approach places a Wishart prior on Ωt and it is known as dynamic

linear model with discounted Wishart stochastic volatility (DW-SV). The second modeling

approach decomposes the reduced-form covariance matrix into Ωt = DtPtD
′
t, where Dt is

a diagonal matrix and Pt is a correlation matrix, and it imposes an ordering invariant prior

on Dt and Pt. We adapt such decomposition, inspired by Engle (2002), into a time-varying

parameter VAR and we label the resulting model a time-varying parameter VAR with dynamic
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and stochastic correlation-based multivariate stochastic volatility model (DSC-SV).9

The rationale behind our choice of these two ordering invariant approaches is as follows.

We choose the DW-SV model for three reasons. First, it is widely used and a practical choice

in financial time series modelling, e.g., Prado and West (2010). Since stochastic volatility is

prevalent in this area it is natural to ask whether the utility of this framework can extrapolate

to macroeconomic forecasting. Second, it was proposed as a tool for vector autoregression

with stochastic volatility by the seminal work of Uhlig (1997). Third, it offers tractable and

convenient filtering formulas, which facilitates likelihood evaluation.

We propose the DSC-SV model for analogous reasons. First, like the DW-SV, the type

of approach introduced by Engle (2002) has been widely adopted in financial econometrics

suggesting it could also prove useful for macroeconomic forecasting. Second, just like the

discounting Wishart process, the approach of decomposing the reduced-form covariance matrix

into Ωt = DtPtD
′
t can be integrated in an ordering invariant time-varying parameters VAR.

Third, while not straightforward, we develop a feasible MCMC algorithm to estimate the

proposed model based on the elliptical slice sampler of Murray, Adams and Mackay (2010).10

We are particularly interested in assessing whether these models can have equal or superior

forecasting performance than the CSP-SV under any of its the orderings. Thus, we estimate the

ordering invariant models on the same data (and training sample) as the CSP-SV. Likewise, we

include two-lags.

4.1 The DW-SV

This DW-SV was developed by West and Harrison (1997), Uhlig (1997), Prado and West (2010),

and Bognanni (2018). Since the model is well documented in the literature let us provide a

succinct summary of its structure and how to conduct Bayesian inference with it. Let the vector

of endogenous variables yt evolve as follows:

y′t = x′tBt + u′t, ut ∼ N(0n×1,H
−1
t ) (5)

Bt = Bt−1 + Ωt, Ωt ∼ N(0m×n,W ,H−1t ) (6)

Ht+1 =
U(Ht)

′Γt+1U(Ht)

β
, β ∈ (0, 1), Γt+1 ∼ Be

(
βh

2
,
1

2

)
, βh ≥ n (7)

9While Hartwig (2020) relies on a decomposition similar to the Ωt = DtPtD
′
t decomposition, he models Pt

based on a Cholesky factorization, and therefore the resulting model is not ordering invariant.
10There are alternative models for the time-varying reduced-form covariance matrix that are ordering invariant.

Some of them have been tested on macroeconomic data, and have been shown to produce a predictive distribution
comparable to some orderings of the CSP-SV model without time-varying parameters, (Karapanagiotidis, 2014;
Chan et al., 2020). In Section 4.4, we discuss these and other potential modeling strategies including those that
have never been applied to macroeconomic data.
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where y′t is 1× n and x′t =
[
y′t−1, . . . ,y

′
t−p, 1

]
is 1×m. Let Dt = {y1, . . . ,yt} for t = 1, . . . , T

and D0 = ∅. Hence, Bt is m× n and Ht is n× n.

Given a prior distribution (B0,H1) | D0 ∼ NW
(
M0|0,C0|0,S1|0, βh

)
, and conditioning on h,

β, and W , the posterior distribution of the DW-SV can be evaluated recursively using the results

shown in Appendix A.1. Following Bognanni (2018), we set h = 1/(1− β) and take into account

the fact that β and W are unknown by imposing a prior distribution over these parameters.

We assume that β has a four-parameter beta distribution. The parameters characterising the

support of the distribution are βmin = n(n + 1)−1 and βmax = 1. The shape parameters are

a = 323.33 and b = 30 so that the expected value of β is 0.92. We set W ∼ IW(S0, ν0 −m+ 1),

where S0 = δ2(ν0 − m − 1)(X ′0X0)
−1.11 It is common to inform the selection of S0 using a

pre-sample of ν0 observations where X ′0 = [x−ν0+1, . . . ,x0]. This implies that the draws of W

will be centered around S0

ν0−m−1 = δ2(X ′0X0)
−1. Inspired by Primiceri’s (2005) approach, we will

set ν0 = 40 and δ = 0.01.

The remaining parameters of the distribution for (B0,H1) | D0, that is (M0|0,C0|0,S1|0, βh).

We follow the literature and use a pre-sample of ν0 observations to set M0|0 = (X ′0X0)
−1X ′0Y0,

C0|0 = κ (X ′0X0)
−1, and S1|0 = γ

(
1
ν0

∑0
t=−ν0+1 u

′
tut

)−1
, where Y ′0 = [y−ν0+1, . . . ,y0]. We set

κ = 4 so that at the OLS estimates our prior for B0 given H1 is equivalent to the prior imposed

by Primiceri (2005), and we set γ ≈ 1/n so that the expected value of H1 is in about the same

order of magnitude as the inverse of the ordinary least squares (OLS) estimate of the variance

matrix of the residuals based on the pre-sample. The DW-SV is estimated using the Gibbs

Sampling algorithm proposed by Bognanni (2018). Appendix A.1 summarizes the algorithm.

4.2 The DSC-SV

The approach that decomposes the reduced-form covariance matrix Ωt into DtPtD
′
t was first

introduced into econometrics by Engle (2002). Since then, several econometric models rely on

this decomposition to model time-varying covariance matrices; see e.g., the literature review

by Chib, Omori and Asai (2009). To place an ordering invariant prior on the time-varying

covariance matrix of a TVP-VAR-SV model, we follow Asai and McAleer (2009) and impose a

Wishart process-based prior on the dynamics of the matrix Pt. We label the resulting model

a time-varying parameters VAR with dynamic and stochastic correlation-based multivariate

stochastic volatility model.

The main difference relative to the CSP-SV is in the decomposition of the reduced-form

covariance matrix. Formally, the DSC-SV model is defined as follows

y′t = vec(Bt)
′xt + u′t, ut ∼ N(0n×1,DtPtDt), for t = 1, . . . , T, (8)

11When working with the DW-SV, the inverse-Wishart is parameterized as in Prado and West (2010).
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where Bt is modelled as in Equation (2) of the CSP-SV, which we reproduce below

vec(Bt) = vec(Bt−1) + νt, νt ∼ N(0mn×1,Q). (9)

Turning to the decomposition of the covariance matrix of the reduced form shocks, i.e.,

DtPtDt,Dt is a diagonal matrix that contains the standard deviations of the reduced form shocks

and Pt is a correlation matrix. The diagonal elements of Dt are modelled analogously to how Σt

is modelled in the CSP-SV. Accordingly, we let Dt = diag(
√
δt), where δt = (δ1,t, δ2,t, ..., δn,t)

′,

and assume that log δt evolves analogously to logσt in Equation (4), that is,

log δt = log δt−1 + ηt, ηt ∼ N(0n×1,W ). (10)

As mentioned, Pt is assumed to be a function of a Wishart process. More specifically, we

start with the standardization suggested by Engle (2002), that transforms a positive definite

matrix Qt into a correlation matrix Pt,

Pt = (Q∗t )
−1Qt(Q

∗
t )
−1, where Q∗t = (diag(vecd(Qt))

1/2. (11)

Then, we model the dynamic evolution of Qt based on the following Wishart process,

(Qt+1)
−1|k,St ∼W(k,St), where S−1t = k(Qt)

d/2A−1(Qt)
d/2, (12)

and k is the degrees of freedom parameter to be estimated. The time-dependent scale parameter

of the Wishart distribution St is a function ofQt, a degrees of freedom parameter k, another scalar

parameter d that governs the general persistence of Qt, and a n× n positive definite symmetric

matrix A. The fractional power (Qt)
−d/2 is defined by using a singular value decomposition.12

Equations (8)-(12) summarize the DSC-SV model. Let us now discuss the priors that we use

to conduct Bayesian inference. We impose the same exact prior on Q as in the CSP-SV model.

For the parameters governing the Wishart process Qt (i.e., d, k, and A−1), we assume the same

prior distribution as in Asai and McAleer (2009), that is,

d ∼ U(−1, 1), k ∼ EXP(λ0)I(n,∞), A−1 ∼W(γ0,C0) (13)

where EXP(λ0) denotes an exponential distribution with the following density, p(k) = λ0e
−λ0k,

and I(n,∞) is an indicator function that takes the value of one when k ∈ (n,∞). Our choice for

hyperparameters, λ0 = 5, γ0 = n, and C−10 = γ0In, implies a quite loose prior over Pt dynamics.

We assume that W is a diagonal matrix and let wi denote its (i, i)-th element. Each

wi ∼ IG(kw,i, sw,i). We set kw,i = 2 and sw,i = (kw,i − 1)var(êi)/T0, where var(êi) is a variance

12Suppose X = SV D, where V is a diagonal matrix. Then, Xd = SV dD.
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of the OLS residual based on the training sample. Note also that Q0 is assumed to be fixed and

known. Let R̂0 be the correlation matrix of the OLS residuals from the training sample, and

let D̂0 be the diagonal matrix with diagonal elements being the standard deviation of the OLS

residuals from the same sample. Then, we set Q0 = D̂0P̂0D̂0 so that P̂0 = (Q∗0)
−1Q0(Q

∗
0)
−1.

Appendix A.2 describes the MCMC algorithm that we use to generate a sequence of draws

from the posterior distribution. Importantly, our algorithm is different from that of Asai and

McAleer (2009). While they implement a two-quarter algorithm where the dynamic correlation

matrices and their related parameters are drawn conditional on the posterior mean of variances

(i.e., the posterior mean of {D1,D2, ...,DT}), we propose and implement a novel algorithm

that generates draws from the full joint posterior distribution of unknowns using the elliptical

sampling proposed by Murray, Adams and Mackay (2010).

Last but not least, let’s highlight that as it was the case with the CSP-SV and the DLM-SV

our choice of priors for the DSC-SV is in line with common choices in the literature.

4.3 Forecasting Performance

In this section we assess the out-of-sample prediction performance of the DW-SV and DSC-SV

and we contrast it with the performance of the CSP-SV. As in Section 3, we focus on point

prediction, density prediction, and interval prediction.

4.3.1 Point Prediction

Table 6 reproduces Table 1 and compares the CSP-SV model to the two ordering invariant

models. The columns labeled DW-SV and DSC-SV denote the RMSE for the DW-SV and

DSC-SV, respectively.

The table offers two main lessons. First, the DW-SV underperforms the other models under

analysis. For all but one case, the RMSE of the DW-SV is higher than the RMSE associated

with all the possible ordering of the CSP-SV. The exception is the eight-quarter-ahead RMSE

of output growth where the DW-SV performs almost as well as the best CSP-SV. Second,

the DSC-SV model produces point predictions roughly equal to the median outcomes of the

CSP-SV. This is expected because the conditional mean in these two models is identical. The

small differences in RMSEs are mainly due to different heteroscedasticity assumptions, which

indirectly affects the conditional mean estimates and their point forecasts.

In any case, it could be argued that the differences in point prediction performance between

the DW-SV and either of the two remaining models are tolerable from a macroeconomic

forecasting perspective. For example, the one-quarter-ahead RMSE of output growth obtained

when using the DW-SV is only 25 basis points larger than the CSP-SV with the smallest RMSE,

and the average errors in the one-quarter-ahead RMSE for inflation, the 3-Month T-Bill rate,
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Table 6: RMSE

One-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [2.46, 2.57] 2.51 2.70 2.57
Inflation [0.60, 0.60] 0.60 0.62 0.60
3-Month T-bill [0.33, 0.34] 0.33 0.37 0.34
Unemployment [0.20, 0.20] 0.20 0.21 0.20

Four-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [2.67, 2.73] 2.70 3.02 2.57
Inflation [0.77, 0.80] 0.78 0.88 0.79
3-Month T-bill [1.14, 1.18] 1.16 1.27 1.15
Unemployment [0.80, 0.83] 0.82 0.92 0.83

Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [2.56, 2.61] 2.59 2.57 2.49
Inflation [0.86, 0.92] 0.88 1.14 0.88
3-Month T-bill [1.92, 2.01] 1.95 2.13 1.89
Unemployment [1.42, 1.47] 1.44 1.61 1.44

Note. DW-SV denotes the RMSE for the DW-SV model, and DSC-SV denotes the RMSE for
the DSC-SV model.

and the unemployment rate are roughly equivalent.

4.3.2 Density Prediction

When comparing the performance in terms of predictive densities, it is evident that there are

large and economically meaningful discrepancies across the three models. Table 7 reproduces

Table 2 and compares the CSP-SV model to the two ordering invariant models.

The table offers three main results. First, the DW-SV underperforms the CSP-SV under all

orderings as well as the DSC-SV. Notice that in terms of joint density prediction, the sum of one-

quarter-ahead LPSs of the DW-SV is about 70 log units lower than that of the median CSP-SV

and the DSC-SV. This large difference is also a feature of the sum of one-quarter-ahead marginal

LPSs for the each variable. The same results are obtained when looking at the four-quarter- and

eight-quarter-ahead forecast horizons. Second, the one-quarter-ahead predictive performance of

the DSC-SV is competitive relative to CSP-SV. In most cases it is within the CSP-SV range,

and only in five cases it performs worse than the worst ordering for CSP-SV. Third, at the

four-quarter- and eight-quarter-ahead forecast horizons, the joint density prediction based on

the DSC-SV is slightly worse than the one based on the CSP-SV under any of its orderings.

Even so, the marginal predictive densities based on the DSC-SV and the median outcomes of

the CSP-SV are of quite similar quality.
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Table 7: Log Predictive Score

One-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Joint [-371.86,-346.23] -354.31 -425.88 -359.90
Output Growth [-279.41,-274.29] -276.56 -382.17 -279.72
Inflation [-111.03,-106.76] -108.68 -125.84 -110.39
3-Month T-bill [-33.10,-15.74] -21.22 -51.42 -10.33
Unemployment [26.94,33.53] 31.84 -25.24 20.80

Four-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Joint [-739.69,-716.06] -729.74 -813.50 -748.34
Output Growth [-290.48,-284.50] -287.11 -400.50 -287.96
Inflation [-149.13,-142.56] -144.98 -175.35 -147.35
3-Month T-bill [-192.47,-183.55] -187.70 -208.89 -180.38
Unemployment [-138.68,-123.95] -129.53 -151.43 -144.42

Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Joint [-948.09,-910.97] -931.17 -996.95 -950.44
Output Growth [-292.80,-283.26] -287.03 -418.27 -287.66
Inflation [-179.46,-169.80] -174.75 -217.19 -176.06
3-Month T-bill [-267.13,-260.09] -262.18 -274.95 -256.58
Unemployment [-227.22,-205.30] -212.01 -222.61 -215.87

Note. DW-SV denotes the LPS for the DW-SV model and DSC-SV denotes the LPS for the
DSC-SV model.

4.3.3 Interval Prediction

Finally, we turn to contrasting the empirical coverage rates and the length of 70% prediction

intervals. Table 8 reproduces Table 5 and compares the CSP-SV model to the two ordering

invariant models. The most salient finding that emerges from Panel (a) is that the empirical

coverage rates based on the DW-SV are much higher than those of the models for all variables

and all horizons. Consequently, the predictive density based on the DW-SV is much wider than

what it should be based on the desired nominal coverage rate, which could explain a low LPS of

the DW-SV relative to other models described above. In contrast, empirical coverage rates for

one-quarter-ahead forecasts based on DSC-SV are very close to the desired nominal coverage

rate. Notice that while under some orderings the CSP-SV produces one-quarter-ahead prediction

interval coverage rates significantly above (i.e., 84%) or below (i.e., 64%) the nominal rate, all

one-quarter-ahead prediction intervals implied by the DSC-SV are at most 3 percentage points

away from nominal coverage rate. Turning to the four-quarter-ahead prediction intervals, the

DSC-SV has similar empirical coverage rates to the median implied by the DSC-SV orderings. For

the eight-quarter-ahead prediction intervals, neither model produces a well-calibrated prediction

interval.
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Table 8: Interval prediction comparisons

(a) Empirical coverage rate of 70% prediction interval

One-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [0.68,0.74] 0.70 0.86 0.70
Inflation [0.67,0.75] 0.69 0.84 0.69
3-Month T-bill [0.72,0.84] 0.77 0.87 0.73
Unemployment [0.64,0.78] 0.69 0.79 0.68

Four-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [0.71,0.79] 0.74 0.86 0.78
Inflation [0.83,0.88] 0.86 0.89 0.83
3-Month T-bill [0.67,0.80] 0.72 0.82 0.68
Unemployment [0.61, 0.78] 0.68 0.76 0.65

Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [0.78,0.86] 0.81 0.93 0.87
Inflation [0.89,0.94] 0.93 0.88 0.88
3-Month T-bill [0.62,0.72] 0.66 0.72 0.63
Unemployment [0.54,0.65] 0.57 0.72 0.60

(b) Average length of 70% prediction interval

One-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [4.62,5.51] 4.94 7.06 5.01
Inflation [1.32,1.47] 1.35 1.77 1.33
3-Month T-bill [0.66,0.87] 0.71 1.15 0.62
Unemployment [0.35,0.45] 0.37 0.53 0.40

Four-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [5.11,6.18] 5.51 8.53 5.81
Inflation [2.10,2.34] 2.18 2.92 2.19
3-Month T-bill [2.14,2.67] 2.29 3.14 2.00
Unemployment [1.13,1.40] 1.22 1.77 1.31

Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV

Output Growth [5.55,6.82] 5.98 10.39 6.54
Inflation [2.83,3.17] 2.99 4.06 3.06
3-Month T-bill [3.45,4.29] 3.68 5.03 3.30
Unemployment [1.83,2.22] 1.93 2.88 2.11

Note. Panel (a): DW-SV indicates the empirical coverage rate of the DW-SV. DSC-SV
indicates the empirical coverage rate of the DCS-SV. Panel (b): DW-SV indicates the average
length of the 70% prediction interval in the DW-SV. DSC-SV indicates the average length of the
70% prediction interval in the DSC-SV.
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Panel (b) confirms the insights obtained from Panel (a). The DW-SV tends to have wider

intervals relative to the prediction intervals implied by the CSP-SV and the DSC-SV for all

variables and at all horizons, which is in line with the higher empirical coverage rates documented

above. Overall, the average length of the prediction intervals based on the CSP-SV under all of

its orderings and the DSC-SV are comparable: the length based on the DSC-SV falls into the

CSP-SV range. The few exceptions are the prediction intervals for the 3-Month T-Bill. In this

case, the intervals based on the DSC-SV are shorter than the other intervals, which explains

why the DSC-SV produces better predictive density, measured by the log predictive score, for

the 3-Month T-Bill relative to the other models.

4.4 Discussion

Features Underlying the Forecasting Performance. Our analysis shows that the DW-SV

presents excessively wide predictive densities for all variables at all horizons relative to the other

models under analysis. This is related to two restrictive assumptions that make the DW-SV

analytically tractable.

First, the shocks to the time-varying parameters, Bt, are scaled by the time-varying reduced-

form covariance matrix, H−1t . While in some cases this can be a reasonable assumption, it

restricts the variance of the parameters governing the conditional mean to be an increasing

function of the covariance matrix of the reduced-form innovations. The CSP-SV and the DSC-SV

are not subject to such a restriction and a consequence the variance of the predictive density

can be smaller than in the presence of the restriction as in our application.

Second, the DW-SV imposes a discounting stochastic process driven by a singular multivariate

Beta distribution, which when combined with a Wishart prior distribution on the time-varying

reduced-form covariance matrices induces a Wishart posterior distribution. Consequently, there

are at most two tightness parameters (β and h) that govern the properties of the shocks

underlying the stochastic process for the reduced-form covariance matrix. Hence, even though

the Wishart-based modeling is a parsimonious approach, it is too restrictive relative to the

CSP-SV and the DSC-SV.13

Turning to the DSC-SV, notice that it can be viewed as a hybrid approach between the

DW-SV and CSP-SV modeling approaches. This is because it decomposes the time-varying

reduced-form covariance matrices into two pieces: a time-varying conditional variance and a

time-varying conditional correlation. The former is modeled similarly to the CSP-SV (i.e., by

means of a random-walk process) and the latter is modeled similarly to the DW-SV model

(i.e., by means of a Wishart-based process). Our forecasting performance evaluation shows

that by assuming a random-walk process on the logarithm of the conditional variances, the

13See Lopes and Polson (2014) for a general comparison between Wishart priors and the prior induced by the
Cholesky decomposition for the Bayesian estimation of a non-time-varying covariance matrix.
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marginal predictive densities are comparable to those based on the CSP-SV. Thus, imposing a

random-walk process either on the standard deviation of the structural shocks (i.e., Σt) as in

the CSP-SV or on the standard deviation of the reduced-form shock (i.e, Dt) as in the DSC-SV

leads to superior out-of-sample forecasting performance relative to the DW-SV.

Importantly, the DSC-SV is ordering-invariant because the time-varying correlation matrix

is modelled via a Wishart process. This is an appealing feature because it opens the door to

structural analysis, however our empirical exercise shows that the multi-step joint predictive

density produced by this model underperforms the CSP-SV. This implies that the correlation

dynamics of the DSC-SV model could be misspecified relative to the CSP-SV: the Wishart

distribution-based approach for the time-varying correlation matrices may be too restrictive as

the single scalar parameter (k) controls the tightness of the distribution.

On Alternative Approaches. Although we argue that the DW-SV is too tightly parameter-

ized to fit macroeconomic data, there are more flexible Wishart or inverted Wishart processes

for multivariate stochastic volatility models in exchange for higher computational complexity.

Some of these models have been applied to macroeconomic forecasting problems. For example,

Karapanagiotidis (2014) compares the predictive performance of the inverse Wishart stochas-

tic volatility model with some models based on the Cholesky decomposition using four U.S.

macroeconomic variables. And, Chan et al. (2020) develop a VAR model with a multivariate

stochastic volatility inverse Wishart process. They compare its predictive performance with

other VAR models with stochastic volatility based on the Cholesky decomposition using twenty

U.S. macroeconomic variables. Related VARs with Wishart processes are also employed in

structural economic analysis, see e.g., Rondina (2013) and Shin and Zhong (2020).

Unlike our DSC-SV, it is possible to model the time-varying correlation matrix, Pt, using

random-walk processes rather than (inverse) Wishart processes. In particular, Archakov and

Hansen (2020) introduce a numerically invertible mapping from the space of non-singular

n× n correlation matrices to a n(n − 1)/2 × 1 real vector, γ(·) : Cn×n → Rn(n−1)/2 and show

that the mapping is ordering invariant. Using their mapping, it is possible to model Pt as

γ(Pt) = γ(Pt−1) + ζt, ζt ∼ N(0,S), where S is a n(n − 1)/2 × n(n − 1)/2 positive definite

matrix. Our preliminary computations reveal that such an approach is on par with the DSC-SV

in terms of predictive performance.

Another yet interesting approach is to assume a common stochastic volatility so that the

reduced-form covariance matrix can be written as Ωt = exp(ht)Ω, where ht is a scalar log

stochastic volatility process and Ω is a n× n positive definite matrix that is constant over time.

As long as the prior distribution of Ω is ordering invariant (e.g., an inverse Wishart distribution),

the resulting multivariate stochastic volatility model is robust to variable ordering. Carriero,

Clark and Marcellino (2016) and Chan (2020) integrate this type of common stochastic volatility
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models into VARs to fit several macroeconomic variables.

Finally, even though it is less popular in macroeconomics, it may be also possible to model

the time-varying reduced-form covariance matrix based on observation-driven approaches. This

type of models includes the multivariate generalized autoregressive conditional heteroskedasticity

(GARCH) models surveyed in Bauwens, Laurent and Rombouts (2006), the dynamic conditional

correlation (DCC) model of Engle (2002), and the multivariate generalized autoregressive score

(GAS) model of Creal, Koopman and Lucas (2011).

5 Conclusion

This paper shows that the out-of-sample forecasting performance of the CSP-SV depends on the

ordering of the variables. When the object of interest is density and interval prediction, the

differences are noticeable and persistent. Hence, our results offer useful guidance for policymakers

and forecasters at central banks, who have been increasingly interested in density forecasts.

In addition, our paper proposes an ordering invariant DSC-SV approach that features an

out-of-sample forecasting performance comparable to the CSP-SV.

Finally, let us highlight that the priors used in each model are based on standard specifications.

The results in Giannone, Lenza and Primiceri (2015) and Amir-Ahmadi, Matthes and Wang (2020)

show that additional forecasting gains for each model could be obtained by optimally choosing

the prior hyperparameters controlling the informativeness of the priors and the smoothness of

the time-varying parameters.
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Atchadé, Y. F. and J. S. Rosenthal (2005). On Adaptive Markov Chain Monte Carlo Algorithms.

Bernoulli 11 (5), 815–828.

Baumeister, C. and G. Peersman (2013). Time-Varying Effects of Oil Supply Shocks on the US

Economy. American Economic Journal: Macroeconomics 5 (4), 1–28.

Bauwens, L., S. Laurent, and J. V. Rombouts (2006). Multivariate GARCH Models: A Survey.

Journal of Applied Econometrics 21 (1), 79–109.

Bognanni, M. (2018). A Class of Time-Varying Parameter Structural VARs for Inference under

Exact or Set Identification. Federal Reserve Bank of Cleveland Working Paper 1 (18-11), 1–61.

Carriero, A., T. E. Clark, and M. Marcellino (2016). Common Drifting Volatility in Large

Bayesian VARs. Journal of Business & Economic Statistics 34 (3), 375–390.

Carriero, A., T. E. Clark, and M. Marcellino (2019). Large Bayesian Vector Autoregressions with

Stochastic Volatility and Non-conjugate Priors. Journal of Econometrics 212 (1), 137–154.

Chan, J. C. (2020). Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure.

Journal of Business & Economic Statistics 38 (1), 68–79.
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Gaĺı, J. and L. Gambetti (2015). The Effects of Monetary Policy on Stock Market Bubbles:

Some Evidence. American Economic Journal: Macroeconomics 7 (1), 233–57.

Giannone, D., M. Lenza, and G. E. Primiceri (2015). Prior Selection for Vector Autoregressions.

Review of Economics and Statistics 97 (2), 436–451.

Haldane, J. (1942). Moments of the Distributions of Powers and Products of Normal Variates.

Biometrika 32 (3/4), 226–242.

Hartwig, B. (2020). Robust Inference in Time-Varying Structural VAR Models: The DC-

Cholesky Multivariate Stochastic Volatility Model. Deutsche Bundesbank Discussion Paper

34/2020 .

Karapanagiotidis, P. (2014). Improving Bayesian VAR Density Forecasts through Autoregressive

Wishart Stochastic Volatility. Working Paper .

Kim, S., N. Shephard, and S. Chib (1998). Stochastic Volatility: Likelihood Inference and

Comparison with ARCH Models. Review of Economic Studies 65 (3), 361–393.

Lopes, H. F. and N. G. Polson (2014). Bayesian Instrumental Variables: Priors and Likelihoods.

Econometric Reviews 33 (1-4), 100–121.

Murray, I., R. Adams, and D. Mackay (2010). Elliptical Slice Sampling. Journal of Machine

Learning Research: W&CP 9, 541–548.

Prado, R. and M. West (2010). Time Series: Modeling, Computation, and Inference. CRC

Press.

Primiceri, G. E. (2005). Time Varying Structural Vector Autoregressions and Monetary Policy.

Review of Economic Studies 72 (3), 821–852.

Rondina, F. (2013). Time Varying SVARs, Parameter Histories, and the Changing Impact of

Oil Prices on the US Economy. Working Paper .

Shin, M. and M. Zhong (2020). A New Approach to Identifying the Real Effects of Uncertainty

Shocks. Journal of Business & Economic Statistics 38 (2), 367–379.

28



Uhlig, H. (1997). Bayesian Vector Autoregressions with Stochastic Volatility. Econometrica:

Journal of the Econometric Society 65 (1), 59–73.

West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models. Springer Science

& Business Media.

29



A Appendix

A.1 Inference in the DW-SV

Bognanni’s (2018) Gibbs Sampler relies on two steps to sample from p(BT ,HT , β,W |DT ), where

Bt = {B0, . . . ,Bt} and Ht = {H1, . . . ,Ht} for t = 0, . . . , T . The first step consists of drawing

from p(W | β,BT ,HT ,DT ), which is straightforward given that p(W | β,BT ,HT ,DT ) is an

inverse-Wishart distribution. The second step consists of drawing from p(β,BT ,HT |W ,DT ).

The key to obtaining draws from such distribution is to notice that we can rewrite

p(β,BT ,HT |W ,DT ) = p(BT ,HT | β,W ,DT )p(β |W ,DT ).

The reader should notice that it is straightforward to draw from p(BT ,HT | β,W ,DT ) based

on the work of Uhlig (1997) and Prado and West (2010) summarized by Algorithm 1 and

Table A.1. Hence, all that is left is to draw from p(β |W ,DT ). We accomplish this using a

Metropolis-within-Gibbs step as in Bognanni (2018).

Table A.1: Summary for t = 1, . . . , T

Distribution of Interest Distributional Family Parameters
Step 1− Prior at time t
(Bt−1,Ht) | Dt−1 NW

(
Mt−1|t−1,Ct−1|t−1,St|t−1, βh

)
Mt−1|t−1,Ct−1|t−1,St|t−1, βh

(Bt,Ht) | Dt−1 NW
(
Mt|t−1,Ct|t−1,St|t−1, βh

)
Mt|t−1 = Mt−1|t−1
Ct|t−1 = Ct−1|t−1 +W

Ht | Dt−1 W(St|t−1, βh)
Bt |Ht,Dt−1 N(Mt|t−1,Ct|t−1,H

−1
t )

Step 2− Posterior at time t
(Bt,Ht) | Dt NW

(
Mt|t,Ct|t,St|t, βh+ 1

)
Mt|t = Ct|t(C

−1
t|t−1Mt|t−1 + xty

′
t)

C−1t|t = C−1t|t−1 + xtx
′
t

S−1t|t = S−1t|t−1 + et
(
1− x′tCt|txt

)
e′t

where et = yt −M ′
t|t−1xt

Ht | Dt W(St|t, βh+ 1)
Bt |Ht,Dt N(Mt|t,Ct|t,H

−1
t )

Step 3− Prior at time t+ 1
(Bt,Ht+1) | Dt NW

(
Mt|t,Ct|t,St+1|t, βh

)
St+1|t = 1

β
St|t

Note Filtering formulas for the DW-SV.

The posterior parameters are simulated using Algorithm 1:

Algorithm 1. The following algorithm draws from p(BT ,HT |DT ) given h, β, and W .

1. Draw HT | DT ∼W(ST |T , βh+ 1).

2. Draw BT |HT ∼ N(MT |T ,CT |T ,H
−1
T ).
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3. Let t = T − 1.

4. Draw Ht |Ht+1,Dt using equation Ht = βHt+1 + Υt, where Υt | Dt ∼W(St|t, 1).

5. Draw Bt | Bt+1,Ht+1,Dt from Bt | Bt+1,Ht+1,Dt ∼ N
(
Mt|t+1,Ct|t+1,H

−1
t+1

)
.

6. If t ≥ 2, let t← t− 1 and go to Step 4.

7. Draw B0 | B1,H1,D0 using the distribution described in Step 5.

A.2 Inference in the DSC-SV

We develop an algorithm that generates posterior draws of the unknown parameters in the

DSC-SV. The algorithm generates draws that can be used to approximate the following posterior

density

p(BT ,DT ,PT ,A−1, d, k,Q,W |DT ) (A.1)

where Bt = {B1,B2, ...,Bt}, Vt = {D1,D2, ...,Dt}, Pt = {P1,P2, ...,Pt}, andDt = {y1, . . . ,yt}
for t = 1, . . . , T . Our proposed algorithm (i.e., Algorithm 2) is a Metropolis-Hastings within

Gibbs sampling algorithm that iterates over multiple blocks. For ease of exposition, we first

present the general algorithm and then we discuss the details of each step.

Algorithm 2. The following draws from a density that approximates p(BT ,VT ,PT ,A−1, d, k,Q,W |DT ),

1. Draw BT from p(BT |VT ,PT ,A−1, d, k,Q,W ,DT ).

2. Draw Q from p(Q|,BT ,VT ,PT ,A−1, d, k,W ,DT ).

3. Draw PT from p(PT |BT ,VT ,A−1, d, k,Q,W ,DT ).

4. Draw A−1 from p(A−1|BT ,VT ,PT , d, k,Q,W ,DT ).

5. Draw d from p(d|BT ,VT ,PT ,A−1, k,Q,W ,DT ).

6. Draw k from p(k|BT ,VT ,PT ,A−1, d,Q,W ,DT ).

7. Draw VT from p(VT |BT ,PT ,A−1, d, k,Q,W ,DT ).

8. Draw W from p(W |BT ,VT ,PT ,A−1, d, k,Q,DT ).

In Steps 1 and 2, that is when drawing the time-varying parameter coefficients and the

parameter governing their law of motion, we exactly follow Primiceri (2005). This is possi-

ble because we can recover the reduced form variance-covariance matrix using VT and PT ,

(A−1t )ΣtΣt(A
−1
t )′ = DtPtD

′
t for all t. In Steps 3 to 6, that is when drawing the time-varying

correlation parameters, we follow Asai and McAleer (2009), who propose an MCMC algorithm

that generates posterior draws of (PT ,A−1, k, d) from the following model

y∗
′

t ∼ N(01×n, 1,Pt). (A.2)

Conditional on BT and VT , the DSC-SV model can be transformed into the above model by

letting

y∗
′

t = (y′t − vec(Bt)
′xt)D

−1
t . (A.3)
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We implement Step 7 (i.e., drawing VT ) differently than in the methods based on the standard

mixture approximation developed by Kim, Shephard and Chib (1998). We apply the elliptical

slice sampling of Murray, Adams and Mackay (2010) to sample VT from its conditional posterior

distribution to deal with the time-varying correlation of reduced-form shocks introduced by Pt.

Step 8 is a standard inverse gamma posterior updating because we impose a conjugate prior on

each non-zero entry of W (i.e., wi for i = 1, ..., n).

While the papers mentioned above provide the details relevant to implement each step of

Algorithm 2, below we discuss those that are new and essential to reproducing our results. In

particular, we introduce a correction to one of the formulas in Asai and McAleer (2009) (note

on step 3) and we illustrate how the novel elliptical slice sampler can be applied to sample the

log stochastic volatilities (note on Step 7).

Note on Step 3. As discussed above, Asai and McAleer (2009) turn Step 3 into the problem

of drawing {Q−11 , ...,Q−1T } from the auxiliary model (A.2). This is possible because there is a

well-defined mapping from {Q−11 , ...,Q−1T } to PT ,

Pt = (Q∗t )
−1Qt(Q

∗
t )
−1, Q∗t = (diag(vecd(Qt))

1/2, for t = 1, . . . , T. (A.4)

Then, we sample from

p({Q−11 , ...,Q−1T }|BT ,VT ,A
−1, d, k,Q,W ,DT )

by drawing Q−1t from the density

p(Q−1t |Q−11:(t−1),Q
−1
(t+1):T ,BT ,VT ,A

−1, d, k,Q,W ,DT ), (A.5)

for t = 1, 2, ..., T , where Qs:t = {Qs, . . . ,Qt} with t ≥ s and QT+1:T = ∅. Importantly, the

conditional posterior density (A.5) can be simplified. Notice that for t = 1, 2, ..., (T − 1),

p(Q−1t |Q−11:(t−1),Q
−1
(t+1):T ,BT ,VT ,A

−1, d, k,Q,W ,DT )

∝ Wn(Q−1t |k,St−1)× N(0,Pt)×Wn(Q−1t+1|k,St)

∝ etr(−
1
2
(S−1

t−1+ztz
′
t)Q
−1
t ) × |Q−1t |(k+1−n−1)/2︸ ︷︷ ︸

∝Wn(Q−1
t |(k+1), (S−1

t−1+ztz
′
t)
−1)

× |Q−1t |(−1−dk)/2|P−1t |1/2e
tr(− 1

2
ztz′t(P

−1
t −Q

−1
t ))etr(−

1
2
S−1
t Q−1

t+1)︸ ︷︷ ︸
=f(Q−1

t )

.

(A.6)

A.3



And, for t = T , we have14

p(Q−1T |Q
−1
1:(T−1),BT ,VT ,A

−1, d, k,Q,W ,DT ) ∝ etr(−
1
2
(S−1

T−1+zT z
′
T )Q−1

T ) × |Q−1T |
(k+1−n−1)/2︸ ︷︷ ︸

∝Wn(Q−1
T |(k+1),(S−1

T−1+zT z
′
T )−1)

× e(−
1
2
tr(P−1

T −Q
−1
T )zT z

′
T ) ×

∣∣∣∣∣
n∏
i=1

q
1/2
ii,t

∣∣∣∣∣︸ ︷︷ ︸
=f(Q−1

T )

.

(A.7)

Then, for t = 1, 2, ..., T , we employ a Metropolis-Hastings algorithm by generating a candidate

draw Q−1t,∗ from the Wishart proposal density, W(Q−1t |(k + 1), (S−1t−1 + ztz
′
t)
−1) and accept it

with probability min
(
f(Q−1

t,∗)

f(Q−1
t,c )
, 1
)

, where Q−1t,c is the current state value. If the proposal draw is

rejected, we set Q−1t = Q−1t,c .

Note on Step 5 and Step 6. We generate k and d based on a Random-Walk Metropolis-

Hastings algorithm. Conditional posterior distributions of d and k are derived in Appendix A.3

of Asai and McAleer (2009). We adaptively tune and select the random-walk proposal densities

so that we have 30% acceptance rate (Atchadé and Rosenthal, 2005).

Note on Step 7. We sample δi,1:T from its conditional posterior density for each i = 1, 2, ...,m.

These conditional posterior densities are derived from the following auxiliary model,

(y′t − vec(Bt)
′xt)

′ = ut ∼ N(0,DtPtD
′
t)

log δi,t = log δi,t−1 + ηi,t, ηi,t ∼ N(0, wi)
(A.8)

with Dt = diag(
√
δt) and δt = (δ1,t, δ2,t, ..., δn,t)

′. The likelihood function is then Gaussian and

we have,

p(u1, ...,uT |VT ,PT ) ∝
T∏
t=1

∣∣(DtPtD
′
t)
−1∣∣1/2 exp

(
−1

2
u′t(DtPtD

′
t)
−1ut

)
. (A.9)

14In Appendix A.1 of Asai and McAleer (2009), one term is missing in their derivation of f(Q−1T ). We thank
Manabu Asai for a helpful discussion.

A.4



We assume δi,0 ∼ N(mδ,i,0, wiVδ,i,0) to obtain convenient forms for the first two moments of the

prior distribution for each δi,t,

E[δi,t] = mδ,i,0

V ar(δi,t) = wiVδ,i,0 + twi = (Vδ,i,0 + t)wi

Cov(δi,t, δi,s) = (Vδ,i,0 +min(t, s))wi.

(A.10)

As a consequence, δi = (δi,1, δi,2, ..., δi,T )′ ∼ N(mδ,i,Vδ,i). In our implementation, we place a

loose prior on δi and set mδ,i = 0 and Vδ,i = 10 for all i = 1, 2, ..., n.

Algorithm 3, described below, draws δi from its conditional posterior distribution

p(δi|δ1:(i−1), δ(i+1):n,BT ,PT ,A−1, d, k,Q,W ,DT ). (A.11)

Notice that the algorithm works with the vector of the demeaned log volatility,

δ̃i = δi −mδ,i. (A.12)

We recover δi by adding the prior mean back to the demeaned log volatility, δi = δ̃i +mδ,i. To

simplify the notation, we define the following density,

p(u1:T |δ̃′i, Others) , p(u1, ...,uT |δ(c)1:(i−1), δ
′
i, δ

(c)
(i+1):n,PT ), (A.13)

with an understanding that δ
(c)
i is the current state value and δ′i is the proposed state value.

Algorithm 3. Elliptical slice sampler for δ̃i. Enter the following steps with the current

state value, δ̃
(c)
i , and

1. Generate v ∼ N(0,Vδ,i) and u ∼ U[0, 1].

2. Generate θ ∼ U[0, 2π]. Let [θmin, θmax] = [θ − 2π, θ].

(a) (Proposal) δ̃′i = δ̃
(c)
i cos(θ) + v sin(θ)

(b) (Accept/Reject) If p(u1:T |δ̃′i, Others)/p(u1:T |δ̃(c)i , Others) > u, exit (i.e., go to step 3).

Otherwise, move on to (c).

(c) (Adaptation) If θ < 0, then θmin = θ. Otherwise, θmax = θ.

(d) Update θ ∼ U[θmin, θmax], and go to (a).

3. Update δ̃
(c)
i = δ̃′i, and δ

(c)
i = δ̃

(c)
i +mδ,i

We complete Step 7 by iterating this algorithm for all δi, i = 1, 2, ..., n.
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A.3 RMSEs and LPSs of the CSP-SV

Tables A.2 to A.7 describe the RMSE and LPS for all possible orderings of the CSP-SV. Each

table has four sections determined by the name of the variables. In each section, the first column

shows the rank of the corresponding model specification based on either RMSE or LPS. The

second column describes the ordering of the variables (from first to last) in the CSP-SV. For

example, for the first row of Table A.2, the second column indicates that the unemployment

rate is ordered first, the 3-Month T-Bill second, inflation third, and output growth fourth. The

third column describes the RMSE. The fourth column presents the p-value of Diebold-Mariano

(or, Amisano-Giacomini) test for equal predictive ability (two-sided) between the best ordering

and the corresponding model.

A.4 Predictive Densities four- and eight-quarter-ahead

Figures A.1 and A.2 present the mean and the standard deviation of the four-quarter-ahead

and eight-quarter-ahead predictive densities over the forecasting sample for the best and worst

ordering, respectively. For each panel, we pick the ex-post best and worst predictive densities

based on the sum of the log predictive score of the corresponding individual variable.

A.5 Deeper Dive into LPS four- and eight-quarter-ahead

Figures A.3 and A.4 show the time-varying rankings of four-quarter-ahead and eight-quarter-

ahead log predictive scores. Figures A.5 and A.6 show the time-varying average length of the

70% prediction intervals for four-quarter-ahead and eight-quarter-ahead log predictive scores.
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Table A.2: RMSE Ranking, h = 1

Output Growth Inflation 3-Month T-Bill Unemployment
R Order RMSE pval Rank Order RMSE pval R Order RMSE pval R Order RMSE pval
1 u , i , π , y 2.57 NaN 1 y , π , i , u 0.604 NaN 1 y , u , π , i 0.345 NaN 1 y , i , π , u 0.204 NaN
2 u , π , i , y 2.565 0.36 2 i , y , u , π 0.604 0.56 2 u , y , i , π 0.341 0.04 2 π , i , y , u 0.203 0.75
3 i , u , y , π 2.565 0.65 3 π , y , u , i 0.603 0.43 3 y , π , u , i 0.337 0.05 3 i , y , u , π 0.203 0.56
4 i , π , u , y 2.545 0.26 4 π , i , u , y 0.603 0.58 4 π , y , u , i 0.336 0.13 4 i , π , u , y 0.202 0.34
5 i , u , π , y 2.542 0.31 5 u , π , i , y 0.602 0.25 5 i , π , y , u 0.336 0.08 5 y , π , i , u 0.202 0.33
6 π , u , y , i 2.539 0.32 6 π , i , y , u 0.602 0.74 6 π , i , u , y 0.335 0.06 6 i , u , y , π 0.202 0.35
7 i , y , u , π 2.533 0.29 7 y , i , π , u 0.602 0.13 7 π , u , i , y 0.335 0.07 7 π , y , u , i 0.202 0.23
8 y , i , π , u 2.527 0.38 8 i , y , π , u 0.601 0.15 8 π , u , y , i 0.335 0.08 8 π , u , y , i 0.201 0.07
9 u , π , y , i 2.526 0.17 9 i , π , y , u 0.601 0.09 9 π , y , i , u 0.335 0.06 9 u , i , π , y 0.201 0.14
10 π , u , i , y 2.523 0.14 10 u , y , i , π 0.601 0.19 10 u , π , y , i 0.335 0.03 10 i , y , π , u 0.2 0.37
11 π , i , u , y 2.513 0.14 11 i , u , y , π 0.601 0.12 11 y , u , i , π 0.333 0.07 11 i , u , π , y 0.2 0.23
12 u , i , y , π 2.511 0.12 12 π , u , y , i 0.601 0.16 12 y , π , i , u 0.333 0.09 12 u , π , i , y 0.2 0.17
13 y , π , i , u 2.507 0.21 13 u , i , π , y 0.601 0.07 13 π , i , y , u 0.333 0.08 13 y , π , u , i 0.2 0.19
14 u , y , π , i 2.507 0.13 14 π , y , i , u 0.601 0.21 14 u , i , y , π 0.333 0.04 14 π , u , i , y 0.199 0.09
15 π , y , u , i 2.506 0.17 15 u , π , y , i 0.601 0.16 15 y , i , π , u 0.333 0.09 15 y , i , u , π 0.199 0.24
16 i , π , y , u 2.498 0.07 16 u , i , y , π 0.6 0.08 16 y , i , u , π 0.332 0.07 16 π , y , i , u 0.199 0.25
17 u , y , i , π 2.489 0.09 17 i , u , π , y 0.6 0.16 17 u , π , i , y 0.332 0.05 17 y , u , π , i 0.199 0.21
18 i , y , π , u 2.489 0.07 18 π , u , i , y 0.599 0.08 18 u , y , π , i 0.332 0.03 18 π , i , u , y 0.199 0.25
19 y , i , u , π 2.478 0.09 19 y , π , u , i 0.599 0.07 19 u , i , π , y 0.331 0.04 19 u , i , y , π 0.199 0.08
20 y , π , u , i 2.473 0.09 20 y , i , u , π 0.599 0.18 20 i , π , u , y 0.329 0.05 20 i , π , y , u 0.199 0.44
21 y , u , i , π 2.472 0.10 21 y , u , π , i 0.598 0.12 21 i , u , π , y 0.329 0.04 21 u , π , y , i 0.198 0.09
22 π , y , i , u 2.472 0.09 22 u , y , π , i 0.597 0.23 22 i , y , u , π 0.329 0.08 22 u , y , i , π 0.198 0.08
23 y , u , π , i 2.469 0.08 23 i , π , u , y 0.596 0.49 23 i , y , π , u 0.328 0.05 23 y , u , i , π 0.197 0.21
24 π , i , y , u 2.464 0.10 24 y , u , i , π 0.596 0.23 24 i , u , y , π 0.327 0.06 24 u , y , π , i 0.197 0.10

Note. The table reports the one-quarter-ahead RMSE for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment.
For each variable, the column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the
24 possible orderings. The column labeled RMSE shows the RMSE error and the column labeled pval presents the p-value of the Diebold-Mariano test for equal
predictive ability (two-sided) between the best ordering and each of the remaining orderings.
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Table A.3: RMSE Ranking, h = 4

Output Growth Inflation 3-Month T-Bill Unemployment
R Order RMSE pval Rank Order RMSE pval R Order RMSE pval R Order RMSE pval
1 u , π , y , i 2.731 NaN 1 π , i , y , u 0.796 NaN 1 y , u , π , i 1.182 NaN 1 i , y , π , u 0.827 NaN
2 i , u , π , y 2.729 0.90 2 y , π , i , u 0.79 0.45 2 π , y , i , u 1.174 0.44 2 y , i , π , u 0.826 0.97
3 u , i , y , π 2.727 0.29 3 y , i , π , u 0.789 0.36 3 u , y , π , i 1.171 0.54 3 i , y , u , π 0.826 0.92
4 i , π , u , y 2.727 0.76 4 i , y , u , π 0.788 0.35 4 u , y , i , π 1.17 0.18 4 y , π , i , u 0.825 0.93
5 π , i , u , y 2.727 0.82 5 i , π , u , y 0.788 0.55 5 π , u , y , i 1.168 0.49 5 π , i , y , u 0.823 0.62
6 π , u , i , y 2.726 0.46 6 π , i , u , y 0.785 0.25 6 y , π , u , i 1.165 0.19 6 π , y , u , i 0.82 0.64
7 π , u , y , i 2.726 0.84 7 π , y , u , i 0.785 0.29 7 π , i , u , y 1.164 0.34 7 y , π , u , i 0.82 0.55
8 i , u , y , π 2.717 0.80 8 i , π , y , u 0.785 0.22 8 y , u , i , π 1.163 0.29 8 i , π , y , u 0.82 0.59
9 u , y , i , π 2.711 0.02 9 u , i , y , π 0.783 0.20 9 y , i , π , u 1.162 0.22 9 i , u , y , π 0.82 0.44
10 i , π , y , u 2.71 0.62 10 i , y , π , u 0.783 0.22 10 π , i , y , u 1.162 0.29 10 π , y , i , u 0.819 0.22
11 u , i , π , y 2.708 0.69 11 u , π , y , i 0.78 0.18 11 i , π , y , u 1.161 0.24 11 i , π , u , y 0.819 0.47
12 i , y , π , u 2.705 0.49 12 i , u , π , y 0.779 0.15 12 y , π , i , u 1.161 0.17 12 y , i , u , π 0.817 0.09
13 u , y , π , i 2.704 0.13 13 u , y , π , i 0.779 0.29 13 y , i , u , π 1.161 0.15 13 π , u , y , i 0.817 0.60
14 y , π , i , u 2.696 0.11 14 π , u , i , y 0.779 0.17 14 π , y , u , i 1.159 0.21 14 i , u , π , y 0.816 0.20
15 π , y , u , i 2.695 0.12 15 π , y , i , u 0.779 0.21 15 u , π , y , i 1.158 0.19 15 y , u , π , i 0.815 0.11
16 u , π , i , y 2.69 0.60 16 y , i , u , π 0.778 0.27 16 π , u , i , y 1.157 0.20 16 π , i , u , y 0.814 0.11
17 i , y , u , π 2.69 0.34 17 y , π , u , i 0.777 0.15 17 u , π , i , y 1.155 0.25 17 π , u , i , y 0.814 0.43
18 y , π , u , i 2.689 0.08 18 u , y , i , π 0.777 0.23 18 i , y , u , π 1.151 0.12 18 u , i , π , y 0.813 0.29
19 π , y , i , u 2.689 0.11 19 y , u , i , π 0.776 0.24 19 i , y , π , u 1.149 0.03 19 u , π , y , i 0.812 0.34
20 π , i , y , u 2.687 0.23 20 y , u , π , i 0.774 0.20 20 i , u , y , π 1.144 0.12 20 u , i , y , π 0.811 0.33
21 y , i , u , π 2.686 0.15 21 u , π , i , y 0.774 0.05 21 u , i , π , y 1.143 0.12 21 u , y , i , π 0.811 0.25
22 y , i , π , u 2.681 0.15 22 π , u , y , i 0.77 0.06 22 i , π , u , y 1.141 0.06 22 u , π , i , y 0.808 0.18
23 y , u , i , π 2.676 0.16 23 u , i , π , y 0.769 0.04 23 u , i , y , π 1.138 0.06 23 y , u , i , π 0.806 0.04
24 y , u , π , i 2.666 0.07 24 i , u , y , π 0.768 0.02 24 i , u , π , y 1.136 0.03 24 u , y , π , i 0.8 0.07

Note. The table reports the four-quarter-ahead RMSE for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment.
For each variable, the column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the
24 possible orderings. The column labeled RMSE shows the RMSE error and the column labeled pval presents the p-value of the Diebold-Mariano test for equal
predictive ability (two-sided) between the best ordering and each of the remaining orderings.
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Table A.4: RMSE Ranking, h = 8

Output Growth Inflation 3-Month T-Bill Unemployment
R Order RMSE pval Rank Order RMSE pval R Order RMSE pval R Order RMSE pval
1 i , π , u , y 2.607 NaN 1 i , π , u , y 0.915 NaN 1 u , y , π , i 2.01 NaN 1 i , y , π , u 1.47 NaN
2 π , i , y , u 2.607 0.98 2 π , i , y , u 0.913 0.88 2 π , u , y , i 1.991 0.34 2 i , π , y , u 1.468 0.91
3 u , i , y , π 2.607 0.96 3 u , y , π , i 0.901 0.36 3 π , y , i , u 1.972 0.20 3 π , i , u , y 1.455 0.35
4 π , u , i , y 2.607 0.94 4 u , i , y , π 0.896 0.08 4 u , y , i , π 1.972 0.34 4 i , u , π , y 1.454 0.39
5 π , i , u , y 2.606 0.91 5 i , y , u , π 0.894 0.15 5 u , π , y , i 1.967 0.11 5 π , y , i , u 1.454 0.22
6 π , u , y , i 2.605 0.93 6 i , u , π , y 0.889 0.07 6 y , u , i , π 1.967 0.13 6 i , y , u , π 1.45 0.38
7 u , π , y , i 2.604 0.75 7 i , y , π , u 0.889 0.27 7 y , i , π , u 1.961 0.15 7 y , π , i , u 1.449 0.37
8 i , u , π , y 2.603 0.67 8 y , u , i , π 0.887 0.25 8 y , u , π , i 1.959 0.27 8 π , i , y , u 1.448 0.17
9 u , y , i , π 2.595 0.49 9 y , π , i , u 0.887 0.05 9 π , u , i , y 1.959 0.07 9 i , u , y , π 1.448 0.32
10 u , y , π , i 2.592 0.14 10 y , i , π , u 0.887 0.05 10 y , π , i , u 1.957 0.12 10 y , π , u , i 1.447 0.22
11 i , π , y , u 2.591 0.51 11 π , i , u , y 0.886 0.11 11 y , i , u , π 1.957 0.10 11 y , i , u , π 1.446 0.07
12 π , y , u , i 2.591 0.60 12 u , π , i , y 0.885 0.10 12 y , π , u , i 1.953 0.16 12 u , y , i , π 1.444 0.33
13 i , y , π , u 2.589 0.40 13 u , π , y , i 0.884 0.00 13 π , i , u , y 1.952 0.21 13 π , u , i , y 1.443 0.41
14 u , i , π , y 2.583 0.53 14 π , u , i , y 0.883 0.00 14 u , π , i , y 1.946 0.14 14 u , π , y , i 1.443 0.44
15 y , π , i , u 2.577 0.36 15 y , i , u , π 0.882 0.20 15 π , i , y , u 1.944 0.19 15 y , i , π , u 1.443 0.32
16 y , i , π , u 2.576 0.44 16 π , y , u , i 0.881 0.00 16 i , y , u , π 1.944 0.17 16 u , i , y , π 1.442 0.42
17 y , π , u , i 2.574 0.18 17 i , π , y , u 0.88 0.18 17 i , y , π , u 1.942 0.12 17 π , y , u , i 1.442 0.27
18 π , y , i , u 2.572 0.16 18 π , y , i , u 0.878 0.12 18 i , u , y , π 1.941 0.22 18 i , π , u , y 1.442 0.19
19 i , u , y , π 2.572 0.47 19 u , y , i , π 0.877 0.02 19 π , y , u , i 1.94 0.11 19 π , u , y , i 1.441 0.44
20 i , y , u , π 2.571 0.46 20 u , i , π , y 0.877 0.00 20 u , i , π , y 1.94 0.12 20 y , u , π , i 1.435 0.01
21 y , u , i , π 2.568 0.24 21 y , u , π , i 0.871 0.05 21 u , i , y , π 1.937 0.06 21 u , i , π , y 1.43 0.19
22 y , i , u , π 2.568 0.18 22 y , π , u , i 0.869 0.03 22 i , π , u , y 1.937 0.07 22 y , u , i , π 1.429 0.04
23 u , π , i , y 2.563 0.54 23 i , u , y , π 0.868 0.00 23 i , u , π , y 1.933 0.03 23 u , y , π , i 1.425 0.17
24 y , u , π , i 2.558 0.17 24 π , u , y , i 0.86 0.00 24 i , π , y , u 1.924 0.20 24 u , π , i , y 1.418 0.16

Note. The table reports the eight-quarter-ahead RMSE for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and
unemployment. For each variable, the column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with
each of the 24 possible orderings. The column labeled RMSE shows the RMSE error and the column labeled pval presents the p-value of the Diebold-Mariano test for
equal predictive ability (two-sided) between the best ordering and each of the remaining orderings.
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Table A.5: LPS Ranking, h = 1

Joint Output Growth Inflation 3-Month T-Bill Unemployment
R Order LPS pval R Order LPS pval R Order LPS pval R Order LPS pval R Order LPS pval
1 i , y , π , u -346.23 NaN 1 y , u , π , i -274.29 NaN 1 π , u , i , y -106.76 NaN 1 i , u , y , π -15.74 NaN 1 u , y , i , π 33.53 NaN
2 y , i , u , π -347.84 0.63 2 y , π , u , i -274.39 0.92 2 y , u , π , i -107.07 0.70 2 i , π , u , y -15.98 0.67 2 u , i , y , π 33.14 0.65
3 i , u , π , y -348.54 0.39 3 π , i , y , u -274.48 0.91 3 π , u , y , i -107.2 0.48 3 i , u , π , y -16 0.33 3 π , u , i , y 33.06 0.56
4 i , π , y , u -348.99 0.21 4 π , y , i , u -274.79 0.57 4 π , y , u , i -107.32 0.45 4 i , y , π , u -16.35 0.35 4 u , π , y , i 32.98 0.45
5 π , y , i , u -349.19 0.54 5 y , u , i , π -274.9 0.49 5 u , π , y , i -107.36 0.09 5 i , y , u , π -16.76 0.29 5 u , y , π , i 32.89 0.58
6 y , π , u , i -349.9 0.65 6 y , i , u , π -275.55 0.15 6 u , y , i , π -107.52 0.28 6 i , π , y , u -17.77 0.05 6 u , π , i , y 32.72 0.53
7 π , i , u , y -351.59 0.09 7 i , y , π , u -275.81 0.46 7 y , π , u , i -107.56 0.36 7 π , i , y , u -17.9 0.17 7 π , u , y , i 32.54 0.29
8 y , π , i , u -352.42 0.25 8 i , π , y , u -275.83 0.50 8 u , π , i , y -107.7 0.09 8 y , i , π , u -19.37 0.29 8 i , u , π , y 32.46 0.54
9 u , i , y , π -352.56 0.38 9 π , y , u , i -276.39 0.05 9 u , i , y , π -108.28 0.06 9 y , i , u , π -19.42 0.26 9 y , u , i , π 32.34 0.58
10 π , u , i , y -352.96 0.30 10 u , y , i , π -276.39 0.33 10 i , π , y , u -108.4 0.16 10 y , π , i , u -19.89 0.27 10 y , π , u , i 32.26 0.55
11 y , u , i , π -353.17 0.23 11 π , u , y , i -276.45 0.21 11 π , i , u , y -108.53 0.03 11 π , i , u , y -20.42 0.10 11 y , u , π , i 32.25 0.55
12 π , y , u , i -354.18 0.31 12 u , π , i , y -276.54 0.45 12 i , u , π , y -108.65 0.03 12 y , u , i , π -20.71 0.23 12 u , i , π , y 32 0.10
13 u , π , y , i -354.44 0.27 13 y , π , i , u -276.58 0.04 13 u , i , π , y -108.7 0.02 13 u , i , π , y -21.73 0.28 13 π , y , i , u 31.67 0.52
14 i , y , u , π -354.53 0.02 14 i , y , u , π -277.27 0.07 14 y , π , i , u -108.82 0.05 14 π , y , i , u -22.08 0.18 14 y , i , u , π 31.54 0.44
15 y , i , π , u -354.78 0.12 15 y , i , π , u -277.27 0.03 15 π , y , i , u -108.86 0.07 15 u , y , π , i -22.81 0.22 15 i , u , y , π 31.42 0.29
16 i , u , y , π -354.96 0.05 16 u , y , π , i -277.39 0.14 16 y , i , π , u -108.89 0.04 16 u , i , y , π -23.08 0.22 16 i , y , π , u 31.38 0.54
17 i , π , u , y -356.14 0.00 17 u , i , y , π -277.54 0.17 17 i , π , u , y -108.94 0.04 17 π , y , u , i -24.23 0.16 17 π , y , u , i 31.26 0.36
18 u , y , π , i -358.21 0.10 18 π , u , i , y -277.67 0.28 18 i , y , π , u -109.17 0.06 18 u , π , y , i -25.46 0.17 18 π , i , u , y 30.77 0.35
19 y , u , π , i -359.21 0.16 19 i , u , y , π -277.71 0.26 19 y , i , u , π -109.79 0.05 19 π , u , i , y -25.46 0.15 19 y , π , i , u 30.6 0.31
20 u , y , i , π -359.74 0.11 20 π , i , u , y -278.15 0.24 20 π , i , y , u -110.12 0.02 20 y , π , u , i -25.69 0.16 20 i , π , u , y 29.86 0.33
21 u , i , π , y -361.34 0.03 21 u , i , π , y -278.17 0.20 21 i , y , u , π -110.3 0.01 21 u , π , i , y -28.82 0.14 21 y , i , π , u 29.55 0.23
22 π , i , y , u -362.87 0.00 22 u , π , y , i -278.33 0.10 22 i , u , y , π -110.42 0.01 22 π , u , y , i -30.27 0.13 22 i , y , u , π 29.4 0.24
23 π , u , y , i -370.36 0.04 23 i , u , π , y -279.21 0.16 23 y , u , i , π -110.65 0.06 23 u , y , i , π -31.6 0.07 23 i , π , y , u 28.67 0.28
24 u , π , i , y -371.86 0.01 24 i , π , u , y -279.41 0.17 24 u , y , π , i -111.03 0.03 24 y , u , π , i -33.1 0.06 24 π , i , y , u 26.94 0.28

Note. The table reports the one-quarter-ahead LPSs for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment. For each variable, the
column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the 24 possible orderings. The column labeled LPS shows the
one-quarter-ahead log predictive score and the column labeled pval presents the p-value of the Amisano-Giacomini test for equal predictive ability (two-sided) between the best ordering and each of
the remaining orderings.
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Table A.6: LPS Ranking, h = 4

Joint Output Growth Inflation 3-Month T-Bill Unemployment
R Order LPS pval R Order LPS pval R Order LPS pval R Order LPS pval R Order LPS pval
1 y , i , π , u -716.06 NaN 1 y , u , i , π -284.5 NaN 1 π , u , y , i -142.56 NaN 1 i , u , π , y -183.55 NaN 1 i , u , π , y -123.95 NaN
2 π , y , u , i -718.25 0.74 2 y , π , u , i -285.17 0.40 2 u , π , i , y -143.21 0.18 2 i , π , u , y -184.08 0.58 2 u , y , π , i -124.1 0.97
3 u , π , y , i -718.6 0.64 3 π , y , u , i -285.24 0.42 3 π , u , i , y -143.26 0.21 3 i , y , u , π -184.42 0.63 3 i , π , u , y -126.17 0.59
4 u , i , y , π -719.14 0.63 4 y , i , u , π -285.27 0.30 4 y , u , π , i -143.4 0.52 4 i , u , y , π -184.96 0.35 4 i , u , y , π -126.35 0.18
5 i , π , u , y -720.69 0.23 5 y , u , π , i -285.33 0.37 5 y , π , u , i -143.96 0.22 5 i , y , π , u -185.28 0.34 5 π , u , y , i -126.61 0.57
6 i , y , u , π -721.46 0.27 6 π , y , i , u -285.39 0.01 6 u , π , y , i -144.09 0.01 6 i , π , y , u -185.51 0.37 6 u , π , y , i -126.79 0.58
7 π , u , i , y -723.81 0.27 7 y , i , π , u -285.5 0.51 7 π , y , u , i -144.12 0.11 7 π , i , y , u -185.73 0.38 7 i , y , u , π -126.83 0.43
8 y , π , i , u -727.97 0.34 8 π , i , y , u -285.53 0.36 8 i , π , y , u -144.31 0.14 8 y , i , π , u -186.76 0.43 8 u , i , y , π -126.92 0.59
9 y , u , i , π -728.37 0.05 9 y , π , i , u -285.9 0.31 9 u , y , i , π -144.35 0.04 9 u , i , y , π -187.21 0.49 9 π , u , i , y -127.21 0.48
10 y , u , π , i -728.99 0.12 10 i , y , u , π -286.85 0.24 10 π , y , i , u -144.41 0.17 10 y , π , i , u -187.4 0.35 10 π , i , u , y -128.34 0.19
11 π , u , y , i -729.18 0.10 11 u , y , i , π -286.97 0.24 11 y , π , i , u -144.6 0.03 11 y , i , u , π -187.57 0.27 11 π , y , u , i -128.85 0.24
12 π , i , u , y -729.33 0.17 12 i , y , π , u -287.08 0.09 12 π , i , u , y -144.96 0.02 12 π , i , u , y -187.64 0.06 12 u , i , π , y -129.43 0.25
13 i , u , π , y -730.14 0.42 13 π , u , y , i -287.14 0.09 13 y , i , π , u -145 0.02 13 u , i , π , y -187.76 0.47 13 i , y , π , u -129.64 0.09
14 π , i , y , u -731.41 0.05 14 u , y , π , i -287.21 0.17 14 i , π , u , y -145.29 0.02 14 π , y , u , i -188.15 0.46 14 u , π , i , y -129.66 0.38
15 i , y , π , u -731.54 0.27 15 i , π , y , u -287.63 0.09 15 i , u , π , y -145.37 0.00 15 π , y , i , u -188.92 0.21 15 y , i , π , u -129.83 0.24
16 i , π , y , u -731.66 0.21 16 u , i , y , π -287.88 0.10 16 i , y , π , u -145.44 0.02 16 y , u , i , π -189.72 0.16 16 y , π , i , u -130.51 0.22
17 y , π , u , i -733.17 0.24 17 u , π , y , i -288.11 0.11 17 u , i , π , y -145.77 0.00 17 π , u , i , y -189.85 0.31 17 y , u , i , π -131.34 0.25
18 u , y , π , i -734.4 0.01 18 u , i , π , y -288.52 0.15 18 u , i , y , π -146.27 0.00 18 y , π , u , i -190.06 0.33 18 π , y , i , u -131.38 0.12
19 u , π , i , y -735.06 0.06 19 π , u , i , y -288.57 0.15 19 y , i , u , π -146.5 0.01 19 u , π , y , i -190.07 0.33 19 y , i , u , π -131.65 0.17
20 u , y , i , π -735.65 0.19 20 u , π , i , y -288.62 0.14 20 i , u , y , π -146.95 0.00 20 u , π , i , y -190.99 0.41 20 π , i , y , u -131.72 0.18
21 π , y , i , u -736.19 0.24 21 π , i , u , y -289.53 0.08 21 i , y , u , π -147.16 0.00 21 u , y , π , i -191.25 0.18 21 i , π , y , u -132.91 0.10
22 y , i , u , π -737.42 0.27 22 i , u , y , π -289.62 0.04 22 π , i , y , u -147.39 0.02 22 π , u , y , i -191.75 0.41 22 y , u , π , i -133.24 0.20
23 u , i , π , y -739.64 0.11 23 i , u , π , y -289.81 0.05 23 y , u , i , π -148.29 0.00 23 u , y , i , π -191.75 0.28 23 u , y , i , π -135.32 0.41
24 i , u , y , π -739.69 0.17 24 i , π , u , y -290.48 0.10 24 u , y , π , i -149.13 0.00 24 y , u , π , i -192.47 0.27 24 y , π , u , i -138.68 0.22

Note. The table reports the four-quarter-ahead LPS for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment. For each variable, the
column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the 24 possible orderings. The column labeled LPS shows the
four-quarter-ahead log predictive score and the column labeled pval presents the p-value of the Amisano-Giacomini test for equal predictive ability (two-sided) between the best ordering and each of the
remaining orderings.
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Table A.7: LPS Ranking, h = 8

Joint Output Growth Inflation 3-Month T-Bill Unemployment
R Order LPS pval R Order LPS pval R Order LPS pval R Order LPS pval R Order LPS pval
1 y , π , i , u -910.97 NaN 1 y , u , π , i -283.26 NaN 1 π , u , y , i -169.8 NaN 1 π , y , u , i -260.09 NaN 1 i , π , u , y -205.3 NaN
2 y , i , π , u -915.53 0.40 2 y , π , u , i -283.31 0.90 2 u , π , i , y -170.56 0.48 2 i , π , y , u -260.2 0.99 2 i , y , u , π -208 0.53
3 i , π , u , y -917.45 0.51 3 y , u , i , π -283.7 0.59 3 y , u , π , i -171.71 0.24 3 i , u , π , y -260.21 0.98 3 u , y , π , i -208.18 0.74
4 u , π , y , i -919.19 0.25 4 y , i , u , π -284.17 0.31 4 y , π , u , i -172.19 0.08 4 i , π , u , y -260.26 0.98 4 i , u , π , y -209.15 0.52
5 i , y , u , π -919.72 0.21 5 π , y , i , u -284.25 0.04 5 π , u , i , y -172.23 0.03 5 i , y , u , π -260.5 0.94 5 y , i , π , u -209.54 0.56
6 π , u , i , y -924.32 0.17 6 y , i , π , u -285.15 0.27 6 u , π , y , i -172.81 0.01 6 π , i , y , u -260.83 0.91 6 π , i , u , y -210.66 0.24
7 u , i , y , π -924.9 0.15 7 y , π , i , u -285.18 0.22 7 π , y , u , i -172.93 0.02 7 y , π , i , u -261.44 0.71 7 π , i , y , u -210.77 0.24
8 i , y , π , u -925.43 0.06 8 π , y , u , i -285.24 0.13 8 π , y , i , u -173.13 0.05 8 y , u , π , i -261.5 0.54 8 u , i , y , π -211.58 0.52
9 y , π , u , i -926.97 0.21 9 u , y , i , π -285.41 0.29 9 y , π , i , u -173.66 0.01 9 u , i , y , π -261.68 0.53 9 u , i , π , y -211.59 0.39
10 π , y , u , i -927.03 0.36 10 u , y , π , i -286.65 0.10 10 u , y , i , π -174.25 0.01 10 y , i , π , u -261.76 0.69 10 π , u , i , y -211.62 0.52
11 π , i , u , y -928.01 0.06 11 u , π , y , i -287 0.08 11 y , i , π , u -174.27 0.01 11 i , u , y , π -262.03 0.76 11 y , π , i , u -211.8 0.46
12 π , i , y , u -929.63 0.10 12 i , y , π , u -287.03 0.01 12 i , π , y , u -174.6 0.03 12 i , y , π , u -262.09 0.77 12 y , u , i , π -211.89 0.44
13 u , y , i , π -932.7 0.14 13 π , u , y , i -287.04 0.08 13 π , i , u , y -174.9 0.01 13 y , π , u , i -262.28 0.22 13 i , u , y , π -212.12 0.26
14 i , π , y , u -933.36 0.13 14 i , y , u , π -287.15 0.09 14 u , i , π , y -174.96 0.00 14 u , y , i , π -262.3 0.38 14 π , y , u , i -212.85 0.40
15 π , u , y , i -934.38 0.06 15 u , i , y , π -287.28 0.03 15 i , y , π , u -175.24 0.01 15 π , u , i , y -262.67 0.38 15 π , u , y , i -213.41 0.48
16 π , y , i , u -934.56 0.19 16 π , i , y , u -287.8 0.01 16 y , i , u , π -175.58 0.00 16 π , i , u , y -262.75 0.56 16 u , π , y , i -214.5 0.46
17 u , π , i , y -935.52 0.07 17 π , u , i , y -287.97 0.10 17 i , u , π , y -175.63 0.00 17 u , π , y , i -262.89 0.32 17 u , π , i , y -214.56 0.39
18 i , u , π , y -935.69 0.15 18 i , π , y , u -288.25 0.03 18 u , i , y , π -176.17 0.00 18 u , π , i , y -263.04 0.44 18 i , y , π , u -214.73 0.21
19 y , u , i , π -937.86 0.03 19 u , i , π , y -289.01 0.08 19 i , π , u , y -177.01 0.00 19 π , y , i , u -263.37 0.32 19 i , π , y , u -215.12 0.13
20 y , i , u , π -938 0.18 20 u , π , i , y -289.99 0.06 20 i , u , y , π -177.02 0.00 20 π , u , y , i -263.52 0.39 20 π , y , i , u -215.13 0.33
21 u , i , π , y -940.86 0.04 21 i , u , y , π -290.29 0.02 21 i , y , u , π -177.99 0.00 21 y , i , u , π -263.95 0.43 21 u , y , i , π -216.36 0.45
22 i , u , y , π -942.95 0.08 22 π , i , u , y -290.41 0.04 22 π , i , y , u -178.13 0.01 22 u , i , π , y -264.15 0.36 22 y , i , u , π -216.69 0.33
23 u , y , π , i -945 0.02 23 i , u , π , y -290.93 0.01 23 y , u , i , π -178.17 0.00 23 y , u , i , π -266.6 0.24 23 y , π , u , i -219.41 0.32
24 y , u , π , i -948.09 0.31 24 i , π , u , y -292.8 0.04 24 u , y , π , i -179.46 0.00 24 u , y , π , i -267.13 0.23 24 y , u , π , i -227.22 0.34

Note. The table reports the eight-quarter-ahead LPS for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment. For each variable, the
column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the 24 possible orderings. The column labeled LPS shows the
eight-quarter-ahead log predictive score and the column labeled pval presents the p-value of the Amisano-Giacomini test for equal predictive ability (two-sided) between the best ordering and each of the
remaining orderings.
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Figure A.1: Four-Quarter-Ahead Predictive Density and Ordering

Note. Mean and standard deviation (SD) of the four-quarter-ahead predictive density
throughout the forecasting sample.
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Figure A.2: Eight-Quarter-Ahead Predictive Density and Ordering

Note. Mean and standard deviation (SD) of the eight-quarter-ahead predictive density
throughout the forecasting sample.
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Figure A.3: Time-Varying Ranking of Four-Quarter-Ahead Log Predictive Scores
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Figure A.4: Time-Varying Ranking of Eight-Quarter-Ahead Log Predictive Scores
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Figure A.5: Four-Quarter-Ahead Prediction Interval and Ordering

Note. Length of the corresponding intervals. Intervals are computed based on the
four-quarter-ahead predictive density throughout the evaluation sample. The difference
between the empirical coverage and the nominal coverage is largest for the worst ordering
and smallest for the best ordering.
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Figure A.6: Eight-Quarter-Ahead Prediction Interval and Ordering

Note. Length of the corresponding intervals. Intervals are computed based on the
four-quarter-ahead predictive density throughout the evaluation sample. The difference
between the empirical coverage and the nominal coverage is largest for the worst ordering
and smallest for the best ordering.

A.18


	Introduction
	The CSP-SV
	Model and Bayesian Inference
	The Ordering Issue

	Out-of-Sample Prediction for the CSP-SV Model
	Setup
	Point Prediction
	Density Prediction
	Robustness of the Results
	Deeper Dive into the LPS

	Interval Prediction
	Summary for the CSP-SV model

	Ordering Invariant Models
	The DW-SV
	The DSC-SV
	Forecasting Performance
	Point Prediction
	Density Prediction
	Interval Prediction

	Discussion

	Conclusion
	Appendix
	Inference in the DW-SV
	Inference in the DSC-SV
	RMSEs and LPSs of the CSP-SV
	Predictive Densities four- and eight-quarter-ahead
	Deeper Dive into LPS four- and eight-quarter-ahead


