Macroeconomic Forecasting and Variable Ordering
in Multivariate Stochastic Volatility Models

Jonas E. Arias® Juan F. Rubio-Ramirez' Minchul Shin?
May 25, 2021

Abstract

We document five novel empirical findings on the well-known potential ordering draw-
back associated with the time-varying parameter vector autoregression with stochastic
volatility developed by Cogley and Sargent (2005) and Primiceri (2005), CSP-SV. First, the
ordering does not affect point prediction. Second, the standard deviation of the predictive
densities implied by different orderings can differ substantially. Third, the average length
of the prediction intervals is also sensitive to the ordering. Fourth, the best ordering for one
variable in terms of log-predictive scores does not necessarily imply the best ordering for
another variable under the same metric. Fifth, the best ordering for variable x in terms of
log-predictive scores tends to put the variable x first while the worst ordering for variable
x tends to put the variable x last. Then, we consider two alternative ordering invariant
time-varying parameter VAR-SV models: the discounted Wishart SV model (DW-SV)
and the dynamic stochastic correlation SV model (DSC-SV). The DW-SV underperforms
relative to each ordering of the CSP-SV. The DSC-SV has an out-of-sample forecasting
performance comparable to the median outcomes across orderings of the CSP-SV.

JEL classification: C8; C11; C32; C53

Keywords: Vector Autoregressions; Time-Varying Parameters; Stochastic Volatility; Vari-
able Ordering; Cholesky Decomposition; Wishart Process; Dynamic Conditional Correla-
tion; Out-of-sample Forecasting Evaluation

We are grateful to Manabu Asai, Joshua Chan, Todd Clark, Daniel Lewis, Christian Matthes, Mikkel
Plagborg-Mgller, Frank Schorfheide, Keith Sill, Jonathan Wright, and participants at the Philadelphia Fed
brown-bag seminar for helpful comments. The views expressed in this paper are solely those of uthors and do not
necessarily reflect the views of the Federal Reserve Bank of Atlanta, the Federal Reserve Bank of Philadelphia,
or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. No statements here
should be treated as legal advice.

*FEDERAL RESERVE BANK OF PHILADELPHIA. Email: jonas.arias@phil.frb.org
TEMORY UNIVERSITY AND FEDERAL RESERVE BANK OF ATLANTA. Email: juan.rubio-ramirez@emory.edu
'FEDERAL RESERVE BANK OF PHILADELPHIA. Email: minchul.shin@phil.frb.org


mailto:Jonas_Arias
mailto:Juan_Rubio-Ramirez
mailto:MinchulShin

1 Introduction

Several studies have shown the benefits of using the time-varying parameter vector autore-
gression with stochastic volatility developed by Cogley and Sargent (2005) and Primiceri
(2005)—henceforth, CSP-SV—in forecasting exercises as well as for obtaining stylized facts of
the U.S. economy.! To date, this model has become a workhorse framework for reduced-form
and structural analysis. Furthermore, its popularity is likely to increase due to the existence of
Bayesian methods for inference implemented and tested in widespread computer languages such
as MATLAB, e.g., Del Negro and Primiceri (2015).

While the CSP-SV has reached a canonical status, it is well-known that it is not order
invariant: the order of the variables affects the posterior distribution of the model parameters.?
Yet, one important practical question remains unexplored. Is the ordering issue really a problem
for point, density, and interval prediction in macroeconomics? Somewhat surprisingly, such a
question has not been addressed in the macroeconomic forecasting literature where researchers
generally estimate the CSP-SV or variant thereof using only one or a negligible subset of all
possible orderings available.

This paper aims to fill this gap by assessing the pseudo out-of-sample forecasting performance
of a four-variable CSP-SV under all of its orderings, and by contrasting it with two ordering
invariant approaches for modeling stochastic volatility. The former will make clear that there are
important differences across orderings that one can exploit to improve forecasts. The latter is
crucial to highlight that not all ordering invariant models can fit the data as well as the CSP-SV.

We conduct our evaluation using U.S. data for four core macroeconomic variables: output
growth, inflation, the 3-Month T-Bill rate, and the unemployment rate. We document five
novel findings on the well-known potential ordering drawback intrinsic to the CSP-SV. First,
the ordering does not affect point prediction. Second, the standard deviation of the predictive
densities implied by different orderings can differ substantially. Third, the average length of the
prediction intervals is also sensitive to the ordering. Fourth, the best ordering for one variable in
terms of log-predictive scores does not necessarily imply the best ordering for another variable
under the same metric. Fifth, the best ordering for variable z tends to put the variable x first
while the worst ordering for variable = tends to put the variable z last.

Our results imply that the ordering of the variables in the CSP-SV should be justified even
in reduced-form analysis such as macroeconomic forecasting. This may become computationally
intractable as the number of possible orderings in a k-variable CSP-SV is k!. For example,

Carriero, Clark and Marcellino (2019) compute and compare predictive densities based on 1,000

1For example, Clark (2011), D’Agostino, Gambetti and Giannone (2013), Baumeister and Peersman (2013),
and Gali and Gambetti (2015).

2See e.g., Cogley and Sargent (2005), Primiceri (2005), Carriero, Clark and Marcellino (2019), Bognanni
(2018), Hartwig (2020), and Chan et al. (2020).



randomly selected different variable orderings for a single time period (see Section C of their
Supplementary Appendix). Even so, their large VAR includes 20 variables, and hence 1,000
orderings reflect only about 4 x 10714% of all possible orderings (i.e., 20! = 2.43 x 10'8).

Given the ordering dependence and the computational cost of checking all possible orderings,
one may wonder if ordering invariant models can forecast as well as some of the orderings in the
CSP-SV. We consider two classes of such models. The first is the ordering invariant dynamic
linear model with discounted Wishart stochastic volatility model (DW-SV) developed by West
and Harrison (1997), Uhlig (1997), Prado and West (2010), and Bognanni (2018). The second is
an approach based on the decomposition of the time-varying reduced-form covariance matrix
introduced by Engle (2002). To place an ordering invariant prior on the time-varying covariance
matrix of a time-varying parameters vector autoregression model (TVP-VAR), we follow Asai
and McAleer (2009) and impose a Wishart process on the correlation dynamics. This results in a
TVP-VAR with dynamic and stochastic correlation-based multivariate stochastic volatility model,
which we label DSC-SV. We sample from this model using the elliptical sampling approach
developed by Murray, Adams and Mackay (2010). The incorporation of theoretically ordering
invariant correlation-based multivariate stochastic volatility into a TVP-VAR complements the
work of Hartwig (2020) who proposes an almost empirically ordering invariant methodology.
The application of Murray, Adams and Mackay’s (2010) approach to models with stochastic
correlation-based multivariate stochastic volatility is new to the literature.

We find that the DW-SV underperforms in terms of point, density, and interval prediction
relative to the other models under analysis. In all but one case, the root mean square error
(RMSE) of the DW-SV is higher than all the RMSEs associated with all the possible ordering of
the CSP-SV. In terms of joint density prediction, the sum of one-quarter-ahead log predictive
score of the DW-SV is about 70 log units lower than that of the median CSP-SV and the
DSC-SV, respectively. This large difference is also a feature of marginal log predictive scores
for each variable. The empirical coverage rates based on the DW-SV model are much higher
than those of other models for all variables and all horizons. Similar results are obtained when
looking at the four- and eight-quarter-ahead forecast horizon. In contrast, in our application,
the DSC-SV has a predictive performance comparable to the CSP-SV in terms of point, density,
and interval prediction.

The rest of the paper is organized as follows. Section 2 briefly describes the CSP-SV. Section
3 gauges the role played by the ordering of the variables in the out-of-sample properties of
the CSP-SV. Section 4 describes the DW-SV and the DSC-SV as well as their out of sample

predictive performance. Section 5 concludes.



2 The CSP-SV

In this section we present the CSP-SV model and the priors. We also illustrate analytically how

the ordering issue inherent to this model can affect its predictive density.
2.1 Model and Bayesian Inference
The most popular representation of the CSP-SV takes the form
y, =vec(By) X, + e, %A &, ~N(0,1, I,), fort=1,...,T, (1)

where y; is an n x 1 vector, X] = I,, ® [1, Yiqs- - ,yé_p} is an n X nm matrix with m = np + 1,
B; is an m x n matrix, A; is an n X n lower triangular matrix with ones along the diagonal and

3 is a diagonal matrix. The matrices A; and 3; are parameterized as
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where o = (Q14, 1ty -+ Q1) and oy = (014, ..., 0,4) are the time-varying parameters

governing the unrestricted entries of these matrices. The time-varying parameters of B;, A,

and 3, evolve according to random walks

vec(By) = wec(Bi—1) + vy, v~ N(0pnxi; Q). (2)
oy = o1+, G~ N(0yn_1)/2x1, S), (3)
logoy = logo,_y+mn, mn ~N0, W), (4)

where @ and W are unrestricted positive definite matrices, S is a block diagonal positive
definite matrix with each block corresponding to the variance matrix of each j-th row of A; for
j=2,...,n,and log oy = (logo1y,...,logo, )"

In this paper, we use the same priors and simulation method implemented in the companion
MATLAB code of Del Negro and Primiceri (2015). Thus, the initial states By, oy, and o, and
the hyperparameters Q, S, and W are assumed to be independent of each other. The former
are distributed according to the normal distribution and the latter are distributed according to

the inverse-Wishart distribution.



Prior for By,. More specifically, vec(By) ~ N (vec(B),4 : V(vec(B))) where vec(B) and
V (vec(B)) are the mean and variance OLS point estimates based on a time-invariant VAR
estimated with a pre-sample of Ty = 40 observations. That is, consider the VAR: y, = ;B + €;
for ¢ € [Ty + 1,0] with €], = €,(A™"), & ~ N(0, %), z, = [1,Yr_1, ..., Yr_p), and note that B =
(X’X)"' X'Y and V(vee(B)) = 2£ ® (X'X)™!, where é =Y — XB, Y’ = (y_n11,- - %0),

X' = (141, .., o).

Prior for ayp. The matrix ag ~ N(a,4 -V (a)) where a and V(vec(a)) are obtained using a
pre-sample of Tj observations. In particular, let vech, be an operator that extracts the elements
below the main diagonal of a matrix. Since Ape; = ¢, it follows that an estimate of vech,(A)
can be obtained by projecting vec(é) onto I, ® é, where € = (é_1,41,...,€0). Then, a is set
equal to the resulting estimate. The variance of ey is defined by setting V = (@/'a/Ty) ® I,
where 4 = vecy' <vec(é) - Zd), Z=(I,0é),V(a)=(Z2'2)'Z'VZ(Z'Z)", and V(a) is a

0,71
n(n—1)
2

‘u/(&)i;i+j_17i;i+j_1 with 1:1—|—J, and 0 otherwise.

n(n—1)
2

X matrix such that given ¢ = 1, for j = 1,n—1, we have V(a;) = V(@)i.i+j-1,i:i+j-1 =

Prior for log(oy). The vector log(og) ~ N(log(6y), I,,) , with ¢ = diag(vecd(d/'a/Ty))) >,
where vecd(X) creates a vector from the diagonal elements of a matrix M, and diag(x) builds

a diagonal matrix whose diagonal elements are given by .

Prior for the Hyperparameters. Turning to the prior for the hyperparameters, @ ~
IW(kg - 40 - V (vec(B)),40), where kg = 0.01, and W ~ IW(k%, - 4 - I, 4), where ky = 0.01.3
As mentioned S is a block diagonal matrix partitioned with n — 1 blocks where the j-th block is
S;~IW(k%E-(j+1)-V(a;),j+1)je{l,...,n—1} and ks = 0.1.

Equipped with this prior, Algorithm 2 in Del Negro and Primiceri (2015) simulates the
posterior distribution of the history of volatitities (3,...,37), the histories of coefficients
(Ay,...,Ar) and (By,...,Br), and the parameters Q, S, and W. Since the derivation of
Algorithm 2 and its implementation is carefully documented in Del Negro and Primiceri (2015)

and its companion code we refer the reader to their paper and code for additional details.

2.2 The Ordering Issue

As highlighted by Primiceri (2005), in this model the ordering of the variables affects the

posterior distribution of the parameters. In this section, we will first replicate his two-variable

3The inverse-Wishart density is parameterized as follows: IW(, g)(2) = cpw | B |7 F741/2 ¢=05t(¥27)

where ¢y =| ¥ |77/2 27T, (v/2).
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example and then we will make some further assumptions to illustrate analytically how the
ordering affects the predictive density implied by the model.

Let €, denote the reduced-form covariance matrix A; '3,/ A; " and notice that

— Qo1 ¢

—Quy (e(loga'1,t—1+?71,t))2 (a21,t—1 + Ct)2 (e(loga'1,z—1+m,t))2 + (e(logdz,t_1+'r]2’t))

(6(10g0'1,t71+771,t))2 (6(10g0'1,t—1+"71,t))2

Qt:

2

The expression above makes clear that, given the states in period t — 1, the distribution of the
first element of the diagonal of €2, is proportional to a log-normal distribution. In contrast, the
distribution of the second element of the diagonal of €2; is not proportional to a log-normal
distribution. Hence, inference under different orderings will imply different distributions for
the entries of the reduced-form covariance matrix which could affect the model’s predictive
performance.

To see the latter analytically, assume that in our two-variable example o1; = 02; = 1,
Q1 S N(0, 1), and that there are neither lags nor constant terms. Then, the predictive density
of y1; is Gaussian while the predictive density of ¥, is non-Gaussian.* In fact, the latter has
a fatter tail than the former (e.g, Haldane, 1942). This makes clear that the ordering of the
variables affects the predictive performance of the model. The crux of the matter is that we
are placing a prior on the variance of the one-quarter forecast errors, €, after decomposing
it via a Cholesky-decomposition so that €, = A; '3, 3,A;! and A;! is the lower triangular
matrix. Putting an independent prior on each element of A; ' does not lead to symmetric prior
in terms of the marginal distribution of y;. Instead, imposing an inverse-Wishart prior on 2; as
in Section 4.1 and using an alternative decomposition of €2; as in Section 4.2 are order invariant
procedures.

In the next section, we will assess whether the actual predictive performance is an empirical

issue in a standard setting.

3 Out-of-Sample Prediction for the CSP-SV Model

In this section we analyze the out-of-sample prediction of the CSP-SV model. We define the

setup and then analyze point, density, and prediction intervals.

3.1 Setup

We estimate a four-variable quarterly frequency CSP-SV using U.S. data.® The four variables
included in the model are output growth (real GDP growth), inflation (based on the Core PCE

4Under our simplifying assumptions y; ; = €14 ~ N(0,1) and Yot = —Q21 €1, + €24 ~ N(0, 1)2 +N(0,1).
5The data was obtained from the FRED-QD Quarterly Database for Macroeconomic Research.



Price Index), the 3-Month T-bill rate, and the unemployment rate for the period 1970Q1:2016Q4.
Output growth and inflation are computed using annualized % log-differences, and the 3-
Month T-bill rate and the unemployment rate are expressed in %. We use data for the period
1960Q1:1969Q4 to construct our prior distribution. The model is estimated including two lags.

In a four-variable CSP-SV there are 24 different orderings. For each ordering, we recursively
estimate and generate one-, four-, and eight-quarter-ahead predictions during 120 quarters
starting in 1987Q1, i.e., when generating our first forecast we assume that we have data up to
1987Q1. Thus, our evaluation sample runs from 1987Q1 to 2016Q4. We index the quarters in
which forecasts are made by 7 € {1,...,120} and we index the forecast horizon by h € {1,4,8}.
Accordingly, our first forecast is for 1987Q2 (when 7 = 1 and h = 1) and our latest forecast is
for 2018Q4 (when 7 = 120 and h = 8). We evaluate the predictive performance under the 24
orderings through the lens of the RMSE for point prediction, the log predictive score for density
prediction, and the empirical coverage and average length for interval prediction.

Notice that our exercise is non-trivial. We compute 23,040 predictive densities (24 x 120 x 8)
based on 2,880 posterior distributions (24 x 120) of all the possible orderings of the four-variable
CSP-SV. Each predictive distribution and posterior distribution is constructed based on 50,000
Markov chain Monte Carlo (MCMC) draws.

3.2 Point Prediction

Panel (a) in Table 1 shows the range of RMSEs and the median RMSE across the 24 orderings at
one-, four-, and eight-quarter-ahead, where the point estimates are computed using the posterior
mean of the predictive density. The RMSEs are computed over the evaluation sample.® The
gist of these point prediction outcomes is that, although there are differences in performance,
from the perspective of macroeconomic forecasting the differences in RMSE are not affected by
the ordering in an economically meaningful manner.

Panel (b) in Table 1 reports the results from Diebold-Mariano (Diebold and Mariano, 1995)
tests for equal predictive ability over the evaluation sample. With four variables, for each variable
and horizon we have (224) = 276 possible orderings to compare. Consequently, we focus on testing
the two orderings with the largest MSE difference. As can be seen, the null hypothesis of equal
predictive ability is rejected at a 5% significance level in only 3 out of 12 cases: the p-value
for four- and eight-quarter-ahead inflation forecasts and the p-value for the four-quarter-ahead
3-Month T-Bill forecast are below 0.05. And, even when rejected, these differences are very
small. For example, largest MSE difference for four-quarter-ahead forecasts of inflation across
all orderings is 0.03 percentage point.

While Table 1 shows that for all variables and horizons all the orderings perform similarly,

6 Appendix A.3 describes the RMSE for all variables, orderings, and horizons.



Table 1: RMSE

(a) RMSE
One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Range Median Range Median Range Median

Output Growth [2.462.57] 251  [2.67,273] 270  [2.562.61]  2.59
Inflation 0.60,0.60] 0.60 [0.77,0.80] 0.78  [0.86,0.92]  0.88
3-Month T-Bill  [0.33,0.34]  0.33  [1.14,1.18]  1.16  [1.922.01]  1.95
Unemployment  [0.20,0.20]  0.20  [0.80,0.83]  0.82  [1.42,1.47]  1.44

(b) Diebold-Mariano Equal Predictive Ability Test
One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead

Output Growth 0.11 (0.10) 0.06 (0.07) 0.05 (0.17)
Inflation 0.01 (0.23) 0.03 (0.02) 0.06 (0.00)
3-Month T-Bill 0.02 (0.06) 0.05 (0.03) 0.09 (0.20)
Unemployment 0.01 (0.10) 0.03 (0.07) 0.05 (0.16)

NOTE. Panel (a): Range indicates the minimum and maximum RMSE. Panel (b): Numbers are the
MSE difference. Numbers in parentheses are p-values of Diebold-Mariano equal predictive ability tests.

Figure 1: Relative RMSE
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Figure 1 presents the results of the table in a different format to facilitate a comparison of the
relative magnitude of the differences. In particular, the figure presents the RMSE for each model
at the horizons under analysis relative to the reference ordering. There is a 4% upper bound and
lower bound difference in RMSEs. To see the implication of this number, notice that the RMSE
can be interpreted as the standard deviation of the forecast error. Combining this interpretation
with the RMSEs associated with the first ordering (2.51 for output growth, 0.6 for inflation, 0.33
for the 3-Month T-Bill rate, and 0.2 for the unemployment rate), it follows that a 5% reduction
of the RMSE is equivalent to a reduction of about 0.13 percentage point in terms of RMSE
for annualized output growth, which is modest from a macroeconomic forecasting perspective.
Similarly, the gains that could be obtained in terms of RMSE for inflation, the 3-Month T-Bill



rate, and the unemployment rate are small: 0.03 percentage point, 0.02 percentage point, and
0.01 percentage point respectively. Thus, Figure 1 reaffirms the message that in terms of point
estimates the observed differences in terms of RMSE do not translate into relevant economic

discrepancies.

3.3 Density Prediction

In general, macroeconomic forecasters are interested not only in point prediction but also
in density prediction. We evaluate the density prediction performance using the sum of log
predictive scores (LPSs) over the evaluation sample for each of the three horizons under analysis.

We consider the joint predictive density as well as the predictive density for each of the variables.

Table 2: Log Predictive Scores

(a) Sum of Log Predictive Scores

One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Range Median Range Median Range Median

Joint [-371.86,-346.23] -354.31 [-739.69,-716.06] -729.74 [-948.09,-910.97] -931.17
Output Growth [-279.41,-274.29] -276.56 [-290.48,-284.50] -287.11 [-292.80,-283.26] -287.03
Inflation [-111.03,-106.76] -108.68 [-149.13,-142.56] -144.98 [-179.46,-169.80] -174.75
3-Month T-Bill  [-33.10,-15.74] -21.22  [-192.47,-183.55] -187.70 [-267.13,-260.09] -262.18
Unemployment [26.94,33.53] 31.84  [-138.68,-123.95] -129.53 [-227.22,-205.30] -212.01
(b) Amisano-Giacomini Equal Predictive Ability Test

One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Joint 25.63 (0.01) 23.63 (0.17) 37.12 (0.31)
Output Growth 5.12 (0.17) 5.99 (0.10) 9.54 (0.04)
Inflation 4.27 (0.03) 6.57 (0.00) 9.65 (0.00)
3-Month T-Bill 17.36 (0.06) 8.92 (0.27) 7.04 (0.23)
Unemployment 6.59 (0.28) 14.73 (0.22) 21.92 (0.34)

NOTE. Panel (a): Range indicates the minimum and maximum LPS. Panel (b): Numbers are the difference in the sum of
LPSs. Numbers in parentheses are p-values of Amisano-Giacomini equal predictive ability test.

Panel (a) in Table 2 shows that the sum of one-quarter-ahead joint LPSs for the best ordering
and for the worst ordering under this metric are -346.23 and -371.86, respectively.” Their
difference is about 26, which implies that the LPSs differ by 0.21 every quarter, on average.
When looking at four- and eight-quarter-ahead predictive densities the differences between the
best and worst ordering in terms of the sum of LPSs at each respective horizon are about
35 and 40, therefore in each quarter the LPSs will differ by even more than in the case of

one-quarter-ahead densities.

"Appendix A.3 describes the LPSs for all variables, orderings, and horizons under analysis.



Panel (b) in Table 2 shows the Amisano-Giacomini equal predictive ability test (Amisano
and Giacomini, 2007) for the sum of joint LPSs and for the sum of the marginal LPSs of each
variable. Similar to the case of point prediction, for each variable specification (i.e., joint LPS
or marginal LPSs) and horizon we have 276 possible orderings to compare. Hence, for ease of
exposition, we only test the difference between the best and worst ordering in terms of the sum
of LPSs associated with each variable specification and horizon.

Let’s begin by examining the Amisano-Giacomini tests for the sum of joint LPSs. The
difference between the best and worst ordering is statistically significant in the case of the
one-quarter-ahead densities, and statistically not different from zero in the case of the four- and
eight-quarter-ahead densities. A roughly similar pattern emerges when looking at the sum of
marginal LPSs for each variable: there is a heterogeneity in the scores and in some cases the
Amisano-Giacomini test tells us that some differences are statistically significant. Altogether,
the null hypothesis of equal predictive ability is rejected at a 5% significance level in only 5 out
of 15 cases.

In contrast to the case of point prediction, we now show that when analyzing predictive
densities the differences are important from an economic point of view. Figure 2 presents
the mean and the standard deviation of the one-quarter-ahead predictive densities computed
recursively over the evaluation sample for the best and worst ordering. The best and worst
ordering are chosen in terms of the sum of marginal LPSs over the evaluation sample of the
corresponding variable under analysis. Hence, the best and worst ordering are kept constant
when producing the figure.

The second moments of the predictive densities implied by each of these orderings portray a
different picture regarding the uncertainty associated with the economic outlook—an important
aspect of macroeconomic forecasting as emphasized by Clark (2011). The green solid lines
with markers represent the predictive densities associated with the worst orderings. The purple
dotted lines represent the predictive densities associated with the best orderings.

The results are striking. The mean predictions are almost identical but the standard
deviations of the predictive densities are quite different.® As can be seen, for each of the variables
the worst ordering in terms of the sum of marginal LPSs paints a more uncertain outlook than
the best ordering under the same metric. The fact that the mean predictions are almost identical
is not surprising given that as shown in Section 3.2 the point forecasts are almost identical.
Consequently, what it is new here is the extent to which the standard deviations can differ
across orderings. Had the worst ordering been used at a policy institution such as a central
bank for a span of 10 years, it would have offered policymakers a more uncertain outlook for the

unemployment rate on the single basis of a seemingly arbitrary ordering choice.

8As shown in Appendix A.4, the same holds when looking at four- and eight-quarter-ahead predictive
densities.



Figure 2: Predictive Densities and Ordering
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All told, the analysis above suggests that the differences in the sum of LPSs reported in
Table 2 are driven by the distributional characteristics beyond the mean and they are large

enough to paint a different economic outlook.

3.3.1 Robustness of the Results

The findings just described raise two questions. First, given that we construct the predictive
densities relying on simulation-based methods, one could wonder if the observed differences
between the standard deviations of the best and worst ordering are driven by the numerical
error. Second, Figure 2 only describes first and second moments, but to what extent does the
ordering affect the entire shape of the predictive density?

To answer these questions, we compute the one-quarter-ahead predictive density for the
unemployment rate for the last period of the evaluation sample based on 30 independent MCMC
chains, each chain consisting of 20,000 draws from the posterior distribution of the model
parameters. We focus on unemployment because it is the variable for which the difference
between the standard deviation of the one-quarter-ahead predictive density of the best and
worst ordering in terms of the sum of one-quarter-ahead marginal LPSs over the evaluation
sample is the largest. Figure 3 shows the results. The green solid lines with markers represent
the predictive densities associated with the worst ordering in each MCMC chain. The purple
dotted lines represent the predictive densities associated with the best ordering in each MCMC
chain. As can be seen, it is unlikely that numerical error drives our results. Second, the observed
difference in the uncertainty in the predictive densities leads to a noticeable difference in tail

probabilities.

Figure 3: One-Quarter-Ahead Predictive Densities and Ordering
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NOTE. One-quarter-ahead predictive densities based on 30 MCMC
chains, each chain consisting of 20,000 posterior draws.
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3.3.2 Deeper Dive into the LPS

This section highlights how the best ordering depends on the variable and the forecast horizon
under analysis: the best ordering for a given variable-horizon pair does not necessarily imply the
best ordering for another variable-horizon pair. Let’s start with the one-quarter-ahead forecast
horizon. Table 3 shows that the best ordering for predicting output growth in terms of the sum
of one-quarter-ahead marginal LPSs is the worst ordering for predicting the 3-Month T-Bill rate.
In addition, it shows that the best (worst) ordering for any variable tends to have the variable

in question ordered first (last).

Table 3: Best and Worst Ordering

Variable Ordering First Second Third Fourth  LPS
Output Growth Best Yy u s i -274.29
Worst 1 7r U Y -279.41
Inflation Best s u i Y -106.76
Worst u Y m ) -111.03
3-Month T-Bill Best 1 u Y T -15.74
Worst Y U s 1 -33.10
Unemployment  Best u Y 1 7 33.53
Worst m 1 Y U 26.94

To further scrutinize the punchline of Table 3, we compute the Spearman’s rank correlation
coefficients. Table 4 shows the Spearman’s coefficients and the p-values (the null hypothesis is
no-correlation) for the rank correlation between the ranking of orderings in terms of the sum of
one-quarter-ahead marginal LPSs for output growth and the ranking of orderings in terms of
the sum of LPSs for each of the remaining variable specifications and horizons. Hence, this table
shows rankings differ not only across variables but also across horizons. For example, conditional
on output growth, a ranking based in terms of the sum of one-quarter-ahead marginal LPSs has

an about 0.3 correlation with a ranking based on the sum of eight-quarter-ahead marginal LPSs.

Table 4: Spearman Rank Correlation

Correlation p-values
h=1 h=4 h=8 h=1 h=4 h=8
Output Growth 1 0.47 0.29 0 0.02 0.17
Inflation -0.06 -0.02 0.06 0.78 0.93 0.76

3-Month T-Bill -0.27 -0.30 0.01 0.21 0.16 0.95
Unemployment -0.38 -0.16 -0.02 0.07 045 0.93
Joint 0.17 -0.25 0.24 0.42 0.24 0.26
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Figure 4: Time-Varying Ranking of one-quarter-ahead LPSs
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While Table 4 is informative about the correlation across variables and horizons, it is silent
on how the ranking of the orderings varies over the evaluation sample. The latter is important
because if the ranking changes frequently researchers would need to rank the orderings often,
which is time consuming. Hence, to conclude this section, we assess the degree of serial correlation
across rankings.

Figure 4 shows the degree of serial correlation in rankings computed recursively since the
beginning of the evaluation sample. In particular, at each quarter of our evaluation sample
we compute a ranking based on the sum of marginal LPS up to such quarter. In Panel (a) we
report the evolution of the best performing ordering in terms of the sum of one-quarter-ahead
marginal LPSs for output growth over the entire evaluation sample, i.e., (y,u,7,7). The panel
plots how this particular ordering ranked throughout the evaluation sample. For example, in
1987Q2 the (y, u, 7, i) ordering is the third best ordering while in 2011Q2 it is the fifth. Panel
(b) summarizes this information for the 24 possible orderings using a colormap. The darkest
blue corresponds to the best ordering and the darkest red corresponds to the worst ordering.
The panel pairs (c,d), (d,f), and (g,h) do the same for the rest of the variables.

Clearly, the ranking changes throughout the evaluation sample. For example, in the case
of output growth the (y,u,, i) ordering ranks in the top 5 during the first 7 quarters, then
its ranking drops to 7th before returning to the top 5 for the remainder of the evaluation
sample. Similar results are obtained for the rest of the variables. Appendix A.4 shows that
analogous results hold when looking at four-quarter-ahead and eight-quarter-ahead forecast
horizons. The main difference is that the ranking in terms of the sum of eight-quarter-ahead

LPSs for unemployment exhibits larger swings.

3.4 Interval Prediction

In addition to the point prediction and density prediction performance based on RMSEs and
LPSs, macroeconomic forecasters are commonly interested in analyzing prediction intervals
constructed using tail quantiles. For each variable, the % prediction interval is an interval that
covers an outcome with % posterior probability. Based on this definition, we construct 70%
symmetric probability intervals for each predictive density and we evaluate these intervals by
means of their coverage rate and their average length over the evaluation sample.

Panel (a) in Table 5 presents the empirical coverage rate of 70% prediction intervals for each
variable and horizon under study. Theoretically, we expect the prediction intervals to cover the
realized outcome 70% of the times over our evaluation sample, nevertheless in practice there is
substantial variation across orderings. In addition to the coverage rates, shorter intervals offer
sharper prediction and hence it is important to assess their average length (see, for example,
Askanazi et al., 2018). To see this, Panel (b) in Table 5 shows the average length of the 70%
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prediction intervals. As it was the case in Panel (a), there is heterogeneity across orderings.

Table 5: Interval Prediction Evaluation

(a) Empirical coverage rate of 70% prediction intervals
One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Range Median Range Median Range Median

Output Growth [0.68,0.74] 070  [0.71,0.79]  0.74  [0.78,0.86]  0.81
Inflation 067,075 069  [0.83,0.88] 0.86 [0.89,0.94]  0.93
3-Month T-Bill  [0.72,0.84]  0.77  [0.67,0.80]  0.72  [0.62,0.72]  0.66
Unemployment  [0.64,0.78]  0.69  [0.61, 0.78]  0.68  [0.54,0.65] 0.57

(b) Average length of 70% prediction intervals
One-Quarter-Ahead Four-Quarter-Ahead Eight-Quarter-Ahead
Range Median Range Median Range Median

Output Growth [4.62,5.51]  4.94  [5.11,6.18] 551  [5.55,6.82]  5.98
Inflation [1.32,1.47] 135  [2102.34] 218  [2.83,3.17]  2.99
[ ] [ ] | ]
] [ ] [ ]

3-Month T-Bill [0.66,0.87 0.71 2.14,2.67 2.29 3.45,4.29 3.68
Unemployment  [0.35,0.45 0.37 1.13,1.40 1.22 1.83,2.22 1.93

NOTE. Panel (a): Range indicates the smallest and largest empirical coverage rate of the 70%
prediction interval across the 24 possible orderings. Panel (b): Range indicates the narrowest and
widest prediction interval across the 24 possible orderings.

In parallel to the case of density prediction, the differences across orderings are economically
relevant. Figure 5 shows the average length of the one-quarter-ahead 70% predictive intervals
computed recursively over the evaluation sample. For simplicity, we focus on the prediction
intervals associated with the best and worst ordering, where the best (worst) ordering is the one
with the smallest (largest) difference between the empirical coverage and the nominal coverage
rate over the evaluation sample. Had the worst ordering instead of the best ordering been
systematically used at a central bank for a span of 10 years, it would have persistently offered
policymakers a less sharp prediction. Appendix A.5 shows that the same holds when looking at

four- and eight-quarter-ahead prediction intervals.

3.5 Summary for the CSP-SV model

In this section we have shown that (1) the order of the variables is important for forecasting
performance, (2) if we care about more than point prediction the difference in performance is
economically relevant, (3) the best ordering depends on the variable and forecast horizon of
interest, and (4) the best ordering varies over time. For these reasons as well as due to the

potential infeasibility of checking all possible orderings in larger models, it is interesting to
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Figure 5: One-Quarter-Ahead Prediction Interval and Ordering
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NOTE. Length of the corresponding intervals. Intervals are computed based on the
one-quarter-ahead predictive density throughout the evaluation sample. The difference
between the empirical coverage and the nominal coverage is largest for the worst ordering
and smallest for the best ordering.

compare the performance of the CSP-SV model with ordering invariant models. We do that in

the next section.

4 Ordering Invariant Models

The ordering dependent forecasting performance documented in Section 3 motivates us to
consider two ordering invariant strategies for modeling stochastic volatility. To be ordering
invariant, one has to start with a prior for the reduced-form covariance matrix that is ordering
invariant. The first modeling approach places a Wishart prior on €2; and it is known as dynamic
linear model with discounted Wishart stochastic volatility (DW-SV). The second modeling
approach decomposes the reduced-form covariance matrix into Q; = D, P,D;, where D, is
a diagonal matrix and P, is a correlation matrix, and it imposes an ordering invariant prior
on D, and P,. We adapt such decomposition, inspired by Engle (2002), into a time-varying

parameter VAR and we label the resulting model a time-varying parameter VAR with dynamic
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and stochastic correlation-based multivariate stochastic volatility model (DSC-SV).?

The rationale behind our choice of these two ordering invariant approaches is as follows.
We choose the DW-SV model for three reasons. First, it is widely used and a practical choice
in financial time series modelling, e.g., Prado and West (2010). Since stochastic volatility is
prevalent in this area it is natural to ask whether the utility of this framework can extrapolate
to macroeconomic forecasting. Second, it was proposed as a tool for vector autoregression
with stochastic volatility by the seminal work of Uhlig (1997). Third, it offers tractable and
convenient filtering formulas, which facilitates likelihood evaluation.

We propose the DSC-SV model for analogous reasons. First, like the DW-SV, the type
of approach introduced by Engle (2002) has been widely adopted in financial econometrics
suggesting it could also prove useful for macroeconomic forecasting. Second, just like the
discounting Wishart process, the approach of decomposing the reduced-form covariance matrix
into €; = D, P,D;, can be integrated in an ordering invariant time-varying parameters VAR.
Third, while not straightforward, we develop a feasible MCMC algorithm to estimate the
proposed model based on the elliptical slice sampler of Murray, Adams and Mackay (2010).1°

We are particularly interested in assessing whether these models can have equal or superior
forecasting performance than the CSP-SV under any of its the orderings. Thus, we estimate the
ordering invariant models on the same data (and training sample) as the CSP-SV. Likewise, we

include two-lags.

4.1 The DW-SV

This DW-SV was developed by West and Harrison (1997), Uhlig (1997), Prado and West (2010),
and Bognanni (2018). Since the model is well documented in the literature let us provide a
succinct summary of its structure and how to conduct Bayesian inference with it. Let the vector

of endogenous variables y, evolve as follows:

yllt - m:th + 'U,;, Uy ~ N(Onxlu Ht_l) (5)

Bt - Bt—l + Qta Qt ~ N(Omxn; W7 Ht_l) (6>
UH)T, U(H, h 1

Hy. W) 5 W) se0,1), Too~Be (% 5), Bh>=n  (7)

9While Hartwig (2020) relies on a decomposition similar to the £; = D;P; D} decomposition, he models P;
based on a Cholesky factorization, and therefore the resulting model is not ordering invariant.

10T here are alternative models for the time-varying reduced-form covariance matrix that are ordering invariant.
Some of them have been tested on macroeconomic data, and have been shown to produce a predictive distribution
comparable to some orderings of the CSP-SV model without time-varying parameters, (Karapanagiotidis, 2014;
Chan et al., 2020). In Section 4.4, we discuss these and other potential modeling strategies including those that
have never been applied to macroeconomic data.

17



where y; is 1 x n and x| = [yg_l,...,yg_p,l} is 1 xm. Let Dy = {yy,...,ys} fort =1,....T
and Dy = @. Hence, B; is m x n and H; is n X n.

Given a prior distribution (By, Hy) | Dy ~ NW (M0|0, Cojo, S1jo, Bh), and conditioning on h,
B, and W | the posterior distribution of the DW-SV can be evaluated recursively using the results
shown in Appendix A.1. Following Bognanni (2018), we set h = 1/(1 — ) and take into account
the fact that § and W are unknown by imposing a prior distribution over these parameters.
We assume that § has a four-parameter beta distribution. The parameters characterising the
support of the distribution are Sy, = n(n + 1)7! and Buax = 1. The shape parameters are
a = 323.33 and b = 30 so that the expected value of 5 is 0.92. We set W ~ IW(Sp, vy —m + 1),

where Sy = 6%(rp — m — 1)(X[Xp) 1.1 It is common to inform the selection of Sy using a

pre-sample of vy observations where X, = [_,,41,...,®o]. This implies that the draws of W
will be centered around VO_SW‘ZL_I = §*(X{Xo)~*. Inspired by Primiceri’s (2005) approach, we will

set vy = 40 and § = 0.01.
The remaining parameters of the distribution for (B, Hy) | Dy, that is (Mo, Cojo, S1j0, Sh).

We follow the literature and use a pre-sample of v, observations to set My = (X(’)Xo)f1 XYo,

Cop = # (X}, Xo) ', and Sypp = v (% Z?:_VOH ugut> , where Yy = [y_pg+1,---,Yo]. We set
k = 4 so that at the OLS estimates our prior for By given H is equivalent to the prior imposed
by Primiceri (2005), and we set v &~ 1/n so that the expected value of Hj is in about the same
order of magnitude as the inverse of the ordinary least squares (OLS) estimate of the variance
matrix of the residuals based on the pre-sample. The DW-SV is estimated using the Gibbs
Sampling algorithm proposed by Bognanni (2018). Appendix A.1 summarizes the algorithm.

4.2 The DSC-SV

The approach that decomposes the reduced-form covariance matrix €, into Dy P, D; was first
introduced into econometrics by Engle (2002). Since then, several econometric models rely on
this decomposition to model time-varying covariance matrices; see e.g., the literature review
by Chib, Omori and Asai (2009). To place an ordering invariant prior on the time-varying
covariance matrix of a TVP-VAR-SV model, we follow Asai and McAleer (2009) and impose a
Wishart process-based prior on the dynamics of the matrix P;,. We label the resulting model
a time-varying parameters VAR with dynamic and stochastic correlation-based multivariate
stochastic volatility model.

The main difference relative to the CSP-SV is in the decomposition of the reduced-form

covariance matrix. Formally, the DSC-SV model is defined as follows

y; = vec(By) xy +u;,  uy ~N(0,x1, D;P,D,),fort=1,...,T, (8)

H'When working with the DW-SV, the inverse-Wishart is parameterized as in Prado and West (2010).
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where B, is modelled as in Equation (2) of the CSP-SV, which we reproduce below
vec(B;) = vee(Bi_1) + vy, vy ~ N(Opnx1, Q). (9)

Turning to the decomposition of the covariance matrix of the reduced form shocks, i.e.,
D,P,D,, D, is a diagonal matrix that contains the standard deviations of the reduced form shocks
and P, is a correlation matrix. The diagonal elements of D, are modelled analogously to how X,
is modelled in the CSP-SV. Accordingly, we let D; = diag(+/8;), where & = (814, 824, ..., 0ns),

and assume that log d; evolves analogously to log o in Equation (4), that is,
logd; =logdi—1 + 1, M~ N(0yx1, W). (10)

As mentioned, P, is assumed to be a function of a Wishart process. More specifically, we
start with the standardization suggested by Engle (2002), that transforms a positive definite

matrix @, into a correlation matrix P;,
P, —(Q)'QuQ)™,  where Q; — (diag(vecd(Q,))"?. (1)
Then, we model the dynamic evolution of Q; based on the following Wishart process,
(Qir1) 'k, S ~ W(K, Sy),  where S;' = k(Q))"2A™H(Q)"?, (12)

and k is the degrees of freedom parameter to be estimated. The time-dependent scale parameter
of the Wishart distribution S, is a function of Q;, a degrees of freedom parameter k, another scalar
parameter d that governs the general persistence of Q;, and a n x n positive definite symmetric
matrix A. The fractional power (Q,)~%2 is defined by using a singular value decomposition.'?

Equations (8)-(12) summarize the DSC-SV model. Let us now discuss the priors that we use
to conduct Bayesian inference. We impose the same exact prior on @ as in the CSP-SV model.
For the parameters governing the Wishart process Q; (i.e., d, k, and A™!), we assume the same

prior distribution as in Asai and McAleer (2009), that is,
d~U(-1,1), k~EXPXo)lne), A"~ W(y,Co) (13)

where EXP()\g) denotes an exponential distribution with the following density, p(k) = Xge =¥,
and /(,, o) is an indicator function that takes the value of one when k € (n,00). Our choice for
hyperparameters, A\g = 5, 79 = n, and Cy 1 — oI, implies a quite loose prior over P, dynamics.

We assume that W is a diagonal matrix and let w; denote its (i,7)-th element. Each

w; ~ 1G(k - Wesetk,, =2ands,,; = (k

wis Swi) k, ; — Dvar(e;) /Ty, where var(e;) is a variance

12Suppose X = SV D, where V is a diagonal matrix. Then, X% = SV¢D.
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of the OLS residual based on the training sample. Note also that Qg is assumed to be fixed and
known. Let 1/%0 be the correlation matrix of the OLS residuals from the training sample, and
let ﬁo be the diagonal matrix with diagonal elements being the standard deviation of the OLS
residuals from the same sample. Then, we set Qo = DyP,D, so that P, = (Q)'Qo (@)~
Appendix A.2 describes the MCMC algorithm that we use to generate a sequence of draws
from the posterior distribution. Importantly, our algorithm is different from that of Asai and
McAleer (2009). While they implement a two-quarter algorithm where the dynamic correlation
matrices and their related parameters are drawn conditional on the posterior mean of variances
(i.e., the posterior mean of {Dy, D,, ..., D7}), we propose and implement a novel algorithm
that generates draws from the full joint posterior distribution of unknowns using the elliptical
sampling proposed by Murray, Adams and Mackay (2010).

Last but not least, let’s highlight that as it was the case with the CSP-SV and the DLM-SV

our choice of priors for the DSC-SV is in line with common choices in the literature.

4.3 Forecasting Performance

In this section we assess the out-of-sample prediction performance of the DW-SV and DSC-SV
and we contrast it with the performance of the CSP-SV. As in Section 3, we focus on point

prediction, density prediction, and interval prediction.

4.3.1 Point Prediction

Table 6 reproduces Table 1 and compares the CSP-SV model to the two ordering invariant
models. The columns labeled DW-SV and DSC-SV denote the RMSE for the DW-SV and
DSC-SV, respectively.

The table offers two main lessons. First, the DW-SV underperforms the other models under
analysis. For all but one case, the RMSE of the DW-SV is higher than the RMSE associated
with all the possible ordering of the CSP-SV. The exception is the eight-quarter-ahead RMSE
of output growth where the DW-SV performs almost as well as the best CSP-SV. Second,
the DSC-SV model produces point predictions roughly equal to the median outcomes of the
CSP-SV. This is expected because the conditional mean in these two models is identical. The
small differences in RMSEs are mainly due to different heteroscedasticity assumptions, which
indirectly affects the conditional mean estimates and their point forecasts.

In any case, it could be argued that the differences in point prediction performance between
the DW-SV and either of the two remaining models are tolerable from a macroeconomic
forecasting perspective. For example, the one-quarter-ahead RMSE of output growth obtained
when using the DW-SV is only 25 basis points larger than the CSP-SV with the smallest RMSE;,
and the average errors in the one-quarter-ahead RMSE for inflation, the 3-Month T-Bill rate,
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Table 6: RMSE

One-Quarter-Ahead  CSP-SV Range CSP-SV Median DW-SV  DSC-SV

Output Growth 2.46, 2.57] 2.51 2.70 2.57
Inflation [0.60, 0.60] 0.60 0.62 0.60
3-Month T-bill [0.33, 0.34] 0.33 0.37 0.34
Unemployment [0.20, 0.20] 0.20 0.21 0.20
Four-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV DSC-SV
Output Growth 2.67, 2.73] 2.70 3.02 2.57
Inflation [0.77, 0.80] 0.78 0.88 0.79
3-Month T-bill [1.14, 1.18] 1.16 1.27 1.15
Unemployment [0.80, 0.83] 0.82 0.92 0.83
Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV
Output Growth 2.56, 2.61] 2.59 2.57 2.49
Inflation [0.86, 0.92] 0.88 1.14 0.88
3-Month T-bill [1.92, 2.01] 1.95 2.13 1.89
Unemployment [1.42, 1.47] 1.44 1.61 1.44

NoTE. DW-SV denotes the RMSE for the DW-SV model, and DSC-SV denotes the RMSE for
the DSC-SV model.

and the unemployment rate are roughly equivalent.

4.3.2 Density Prediction

When comparing the performance in terms of predictive densities, it is evident that there are
large and economically meaningful discrepancies across the three models. Table 7 reproduces
Table 2 and compares the CSP-SV model to the two ordering invariant models.

The table offers three main results. First, the DW-SV underperforms the CSP-SV under all
orderings as well as the DSC-SV. Notice that in terms of joint density prediction, the sum of one-
quarter-ahead LPSs of the DW-SV is about 70 log units lower than that of the median CSP-SV
and the DSC-SV. This large difference is also a feature of the sum of one-quarter-ahead marginal
LPSs for the each variable. The same results are obtained when looking at the four-quarter- and
eight-quarter-ahead forecast horizons. Second, the one-quarter-ahead predictive performance of
the DSC-SV is competitive relative to CSP-SV. In most cases it is within the CSP-SV range,
and only in five cases it performs worse than the worst ordering for CSP-SV. Third, at the
four-quarter- and eight-quarter-ahead forecast horizons, the joint density prediction based on
the DSC-SV is slightly worse than the one based on the CSP-SV under any of its orderings.
Even so, the marginal predictive densities based on the DSC-SV and the median outcomes of

the CSP-SV are of quite similar quality.
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Table 7: Log Predictive Score

One-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV DSC-SV

Joint -371.86,-346.23] -354.31 -425.88  -359.90
Output Growth [-279.41,-274.29| -276.56 -382.17  -279.72
Inflation [-111.03,-106.76] -108.68 -125.84  -110.39
3-Month T-bill [-33.10,-15.74] 21.22 5142 -10.33

Unemployment [26.94,33.53] 31.84 -25.24 20.80

Four-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV DSC-SV
Joint -739.69,-716.06] -729.74 -813.50  -748.34
Output Growth -290.48,-284.50] -287.11 -400.50  -287.96
Inflation [-149.13,-142.56] -144.98 -175.35  -147.35
3-Month T-bill -192.47,-183.55] -187.70 -208.89  -180.38
Unemployment [-138.68,-123.95] -129.53 -151.43  -144.42
Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV
Joint [-948.09,-910.97] -931.17 -996.95  -950.44
Output Growth -292.80,-283.26] -287.03 -418.27  -287.66
Inflation -179.46,-169.80] -174.75 -217.19  -176.06
3-Month T-bill [-267.13,-260.09] -262.18 -274.95  -256.58
Unemployment -227.22,-205.30] -212.01 -222.61  -215.87

NoTE. DW-SV denotes the LPS for the DW-SV model and DSC-SV denotes the LPS for the
DSC-SV model.

4.3.3 Interval Prediction

Finally, we turn to contrasting the empirical coverage rates and the length of 70% prediction
intervals. Table 8 reproduces Table 5 and compares the CSP-SV model to the two ordering
invariant models. The most salient finding that emerges from Panel (a) is that the empirical
coverage rates based on the DW-SV are much higher than those of the models for all variables
and all horizons. Consequently, the predictive density based on the DW-SV is much wider than
what it should be based on the desired nominal coverage rate, which could explain a low LPS of
the DW-SV relative to other models described above. In contrast, empirical coverage rates for
one-quarter-ahead forecasts based on DSC-SV are very close to the desired nominal coverage
rate. Notice that while under some orderings the CSP-SV produces one-quarter-ahead prediction
interval coverage rates significantly above (i.e., 84%) or below (i.e., 64%) the nominal rate, all
one-quarter-ahead prediction intervals implied by the DSC-SV are at most 3 percentage points
away from nominal coverage rate. Turning to the four-quarter-ahead prediction intervals, the
DSC-SV has similar empirical coverage rates to the median implied by the DSC-SV orderings. For
the eight-quarter-ahead prediction intervals, neither model produces a well-calibrated prediction

interval.
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Table 8: Interval prediction comparisons

a) Empirical coverage rate of 70% prediction interval
g

One-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV  DSC-SV
Output Growth [0.68,0.74] 0.70 0.86 0.70
Inflation [0.67,0.75] 0.69 0.84 0.69
3-Month T-bill [0.72,0.84] 0.77 0.87 0.73
Unemployment [0.64,0.78] 0.69 0.79 0.68
Four-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV  DSC-SV
Output Growth [0.71,0.79] 0.74 0.86 0.78
Inflation [0.83,0.88] 0.86 0.89 0.83
3-Month T-bill [0.67,0.80] 0.72 0.82 0.68
Unemployment [0.61, 0.78] 0.68 0.76 0.65
Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV
Output Growth [0.78,0.86] 0.81 0.93 0.87
Inflation [0.89,0.94] 0.93 0.88 0.88
3-Month T-bill [0.62,0.72] 0.66 0.72 0.63
Unemployment [0.54,0.65] 0.57 0.72 0.60
(b) Average length of 70% prediction interval

One-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV  DSC-SV
Output Growth [4.62,5.51] 4.94 7.06 5.01
Inflation 1.32,1.47] 1.35 1.77 1.33
3-Month T-bill [0.66,0.87] 0.71 1.15 0.62
Unemployment [0.35,0.45] 0.37 0.53 0.40
Four-Quarter-Ahead ~ CSP-SV Range CSP-SV Median DW-SV DSC-SV
Output Growth [5.11,6.18] 5.51 8.53 5.81
Inflation 2.10,2.34] 2.18 2.92 2.19
3-Month T-bill 2.14,2.67] 2.29 3.14 2.00
Unemployment [1.13,1.40] 1.22 1.77 1.31
Eight-Quarter-Ahead CSP-SV Range CSP-SV Median DW-SV DSC-SV
Output Growth 5.55,6.82] 5.98 10.39 6.54
Inflation 2.83,3.17] 2.99 4.06 3.06
3-Month T-bill [3.45,4.29] 3.68 5.03 3.30
Unemployment [1.83,2.22] 1.93 2.88 2.11

NoOTE. Panel (a): DW-SV indicates the empirical coverage rate of the DW-SV. DSC-SV
indicates the empirical coverage rate of the DCS-SV. Panel (b): DW-SV indicates the average
length of the 70% prediction interval in the DW-SV. DSC-SV indicates the average length of the
70% prediction interval in the DSC-SV.
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Panel (b) confirms the insights obtained from Panel (a). The DW-SV tends to have wider
intervals relative to the prediction intervals implied by the CSP-SV and the DSC-SV for all
variables and at all horizons, which is in line with the higher empirical coverage rates documented
above. Overall, the average length of the prediction intervals based on the CSP-SV under all of
its orderings and the DSC-SV are comparable: the length based on the DSC-SV falls into the
CSP-SV range. The few exceptions are the prediction intervals for the 3-Month T-Bill. In this
case, the intervals based on the DSC-SV are shorter than the other intervals, which explains
why the DSC-SV produces better predictive density, measured by the log predictive score, for
the 3-Month T-Bill relative to the other models.

4.4 Discussion

Features Underlying the Forecasting Performance. Our analysis shows that the DW-SV
presents excessively wide predictive densities for all variables at all horizons relative to the other
models under analysis. This is related to two restrictive assumptions that make the DW-SV
analytically tractable.

First, the shocks to the time-varying parameters, By, are scaled by the time-varying reduced-
form covariance matrix, H,; '. While in some cases this can be a reasonable assumption, it
restricts the variance of the parameters governing the conditional mean to be an increasing
function of the covariance matrix of the reduced-form innovations. The CSP-SV and the DSC-SV
are not subject to such a restriction and a consequence the variance of the predictive density
can be smaller than in the presence of the restriction as in our application.

Second, the DW-SV imposes a discounting stochastic process driven by a singular multivariate
Beta distribution, which when combined with a Wishart prior distribution on the time-varying
reduced-form covariance matrices induces a Wishart posterior distribution. Consequently, there
are at most two tightness parameters (§ and h) that govern the properties of the shocks
underlying the stochastic process for the reduced-form covariance matrix. Hence, even though
the Wishart-based modeling is a parsimonious approach, it is too restrictive relative to the
CSP-SV and the DSC-SV.13

Turning to the DSC-SV, notice that it can be viewed as a hybrid approach between the
DW-SV and CSP-SV modeling approaches. This is because it decomposes the time-varying
reduced-form covariance matrices into two pieces: a time-varying conditional variance and a
time-varying conditional correlation. The former is modeled similarly to the CSP-SV (i.e., by
means of a random-walk process) and the latter is modeled similarly to the DW-SV model
(i.e., by means of a Wishart-based process). Our forecasting performance evaluation shows

that by assuming a random-walk process on the logarithm of the conditional variances, the

13See Lopes and Polson (2014) for a general comparison between Wishart priors and the prior induced by the
Cholesky decomposition for the Bayesian estimation of a non-time-varying covariance matrix.
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marginal predictive densities are comparable to those based on the CSP-SV. Thus, imposing a
random-walk process either on the standard deviation of the structural shocks (i.e., 3;) as in
the CSP-SV or on the standard deviation of the reduced-form shock (i.e, D;) as in the DSC-SV
leads to superior out-of-sample forecasting performance relative to the DW-SV.

Importantly, the DSC-SV is ordering-invariant because the time-varying correlation matrix
is modelled via a Wishart process. This is an appealing feature because it opens the door to
structural analysis, however our empirical exercise shows that the multi-step joint predictive
density produced by this model underperforms the CSP-SV. This implies that the correlation
dynamics of the DSC-SV model could be misspecified relative to the CSP-SV: the Wishart
distribution-based approach for the time-varying correlation matrices may be too restrictive as

the single scalar parameter (k) controls the tightness of the distribution.

On Alternative Approaches. Although we argue that the DW-SV is too tightly parameter-
ized to fit macroeconomic data, there are more flexible Wishart or inverted Wishart processes
for multivariate stochastic volatility models in exchange for higher computational complexity.
Some of these models have been applied to macroeconomic forecasting problems. For example,
Karapanagiotidis (2014) compares the predictive performance of the inverse Wishart stochas-
tic volatility model with some models based on the Cholesky decomposition using four U.S.
macroeconomic variables. And, Chan et al. (2020) develop a VAR model with a multivariate
stochastic volatility inverse Wishart process. They compare its predictive performance with
other VAR models with stochastic volatility based on the Cholesky decomposition using twenty
U.S. macroeconomic variables. Related VARs with Wishart processes are also employed in
structural economic analysis, see e.g., Rondina (2013) and Shin and Zhong (2020).

Unlike our DSC-SV, it is possible to model the time-varying correlation matrix, P;, using
random-walk processes rather than (inverse) Wishart processes. In particular, Archakov and
Hansen (2020) introduce a numerically invertible mapping from the space of non-singular
n x n correlation matrices to a n(n — 1)/2 x 1 real vector, v(-) : C™" — R™"™~1/2 and show
that the mapping is ordering invariant. Using their mapping, it is possible to model P; as
Y(P) = v(Pi—1) + ¢, G ~ N(0,S), where S'is a n(n — 1)/2 x n(n — 1)/2 positive definite
matrix. Our preliminary computations reveal that such an approach is on par with the DSC-SV
in terms of predictive performance.

Another yet interesting approach is to assume a common stochastic volatility so that the
reduced-form covariance matrix can be written as Q, = exp(h;)S2, where h; is a scalar log
stochastic volatility process and €2 is a n X n positive definite matrix that is constant over time.
As long as the prior distribution of €2 is ordering invariant (e.g., an inverse Wishart distribution),
the resulting multivariate stochastic volatility model is robust to variable ordering. Carriero,

Clark and Marcellino (2016) and Chan (2020) integrate this type of common stochastic volatility
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models into VARs to fit several macroeconomic variables.

Finally, even though it is less popular in macroeconomics, it may be also possible to model
the time-varying reduced-form covariance matrix based on observation-driven approaches. This
type of models includes the multivariate generalized autoregressive conditional heteroskedasticity
(GARCH) models surveyed in Bauwens, Laurent and Rombouts (2006), the dynamic conditional
correlation (DCC) model of Engle (2002), and the multivariate generalized autoregressive score
(GAS) model of Creal, Koopman and Lucas (2011).

5 Conclusion

This paper shows that the out-of-sample forecasting performance of the CSP-SV depends on the
ordering of the variables. When the object of interest is density and interval prediction, the
differences are noticeable and persistent. Hence, our results offer useful guidance for policymakers
and forecasters at central banks, who have been increasingly interested in density forecasts.
In addition, our paper proposes an ordering invariant DSC-SV approach that features an
out-of-sample forecasting performance comparable to the CSP-SV.

Finally, let us highlight that the priors used in each model are based on standard specifications.
The results in Giannone, Lenza and Primiceri (2015) and Amir-Ahmadi, Matthes and Wang (2020)
show that additional forecasting gains for each model could be obtained by optimally choosing
the prior hyperparameters controlling the informativeness of the priors and the smoothness of

the time-varying parameters.
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A Appendix

A.1 Inference in the DW-SV

Bognanni’s (2018) Gibbs Sampler relies on two steps to sample from p(Br, Hr, 5, W |Dr), where

Bt — {Bo,..

., B} and H, = {Hy, ..

. H;} fort =0,...,T. The first step consists of drawing

from p(W | 8, Br, Hr,Dr), which is straightforward given that p(W | 8, By, Hy, Dr) is an
inverse-Wishart distribution. The second step consists of drawing from p(3, Br, Hr | W, Dr).

The key to obtaining draws from such distribution is to notice that we can rewrite

p(B, Br,Hr | W, Dp) =p(Br,Hr | B, W,Dr)p(B | W,Dr).

The reader should notice that it is straightforward to draw from p(Br, Hr | 5, W, Dr) based
on the work of Uhlig (1997) and Prado and West (2010) summarized by Algorithm 1 and
Table A.1. Hence, all that is left is to draw from p(5 | W, Dr). We accomplish this using a

Metropolis-within-Gibbs step

as in Bognanni (2018).

Table A.1: Summary fort =1,...,T

Distribution of Interest

Distributional Family

Parameters

Step 1— Prior at time ¢

(Bi-1,H;) | Dy,
(Bt7Ht) ‘ Dy

H; | Dy
B: | H;, Dy,

NW (Mt—1|t—17 Ct—1|t—17 St\t—la ﬂh)
NW (Mt|t—17 Ciji—1, Stje—1, 5’1)

W(Sy-1,h)
N(Myi—1, Cyj—1, H )

Mt—1|t—17 Ct—1|t—17 St|t—17 Bh
My = My 111
Ci-1=Cip—1 + W

Step 2— Posterior at time ¢

(Bt> Ht) ‘ Dt

H, | D,
B, | H;, D,

NW (Mt|t7 Ct|t7 St|ta ﬁh‘ + 1)

W(Sy, Bh +1)
N(My, Cye, H; )

My, = Ct\t(CJtlflMﬂtfl + xy;)
C,l = Cyly +za;
Sﬁtl = Sﬁtl—l te (1 - :L.:tCtltwt) e,

. /
where e; = y; — Mt|t—1wt

Step 3— Prior at time t + 1

(Bt7 Ht+1) | Dt

NW (Mt|t, Ct|t, St+1\ta 5h>

St+1\t = %St\t

NorTE Filtering formulas for the DW-SV.

The posterior parameters are simulated using Algorithm 1:

Algorithm 1. The following algorithm draws from p(Br, Hr|Dr) given h, B, and W'.
1. Draw HT | DT ~ W(ST|T,ﬁh + 1)

2. Draw By | Hp ~ N(Mryyp,

Crir, H;').
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Lett=T —1.

Draw Hy | Hy (1, D, using equation H, = BH, + Y, where Xy | Dy ~ W(Sy, 1).
Draw By | Byy1, Hy 1, Dy, from By | Byy1, Hi 1, Dy ~ N (Mt|t+1, Ciis1, Htjrl )
Ift> 2, lett+ t—1 and go to Step 4.

Draw By | By, Hy, Dy using the distribution described in Step 5.

R

A.2 Inference in the DSC-SV

We develop an algorithm that generates posterior draws of the unknown parameters in the
DSC-SV. The algorithm generates draws that can be used to approximate the following posterior
density

p(Br, Dy, Pr, A d, k,Q, W|Dr) (A.1)

where Bt = {Bl, Bg, couy Bt}7 Vt = {Dl, DQ, ceey Dt}; Pt = {Pl, PQ, coey B}, and Dt = {yl; Ce 7yt}
fort =1,...,T. Our proposed algorithm (i.e., Algorithm 2) is a Metropolis-Hastings within
Gibbs sampling algorithm that iterates over multiple blocks. For ease of exposition, we first

present the general algorithm and then we discuss the details of each step.

Algorithm 2. The following draws from a density that approvimates p(Br, Vr, Pr, A™' d, k, Q, W |Dr),
Draw Br from p(Br|Vr, Pr, A7, d, k,Q, W ,Dr).

Draw Q from p(Q|, By, Vr, Pr, A™',d, k, W ,Dr).

Draw Pr from p(Pr|Br, Vr, A7 . d, k,Q, W ,Dr).

Draw A" from p(A~\Br, Vr, Pr,d, k,Q, W, Dr).

Draw d from p(d|Br,Vr, Pr, A~ k,Q, W ,Dr).

Draw k from p(k|Br,Vr, Pr, A71.d,Q, W Dr).

Draw Vr from p(Vr|Br, Pr, A~ d, k,Q, W Dr).

Draw W from p(W |Br, Vr, Pr, A7Y,d, k,Q,Dr).

o NS S e v~

In Steps 1 and 2, that is when drawing the time-varying parameter coefficients and the
parameter governing their law of motion, we exactly follow Primiceri (2005). This is possi-
ble because we can recover the reduced form variance-covariance matrix using Vr and Pr,
(A;HS,2(A; Y = D,P,Dj for all t. In Steps 3 to 6, that is when drawing the time-varying
correlation parameters, we follow Asai and McAleer (2009), who propose an MCMC algorithm

that generates posterior draws of (Pr, A™! k, d) from the following model
y:/ ~ N(lenu ]-) -Pt) <A2>

Conditional on By and Vr, the DSC-SV model can be transformed into the above model by
letting

’

y; = (y, — vec(By)'x,)D; . (A.3)
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We implement Step 7 (i.e., drawing Vr) differently than in the methods based on the standard
mixture approximation developed by Kim, Shephard and Chib (1998). We apply the elliptical
slice sampling of Murray, Adams and Mackay (2010) to sample Vr from its conditional posterior
distribution to deal with the time-varying correlation of reduced-form shocks introduced by P,.
Step 8 is a standard inverse gamma posterior updating because we impose a conjugate prior on
each non-zero entry of W (i.e., w; fori = 1,...,n).

While the papers mentioned above provide the details relevant to implement each step of
Algorithm 2, below we discuss those that are new and essential to reproducing our results. In
particular, we introduce a correction to one of the formulas in Asai and McAleer (2009) (note
on step 3) and we illustrate how the novel elliptical slice sampler can be applied to sample the

log stochastic volatilities (note on Step 7).

Note on Step 3. As discussed above, Asai and McAleer (2009) turn Step 3 into the problem
of drawing {Q7", ..., Q7'} from the auxiliary model (A.2). This is possible because there is a
well-defined mapping from {Q", ..., Q;l} to Pr,

P=(Q) Q)" Q= (diag(vecd(Qt))1/2, fort=1,...,T. (A.4)

Then, we sample from

p({QI17 ceey Q;1}|BT7 VT? A717 d7 ka Q7 Wa DT)

by drawing @Q;' from the density

p(Qt_1|Q;2t71)> Q(_til):T’ BT7 VTa A_1> da ka Qa W, DT)? (A5)

for t = 1,2,....,T, where Q.; = {Qs,...,Q;} with t > s and Q7417 = 0. Importantly, the
conditional posterior density (A.5) can be simplified. Notice that for t = 1,2, ..., (T — 1),

p(Q;”Q;%tfl)a Q(_t}kl):T’ BTa VTa A_17 d> k? Q> Wa DT)
X Wn(Qt_lw{ja St—l) X N(Oa 'Pt) X Wn<Qt_+11|kv St)

(=S +z2)Q; ! — —n—
oc\et ( 3 (S 1 +2e2)Q, ) % |Qt 1’(k+1 1)/21 (A6)

-

oW (Q7|(k+1), (S +212) 1)

v iQt—l|(—1—dk)/2’Pt—1’1/26tr(—%ztzg(P;1—Q;1))etr(—%st‘th_fl) .

J/

-

=f@Q; ")
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And, for t = T, we have!?

p(QE”Q;%Tfl),BT,VT,A_l,d,k,Q,W,DT) xe ( 2(5 1+szT Qr ) |QT | (k+1—n—1)/2

oWn (Q7 |<k+1),<S;_1+sz'T>—1)

H Gl f

X e(_ (P_ _QT szT

=£(Q7Y)
(A7)

Then, for t = 1,2,...,T, we employ a Metropolis-Hastings algorithm by generating a candidate

draw Q;, from the Wishart proposal density, W(Q;'|(k + 1), (S;_; + z2;)™") and accept it
£(Q:)
1@Qre)’
rejected, we set Q; ' = Qt_cl

with probability min ( 1), where Q) Lis the current state value. If the proposal draw is

Note on Step 5 and Step 6. We generate k£ and d based on a Random-Walk Metropolis-
Hastings algorithm. Conditional posterior distributions of d and k are derived in Appendix A.3
of Asai and McAleer (2009). We adaptively tune and select the random-walk proposal densities
so that we have 30% acceptance rate (Atchadé and Rosenthal, 2005).

Note on Step 7. We sample 9, 1.1 from its conditional posterior density for each i = 1,2, ..., m.

These conditional posterior densities are derived from the following auxiliary model,

(v — vee(B.) ) = u ~ N(0, DD s
logd;y =log &;s—1 4+ nie, Mix ~ N(0,w;)

with D; = diag(+/&;) and 8; = (814, 824, ..., 0,). The likelihood function is then Gaussian and

we have,

T
1
p(uy, ..., ur|Vr, Pr) H ’(DtPtDQ)_1|1/2 exp (—gu;(DtPth)_lut) . (A.9)
t=1

4Tn Appendix A.1 of Asai and McAleer (2009), one term is missing in their derivation of f (Q;l). We thank
Manabu Asai for a helpful discussion.
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We assume 6; g ~ N(ms,;0,w;Vs.0) to obtain convenient forms for the first two moments of the

prior distribution for each d;,,

E[d;:] = msio
Var(5i7t) = wi%ﬂ"o -+ th = (‘/5’1'70 + t)wl (Al())
Cov(dit,0;5) = (Vsio + min(t, s))w;.

As a consequence, 8; = (0;1,0;2,...,0;7) ~ N(ms;, V5;). In our implementation, we place a
loose prior on §; and set ms;, =0 and V;; =10 for all t = 1,2, ..., n.

Algorithm 3, described below, draws §; from its conditional posterior distribution
P(6:]01:(i—1), O(ig1)m> Br, Pr, A7 d k,Q,W,Dr). (A.11)
Notice that the algorithm works with the vector of the demeaned log volatility,
8 = 6, — ms,. (A.12)

We recover 9; by adding the prior mean back to the demeaned log volatility, d; = gz +ms;. To
simplify the notation, we define the following density,

p(ur.r|6), Others) £ p(uy, ..., 'u,T|5§:c()i_1), J;, Jgfjrl):n, Pr), (A.13)

with an understanding that 51@ is the current state value and §; is the proposed state value.

Algorithm 3. FElliptical slice sampler for gz Enter the following steps with the current
state value, gz-(c), and
1. Generate v ~ N(0, V;;) and u ~ U[0, 1].
2. Generate 0 ~ U[0,27]. Let [Omin, Omaz) = [0 — 27, 0).
(a) (Proposal) &, = 8. cos(6) + v sin()
(b) (Accept/Reject) pr(u1:T|&,Others)/p(ulzﬂgi(c),Others) > u, exit (i.e., go to step 3).
Otherwise, move on to (c).
(c) (Adaptation) If 0 < 0, then 0., = 0. Otherwise, O, = 0.
(d) Update 0 ~ U|Omin, Omaz], and go to (a).
3. Update gfc) — 6, and 51-(8) = (’%C) +my;

We complete Step 7 by iterating this algorithm for all §;, ¢ = 1,2, ..., n.
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A.3 RMSEs and LPSs of the CSP-SV

Tables A.2 to A.7 describe the RMSE and LPS for all possible orderings of the CSP-SV. Each
table has four sections determined by the name of the variables. In each section, the first column
shows the rank of the corresponding model specification based on either RMSE or LPS. The
second column describes the ordering of the variables (from first to last) in the CSP-SV. For
example, for the first row of Table A.2, the second column indicates that the unemployment
rate is ordered first, the 3-Month T-Bill second, inflation third, and output growth fourth. The
third column describes the RMSE. The fourth column presents the p-value of Diebold-Mariano
(or, Amisano-Giacomini) test for equal predictive ability (two-sided) between the best ordering

and the corresponding model.

A.4 Predictive Densities four- and eight-quarter-ahead

Figures A.1 and A.2 present the mean and the standard deviation of the four-quarter-ahead
and eight-quarter-ahead predictive densities over the forecasting sample for the best and worst
ordering, respectively. For each panel, we pick the ex-post best and worst predictive densities

based on the sum of the log predictive score of the corresponding individual variable.

A.5 Deeper Dive into LPS four- and eight-quarter-ahead

Figures A.3 and A.4 show the time-varying rankings of four-quarter-ahead and eight-quarter-
ahead log predictive scores. Figures A.5 and A.6 show the time-varying average length of the

70% prediction intervals for four-quarter-ahead and eight-quarter-ahead log predictive scores.
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Table A.2: RMSE Ranking, h =1

Output Growth Inflation 3-Month T-Bill Unemployment
R Order RMSE pval | Rank Order RMSE pval | R Order RMSE pval | R Order RMSE pval
1 w,i,7m,y 257 NaN | 1 y,m,t,u 0604 NaN |1 y,u,nw,7 0345 NaN |1 y,¢,7,u 0204 NaN
2 wu,m,t,y 2565 0.36 |2 t,y,u,m 0604 056 |2 w,y,i,m 0341 004 |2 7w,i,y,u 0203 0.75
3 it,u,y,m 2565 0.65 |3 T,y,u,t 0603 043 |3 wy,7m,u,i 0337 005 |3 i,y,u,m 0203 0.56
4 1,m,u,y 2545 0.26 |4 Tm,t,u,y 0603 058 |4 7w,y,u,: 0336 013 |4 ¢,7,u,y 0202 0.34
5 d,u,m,y 2542 031 |5 w, 7,1,y 0602 025 |5 ¢,7m,y,u 0336 008 |5 y,7m,i,u 0202 0.33
6 7m,u,y,t 2539 032 |6 m,i,y,u 0602 074 |6 w,1,u,y 033 006 |6 i,u,y,7 0202 0.35
7T di,y,u,m 2533 029 |7 y,t,m,u 0602 013 |7 w,u,i,y 033 007 |7 w,y,u,i 0202 0.23
8 wy,i,m,u 2527 038 |8 t,y,m,u 0601 015 |8 7w,u,y,i 0335 008 |8 7w,u,y,: 0201 0.07
9 w,m,y,t 2526 0.17 |9 1, m,y,u 0601 0099 7w,y,i,u 0335 006 |9 w,t,7m,y 0201 0.14
10 m,u,i,y 2523 0.14 |10 v,y,i,m 0601 019 |10 w,7,y,7 0335 003 [10 ¢,y,7m,u 0.2 0.37
11 w,2,u,y 2513 0.14 | 11 ty,u,y,m 0601 012 |11 y,u,i,7 0333 007 [11 ¢, u,7m,y 0.2 0.23
12 w,i,y,nm 2511 012 |12 m,u,y,t 0601 016 |12 y,7w,¢,u 0333 009 [12 w,7w,i,y 0.2 0.17
13 y,m,1,u 2507 021 |13 w,i,m,y 0601 007 |13 w,2,y,u 0333 008 [13 y,7m,u,i 0.2 0.19
14 w,y,nm,1 2507 013 | 14 T,y,t,u 0601 021 |14 w,i,y,7m 0333 004 |14 7w,u,s,y 0.199 0.09
15 m,y,u,i 2506 0.17 | 15 u,m,y,t 0601 016 |15 y,¢,7,uw 0333 009 [15 y,i,u,7m 0.199 0.24
16 ¢,7m,y,u 2498 0.07 | 16 u,i,y,m 0.6 008 |16 y,i,u,w 0332 007 |16 7,y,7,u 0199 0.25
17 w,y,i,m 2489 0.09 | 17 ty,u,m,y 0.6 016 |17 w,m,2,y 0332 005 |17 y,u,n,7 0.199  0.21
8 d,y,m,u 2489 0.07 |18 m,u,t,y 0599 008 |18 w,y,nm,: 0332 003 |18 7 ,i,u,y 0.199 0.25
19 y,i,u,nm 2478 0.09 |19 y,m,u,t 0599 007 [19 w,i,7w,y 0331 004 |19 w,72,y,nw 0.199 0.08
20 y,m,u,r 2473 0.09 | 20 y,t,u,m 0599 018 |20 ¢, 7,u,y 0329 005 [20 ¢,7,y,u 0.199 044
21 y,u,i,m 2472 0.10 | 21 y,u,m,t 0598 012 |21 ¢, u,w,y 0329 004 |21 w,w,y,z 0.198  0.09
22 7w,y i, u 2472 0.09 | 22 w,y,m,t 0597 023 |22 ¢,y,u,nm 0329 008 [22 w,y,i,7 0.198 0.08
23 y,u,mw,t 2469 0.08 | 23 t,mLu,y 0596 049 |23 d,y,7wm,u 0328 005 |23 y,u,i,m 0.197 0.21
24 mwm,i,y,u 2464  0.10 | 24 y,u,i,m 059 023 (24 ¢, u,y,nm 0327 006 |24 w,y,w,: 0.197 0.10

NoTE. The table reports the one-quarter-ahead RMSE for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment.

For each variable, the column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the
24 possible orderings. The column labeled RMSE shows the RMSE error and the column labeled pval presents the p-value of the Diebold-Mariano test for equal
predictive ability (two-sided) between the best ordering and each of the remaining orderings.
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Table A.3: RMSE Ranking, h =4

Output Growth Inflation 3-Month T-Bill Unemployment
R Order RMSE pval | Rank Order RMSE pval | R Order RMSE pval | R Order RMSE pval
1 w,m,y,t 2731 NaN |1 m,t,y,u 0796 NaN |1 y,u,w,¢ 1182 NaN |1 <¢,y,n7,u 0827 NaN
2 d,u,m,y 2729 0.90 |2 y,m,i,u 0.79 045 |2 7w,y,i,u 1174 044 (2 y,t,7w,u 0.826 0.97
3 wu,t,y,m 2727 0.29 |3 y,i,m,u 0789 036 |3 w,y,w,¢ 1171 054 |3 i,y,u,m 0826 0.92
4 v,m,u,y 2727 0.76 | 4 t,y,u,m 078 035 (4 w,y,t,nm 117 018 |4 wy,m,1,u 0825 0.93
5 mLt,u,y 2727 082 |5 t,m,u,y 078 055 |5 mwm,u,y,: 1168 049 |5 7w,i,y,u 0823 0.62
6 7m,u,t,y 2726 0.46 |6 m,i,u,y 078 025 |6 y,7v,u,i 1165 019 |6 7w,y,u,i 0.82 0.64
7T m,u,y,i 2726 084 |7 T,y,u,t 078 029 |7 w,i,u,y 1164 034 |7 y,m,u,i 0.82 0.55
8 1,u,y,m 2717 080 |8 t,m,y,u 078 022 |8 y,u,i,7m 1.163 029 |8 i,7m,y,u 0.82 0.59
9 w,y,t,m 2711 0.02 |9 u,t,y,m 0783 02019 wy,t,7m,u 1162 022 |9 ,u,y,nw 082 0.44
10 ¢, 7m,y,u 271 0.62 | 10 ty,y,m,u 078 022 |10 7w,t,y,uv 1162 029 |10 7,y,i,u 0819 0.22
11 w,i,7,y 2708 0.69 |11 u,m,y,t 0.78 018 |11 ¢+, 7,y,uw 1161 024 (11 ¢,7,u,y 0.819 047
12 4,y,m,u 2705 049 |12 tyu,m,y 0779 015 |12 y,w,¢,uw 1161 017 |12 y,i,u,nm 0817 0.09
13 w,y,n,i 2704 0.13 |13 w,y,m,t 0779 029 |13 y,i,u,n 1.161 015 |13 7w ,u,y,: 0817 0.60
14 y,7m,1,u 2696 0.11 | 14 T,u,t,y 0779 017 |14 7m,y,u,¢ 1.159 021 |14 ¢+,u,7m,y 0816 0.20
15 m,y,u,i 2.695 0.12 |15 T,y,i,u 0779 021 |15 w,7m,y,: 1.158 0.19 |15 y,u,7m,7 0815 0.11
16 w,m,i,y 2.69 0.60 | 16 y,t,u,m 0778 027 |16 w,uw,i,y 1157 020 |16 7,i,u,y 0814 0.11
17 i,y,u,m 2.69 0.34 | 17 y,m,u,t 0777 015 |17 w,nw,i,y 1155 025 |17 7w,u,i,y 0814 043
8 y,m,u,i 2.689 0.08 |18 u,y,i,m 0777 023 |18 ¢,y,u,n 1151 012 |18 w,7,7,y 0813 0.29
19 7,y,7,u 2689 0.11 |19 y,u,i,m 0776 024 |19 ¢,y,7,uv 1149 003 |19 w,7m,y,: 0812 0.34
20 m,i,y,u 2687 0.23 | 20 y,u,m,t 0774 020 20 ¢,u,y,m 1144 012 |20 w,?2,y,m 0.811 0.33
21 y,i,u,m 268 0.15 | 21 w,m,t,y 0774 005 |21 w,i, 7,y 1143 012 |21 w,y,¢,w 0811 0.25
22 y,i,m,u 2681 0.15 | 22 T,u,y,t 0.7 006 |22 ¢+, 7,u,y 1141 0.06 |22 w,nw,i,y 0.808 0.18
23 y,u,t,m 2676 0.16 | 23 u,i,m,y 0769 004 |23 w,i,y,w 1.138 0.06 [23 y,u,i,7 0.806 0.04
24 y,u,m,1 2666 0.07 | 24 t,u,y,m 0768 002 |24 ¢,u,m,y 1136 003 |24 w,y,nm,7 0.8 0.07

NoTE. The table reports the four-quarter-ahead RMSE for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment.

For each variable, the column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the
24 possible orderings. The column labeled RMSE shows the RMSE error and the column labeled pval presents the p-value of the Diebold-Mariano test for equal
predictive ability (two-sided) between the best ordering and each of the remaining orderings.
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Table A.4: RMSE Ranking, h = 8

Output Growth Inflation 3-Month T-Bill Unemployment
R Order RMSE pval | Rank Order RMSE pval | R Order RMSE pval | R Order RMSE pval
1 ¢,7m,u,y 2607 NaN |1 t,m,u,y 0915 NaN |1 wu,y,n,: 2.01 NaN |1 ¢,y,m,u 147 NaN
2 wm,i,y,u 2607 098 |2 m,t,y,u 0913 088 |2 7w,u,y,7 1991 034 |2 i,7,y,u 1468 091
3 wu,i,y,m 2607 096 |3 u,y,m,t 0901 036 |3 wm,y,i,uw 1972 020 |3 7w,i,u,y 1455 0.35
4 7mw,u,i,y 2607 094 |4 u,t,y,7 086 008 |4 w,y,t,m 1972 034 |4 1,u,7m,y 1454 0.39
5 wm,i,u,y 2606 091 |5 t,y,u,m 0894 015 |5 w,w,y,: 1967 011 |5 7w,y,t,u 1454 0.22
6 w,u,y,t 2605 093 |6 t,u,m,y 089 007 |6 y,u,i,m 1967 013 |6 i,y,u,m 145 0.38
7T w,m,y,t 2604 075 |7 t,y,m,u 0889 027 |7 y,i,m,u 1961 015 |7 y,7m,i,u 1449 0.37
8 1,u,m,y 2603 0.67 |8 y,u,t,m 087 025 |8 wy,u,7m,i 1959 027 |8 7w,i,y,u 1448 0.17
9 w,y,t,m 2595 049 |9 y,m,i,u 087 0059 w,u,i,y 1959 007 |9 i,u,y,m 1448 0.32
10 w,y,nm,t 2592 0.14 | 10 y,i,m,u 087 005 |10 y,w,¢,uv 1957 012 |10 y,7m,w,e 1.447 0.22
11 7,7,y ,u 2591 051 |11 T,t,u,y 086 011 [11 y,72,u,m 1957 0.10 |11 y,¢,u,nw 1446  0.07
12 7#,y,u,? 2591 0.60 |12 u, 7,1,y 088 010 |12 y,7m,u,s 1953 016 |12 w,y,i,w 1444 0.33
13 ¢,y,7m,u 2589 040 |13 u,m,y,t 084 000 |13 7,¢,u,y 1952 021 |13 7,u,i,y 1443 041
14 w,i,7,y 2583 053 | 14 T,u,t,y 083 000 |14 w,7m,7,y 1946 014 |14 w,w,y,t 1443 0.44
15 y,m,t,u 2577 0.36 |15 y,i,u,m 082 020 |15 7wm,7,y,uv 1944 019 |15 y,¢,7,u 1443 0.32
16 y,i,7m,u 2576 044 | 16 Tm,y,u,t 081 000 |16 ¢,y,u,m 1944 017 |16 w,?,y,w 1442 042
17 y,m,u,? 2574 018 |17 t,m,y,u 0.88 018 |17 +,y,m,u 1942 012 |17 7w,y ,u,:i 1442  0.27
18 7,y,t,u 2572 0.16 | 18 T,y,i,u 0878 012 |18 ¢,u,y,m 1.941 022 |18 ¢, m,u,y 1442 0.19
19 7,u,y,n 2572 047 |19 u,y,t,m 0877 002 |19 7m,y,u,: 194 011 |19 w,u,y,t 1441 0.44
20 2,y ,u,m 2571 046 | 20 u,t,m,y 0877 000 [20 w,i,7w,y 194 012 |20 y,u,nm,z 1435 0.01
21 y,u,i,m 2568 0.24 |21 y,u,m,t 0871 005 |21 w,t,y,nm 1937 006 |21 w,i,7m,y 143 0.19
22 y,i,u,m 2568 0.18 | 22 y,m,u,t 089 003 |22 ¢, 7,u,y 1937 007 |22 y,u,i, 7w 1429 0.04
23 w,m,1,y 2563 0.54 | 23 t,u,y,m 088 000 |23 i,u,7m,y 1933 003 |23 w,y,n,: 1425 0.17
24 y,u,m,1 2558 0.17 | 24 m,u,y,t 0.86 000 |24 ¢+, 7,y,u 1924 020 |24 w,7w,t,y 1418 0.16

NoTE. The table reports the eight-quarter-ahead RMSE for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and
unemployment. For each variable, the column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with
each of the 24 possible orderings. The column labeled RMSE shows the RMSE error and the column labeled pval presents the p-value of the Diebold-Mariano test for
equal predictive ability (two-sided) between the best ordering and each of the remaining orderings.
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Table A.5: LPS Ranking, h =

Joint Output Growth Inflation 3-Month T-Bill Unemployment
R Order LPS pval | R Order LPS pval | R Order LPS pval | R Order LPS pval | R Order LPS pval
1 4,y,m,u -346.23 NaN |1 y,u,w,t -27429 NaN |1 =nw,u,i,y -10676 NaN |1 ¢, u,y,nm -1574 NaN |1 w,y,¢,7 33.53 NaN
2 y,i,u,m -34784 063 |2 y,m,u,i -27439 092 |2 y,u,w,i -107.07 070 |2 i,wm,u,y -1598 067 |2 wu,i,y,7m 33.14 0.65
3 t,u,m,y -34854 039 |3 w,i,y,u -27448 091 |3 w,u,y,i -1072 048 |3 ¢,u,w,y -16 0333 w,u,i,y 33.06 0.56
4 i ,m,y,u -34899 021 |4 7w,y,i,u -27479 057 |4 w,y,u,i -10732 045 |4 i,y,m,u -1635 035 |4 w,w,y,t 3298 045
5 m,y,i,u -34919 054 |5 y,u,i,m -2749 049 |5 w,w,y,¢ -10736 009 |5 ¢,y,u,w -16.76 029 |5 w,y,m,7 32.89 0.58
6 y,m,u,i -3499 065 |6 y,i,u,m -27555 015 |6 w,y,i,m -107.52 028 |6 i,w,y,u -17.77 005 |6 wu,w.,i,y 3272 0.53
7 m,i,u,y -351.59 009 |7 di,y,m,u -275.81 046 |7 y,w,u,i -107.56 036 |7 w,i,y,u -17.9 017 |7 w,u,y,i 3254 0.29
8 wy,m,i,u -35242 025 |8 i,7wm,y,u -27583 050 |8 w,w,i,y -107.7 009 |8 y,i,7m,u -1937 029 |8 i,u,wm,y 3246 0.54
9 w,i,y,m -35256 0389 7w,y,u,i -276.39 0059 w,i,y,m -10828 006 |9 y,i,u,w -1942 026 |9 y,u,i,n7 3234 0.58
10 m,u,i,y -35296 030 |10 w,y,i,n -276.39 033 |10 ¢, 7,y,u -1084 0.16 |10 y,7,4,u -19.89 027 |10 y,7,u,: 3226 0.55
1 y,u,i,m -353.17 023 |11 7#,u,y,i -27645 021 |11 7 ,¢i,u,y -10853 0.03 |11 7w ,¢,u,y -2042 0.10 |11 y,u,w,¢ 3225 0.55
12 7,y,u,i -35418 031 |12 w,7w,i,y -276.54 045 |12 i, u,7m,y -10865 0.03 |12 y,u,i,nw -20.71 023 |12 w,i,w,y 32 0.10
13 w,m,y,i -35444 027 |13 y,7m,i,u -276.58 0.04 |13 w,i,7,y -108.7 0.02 |13 w,i,nm,y -21.73 028 |13 7w,y ,i,u 31.67 0.52
14 ¢,y,u,n -35453 002 |14 ¢, y,u,nw -277.27 007 |14 y,7,i,u -10882 0.05 |14 7w,y,i,u -22.08 018 |14 y,7,u,nm 31.54 0.44
15 y,i,m,u -35478 012 |15 y,i,m,u -277.27 0.03 |15 7w,y ,i,u -10886 0.07 |15 w,y,n,i -22.81 022 |15 i,u,y,w 31.42 0.29
16 ¢,u,y,nm -35496 005 |16 w,y,w,¢ -277.39 014 |16 y,i,w,u -108.89 0.04 |16 w,i,y,n -23.08 022 |16 ¢,y ,7,u 31.38 0.54
17 ¢+, m,u,y -356.14 0.00 |17 w,¢,y,m -27754 017 |17 ¢, 7, v,y -10894 0.04 |17 7,y ,u,? -2423 0.16 |17 7,y ,u,? 3126 0.36
18 w,y,m,i -35821 0.10 |18 w#,u,i,y -277.67 028 |18 i,y ,nw,u -109.17 0.06 |18 w, 7,y ,7 -2546 0.17 |18 w,i,u,y 30.77 0.35
19 y,u,m,i -35921 016 |19 ¢, u,y,w -277.71 026 |19 y,i,u,nw -10979 005 |19 7w, u,i,y -2546 015 |19 y,w,i,u 30.6 0.31
20 w,y,i,m -359.74 011 |20 7 ,i,u,y -27815 024 |20 w,i,y,uv -110.12 002 |20 y,7,u,s -2569 0.16 |20 ¢, 7,u,y 29.86 0.33
21 w,i,m,y -361.34 003 |21 w,i,w,y -27817 020 |21 i,y,u,w -1103 001 |21 w,7w,i,y -2882 014 |21 y,i,nw,u 2955 0.23
22 wm,i,y,u -36287 0.00 |22 w,w,y,i -27833 0.10 |22 ¢,u,y,nm -11042 001 |22 7w, u,y,t -3027 013 |22 ¢,y,u,w 294 0.24
23 m,u,y,i -370.36 0.04 |23 i,u,7m,y -27921 0.16 |23 y,wu,i,nw -11065 006 |23 w,y,i,nw -31.6 0.07 |23 ¢,7,y,u 2867 0.28
24 w,m,i,y -371.86 001 |24 i,7m,u,y -27941 017 |24 w,y,w,: -111.03 003 |24 y,u,7w,7 -33.1 006 |24 w,i,y,u 2694 0.28

NOTE. The table reports the one-quarter-ahead LPSs for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment. For each variable, the
column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the 24 possible orderings. The column labeled LPS shows the
one-quarter-ahead log predictive score and the column labeled pval presents the p-value of the Amisano-Giacomini test for equal predictive ability (two-sided) between the best ordering and each of
the remaining orderings.
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Table A.6: LPS Ranking, h =4

Joint Output Growth Inflation 3-Month T-Bill Unemployment
R Order LPS pval | R Order LPS pval | R Order LPS pval | R Order LPS pval | R Order LPS  pval
1 y,i,m,u -716.06 NaN |1 y,u,t,nm -2845 NaN |1 w,u,y,i -14256 NaN |1 ¢,u,w,y -18355 NaN |1 ¢, u,n,y -123.95 NaN
2 m,y,u,t -71825 074 |2 y,w,u,t -28.17 040 |2 w,7w,i,y -14321 018 |2 ¢, 7w, u,y -184.08 058 |2 w,y,n,t -124.1 097
3 w,m,y,i -7186 064 |3 7w,y,u,i -28524 042 |3 7w,u,t,y -14326 021 |3 i,y,u,m -18442 063 |3 i,7m,u,y -126.17 0.59
4 w,i,y,m -719.14 063 |4 y,i,u,m -28.27 030 |4 y,u,w,: -1434 0524 ¢,u,y,nm -18496 035 |4 i,u,y,m -126.35 0.18
5 1,m,u,y -72069 023 |5 y,u,m,t -28.33 037 |5 y,7m,u,: -14396 022 |5 ,y,m,u -185.28 034 |5 w,u,y,t -126.61 0.57
6 t,y,u,m -721.46 027 |6 w,y,t,u -28539 001 |6 w,w,y,¢ -14409 001 |6 <¢,7m,y,u -18.51 037 |6 w,7m,y,i -126.79 0.58
7T mwm,u,t,y -72381 027 |7 wy,t,mw,uw -285 051 |7 wm,y,u,: -14412 011 |7 7w,i,y, -185.73 038 |7 t,y,u,w -126.83 0.43
8 wy,m,i,u -72797 034 |8 7w,t,y,uw -285.53 036 |8 i,7m,y,uw -14431 014 |8 y,t,7m,u -18.76 043 |8 w,i,y,m -126.92 0.59
9 y,u,t,m -72837 0059 y,w,i,u -2859 031 |9 w,y,t,m -14435 004 |9 w,i,y,nm -18721 049 |9 w,u,7,y -127.21 048
10 y,u,m,i -72899 012 |10 ¢,y ,u,w -286.85 0.24 |10 7,y ,¢,u -14441 017 |10 y,7m,¢,u -1874 035 |10 7,7,u,y -128.34 0.19
M rm,u,y,i -72918 0.10 |11 w,y,i,w -28697 024 |11 y,7m,i,u -1446 0.03 |11 y,é,uw,w -187.57 027 |11 7,y ,u,i -128.85 0.24
12 w7 dé,u,y -72933 017 |12 ¢,y ,7m,u -287.08 0.09 |12 7w ,i,u,y -14496 0.02 |12 7w ,i,u,y -187.64 0.06 |12 w,i, 7,y -129.43 0.25
3 i,u,m,y -730.14 042 |13 7#,u,y,i -28714 0.09 |13 y,i,w,u -145 0.02 |13 w,i,7,y -187.76 047 |13 i,y ,nw,u -129.64 0.09
14 n,i,y,u -73141 005 |14 w,y,nw,¢ -28721 017 |14 ¢, 7w, u,y -14529 002 |14 7w,y ,u,¢ -188.15 046 |14 w,7m,7,y -129.66 0.38
5 i,y,m,u -731.54 027 |15 ¢, 7,y,u -28763 0.09 |15 ¢,u,nm,y -14537 0.00 |15 7 ,y,¢,u -188.92 021 |15 y,i,7,u -129.83 0.24
6 ¢,7,y,u -731.66 021 |16 w,i¢,y,w -28788 0.10 |16 ¢,y ,m,u -14544 0.02 |16 y,u,¢,w -189.72 0.16 |16 y,7,i,u -130.51 0.22
17 y,m,u,s -733.17 024 |17 w,7,y,? -288.11 O0.11 |17 w,7,7m,y -14577 0.00 | 17 7 ,u,2,y -189.85 031 |17 y,w,i,nm -131.34 0.25
8 w,y,m,+ -7344 001 |18 w,i,m,y -28852 0.15 |18 w,i,y,n -146.27 0.00 | 18 y,7,u,? -190.06 033 |18 7,y ,i,u -131.38 0.12
19 w,7m,i,y -735.06 0.06 |19 7w,u,¢,y -28857 015 |19 y,¢,u,n -146.5 001 |19 w,7n,y,¢ -190.07 033 |19 y,¢,uw,n -131.65 O0.17
20 w,y,t,m -735.656 0.19 |20 w,7,¢,y -288.62 0.14 |20 ¢,u,y,m -146.95 000 |20 w, 7,7,y -190.99 041 |20 w,¢,y,uw -131.72 0.18
21 w,y,i,u -736.19 024 |21 w,t,u,y -289.53 0.08 |21 ¢,y ,u,nw -14716 000 |21 w,y,w,¢ -191.25 0.18 |21 ¢, 7w,y ,uw -13291 0.10
22 y,i,u,m 73742 027 |22 i,u,y,m -280.62 004 |22 w,i,y,u -14739 002 |22 7,u,y,t -191.75 041 |22 y,u,7m,¢ -133.24 0.20
23 u,t,m,y -739.64 011 |23 ¢,u,m,y -289.81 005 |23 y,u,?,m -14829 0.00 |23 w,y,t,m -191.75 028 |23 w,y,:,nm -135.32 041
24 i, u,y,m™ -739.69 0.17 |24 i, 7, u,y -29048 0.10 |24 w,y,w,¢ -149.13 000 |24 y,u,7w,¢ -19247 027 |24 y,7w,u,i -138.68 0.22

NotE. The table reports the four-quarter-ahead LPS for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment. For each variable, the
column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the 24 possible orderings. The column labeled LPS shows the
four-quarter-ahead log predictive score and the column labeled pval presents the p-value of the Amisano-Giacomini test for equal predictive ability (two-sided) between the best ordering and each of the
remaining orderings.
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Table A.7: LPS Ranking, h = 8

Joint Output Growth Inflation 3-Month T-Bill Unemployment
R Order LPS pval | R Order LPS pval | R Order LPS pval | R Order LPS pval | R Order LPS pval
1 y,m,2,u -91097 NaN |1 y,u,w,7 -28326 NaN |1 =#w,u,y,t -1698 NaN |1 7w,y,u,: -260.09 NaN |1 ¢, 7,u,y -2053 NaN
2 y,i,m,u -91553 040 |2 y,7m,u,i -28331 090 |2 w,w,i,y -170.56 048 |2 ¢, 7,y,u -2602 099 |2 i,y,u,w -208 0.53
3 i,m,u,y -91745 051 |3 y,u,i,w -2837 059 |3 y,u,w,i -171.71 024 |3 ¢,u,w,y -26021 098 |3 w,y,w,i -208.18 0.74
4 w,m,y,t -919.19 0254 y,i,u,m -28417 031 |4 y,m,u,? -17219 008 |4 ¢,7m,u,y -26026 098 |4 i,u,7m,y -209.15 0.52
5 d,y,u,m -919.72 021 |5 w,y,i,u -28425 004 |5 w,u,i,y -17223 003 |5 i,y,u,m -2605 094 |5 y,i,7m,u -20954 0.56
6 m,u,i,y -92432 017 |6 y,i,m,u -28515 027 |6 w,w,y,i -17281 001 |6 w,i,y,u -26083 091 |6 w,i,u,y -210.66 0.24
7T w,i,y,m -9249 015 |7 y,w,i,u -28518 022 |7 w,y,u,i -17293 002 |7 y,7w,i,u -26144 071 |7 w.,i,y,u -210.77 0.24
8 i,y,m,u -92543 006 |8 7,y,u,i -28.24 013 |8 w,y,i,u -173.13 005 |8 y,u,w,i -261.5 054 |8 w,i,y,nw -211.58 0.52
9 y,m,u,i -92697 021 |9 w,y,i,m -2841 0299 y,7w,i,u -17366 001 |9 w,i,y,7m -261.68 053 |9 w,i,w,y -211.59 0.39
10 7 ,y,u,t -927.03 036 |10 w,y, 7,7 -286.65 0.10 |10 w,y,¢,n -17425 0.01 |10 y,é,7,u -261.76 0.69 | 10 7 ,u,i,y -211.62 0.52
11 7,i,u,y -92801 006 |11 w,7m,y,¢ -287 0.08 |11 y,¢,7m,u -17427 0.01 |11 ¢, u,y,w -26203 0.76 |11 y,7,i,u -211.8 0.46
12 w,i,y,u -92963 0.10 |12 ¢,y ,7,u -287.03 0.01 |12 ¢, 7,y ,u -1746 0.03 |12 i,y ,7,u -262.09 077 |12 y,u,i, 7 -211.89 0.44
B3 wu,y,i,m -932.7 014 |13 w,u,y,i -287.04 0.08 |13 7w ,i,u,y -1749 001 |13 y,7m,u,i -26228 022 |13 i,u,y,nw -212.12 0.26
4 i, 7,y,u -933.36 0.13 |14 i,y ,u,w -287.15 0.09 |14 w,i,7,y -17496 0.00 |14 v,y ,i,7m -2623 038 |14 7w,y,u,i -212.85 0.40
5 m,u,y,i -934.38 0.06 |15 w,i,y,m -287.28 0.03 |15 i,y,m,u -175.24 001 |15 7w, u,i,y -262.67 038 |15 7, u,y,t¢ -21341 0.48
16 7#,y,i,u -93456 0.19 |16 7 ,i,y,u -287.8 0.01 |16 y,i,uw,n -175.58 0.00 | 16 7 ,¢,uw,y -262.75 056 |16 w,7,y,¢ -214.5 0.46
17 w,m,¢,y -935.52 007 |17 7,u,?,y -28797 010 |17 ¢, v ,nm,y -175.63 0.00 | 17 w,7,y,¢ -26289 032 |17 w,7m,¢,y -214.56 0.39
8 i,u,m,y -93569 0.15 |18 ¢, 7,y ,u -28825 0.03 |18 w,i,y,n -176.17 0.00 | 18 w,7,i,y -263.04 044 |18 i,y ,7m,u -214.73 0.21
19 y,u,i,nw -937.86 0.03 |19 w,i,7,y -289.01 0.08 |19 ¢, 7,uw,y -177.01 0.00 |19 7w,y ,i,u -263.37 032 |19 i,7,y,u -215.12 0.13
20 y,t,u,m -938 018 |20 w,m,%,y -28999 006 |20 ¢,u,y,n -177.02 0.00 |20 7,u,y,? -26352 039 |20 7w,y,7,u -215.13 0.33
21 w,i,7m,y -940.86 0.04 |21 ¢,u,y,m -29029 002 |21 ¢,y ,u,7m -177.99 0.00 |21 y,i,u,w -26395 043 |21 w,y,i,w -216.36 045
22 i,u,y,m -94295 008 |22 w,i,u,y -29041 004 |22 w,i,y,uw -17813 001 |22 w,i, 7,y -26415 036 |22 y,i,u,n -216.69 0.33
23 w,y,m,i -945 002 |23 i,u,7w,y -29093 001 |23 y,wu,i,n7 -17817 0.00 |23 y,u,i,m -2666 024 |23 y,7,u,t -21941 0.32
24 y,u,m,i -94809 031 |24 i, 7w, u,y -2928 004 |24 w,y,w,i -17946 000 |24 w,y,w,i -26713 023 |24 y,u,7,i -22722 0.34

NotTE. The table reports the eight-quarter-ahead LPS for the four variables included in the CSP-SV: output growth, inflation, the 3-Month T-Bill, and unemployment. For each variable, the
column labeled R denotes the ranking and the column labeled Order denotes the variable order specification associated with each of the 24 possible orderings. The column labeled LPS shows the
eight-quarter-ahead log predictive score and the column labeled pval presents the p-value of the Amisano-Giacomini test for equal predictive ability (two-sided) between the best ordering and each of the
remaining orderings.
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Figure A.1: Four-Quarter-Ahead Predictive Density and Ordering
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Figure A.2: Eight-Quarter-Ahead Predictive Density and Ordering
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Figure A.3: Time-Varying Ranking of Four-Quarter-Ahead Log Predictive Scores
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Figure A.4: Time-Varying Ranking of Eight-Quarter-Ahead Log Predictive Scores
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Figure A.5: Four-Quarter-Ahead Prediction Interval and Ordering
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Figure A.6: Eight-Quarter-Ahead Prediction Interval and Ordering
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