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VALUE-BASED DISTANCE BETWEEN INFORMATION STRUCTURES

Fabien Gensbittel, Marcin P¦ski, Jérôme Renault*

AbstractWe de�ne the distance between two information structures as the

largest possible di�erence in the value across all zero-sum games. We provide

a tractable characterization of the distance. We use it to discuss the relation

between the value of information in games versus single-agent problems, the

value of additional information, informational substitutes, complements, or joint

information. The convergence to a countable information structure under the

value-based distance is equivalent to the weak convergence of belief hierarchies,

implying, among others, that for zero-sum games, the approximate knowledge is

equivalent to the common knowledge. At the same time, the space of information

structures under the value-based distance is large: there exists a sequence of

information structures, where players acquire more and more information, and

ε > 0 such that any two elements of the sequence have distance at least ε.

This result answers by the negative the second (and last unsolved) of the three

problems posed by J.F. Mertens in his paper �Repeated Games�, ICM 1986.

1. INTRODUCTION

The role of information is of fundamental importance for the economic

theory. It is well known that even small di�erences in information may
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lead to signi�cant di�erences in the behavior (Rubinstein (1989)). A recent

literature on the strategic (dis)-continuities has studied these di�erences

intensively and in full generality. A typical approach is to consider all possi-

ble information structures, modeled as elements of an appropriately de�ned

universal space of information structures, and study the di�erences in the

strategic behavior across all games.

A similar methodology has not been applied to study the relationship

between the information, and the agent's bottom line, their payo�s. There

are perhaps few reasons for this. First, following Dekel et al. (2006), Wein-

stein and Yildiz (2007) and others, the literature has focused on the interim

rationalizability as the solution concept. Compared with the equilibrium,

this choice has several advantages: it is easier to analyze, it is more ro-

bust from the decision-theoretic perspective, it can be factorized through

the Mertens-Zamir hierarchies of beliefs (Dekel et al. (2006), Ely and Peski

(2006)), and, it does not su�er from the existence problems (unlike the equi-

librium - see Simon (2003)). However, the value of information is typically

measured in the ex ante sense, where solution concepts like the Bayesian

Nash equilibrium are more appropriate. Also, the multiplicity of solutions

necessitates that the literature takes the set-based approach. This, of course,

makes the quantitative comparison of the value of information di�cult. Last

but not least, the freedom in choosing games without any restriction makes

the equilibrium payo� comparison between information structures trivial,

where almost all (see Section 7 for a detailed discussion of this point).

Despite the challenges, we �nd the questions concerning the strategic

value of a information as important and fascinating. How to measure the

value of information on the universal type space? How much a player can

gain (or lose) from an additional information? Which information structures

are similar, in the sense that they always lead to the same payo�s? In

order to address these questions, and given the last point in the previous
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paragraph, we must restrict the analysis to a class of games. In this paper,

we propose to focus on zero-sum games. We do so for both substantive and

pragmatic reasons. On one hand, the question of the value of information is

of special importance when the players' interests are opposing. With zero-

sum games, the information has natural comparative statics: a player is

better o� when her information improves and/or the opponent's information

worsens (Peski (2008)). Such comparative statics are intuitive, they hold

in the single-agent decision problems (Blackwell (1953)), but they do not

hold for general games, where better information may worsen a player's

strategic position, and players may have incentives to engage in a pre-game

communication to manipulate the available information. Second, many of

the constructions in the strategic discontinuities literature rely on special

classes of games, like coordination games, or betting games (Rubinstein

(1989), Morris (2002), Ely and Peski (2011), Chen and Xiong (2013) among

others). This begs the question whether some of the surprising phenomena,

like the di�erence between approximate knowledge and common knowledge,

apply in other classes of games. Our restriction allows to clarify this issue

for zero-sum games.

On the other hand, the restriction avoids all the problems mentioned

above. Finite zero-sum games have always an equilibrium on common prior

information structures (Mertens et al. (2015)) that depends only on the

distribution over hierarchies of beliefs. The equilibrium has decent decision-

theoretic foundations (Brandt (2019)), and, even if it is not unique, the ex

ante payo� always is and it is equal to the value of the zero-sum game.

Finally, as we demonstrate through numerous results and examples in the

paper and in the Online Appendix, the restriction uncovers a rich internal

structure of the universal type space.

We de�ne the distance between two common prior information structures

as the largest possible di�erence in the value across all zero-sum payo�

ectaart.cls ver. 2006/04/11 file: TS09042020M.tex date: April 11, 2020



4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

functions that are bounded by a constant. This has a straightforward in-

terpretation as a tight upper bound on the gain or loss from moving from

one information structure to another. Our �rst result provides a character-

ization of the distance in terms of total variation distance between sets of

information structures. This distance can be computed as a solution to a

convex optimization problem.

The characterization is tractable in applications. In particular,we use it

to describe the conditions under which the distance between information

structures is maximized in single-agent problems (which are a subclass of

zero-sum games). We provide bounds to measure the impact of the marginal

distribution over the state. We also use it in a series of results on the com-

parison of the value of information. A tight upper bound on the value of an

additional piece of information is de�ned as the distance between two type

spaces, in one of which one or two players have access to new information.

We give conditions when the value of new information is maximized in the

single-agent problems. We describe the situations when the value of one

piece of information decreases when the other piece of information becomes

available, or, in other words, when the two pieces of information are sub-

stitutes. Similarly, we show that, under some conditions, the value of one

piece of information increases when the other player receives an additional

information, or in other words, that the pieces of information for opposing

players are complements.1 Finally, we show that the new information mat-

ters only if it is valuable to at least one of the players individually. The joint

information contained in the correlation between players' signals is in itself

not valuable in the zero-sum games.

The second main result shows that the space of information structures

is large under the value-based distance: there exists an in�nite sequence

1Hellwig and Veldkamp (2009) study when the information acquisition decisions are

complements or substitutes in a beauty contest game.
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of information structures un and ε > 0 such that the value-based distance

between each pair of structures is at least ε. In particular, it is not possible

to approximate the set of information structures with �nitely many well-

chosen information structures. In the proof, we construct a Markov chain

with the �rst element of the chain correlated with the state of the world. We

construct an information structure un so that player 1 observes the �rst n

odd elements of the sequence and the other player observes the �rst n even

elements. Our construction implies that in information structure un+1, each

player gets an extra signal. Thus, having more and more information may

lead... nowhere. This is unlike the single-player case, where more and more

signals corresponds to a martingale and the values converge uniformly over

bounded decision problems.

The Markov construction implies that all the information structures n′ ≥
n have the same n-th order belief hierarchies (Mertens and Zamir (1985)).

As a consequence, our distance is not robust with respect to the product

convergence of belief hierarchies. This observation may sound familiar to a

reader of the strategic (dis)continuities literature. However, we emphasize

that the proof of our result is entirely novel. All earlier constructions heavily

rely on either coordination games, or games with betting elements (Rubin-

stein (1989), Morris (2002), Ely and Peski (2011), Chen and Xiong (2013)

among others). Such constructions do not work with zero-sum games.

More importantly, there are signi�cant di�erences between strategic topolo-

gies and the topology induced by the value-based distance. For instance, the

type spaces from the famous email game example of Rubinstein (1989), or

any approximate knowledge spaces, converge to the common knowledge of

the state for the value-based distance. More generally, we show that any se-

quence of countable information structures converges to a countable struc-

ture under value-based distance if and only if the associated hierarchies of

beliefs converge in the product topology. The impact of the higher-order
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beliefs becomes signi�cant only for uncountable information structures.

An important contribution is that our result leads to an answer to the

last open problem posed in Mertens (1986)2. Speci�cally, his Problem 2 asks

about the equicontinuity of the family of value functions over information

structures across all (uniformly bounded) zero-sum games. The positive

answer would have implied the equicontinuity of the discounted and the

average value in repeated games, and it would have consequences for the

convergence in the limits theorems3. Unfortunately, our results show that

the answer to the problem is negative.

Our paper adds to the literature on the topologies of information struc-

tures. Dekel et al. (2006) (see also Morris (2002)) introduce uniform-strategic

topologies, where two types are close if, for any (not necessarily zero-sum)

game, the sets of (almost) rationalizable outcomes are (almost) equal.4

There are two key di�erences between that and our approach. First, the

uniform-strategic topology applies to all (including non-zero-sum) games.

Our restriction allows us to show that some of the surprising phenomena

studied in this literature, like the di�erence between approximate knowl-

edge and common knowledge, are not relevant for zero-sum games. Second,

2Problem 1 asked about the convergence of the value, and it was proved false in

Ziliotto (2016). Problem 3 asked about the equivalence between the existence of the

uniform value and the uniform convergence of the value functions, and it was proved to

be false by Monderer and Sorin (1993) and Lehrer and Monderer (1994).
3 Equicontinuity of value functions is used to obtain limit theorems in several works

such as Mertens and Zamir (1971), Forges (1982), Rosenberg and Sorin (2001), Rosenberg

(2000), Rosenberg and Vieille (2000), Rosenberg et al. (2004), Renault (2006), Gensbittel

and Renault (2015), Venel (2014), Renault and Venel (2017).
4Dekel et al. (2006) focus mostly on a weaker notion of strategic topology that di�ers

from the uniform strategic in the same way that the pointwise convergence di�ers from

uniform convergence. Chen et al. (2010) and Chen et al. (2016) provide a characterization

of the strategic and the uniform-strategic topologies in terms of convergences of belief

hierarchies.
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we work with ex ante information structures and the equilibrium solution

concept, whereas the uniform-strategic topology is designed to work on the

interim level, with rationalizability. The ex ante equilibrium approach is

more appropriate for value comparison and other related questions. For in-

stance, in the information design context, the quality of the information

structure is typically evaluated before players receive any information.

Finally, this paper contributes to a recent but rapidly growing �eld of in-

formation design (Kamenica and Gentzkow (2011), Ely (2017), Bergemann

and Morris (2015), to name a few). In that literature, an agent designs or

acquires an information that later will be used in either a single-agent deci-

sion problem or a strategic situation. In principle, the design of information

may be divorced from the game itself. For example, a bank may acquire

software to process and analyze large amounts of �nancial information be-

fore knowing what stock it is going to trade on, or, a spy master allocates

resources to di�erent tasks or regions before she understands the nature

of future con�icts. The value-based distance is a tight upper bound on the

willingness to pay for a change in information structure. Our results provide

insight into a structure of the space of choices of the information designer,

including its diameter and internal complexity.

2. MODEL

A (countable) information structure is an element u ∈ ∆ (K × N×N) of

the space of probabilities over tuples (k, c, d), where K is a �xed �nite set

with |K| ≥ 2, and N is the set of nonnegative integers5. The interpretation is

that k is a state of nature, and c and d are the signals of, respectively, player

1 (maximizer) and player 2 (minimizer). In other words, an information

5All the results from Sections 3 and 4 extend to uncountable information structures.

As this extension requires heavier notation and technical details that would distract the

reader from the main messages of the present work, it is relegated to the Online Appendix.
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structure is a 2-player common prior Harsanyi type space over K with at

most countably many types. The set of information structures is denoted

by U = U (∞), and for L = 1, 2, ..., U (L) denotes the subset of information

structures where each player receives a signal smaller than or equal to L−1

with probability 1. If C and D are nonempty countable sets, we always

interpret elements u ∈ ∆(K × C × D) as information structures, using

�xed enumerations of C and D. In particular, if C and D are �nite with

cardinality at most L, we view u ∈ ∆(K × C × D) as an information

structure in U (L). For each u, v ∈ U de�ne the total variation norm as

‖u− v‖ =
∑

k,c,d |u(k, c, d)− v(k, c, d)|.

A payo� function is a map g : K × I × J → [−1, 1], where I, J are �nite

nonempty sets of actions. The set of payo� functions with action sets of

cardinality ≤ L is denoted by G(L), and let G =
⋃
L≥1 G(L) be the set of

all payo� functions.

An information structure u and a payo� function g together de�ne a

zero-sum Bayesian game Γ(u, g) played as follows: �rst, (k, c, d) is selected

according to u, player 1 learns c, and player 2 learns d. Next, simultaneously,

player 1 chooses i ∈ I and player 2 chooses j ∈ J , and �nally the payo�

of player 1 is g(k, i, j). The zero-sum game Γ(u, g) has a value (the unique

equilibrium, or the minmax, payo� of player 1), which we denote by val(u, g).

We de�ne the value-based distance between two information structures as

the largest possible di�erence in the value across all payo� functions:

(1) d(u, v) = sup
g∈G
| val(u, g)− val(v, g)|.

This has a straightforward interpretation as a tight upper bound on the

gain or loss from moving from one information structure to another. Since

all payo�s are in [−1, 1], it is easy to see that d(u, v) ≤ ‖u− v‖ ≤ 2.6

6The inequality is a property of zero-sum games. For every game g ∈ G, let σ be an

optimal strategy of player 1 in Γ(u, g) and τ be an optimal strategy of player 2 in Γ(v, g).
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The distance (1) satis�es two axioms of a metric: the symmetry and the

triangular inequality. However, it is possible that d(u, v) = 0 for u 6= v.

For instance, if we start from an information structure u and relabel the

signals of the players, we obtain an information structure u′ that is formally

di�erent from u but �equivalent� to u. Say that u and v are equivalent, and

write u ∼ v, if for all game structures g in G, val(u, g) = val(v, g). We let

U∗ = U / ∼ be the set of equivalence classes. Thus, d is a pseudo-metric on

U and a metric on U∗.

For each information structure u ∈ ∆ (K × C ×D), there is a unique

belief-preserving mapping that maps signals c and d into induced Mertens-

Zamir hierarchies of beliefs c̃ ∈ Θ1 and d̃ ∈ Θ2, where Θi is the universal

space of player i's belief hierarchies over K (see Mertens et al. (2015)). The

mapping induces a consistent probability distribution ũ ∈ ∆(K ×Θ1×Θ2)

over the state and hierarchies of beliefs. Let Π0 = {ũ : u ∈ U} be the space
of all such distributions. The closure of Π0 (in the weak topology, that is,

the topology induced by the product convergence of belief hierarchies) is

denoted as Π. Π is the space of consistent probability distributions induced

by generalized (measurable, possibly uncountable) information structures.

The space Π is compact under weak topology; Π0 is dense in Π (see corollary

III.2.3 and theorem III.3.1 in Mertens et al. (2015)). Note that for a payo�

function g and u ∈ Π, one can similarly de�ne the value val(u, g) of the

associated Bayesian game (see Proposition III.4.2 in Mertens et al. (2015)).

3. CHARACTERIZATION OF THE DISTANCE

We start with the notion of garbling, used by Blackwell to compare statis-

tical experiments Blackwell (1953). A garbling is a map q : N→ ∆(N). The

Using the saddle-point property of the value, the di�erence val(u, g) − val(v, g) is not

larger than the di�erences of payo�s in Γ(u, g) and Γ(v, g) when the players play (σ, τ)

in both games. This di�erence is clearly not larger than ‖u− v‖.
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set of all garblings is denoted by Q = Q (∞), and for each L = 1, 2, ..., Q(L)

denotes the subset of garblings q : N→ ∆({0, ..., L− 1}). Given a garbling

q and an information structure u, we de�ne the information structures q.u

and u.q so that for each k, c, d,

q.u(k, c, d) =
∑
c′

u(k, c′, d)q(c|c′) and u.q(k, c, d) =
∑
d′

u(k, c, d′)q(d|d′).

We will interpret garblings in two di�erent ways. First, a garbling is seen

as an information loss: suppose that (k, c′, d) is selected according to u, c

is selected according to the probability q(c′), and player 1 learns c (and

player 2 learns d). The new information structure is exactly equal to q.u,

where the signal received by player 1 has been deteriorated through the

garbling q. Similarly, u.q corresponds to the dual situation where the signal

of player 2 has been deteriorated. Further, the garbling q can also be seen

as a behavior strategy of a player in a Bayesian game Γ(u, g): if the signal

received is c, play the mixed action q(c) (the sets of actions of g being

identi�ed with subsets of N). The relation between the two interpretations

plays an important role in the proof of Theorem 1 below.

Theorem 1 For each L = 1, 2, ...,∞, each u, v ∈ U (L),

sup
g∈G

(val(v, g)− val(u, g)) = min
q1,q2∈Q(L)

‖q1.u− v.q2‖.(2)

Hence, d(u, v) = max

{
min

q1,q2∈Q(L)
‖q1.u− v.q2‖, min

q1,q2∈Q(L)
‖u.q1 − q2.v‖

}
.

If L <∞, the supremum in (2) is attained by some g ∈ G (L).

We describe the idea of the proof. The starting point is to identify each

garbling with a mixed strategy in the Bayesian game Γ(u, g) induced from an

information structure u. Using this identi�cation, the expected payo� in this

game can be written as 〈g, q1.u.q2〉 where 〈g, u〉 =
∑

k,c,d g(k, c, d)u(k, c, d).

Among others, each player can use the Id strategy which plays the received

signal. Using the saddle-point property, the di�erence in values val(v, g) −
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val(u, g) is no less than the di�erence between player 2's optimal pay-

o� against the strategy Id in v (i.e. infq2〈g, v.q2〉) and player 1's optimal

payo� against the Id strategy in u (i.e. supq1〈g, q1.u〉). Since this holds

for any game g, it follows that the value-based distance is bounded be-

low by supg infq1,q2〈g, v.q2 − q1.u〉. Moreover, using the monotony of the

value with respect to information, we have that val(v, g) − val(u, g) ≤
val(v.q2, g) − val(q1.u, g) ≤ ‖v.q2 − q1.u‖. Observing that ‖v.q2 − q1.u‖ =

supg〈g, v.q2−q1.u〉, we deduce that the value-based distance is also bounded
above by infq1,q2 supg〈g, v.q2−q1.u〉. Theorem 1 then follows from the Sion's

Minimax Theorem. We leave the complete proof to the appendix.

The Theorem provides a characterization of the value-based distance be-

tween two information structures u and v for each player as a total variation

distance between two sets obtained as garblings of the original information

structures {q.u : q ∈ Q} and {v.q : q ∈ Q}.

The result simpli�es the problem of computing the value-based distance.

First, it reduces the dimensionality of the optimization domain from payo�

functions and strategy pro�les (to compute the value) to a pair of gar-

blings. More importantly, the solution to the original problem (1) is typ-

ically a saddle point as it involves �nding optimal strategies in a zero-

sum game. On the other hand, the function ‖q1.u− v.q2‖ is convex in gar-

blings (q1, q2), and, if L < ∞, the domains of the optimization problem

{q.u : q ∈ Q (L)} , {u.q : q ∈ Q (L)} are convex and compact. Thus, for �-

nite structures, the right-hand side of (2) is a convex, compact, and �nitely

dimensional optimization problem.

For any u, v ∈ U , say that player 1 prefers u to v in every game, write

u � v, if for all g ∈ G, val(u, g)−val(v, g) ≥ 0. By the monotony of the value

with respect to information in zero-sum games, we have q.u � u � u.q for

each garbling q. Theorem 1 implies the following extension of Blackwell's

theorem and the characterization from (Peski (2008)) to countable informa-
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tion structures.

Corollary 1 u � v ⇐⇒ there exists q1, q2 in Q s.t. q1.u = v.q2.

4. APPLICATIONS

The characterization from Theorem 1 is quite tractable. This section con-

tains few straightforward applications. The Online Appendix contains nu-

merous examples to illustrate the computations and the subsequent results.

4.1. The impact of the marginal over K

Among many ways that two information structures can di�er, the most

obvious one is that they may have di�erent distributions over the states k. In

order to capture the impact of such di�erences, the next result provides tight

bounds on the distance between two type spaces with a given distribution

overs the states:

Proposition 1 For each p, q ∈ ∆K, each u, v ∈ U such that margK u =

p,margK v = q, we have

∑
k

|pk − qk| ≤ d (u, v) ≤ 2

(
1− max

p′,q′∈∆K

∑
k

min (pkq
′
k, p
′
kqk)

)
.(3)

If p = q, the upper bound is equal to 2 (1−maxk pk).

The bounds are tight. The lower bound in (3) is reached when the two

information structures do not provide any information to any of the players.

The upper bound is reached with information structures where one player

knows the state perfectly and the other player does not know anything.

When p = q, Proposition 1 describes the diameter of the space of in-

formation structures with the same distribution p of states. The result is

useful for, among others, information design questions, where such space is
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exactly the choice set when Nature �xes the distribution of states, and the

designer of information chooses how much information to acquire. In such a

case, the diameter has an interpretation of the (tight) upper bound on the

potential gain/loss from moving between information structures.

4.2. Single-agent problems

A natural question is what games maximize the value-based distance d.

The next result characterizes the situations, when the maximum in (1) is

attained by a special class of zero-sum games: the single-agent problems.

Formally, a payo� function g ∈ G(L) is a single-agent (player 1) problem

if the set of actions of player 2 is a singleton, J = {∗}. Let G1 ⊂ G be the

set of player 1 problems. Then, for each g ∈ G1, each information structure

u, val (g, u) is the maximal expected payo� of player 1 in problem g. Let

(4) d1 (u, v) := sup
g∈G1
|val (u, g)− val (v, g)| ≤ d (u, v) .

For any structure u ∈ ∆ (K × C ×D), we say that the players' informa-

tion is conditionally independent, if, under u, signals c and d are condition-

ally independent given k.

Proposition 2 Suppose that u, v ∈ ∆ (K × C ×D) are two information

structures with conditionally independent information such that margK×D u =

margK×D v. Then, d (u, v) = d1 (u, v) .

Proposition 2 says that if two information structures di�er only by an

information of one player, and the players information are conditionally in-

dependent in both cases, then the maximum in value-based distance (1)

is attained by a single-agent decision problem. Such problems form a rela-

tively small subclass of games and they are easier to identify. In the Online

Appendix, we apply the Proposition to compute exact distance between

information structures induced by multiple Blackwell experiments.
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The proof of the Proposition relies on the characterization from Theorem

1 and shows that the minimum in the optimization problem is attained by

the same pair of garblings as in the single-agent version of the problem.

4.3. Value of additional information: games vs. single agent

Consider two information structures u ∈ ∆ (K × (C × C ′)×D) and v =

margK×C×D u. When moving from v to u, player 1 gains an additional signal

c′. Because u represents more information, u is (weakly) more valuable, and

the value of the additional information is de�ned as d (u, v) , which is equal

to the tight upper bound on the gain from the additional signal. A corollary

to Proposition 2 shows that if the signals of the two players are independent

conditional on the state, the gain from the new information is the largest

in the single-agent problems.

Corollary 2 Suppose that information in u (and therefore in v) is con-

ditionally independent. Then, d (u, v) = d1 (u, v) .

4.4. Informational substitutes

Next, we ask two questions about the impact of a piece of information

on the value of another piece of information. In both cases, we use some

conditional independence assumptions that are weaker than in Proposition

2. Suppose that

u ∈ ∆ (K × (C × C1 × C2)×D) and v = margK×(C×C1)×D u,

u′ = margK×(C×C2)×D u, and v
′ = margK×C×D u.

When moving from v′ to u′ or v to u, player 1 gains an additional signal c2.

The di�erence is that in the latter case, player 1 has more information that

comes from signal c1. The next result shows the impact of an additional

signal on the value of information.
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Proposition 3 Suppose that, under u, c1 is conditionally independent

from (c, c2, d) given k. Then, d (u′, v′) ≥ d (u, v) .

Given the assumptions, the marginal value of signal c2 decreases when

signal c1 is also present. In other words, the two pieces of information are

substitutes.

4.5. Informational complements

Another question is about the impact of an information of the other player

on the value of information. Suppose that

u ∈ ∆ (K × (C × C1)× (D ×D1)) and v = margK×C×(D×D1) u,

u′ = margK×(C×C1)×D u and v′ = margK×C×D u.

When moving from v′ to u′ or v to u, in both cases, player 1 gains an

additional signal c1. However, in the latter case, player 2 has an additional

piece of information that comes from signal d1. The next result shows the

impact of the opponent's signal on the value of information.

Proposition 4 Suppose that (c, c1) and d are conditionally independent

given k. Then, d (u′, v′) ≤ d (u, v) .

Given the assumptions, signal c1 becomes more valuable when the op-

ponent also has access to additional information. Hence, the two pieces of

information are complements.

4.6. Value of joint information

Finally, we consider a situation where two players receive additional in-

formation simultaneously. Consider a distribution µ ∈ ∆ (X × Y × Z) over

countable spaces. We say that random variables x and y are ε-conditionally
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independent given z if∑
z

µ (z)
∑
x,y

|µ (x, y|z)− µ (x|z)µ (y|z)| ≤ ε.

Let u ∈ ∆ (K × (C × C1)× (D ×D1)) and v = margK×C×Du. When

moving from v to u, both players receive a piece of additional information.

Proposition 5 Suppose that d1 is ε-conditionally independent from (k, c)

given d, and c1 is ε-conditionally independent from (k, d) given c. Then,

d (u, v) ≤ ε.

The Proposition considers a situation where the additional signal of each

player does not provide this player any signi�cant information about the

state of the world and the original information of the other player. Such

signals would be useless in a single-decision problem. Such signals may be

useful in a strategic setting, as valuable information may be contained in

their joint distribution.7 Nevertheless, Proposition 5 says that the informa-

tion that is jointly shared by the two players is not valuable in zero-sum

games.

Although very simple, Proposition 5 has powerful consequences. Below,

we use it to show that information structures with approximate knowledge

of the state have also approximate common knowledge of the state. More

generally, we use it in the proof of Theorem 3 below.

5. LARGE SPACE OF INFORMATION STRUCTURES

5.1. (U∗,d) is not totally bounded

In this section, we assume without loss of generality that K = {0, 1}.
7How useful it is, it depends on the solution concept. The joint information is im-

portant for Bayesian Nash Equilibrium and Independent Interim Rationalizability - see

the leading example of Ely and Peski (2006). The joint information is not important by

assumption for the Bayes Correlated Equilibrium of Bergemann and Morris (2015) or

Interim Correlated Rationalizability of Dekel et al. (2007).
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Theorem 2 There exists ε > 0 and a sequence (ul) of information struc-

tures such that d(ul, up) > ε if l 6= p.

The Theorem says that the space of information structures is large: it

cannot be partitioned into �nitely many subsets such that all structures in

a subset are arbitrarily close to each other.

The proof, with an exception of one step that we describe below, is con-

structive. For �xed large N , we construct a probability µ over in�nite se-

quences k, c1, d1, c2, d2, ... that starts with a state k followed by alternating

signals for each player. The sequence c1, d1, c2, d2, ... follows a Markov chain

on {1, ..., N}, and the state k only depends on c1. In structure ul, player 1

observes signals (c1, c2, ...., cl), and player 2 observes (d1, d2, ...., dl). Thus,

the sequence of structures ul can be understood as fragments of a larger

information structure, where progressively more and more information is

revealed to each player. The Theorem shows that the larger structure is not

the limit of its fragments in the value-based distance. In particular, there

is no analog of the martingale convergence theorem for the value-based dis-

tance for such sequences.

This has to be contrasted with two other settings, where the limits of

information structures are well de�ned. First, in the single-player case, any

sequence of information structures in which the player is receiving more

and more signals converges for the distance d1. Second, the Markov prop-

erty means that (a) the state is independent from all players' information

conditionally on c1, and (b) each new piece of information is independent

from the previous pieces of information conditional on the most recent in-

formation of the other player. This ensures that the l-th level hierarchy of

beliefs of any type in structure ul is preserved by all consistent types in

structures up for p ≥ l. Therefore, Theorem 2 exhibits a sequence of type

spaces in which belief hierarchies converge in the product topology. In par-
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ticular, it shows that the knowledge of the l-th level hierarchy of beliefs

for any arbitrarily high l is not su�cient to play ε-optimally in all �nite

zero-sum games.

5.2. Last open problem of Mertens

Recall that for each information structure u, ũ denotes the associated con-

sistent probability distribution over belief hierarchies. Because each �nite-

level hierarchy of beliefs becomes constant as we move along the sequence ul,

it must be that the sequence ũl converges weakly in Π to the limit ũl → µ̃.

The limit is the consistent probability obtained from the prior distribution

µ. Theorem 2 shows that

lim sup
l

sup
g∈G

∣∣val (µ, g)− val
(
ul, g

)∣∣ ≥ ε.

In particular, the family of all functions (u 7→ val(u, g))g∈G is not equicon-

tinuous on Π equipped with the weak topology. This answers negatively

the second of the three problems posed by Mertens (1986) in his Repeated

Games survey from ICM: �This equicontinuity or Lispchitz property char-

acter is crucial in many papers...� (see also footnote 2).

The importance of the Mertens question comes from the role that it

plays in the limit theorems in the repeated games. The existence of a limit

value has attracted a lot of attention since the �rst results by Aumann and

Maschler (1995) and Mertens and Zamir (1971) for repeated games and by

Bewley and Kohlberg (1976) for stochastic games. Once the fact that an

appropriate family of value functions is equicontinuous is established, the

existence of the limit value is typically obtained by showing that there is

at most one accumulation point of the family (vδ), for example, by showing

that any accumulation point satis�es a system of variational inequalities

admitting at most one solution (see e.g. the survey Laraki and Sorin (2015)

and footnote 3 for related works).
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5.3. Comments on the proof

Fix α < 1
25
. We show that we can �nd even N high enough and a set

S ⊆ {1, ..., N}2 with certain mixing properties:

|{i : (i, j) ∈ S}| ' N

2
, for each j,

|{i : (i, j) , (i, j′) ∈ S}| ' N

4
, for each j, j′,

|{i : (i, j) , (i, j′) , (l, i) ∈ S}| ' N

8
, for each j, j′, l,

etc. The �'� means that the left-hand side is within α-related distance to the

right-hand side. Altogether, there are 8 properties of this sort (see Appendix

C.3) that essentially mean that various sections of S are �uncorrelated� with

each other.

We are unable to directly construct S with the required properties. In-

stead, we show the existence of set S using the probabilistic method of P.

Erd®s (for a general overview of the method, see Alon and Spencer (2008)).

Suppose that the sets S (i) for i = 1, ..., N are chosen independently and uni-

formly from all N
2
-element subsets of {1, ..., N}. We show that if N ≥ 108,

then the set S = {(i, j) : j ∈ S (i)} satis�es the required properties with

positive probability, proving that a set satisfying these properties exists.

Our proof is not particularly careful about the optimal N (hence about the

largest ε allowing for the conclusions of Theorem 2).

Given S, we construct the probability distribution µ. First, state k is

chosen with equal probability, and c1 is chosen so that
c1
N+1

is the conditional

probability of k = 1. Next, inductively, for each l ≥ 1, we choose

� dl uniformly from set S (cl) = {j : (cl, j) ∈ S} and conditionally inde-

pendently from k, ..., dl−1 given cl, and

� cl+1 uniformly from set S (dl) and conditionally independently from

k, ..., cl given dl.

As a result, c1, d1, c2, d2,... follows a Markov chain.
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To provide a lower bound on the distance between di�erent information

structures, we construct a sequence of games. In game gp, player 1 is sup-

posed to reveal the �rst p pieces of her information; player 2 reveals the �rst

p− 1 pieces. The payo�s are such that it is a dominant strategy for player

1 to precisely reveal her �rst order belief about the state, which amounts

to truthfully reporting c1. Furthermore, we verify whether the sequence of

reports
(
ĉ1, d̂1, ..., ĉp−1, d̂p−1, ĉp

)
belongs to the support of the distribution

of the Markov chain. If it does, then player 1 receives payo� ε ∼ 1
10(N+1)2

. If

it does not, we identify the �rst report in the sequence that deviates from

the support. The responsible player is punished with payo� −5ε (and the

opponent receives 5ε).

The payo�s and the mixing properties of matrix S ensure that players

have incentives to report their information truthfully. We check it formally,

and we show that if l > p, then d
(
ul, up

)
≥ val

(
ul, gp+1

)
− val (up, gp+1) ≥

2ε.

Our argument implies that the conclusion of the Theorem is true for

ε = 2.10−17. However, our argument is not optimized for the largest possible

value of ε and we strongly suspect that the threshold ε is much larger.

6. VALUE-BASED TOPOLOGY

6.1. Relation to the weak topology

The previous sections discussed the quantitative aspect of the value-based

distance. Now, we analyze its qualitative aspect: the topological information.

Theorem 3 Let u be in U∗. A sequence (un) in U∗ converges to u for the

value-based distance if and only if the sequence (ũn) converges weakly to ũ

in Π0.

The result says that a convergence in value-based topology to a countable

structure is equivalent to the convergence in distribution of �nite-order hier-
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archies of beliefs. Informally, around countable structures, the higher-order

beliefs have diminishing importance.

We describe the idea of the proof. If u is �nite, we surround the hierar-

chies c̃ for c ∈ C by su�ciently small and disjoint neighborhoods, so that all

hierarchies in the neighborhood of c̃ have similar beliefs about the state and

the opponent. We do the same for the other player. The weak convergence

ensures that the converging structures assign large probability to the neigh-

borhoods. We show that any information about a player's hierarchy beyond

the neighborhood to which it belongs is almost conditionally independent

(in the sense of Section 4.6) from the information about the state and the

opponents' neighborhoods. By Proposition 5, only the information about

neighborhoods matters, and the latter is similar to the information in the

limit structure u. If u is countable, we also show that it can be appropriately

approximated by �nite structures.

There are two reasons why Theorem 3 is surprising: (a) it seems to have

the opposite message to the literature on strategic (dis)continuities, and (b)

it seems to contradict our discussion of Theorem 2. We deal with these two

issues in order.

6.1.1. Strategic discontinuities

For an illustration of the �rst issue, consider email-game information

structures u from Rubinstein (1989). Player 1 always knows the state. Player

2's �rst-order belief attaches the probability of at least 1
1+ε p

1−p
to one of the

states, where p < 1 is the initial probability of one of the states and ε

is the probability of losing the message. It is well-known that, as ε → 0,

the Rubinstein's type spaces converge in the weak topology to the common

knowledge of the state. Theorem 3 implies that the Rubinstein's type spaces

also converge under the value-based distance.

We can make the last point somehow more general. An information struc-
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ture u ∈ ∆ (K × C ×D) exhibits ε-knowledge of the state if there is a

mapping κ : C ∪D → K such that

u
(
{u({k = κ(c)}|c) ≥ 1− ε}

)
≥ 1−ε and u

(
{u({k = κ(d)}|d) ≥ 1− ε}

)
≥ 1−ε.

In other words, the probability that any of the player player assigns at least

1− ε to some state is at least 1− ε.

Proposition 6 Suppose that u exhibits ε-knowledge of the state and that

v ∈ ∆ (K ×KC ×KD), where KC = KD = K and margK v = margK u, and

v (k = kC = kD) = 1. (In other words, v is a common knowledge structure

with the only information about the state.) Then,

d (u, v) ≤ 20ε.

Thus, approximate knowledge structures are close to common knowledge

structures. The convergence of approximate knowledge type spaces to the

approximate common knowledge is a consequence of Theorem 3. The metric

bound stated in the Proposition requires a separate (simple) proof based on

Proposition 5.

The above results seem to go against the main message of the strategic

discontinuities literature (Rubinstein (1989), Dekel et al. (2006), Weinstein

and Yildiz (2007), Ely and Peski (2011), etc.), where the convergence of

�nite-order hierarchies does not imply strategic convergence even around �-

nite structures. There are three important ways in which our setting di�ers.

First, we rely on the ex ante equilibrium concept, rather than interim ra-

tionalizability. We are also interested in the payo� comparison rather than

the behavior. Second, we restrict attention to zero-sum games. Finally, we

only work with common prior type spaces.

We believe that each of these di�erences is important. First, if we worked

with rationalizability, an argument due to Weinstein and Yildiz (2007) ap-

plies, and, given su�cient richness assumption, it can be used to show that
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the resulting topology is strictly �ner than the weak topology8. Further, the

ex ante focus and payo� comparison but without restriction to zero-sum

games lead to a topology that is signi�cantly �ner than the weak topol-

ogy (in fact, so �ne that it can be useless - see Section 7 for a detailed

discussion). The role of common prior is less clear. On one hand, Lipman

(2003) imply that, at least from the interim perspective, common prior does

not generate signi�cant restrictions on �nite-order hierarchies. On the other

hand, we rely on the ex ante perspective, and common prior is de�nitely

important for Proposition 5, which plays an important role in the proof.

6.1.2. Relation to Theorem 2

For the second issue, recall that Theorem 2 exhibits a sequence of count-

able information structures such that the hierarchies of beliefs converge in

the weak topology along the sequence, but the sequence does not converge

in the value-based distance. The limiting structure, namely the distribu-

tion of the realizations of the in�nite Markov chain, is uncountable. On

the other hand, Theorem 3 says that the convergence in the weak topol-

ogy to a countable information structure is equivalent to the convergence in

the value-based distance. Together, the two results imply that although the

weak and value-based topologies are equivalent around countable structures

U∗, they di�er beyond U∗. The impact of the higher-order beliefs becomes

signi�cant only for uncountable information structures.

Another way to illustrate the relation between two results is to observe

that, although the two topologies coincide on U∗ ' Π0, and the latter has

a compact closure Π under the weak topology, the completion of U∗ with
respect to d is not compact. This should not be confusing, as the �com-

pletion� is metric speci�c and not a purely topological notion and di�erent

metrics that induce the same topology can have di�erent completions.

8We are grateful to Satoru Takahashi for clarifying this point.
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6.2. Pointwise value-based topology and completions

An alternative way to de�ne a topology on the space of information struc-

tures would be through the convergence of values. Say that a sequence of

information structures (un) converges to u pointwise if for all payo� func-

tions g ∈ G, limn→∞ val(un, g) = val(u, g). Clearly, if (un) converges to u for

the value-based distance, then it also converges to u pointwise.

The topology of pointwise convergence is the weakest topology that makes

the value mappings continuous. And since val(µ, g) is also well de�ned for µ

in Π, pointwise convergence is also well-de�ned on Π. Moreover by Theorem

12 of Gossner and Mertens (2001), the topology of pointwise convergence

coincides with the topology of weak convergence on Π. Using Theorem 3,

we obtain the following corollary:

Corollary 3 On the set U∗, the topology induced by the value-based dis-

tance, the topology of weak convergence and the topology of pointwise con-

vergence coincide. In particular, let u in U∗ and (un) be in U∗.Then (un)

converges to u for the value-based distance if and only if for every g in G,
val(un, g) −−−→

n→∞
val(u, g).

A standard way to de�ne a metric compatible with the pointwise topology

is the following. Consider any sequence (gn)n that is dense in the set of payo�

functions ∪L≥1[−1, 1]K×L
2
, in the sense9 that for each g in [−1, 1]K×L

2
and

ε > 0, there exists n such that |g(k, i, j) − gn(k, i, j)| ≤ ε for all (k, i, j) ∈
K×L2. The particular choice of (gn)n will play no role in the sequel. De�ne

now the distance dW on U∗ by:

dW (u, v) =
∞∑
n=1

1

2n
| val(u, gn)− val(v, gn)|.

9To construct such a sequence, one can for instance proceed as follows. For each

positive integer L, consider a �nite grid approximating [−1, 1]K×L2

up to 1/L , then

de�ne (gn)n by collecting the elements of all grids.
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By density of (gn)n, we have dW (ul, u) −−−→
l→∞

0 if and only if for all g,

val(ul, g) −−−→
l→∞

val(u, g). U∗ equipped with dW is a metric space, and we

denote by V its completion for dW . For this distance, U∗ is isometric to a

dense subset of V , so that V can be seen as the closure of U∗. Using Theorem
12 of Gossner and Mertens (2001), we have the following result.

Theorem 4 V is homeomorphic to the space Π, endowed with the weak

topology.

Proof: De�ne similarly the distance dW on Π by dW (µ, ν) =
∑∞

n=1
1

2n
| val(µ, gn)−

val(ν, gn)|. By construction, the map (u 7→ ũ) from U∗ to Π0 is an isometry

for dW . So V is isometric to the completion of Π0 for dW . But on Π, the

topology induced by dW is the weak topology, and for this topology, Π is

the closure of Π0. So the completion of Π0 for dW is Π. Q.E.D.

As a consequence, V is compact and does not depend on the choice of (gn).

It contains not only the information structures with countably many types,

but also the information structures with continuum of signals, obtained as

limits of sequences of information structures with countably many types.

The main interest of Theorem 4 is that we can now view Π as the set

V . We can recover exactly the space (Π, weak) using values of zero-sum

Bayesian games and the completion of a metric space10. This may be seen

as a duality result between games and information: Π is de�ned with hierar-

chies of beliefs but no reference to games and payo�s, whereas V is de�ned

by values of zero-sum games, with no explicit reference to belief hierar-

chies. In particular, restricting attention to the values of zero-sum games

is still su�cient to obtain the full space Π with the weak topology. Now

10We could have worked from the beginning with possibly uncountable information

structures, that is with Borel probabilities over K× [0, 1]× [0, 1]. Endowing this set with

a distance dW yields a metric space directly homeomorphic to Π, with no need to go the

completion since the space would already be complete. See online material.
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the construction of V yields a new, alternative, interpretation of Π, and one

might possibly hope to deduce properties of (Π, weak) by transfering, via

the homeomorphism, properties �rst proven on V .

Finally, although dW and our value-based distance d induce the same

topology on U∗, their completions di�er. Theorem 2 implies that the com-

pletionW of U∗ for d is not compact. The spaceW also contains information

structures with continuum of signals and represents a new space of incom-

plete information structures, with strong foundations based on the suprema

of di�erences between values of Bayesian games.

7. PAYOFF-BASED DISTANCE

In this section, we consider a version of the distance (1) where the supre-

mum is taken over all, including non-zero-sum, games. We show that such

a payo�-based distance between information structures is, mostly, trivial.

A non-zero sum payo� function is a map g : K × I × J → [−1, 1]2

where I, J are �nite sets. Let Eq (u, g) ⊆ R2 be the set of Bayesian Nash

Equilibrium (BNE) payo�s in game g on information structure u. Assume

that the space R2 is equipped with the maximum norm ‖x− y‖max =

maxi=1,2 |xi − yi| and the space of compact subsets of R2 with the induced

Hausdor� distance dHmax. Let

(5) dNZS (u, v) = sup
g is a non-zero-sum payo� function

d
H
max (Eq (u, g) ,Eq (v, g)) .

Then, clearly as in our original de�nition, 0 ≤ dNZS (u, v) ≤ 2.11

Contrary to the value in the zero-sum game, the BNE payo�s on informa-

tion structure u cannot be factorized through the distribution ũ ∈ Π over

the hierarchies of beliefs induced by u. For this reason, we only restrict our

11A related approach to closeness of information structures is taken in Kajii and Morris

(1998). They say that an information structure is close to another one if, for all bounded

games, any equilibrium of one is close to an almost equilibrium of the other.
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analysis to information structures that are non-redundant, or equivalently

information structures induced by a consistent probability with countable

support in Π0. We do so because the dependence of the BNE on the redun-

dant information is not yet well-understood12.

Let u ∈ ∆ (K × C ×D) be an information structure. A subset A ⊆ K ×
C×D is a proper common knowledge component if u (A) ∈ (0, 1) and for each

signal s ∈ C ∪D, u (A|s) ∈ {0, 1}. An information structure is simple if it

does not have a proper common knowledge component. Each non-redundant

information structure u has a representation as a convex combination of

(non-redundant) simple information structures u =
∑

α pαuα, where
∑
pα =

1, pα ≥ 0, and pα > 0 for at most countably many α.

Theorem 5 Suppose that u, v are non-redundant information structures.

If u and v are simple, then

dNZS (u, v) =

0, if ũ = ṽ,

2 otherwise.

More generally, suppose that u =
∑
pαuα and v =

∑
qαvα are the de-

compositions into simple information structures. We can always choose the

decompositions so that ũα = ṽα for each α. Then,

dNZS (u, v) =
∑
α

|pα − qα| .

The distance between the two non-redundant simple information struc-

tures is binary, either 0 if the information structures are equivalent, or 2

if they are not. In particular, the distance between all simple information

structures that do not have the same hierarchies of beliefs is trivially equal

12See Sadzik (2008). An alternative approach would be to take an equilibrium solution

concept that can be factorized through the hierarchies of beliefs. An example is Bayes

Correlated Equilibrium from Bergemann and Morris (2015).
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to its maximum possible value 2. The distance dNZS between two non-

redundant, but not necessarily simple information structures depends on

how similar is their decomposition into the simple components. Theorem 5

implies that (5) is too �ne measure of distance between information struc-

tures to be useful.

The proof in the case of two non-redundant and simple structures u and v

is straightforward. Let ũ 6= ṽ. First, it is well-known that there exist a �nite

game g : K×I×J → [−1, 1]2 in which each type of player 1 in the support of

ũ and ṽ reports her hierarchy of beliefs as the unique rationalizable action.

Second, Lemma III.2.7 in Mertens et al. (2015) (or corollary 4.7 in Mertens

and Zamir (1985)) shows that the supports of distributions ũ and ṽ must

be disjoint (it is also a consequence of the result by Samet (1998)). Thus,

we can construct a game, in which, additionally to the �rst game, player 2

chooses between two actions {u, v} and it is optimal for her to match the

information structure to which player 1's reported type belongs. Finally,

we multiply the so obtained game by ε > 0 and construct a new game, in

which, additionally, player 1 receives payo� 1− ε if player 2 chooses u and

a payo� of −1 + ε if player 2 chooses v. Hence, the payo� distance between

the two information structures is at least 2− ε, where ε is arbitrary small.

So-constructed game, has a BNE in the unique rationalizable pro�le.

8. CONCLUSION

In this paper, we have introduced and analyzed the value-based distance

on the space of information structures. The main advantage of the de�-

nition is that it has a simple and useful interpretation as the tight upper

bound on the loss or gain from moving between two information structures.

This allows us to directly apply it to numerous questions about the value

of information, the relation between the games and single-agent problems,

comparison of information structures, etc. Additionally, we show that the
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distance contains an interesting topological information. On one hand, the

topology induced on the countable information structures is equivalent to

the topology of weak convergence of consistent probabilities over coherent

hierarchies of beliefs. On the other hand, the set of countable information

structures is not totally bounded for the value-based distance, which solves

negatively the last open question raised in Mertens (1986), with deep im-

plications for stochastic games.

By restricting our attention to zero-sum games, we were able to re-

examine the relevance of many phenomena observed and discussed in the

strategic discontinuities literature. On one hand, the distinction between the

approximate knowledge and the approximate common knowledge is not im-

portant in situations of con�ict. On the other hand, the higher order beliefs

matter on some, potentially uncountably large structures. More generally,

we believe that the discussion of the strategic phenomena on particular

classes of games can be fruitful line of future research. It is not the case

that each problem must involve coordination games. Interesting classes of

games to study could be common interest games, potential games, etc. 13

APPENDIX A: PROOF OF THEOREM 1

The proof of Theorem 1 relies on two main aspects: the two interpreta-

tions of a garbling (deterioration of signals and strategy) and the minmax

theorem.

Part 1. We start with general considerations and �rst identify payo�

functions with particular in�nite matrices. For 1 ≤ L < ∞, let G(L) be

the set of maps from K × N×N to [−1, 1] such that g(k, i, j) = −1 if

i ≥ L, j < L, g(k, i, j) = 1 if i < L, j ≥ L, and g(k, i, j) = 0 if i > L, j > L.

Elements in G(L) correspond to payo� functions with action set N for each

13As an example of work in this direction, Kunimoto and Yamashita (2018) studies

an order on hierarchies and types induced by payo�s in supermodular games.
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player, with any strategy ≥ L being weakly dominated. We de�ne G =

G(∞) =
⋃
L≥1G(L), for each u, v in U the values val(u, g) and val(v, g) are

well de�ned, and d(u, v) = supg∈G | val(u, g)− val(v, g)|.

For u ∈ U and g ∈ G, we denote by γu,g(q1, q2) the payo� of player 1 in

the zero-sum game Γ(u, g) when player 1 plays q1 ∈ Q and player 2 plays

q2 ∈ Q. Extending as usual g to mixed actions, we have γu,g(q1, q2) =∑
k,c,d u(k, c, d)g(k, q1(c), q2(d)). Notice that the scalar product 〈g, u〉 =∑
k,c,d g(k, c, d)u(k, c, d) is well de�ned and corresponds to the payo� γu,g(Id, Id),

where Id ∈ Q is the strategy that plays with probability one the signal re-

ceived. A straightforward computation leads to γu,g(q1, q2) = 〈g, q1.u.q2〉.
Consequently,

val(u, g) = max
q1∈Q

min
q2∈Q
〈g, q1.u.q2〉 = min

q2∈Q
max
q1∈Q
〈g, q1.u.q2〉.

And for L = 1, 2, ...,+∞ and g ∈ G(L), the max and min can be ob-

tained by elements of Q(L). Since both players can play the Id strategy

in Γ(u, g), we have for all u ∈ U and g ∈ G(L) that infq2∈Q(L)〈g, u.q2〉 ≤
val(u, g) ≤ supq1∈Q(L)〈g, q1.u〉. Notice also that for all u, v in U(L), ‖u−v‖ =

supg∈G(L)〈g, u− v〉.

Part 2.We now prove Theorem 1. Fix u, v in U(L), with L = 1, 2, ...,+∞.

For g ∈ G(L), we have infq1,q2∈Q(L)〈g, v.q2− q1.u〉 ≤ val(v, g)− val(u, g), so

(6) sup
g∈G(L)

(val(v, g)− val(u, g)) ≥ sup
g∈G(L)

inf
q1,q2∈Q(L)

〈g, v.q2 − q1.u〉.

For g ∈ G, q1, q2 ∈ Q (L), by monotony of the value with respect to in-

formation, we have val(v.q2, g) ≥ val(v, g) and val(u, g) ≥ val(q1.u, g). So

val(v, g)− val(u, g) ≤ d (q1.u, v.q2) ≤ ‖q1.u− v.q2‖. Hence

(7)

sup
g∈G

(val(v, g)− val(u, g)) ≤ inf
q1,q2∈Q(L)

‖q1.u−v.q2‖ = inf
q1,q2∈Q(L)

sup
g∈G(L)

〈g, v.q2−q1.u〉.
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We are now going to show that

(8) sup
g∈G(L)

inf
q1,q2∈Q(L)

〈g, v.q2 − q1.u〉 = min
q1,q2∈Q(L)

sup
g∈G(L)

〈g, v.q2 − q1.u〉.

Together with inequalities 6 and 7, it will give supg∈G (val(v, g)− val(u, g)) =

supg∈G(L) (val(v, g)− val(u, g)) = minq1,q2∈Q(L) ‖q1.u− v.q2‖.
To prove 8, we will apply a variant of Sion's theorem (see e.g., Mertens

et al. (2015) Proposition I.1.3) to the zero-sum game with strategy spaces

G(L) for the maximizer, Q(L)2 for the minimizer, and payo� h(g, (q1, q2)) =

〈g, v.q2 − q1.u〉. The strategy sets G(L) and Q (L)2 are convex, and h is

bilinear.

Case 1: L < +∞. Then ∆({0, ..., L− 1}) is compact, and Q (L)2 is com-

pact for the product topology. Moreover, h is continuous, so by Sion's the-

orem, 8 holds. And supg∈G(L) (val(v, g)− val(u, g)) is achieved, since G(L)

is compact.

Case 2: L = +∞. We are going to modify the topology on Q in order to

haveQ (L)2 compact and h l.s.c. in (q1, q2). The idea is to identify 0 and +∞
in N. Formally given q ∈ ∆(N) and a sequence (qn)n of probabilities over N,

we de�ne: (qn)n converges to q if and only if: ∀c ≥ 1, limn→∞ qn(c) = q(c).

It implies lim supn qn(0) ≤ q(0).

∆(N) is now compact, and we endow Q with the product topology, so

that Q (L)2 is itself compact. Fix g ∈ G. We �nally show that 〈g, q.u〉 is
u.s.c. in q ∈ Q and 〈g, v.q〉 is l.s.c. in q ∈ Q. For this, we take advantage of
the particular structure of G: there exists L′ such that g ∈ G(L′).

For each q in ∆(N), we have for each k in K and d in N

g(k, q, d) =
∑
c∈N

g(c)g(k, c, d)

= g(k, 0, d) +
L′−1∑
c=1

(g(k, c, d)− g(k, 0, d))q(c) +
∑
c≥L′

(g(k, c, d)− g(k, 0, d))q(c).

And for each c ≥ L′, we have g(k, c, d) − g(k, 0, d) ≤ 0. If (qn)n con-

verges to q for our new topology, limn

∑L′−1
c=1 (g(k, c, d) − g(k, 0, d))qn(c) =
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∑L′−1
c=1 (g(k, c, d)−g(k, 0, d))q(c) and by Fatou's lemma lim supn

∑
c≥L′(g(k, c, d)−

g(k, 0, d))qn(c) ≤
∑

c≥L′(g(k, c, d)−g(k, 0, d))q(c). As a consequence lim supn g(k, qn, d) ≤
g(k, q, d). This is true for each k and d, and we easily obtain that 〈g, q.u〉 =∑

k,c,d u(k, c, d)g(k, q(c), d) is u.s.c. in q ∈ Q.

Similarly, for each q ∈ ∆(N), k ∈ K, and c ∈ N, we can write g(k, c, q) =

g(k, c, 0)+
∑L′−1

d=1 (g(k, c, d)−g(k, c, 0))q(c)+
∑

d≥L′(g(k, c, d)−g(k, c, 0))q(c),

with g(k, c, d) − g(k, c, 0) ≥ 0 for d ≥ L′, and show that 〈g, v.q〉 is l.s.c. in
q ∈ Q.

APPENDIX B: PROOFS OF SECTION 4

B.1. Proof of Proposition 1

We prove the lower bound of (3). Let g (k) = 1pk>qk −1pk≤qk . Then,

d (u, v) ≥ val (u, g)− val (v, g) =
∑
k∈K

(pk − qk) g (k) =
∑
k∈K

|pk − qk| .

Let us prove the upper bound of (3). De�ne ū and v in ∆(K ×KC ×KD)

with K = KC = KD such that ū(k, c, d) = pk 1c=k 1d=k0 for some �xed

k0 ∈ K (complete information for player 1, trivial information for player

2, and the same prior about k as u) and v(k, c, d) = qk 1c=k0 1d=k for all

(k, c, d) (trivial information for player 1, complete information for player 2,

and the same beliefs about k as v). Since the value of a zero-sum game is

weakly increasing with player 1's information and weakly decreasing with

player 2's information, we have

sup
g∈G

(val(u, g)−val(v, g)) ≤ sup
g∈G

(val(ū, g)−val(v, g)) = min
q1∈Q,q2∈Q

‖ū.q2−q1.v‖,

where, according to Theorem 1, the minimum in the last expression is at-

tained for garblings with values in ∆K. Since player 2 has a unique signal

in ū, only q2(.|k0) ∈ ∆K matters. We denote it by q′ = q2 (.|k0). Similarly,
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we de�ne p′ = q1(.|k0) ∈ ∆(K). Then,

‖ū.q2 − q1.v‖ =
∑

(k,c,d)∈K3

|pk 1c=k q′d − qk 1d=k p
′
c|

=
∑
k∈K

|pkq′k − qkp′k|+ pk(1− q′k) + qk(1− p′k)

= 2 +
∑
k∈K

|pkq′k − qkp′k| − pkq′k − qkp′k = 2

(
1−

∑
k∈K

min (pkq
′
k, qkp

′
k)

)
.

A similar inequality holds by inverting the roles of u and v, and the upper

bound follows from the fact that one can choose arbitrary p′, q′.

If p = q, then
∑

k∈K min (pkq
′
k, qkp

′
k) =

∑
k∈K pk min (q′k, p

′
k) ≤

∑
k∈K pkp

′
k ≤

maxk∈K pk, where the latter is attained by p′k = q′k = 1{k=k∗} for some

k∗ ∈ K such that pk∗ = maxk∈k pk.

B.2. Proof of Proposition 2

Let us start with general properties of d1. Let us de�ne the set of single-

agent information structures as U1 = ∆(K ×N) using the same convention

that countable sets are identi�ed with subsets of N. Note that given u ∈
∆(K × C × D), margK×C u ∈ U1. Let G ′1 = {g′ : K × I → R | I �nite }
be the set of single-agent decision problems, and de�ne for u′, v′ ∈ U1,

d
′
1(u′, v′) = supg′∈G′1 | val(v′, g′) − val(u′, g′)|. It is easily seen that for any

u, v ∈ ∆(K × C ×D),

(9) d1(u, v) = d
′
1(u′, v′) = max{min

q∈Q
‖u′ − q.v′‖,min

q∈Q
‖q.u′ − v′‖}

where u′ = margK×C u, v
′ = margK×C v, q.u

′(k, c) =
∑

s∈C u
′(k, s)q(s)(c)

and where the last equality can be obtained by mimicking (and simplifying)

the arguments of the proof of Theorem 1.

We now prove Proposition 2. Using the assumptions, we have u(k) = v(k),

u (c, d|k) = u (c|k)u (d|k), and v (c′, d|k) = v (d|k) v (c′|k) = u(d|k)v (c′|k).
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For any pair of garblings q1, q2

‖u.q2 − q1.v‖ =
∑
k,c,d

∣∣∣∣∣∑
β

u (k, c, β) q2 (d|β)−
∑
α

v (k, α, d) q1 (c|α)

∣∣∣∣∣
=
∑
k,c

u (k)
∑
d

∣∣∣∣∣u (c|k)
∑
β

u (β|k) q2 (d|β)−

(∑
α

v (α|k) q1 (c|α)

)
u (d|k)

∣∣∣∣∣
=
∑
k,c

u (k)
∑
d

|u (d|k) Γ (k, c) + ∆ (k, d)u (c|k)| ,

where ∆ (k, d) = u (d|k)−
∑

β u (β|k) q2 (d|β), and Γ (k, c) =
∑

α v (α|k) q1 (c|α)−
u (c|k). Because |x+ y| ≥ |x|+ sgn(x)y for each x, y ∈ R, we have∑

d

|u (d|k) Γ (k, c) + ∆ (k, d)u (c|k)|

≥
∑
d

u (d|k) |Γ (k, c)|+ sgn (Γ (k, c))u (c|k)
∑
d

∆ (k, d) =
∑
d

u (d|k) |Γ (k, c)| .

where the last equality comes from the fact that
∑

d ∆ (k, d) = 0. Thus, we

obtain

‖u.q2 − q1.v‖ ≥
∑
k,c,d

u (k) |u (d|k) Γ (k, c)|

=
∑
k,c,d

u (k)

∣∣∣∣∣u (d|k)u (c|k)−
∑
α

u (d|k) v (α|k) q1 (c|α)

∣∣∣∣∣ = ‖u− q1.v‖ .

We deduce that minq1,q2 ‖u.q2 − q1.v‖ = minq1 ‖u− q1.v‖ . Inverting the

roles of the players, we also have minq1,q2 ‖v.q2 − q1.y‖ = minq1 ‖v − q1.u‖ .
We conclude that

d(u, v) = max{min
q1,q2
‖u.q2 − q1.v‖ ; min

q1,q2
‖v.q2 − q1.y‖}

= max{min
q1
‖u− q1.v‖ ; min

q1
‖v − q1.u‖} = d1(u, v),

where the last equality follows from (9) together with the fact that margK×D u =

margK×D v.
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B.3. Proof of Proposition 3

Because u � v,

d (u, v) = min
q2∈Q

min
q1∈Q
‖u.q2 − q1.v‖ ≤ min

q2∈Q
min

q1:C→∆(C×C2)
‖u.q2 − q̂1.v‖ ,

where in the right-hand side of the inequality, we use a restricted set of

player 1's garblings. Precisely, for every garbling q1 : C → ∆ (C × C2), we

associate the garbling q̂1 de�ned by q̂1(c′, c′1, c
′
2|c, c1) = 1{c1}(c

′
1)q1(c′, c′2|c).

Further, for any such q1 and an arbitrary garbling q2, we have

‖u.q2 − q̂1.v‖ =
∑

k,c,c1,c2,d

∣∣∣∣∣∑
β

u (k, c, c1, c2, β) q2 (d|β)−
∑
α

u (k, α, c1, d) q1 (c, c2|α)

∣∣∣∣∣
=

∑
k,c,c1,c2,d

u (k, c1))

∣∣∣∣∣∑
β

u (c, c2, β|k, c1) q2 (d|β)−
∑
α

u (α, d|k, c1) q1 (c, c2|α)

∣∣∣∣∣ .
Because of the conditional independence assumption, the above is equal to

=
∑
k,c,c2,d

(∑
c1

u (k, c1)

)∣∣∣∣∣∑
β

u (c, c2, β|k) q2 (d|β)−
∑
α

u (α, d|k) q1 (c, c2|α)

∣∣∣∣∣
=
∑
k,c,c2,d

∣∣∣∣∣∑
β

u (k, c, c2, β) q2 (d|β)−
∑
α

u (k, α, d) q1 (c, c2|α)

∣∣∣∣∣ = ‖u′.q2 − q1.v
′‖ .

Hence d (u, v) ≤ minq2 minq1:C→∆(C×C2) ‖u′.q2 − q1.v
′‖ = d (u′, v′).

B.4. Proof of Proposition 4

We have d (u′, v′) = d1 (u′, v′) = d1 (u, v) ≤ d (u, v) . The �rst equality

comes from Proposition 2, the second from the fact that u and u′ (resp. v

and v′) induce the same distribution on player 1 �rst order beliefs, and the

inequality from the de�nition of the two distances.

B.5. Proof of Proposition 5

It is enough to show that if c1 is ε-conditionally independent from (k, d)

given c, then supg∈G val (u, g)− val (v, g) ≤ ε.
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For this, let q2 : D × D1 → D be de�ned as q2 (d, d1) (d′) = 1d′=d. Let

q1 : C → C × C1 be de�ned as q1 (c, c1|c) = u (c1|c). Then,

‖u.q2 − q1.v‖ =
∑
k,c,c1,d

|u (k, c, c1, d)− u (k, c, d)u (c1|c)|

=
∑
c

u (c)
∑
k,c1,d

|u (k, c1, d|c)− u (k, d|c)u (c1|c)| ≤ ε.

The claim follows from Theorem 1.

APPENDIX C: PROOF OF THEOREM 2

N is a very large even integer to be �xed later, and we write A = C = D =

{1, ..., N}, with the idea of using C while speaking of the actions or signals

of player 1 and using D while speaking of the actions and signals of player

2. We �x ε and α, to be used later, such that 0 < ε < 1
10(N+1)2

and α = 1
25
.

We will consider a Markov chain with law ν on A, satisfying the following:

• the law of the �rst state of the Markov chain is uniform on A,

• given the current state, the law of the next state is uniform on a subset

of size N/2,

• and few more conditions, to be de�ned later.

A sequence (a1, ..., al) of length l ≥ 1 is said to be nice if it is in the

support of the Markov chain: ν(a1, ..., al) > 0. For instance, any sequence

of length 1 is nice, and N2/2 sequences of length 2 are nice.

The rest of the proof is split in 3 parts: we �rst de�ne the information

structures (ul)l≥1 and some payo� structures (gp)p≥1. Then we de�ne two

conditions UI1 and UI2 on the information structures and show that they

imply the conclusions of Theorem 2. Finally, we show, via the probabilistic

method, the existence of a Markov chain ν satisfying all our conditions.

ectaart.cls ver. 2006/04/11 file: TS09042020M.tex date: April 11, 2020



37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

C.1. Information and payo� structures (ul)l≥1 and (gl)l≥1

For l ≥ 1, de�ne the information structure ul ∈ ∆(K × C l ×Dl) so that

for each state k in K, signal c = (c1, ..., cl) in C l of player 1 and signal

d = (d1, ..., dl) in D
l for player 2,

ul(k, c, d) = ν(c1, d1, c2, d2, ..., cl, dl)

(
c1

N + 1
1k=1 +

(
1− c1

N + 1

)
1k=0

)
.

The following interpretation of ul holds: �rst select (a1, a2, ..., a2l) = (c1, d1, ..., cl, dl)

in A2l according to the Markov chain ν (i.e., uniformly among the nice se-

quences of length 2l), then tell (c1, c2, ..., cl) (the elements of the sequence

with odd indices) to player 1 and (d1, d2, ..., dl) (the elements of the se-

quence with even indices) to player 2. Finally, choose the state k = 1 with

probability c1/(N + 1) and state k = 0 with the complement probability

1− c1/(N + 1).

Notice that the de�nition is not symmetric among players: the �rst signal

c1 of player 1 is uniformly distributed and plays a particular role. The

marginal of ul on K is uniform, and the marginal of ul+1 over (K×C l×V l)

is equal to ul.

Consider a sequence (a1, ..., al) of elements of A that is not nice (i.e.,

such that ν(a1, ..., al) = 0). We say that the sequence is not nice because of

player 1 if min{t ∈ {1, ..., l}, ν(a1, ..., at) = 0} is odd and not nice because of

player 2 if min{t ∈ {1, ..., l}, ν(a1, ..., at) = 0} is even. A sequence (a1, ..., al)

is now nice, or not nice because of player 1, or not nice because of player 2.

A sequence of length 2 is either nice, or not nice because of player 2.

For p ≥ 1, de�ne the payo� structure gp : K ×Cp ×Dp−1 → [−1, 1] such
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that for all k in K, c′ = (c′1, ..., c
′
p) in C

p, d′ = (d′1, ..., d
′
p−1) in Dp−1 :

gp(k, c′, d′) = g0(k, c′1) + hp(c′, d′), where g0(k, c′1) = −
(
k − c′1

N + 1

)2

+
N + 2

6(N + 1)
,

hp(c′, d′) =


ε if (c′1, d

′
1, ..., c

′
p) is nice,

5ε if (c′1, d
′
1, ..., c

′
p) is not nice because of player 2,

−5ε if (c′1, d
′
1, ..., c

′
p) is not nice because of player 1.

One can check that |gp| ≤ 5/6 + 5ε ≤ 8/9. Regarding the g0 part of the

payo�, consider a decision problem for player 1 where c1 is selected uniformly

in A and the state is selected to be k = 1 with probability c1/(N + 1) and

k = 0 with probability 1− c1/(N + 1). Player 1 observes c1 but not k, and

she chooses c′1 in A and receives payo� g0(k, c′1). We have c1
N+1

g0(1, c′1)+(1−
c1
N+1

)g0(0, c′1) = 1
(N+1)2

(c′1(2c1− c′1) + (N + 1)((N + 2)/6− c1)). To maximize

this expected payo�, it is well known that player 1 should play her belief on

k, i.e. c′1 = c1. Moreover, if player 1 chooses c′1 6= c1, her expected loss from

not having chosen c1 is at least 1
(N+1)2

≥ 10ε. And the constant N+2
6(N+1)

has

been chosen such that the value of this decision problem is 0.

Consider now l ≥ 1 and p ≥ 1. By de�nition, the Bayesian game Γ(ul, gp)

is played as follows: �rst, (c1, d1, ..., cl, dl) is selected according to the law ν

of the Markov chain, player 1 learns (c1, ..., cl), player 2 learns (d1, ..., dl),

and the state is k = 1 with probability c1/(N + 1) and k = 0 otherwise.

Then, simultaneously player 1 chooses c′ in Cp and player 2 chooses d′ in

Dp−1, and �nally, the payo� to player 1 is gp(k, c′, d′). Notice that by the

previous paragraph about g0, it is always strictly dominant for player 1 to

report correctly her �rst signal, i.e. to choose c′1 = c1. We will show in the

next section that if l ≥ p and player 1 simply plays the sequence of signals

she received, player 2 cannot do better than also truthfully reporting his

own signals, leading to a value not lower than the payo� for nice sequences,

which is ε. On the contrary, in the game Γ(ul, gl+1), player 1 has to report

not only the l signals she has received but also an extra-signal c′l+1 that she
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has to guess. In this game, we will prove that if player 2 truthfully reports his

own signals, player 1 will incur the payo� −5ε with a probability of at least

(approximately) 1/2, and this will result in a low value. These intuitions

will prove correct in the next section, under some conditions UI1 and UI2.

C.2. Conditions UI and values

To prove that the intuitions of the previous paragraph are correct, we

need to ensure that players have incentives to report their true signals, so

we need additional assumptions on the Markov chain.

Notations and de�nition: Let l ≥ 1, m ≥ 0, c = (c1, ..., cl) in C l and

d = (d1, ..., dm) in Dm. We write

a2q(c, d) = (c1, d1, ...., cq, dq) ∈ A2q for each q ≤ min{l,m},
a2q+1(c, d) = (c1, d1, ...., cq, dq, cq+1) ∈ A2q+1 for each q ≤ min{l − 1,m}.

For r ≤ min{2l, 2m+ 1}, we say that c and d are nice at level r, and we

write c ^r d, if a
r(c, d) is nice.

In the next de�nition, we consider an information structure ul ∈ ∆(K ×
C l × Dl) and denote by c̃ and d̃ the respective random variables of the

signals of player 1 and 2.

Definition 1 We say that the conditions UI1 are satis�ed if for all l ≥ 1,

all c = (c1, ..., cl) in C l and c′ = (c′1, ..., c
′
l+1) in C l+1 such that c1 = c′1, we

have

(10) ul
(
c′ ^2l+1 d̃

∣∣ c̃ = c, c′ ^2l d̃
)
∈ [1/2− α, 1/2 + α]

and for all m ∈ {1, ..., l} such that cm 6= c′m, for r = 2m− 2, 2m− 1,

(11) ul
(
c′ ^r+1 d̃

∣∣ c̃ = c, c′ ^r d̃
)
∈ [1/2− α, 1/2 + α].

We say that the conditions UI2 are satis�ed if for all 1 ≤ p ≤ l, for all

d ∈ Dl, for all d′ ∈ Dp−1, for all m ∈ {1, ..., p − 1} such that dm 6= d′m, for
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r = 2m− 1, 2m

(12) ul
(
c̃ ^r+1 d

′|d̃ = d, c̃ ^r d
′
)
∈ [1/2− α, 1/2 + α].

To understand the conditions UI1, consider the Bayesian game Γ(ul, gl+1),

and assume that player 2 truthfully reports his sequence of signals and

that player 1 has received the signals (c1, ..., cl) in C l. (10) states that if

the sequence of reported signals (c′1, d̃1, ..., c
′
l, d̃l) is nice at level 2l, then

whatever the last reported signal c′l+1 is, the conditional probability that

(c′1, d̃1, ..., c
′
l, d̃l, c

′
l+1) is still nice is in [1/2−α, 1/2+α], (i.e., close to 1/2). Re-

garding (11), �rst notice that if c′ = c, then by construction (c′1, d̃1, ..., c
′
l, d̃l)

is nice and ul
(
c′ ^r+1 d̃

∣∣ c̃ = c, c′ ^r d̃
)

= ul
(
c ^r+1 d̃

∣∣ c̃ = c
)

= 1 for

each r = 1, ..., 2l − 1. Assume now that for some m = 1, ..., l, player 1 mis-

reports her mth-signal (i.e., reports c′m 6= cm). (11) requires that given that

the reported signals were nice so far (at level 2m−2), the conditional prob-

ability that the reported signals are not nice at level 2m − 1 (integrating

c′m) is close to 1/2, and moreover, if the reported signals are nice at this

level 2m−1, adding the next signal d̃m of player 2 has a probability close to

1/2 of keeping the reported sequence nice. Conditions UI2 have a similar

interpretation, considering the Bayesian games Γ(ul, gp) for p ≤ l, assuming

that player 1 truthfully reports her signals and that player 2 plays d′ after

having received the signals d.

Proposition 7 Conditions UI1 and UI2 imply

∀l ≥ 1,∀p ∈ {1, ..., l}, val(ul, gp) ≥ ε.(13)

∀l ≥ 1, val(ul, gl+1) ≤ −ε.(14)

As a consequence of this proposition, under the existence of a Markov

chain satisfying conditions UI1 and UI2, we obtain Theorem 2:

If l > p, then d(ul, up) ≥ val(ul, gp+1)− val(up, gp+1) ≥ 2ε.
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Proof of proposition 7. We assume that UI1 and UI2 hold. We �x l ≥
1, work on the probability space K×C l×Dl equipped with the probability

ul, and denote by c̃ and d̃ the random variables of the signals received by

the players.

1) We �rst prove (13). Consider the game Γ(ul, gp) with p ∈ {1, ..., l}. We

assume that player 1 chooses the truthful strategy. Fix d = (d1, ..., dl) in

Dl and d′ = (d′1, ..., d
′
p−1) in Dp−1, and assume that player 2 has received

the signal d and chooses to report d′. De�ne the non-increasing sequence of

events: An = {c̃ ^n d
′}. We will prove by backward induction that

(15) ∀n = 1, ..., p, E[hp(c̃, d′)|d̃ = d,A2n−1] ≥ ε.

If n = p, hp(c̃, d′) = ε on the event A2p−1, implying the result. As-

sume now that for some n such that 1 ≤ n < p, we have E[hp(c̃, d′)|d̃ =

d,A2n+1] ≥ ε. Since we have a non-increasing sequence of events, 1 A2n−1 =

1A2n+1 +1A2n−1 1Ac2n
+1A2n 1Ac2n+1

, so by de�nition of the payo�s, hp(c̃, d′)1A2n−1 =

hp(c̃, d′)1A2n+1 +5ε1A2n−1 1Ac2n
−5ε1A2n 1Ac2n+1

.

First assume that d′n = dn. By construction of the Markov chain, ul(A2n+1|A2n−1, d̃ =

d) = 1, implying that ul(Ac2n+1|A2n−1, d̃ = d) = ul(Ac2n|A2n−1, d̃ = d) = 0.

As a consequence,

E[hp(c̃, d′)|d̃ = d,A2n−1] = E[hp(c̃, d′)1A2n+1 |d̃ = d,A2n−1]

= E[E[hp(c̃, d′)|d̃ = d,A2n+1]1A2n+1 |d̃ = d,A2n−1] ≥ ε.

Assume now that d′n 6= dn. Assumption UI2 implies that

ul(Ac2n|A2n−1, d̃ = d) ≥ 1/2− α,

ul(A2n ∩ Ac2n+1|A2n−1, d̃ = d) ≤ (1/2 + α)2,

ul(A2n+1|A2n−1, d̃ = d) ≥ (1/2− α)2.
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It follows that

E[hp(c̃, d′|d̃) = d,A2n−1]

=E[E[hp(c̃, d′)|d̃ = d,A2n+1]1A2n+1 |d̃ = d,A2n−1]

+ 5εul(Ac2n|A2n−1, d̃ = d)− 5εul(A2n ∩ Ac2n+1|A2n−1, d̃ = d)

≥ε(1

4
− α + α2) + 5ε(

1

2
− α)− 5ε(

1

4
+ α + α2) = ε(

3

2
− 11α− 4α2) ≥ ε,

and (15) follows by backward induction.

SinceA1 is an event that holds almost surely, we deduce that E[hp(c̃, d′)|d̃ =

d] ≥ ε. Hence the truthful strategy of player 1 guarantees the payo� ε in

Γ(ul, gp).

2) We now prove (14). Consider the game Γ(ul, gl+1). We assume that

player 2 chooses the truthful strategy. Fix c = (c1, ..., cl) in C l and c′ =

(c′1, ..., c
′
l−1) in C l−1, and assume that player 1 has received the signal c and

chooses to report c′. We will show that the expected payo� of player 1 is

not larger than −ε, and assume w.l.o.g. that c′1 = c1. Consider the non-

increasing sequence of events Bn = {c′ ^n d̃ }. We will prove by backward

induction that ∀n = 1, ..., l, E[hl+1(c′, d̃)|c̃ = c, B2n] ≤ −ε.
If n = l, we have 1B2l

= 1B2l+1
+1B2l

1Bc2l+1
, and hl+1(c′, d̃)1B2l

= ε1B2l+1
−5ε1B2l

1Bc2l+1
.

UI1 implies that |ul(B2l+1|c̃ = c, B2l)− 1
2
| ≤ α , and it follows that

E[hl+1(c′, d̃)|c̃ = c, B2l] = ε ul(B2l+1|c̃ = c, B2l)− 5ε ul(Bc
2l+1|u = û, B2l)

≤ ε (
1

2
+ α)− 5ε (

1

2
− α) ≤ −ε.

Assume now that for some n = 1, ..., l − 1, we have E[hl+1(c′, d̃)|c̃ =

c, B2n+2] ≤ −ε. We have 1B2n = 1B2n+2 +1B2n 1Bc2n+1
+1B2n+1 1Bc2n+2

, and

by de�nition of hl+1,

hl+1(c′, d̃)1B2n = hl+1(c′, d̃)1B2n+2 −5ε1B2n 1Bc2n+1
+5ε1B2n+1 1Bc2n+2

.

First, assume that c′n+1 = cn+1, then u
l(B2n+2|B2n, c̃ = c) = 1. Then

E[hl+1(c′, d̃)|c̃ = c, B2n] = E[hl+1(c′, d̃)1B2n+2 |c̃ = c, B2n],

= E[E[hl+1(c′, d̃)|c̃ = c, B2n+2]1B2n+2 |c̃ = c, B2n] ≤ −ε.
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Assume on the contrary that c′n+1 6= cn+1. Assumption UI1 implies that

ul(Bc
2n+1|B2n, c̃ = c) ≥ 1/2− α,

ul(B2n+1 ∩Bc
2n+2|B2n, c̃ = c) ≤ (1/2 + α)2,

ul(B2n+2|B2n, c̃ = c) ≥ (1/2− α)2.

It follows that

E[hl+1(c′, d̃)|c̃ = c, B2n] = E[E[hl+1(c′, d̃)|c̃ = c, B2n+2]1B2n+2 |c̃ = c, B2n]

− 5 ε ul(Bc
2n+1|B2n, c̃ = c) + 5 ε ul(B2n+1 ∩Bc

2n+2|B2n, c̃ = c)

≤ − ε (
1

4
− α + α2)− 5 ε (

1

2
− α) + 5 ε (

1

4
+ α + α2) ≤ −ε.

By induction, we obtain E[hl+1(c′, d̃)|c̃ = c, B2] ≤ −ε. Since B2 holds almost

surely here, we get E[hl+1(c′, d̃)|c̃ = c] ≤ −ε, showing that the truthful

strategy of player 2 guarantees that the payo� of the maximizer is less or

equal to −ε, which concludes the proof.

C.3. Existence of an appropriate Markov chain

Here we conclude the proof of Theorem 2 by showing the existence of an

even integer N and a Markov chain with law ν on A = {1, ..., N} satisfying
our conditions

1) the law of the �rst state of the Markov chain is uniform on A,

2) for each a in A, there are exactly N/2 elements b in A such that

ν(b|a) = 2/N and

3) UI1 and UI2.

Denoting by P = (Pa,b)(a,b)∈A2 the transition matrix of the Markov chain,

we have to prove the existence of P satisfying 2) and 3). The proof is

nonconstructive and uses the following probabilistic method, where we select

independently for each a in A, the set {b ∈ A,Pa,b > 0} uniformly among the

subsets of A with cardinal N/2. We will show that when N goes to in�nity,

the probability of selecting an appropriate transition matrix become strictly

positive and, in fact, converges to 1.
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Formally, denote by SA the collection of all subsets S ⊆ A with cardi-

nality |S| = 1
2
N . We consider a collection (Sa)a∈A of i.i.d. random variables

uniform distributed over SA de�ned on a probability space (ΩN ,FN ,PN).

For all a, b in A, let Xa,b = 1{b∈Sa} and Pa,b = 2
N
Xa,b. By construction,

P is a transition matrix satisfying 2). Theorem 2 will now follow from the

following proposition.

Proposition 8

PN ( P induces a Markov chain satisfying UI1 and UI2 ) −−−→
N→∞

1.

In particular, this probability is strictly positive for all su�ciently large N .

The rest of this section is devoted to the proof of proposition 8. We start

with probability bounds based on Hoe�ding's inequality.

Lemma 1 For any a 6= b, each γ > 0

PN
(∣∣∣∣|Sa ∩ Sb| − 1

4
N

∣∣∣∣ ≥ γN

)
≤ 1

2
e4Ne−2γ2N .

Proof: Consider a family of i.i.d. Bernoulli variables (X̃i,j)i=a,b, j∈A of

parameter 1
2
de�ned on a space (Ω,F ,P). For i = a, b, de�ne the events

L̃i = {
∑

j∈A X̃i,j = N
2
} and the set-valued variables S̃i = {j ∈ A | X̃i,j = 1}.

It is straightforward to check that the conditional law of (S̃a, S̃b) given

L̃a ∩ L̃b under P is the same as the law of (Sa, Sb) under PN . It follows that

PN
(∣∣∣∣|Sa ∩ Sb| − 1

4
N

∣∣∣∣ ≥ γN

)
= P

(∣∣∣∣|S̃a ∩ S̃b| − 1

4
N

∣∣∣∣ ≥ γN
∣∣∣ L̃a ∩ L̃b)

≤
P
(∣∣∣|S̃a ∩ S̃b| − 1

4
N
∣∣∣ ≥ γN

)
P
(
L̃a ∩ L̃b

) .

Using Hoe�ding inequality, we have

P
(∣∣∣∣|S̃a ∩ S̃b| − 1

4
N

∣∣∣∣ ≥ γN

)
= P

(∣∣∣∣∣∑
j∈A

X̃a,jX̃b,j −
1

4
N

∣∣∣∣∣ ≥ γN

)
≤ 2e−2γ2N .
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On the other hand, using Stirling approximation14, we have

P
(
L̃a ∩ L̃b

)
=

(
1

2N
N !(
N
2

!
)2

)2

≥

(
2N+1N−

1
2

2Ne2

)2

=
4

Ne4
.

We deduce that PN
(∣∣|Sa ∩ Sb| − 1

4
N
∣∣ ≥ γN

)
≤ 1

2
e4Ne−2γ2N . Q.E.D.

Lemma 2 For each a 6= b, for any subset S ⊆ A and any γ ≥ 1
2N−2

,

PN

(∣∣∣∣∣∑
i∈S

Xi,a −
1

2
|S|

∣∣∣∣∣ ≥ γN

)
≤ 2e−2Nγ2 , and PN

(∣∣∣∣∣∑
i∈S

Xi,aXi,b −
1

4
|S|

∣∣∣∣∣ ≥ γN

)
≤ 2e−

1
2
Nγ2 .

Proof: For the �rst inequality, notice thatXi,a are i.i.d. Bernoulli random

variables with parameter 1
2
. The Hoe�ding inequality implies that

PN

(∣∣∣∣∣∑
i∈S

Xi,a −
1

2
|S|

∣∣∣∣∣ ≥ γN

)
≤ 2e−2γ2N

2

|S| ≤ 2e−2Nγ2 .

Q.E.D.

For the second inequality, let Zi = Xi,aXi,b. Notice that all variables Zi are

i.i.d. Bernoulli random variables with parameter p = 1
2

(
N
2
−1

N−1

)
= 1

4
− 1

4N−4
.

The Hoe�ding inequality implies that

PN

(∣∣∣∣∣∑
i∈S

Zi −
1

4
|S|

∣∣∣∣∣ ≥ γN

)
≤ PN

(∣∣∣∣∣∑
i∈S

Zi − p |S|

∣∣∣∣∣ ≥ 1

2
γN

)
≤ 2e−2γ2N

2

|S| ≤ 2e−
1
2
Nγ2 ,

where we used that |S||p− 1
4
| ≤ N

4N−4
≤ γN

2
for the �rst inequality.

For each a 6= b and c 6= d, each γ > 0, de�ne

Ya = 2
∑

i∈AXi,a, Y c = 2
∑

i∈AXc,i = N ,

Ya,b = 4
∑

i∈AXi,aXi,b, Y c
a = 4

∑
i∈AXi,aXc,i, Y c,d = 4

∑
i∈AXc,iXd,i,

Y c
a,b = 8

∑
i∈AXi,aXi,bXc,i, Y c,d

a = 8
∑

i∈AXi,aXc,iXd,i, Y c,d
a,b = 16

∑
i∈AXi,aXi,bXc,iXd,i.

Lemma 3 For each a 6= b and c 6= d, each γ ≥ 64/N, each of the variables

Z ∈ {Ya, Y c, Ya,b, Y
c,d, Y c

a , Y
c
a,b, Y

c,d
a , Y c,d

a,b },

PN (|Z −N | ≥ γN) ≤ e4Ne−
N
32

( γ
10

)2 .

14We have nn+
1
2 e−n ≤ n! ≤ enn+ 1

2 e−n for each n.
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Proof: In case Z = Ya or Ya,b, the bound follows from Lemma 2 (for

S = A). If case Z = Y c, the bound is trivially satis�ed. If Z = Y c,d, the

bound follows from Lemma 1.

In case Z = Y c,d
a,b , notice that Y

c,d
a,b = 16

∑
i∈Sc∩Sd

Zi where Zi = Xi,aXi,b. All

variables Zi are i.i.d. Bernouilli random variables with parameter p = 1
4
−

1
4N−4

. Moreover, {Zi}i 6=c,d are independent of Sc∩Sd. Enlarging the probabil-
ity space, we can construct a new collection of i.i.d. Bernoulli random vari-

ables Z ′i such that Z
′
i = Zi for all i 6= c, d and such that {(Z ′i)i∈A, Sc ∩ Sd} are

all independent. Then,

∣∣∣∣∣Y c,d
a,b − 16

∑
i∈Sc∩Sd

Z ′i

∣∣∣∣∣ ≤ 32, and, because 1
2
γN ≥ 32,

we have

PN
(∣∣∣Y c,d

a,b −N
∣∣∣ ≥ γN

)
≤ PN

(∣∣∣∣∣ ∑
i∈Sc∩Sd

Z ′i −
1

16
N

∣∣∣∣∣ ≥ 1

32
γN

)
.

De�ne the events

A =

{∣∣∣∣14 |Sc ∩ Sd| − N

16

∣∣∣∣ ≥ 1

160
γN

}
, B =

{∣∣∣∣∣ ∑
i∈Sc∩Sd

Z ′i −
1

4
|Sc ∩ Sd|

∣∣∣∣∣ ≥ 1

40
γN

}
.

Then, the probability can be further bounded by

≤ PN (A) + PN (B) ≤ 1

2
e4Ne−2N( 1

40
γ)

2

+ 2e−
1
2
N( 1

40
γ)

2

≤ e4Ne−
Nγ2

3200

where the �rst bound comes from Lemma 1 and the second from the second

bound in Lemma 2.

The remaining bounds have proofs similar to (and simpler than) the case

Z = Y c,d
a,b . We omit the details in the interest of space. Q.E.D.

Finally, we describe an event E that collects these bounds. Recall that

α = 1/25, and de�ne for each a 6= b and c 6= d,

Ea,b,c,d =

{∣∣∣∣Ya,bYa − 1

∣∣∣∣ ≤ 2α

}
∩
{∣∣∣∣Y c

a,b

Y c
a

− 1

∣∣∣∣ ≤ 2α

}
∩
{∣∣∣∣Y c,d

a

Y c
a

− 1

∣∣∣∣ ≤ 2α

}
∩

{∣∣∣∣∣Y
c,d
a,b

Y c,d
a

− 1

∣∣∣∣∣ ≤ 2α

}

∩
{∣∣∣∣Y c,d

Y c
− 1

∣∣∣∣ ≤ 2α

}
∩
{∣∣∣∣Y c

a

Y c
− 1

∣∣∣∣ ≤ 2α

}
∩
{∣∣∣∣Y c,d

a

Y c,d
− 1

∣∣∣∣ ≤ 2α

}
.

Finally, let E =
⋂

a,b,c,d:a6=b and c 6=d
Ea,b,c,d.
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Lemma 4 We have

PN(E) > 1− 7e4N5e−
N

2163200 −−−→
n→∞

1.

Proof: Take γ = α
1+α

= 1
26

and let

Fa,b,c,d =
⋂

Z∈{Ya,Ya,b,Y c,d,Y c,d,Y ca ,Y ca,b,Y
c,d
a ,Y c,da,b }

{|Z −N | ≤ γN} .

It is easy to see that Fa,b,c,d ⊆ Ea,b,c,d. The probability that Fa,b,c,d holds can

be bounded from Lemma 3 (as soon as N ≥ 64
γ

= 1664), as

PN (Fa,b,c,d) ≥ 1− 7e4Ne
− N

32.(260)2 .

The result follows since there are fewer than N4 ways of choosing (a, b, c, d).

Q.E.D.

Computations using the bound of lemma 4 show that N = 52.106 is

enough to have the existence of an appropriate Markov chain. So one can

take ε = 3.10−17 in the statement of Theorem 2. We conclude the proof of

proposition 8 by showing that event E implies conditions UI1 and UI2.

Lemma 5 If event E holds, then the conditions UI1, UI2 are satis�ed.

Proof: We �x the law ν of the Markov chain on A and assume that it has

been induced, as explained at the beginning of section C.3, by a transition

matrix P satisfying E. For l ≥ 1, we forget about the state in K and still

denote by ul the marginal of ul over C l × Dl. If c = (c1, ..., cl) ∈ C l and

d = (d1, ..., dl) ∈ Dl, we have ul(c, d) = ν(c1, d1, ..., cl, dl).

Let us begin with condition UI2, which we recall here: for all 1 ≤ p ≤ l,

for all d ∈ Dl, for all d′ ∈ Dp−1, for all m ∈ {1, ..., p−1} such that dm 6= d′m,

for r = 2m− 1, 2m,

ul
(
c̃ ^r+1 d

′|d̃ = d, c̃ ^r d
′
)
∈ [1/2− α, 1/2 + α], (12)
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where (c̃, d̃) is a random variable selected according to ul. The quantity

ul
(
c̃ ^r+1 d

′|d̃ = d, c̃ ^r d
′
)
is thus the conditional probability of the event

(c̃ and d′ are nice at level r+ 1) given that they are nice at level r and that

the signal received by player 2 is d. We divide the problem into di�erent

cases.

Case m > 1 and r = 2m− 1. The events {c̃ ^2m d′} and {c̃ ^2m−1 d
′}

can be decomposed as follows:

{c̃ ^2m−1 d
′} = {c̃ ^2m−2 d

′} ∩ {Xd′m−1,c̃m
= 1},

{c̃ ^2m d′} = {c̃ ^2m−2 d
′} ∩ {Xd′m−1,c̃m

= 1} ∩ {Xc̃m,d′m = 1}.

So ul
(
c̃ ^2m d′|d̃ = d, c̃ ^2m−1 d

′
)

= ul
(
Xc̃m,d′m = 1|d̃ = d, c̃ ^2m−1 d

′
)
, and

the Markov property gives

ul
(
c̃ ^2m d′|d̃ = d, c̃ ^2m−1 d

′
)

= ul
(
Xc̃m,d′m = 1|Xd′m−1,c̃m

= 1, Xdm−1,c̃m = 1, Xc̃m,dm = 1
)

=

∑
i∈U Xi,d′mXd′m−1,i

Xdm−1,iXi,dm∑
i∈U Xd′m−1,i

Xdm−1,iXi,dm

.

This is equal to 1
2

Y
dm−1,d

′
m−1

dm,d
′
m

Y
dm−1,d

′
m−1

dm

if d′m−1 6= dm−1, and to 1
2

Y
dm−1

dm,d
′
m

Y
dm−1
dm

if d′m−1 = dm−1.

In both cases, E implies (12).

Case r = 2m.

We have ul
(
c̃ ^2m+1 d

′|d̃ = d, c̃ ^2m d′
)

= ul
(
Xd′m,c̃m+1 = 1|d̃ = d, c̃ ^2m d′

)
,

and by the Markov property

ul
(
c̃ ^2m+1 d

′|d̃ = d, c̃ ^2m d′
)

= ul
(
Xd′m,c̃m+1 = 1|Xdm,c̃m+1 = 1, Xc̃m+1,dm+1 = 1

)
=

∑
i∈U Xd′m,iXdm,iXi,dm+1∑

i∈U Xdm,iXi,dm+1

=
1

2

Y
d′m,dm
dm+1

Y dm
dm+1

∈ [1/2− α, 1/2 + α].

ectaart.cls ver. 2006/04/11 file: TS09042020M.tex date: April 11, 2020



49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

Case m = 1, r = 1.

ul
(
c̃ ^2 d

′|d̃ = d, c̃ ^1 d
′
)

= ul
(
c̃ ^2 d

′|d̃ = d
)

= ul
(
Xc̃1,d′1

= 1|Xc̃1,d1 = 1
)
,

=

∑
i∈U Xi,d′1

Xi,d1∑
i∈U Xi,d1

=
1

2

Yd1,d′1
Yd1

∈ [1/2− α, 1/2 + α].

The proof of condition UI1 being similar, it is omitted here. Q.E.D.

APPENDIX D: PROOFS OF THEOREM 3

D.1. Theorem 3: the weak topology is contained in the value-based topology

Assume that un ∈ ∆ (K × Cn ×Dn) and u ∈ ∆ (K × C ×D) are in-

formation structures such that d (un, u) → 0. Then, for all games g in G,
| val(ũn, g) − val(ũ, g)| = | val(un, g) − val(u, g)| → 0. By Theorem 12 in

Gossner and Mertens (2001), the functions (val(., g))g span the topology on

Π. So (ũn)n converges weakly to ũ.

D.2. Theorem 3: the value-based topology is contained in the weak topology

Assume that un ∈ ∆ (K × Cn ×Dn) and u ∈ ∆ (K × C ×D) are infor-

mation structures such that ũn converges to ũ in the weak topology. We will

prove that

(16) lim sup
n→∞

sup
g∈G

(val (un, g)− val (u, g)) ≤ 0.

Because we can switch the roles of players, this will su�ce to establish that

d (un, u)→ 0.

Partitions of unity. We can without loss of generality assume that u is

non-redundant and all signals c and d have positive probability. We can

associate signals c ∈ C ⊆ N and d ∈ D ⊆ N with the corresponding

hierarchies of beliefs in Θ1 and Θ2. In other words, we identify C ⊆ Θ1

as the (countable) support of ũ and D ⊆ Θ2 as the smallest countable
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set such that for each c ∈ C, φ1 (K ×D|c) = 1 (i.e., D is the union of

countable supports of all beliefs of hierarchies in C). For each c ∈ C and

d ∈ D, we denote the corresponding hierarchies under u as c̃ and d̃. Also,

let Cm = C ∩ {0, ...,m} and Dm = D ∩ {0, ...,m}.
Because Θ2 is Polish, for each m ∈ N and each d ∈ Dm, we can �nd

continuous functions κmd : Θ2 → [0, 1] for m ∈ N, d ∈ {0, ...,m} such that

κmd

(
d̃
)

= 1 for each d ∈ Dm, κmd ≡ 0 if d /∈ D, and
∑m

d=0 κ
m
d (θ2) = 1

for each θ2 ∈ Θ2. In other words, for each m, {κmd }0≤d≤m is a continuous

partition of unity on space Θ2 with the property that for each d ∈ Dm, κmd

peaks at hierarchy d̃. Notice that for each c ∈ C, each d ∈ Dp, we have

Eφ1(c̃)[1{k}(.)κ
p
d(.)] ≥ u (k, d|c) , and∑

k∈K

p∑
d=0

∣∣Eφ1(c̃)[1{k}(.)κ
p
d(.)]− u (k, d|c)

∣∣ = u(D \Dp|c).

Because all hierarchies c̃, c ∈ C are distinct, for eachm, there exists pm <∞
and εm ∈

(
0, 1

m

)
such that for any c, c′ ∈ Cm such that c 6= c′,

∑
k∈K

pm∑
d=0

∣∣∣Eφ1(c̃)[1{k} κ
pm

d ]− Eφ1(c̃′)[1{k} κ
pm

d ]
∣∣∣ ≥ 2εm.

Let hmc (θ1) =
∑
k

pm∑
d=0

∣∣∣Eφ1(θ1)[1{k} κ
pm

d ]− Eφ1(c̃)[1{k} κ
pm

d ]
∣∣∣ .

Then, hmc is a continuous function such that hmc (c̃) = 0 and such that if

hmc (θ1) ≤ εm for some c ∈ Cm, then hmc′ (θ1) ≥ εm for any c′ ∈ Cm such that

c′ 6= c. For 0 ≤ c ≤ m+ 1, de�ne continuous functions

κmc (θ1) = max

(
1− 1

εm
hmc (θ1) , 0

)
for c ∈ Cm,

κmc ≡ 0 if c /∈ C, and κmm+1 (θ1) = 1−
m∑
c=0

κmc (θ1) .

Then, for eachm,
∑m+1

c=0 κmc ≡ 1, and κmc (θ1) ∈ [0, 1] for each c = 0, ...,m+1,

which implies that {κmc }0≤c≤m+1 is a continuous partition of unity on space

Θ1 such that for each c ∈ Cm, κmc (c̃) = 1.
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Conditional independence. For each information structure v ∈ ∆ (K × C ′ ×D′),
de�ne an information structureKmv ∈ ∆ (K × C ′ × {0, ...,m+ 1} ×D′ × {0, ..., pm})
so that Kmv

(
k, c′, ĉ, d′, d̂

)
= v (k, c′, d′)κmĉ (c̃′)κp

m

d̂

(
d̃′
)
. Let δmv = 2εm +

Kmv (ĉ = m+ 1) . We are going to show that, under Kmv, signal c′ is

δmv-conditionally independent from
(
k, d̂
)

given ĉ. Notice �rst that, if

Kmv
(
k, d′, d̂, c′, ĉ

)
> 0 for some ĉ ∈ Cm, then hmĉ (c̃′) ≤ εm. It follows

that

∑
k

pm∑
d̂=0

∣∣∣Kmv
(
k, d̂|ĉ, c′

)
− Eφ1(˜̂c)[1{k} κ

p∗

d̂
]
∣∣∣

=
∑
k

pm∑
d̂=0

∣∣∣Kmv
(
k, d̂|c′

)
− Eφ1(˜̂c)[1{k}[κ

pm

d̂
]
∣∣∣

=
∑
k

pm∑
d̂=0

∣∣∣Eφ1(c̃′)[1{k} κ
pm

d̂
]− Eφ1(˜̂c)[1{k} κ

pm

d̂
]
∣∣∣ = hmĉ (c̃′) ≤ εm.

On the other hand,

∑
k

pm∑
d̂=0

∣∣∣Kmv
(
k, d̂|ĉ

)
− Eφ1(˜̂c)[1{k} κ

p∗

d̂
]
∣∣∣

=
∑
k

pm∑
d̂=0

∣∣∣∣∣ 1

Kmv(ĉ)

∑
c′∈C′

Kmv(c′, ĉ)Kmv
(
k, d̂|ĉ, c′

)
− Eφ1(˜̂c)[1{k}[κ

pm

d̂
]

∣∣∣∣∣
≤
∑
c′∈C′

Kmv(c′, ĉ)

Kmv(ĉ)

∑
k

pm∑
d̂=0

∣∣∣Kmv
(
k, d̂|ĉ, c′

)
− Eφ1(˜̂c)[1{k}[κ

pm

d̂
]
∣∣∣ = hmĉ (c̃′) ≤ εm.

Hence,
m+1∑
ĉ=1

∑
c′

Kmv (ĉ, c′)
∑
k,d̂

∣∣∣Kmv
(
k, d̂|ĉ, c′

)
−Kmv

(
k, d̂|ĉ

)∣∣∣
≤ 2εm

m∑
ĉ=1

Kmv (ĉ) +Kmv (ĉ = m+ 1) ≤ δmv.

De�ne the information structure Lmv = margK×{0,...,pm}×{0,...,m+1}K
mv. Then,

because d (Kmv, v) = 0, the proof of Proposition 5 implies that
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supg∈G (val (v, g)− val (Lmv, g)) ≤ δmv.

Proof of claim (16). Observe that for each k, ĉ, d̂,

(Lmun)
(
k, ĉ, d̂

)
= Eũn

(
κmĉ (θ1)Eφ1(θ1)[1{k} κ

pm

d̂
]
)
.

Because all the functions in the brackets above are continuous, the weak

convergence ũn → ũ implies that (Lmun)
(
k, ĉ, d̂

)
→ (Lmu)

(
k, ĉ, d̂

)
for

each k, ĉ, d̂. Because the information structures Lmun and L
mu are described

on the same and �nite spaces of signals, the pointwise convergence implies

d (Lmun, L
mu) ≤ ‖Lmun − Lmu‖ → 0 as n→∞. Moreover, if ĉ ∈ Cm and

d̂ ∈ Dpm , the de�nitions imply that (Lmu)
(
k, ĉ, d̂

)
≥ u

(
k, ĉ, d̂

)
. Thus,

d (Lmu, u) ≤ ‖Lmu− u‖ ≤ 2
(
u (C\Cm) + u

(
D\Dpm

))
−→
n→∞

0.

It follows that δmun = (Kmun) (ĉ = m+ 1) −→
n→∞

(Lmu) (ĉ = m+ 1), and

(Lmu) (ĉ = m+ 1) = 1−(Lmu)(Cm×Dpm) ≤ 1−u(Cm×Dpm) ≤ u (C\Cm)+u
(
D\Dpm

)
.

Together, we obtain for each m,n

sup
g∈G

(val (un, g)− val (u, g)) ≤ sup
g∈G

(val (un, g)− val (Lmun, g))

+ sup
g∈G

(val (Lmun, g)− val (Lmu)) + sup
g∈G

(val (Lmu)− val (u, g))

≤δmun + ‖Lmun − Lmu‖+
(
u (C\Cm) + u

(
D\Dpm

))
.

Hence, lim sup
n→∞

sup
g∈G

(val (v, g)− val (Lmv, g)) ≤ 3
(
u (C\Cm) + u

(
D\Dpm

))
.

When m→∞, the right hand side converges to 0 as well.

APPENDIX E: PROOF OF PROPOSITION 6

Let u′ ∈ ∆ (K × (KC × C)× (KD ×D)) be de�ned so that u = margK×c×D u
′

and u′({kC = κ (c) , kD = κ (d)}) = 1. Because u′ does not have any new in-

formation, we verify (for instance using Proposition 5) that d (u, u′) = 0.
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We are going to show that C is 16ε-conditionally independent from K×KD

given KC . Notice that because u exhibits ε-knowledge,

u′ {kC 6= k or kD 6= k} ≤ u′ {kC 6= k}+ u′ {kD 6= k}

≤ 2ε+ 2ε = 4ε.

Thus,

∑
k,kC ,kD

u′ (kC)
∑
c

|u′ (k, kD, c|kC)− u′ (k, kD|kC)u′ (c|kC)|

=
∑

k,kC ,kD

u′ (k, kC , kD)
∑
c

∣∣∣∣∣u′ (c|k, kC , kD)−
∑
k′,kD ′

u′ (c|k′, kC , k′D)u′ (k′, k′D|kC)

∣∣∣∣∣
≤
∑
k

u′ (k, k, k)
∑
c

∣∣∣∣∣u′ (c|k, k, k)−
∑
k′,kD ′

u′ (c|k′, kC = k, k′D)u′ (k′, k′D|kC = k)

∣∣∣∣∣
+ 2u′ {kC 6= k or kD 6= k}

≤
∑
k

u′ (k, k, k)
∑
c

∣∣∣∣u′ (c|k, k, k)− u′ (c|k, k, k)
u′ (k, k, k)

u′ (kC = k)

∣∣∣∣
+
∑
k

u′ (k, k, k)
∑
c

∑
k′ 6=k, or k′D 6=k

|u′ (c|k, kC = k, kD)u′ (k′, k′D|kC = k)|

+ 2u′ {kC 6= k or kD 6= k}

≤
∑
k

u′ (k, k, k)

∣∣∣∣1− u′ (k, k, k)

u′ (kC = k)

∣∣∣∣+ 3u′ {kC 6= k or kD 6= k}

≤
∑
k

|u′ (kC = k)− u′ (k, k, k)|+ 3u′ {kC 6= k or kD 6= k}

≤4u′ {kC 6= k or kD 6= k} ≤ 16ε.

Because an analogous result applies to the information of the other player,

Proposition 5 shows that

d (u′, v′) ≤ 16ε,
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where v′ = margK×KC×KD . Because

d (v, v′) ≤
∑

k,kC ,kD

|v (k, kC , kD)− v′ (k, kC , kD)|

≤2v′ {kC 6= k or kD 6= k} = 2u′ {kC 6= k or kD 6= k} ≤ 4ε,

the triangle inequality implies that

d (u, v) ≤ d (u, u′) + d (u′, v′) + d (v, v′) ≤ 20ε.

APPENDIX F: PROOF OF THEOREM 5

Suppose that u and v are two simple, and non-redundant information

structures. Let ũ and ṽ be the associated probability distributions over be-

lief hierarchies of player 1. It is easy to show that if two non-redundant

information structures induce the same distributions over hierarchies of be-

liefs ũ = ṽ, then they are equivalent from any strategic point of view, and,

in particular, they induce the same set of ex ante BNE payo�s. Hence, we

assume that ũ 6= ṽ.

Let Hu = suppũ and Hv = suppṽ. Lemma III.2.7 in Mertens et al. (2015)

implies that the sets Hu and Hv are disjoint.

It is well known that there exists a non-zero sum payo� function g(0) :

K × (I × I0) × J → [−1, 1]2 such that I0 = Hu ∪ Hv and such that the

set of rationalizable actions for player 1 of type c ∈ C with hierarchy h (c)

is contained in the set I × {h (c)}. In particular, in a Bayesian Nash equi-

librium, each type of player 1 will report its hierarchy. Construct game

g(1) : K × (I × I0)× (J × {u, v})→ [−1, 1]2 with payo�s

g
(1)
1 (k, i, i0, j, j0) = g

(0)
1 (k, i, i0, j) ,

g
(1)
2 (k, i, i0, j, j0) =

1

2
g

(0)
2 (k, i, i0, j) +


1
2
, if j0 = u and i0 ∈ Hu

−1
2
, if j0 = u and i0 /∈ Hu,

0, if j0 = v.
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Then, the rationalizable actions of player 2 in game g(1) are contained in

J × {u} for any type in type space u and in J × {v} for any type in type

space v.

Finally, for any ε ∈ (0, 1) ,construct a game gε : K×(I × I0)×(J × {u, v})→
[−1, 1]2 with payo�s

gε1 (k, i, i0, j, j0) = εg
(0)
1 (k, i, i0, j, j0) + (1− ε)

1, if j0 = u,

−1, if j0 = v,
,

gε2 ≡ g
(1)
2 .

Then, the Bayesian Nash equilibrium payo� of player belongs to [1− ε, 1]

on the structure u and [−1,−1 + ε] on the structure v. It follows that the

payo� distance between the two type spaces is at least 2− 2ε, for arbitrary

ε > 0.

Next, suppose that u and v are two non-redundant information structures

with the decomposition u =
∑

α pαuα and v =
∑

α qαvα and such that

ũα = ṽα for each α. Let g be a non-zero sum payo� function. Let σα be an

equilibrium on uα with payo�s gα = g (σa) ∈ R2. Let sα be the associated

equilibrium on vα (that can be obtained by mapping the hierarchies of beliefs

through an appropriate bijection) with the same payo�s gα. The distance

between payo�s is bounded my∥∥∥∑ pαg (σα)− qαg (sα)
∥∥∥

max
=
∥∥∥∑ (pα − qα) ga

∥∥∥
max

≤
∑
|pα − qα| ‖gα‖max ≤

∑
|pα − qα| ,

where the last inequality comes from the fact that payo�s are bounded.

On the other hand, let A = {α : pα > qα}. Using a similar construction as

above, we can construct a game g(1) such that player 2's actions have a form

J × {uA, uB}, and his rationalizable actions are contained in set J × {uA}
for any type in type space uα, α ∈ A and in J×{uB} otherwise. Further, we
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construct a game g(ε) as above. Then, any player 1's equilibrium g
(ε)
1,α payo�

is at least 1 − ε for any type in type space uα, α ∈ A, and −1 + ε for any

type in type space uα for α /∈ A. Denoting the equilibrium payo� of player

2 as gε2,ε, the payo� distance in game gε is at least

max

(∣∣∣∣∣∑
α

(pα − qα) g1,α

∣∣∣∣∣ ,
∣∣∣∣∣∑
α

(pα − qα) g2,α

∣∣∣∣∣
)
≥

∣∣∣∣∣∑
α

(pα − qα) g1,α

∣∣∣∣∣
≥

[∑
α∈A

(pα − qα)−
∑
α/∈A

(pα − qα)

]
(1− ε) ≥ (1− ε)

∑
|pα − qα| .

Because the ε > 0 is arbitrary, the two above inequalities show that the

payo� distance is equal to
∑
|pα − qα|.
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