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Abstract

In this paper I argue that synchronized large-scale investments of large firms can

significantly amplify productivity-driven aggregate fluctuations, and lead to investment

cycles even in the absence of aggregate shocks. Using U.S. Compustat data, I show that

years preceding recessions display investment surges among large firms. Furthermore,

after the investment surges, large firms become inelastic to interest rates and display

persistent inaction duration. I then develop a heterogeneous-firm real business cycle

model in which a firm needs to process multiple investment stages for large investments

and can accelerate it at a cost. In the model, following a TFP shock the synchronized

timings of lumpy investments are persistently synchronized. And TFP-induced reces-

sions are especially severe after the surge of large firms’ lumpy investments. In support

of this prediction, I present evidence for the investment cycle in post-shock period in

macro-level data on nonresidential fixed investment.

†I am extremely grateful to my advisors Jesús Fernández-Villaverde and Dirk Krueger, and my dissertation
committee Andrew Abel and Frank Schorfheide for their invaluable guidance and support. I also thank
Regis Barnichon, Ricardo Caballero, Harold Cole, Alessandro Dovis, John Fernald, Andrew Foerster, Jeremy
Greenwood, Joachim Hubmer, Guillermo Ordoñez, Pascal Paul, William Peterman, Andrew Postlewaite,
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1 Introduction

1980, 1998, and 2007 were the three years with the largest surges in the fraction of large firms

making large-scale investments since 1980. And these three years were followed by recessions

within two years.1 Is it merely a coincidence that investment surges of large firms precede

recessions?

This paper studies a mechanism that makes an economy more fragile to a negative TFP

shock after a surge in lumpy investments of large firms. I develop and analyze a busi-

ness cycle model with heterogeneous firms that reflects empirical findings from micro-level

data. Then using the model, I qualitatively and quantitatively analyze the amplification

of productivity-driven aggregate fluctuations. Through lumpy investment decisions at firm

level, the interaction between endogenous and exogenous sources of aggregate fluctuations

builds the core of this analysis.

I document two empirical characteristics of firm-level lumpy investments that matter

for aggregate fluctuations: the interest-inelasticity of large-scale investment timings and the

highly persistent inaction durations. First, using the U.S. Compustat data, I show that large

firms’ timings of lumpy investments are inelastic to interest rate changes. Therefore, if a

negative aggregate TFP shock hits an economy after a previous surge of large firms’ lumpy

investments, new aggregate investment drops substantially. These large firms are not willing

to make another large capital adjustment on top of their recent investments despite a lowered

interest rate.

Second, I document that inaction periods of a firm’s capital adjustment are highly per-

sistent across periods. The observed persistence for all firms is substantially higher than the

level implied by the stochastic investment (S, s) cycle in models with fixed costs in the liter-

ature. This high persistence has an important aggregate implication: the mean-reversion of

the synchronized investment timings across firms is sluggish. Thus, an aggregate TFP shock

effect lasts longer when the high persistence in the length of inaction periods at firm level is

higher.

Therefore, it is necessary to capture these two empirical findings in the model to study

how firm-level lumpy investments affect business cycle. Based on existing evidence from the

literature (Yang et al., 2020), I argue that large firms’ structured decision-making process

such as capital budgeting accounts for the observed inelasticity and the persistence. In par-

ticular, capital budgeting is a universal tool for CFO’s to plan and evaluate an investment

project. Almost 99.5% of CFO’s from Fortune 1,000 firms rely on capital budgeting. I provide

1Following Cooper and Haltiwanger (2006), I define an investment in a year beyond 20% of existing capital
stock as a large-scale capital adjustment. Firms that hold capital stocks greater than the 90th percentile of
the capital distribution in each industry based on two-digit NAICS code are defined as large firms.

3



a suggestive evidence that firms become inelastic to interest rate change and insensitive to

investment opportunities during the capital budgeting process. From this, I claim implemen-

tation lags from structured decision-making process is a critical component to be modeled to

capture the empirical findings.

Then I develop and analyze a model with lumpy investment in which a firm needs to

process a required number of investment stages for a large-scale investment. Here the invest-

ment stages capture the bureaucratic steps in capital budgeting such as meetings of the board

of directors for the large-scale investment decision or auditing procedures for large-scale in-

vestments (Malenko, 2019). Each firm decides the optimal number of stages to process each

period. The processing cost convexly increases both in the number of stages to be processed

and in the size of a firm’s capital stock. I name this cost as “acceleration cost.” The con-

vexity of acceleration cost in the number of stages disturbs firms’ nimble capital adjustment.

The convexity in the size of capital stock makes large firms face larger cost of agile capital

adjustment. These features make large firms’ lumpy investments inelastic to interest rate

changes.

When an aggregate TFP shock hits the economy in the model, the timing of lumpy

investments is synchronized across firms. Then, aggregate investments nonlinearly respond

to the aggregate TFP shock because synchronized lumpy investments are not mitigated by

changes in the interest rate. Furthermore, high persistence in inaction duration persistently

synchronizes future investment timings. This leads to long-run echo effects in the economy.

In this model, the impulse response of the economy depends on the aggregate state of the

economy. Specifically, the mass of large firms that are ready to adjust their own existing

capital is the key conditioning state variable.

Using the calibrated model, I decompose the total response of aggregate investments to

an aggregate TFP shock into an exogenous effect and an endogenous effect. The endogenous

effect accounts for substantial portion of the aggregate investment response: it explains up to

15% of the total response. The endogenous effect is largest when a negative aggregate TFP

shock hits the economy after a surge of lumpy investments: the same negative aggregate

TFP shock has up to 29% greater impact on aggregate investment after a surge of lumpy

investments than in other aggregtae states.

In the model, if a group of firms is extremely inelastic to interest rate changes and has an

extremely high persistence of inaction duration, the echo effect can permanently persist in the

post-shock period. The synchronized investment timings are then permanently synchronized,

leading to a stationary cycle.2 To characterize this stationary cycle formally, I first define a

2Under the calibrated baseline model, the echo effects die out after around 25 years from the point of an
aggregate TFP shock. A permanent echo is generated under a parameterization with higher acceleration cost
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cyclical competitive equilibrium that conceptually extends stationary recursive competitive

equilibrium. In this equilibrium, aggregate allocations fluctuate without relying on exogenous

shocks. Different endogenous fluctuations can arise depending on the synchronized pattern

in the initial distribution. I explore this theoretical possibility in Section 6.

I found the model prediction of echo effects is empirically supported by macro-level data.

First, I analyze echo effects from historical events that were followed by large aggregate TFP

shocks. According to Ohanian (2001), aggregate TFP dropped by around 18% in the Great

Depression. Using a Fisher g-test, I show that there was significant deterministic periodicity

in the manufacturing industries’ investment growth rate in non-residential structures after the

Great Depression. Similarly, after the oil crisis in 1979, the oil industry’s investment growth

rate in structures displays significant deterministic periodicity. Second, I provide an evidence

of echo effects from the impulse response of non-residential structure investment from BEA

data. These empirical results validate nonlinear dynamics implied by the acceleration cost

model.

Related literatures This paper contributes to the literature that studies how firm-level

lumpy investments affect business cycle. Within this literature, Abel and Eberly (2002) em-

pirically showed that there are statistically and economically significant nonlinearities in firm-

level investments. They point out that it is necessary to track the cross-sectional distribution

of firm-level investments to account for aggregate investment. Cooper et al. (1999) and Gou-

rio and Kashyap (2007) found aggregate investment is largely driven by establishment-level

capital adjustment in extensive margin. Especially, Cooper et al. (1999) found synchronized

lumpy investments can generate echo effect of aggregate shocks in partial equilibrium. Gourio

and Kashyap (2007) pointed out that if a fixed cost is drawn from a highly concentrated non-

uniform distribution, aggregated lumpy investments show different impulse response than

frictionless models in partial equilibrium. In contrast, Khan and Thomas (2008) found that

lumpiness in investment at the establishment level is washed out after aggregation, due to

strong general equilibrium effect.

In this paper, I empirically show that there are firm-level lumpy investments that are

inelastic to interest rate dynamics, thus not smoothed out by changes in the interest rate

after aggregation. Therefore, irrelevance result does not hold even in general equilibrium if a

model captures those interest-inelastic firms. I conclude that large firms’ lumpy investments

contributes to nonlinear aggregate fluctuations under the interest-inelasticity.

Relatedly, Koby and Wolf (2019) shows that observed dampening effect of factor price is

not as strong as the implied level in models with fixed cost. Specifically, the paper empiri-

where large firms become extremely inelastic to the operating environment.
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cally analyzed price-inelasticity of firm-level investments to the bonus depreciation stimulus

policies. Despite the empirical findings, modeling a micro-level investment inelastic to price

change still remains as a difficult task. House (2014) pointed out that a conventional model

with fixed cost cannot capture inelastic lumpy investments due to strong general equilibrium

effect; model-implied lumpy investments are highly price-elastic. To overcome this limitation

in the fixed cost model, Bachmann et al. (2013) introduce maintenance and replacement in-

vestments under the high fixed cost parameter. In their model, micro-level lumpiness does

not wash away after aggregation, leading to state-dependent sensitivity of aggregate invest-

ment in general equilibrium. However, the model in Bachmann et al. (2013) does not fit well

to the firm-level lumpy investments because the implied level of persistence in the inaction

durations is substantially lower than the empirical level.3 Winberry (2018) included habit

formation in the household’s utility function so that aggregate TFP sensitivity of real interest

rate becomes counter-cyclical. Combined with convex adjustment cost, counter-cyclically re-

sponsive real-interest rate does not dampen aggregated lumpy investments over the business

cycle.

Differently from these approaches, I introduce a convex acceleration cost in the model.

This allows the model to capture large firms’ interest-inelastic lumpy investment timings and

high persistence of inaction durations across periods. The latter is relatively less highlighted

feature in the literature despite its important role in the aggregation. Specifically, high

persistence of inaction durations across periods contributes to the persistent synchronization

of firm-level lumpy investments in the post shock periods. This generates nonlinearity in the

impulse response of the aggregate investment to an aggregate TFP shock that mimics echoes.

In support of this theoretical prediction, I present evidence for the nonlinear investment

dynamics from the macro-level data.

Second, this paper contributes to nonlinear business cycle literature. A large body of

researches has focused on the nonlinearity in aggregate fluctuations that arise when het-

erogeneous agents are subject to micro frictions. Bachmann et al. (2013) found firm-level

lumpiness in investments leads to pro-cyclical sensitivity of aggregate investments to an ag-

gregate shock. Similarly, Berger and Vavra (2015) concludes lumpiness in households’ durable

adjustment result in pro-cyclical responsiveness of aggregate durable expenditures to an ag-

gregate shock. Fernandez-Villaverde et al. (2020) found that financial frictions can generate

endogenous aggregate risk under the heterogeneous household model. In this setup, the aggre-

gate allocations display state-dependent responsiveness to an aggregate TFP shock. Volatility

3The conventional lumpy investment models’ implied persistence in inaction periods is around 0.65 ∼ 0.7.
In contrast, the level observed from data is around 0.9, and the acceleration cost model can match this level.
I make more detailed comparison across the models in Section 5.3.
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shock in real interest rate studied in Fernandez-Villaverde et al. (2011) and uncertainty shock

in Bloom et al. (2018) also lead to nonlinear aggregate fluctuations. To this literature, this

paper contributes by modeling interest-inelastic firm’s lumpy investments as an additional

source of nonlinearity in the business cycle.

Third, this paper contributes to endogenous business cycle literature by generating ag-

gregate fluctuations in general equilibrium without increasing-returns-to-scale technologies

(Benhabib and Farmer, 1994; Farmer, 2016). After an aggregate TFP shock hits the econ-

omy, the equilibrium allocations fluctuate, forming echo patterns. This is due to persistently

synchronized investment timings among interest-inelastic firms. Depending on the level of

insensitivity to idiosyncratic shock process, this echo can be a decaying echo or a permanent

echo. Both types of echoes are possible sources of endogenous fluctuations in an economy.

I show that these echoes are empirically supported by statistically significant deterministic

periodicity in the post-crisis period from macro-level data.

Roadmap Section 2 empirically analyzes characteristics of lumpy investments for large

and small firms. Based on the empirical analysis, Section 3 develops a business cycle model

with heterogeneous firms subject to acceleration cost. In Section 4, I explain calibration used

for this model. Using the model under the calibrated parameters, Section 5 quantitatively

analyze nonlinear effect of lumpy investments in business cycle. In Section 6, endogenous

aggregate fluctuations arising from a permanent echo effects are studied as a theoretical

possibility an acceleration cost model can lead to. Section 7 suggests empirical evidence for

nonlinearity in macro-level data. Section 8 concludes. Proofs and other detailed figures and

tables are included in appendices.

2 Firm-level empirical analysis

For the firm-level empirical analysis, I use U.S. Compustat data. While Compustat data

covers only public firms, its coverage is relatively less an issue in this analysis because the

focus is on firms with large capital stocks. Throughout the whole empirical analysis, large

firms are defined as firms that hold capital stocks greater than the 90th percentile of the

capital distribution in each industry of two-digit NAICS code. Sample period covers from

1980 to 2016. Firms with negative asset and zero employment are excluded from the sample.

All the firm-level variables except capital stock and investment are deflated by GDP deflator.

Investment is deflated by nonresidential fixed investment deflator available from National

Income and Product Accounts data (NIPA Table 1.1.9, line 9). Firm-level real capital stock

is obtained from applying perpetual inventory method to net real investment. Industry is
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categorized by the first two-digit NAICS code.4

Large Small

Total
Aggregate Sales ($1 bil.) 9007.2 4641.8
Aggregate Employment (1 mil.) 30.3 22.3

Firm-level
Avg. Sales ($1 mil.) 8143.9 332.2
Avg. Employment (1K) 28 1.7
Avg. Age after IPO 20.1 7.6
Num. Obs. 1111 13985

Financial constraint
Total Liability / Total Asset (%) 61.7 98.4

Table 1: Large and small firms’ summary statistics

Table 1 reports summary statistics for large and small firms during the sample periods.

Under the given definition of large firms, around 60% of aggregate sales and employments

belong to large firms. On average, large firms are 25 times greater than small firms in sales

and employment. Large firms are on average old firms, having been listed around 13 years

longer than small firms. Large firms’ ratio of total liability out of total asset is around 61.7%,

and is smaller than the small firms’ fraction 98.4%. Thus, large firms are less financially

constrained on average.

2.1 Motivating facts

I define an investment spike as a firm-specific event where a firm makes a large-scale invest-

ment greater than 20% of the firm’s existing capital stock.5 I refer to this investment spike as

a lumpy investment or capital adjustment in extensive margin, interchangeably. Throughout

the empirical analysis, the fraction of firms making lumpy investments is the key variable. I

define the key variable, spike ratio as follows:

Spike ratioj,t :=

∑
i∈j

Investment spikei,t

# of j-type firms at t
, j ∈ {small, large}

4If only SIC code is available for a firm, I imputed NAICS code following online appendix D.2 of Autor
et al. (2020). If both of NAICS and SIC are missing, I filled in the next available industry code for the firm.

520% cutoff is from non-convex adjustment cost literature including Cooper and Haltiwanger (2006),
Gourio and Kashyap (2007), and Khan and Thomas (2008). If a firm’s acquired capital stock is greater than
20% of existing capital stock in a certain year, I do not count the year as the firm’s lumpy investment period.
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The numerator is counting all the investment spikes of firm type j ∈ {small, large} at time

t, and it is normalized by the total number of j type firms.

Figure 1 plots the time series of spike ratio of large firms. On average, 15.3% of large

firms adjust their existing capital stocks in extensive margin in a year. As can be seen from

Figure 1, since 1980 there have been only three periods (1980, 1998, and 2007) where the

fraction of large firms making spiky investments surged beyond 20%. All three events were

followed by recessions within two years.

Conversely, there were four recessions in the U.S. over the same periods, and three out of

four recessions were preceded by the surge of large firms’ lumpy investments. The exception

was the recession in 1990, and it was the mildest recession among the four recessions.
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Figure 1: Three surges of large firms’ lumpy investments preceded recessions

Variables Before Before Before Before
(% dev. Recession Recession Recession Recession
from average) I (1980) II (1989) III (1998) IV (2007)

∆SpikeLarge(%) 54.61 3.63 26.75 33.39
∆SpikeSmall(%) 11.70 -0.19 16.97 7.35

Table 2: Deviation of spike ratios from mean before recessions

Table 2 summarizes the deviation of large and small firms’ spike ratios from the mean

level in each year before the recessions.6 Before the recessions in 1981, 2000 and 2008, the

spike ratio of large firms were greater than the average level by more than 25%. In contrast,

the spike ratio of small firms did not increase dramatically before each recession as shown in

the second line of the table.

6∆Spikej(%) is obtained from demeaning and normalizing spike ratio by the mean separately for large
and small firms.
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Relatedly, in the following analysis, I show aggregate investment rate is conditionally

heteroskedastic on the average lagged spike ratio of large firms. That is, residualized volatil-

ity of aggregate investment rate is high if a great portion of large firms have made lumpy

investments in the recent years.

For this analysis, I use aggregate data on non-residential investment (NIPA Table 1.1.5,

line 9) and aggregate capital (Fixed Asset Accounts Table 1.1, line 4) from BEA. The thick

line in Figure 2 plots logged estimates of standard deviation of residuals from autoregression

of aggregate investment rates as a function of the recent average of large firms’ spike ratio.7

The recent average is based on the average spike ratio of past two years. As can be seen

from this figure, aggregate investment rates are heteroskedastic conditional on the lagged

average spike ratio. Table A.1 reports the regression coefficients for the fitted line. According

to the regression result, one standard-deviation increase (3.18%) in the large firms’ spike

ratio is associated with 35% increase in the standard deviation of the residualized aggregate

investments. From this result, I conclude that aggregate investments respond more strongly

to an aggregate shock after a surge of lumpy investments of large firms. Consistent with the

patterns in Figure 1, the three recession years of interest are located at the top-right corner

in Figure 2.
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Figure 2: Conditional heteroskedasticity of aggregate investments

I claim this is not a mere coincidence that the surges of large firms’ lumpy investments

precede the recessions. I suggest a novel mechanism where an economy responds more strongly

to a negative aggregate productivity shock after a surge of large firms’ lumpy investments

7This empirical analysis is motivated from the conditional heteroskedasticity analysis in Bachmann et al.
(2013) (Figure 1).
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based on the empirical findings at the firm level. The key mechanism is in the interest-

inelastic investment timings of large firms. I empirically investigate the characteristics of

large firms’ lumpy investments in the following sections.

2.2 Interest-inelasticity of large firms’ lumpy investments

In this section, I run a Vector Autoregression (VAR) to analyze different investment behavior

of large and small firms when the interest rate changes. Then, using high-frequency monetary

policy shocks, I estimate the heterogeneous interest-elasticity of investments in the extensive

margin for large and small firms.

In the VAR, aggregate TFP, federal funds rate, and the fraction of large/small firms that

make large-scale investments (SpikeRatioj,t) are included in the stated order; and one-period-

ahead CPI is included as an exogenous control variable:8

Xj,t+1 = Φ0 + Φ1Xj,t + Φ2Ct + εt j ∈ {Small, Large}

Xj,t = [TFPt, FedFundt, SpikeRatioj,t]
′, Ct = Et ˜CPI t+1 u CPIt+1

Figure 3 plots impulse responses of the fractions of large (solid line) and small (dot-dashed

line) firms adjusting capital stocks in extensive margin (SpikeRatioj,t) to an interest rate

shock. Dashed line is 95% confidence interval of the estimated response.

Upon impact, there are no significant contemporaneous responses from large and small

firms’ lumpy investments. However, in the following years, small firms display significant

drop in the fraction of adjusting firms. Two years from the shock period, the response drops

by around 1.3%. In contrast, the large firms’ response does not show any significant deviation

from zero for the whole post-shock period. From this evidence, I claim large firms do not

significantly change their lumpy investment timings in response to interest rate changes.

This is consistent with the finding of Cloyne et al. (2019) that the investment of large firms

paying dividends are inelastic to interest rate changes.9 Similarly, Crouzet and Mehrotra

(2020) found large firms are less cyclically sensitive than small firms.10 Also, there exists

survey evidence that supports interest-inelasticity of firm-level investments. According to

8All the macro variables are at annual frequency and are HP-filtered with smoothing parameter 6.25
following Ravn and Uhlig (2002). In calculation of the fraction of investment spikes, a firm’s consecutive
two investment spikes are considered as one spike. The impulse response is obtained from the orthogonalized
VAR. The impulse variable is the federal funds rate. The lag order p = 1 is chosen by AIC criterion.

9The result of Cloyne et al. (2019) combines both intensive and extensive margin responses, while the
result in this paper singles out the response in extensive margin.

10According to Crouzet and Mehrotra (2020), this discrepancy between small and large firms is not driven
by financial distress.
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Figure 3: Impulse response of spike ratios to the interest rate shocks

the survey results in Sharpe and Suarez (2013), 68% of the respondent firms do not change

their investment plan despite the interest rate drops.11 And almost 80% of the respondent

firms do not change their investment plans unless the interest rate jumps up more than

3%. Considering the survey respondents are large firms that hire CFO for their financial

management, the reported inelastic investments to interest rate change are consistent with

the result of VAR analysis in this paper.

However, the VAR analysis does not rule out the possibility that other exogenous vari-

ations than TFP can simultaneously affect the spike ratio and the interest rate. Therefore,

the result obtained from the VAR is about a correlation rather than a response to the pure

interest rate change. For the sharp identification of heterogeneous interest-elasticity in the

extensive margin, I construct an exogenous monetary policy shock following Jeenas (2018)

and Ottonello and Winberry (2020). The monetary policy shock is obtained by time aggre-

gating high-frequency monetary policy shock identified from the unexpected jump (drop) in

the federal funds rate during a 30-minutes window around the FOMC announcement.12 To

capture the unexpected component in the federal funds rate, I use the change in the rate

implied by the current-month federal funds futures contract. All the data on the timings of

the FOMC announcement and the high-frequency surprise are from Gurkaynak et al. (2005)

and Gorodnichenko and Weber (2016). The sample period covers from March 1990 until

December 2009. I follow the convention that the positive monetary policy shock is an unex-

pected increase in the federal funds futures rate, so it implies the contractionary monetary

policy.

To match the data frequency between the firm-level data and the monetary policy shock,

I time aggregate the monetary policy shocks. Specifically, I compute the one-year backward

11The survey was conducted by Duke University and CFO magazine, and around 1,000 companies responded
to the survey. Table A.2 summarizes the key results of the survey.

12The result is robust over the choice of a wider window (one-hour window).
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weighted average monetary policy shock at each firm’s financial yearend. The weight of each

surprise is determined by the number of days between the corresponding FOMC announce-

ment and the next FOMC announcement.13 If the next FOMC announcement was made

after the financial yearend, the days are counted until the financial yearend. By this data

joining process, a firm’s balance sheet information and the monetary policy shock is matched

at the same financial year. The weighted moving average monetary policy shock is plotted

in Figure B.1.

To study the heterogeneous firm-level investment responses in the extensive margin to the

monetary policy shock, I estimate the following probit regression separately for large firms

and small firms.

P(spikei,t) = βMPt + αi + αs,t + Ω′Controli,t + ηi,t, ηi,t ∼iid N(0, σ)

where MPt is the monetary policy shock, αi is the firm i fixed effect, and αs,t is the sector-year

fixed effect. The control variables include the current account and current liability normalized

by total asset, log of total asset (size), and log of sales. The standard errors are two-way

clustered across sectors and years.

Dependent variable: P(spikei,t)
Large Small

MPt -0.0022 -0.0124
( 0.0306 ) ( 0.0063 )

Observations 7,635 84,300
Psuedo R2 0.0501 0.0511
Firm Fixed Effect Yes Yes
Sector-year Fixed Effect Yes Yes
Firm-level Control Yes Yes
Two-way Cluster Yes Yes

Table 3: Persistence in inaction durations

Table 3 reports the coefficient of the monetary policy shock in the probit regression sepa-

rately for large and small firms with the standard errors in the bracket. In the estimated result,

a contractionary (expansionary) monetary policy shock significantly reduces (increases) the

probability of making large-scale investment for small firms while large firms stay unaffected.

From the marginal effect analysis on the estimated probit regression, I find one basis point

increase in the monetary policy shock (from zero) is associated with around 2% drop in the

13A higher weight is assigned for a monetary policy shock when there was greater amount of time for a
firm to respond to the shock (Ottonello and Winberry, 2020).
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probability of making lumpy investments for small firms. The same variation in the monetary

policy shock is associated with only negligible variation in the large firms’ investments in the

extensive margin.

The interest-inelasticity of large firms’ investments in the extensive margin has an im-

portant macroeconomic implication in the aggregation of micro-level investments. Under the

presence of interest-inelasticity, micro-level lumpiness does wash out after aggregation as the

timings of lumpy investments are not smoothed by the interest rate changes over the business

cycle. Therefore, the micro-level lumpiness leads to macro-level lumpiness after aggregation.

This macro-level lumpiness generates nonlinear aggregate fluctuations in the economy. In the

quantitative analysis section, using the heterogeneous-firm business cycle model, I analyze

the role of interest-inelastic lumpy investments of large firms on the business cycle.

2.3 Insensitivity of large firms’ lumpy investments to idiosyncratic

TFP shock

In this section, I show investments of large and small firms have different sensitivity in

extensive margin to their idiosyncratic TFP shocks. For this empirical analysis, I measure

the firm-level TFP following Ackerberg et al. (2015). The detailed steps for the firm-level

TFP estimation are described in Appendix C.

Specifically, I implement an event study separately for large and small firms to study the

response of capital adjustment in extensive margin to the shock in the firm-level TFP. The

probit regression for the event study is specified as follows:

P(spikei,t) =
3∑

τ=−4

βτ I{τ = t}+ αindustry + αyear + εi,t, εi,t ∼iid N(0, σ)

where τ = 0 is the event time, and spikei,t is a binary variable indicating whether a firm

makes a large-scale investment in extensive margin. The event is defined as a firm-specific

year when an innovation in the firm-level TFP deviates more than one standard deviation

from zero. The innovation in TFP (TFPinnovation) is obtained from the residuals after

fitting the TFP process into AR(1) process:

TFPi,t = ρTFPi,t−1 + TFPinnovationi,t

The periods of interest are from four years prior to the event until three years after the event.

Full observations of eight years around the event (including the event year) are required to

be included in the sample.

14



Each panel of Figure 4 plots the estimated coefficients βτ of large and small firms (solid

line) and its 95% confidence interval (dashed line) around the event time τ = 0, for both

positive event (panel (a) and (c)) and negative event (panel (b) and (d)). The dotted line is

the time series of average idiosyncratic TFP across firms around the event.

As can be seen from panel (a) and (b), large firms’ extensive-margin adjustment does

not significantly respond to idiosyncratic productivity shocks. In contrast, small firms dis-

play strong responsiveness to both positive and negative idiosyncratic productivity shocks as

shown in panel (c) and (d). For a positive innovation in the firm-level TFP, the small firms’

probability of making large-scale investment jumps up by 10%. For the negative innovation

in the firm-level TFP, the small firms’ probability of making large-scale investment drops by

14%.
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(a) Large firms around positive event
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(b) Large firms around negative event
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(c) Small firms around positive event
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(d) Small firms around negative event

Figure 4: Event study: sensitivity to idiosyncratic TFP innovation

For the robustness check, I estimate the firm-level TFP in two other ways: one is from

Solow residuals and the other is from Olley and Pakes (1996). The results stay unchanged

for these alternative TFP measures. The results based on the other two TFP measured are

reported in Appendix D.

To sum up the results, the extensive-margin investments of small firms strongly respond

to idiosyncratic productivity shocks. In contrast, large firms’ extensive-margin adjustments
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do not strongly respond to idiosyncratic productivity shocks. This insensitivity possibly

comes from difficulty of catching a sudden investment opportunity for large firms relying on

capital budgeting for their internal resource allocations. The detailed discussion for why this

insensitivity arises will be made in section 2.5.

Heterogeneous sensitivity to idiosyncratic TFP shock is important in aggregate investment

dynamics because it determines an allocation’s speed of reversion to a steady-state level. If

an aggregate TFP shock hits an economy, the distribution of micro-level allocations departs

from the stationary distribution. Then, large firms with low sensitivity to an idiosyncratic

shock converge slower to the stationary allocation than small firms do.

2.4 Firm-level persistence in inaction duration

In this section, I document large firms’ inaction duration of capital adjustment is highly

persistent across periods.

Figure 5 plots the distributions of inaction periods between neighboring spiky investments

for large and small firms.14 Large firms’ inaction durations are longer than small firms’

inaction durations on average by around a year and have a fatter tail in the distribution.
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Figure 5: Distribution of inaction durations

To study underlying regularity in the lumpy investment timings at the firm level, I compare

each firm’s inaction duration with the lagged inaction duration. Specifically, I check how well

aligned the inaction duration and the lagged duration are along the 45-degree line in a scatter

plot. To this end, I fit the inaction duration into autoregressive process. Table 4 reports the

AR(1) regression results for logged inaction periods (t2Inv) of large and small firms. Inaction

duration (t2Inv) at t is defined as a time interval (in years) between the spike at period t and

the most recent investment spike. The numbers in the bracket are the standard errors. Both

types of firms have fairly high persistence in the inaction durations. The level of persistence

is even higher than the measured persistence in the firm-level productivity shocks that is

14 Consecutive investment spikes are assumed to have no inaction periods.
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around 0.58 (Bachmann and Bayer, 2013). 15

Dependent variable: log(t2Invi,j)

All Large Small

log(t2Invi,j−1) 0.885 0.889 0.884

(0.007) (0.017) (0.008)

Large - Small 0.005

(p-value) ( 0.782 )

Observations 5,338 842 4,496

Table 4: Persistence in inaction durations

To summarize the results, the inaction durations are highly persistent across periods for

both large and small firms. The high persistence in the inaction duration has an important

macroeconomic implication for aggregate investment dynamics: once firms’ investment tim-

ings are synchronized, the timings are persistently synchronized. Also, it takes long time for

firms to revert back to the stationary distribution once they deviate from it.

2.5 Why some firms are insensitive? Capital budgeting

It [i.e., capital budgeting] sucks the energy, time, fun, and big dreams out of

an organization. It hides opportunity and stunts growth. It brings out the most

unproductive behaviors in an organization, from sandbagging to settling for medi-

ocrity.

— Jack Welch, General Electric

In this section, I suggest a possible economic explanation for insensitivity of large firms’

lumpy investments to interest rate changes and investment opportunities. A chief financial

officer (CFO) of a firm faces complicated inflow and outflow of capital during the firm’s

operation. Thus, having the capital flow under complete control is one of the most important

things to do for the position. For this, most of CFO’s rely on capital budgeting for their

decision on capital allocation and investment plan for longer horizon than a year. According

15The implied level of average persistence in inaction duration in Khan and Thomas (2008) is around 0.7.
Calibration used in Gourio and Kashyap (2007) gives slightly higher persistence around 0.75, but it does not
achieve the observed high persistence level in the data.
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to a survey conducted by Ekholm and Wallin (2000) towards 650 Finnish companies with

a turnover greater than 16.7 million euros, 86% of respondents answered they use annual

capital budgeting. In the survey conducted by Ryan and Ryan (2002) towards Fortune

1000 companies, they found 99.5% of the respondents answered they use capital budgeting.

Likewise, capital budgeting is a universal tool for CFO’s to plan and evaluate an investment

project.

However, as pointed out in the quote from Jack Welch, a former CEO of General Electric,

the budgeting process often involves inflexibility that possibly leads to decision lags. Yang

et al. (2020) showed how structured decision making such as capital budgeting can affect

the decision lags. According to Yang et al. (2020), CEOs at large firms make a decision

based on significantly more structured style than CEOs at small firms. In their estimates, a

one standard deviation increase in the score of structured style is associated with a 1.92-fold

increase in firm size. Then, they found structured decision-making process takes longer time

than unstructured (intuition-driven) process. A one standard deviation increase in the score

of structured style is associated with 28% longer time required to reach a decision. This

indicates that large firms tend to display decision lags on average due to their structured

style of decision making. This does not imply the structured decision making is inefficient.

Rather, Yang et al. (2020) points out that the structured style helps making a greater number

of decisions than the unstructured style. It could be understood as large firms adopt the

structured style due to a great number of issues to deal with, and this leads to decision lags.

This gives an explanation on why large-scale investment timings of large firms are insensitive

to a change in the real interest rate.

In a survey from Duke University/CFO Magazine Business Global Outlook completed

by around 800 CFO’s of the U.S. companies reported by Sharpe and Suarez (2013), 89% of

respondents answered they would not change investment plan despite more than 3 percentage

point decrease in the interest rate.16 The reason for interest-inelasticity is summarized in

Table 5. Among those who answered that their reasons are non-financing related, nearly half

of CFO’s answered that it is because their investment plans are set on long-term basis.17

This answer shows inflexible lumpy investment timings due to long-run planning horizon

in capital budgeting process. The second largest group of CFO’s chose lack of profitable

investment opportunities as a reason for their interest-inelastic investment plans. This can

1680% of respondents answered they would not change investment plan despite more than 3 percentage
point increase in the interest rate.

17For the financing related reasons, 32% of all respondents answered they are interest-inelastic because their
firms are financially unconstrained, and 27% of all respondents answered that it is because their hurdle rate
from capital budgeting is already higher than interest rate. Around 35% of respondents chose non-financing
related answers.
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be also attributed to a limitation in capital budgeting practice that might have masked good

opportunities according to Jagannathan et al. (2016).

Q. Reasons for not changing investment plan despite the interest rate change
(among respondents who chose non-financing related answers)

Reasons Despite price drop Despite price jump

Based on long-term plan, not current rates 49% 47%
Lack of profitable opportunities 29% 31%
High uncertainty 9% 3%
Firm is not capital intensive / Other 14% 19%

Table 5: CFO survey results (Sharpe and Suarez, 2013): inelasticity to interest rate changes

Consistently, Ekholm and Wallin (2000) found from their survey that “incapability of

signaling changes in the competitive environment” is the most agreed problem among CFO’s

in annual capital budgeting convention. This incapability makes firms insensitive not only to

price fluctuations, but to investment opportunities. Then, it is natural that the firm sticks

to their convention of investment routines, displaying high persistence in inaction periods.18

The insensitivity to competitive environment including investment opportunity and in-

terest rate change, is not only an issue to CFO’s in large firms. It matters also for the whole

economy, as it leads to nonlinear dynamics of aggregate investments once aggregated. In the

next section, I model this firm-level insensitivity by introducing a technological restriction

that disturbs a nimble reaction to changes in operating environments including idiosyncratic

productivity and interest rate.

3 Model

I develop and analyze a heterogeneous-firm real business cycle model that captures the em-

pirical findings of this paper.

In the model, time is discrete, and lasts forever. There is a continuum of measure one of

firms that own capital, produce business outputs, and make investment. The business output

can be reinvested as capital, after a firm pays adjustment costs.

18The surveys I included in this section did not explicitly distinguish large and small firms except for Yang
et al. (2020). However, all the respondents are CFO’s of firms. Assuming firms that hire CFO are on average
large firms, the evidence supports the claim of this paper.
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3.1 Technology

A firm owns capital. It produces a unit of goods that can be converted to a unit of capital after

an adjustment cost. The production technology is a Cobb-Douglas function with decreasing

returns to scale:

ztAtf(kt, lt) = ztAtk
α
t l
γ
t

where kt is capital input; lt is labor input; zt is idiosyncratic productivity; At is aggregate

TFP, and α+γ < 1. Idiosyncratic productivity zt and aggregate TFP At follow the stochastic

processes as specified below:

ln(zt+1) = ρzln(zt) + εz,t+1, εz,t+1 ∼iid N(0, σz)

ln(At+1) = ρAln(At) + εA,t+1, εA,t+1 ∼iid N(0, σA)

where ρi and σi are persistence and standard deviation of i.i.d innovation in each process

i ∈ {z, A}, respectively. Both of stochastic processes are discretized using the Tauchen

method for computation.

3.1.1 Investment stage policy

I assume a large-scale investment could be made only after s > 0 investment stages are

completed, and accelerating completion of stages takes time and costs. s could be interpreted

as a number of bureaucratic steps in capital budgeting, such as meetings of the board of

directors for the large-scale investment decisions.19 From now on, I describe the model without

time subscript for the simpler notation. Instead, a future period’s allocation is marked with

a prime. Without a prime, the variable is for the current period. Due to the recursive nature

of the problem, my model can be fully characterized without time index.20

In the beginning of a period, a firm is given with the number of completed stages s.

I assume s takes discrete nonnegative integer value.21 If s = s, the firm reached at the

completion period of the large investment. A manager chooses the number of stages b > 0

to process within the current period. s′ = s + b is the number of total stages completed by

the end of the current period. b = 0 implies no change in the given stage s. After a large

investment is made, I assume the stage starts again from stage 1. Thus, the future stage s̃′

19In a framework of the optimal internal capital allocation studied in Malenko (2019), this could be under-
stood as an auditing process for large-scale investment project.

20With time index, the notation in the model can become highly complicated due to coexistence of calendar
time and planning horizon.

21All the results are unaffected in the choice of discrete or continuous stage assumptions.
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is equivalent to s′ such that s̃′ ≡ s′ (mod s).22

Completion of one stage per period does not incur a cost. However, completion of multiple

stages in a period entails convexly increasing cost, which I name as acceleration cost, specified

in the following form:

(Acceleration Cost) acc(s′, s, k) := I{s′ > s+ 1}
(
µa

2
(s′ − s− 1)2

)
k2

where s′ is the targeted future stage, and µa is the acceleration cost parameter. The timing

of capital adjustment in extensive margin has been only implicitly determined in the models

with fixed cost. In contrast, firms that are subject to acceleration cost explicitly determine

the optimal timing of lumpy investment. If a firm faces higher acceleration cost, a firm’s

nimble capital adjustment is costly. Thus, it becomes less sensitive to surrounding economic

environment such as interest rate changes. To capture large firms’ inelastic capital adjustment

observed from data, I assume that 1) acceleration cost convexly increases over the size of a

firm, and 2) hazard rate decreases over firm size. Therefore, large firms face large acceleration

cost. The hazard rate is explained later more in detail.

Firms that face extremely high acceleration cost will behave as if they are strictly bound

by timing constraints. For these firms, the acceleration cost imposes a similar restriction as

time-to-build or time-to-plan constraints (Kydland and Prescott, 1982).

3.1.2 Stage-contingent investment

When the stage is incomplete, s′ ≤ s, I assume a firm can invest/disinvest only a small portion

of the owning capital stock, following Khan and Thomas (2008) and Winberry (2018). This

is also a similar setup as Malenko (2019), where the optimal allocation of capital within a

firm follows a threshold rule. According to the paper, divisional managers are allocated with

a discretionary account below a threshold in the optimal budgeting. Large-scale investments

beyond the threshold needs to be audited by headquarters. The costly auditing process is

equivalent to the acceleration cost in this paper.

A firm’s capital stock evolves in the following law of motion if s′ ≤ s:

k′ = (1− δ)k + I, I ∈ Ω(k) := [−νk, νk]

where investment entails a convex adjustment cost c(k, I) = µI
2

(
I
k

)2
k as in Winberry (2018).

The convex adjustment cost is considered to mitigate intensive-margin elasticity of firm-level

investment to the interest rate change. Note that investment is restricted to [−νk, νk], and

22According to this notation, s = 0 is equivalent to s = s.
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0 < ν < δ. In this setup, a firm’s capital stock does not reach a steady-state, and a firm’s

investment follows (S, s) rule in the optimal policy.

When the stage is complete, s′ > s, a firm can make a large-scale investment or disinvest-

ment. Thus, a firm’s capital stock evolves in the following law of motion if s′ > s:

k′ = (1− δ)k + I, I ∈ (−∞,∞)

where investment entails a convex adjustment cost c(k, I) = µI
2

(
I
k

)2
k.

3.1.3 Hazard function

I introduce hazard function that determines exit rate for firms. According to Clementi and

Palazzo (2016), the exit rate exponentially decreases as a firm grows older. In my model,

age is not explicitly considered as a state variable. However, by introducing an exponentially

decreasing hazard function over firm size proxied by capital stock k, old firms are large on

average, consistent with the empiric observation. On top of this, I assume that exiting firms

are replaced by the same new firms. This is to purely focus on lumpy investments’ role

on aggregate fluctuations without heterogeneous entry and exit over business cycle. The

assumed functional form of hazard function h is as follows:

h(k) := h ∗
(

1 +
1

exp(k)

)
where h is the parameter that determines the entire level of exit rate. I calibrate this param-

eter by matching the average exit rate 6.2% in Clementi and Palazzo (2016).

3.2 Timing decision for large-scale investment: intensive margin

in the extensive margin

Given the acceleration cost, a firm’s timing decision for large-scale investment becomes sub-

stantially different from the one in the model with fixed cost. In the latter, firm-level large-

scale investment is a binary decision to make it today or not. In contrast, in the model

of acceleration cost, there is an additional dimension: an intensive margin in the extensive

margin. On top of the decision on whether to make a large-scale investment today or not

(extensive margin), a firm needs to decide how further to go with respect to investment stages

(intensive margin in the extensive margin).

If a firm processes multiple stages today, a firm can reach a better stage in the future for a

large-scale capital adjustment. However, the trade-off is convexly increasing acceleration cost.
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Regardless of whether a firm makes a large-scale investment today or not, this decision is

necessary in every period. This captures the long-run horizon of investment plans consistent

with the survey results in section 2.5.

The investment timing decision can be summarized as the following problem. To capture

the core mechanism, I assume the small-scale investment is zero (ν = 0) and the hazard

rate is zero in this formulation. Given a firm’s value function J(k, z, s) where k is capital

stock; z is firm-level idiosyncratic productivity; and s is the number of stages completed, the

investment timing decision is as follows:

max{ max
s′>s︸︷︷︸

Ext. margin - large

−I∗−
Int. margin in ext. margin︷ ︸︸ ︷

acc(s′, s, k)w +
1

1 + r
EJ(k(1− δ) + I∗︸ ︷︷ ︸

Int. margin - large

, z′,

Int. margin in ext. margin︷ ︸︸ ︷
s′ (mod s) ),

max
s′≤s︸︷︷︸

Ext. margin - small

−
Int. margin in ext. margin︷ ︸︸ ︷

acc(s′, s, k)w +
1

1 + r
EJ( k(1− δ)︸ ︷︷ ︸

Int. margin - small

, z′,

Int. margin in ext. margin︷ ︸︸ ︷
s′ (mod s) )}

where I∗ stands for the optimal large-scale investment; r and w are interest rate and wage. In

this formulation, a firm first decides whether to make a large-scale investment today (s′ > s)

or not (s′ ≤ s). This decision problem is the choice between payoffs from the first and the

second line. Then, the firm needs to decide how many stages to process given the tradeoff

between acceleration cost and the value gain from future investment stage. In this decision,

an acceleration of investment stage does not give a flow payoff to the firm in the next period.

Instead, it guarantees a better capital adjustment stage in the next period. In this regard,

the model with acceleration cost captures a firms’ long-run preparation steps for investments.

Therefore, the nature of a firm’s problem is starkly distinguished from the problem in

the models with fixed cost. In the models with fixed cost, firms determine whether to make

a large-scale investment in the current period or not. In this decision making, large-scale

investment does not require a preparation step, so firms respond more sensitively in extensive

margin to interest rate changes.

Specifically, in the acceleration cost model, the spike ratio for firms greater than a size
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threshold k, is as follows:23

SpikeRatio(k) =

∫
I{s′(k, z, s) > s} I{k > k}

Φ(k > k)
I
{
I(k, z, s)

k
> 0.2

}
︸ ︷︷ ︸

=: M(k, z, s)

dΦ

where the first indicator function specifies the condition that firms complete the whole in-

vestment stages. The second indicator specifies the firm size requirement, and the third

indicator is for investment size requirement. The given distribution of each firm’s individual

state (k, z, s) is denoted by Φ. For brevity, I define M(k, z, s) as the product of the last two

indicator functions.

Firms that satisfy the condition in the first indicator function s′ > s can be categorized

into two groups: 1) firms that are ready for a large-scale investment (s = s) and 2) firms that

accelerate the stages for a large sale investment (s′ < s and s′ > s).

SpikeRatio(k) =

∫  I{s = s}︸ ︷︷ ︸
Firms that are ready

+ I{s < s}I{s′(k, z, s) > s}︸ ︷︷ ︸
Firms that accelerate

M(k, z, s)dΦ

For the notational brevity, I denote the expected value when a firm makes large-scale in-

vestment as EJ and the expected value when a firm does not make a large-scale investment

as EJ c. For firms that accelerate for their large-scale investment, the marginal benefit of

acceleration is greater than the marginal cost from the acceleration:

1

1 + r
(EJ − EJ c)− I∗︸ ︷︷ ︸

Marginal benefit

>
µacc

2
(s− s)k2︸ ︷︷ ︸

Marginal cost

Therefore, the spike ratio could be formulated as follows:

SpikeRatio(k) =

∫  I{s = s}︸ ︷︷ ︸
Invariant over ∆r

+I{s < s} I
{

1

1 + r
(EJ − EJ c)− I∗ > µacc

2
(s− s)k2

}
︸ ︷︷ ︸

For large k, few firms are responsive to ∆r

MdΦ

The first term in the bracket is invariant over the contemporaneous interest change. As k

increases, a mass of firms that accelerate decreases. It is because large capital stock k > k

23Consistent with the empirical section, I define spike ratio as the fraction of firms making investment
greater than 20% of existing capital stock.
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makes the marginal cost of acceleration greater than the marginal benefit for a great portion

of the firms. Therefore, for large firms, the spike ratio is dominantly driven by firms that

are already at the last stage for their lumpy investments, so it is highly interest-inelastic in

the model with acceleration cost. On the other hand, the spike ratio in the fixed cost model

becomes highly responsive to the interest rate change regardless of the size as formulated in

Appendix E.

3.3 Nonlinear size effect on interest-inelasticity

In the model, the acceleration cost is assumed to convexly increase in the size of a firm’s capital

stock. In this section, I study whether this convexity assumption is empirically supported

from the data.

Figure 6 illustrates the stationary distribution of the capital stocks in the model and

interest-inelasticity in the thick curve. Due to convexly increasing acceleration cost in size,

the interest-inelasticity of a firm’s investment timing convexly increases. Hence, the model

predicts that medium sized firms and small sized firms are not distinguishable in terms of

their interest-inelasticity. This is an empirically testable model implication. So, I set two

cutoffs k0 and k1 in the capital distribution to define small and medium firms. Specifically,

I set k0 as the 50th percentile and k1 as the 80th percentile of capital distribution for each

two-digit NAICS industry. Thus, small firms are the firms holding capital stock k such that

k < k0, and medium sized firms are the firms holding capital stock k such that k0 < k < k1.

Density Inelasticity

𝑘"𝑘! "𝑘"

Figure 6: Capital distribution and interest-inelasticity in the model

Then I run the same VAR analysis as in the section 2.2 for small and medium size firms

for an interest rate shock. Figure 7 plots the impulse responses of the spike ratio of small and

medium firms. Both of the firms display significant drops in the spike ratios, and the difference

between two responses are statistically insignificant. The responses are starkly different from
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the inelastic response of the large firms as shown in Figure 3. From this evidence, I claim the

acceleration cost’s convexity in capital size is empirically supported.
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Figure 7: Impulse response of spike ratio for small and medium firms

3.4 Firm’s problem: recursive formulation of baseline model

A firm is given with capital k, an idiosyncratic productivity z, and the number of completed

stages s in the beginning of a period. Also, they are given with the knowledge on the

contemporaneous distribution of firms Φ and the aggregate TFP level A. For each period,

firm determines investment level I, labor demand ld, and when to make a large investment

by choosing next period’s investment stage s′. A manager of a firm can decide either to get

closer to the larger investment period (s′ > s) or delay (s′ = s) the process. A firm’s problem

is formulated in the following recursive form:

J(k, z, s; Φ, A) = π(z, k; Φ, A) + max{

max
s′>s,I
{−I − c(k, I)− acc(s′, s, k)w(Φ, A) +

1− h(k)

1 + r(Φ, A)
EJ(k′, z′, s′ (mod s); Φ′, A′)},

max
s≤s̃′≤s,Ic∈Ω(k)

{−Ic − c(k, Ic)− acc(s̃′, s, k)w(Φ, A) +
1− h(k)

1 + r(Φ, A)
EJ(k′c, z′, s̃′; Φ′, A′)}}
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(Operating Profit) π(z, k; Φ, A) := max
ld

zAkαlγd − w(Φ, A)ld (ld: labor demand)

(Convex Adjustment Cost) c(k, I) :=
µI

2

(
I

k

)2

k

(Acceleration Cost) acc(s′, s, k) :=

[
I{s′ > s+ 1}

(
µa

2
(s′ − s− 1)2

)]
k2

(Constrained Investment) Ic ∈ Ω(k) := [−kν, kν] (ν < δ)

(Aggregate Law of Motion) Φ′ := H(Φ, A), A′ = GA(A) (AR(1) process)

(Hazard rate) h(k) := h ∗
(

1 +
1

exp(k)

)
(Idiosyncratic Law of Motion) z′ = Gz(z) (AR(1) process)

where J denotes the value function of a firm; ld is a labor demand; w is wage; r is real

interest rate; c(k, I) is a convex adjustment cost, and acc(s̃′, s) is an acceleration cost. z and

A are idiosyncratic and aggregate productivities, respectively. The prime in superscript of

each variable indicates that the variable is for the next period.

3.5 Household

A stand-in household is considered. The household consumes, supplies labor, and saves. In

the beginning of a period, the household is given with wealth level a, information on the

contemporaneous distribution of firms Φ, and the aggregate TFP level A. The household

problem is as follows:

V (a; Φ, A) = max
c,a′,lH

log(c)− ηlH + βEA′V (a′; Φ′, A′)

s.t. c+
a′

1 + r(Φ, A)
= w(Φ, A)lH + a

G(a,Φ) = Φ′

GA(A) = A′

where V is the value function of the household; a is a current saving level; Φ is a distribution

of firms; A is an aggregate productivity; c is consumption; a′ is a future saving level; lH is

labor supply; w is wage, and r is real interest rate. Household is holding the equity of firms

as their asset. Following Bachmann et al. (2013) and Khan and Thomas (2008), I assume

labor supply is indivisible.
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3.6 Cyclical competitive equilibrium

I define cyclical competitive equilibrium that conceptually extends conventional stationary

recursive competitive equilibrium. This equilibrium includes aggregate allocations’ station-

ary cycle as a possible equilibrium outcome. When the length of stationary cycle’s period

is one, the cyclical competitive equilibrium collapses to a stationary recursive competitive

equilibrium. A stationary endogenous cycle is one theoretical possibility an acceleration cost

model can lead to when a group of firms’ lumpy investment timings are independent from

idiosyncratic stochastic process. The stationary cycle in cyclical competitive equilibrium will

be studied in Section 6. I provide a version without aggregate uncertainty. The extension to a

stochastic version is not different from an extension of the stationary competitive equilibrium

to the recursive competitive equilibrium. The cyclical competitive equilibrium is defined as

follows.

Definition 1 (Cyclical competitive equilibrium).

(gc, ga, glH , gk, gl, gb, V, J,G, r, w,Φ, n
∗) are cyclical general equilibrium if

1. gc, ga, glH , V : R × D × R → R, solve the household’s problem. Note that D is a set

of all probability measures Φ defined on the cartesian product of the sigma algebras

K ×Z × S generated from (K,Z,S).

2. gk, gl, J : K× Z× S×D×R→ R, gb : K× Z× S×D×R→ {0, 1, 2, ...} solve a firm’s

problem.

3. Define gs : K× Z× S× D× R→ S, s.t. gs(k, z, s; Φ) = s+ gb(k, z, s; Φ).

(gk, gs)(Φ)(k, z, s) :=

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{gk(k, z, s) ∈ K}I{gs(k, z, s) ∈ S}dΦ(k, z, s)

for any set (k, z, s) in the σ-algebra (K,Z,S) generated from the domains (K,Z,S) and

(gk, gs)
n(Φ) = (gk, gs)((gk, gs)

n−1(Φ)), for any n ∈ {1, 2, 3, ...}, and Φ ∈ D.

There exist n∗ ≥ 1, and Φ0 ∈ D, s.t. (gk, gs)
n∗(Φ0) = Φ0.

And define Φn := (gk, gs)
n(Φ0) for n ∈ {0, 1, 2, ..., n∗ − 1}.

4. Market Clearing: for ∀n ∈ {0, 1, 2, ..., n∗ − 1}

(Labor Market) glH(a; Φn) =

∫
gldΦn

(Equity Market) a =

∫
J(k, z, s; Φn)dΦn
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5. Consistency Condition:

Φ′ = G(a,Φ) = (gk, gs)(Φ), for ∀Φ ∈ D

It is worth to note that the length of the equilibrium cycle n∗ is an endogenous equilibrium

object in the definition. When n∗ = 1, the equilibrium allocations are at a stationary point.

If n∗ > 1, the equilibrium allocations form a stationary cycle. The markets are required to

clear for entire n∗ periods within a cycle.

For convenient computation, I use a technique in Khan and Thomas (2008) that solves a

firm’s problem with normalized value function J̃ instead of J , where J̃(·; Φ, A) := p(Φ, A)J(·; Φ, A)

and p(Φ, A) = u′(c(Φ, A)). Then, wage and real interest are simultaneously determined by

dynamics of p(Φ, A). Therefore, p(Φ, A) is the only price to be computed in the outer loop.

Under the aggregate uncertainty, stochastic general equilibrium is hard to compute due

to two problems: 1) infinite dimension of state variable Φ, and 2) nonlinear dynamics in

aggregate allocations and prices. Due to the latter concern, the celebrated algorithm of

Krusell and Smith (1998) is not helpful in the computation of stochastic general equilibrium.

To overcome this difficulty, I use a computation method called repeated transition method

which I am concurrently developing in Lee (2020). This method can solve heterogeneous agent

model under aggregate uncertainty without relying on parametric form of the law of motion.

I elaborate the method in section 5.4.

4 Calibration

The core parameters to be calibrated are acceleration cost and adjustment cost parameters.

All the parameters are set at the level that matches simulated moments with target moments

except for the parameters of firm-level idiosyncratic productivity process. I fix non-core

parameters at the reasonable level consistent with the literature. The labor supply parameter

η is set at the level that gives labor participation rate around 60%. The fixed parameters are

summarized in Table F.3.
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Target Moments Data Model Reference

Persistence of inaction periods 0.88 0.88 Compustat data

Average inaction periods (years) 5.98 5.54 Compustat data

Cross-sectional average of it/kt ratio (%) 10.4 9.9 Zwick and Mahon (2017)

Cross-sectional dispersion of it/kt (s.d.) 0.16 0.15 Zwick and Mahon (2017)

Cross-sectional average spike rate (%) 14.4 17.7 Zwick and Mahon (2017)

Cross-sectional average hazard rate (%) 6.20 7.23 Clementi and Palazzo (2016)

Autocorrelation of Yt 0.94 0.90 NIPA data (Annual)

sd(It)/sd(Yt) 1.98 1.79 NIPA data (Annual)

Table 6: Fitted Moments

First, I estimated parameters for firm-level idiosyncratic productivity process outside of

the model from Compustat data. The detailed steps for firm-level TFP estimation is explained

in Appendix C. Using the estimated firm-level TFP, I run a pooled autoregression, and the

parameters of the autoregressive process are ρ = 0.55 and σ = 0.18. In the computation, the

idiosyncratic process is discretized using the Tauchen method with 7 grid points.

Then, I calibrate parameters from stationary equilibrium allocations. Matching the av-

erage inaction period of 5.98 years, I calibrate the required number of stages s = 4. From

the average persistence of inaction duration 0.88, the acceleration cost parameter is set as

µacc = 0.052.24

Zwick and Mahon (2017) summarizes statistics on firm-level investment rates using IRS

data. I used the empirical moments reported in Appendix B.1 in Zwick and Mahon (2017)

as the target moments for investment rates. From the average investment rate 14.4%, I set

µI = 0.580. From the average spike rate (%), the small investment range parameter ν = 0.030

is calibrated.25 The hazard rate parameter h = 0.0565 is identified from average exit rate, and

the level is matched to 6.2% as studied in Clementi and Palazzo (2016). I found this cross-

sectional parameter setup gives a close match in an untargeted moment: the cross-sectional

dispersion of investment rate.

Aggregate moments are matched in the dynamic stochastic general equilibrium. From the

autocorrelation of output obtained from BEA data, I calibrate the autocorrelation parameter

of the aggregate TFP process ρA = 0.8145. From the volatility of private domestic investment

relative to output volatility, I set the aggregate TFP volatility parameter σA = 0.027. Based

24Persistence of inaction duration is autoregression coefficients of inaction duration obtained from U.S.
Compustat data.

25Spike rate (%) is the percentage of firms making lumpy investments.
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on these paramters, the aggregate TFP process is discretized using the Tauchen method with

5 grid points.

The fitted moments are summarized in Table 6, and the fitted parameters are reported in

Table 7.

Parameters Description Value

µacc Baseline acceleration cost 0.052
s Investment completion stage 4
µI Baseline adjustment cost 0.580
ν Small investment range 0.030
h Hazard rate 0.0565
σA Standard deviation of aggregate TFP shock 0.027
ρA Persistence of aggregate TFP 0.8145

Table 7: Calibrated Parameters

5 Quantitative analysis

5.1 Echo effects in post-shock period

In this section, I quantitatively analyze state-dependent impulse response of aggregate in-

vestments to an aggregate TFP shock in the general equilibrium framework.

A novel feature of the acceleration cost model is that impulse response of aggregate

investment displays echoes in the post shock periods in general equilibrium. Figure 8 plots

impulse responses of aggregate investment in the baseline model for both partial and general

equilibrium (panel (a)); its growth in general equilibrium (panel (b)); and impulse response

of average investment stages in general equilibrium (panel (c)). The impulse response is

obtained from nonlinear method that computes transition path from a shock period to the

stationary period as described in Boppart et al. (2018).26 All the responses are expressed in

terms of percentage deviations from the steady-state level.

As can be seen from panel (a), general equilibrium effect only partially dampens the

response of aggregate investment. Upon impact, aggregate investment drops by 8.3% in

partial equilibrium and drops by 6.6% in general equilibrium. Thus, the factor price decreases

contemporaneous response by only 20%(≈ 100 ∗ (1 − 6.6/8.3)). In contrast, in models with

fixed cost, general equilibrium effect dampens the contemporaneous response by around 6

folds (≈ 83%).27 This difference is due to large firms’ inelasticity to interest rate fluctuations

26Certainty equivalence is assumed in the impulse response by the nature of MIT shock.
27Strong general equilibrium effects in models with fixed cost are compared in Figure 13
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(c) Average investment stages

Figure 8: Echo effects in the impulse responses

in the acceleration cost model.

In the post-shock period, aggregate investment gradually recovers to the stationary level.

Along the recovery path, there are both trend of recovery and oscillation around the trend. I

refer to the oscillation as echo effect. The magnitude of the oscillation in aggregate investment

decays overtime, and its magnitude ranges from -6.6% to 2.2% of the stationary level. As

shown in panel (b) and (c), the impulse responses of aggregate investment growth rate and

average investment stages also display echo effects. For both of the responses, the lowest is

at the fifth period from the shock after a shock period. This lowest point is the timing where

an economy becomes the most fragile to another negative aggregate TFP shock. This will be

studied more in detail in the next section.

On impact of a negative aggregate shock, firms that are ready to adjust capital stock in

extensive margin tend to delay their adjustment to escape from low aggregate TFP.28 There-

28If a positive aggregate TFP shock hits the economy, firms that have not considered large-scale investment
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fore, the aggregate TFP shock synchronizes firms’ large-scale investment timings. Against

this synchronized investment timing, there are two mitigating forces that spread out the tim-

ings back to the stationary equilibrium distribution. The first is factor price, and the second

is stochastic mean reversion. The first force works by making firms’ investments costlier when

more firms are investing together. In the acceleration cost model, large firms that face high

acceleration cost become insensitive to the first force because large acceleration cost already

strongly constrained these firms’ investment timing. Thus, there is only little room for factor

price to affect further the constrained investment timing. Therefore, interest rate dynamics

does not fully mitigate the synchronized investment timings among large firms.

The second force, stochastic mean reversion flattens the synchronized timings by spreading

out the distribution of lengths of inaction periods. Depending on the mixing rate implied

by the idiosyncratic stochastic process, the distribution of lumpy investment timings quickly

or slowly move back to stationary distribution. In other words, the speed of convergence in

the law of large numbers is the key condition to determine whether synchronized timings of

lumpy investments can persist or not. In the calibrated acceleration cost model, the average

persistence of inaction periods are as high as in the observed level in the data (≈ 0.9). Thus,

the timings of lumpy investments revert back to stationary distribution slowly.

For the decomposition analysis, I define large firms as the top 20% largest firms. Under

this approach, 26.7% of total capital belong to large firms. Compustat space covers around

half of the total U.S. private fixed investment, and around 60% of capital stocks in Compustat

data are from large firms defined in the empirical section. So, around 30% of total capital

stock in the U.S. belongs to the large firms. Therefore, the definition of large firms as the

top 20% largest firms is consistent with the definition in the empirical analysis.29 Figure

9 visualizes heterogeneous echo effect for large and small firms in the impulse responses of

average investment stages (panel (a)) and aggregate investment (panel (b)). Heterogeneous

echo effects under the alternative definitions of large firms are reported in Figure G.4 (Top

30%) and Figure G.5 (Top 40%). Despite the difference in the magnitudes, the qualitative

results stay unchanged over the different proxies.

The echo effect is mostly driven by large firms. Panel (a) shows that large firms’ investment

timings are persistently synchronized in the post-shock period. By around 25 years later from

the shock, the synchronization is mitigated, showing the flattened path of average investment

stages. Small firms barely shows persistent synchronization due to fast mean-reversion of

inaction duration.

Panel (b) shows that large firms’ aggregate investment bounce up quickly right after the

in the shock period newly launch or accelerate their projects to utilize high aggregate TFP level.
29The model does not capture the thick tail of the firm distribution observed in the data.
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Figure 9: Heterogeneous echo effects for large and small firms

aggregate shock. Then, the aggregate investment of the large firms display oscillation ranging

from -6% to 5.7% deviation from the steady state. On the contrary, small firms’ aggregate

investment slowly recovers to the steady-state level without much oscillation.

5.2 Fragility after a surge of lumpy investments

In this section, I study how differently aggregate investments respond to a TFP shock de-

pending on the aggregate state. When an aggregate TFP shock hits the model economy,

there arise echoes of the shock in aggregate investment during the post-shock period. Then I

hit the economy with another aggregate TFP shock separately at each period on the recovery

path. For each experiment, I control the magnitude of aggregate TFP shock to equalize the

level of aggregate TFP at the shock period across the experiments.30

Figure 10 compares different impulse responses of aggregate investment depending on

where the economy is located at the time of shock. The response is strongest when the

negative aggregate TFP shock hits the economy right after the surge of aggregate investment;

the aggregate investment drops by 7.5%. The response is weakest if a shock arrives at the

surge of lumpy investments; the aggregate investment responds by 5.8%. Therefore, the

response of aggregate investment is stronger by 29% (≈ 100 ∗ (7.5− 5.8)/5.8) when a shock

hits after the surge of lumpy investments than when it does at the surge.

I make the same experiment for large and small firms, separately. Figure 11 visualizes

the state-dependent impulse response of aggregate investment for large firms (panel (a)) and

small firms (panel (b)). Large firms’ immediate response is stronger for a shock after the

surge than for a shock at the surge by around 9.7%. In contrast, small firms’ response is

stronger only by 0.5% for the same comparison. Regardless of where the economy is located,

30Specifically, I set the magnitude to set the aggregate TFP at shock period equivalent to one-standard-
deviation drop from stationary level.
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Figure 10: State-dependent impulse response of aggregate investment

small firms’ timings of large-scale investment are strongly smoothed out by real interest rate.

Thus, they display almost constant contemporaneous investment sensitivity to the aggregate

productivity shock.
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Figure 11: Heterogeneous endogenous effect

Table 8 summarizes the state-dependent contemporaneous impulse responses of invest-

ments. The ith column reports the conditioning states of the ith period from the initial aggre-

gate TFP shock and the responses when a TFP shock arrives at the ith period. The first row

represents the lagged aggregate investment expressed in terms of percentage deviations from

the steady-state level; The second row represents the lagged aggregate investment of large

firms in terms of percentage deviations from the steady-state level; The third row represents

the contemporaneous impulse response of aggregate investment; The fourth row represents

the contemporaneous impulse response of aggregate investment of large firms; And the fifth

row represents the contemporaneous impulse response of aggregate investment of small firms.
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The contemporaneous impulse response of aggregate is the largest at the fifth period after

the initial aggregate TFP shock. The fourth period display the smallest contemporaneous

impulse response.

t=+2 t=+3 t=+4 t=+5 t=+6 t=+7 t=+8 t=+9 t=+10
∆It−1 (%) -6.6 -4.8 -2.7 -2.0 -3.2 -1.5 -1.6 -0.9 -0.9

∆Ilarge,t−1 (%) -6.5 0.7 2.8 5.2 -5.7 -2.6 -1.3 0.8 -4.7
∆Iresponse,t (%) -7.3 -6.0 -5.8 -7.5 -6.2 -6.5 -6.2 -6.4 -6.4

∆Ilargeresponse,t (%) -2.6 -1.5 0.6 -9.1 -7.0 -5.7 -3.9 -9.0 -7.6
∆Ismallresponse,t (%) -8.0 -6.6 -6.7 -7.2 -6.1 -6.6 -6.5 -6.0 -6.3

Table 8: Summary of state-dependent impulse responses

The core mechanism of the state-dependent responsiveness of aggregate investment is in

the large firms’ heterogeneous investment decision. There are two situations in which a large

firm makes a lumpy investment in a period t:

(1) Firm enters period t with only one stage remaining (s = s)

(2) Firm enters period t with more than one stage remaining (s < s)

If a negative aggregate TFP shock hits the economy, large firms at situation (1) still invest,

while large firms at situation (2) do not. Therefore, the state-dependent responsiveness is

crucially determined by the fraction of large firms that have only one stage remaining for a

large-scale investment, s = s. Then, I define an investment fragility measure as follows:

Investment fragility :=
∑
Large

I{s < s}/
∑
Large

I{s ≤ s}

The investment fragility measure is the fraction of firms that are not in the last stage for a

lumpy investment. In the model, a negative aggregate TFP shock has greater effect when

the investment fragility is higher. And the investment fragility becomes high after a surge of

lumpy investments.

Figure 12 plots large firms’ marginal distributions of stages at different states of the

model economy. It is worth to note that the stages are determined one period before the

aggregate shock hits the economy by each firm’s inter-temporal stage policy. Therefore, the

contemporaneous stage distribution is an exogenous condition to an aggregate shock even

if they share the same time index. As can be seen from the most right bars in the graph,

at the surge of lumpy investments, many firms are at the last stage s in the beginning

of the period. Therefore, despite a negative aggregate shock, large firms make large-scale

investments, and this results in the weak response of aggregate investments to the negative

shock. The investment fragility is 90.1% at the surge of lumpy investments. On the other
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hand, after the surge of lumpy investments, the least fraction of firms are at the last stage.

The investment fragility is 93.3% at the surge of lumpy investments.
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Figure 12: Large firms’ stage distributions (s = 4)

Then, I decompose the total contemporaneous change of the aggregate investment into

exogenous component and the endogenous component. The endogenous component is from

the direct effect from aggregate TFP shock. The endogenous component accounts for all the

other remaining variation unaccounted by the direct effect.

Aggregate investment responds differently to an aggregate TFP shock depending on the

aggregate states of the economy. Therefore, we can write aggregate investment It as a function

of TFP level At and a vector of sufficient statistics of the aggregate state of the economy Xt:

It = It(At, Xt)

Then, the total variation in the aggregate investment It after an aggregate TFP shock can

be further decomposed into exogenous component and the endogenous component.

∆logIt(At, Xt) ≡
(
∂logIt
∂logAt

)
∆logAt︸ ︷︷ ︸

Direct effect

(Exogenous component)

+

(
∂logIt
∂logXt

)
∆logXt︸ ︷︷ ︸

Nonlinear effect

(Endogenous component)

In the identity above, exogenous component is driven purely by exogenous direct variation

in aggregate TFP; and the endogenous component indicates all other variations residualized
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after the exogenous variation.

From the experiments of the TFP shocks hitting the economy at different conditioning

states, variations in the conditioning states (∆logXt) and the contemporaneous total change

of the aggregate investment (∆logIt(At, Xt)) are available.31 The exogenous component is

directly from the TFP shock and it is common across all observations as the shock magnitude

is controlled.

Then, I non-parametrically approximate the conditioning states Xt using the following

measures:32

1. Lagged aggregate investment It−1

2. Investment fragility St

Hence,

Xt = Xt(It−1,St)

The variation in the conditioning states Xt can be non-parametrically approximated by the

variation in It−1 and St:
∆logXt = χ(∆logIt−1,∆logSt)

From the decomposition equation,

∆logIt(At, Xt) ≡
(
∂logIt
∂logAt

)
∆logAt︸ ︷︷ ︸

Direct effect

+

(
∂logIt
∂logXt

)
∆logXt︸ ︷︷ ︸

Nonlinear effect

=

(
∂logIt
∂logAt

)
∆logAt︸ ︷︷ ︸

Intercept

+ χ̃(∆logIt−1,∆logSt)︸ ︷︷ ︸
Non-parametric approx.

Based on the equation above, I run the non-parametric regression of aggregate investment

variation ∆logIt(At, Xt) on It−1 and St to identify the direct effect which is the intercept

term in the regression. The intercept is estimated as −6.4, and the R2 is around 96%. From

this high R2, I confirm It−1 and St non-parametrically approximate Xt well.

The nonlinear effect amplifies or mitigates the direct effect based on the conditioning

states. From the total change we have after surge of lumpy investments and at the surge of

lumpy investments, the following decomposition is obtained:

31To obtain enough number of samples, I utilize the variations from three rounds of the TFP shock exper-
iments. Specifically, the second round gives 10 observations, and the third round gives 10 observations for
each 10 observations of the second round. Thus, I obtain total 10 + 10× 10 = 110 observations.

32For robustness check, I use average investment stages St−1 instead of St. The result stays unchanged for
this alternative choice.
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After a surge of lumpy investment, the total change of aggregate investment could be

decomposed as

100% (7.5%) = 85% (−6.4%)︸ ︷︷ ︸
Direct effect

+ 15% (−1.1%)︸ ︷︷ ︸
Nonlinear effect

At the surge of lumpy investment, the total change of aggregate investment could be

decomposed as

100% (−5.8%) = 110% (−6.4%)︸ ︷︷ ︸
Direct effect

− 10% (+0.6%)︸ ︷︷ ︸
Nonlinear effect

where the numbers in the bracket indicate the absolute effect in percentage.

From this decomposition analysis, I conclude that aggregate investment responds to an

aggregate TFP shock substantially differently depending on the conditioning states of the

economy. After the surge of lumpy investments from large firms (by 5.2%), the negative

aggregate shock effect is amplified by 15% through the nonlinear endogenous channel. This

is the upper bound of the amplification effect among the simulated responses. On the other

hand, at the surge of lumpy investment, the negative aggregate shock effect is diminished

by 10% through the nonlinear endogenous channel. I found this is the lower bound of the

amplification effect among the simulated responses.

5.3 Comparison with other models

The timing synchronization upon an aggregate TFP shock is not a unique feature of the

acceleration cost model; timing synchronization also happens in the models with fixed cost.

However, in those models, firms’ capital adjustment timing is highly elastic to factor prices.

Therefore, in the post-shock period, firms have a strong tendency of not making large-scale

investment together with other firms. By flexibly adjusting their investment timings, these

firms spread out their lumpy investment schedules to have no lumpiness in the response of

aggregate investments. Due to this flexibility allowed in the model, the persistence in the

length of inaction periods are significantly (≈ 0.70) lower than the level observed from the

data.

Figure 13 compares the impulse responses of aggregate investment in three different models

including a non-lumpy frictionless investment model, Gourio and Kashyap (2007), and Khan

and Thomas (2008). For the computation of these models, I use the parameters reported

in Khan and Thomas (2008). For the non-uniform fixed cost distribution in Gourio and

Kashyap (2007), I use a truncated normal distribution with the mean matched to the uniform
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(c) Partial equilibrium
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(d) General equilibrium
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(e) Partial equilibrium
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(f) General equilibrium

Figure 13: Strong general equilibrium effect on aggregate investment in models with fixed
cost: irrelevance results

distribution in Khan and Thomas (2008). I used a small standard deviation (=0.001) for the

highly concentrated mass around the mean.33

The first row of Figure 13 (panel (a),(b)) plots impulse responses of aggregate investment

in the frictionless model. When the factor price is not considered (panel (a)), investment

drops by more than 200% of steady-state level. However, in general equilibrium (panel (b)),

33The result for Gourio and Kashyap (2007) is robust over other parameter choices that give concentrated
distributions of fixed cost.
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simultaneous drop in the interest rate in the shock period incentivize firms to make more

investments in the shock period; this reduces the response of the aggregate investment by more

than 10 folds. In the second row (panel (c),(d)), the impulse response of aggregate investment

in Gourio and Kashyap (2007) are added. As pointed out by the authors, fixed cost plays an

important role to smooth the reactions of aggregate investments to the aggregate TFP shock

in partial equilibrium (panel (c)). The aggregate investment drops by around 100% compared

to the steady-state level, and smoothly recover. On the recovery path, aggregate investment

forms a smooth hump before it converges to steady-state level due to synchronized lumpy

investment timings in partial equilibrium. However, when the factor prices are considered

(panel (d)), the impulse response of aggregate investment in Gourio and Kashyap (2007)

becomes similar to frictionless model due to strong general equilibrium effect. In general

equilibrium, the initial response of aggregate investment is dampened by around 6 folds due

to factor price fluctuations. As shown in the third row of Figure 13 (panel (e),(f)), Khan and

Thomas (2008) model results in similar impulse responses to that of Gourio and Kashyap

(2007) in general equilibrium.34

Motivated from empirical findings on pro-cyclical sensitivity of aggregate investment to an

aggregate shock, Bachmann et al. (2013) suggests a model with fixed cost with maintenance

and replacement cost. Figure 14 compares the impulse responses in the acceleration cost

model (panel (a)) and Bachmann et al. (2013) (panel (b)). The flattening effect from general

equilibrium is substantially smaller in these two models as shown from the small difference

between partial and general equilibrium response.
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(a) Acceleration cost model
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Figure 14: Factor price’s partial smoothing

However, the implied persistence of inaction duration in Bachmann et al. (2013) does not

achieve the level observed from the data because investment spikes beyond 20% of existing

34Due to the concentrated fixed cost distribution, Gourio and Kashyap (2007) has a stronger smoothing
effect in partial equilibrium than Khan and Thomas (2008).
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capital stock are modeled to happen more sparsely in general equilibrium to result in signif-

icantly lower persistence. Therefore, this model captures interest-inelastic investment spikes

while it cannot capture firms’ persistent inaction patterns. So the impulse response does not

feature echo effect.

5.4 Business cycle analysis

In this section, I analyze business cycle characteristics implied by the dynamic stochastic

general equilibrium from the acceleration cost model, and compare these with the results

in Khan and Thomas (2008) (hereafter, KT). There are two computational hurdles in this

exercise: 1) curse of dimensionality in aggregate state variable and 2) nonlinearity in the

aggregate dynamics.

In KT, due to strong general equilibrium effect, the true dynamics of aggregate capital

stocks closely follows log-linear prediction rule. So, the dynamic stochastic general equilib-

rium is obtained by tracking only one moment as in the algorithm suggested by Krusell and

Smith (1998).35 However, as shown from the previous section, aggregate fluctuations im-

plied by the acceleration cost model is highly nonlinear. Therefore, to use Krusell and Smith

(1998) algorithm, more moments need to be considered potentially in nonlinear form in the

predicted law of motions at large computational cost.

To overcome this difficulty, I use another algorithm, named as the repeated transition

method to solve the acceleration cost model under aggregate uncertainty concurrently de-

veloped in Lee (2020). In the algorithm, I update an agent’s prediction rule for aggregate

states repeatedly from transition dynamics on a single simulated path until the prediction

rule converges to the simulation. This method does not rely on parametric assumption on

the predicted law of motions for the future aggregate states; market clearing prices, expected

future aggregate states, and value functions on the transition path are explicitly computed.

Then, I back out the prediction rule implied by the fitted outcomes on the sample path and

check the validity from the out-of-sample simulation paths. I leave the detailed explanation

on the algorithm to Lee (2020). The length of simulated path is 1,000 periods. I use histogram

method for transition of the cross-sectional distribution of firms following Young (2010).

Figure 15 plots simulated aggregate investment rates (It/Kt) obtained from the baseline

model (solid line), KT (dashed line), and simulated aggregate TFP path (dotted line) for

different aggregate shocks. Panel (a) is based on the calibrated aggregate TFP shock in

this paper, and the TFP shock in panel (b) is from KT. The aggregate investment rates

35Khan and Thomas (2003) found that there is no difference in the approximated dynamics of aggregate
states between tracking one central moment and tracking two central moments of the partitioned state
distribution.
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Figure 15: Comparison on dynamics of investment rates (It/Kt) in business cycle

are expressed in terms of percentage deviations from the steady-state level. The baseline

results plotted in panel (a) and (b) are separately obtained from applying the repeated

transition method to each of simulated paths from the two different aggregate shocks.36 The

law of motions in KT are obtained from the exact replication of the paper following their

computation methodology explained in the paper.

In panel (b), the shock effect in aggregate investment rate of the baseline decays slower

than KT. High persistence in lengths of inaction periods contributes to this slowly decaying

shock effect. Also, the investment rate is less responsive to a shock in the baseline model than

in KT. The acceleration cost makes large firms insensitive to exogenous shocks, weakening

the responsiveness of aggregate investment rate. Due to nonlinearity in aggregate dynamics

in the acceleration cost model, the baseline result includes echo effects after a jump (drop)

in the TFP, as shown in the zig-zag patterns.

Under the calibrated TFP shock in panel (a), the implied dynamics of aggregate invest-

ment rate becomes closer between baseline and KT. However, the baseline result still features

higher persistence and lower responsiveness than KT.

Table 9 summarizes the business cycle statistics for the simulated allocations in compar-

ison with the statistics in the macro-level data at annual frequency. The data other than

employment is from National Income and Product Accounts data (NIPA Table 1.1.5). Em-

ployment (Lt) (not an hour) is from Current Employment Statistics.37 The sample period

covers from 1955 to 2018. I use private domestic investments as investment (It). All variables

are real at annual frequency, and I linearly detrend these variables after taking log.

The numbers in the first column of Table 9 are the statistics from the data; the second is

from the calibrated baseline model; the third is from the baseline model computed with an

36For the other parameters, I use the same parameters as calibrated in this paper.
37Both of the models assumed an indivisible labor supply in the household’s utility.
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Data Baseline Baseline + KT KT (2008)
corr(Yt, Yt−1) 0.941 0.900 0.867 0.825
corr(It, It−1) 0.742 0.788 0.755 0.685
corr(It, Yt) 0.795 0.924 0.939 0.873
corr(Lt, Yt) 0.898 0.819 0.718 0.805
corr(Ct, Yt) 0.978 0.989 0.993 0.899
sd(It)/sd(Yt) 1.976 1.792 1.651 3.079

Table 9: Business cycle statistics

aggregate TFP shock used in KT; and the last column is from the result in KT. In both of

the baseline and the baseline combined with KT shock, the autocorrelations of investment

are higher than KT, and they are closer to the level observed from the data. High persistence

in inaction periods implied by the acceleration cost model contributes to high persistence

in aggregate investments. Correlations between employment and output, and between con-

sumption and output are better captured in the acceleration cost model, while the correlation

between investment and output are explained better in KT. Also, the relative volatility of

aggregate investments in the acceleration cost model is closer to the level in the data.

6 A theoretical limit case: permanent echo and endoge-

nous business cycle

In this section, I explore a theoretical possibility the acceleration cost model can lead to:

a permanent echo after an aggregate TFP shock forms synchronization of spiky investment

timings across firms.

In the empirical distribution of lengths of inaction periods, there are firms with extremely

persistent inaction periods and that are inelastic to interest rate changes.38 These firms could

be understood as having strict investment timing policies for their investments that is almost

invariant over time. In this section, I model these highly persistent inaction duration as a

nature of investment technologies of large firms. Large firms’ inaction periods are modeled

to have a strict persistence at one.

Then, if timings of these firms are synchronized, the echo effects from these firms will

not be muted by factor-prices. Also, idiosyncratic stochastic force does not flatten the co-

movements of these firms’ lumpy investments.39 Therefore, the echoes of aggregate TFP will

38Around 3% of firms have identical inaction periods across years.
39Event analysis shown in Figure 4 also points out large firms’ lumpy investments are almost unaffected

by idiosyncratic forces. Therefore, the speed of convergence in the law of large numbers is extremely low for
large firms.
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last forever. Depending on how investment timings among these firms are synchronized, the

endogenous fluctuations in the permanent echo can take various patterns.

I compute the cyclical competitive equilibrium with a synchronized initial distribution

that might have been initialized by some large aggregate TFP shocks in the prior history.

I mute aggregate TFP fluctuations to solely focus on endogenous component of aggregate

fluctuations. Without exit and entry, large and small firms are assumed to be permanently

separated for simplicity.

I assume heterogeneous parameters for adjustment cost and acceleration cost. Specifically,

for a firm with type j ∈ {small, large}, the investment technologies are modelled as follows:40

(Convex Adjustment Cost) c(k, I, j) :=
µIj
2

(
I

k

)2

k

(Acceleration Cost) acc(s′, s, j) :=

[
I{s′ > s+ 1}

(
µaj
2

(s′ − s− 1)2

)]
Note that differently from the baseline model, acceleration cost now does not depend on

the size of capital stock. Instead, I assume ex-ante heterogeneous investment technology

characterized by different parameters. When I bring the model to fit into the data, I obtain

following strict orders between parameters:

µalarge > µasmall, µ
I
large < µIsmall

The larger acceleration cost is needed for large firms to capture large firms’ interest-inelasticity

and more persistent inaction duration. The smaller convex adjustment cost is to match the

fact that large firms are greater in size than small firms.41

If a large firms’ acceleration cost is large enough, a firm might not choose to accelerate

its investment stage at all and stick to one-stage-per-period rule despite the fluctuations in

the factor prices and idiosyncratic productivities. In this case, the firm’s capital adjustment

policy will follow semi-deterministic (S, s) cycle: adjustment timing in extensive margin is

deterministic while the intensive margin stochastically changes depending on the factor price

and idiosyncratic productivity realizations. The following proposition formally states the

existence of such large acceleration cost parameter that warrants semi-deterministic (S, s)

cycle of large firms.

40The full formulation of heterogeneous large and small firms’ problem is available in Appendix I.
41If µI

large ≥ µI
small holds, large firms’ size become smaller than small firms. This is because large firms

make less frequent capital adjustment in extensive margin (µa
large > µa

small), and the size of adjustment is
smaller for large firms due to larger convex adjustment cost. This is counterfactual in that large firms are
bigger firms than small firms on average.
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Proposition 1 (Isolated stage policy).

Given an idiosyncratic productivity process Gz(z) with a bounded support Z, there exists

µGz
> 0 such that

µalarge ≥ µGz
=⇒ ŝ′(k, z, s, large; Φ, A) = ŝ′(s, large) for ∀(k, z, s) ∈ (K,Z,S)

where (K,S) denotes the domains of capital and investment stages, respectively.

Proof. See Appendix K.1. �

It is worth to note that the threshold of large acceleration cost µGz
is specific to idiosyn-

cratic stochastic process Gz. If z can take an extreme value with positive probability, invest-

ment stage policy ŝ′ depends on shock realizations. However, if the idiosyncratic productivity

process has a bounded support, there exists a sufficiently large level of acceleration cost pa-

rameter that makes investment stage policy independent from the shock process and interest

rate fluctuations. Hereafter, given Gz with a bounded support Z, I assume µalarge > µGz
.
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Figure 16: Large firms’ semi-deterministic (S, s) cycle and capital adjustment in intensive
margin

Figure 16 shows large firms’ semi-deterministic (S, s) capital adjusting rule. In this exer-

cise, heterogeneous firms are given with different level of capital stocks at period 0, and the

trajectory of each firm’s optimal level of capital stocks is tracked over time. I use s = 4 as

in the calibration of baseline parameters. Panel (a) highlights the deterministic extensive-

margin rule for capital adjustment. Due to large acceleration cost, large firms follow one-

stage-per-period rule, and this makes capital stocks jumps up in every s periods, regardless

of idiosyncratic productivity realizations and interest rate fluctuations. However, the magni-

tude of jumps changes depending on the idiosyncratic productivity realizations as shown in
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the single firms’ capital adjusting rule in panel (b). Thus, the capital adjusting rule follows

a semi-deterministic (S, s) rule.

Large firms’ semi-deterministic (S, s) capital adjusting rule leads to a stationary capital

cycle after aggregation in general equilibrium. This is because the initially synchronized

firm’s adjusting timings permanently stay synchronized without being mitigated by either

factor prices or stochastic forces. This could be understood as a limit case of baseline model

where stochastic mean reverting forces gradually flatten the echo effect.

Specifically, if the initial distribution of large firms’ investment timings is non-uniform,

there will be a stationary cycle of aggregate investments. This class of initial distributions is

formally defined as follows:

Definition 2 (Class of synchronized distributions).

Given (K,Z, S), D denotes a set of all probability measures Φ defined on the cartesian product

of the sigma algebras K × Z × S generated from (K,Z,S). Define a partition {D0,D1} of D
as follows:

D1 := {Φ ∈ D | for ∀s ∈ S,
∫
K×Z×{s}×{y,o}

dΦ (k, z, s, j; Φ, A) =
1

s
}, D0 := D \ D1

The partition D0 is a class of firm distributions that support stationary cycle of aggre-

gate investments once they become an initial distribution. In Proposition 2, I show that if

large firms’ investment stage policy is independent from price fluctuations and idiosyncratic

productivity shocks, and initial distribution belongs D0, there does not exist a stationary

recursive competitive equilibrium. In Corollary 1, I show that under the same condition, the

cyclical competitive equilibrium with n∗ > 1 exists.42 Before the theoretical results, I define

an implied sequence of distributions which is useful for throughout the theoretical statements.

Definition 3 (Implied sequence of distributions).

Given firms’ policy k′, s′, and an initial distribution Φ0, I define the implied sequence of

distributions as {Φτ}∞0 such that

(Φτ+1)(K,Z, S, j; Φ, A) :=

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s, j; Φ, A) ∈ K}

I{ŝ′(k, z, s, j; Φ, A) ∈ S}dΦτ (k, z, s, j; Φ, A)

for any set (K,Z, S) in the σ-algebra (K,Z,S) generated from the domains (K,Z,S).

It is worth to note that hazard rate, type transition, and new entry are only implic-

itly considered because type distribution is assumed to stay the same after replacement for

42See Definition 3.
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simplicity.

Proposition 2 (Breaking the law of large numbers).

If µalarge ≥ µGz
, and Φ0 ∈ D0, the implied sequence of distributions {Φτ}∞0 does not have a

limit point.

Proof. See Appendix K.2. �

Therefore, Proposition 2 states that there does not exists a stationary recursive competi-

tive equilibrium. Then, I show there exists cyclical competitive equilibrium in the following

corollary.

Corollary 1 (Endogenous stationary cycle).

Given µalarge ≥ µGz
and the initial distribution Φ0 ∈ D0, for ∀ ε > 0, there is a sufficiently

large τ ∈ {1, 2, 3, ...} such that the implied sequence of distributions {Φτ}∞τ=0 satisfies follow-

ing property:

||Φτ+s − Φτ ||sup < ε, for ∀τ > τ

Proof. See Appendix K.3. �

From Corollary 2, I show that the synchronized distribution D0 includes nearly all possible

distributions of state variables. Thus, under the perfect isolation of large firms’ stage policy

from price fluctuations and idiosyncratic shock process, a stationary cycle arises in almost

every initial distribution. Therefore, any slight synchronization of lumpy investment timings

resulting from an aggregate TFP shock will lead to aggregate fluctuations due to a permanent

echo.

Corollary 2 (Commonness of aggregate cycles).

Consider a non-degenerate atomless distribution Ψ defined on σ-algebra D generated from D,

where D is the support of Ψ. Then, Ψ(D1) = 0, and Ψ(D0) = Ψ(D) = 1.

Proof. See Appendix K.4. �

Given these theoretical results, I compute the cyclical competitive equilibrium using the

parameters reported in Table I.4. I set the fraction of total large and small firms at the level

where large firms hold the half of total capital stocks in the economy.43 These parameters

give similar cross-sectional moments to the target moments in the baseline.

43This is based on the summary statistics reported in Table 1.
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For the stationary cycle, important parameters to be specified are the initial distribution

on completed investment stages for large firms.44 The distribution could be estimated from

data by matching the fraction of firms making large investments. For the computation ex-

ercise, I use φS = (0.2211, 0.2412, 0.2613, 0.2764) as an initial synchronized distribution of

investment stages for large firms.45 As theory predicts, the initial distribution of completed

stages is not mixed in the stationary cycle, and it moves in the circular pattern to make ag-

gregate fluctuations. For the other parameters, I use the same parameters as in the calibrated

baseline model.

The cyclical competitive equilibrium requires market clearing for the whole periods within

a cycle. Computing market clearing prices for the entire cycle is a difficult task because firms’

inter-temporal policies are sensitive to price rankings across periods. For this, I introduce a

novel algorithm that solves the cyclical competitive equilibrium by preserving relative rank-

ings of prices over the convergence path. I describe the details of the computation method

in Appendix 8.

Figure 17 plots the endogenous fluctuations in the marginal distributions of large and

small firms’ logged capital stocks in the cyclical competitive equilibrium. Small firms’ capi-

tal distribution shows little fluctuations, while large firms’ capital distribution dramatically

fluctuate endogenously without reliance on any exogenous aggregate forces.
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Figure 17: Endogenous fluctuations in capital distributions for large and small firms

Along these aggregate fluctuations in the state distributions, aggregate allocations also

move forming a stationary cycle in general equilibrium. Figure 18 plots the time path of

aggregate allocations in the cyclical competitive equilibrium. As I set the required stages

for large-scale investment s = 4, the length of a period in the stationary cycle is also four

periods. In the endogenous cycle, aggregate investment (i), employment (l), and real interest

rate (r) are pro-cyclical, and aggregate capital stocks (k), consumption (c), and wage (w) are

44Small firms’ initial distribution converges to an ergodic distribution following the law of large numbers.
Therefore, initial distribution does not have to be specified for small firms.

45Small firms’ initial distribution is not specified. It is because small firms’ stage distribution converges to
ergodic distribution regardless of the initial distribution.

49



counter-cyclical.
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Figure 18: Endogenous stationary cycle in cyclical competitive equilibrium

These endogenous aggregate fluctuations in the stationary cycle are permanent echoes

from large aggregate TFP shock that might have happened in the prior history that is not

specified in the model. The initiation mechanism of these endogenous cycle is checked by im-

pulse response of the economy to the large aggregate shocks such as a negative aggregate TFP

shock during the Great Depression; According to Ohanian (2001), aggregate TFP dropped

by around 18% during the Great Depression.
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Figure 19: Permanent echo of a Great Depression
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Figure 19 shows permanent echoes in the aggregate investments after a sudden 18% drop in

the aggregate TFP. In this exercise, I assume the economy’s investment stages were uniformly

distributed (unsynchronized) before the shock.46 Then, after the large aggregate shock, the

firms’ investment timings are synchronized, and it generates a permanent echo in the economy.

To sum up, large firms’ extreme inelasticity to interest rate and extreme persistence in

inaction durations lead to a permanent echo that generates endogenous aggregate fluctuations.

This is a limit case of the baseline model which features decaying echo in the post shock

periods. When a large shock hits the economy, the acceleration cost model predicts that

an echo effect will not decay in the short run both in decaying echo and permanent echo

setup. Specifically, a permanent echo model could be potentially used to analyze short run

business cycle after a large aggregate TFP shock such as the Great Depression or COVID-19

pandemic.

In the short run business cycle analysis, a permanent echo model is particularly useful

because the initial distribution of investment stages is a free parameter that can be estimated;

the model could be fitted into large cross-sectional data. This characteristic is unique among

general equilibrium models that studies aggregate fluctuations.

However, there are limitations in this theoretical argument: permanent echoes are difficult

to detect empirically from data because the endogenous stationary cycle is not a response

to any impulse. Another difficulty is that permanent echo patterns are subject to change

depending on the arrival of different aggregate TFP shocks. Thus, I leave this endogenous

cycle as a theoretical possibility an acceleration cost model can lead to, with a possibility to

be used in short run business cycle analysis in future researches.

7 Empirical evidence from aggregate-level data

General equilibrium in acceleration cost model features echoes in aggregate investment after

an aggregate TFP shock. This is due to interest-inelastic firm-level lumpy investments and

high persistence in the length of inaction periods. These two characteristics are based on

micro-level observations from the U.S. Compustat data. In this section, I show the echo

effect is empirically supported in the macro-level data.

Figure 20 plots time series of the growth rate of investment in non-residential structures

in manufacturing industry from 1935 to 2014 (thick solid line). The data is from BEA (NIPA

Table 5.4.1, line 14). According to Ohanian (2001), the aggregate TFP has dropped around

18% during the Great Depression. Thus, if there were interest-inelastic firms with persistent

46Thus, the aggregate allocations are at the stationary competitive equilibrium.
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inaction periods, there must have been large echoes in the post-crisis period according to

acceleration cost model prediction.

Testing whether certain fluctuations are from echo effects or from stochastic shock process

is a demanding task. However, there is a clear difference between fluctuations from two

sources: echo effects results in deterministic periodicity across the humps, while stochastic

shocks lead to random periodicity.47 Therefore, the key to detect echo effects from a time-

series hinges on the existence of deterministic periodicity.

After the Great depression in 1933, the growth rate in non-residential structures for man-

ufacturing industry has fluctuated dramatically, as shown from the solid line in Figure 20.

To statistically test the deterministic periodicity in these fluctuations, I use Fisher’s g-test,

following Wichert et al. (2004). Fisher’s g-test tests deterministic periodicity in a time-series

Xt by fitting the series into the following functional form:

Xt = βcos(ωt+ φ) + εt

where β > 0, ω ∈ (0, π), φ ∼ U(−π, π], and εt is a serially uncorrelated noise which is

assumed to be independent from φ. And the null hypothesis H0 is as follows:

H0 : β = 0

I apply this test to two sub-periods: 40 years right after the crisis (1933∼1972) and the
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Figure 20: Echo effect in investments of manufacturing industry after the Great Depression

recent 40 years (1973∼2012). I refer to the former period as echo period, and the latter as

non-echo period. As reported in Table 10, the large fluctuations after the Great Depression,

featured a significant deterministic periodicity, and the length of a period is around 4.7

47Deterministic periodicity can happen in stochastic process with probability zero.

52



years.48 However, the deterministic periodicity disappears in the recent years, which can be

explained by decaying echo in the acceleration cost model.49 The dashed line in Figure 20

displays fitted time-series in Fisher’s g-test. During the echo period, fluctuations from the

data and fitted series share the timings of ups and downs. However, this does not hold in

the non-echo period. Consistently, Figure I.8 shows significant jump in the spectral density

at the frequency of four to five years in the echo period. In the non-echo period, the spectral

density does not display a peak. Table I.5 reports the serial correlation in the residuals. For

echo periods, there was no significant serial correlation in the residuals. Thus, it validates

the test result that is based on the assumption of serially uncorrelated errors.

Echo period (1933 ∼ 1972) Non-echo period (1973 ∼ 2012)

Estimated period 4.706 5.714
p-value 0.024 0.165

Table 10: Periodicity testing: echo after the Great depression

Additionally, I apply the same test procedure to oil industry. I use the nonresidential fixe

investment growth data from BEA (NIPA Table 5.4.1, line 20). The large aggregate TFP

shock of interest is the oil crisis at 1979.50 Similar to the previous test, I divide the time-series

into two sub-periods: 25 years right after the crisis (1933∼1972) as echo period and 25 years

prior to the crisis (1973∼2012) as non-echo period.
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Figure 21: Echo effect in investments of oil industry after the oil crisis

48This result is robust over choices of sample periods and over test specifications such as extended g-test
and likelihood-based tests.

49I apply the same g-test to the model-generated investment growth rate fluctuations in the post-shock
period plotted in Figure 8. The estimated duration of deterministic period is 4.17 years, and it is statistically
significant.

50Specifically, I test investment growth in non-residential structures for industries of mining exploration,
shafts, and wells.
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As can be seen from the solid line in Figure 21, after the oil crisis, investment growth

in non-residential structures featured larger fluctuations compared to pre-crisis period. Ac-

cording to the test results reported in Table 11, the investment growth during the post-crisis

periods features significant deterministic periodicity. However, in the period prior to crisis,

there was no deterministic periodicity.

Echo period (1980∼2004) Non-echo period (1955∼1979)

Estimated period 3.333 25.000
p-value 0.030 0.820

Table 11: Periodicity testing: echo after the oil crisis in 1979

Next, I document evidence on echo effects from VAR analysis on aggregate investment.

Specifically, using VAR, I study whether there are nonlinear responses to an output shock that

has a similar pattern as echo effects from the macro-level data. For the VAR on macro-level in-

vestment data, I include HP-filtered real GDP and HP-filtered investments in non-residential

structures for manufacturing industry from National Income and Product Accounts data

(NIPA), in the stated order.51 AIC criterion is used for the choice of optimal lags (p = 4) in

the regression.
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Figure 22: Impulse response of non-residential structure investment from NIPA data

Figure 22 plots impulse responses of investments in non-residential structures for man-

ufacturing industries from BEA (Fixed Asset Accounts Table 4.8, line 11 and line 15). As

51All the variables are at an annual frequency. In the Hodrick-Prescott filter, I use 6.25 as a smoothing
parameter following Ravn and Uhlig (2002).
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can be seen from the figure, nonlinear echo effects are present in the impulse responses of the

investments of manufacturing industries. This evidence supports the echo component in the

response of the aggregate investment to an aggregate shock.

8 Conclusion

This paper studies how interest-inelastic lumpy investments at firm level affect business cycle.

From empirical analysis, I show large firms’ lumpy investments are inelastic to interest rate

changes and their inaction durations are highly persistent across periods. Then I develop

real business cycle model with heterogeneous firms that captures these two empirical facts.

In the model, the aggregate investments display nonlinear impulse response to aggregate

TFP shocks in general equilibrium. Specifically, there arise echoes of aggregate TFP shock in

aggregate investment in the post-shock period. This is because synchronized timings of lumpy

investments across large firms persistently synchronized over time due to weak flattening

forces from factor prices and stochastic mean reversion. The endogenous fluctuations in large

firms’ lumpy investments along the echoes generate a cycle of relaxation and contraction in

the large firms’ investment rate. After the high concentration, the economy becomes fragile

to a negative aggregate TFP shock. The aggregate investment responds 29% stronger after

the surge of large firms’ lumpy investments compared to a shock at the surge of lumpy

investments. Then I decompose the total response into exogenous effect and endogenous

effect. The endogenous effect accounts for up to 15% of aggregate investment response.

The acceleration cost model gives a theoretical framework that explains endogenous busi-

ness cycle when large firms’ lumpy investments are perfectly inelastic to factor prices and

idiosyncratic shock in extensive margin. The resulting stationary cycle in the cyclical com-

petitive equilibrium is a limit case of baseline model’s decaying echoes in the post shock

periods.

For the echo effects and the state-dependent responsiveness of the aggregate investments,

the key state variable is the fraction of large firms that are ready to make a lumpy investments.

A rise in this key state variable makes an economy fragile to a negative TFP shock in the fol-

lowing period. Therefore, the findings from this paper point out necessity of state-contingent

stabilization policy based on micro-level observations.

Also, the acceleration cost model provides a meaningful monetary policy implication.

According to the model, the fraction of large firms that are ready to make large-scale in-

vestment fluctuates. This implies the efficacy of monetary policy through the interest rate

channel would also fluctuate. If there are great number of large firms that are at the last

stage for their large-scale investment, the economy will respond strongly to the monetary
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policy through the interest rate channel. On the other hand, if there are only few firms that

are ready for large-scale investment, the monetary policy will not effectively work. I leave

the optimal monetary policy design under the presence of interest-inelastic firms to future

research.
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A Appendix: tables and figures

A.1 Conditional heteroskedasticity: Regression result

Dependent variable:

σ̂t
Large Small

(1) (2)

spiket−1 (%) 0.068∗∗∗ 0.032
(0.025) (0.020)

Constant −0.457 −0.173
(0.395) (0.510)

Observations 35 35
R2 0.187 0.068
Adjusted R2 0.162 0.040

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.1: Increasing sensitivity of aggregate investments along with the large firms’ invest-
ment spike

Specifically, spiket−1 is defined as follows:

spiket−1 :=
1

J

J−1∑
j=0

SpikeRatiot−1−j

SpikeRatiot :=
#Extensive-margin adjustmentt

#Firmst

where J is the number of past years to be includes. In the reported result, I use J = 3. The

result is robust over J = 1, 2, 4.
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A.2 Survey result: Inelasticity of investments to interest rate change

Q1. By how much would your borrowing costs have to decrease to cause you
to initiate, accelerate, or increase investment projects next year?
Q2. By how much would your borrowing costs have to increase to cause you
to delay or stop investment projects next year?

Change in interest rate Plan changing firms (Q1) Plan changing firms (Q2)

0.5% 3% 6%
1% 5% 10%
2% 8% 16%
3% 5% 11%

More than 3% 11% 20%

No change 68% 37%

Table A.2: CFO survey results (Sharpe and Suarez, 2014): inelasticity to interest rate changes
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B Appendix: Monetary policy shock
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Figure B.1: One-year moving average monetary policy shock: March 1990 ∼ December 2009
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C Appendix: Firm-level TFP estimation

I estimate firm-level TFP following Ackerberg et al. (2015). The estimation is based on

the following model specification:

log(V alueAddi,t) = α + αlog(Capitali,t−1) + γlog(Employmenti,t) + TFPi,t + εi,t

MaterialExpensei,t = f(Capitali,t−1, Employmenti,t, TFPi,t)

Then, I assume the following assumptions:

• Production, material expenditure and idiosyncratic TFP shocks are all realized simul-

taneously.

• Before the realization of the idiosyncratic TFP, a firm receives an idiosyncratic TFP

signal (sTFPi,t): a firm determines labor demand based on the signal. The idiosyn-

cratic TFP follows a Markov process conditional on the signal of idiosyncratic TFP

(P (TFPi,t|sTFPi,t)).

• The idiosyncratic TFP signal follows a Markov process conditional on the past realiza-

tion of the idiosyncratic TFP (P (sTFPi,t|TFPi,t−1)).

• The function f is invertible with respect to TFPi,t.

Then, the original model becomes

log(V alueAddi,t) = α + αlog(Capitali,t−1) + γlog(Employmenti,t)

+ f−1(Capitali,t−1, Employmenti,t,MaterialExpensei,t) + εi,t

= g(Capitali,t−1, Employmenti,t,MaterialExpensei,t) + εi,t

Then, I run a non-parametric regression of logged value-add on the capital, employment and

material expenses to obtain ĝ(Capitali,t−1, Employmenti,t,MaterialExpensei,t). Using the

predicted value ĝ, I estimate α and γ from the following conditional moment condition:

E(ξ(α, γ)|Capitali,t−1, Employmenti,t−1) = 0

where ξ(α, γ) = TFPi,t − E(TFPi,t|TFPi,t−1).

Specifically, T̂FP i,t(α̂, γ̂) = ĝ − α̂log(Capitali,t−1) − γ̂log(Employmenti,t). I obtain ξ̂i,t

from the residuals of AR(1) regression of T̂FP i,t(α̂, γ̂). The empiric analogue of the condi-
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tional moment is

1

T

1

N

T∑
t=1

N∑
i=1

(
ξ̂i,t ∗ Capitali,t−1

ξ̂i,t ∗ Employmenti,t−1

)
= 0

Each of the variables are obtained from firm-level balance sheet information in U.S. Com-

pustat data combined with wage data by industry from the Current Employment Statistics

(CES) survey. I join two datasets by matching the first two-digit NAICS codes. Specifically,

each variable is defined as follows:

• V alueAdd = Sale - Material Expense

• Material Expense = Total Expense - Wage × Firm-level Employment

• Total expense = Sale - Operating Income Profit Before Depreciation (OIBDP)

• Capital is obtained from applying perpetual inventory methods to the first available

capital stock entry (PPEGT). Firm i’s net real investment at period t is computed

from Ii,t − δki,t−1 := (PPENTi,t − PPENTi,t−1)/pt, where pt is nonresidential fixed

investment deflator available from National Income and Product Accounts data (NIPA

Table 1.1.9, line 9). I assume δ = 0.1 (annual) to get gross real investment at firm level.

All the results stay robust over other reasonable choices of depreciation rates.
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D Appendix: Event analysis using different idiosyn-

cratic TFP measures
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Figure D.2: Event study: sensitivity to idiosyncratic TFP innovation based on the Solow
residuals
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(c) Small firms around positive event
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Figure D.3: Event study: sensitivity to idiosyncratic TFP innovation based on the method
of Olley and Pakes (1996)
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E Spike ratio in the model with fixed cost

In the model with fixed cost (Khan and Thomas, 2008), a firm’s lumpy investment decision

is characterized by a threshold rule ξ∗ = ξ∗(k, z):

I∗(k, z) =

I(k, z) if ξ ≤ ξ∗(k, z) (Unconstrained)

Ic(k, z) if ξ > ξ∗(k, z) (Constrained)

where the fixed cost ξ ∼i.i.d G(ξ), and

ξ∗ =
1

1 + r(A,Φ)
EJ(I + (1− δ)k, z′;A′,Φ′)︸ ︷︷ ︸

Discounted Future value with lumpy investment

− 1

1 + r(A,Φ)
EJ(Ic + (1− δ)k, z′;A′,Φ′)︸ ︷︷ ︸

Discounted future value without lumpy investment

−(I−Ic)

where I denotes the unconstrained investment, and Ic denotes constrained (small-scale) in-

vestment. I denote the value function in the first term as J and the second as J c.

For firms greater than a size threshold k, the spike ratio is

SpikeRatio(k) =

∫ ∫
I{ξ < ξ∗(k, z)} I{k > k}

Φ(k > k)
I
{
I(k, z)

k
> 0.2

}
dξdΦ

=

∫
G

(
1

1 + r(A,Φ)
(EJ − EJ c)

)
I{k > k}
Φ(k > k)

I
{
I(k, z)

k
> 0.2

}
dΦ

Under the assumption that ξ follows a uniform distribution (ξ ∼ Unif [0, ξ] = G),

SpikeRatio(k) =

∫ (
ξ∗(k, z)

ξ

)
I{k > k}
Φ(k > k)

I
{
I(k, z)

k
> 0.2

}
dΦ

=

∫ (
1

1 + r(A,Φ)

(
EJ − EJ c

ξ

)
− I − Ic

ξ

)
I{k > k}
Φ(k > k)

I
{
I(k, z)

k
> 0.2

}
dΦ

Thus, the spike ratio is strongly affected by the interest rate changes.
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F Fixed parameters

Parameters Description Value

Firm Side Fundamentals
α Capital share 0.3
γ Labor share 0.6
δ Depreciation rate 0.09

Household Side
β Discount factor 0.96
η Labor supply parameter 1.02

Table F.3: Fixed Parameters
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G Appendix: heterogeneous echo effects with alterna-

tive definitions of large firms
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Figure G.4: Heterogeneous echo effects: large firms are top 30%
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Figure G.5: Heterogeneous echo effects: large firms are top 40%

In the original definition where large firm are defined as top 20% largest firms, large firms

take 26.7% of total capital. If large firm are defined as top 30% largest firms, then large firms

take 38.5% of total capital. If large firm are defined as top 40% largest firms, then large firms

take 49.6% of total capital.
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H Appendix: heterogeneous nonlinear effects with al-

ternative definitions of large firms

0 5 10 15 20
Time (year)

-10

-8

-6

-4

-2

0

2

4

P
er

ce
nt

ag
e 

de
vi

at
io

n 
(%

)

At surge
After surge
At steady state

(a) Large

0 5 10 15 20
Time (year)

-10

-8

-6

-4

-2

0

2

4

P
er

ce
nt

ag
e 

de
vi

at
io

n 
(%

)

At surge
After surge
At steady state

(b) Small

Figure H.6: Heterogeneous nonlinear effects: large firms are top 30%
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Figure H.7: Heterogeneous nonlinear effects: large firms are top 40%

In the original definition where large firm are defined as top 20% largest firms, large firms

take 26.7% of total capital. If large firm are defined as top 30% largest firms, then large firms

take 38.5% of total capital. If large firm are defined as top 40% largest firms, then large firms

take 49.6% of total capital.
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I Appendix: Heterogeneous large and small firms’ prob-

lem

A firm of type j ∈ {large, small} solves the following problem:

J(k, z, s, j; Φ, A) = π(z, k; Φ, A) + max{

max
s′>s,I
{−I − c(k, I)− accj(s′, s)w(Φ, A) +

1− h
1 + r(Φ, A)

EJ(k′, z′, s′ (mod s), j′; Φ′, A′)},

max
s≤s̃′≤s,Ic∈Ω(k)

{−Ic − c(k, Ic)− accj(s̃′, s)w(Φ, A) +
1− h

1 + r(Φ, A)
EJ(k′c, z′, s̃′, j′; Φ′, A′)}}

(Operating Profit) π(z, k; Φ, A) := max
ld

zAkαlγd − w(Φ, A)ld (ld: labor demand)

(Convex Adj. Cost) c(k, I) :=
µIj
2

(
I

k

)2

k

(Acceleration Cost) accj(s
′, s) :=

[
I{s′ ≥ s+ 1}

(
µaj
2

(s′ − s− 1)2

)]
(µalarge > µasmall, µ

I
large < µIsmall)

(Constrained Investment) Ic ∈ Ω(k) := [−kν, kν] (ν < δ)

(Agg. Law of Motion) Φ′ := H(Φ, A), GA(A) = A′ (AR(1) process)

I.1 Parameters for heterogeneous large and small firms’ problem

Parameters Description Value

Cost Parameters: hetergenous firms
µacclarge Large firms’ acceleration cost 0.45
µIlarge Large firms’ adjustment cost 2.50
µaccsmall Small firms’ acceleration cost 0.18
µIsmall Small firms’ adjustment cost 3.50
νIlarge Small investment range 0.01
νIsmall Small investment range 0.01

Table I.4: Parameters in heterogeneous large and small firms’ problem
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I.2 Testing serial correlation of residuals from fitting harmonic

functions into the data

Dependent variable:

εt
Echo (Manuf.) Non-echo (Manuf.) Echo (Oil) Non-echo (Oil)

(1) (2) (3) (4)

εt−1 0.205 0.136 0.063 0.601∗∗∗

(0.152) (0.161) (0.181) (0.173)
Constant −2.433 −0.312 −1.385 0.055

(7.186) (2.342) (2.365) (1.273)

Observations 39 39 24 24
R2 0.047 0.019 0.006 0.355
Adjusted R2 0.021 −0.008 −0.040 0.326

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table I.5: Serial correlations in residuals

Table I.5 reports the autoregression results of residuals from fitting a harmonic function

into the investment growth data used in Table 10 and 11. The harmonic function is specified

as follows:

Xt = βcos(ωt+ φ) + εt

where β > 0, ω ∈ (0, π), φ ∼ U(−π, π], and εt is a serially uncorrelated noise which is

assumed to be independent from φ. The function is nonlienarly fitted into the data following

Li (2010). For this estimation, I used R package “ptest”(Lai and McLeod, 2016).
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I.3 Spectral densities of growth rates of non-residential fixed in-

vestment
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Figure I.8: Spectral densities of growth rates of non-residential fixed investment for manu-
facturing and oil industries

Spectral densities are estimated with modified Daniell smoothing parameter of 5.
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J Appendix: Computation Methodology

J.1 Computation for cyclical competitive equilibrium I

To compute the cyclical competitive equilibrium, I take the following steps:

1. Set a capital grid K0, stage grid S0 = {1, 2, 3, ..., s}, and a macro stage grid T =

{1, 2, 3, ..., n∗}. For the capital grid K0, note that the maximum and minimum values

need to be distant enough to cover the entire closed capital domain K which will be

obtained endogenously. Discretize the autoregressive productivity process z, to get the

unconditional productivity support Z.

2. Guess the number of periods within a cycle n∗ and the corresponding number of price

bundles {rτ , wτ}n
∗
τ=1.

3. Solve a firm’s problem using a value function iteration.

4. Come up with an initial distribution Φ0 that has K0 × Z × S0 as a support of the

distribution.

5. Make Φ0 evolve based on the policy functions from step 3 and transition rule of the

autoregressive productivity process z to get {Φt}Mt=0 until there exists M > N ≥ 0 such

that ||ΦM −ΦN || < tol. (M −N) is the implied length of the cycle in the solution given

the initial guess.

6. Calculate error1 such that error1 = |(M − N) − n∗|. If error1 > 0, then go back to

step 2 to start over with another initial guess for n∗. Otherwise, go the next step.

7. Compute the implied price bundles (rimplied,t, wimplied,t)
M−1
N from the inter-temporal and

intra-temporal optimality conditions of the household using the endogenous aggregate

allocation {ct}M−1
N and optimal labor supply policy {lt}M−1

N :

(Inter-temporal) E
(
β

uc(ct, lt)

uc(ct+1, lt+1)

)
= 1 + rimplied,t

(Intra-temporal) − ul(ct, lt)

uc(ct, lt)
= wimplied,t

8. Calculate error2 = max{||rimplied,t−r||sup, ||wimplied,t−w||sup}, where rimplied,t and r are

vectors of the implied real interest rates and guessed real interest rates, respectively, and

wimplied,t and w are vectors of the implied real wage and guessed real wage, respectively.

If error2 > tol then go back to step 2 to start over with another initial guess for
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{rτ , wτ}n
∗
τ=1. Otherwise, the solutions obtained from step 3, n∗ = M − N , and prices

{rτ , wτ}n
∗
τ=1 are the cyclical competitive equilibrium.

Note that in the baseline computation where firms are not heterogeneous in terms of the

length of the firm-level (S, s) cycle, the equilibrium length n∗ of the aggregate level cycle and

the firm-level cycle s are identical. Therefore, with an initial guess n∗ = s, step 6 becomes

unnecessary under the calibrated parameters because error1 = 0 always holds.

However, in the potential application of the model for firms with the heterogeneous cycle

lengths, n∗ might become different from s. In this case, if the heterogeneity persists without

shuffling across the firms, e.g. permanently different groups of firms with heterogeneous cycle

lengths, n∗ = l.c.m.(s1, s2, ..., sG) is the correct guess for the aggregate cycle length, where G

indicates the number of different groups.

J.2 Computation for cyclical competitive equilibrium II: a practi-

cal approach

The computation algorithm explained in Appendix 8 is implementable, but mathematical

packages often fail to obtain a convergent solution to the fixed point due to the high sensitivity

of the solution to the relative price levels across the periods. This issue becomes easier to

understand, when compared to the stationary equilibrium case.

For example, suppose there is a stationary equilibrium, and the equilibrium real interest

rate is r∗ = 0.04. Let the initial guess for the real interest rate be rguess = 0.05, which

leads to an implied level of real interest rate rimplied = 0.03. During the approximation, it

always holds that if rimplied > rguess, then r∗ > rguess. This let the solver pick the next guess

r′guess < rguess, i.e. r′guess = 0.038, and by iterating these steps, the fixed point solution is

obtained by the convergence.

However, consider a cyclical competitive equilibrium with a cycle length n∗ = 2. In

this case, the initial guess needs to be the real interest rates for two periods in a cycle.

Suppose the equilibrium real interest rates are (r∗1, r
∗
2) = (0.04, 0.045), and initial guess is

(rguess,1, rguess,2) = (0.045, 0.047) which leads to implied real interest levels of (rimplied,1, rimplied,2) =

(0.0361, 0.0362). Then, the prediction error is greater for the second period, even if the

ranking of the guessed prices are correct across the periods. Then, a solver might rec-

ognize the current guess for the second period price is too high compared to the guess

for the first period price. If it happens, for the next guess for the prices, a solver may

choose to use a price bundle that has a flipped ranking of prices across the periods such as

(r′guess,1, r
′
guess,2) = (0.0442, 0.0432). In this case, the implied price jumps dramatically due

to the flipped ranking because many firms change their investment decision in the extensive
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margin to utilize the price gain in the second period. These occasional jumps in the prediction

errors make the solver fail to achieve a converged solution.

In the stationary equilibrium case, flipped price ranking across the periods are not an issue

because there is only one price, which always preserves the monotone relationship among a

guessed price, an implied price, and the fixed point price. However, in the cyclical competitive

equilibrium, the flipped ranking is a challenging issue for the computation as it leads to a

completely different implied equilibrium cycle due to the investment changes in the extensive

margin.

To overcome this problem, I introduce another simple method for the computation which

makes the guessed prices slowly and steadily converge to the equilibrium prices without

flipping the ranking. The new method is implemented simply by changing step 2 and 8 in

the previous method. I elaborate the new steps for the method as follows:

• Step 2∗: Guess the number of periods within a cycle n∗. As an initial guess for the

price bundles, consider a constant sequence of prices, that is {rτ , wτ}n
∗
τ=1, s.t. rτ = r,

and wτ = w, where r and w are taken to be large enough to be greater than any of

possible equilibrium price levels.

• Step 8∗: Calculate error2 = max{||rimplied − r||sup, ||wimplied − w||sup}, where rimplied

and r are vectors of the implied real interest rates and guessed real interest rates,

respectively, and wimplied and w are vectors of the implied real wage and guessed real

wage, respectively. If error2 > tol then go back to step 2 to start over with the specific

initial guess {r′τ , w′τ}n
∗
τ=1 such that r′τ = ωrτ + (1 − ω)rimplied,τ and w′τ = ωwτ + (1 −

ω)wimplied,τ , where ω is a price convergence parameter. If the price convergence prameter

is close to 1, the prices converge slower while the convergence of the solution is more

certainly guarenteed. I use the ω = 0.95 for the assured convergence. If error2 ≤ tol,

the solutions obtained from step 3, n∗ = M −N , and prices {rτ , wτ}n
∗
τ=1 are the cyclical

competitive equilibrium.

For example, suppose the initial guess for the real interest rate is (r, r) = (0.06, 0.06) for

a cyclical competitive equilibrium with a cycle length n∗ = 2. Suppose it leads to an implied

real interest rate level (rimplied,1, rimplied,2) = (0.03, 0.032). Then, if the price convergence pa-

rameter ω = 0.95, the next guess for the prices is (r′1, r
′
2) = 0.95∗ (r, r)+0.05∗ (0.03, 0.032) =

(0.0585, 0.0586). Here the ranking of the prices is determined by the first iteration of the

algorithm, and the ranking is likely to persist through the convergence. The ranking per-

sistence is stronger for a higher price convergence parameter ω which gives slower but more

certain convergence, and vice versa.
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K Appendix: Proofs for the theoretical results

K.1 Proof for Proposition 1

Proposition 1 (Isolated stage policy).

Given an idiosyncratic productivity process Gz(z) with a bounded support Z, there exists

µGz
> 0 such that

µalarge ≥ µGz
=⇒ ŝ′(k, z, s, large; Φ, A) = ŝ′(s, large) for ∀(k, z, s) ∈ (K,Z,S)

where (K,S) denotes the domains of capital and investment stages, respectively.

Proof.

Define ζ(µalarge) := sup
s′∈{1,2,...,s},k′∈K

{ 1−h
1+r(φ,A)

EJ(k′, z′, s′, large; Φ′, A′;µalarge)}.

Note that the equilibrium value function J is a weakly decreasing function of cost parameter

µalarge. Thus, ζ(µalarge) is also weakly decreasing in µalarge.

Acc(s′, s;µalarge) =

[
I{s′ > s+ 1}

(
µalarge

2
(s′ − s− 1)2

)]

If s′ > s + 1, Acc(s′, s;µalarge) ≥
µalarge

2
. Therefore, if ∃µGz

> 0 such that
µGz

2
> ζ(µGz

),

optimal stage policy is always one-stage-per-period rule only if µ > µGz
. This is because

ŝ′(k, z, s, large; Φ, A) = ŝ′(k, s, large) = s+ 1 (mod s).

So, it is sufficient to show ∃µGz
> 0 such that

µGz

2
> ζ(µGz

).

Suppose @µGz
> 0 such that

µGz

2
> ζ(µGz

). For ∀µGz
> 0,

µGz

2
≤ ζ(µGz

).

As ζ(µGz
) <∞, ∃N <∞ such that N > ζ(µGz

). Then, define M := max{µGz

2
, N}+ ε.

Hence,

ζ(µGz
) < M ≤ ζ(2M)

This implies

ζ(µGz
) < ζ(2M) and µGz

< 2M

This contradicts ζ(x) is weakly decreasing in x.

Therefore, ∃µGz
> 0 such that

µGz

2
> ζ(µGz

). �
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K.2 Proof for Proposition 2

Proposition 2 (Breaking the law of large numbers).

If µalarge ≥ µGz
, and Φ0 ∈ D0, the implied sequence of distributions {Φτ}∞0 does not have a

limit point.

Proof.

Suppose there exists a limit point Φ∗, such that

(Φ∗)(K,Z, S, j; Φ∗, A) :=

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s, j; Φ∗, A) ∈ K}

I{ŝ′(k, z, s, j; Φ∗, A) ∈ S}dΦ∗(k, z, s, j; Φ∗, A)

for any set (K,Z, S) in the σ-algebra (K,Z,S) generated from the domains (K,Z,S).

By the isolation proposition, for ∀s̃ ∈ S

(Φ∗)(K,Z, s̃, large; Φ∗, A) =

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s, large; Φ∗, A) ∈ K}

I{ŝ′(s) = s̃}dΦ∗(k, z, s, large; Φ∗, A)

=

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s, large; Φ∗, A) ∈ K}

I{s = s̃− 1 (mod s)}dΦ∗(k, z, s, large; Φ∗, A)

= (Φ∗)(K,Z, s̃− 1 (mod s), large; Φ∗, A)

= (Φ∗)(K,Z, s̃− 2 (mod s), large; Φ∗, A)

= (Φ∗)(K,Z, s̃− 3 (mod s), large; Φ∗, A)

= . . . (1)

Thus, Φ∗ ∈ D1. Therefore, it is sufficient to show that for ∀Φt ∈ {Φτ}∞τ=1,

Φt ∈ D0 =⇒ Φt+1 ∈ D0

From the same step as (1), we get

(Φt+1)(K,Z, s̃, large; Φt+1, A) = (Φt)(K,Z, s̃− 1 (mod s)), large; Φt, A), for ∀s̃ ∈ S

Φt ∈ D0 implies ∃s∗ ∈ S such that,∫
K×Z×{s∗}×{y,o}

dΦt (k, z, s∗, j; Φt, A) 6= 1

s
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So, ∫
K×Z×{s∗+1}×{y,o}

dΦt+1 (k, z, s∗ + 1, j; Φt+1, A) 6= 1

s

Therefore, Φt ∈ D0 =⇒ Φt+1 ∈ D0. �

K.3 Proof for Corollary 1

Corollary 1 (Aggregate endogenous cycle under the persistent shock).

Given µalarge ≥ µGz
and the initial distribution Φ0 ∈ D0, for ∀ ε > 0, there is a sufficiently

large τ ∈ {1, 2, 3, ...} such that the implied sequence of distributions {Φτ}∞τ=0 satisfies follow-

ing property:

||Φτ+s − Φτ ||sup < ε, for ∀τ > τ

Proof.

The strategy of proof is to utilize the law of large numbers that gives convergence of

conditional joint distribution of (k, z) given s. For the notational brevity, the aggregate state

variables are now omitted. By the isolation propositions,

(Φτ+1)(k, z, s) =

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s) ∈ K}I{ŝ′(s) ∈ S}dΦτ (k, z, s)

Let φs,τ denote the marginal density of s for the distribution Φτ .

φs,τ (s̃) :=

∫
K×Z×{s̃}×{y,o}

dΦτ (k, z, s̃, j; Φτ , A)

From the exactly same derivation as the equations (1), the marginal density of s satisfies the

following property:

φs,τ (s) = φs,τ+s(s) (2)

i) for S = s̃ ∈ 1 = 2, 3, ..., s,

(Φτ+1)(K,Z, s̃) =

∫
K×Z×S

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s) ∈ K}I{s̃ = s+ 1 (mod s)}dΦτ (k, z, s)

=

∫
K×Z

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s̃− 1 (mod s)) ∈ K}dΦτ (k, z, s̃− 1 (mod s))

(3)

82



and it is known that

(Φτ+1)(K,Z|s̃) ∗ φs,τ+1(s̃) = (Φτ+1)(K,Z, s̃)

φs,τ+1(s̃) = φs,τ (s̃− 1 (mod s))

Dividing both sides of the equation (3) by φs,τ+1(s̃),

(Φτ+1)(K,Z|s̃) =

∫
K×Z

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s̃− 1 (mod s)) ∈ K}dΦτ (k, z|s̃− 1 (mod s))

This is equivalent to

(Φτ+1)(K,Z|s+ 1 (mod s)) =

∫
K×Z

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s) ∈ K}dΦτ (k, z|s)

Let Φτ |s denote the joint distribution of (k, z) conditional on s.

Define a transition operator Λs such that

Λs(Ψ)(K,Z) :=

∫
K×Z

(∫
Z

Γz,z′dz
′
)
I{k̂′(k, z, s) ∈ K}dΨ(k, z), for ∀Ψ measure on K× Z

Then,

(Φτ+1|s+1 (mod s))(K,Z) = Λs(Φτ |s)(K,Z)

By applying the transition s− 1 times additionally,

(Φτ+s|s)(K,Z) = Λ(s)
s (Φτ |s)(K,Z) (4)

The equation above holds for ∀s ∈ S.

Define a transition operator Ts as

Ts(Ψ)(K,Z) := Λ(s)
s (Ψ)(k, z, s), for ∀Ψ measure on K× Z

Hence,

(Φτ+T |s)(K,Z) = Ts(Φτ |s)(K,Z) (5)

Note that this transition preserves the conditioning state variable s. By infinitely applying

the transition Ts to Φτ |s, under the mild regularity conditions, the law of large numbers gives
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the following result:52

∃Φ∗s such that (Φ∗s)(K,Z) = lim
n→∞

(Ts)
n(Φτ |s(K,Z)), for ∀(K,Z) ∈ (K ×Z)

Then, Φ∗s is a fixed point of the transition Ts such that

(Φ∗s)(K,Z) = Ts(Φ
∗
s)(K,Z)

All the convergent sequence is Cauchy sequence in metric space. Thus, we can find τ ∗s such

that for ∀τ > τ ∗s

||Φτ+T |s(K,Z)− Φτ |s(K,Z)||sup < ε, for ∀(K,Z) ∈ (K× Z) (6)

Then, define

τ ∗ = sup
s∈S

τ ∗s

For ∀(k, z, s) ∈ (K× Z× S) and ∀τ > τ ∗,

||Φτ+T (k, z, s)− Φτ (k, z, s)||sup

= ||
∫
s

Φτ+T |s(K,Z)φs,τ+T (s)ds−
∫
s

Φτ |s(K,Z)φs,τ (s)ds||sup

= ||
∫
s

Φτ+T |s(K,Z)φs,τ (s)ds−
∫
s

Φτ |s(K,Z)φs,τ (s)ds||sup , from (2)

≤
∫
s

||Φτ+T |s(K,Z)− Φτ |s(K,Z)||supφs,τ (s)ds

<

∫
s

εφs,τ (s)ds

≤ ε

Therefore, the proof is completed. �

K.4 Proof for Corollary 2

Corollary 2 (Commonness of aggregate cycles).

Consider a non-degenerate atomless distribution Ψ defined on σ-algebra D generated from D,

where D is the support of Ψ. Then, Ψ(D1) = 0, and Ψ(D0) = Ψ(D) = 1.

52As the transition relies on capital policy that only depends on the stochastic process z, and k, convergence
of distribution of z to the ergodic distribution makes the whole joint distribution of (k, z) converges as well.
This is the result coming from the law of large numbers, but I do not directly prove the convergence in this
paper.
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Proof.

D1 is a set of all distributions of which marginal distribution of x is a uniform distribution.

Out of all possible marginal distribution of x, D1 represents a singleton. Therefore, Ψ(D1) = 0.

Because D0 = D \ D0, Ψ(D0) = 1 �
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