
Spillovers, Homophily, and

Selection into Treatment:

The Network Propensity Score∗

Alejandro Sánchez-Becerra1

1Department of Economics, University of Pennsylvania

Job Market Paper

Latest Version Here
This version: March 19, 2021

Abstract

Propensity score matching is often used to estimate treatment effects when there is
selection on observables; however, it fails to identify causal effects when one person’s
treatment affects another’s outcome. This phenomenon is known as spillovers. I pro-
pose a novel network propensity score matching approach that identifies both the average
treatment effects and the average spillover effects between individuals. My approach is
grounded in an endogenous model of network formation with spillovers on the outcome.
This methodology can be used to identify causal effects for individuals with similar ob-
servables, analogous to the propensity score. I then propose estimators that are consistent
and asymptotically normal for settings with multiple networks. I apply my methodology
to two empirical examples. First, I study the effects of an intervention on political par-
ticipation in Uganda where I find evidence of spillovers on non-participants. Second, I
evaluate a microfinance adoption intervention in India, and find large treatment effects
but limited spillovers effects. In some extensions of the method, I show how to conduct ro-
bustness checks and how to interpret the network propensity score in stratified multi-stage
experiments.

Keywords: Networks, Selection into Treatment, Causal Inference.

∗I would like to thank Xu Cheng, Francis J. DiTraglia, Petra Todd, Jere Behrman, Frank Schorfheide,
Francis Diebold, Wayne Gao, Karun Adusumilli, Ben Golub, Mathew Jackson, Hyungsik Roger Moon, Bryan
Graham, Suyong Song, Andrin Pelican, Luis Candelaria, Aureo de Paula, and Juan Camilo Castillo, for helpful
comments and suggestions, as well as seminar participants at the Young Economists Symposium 2020, the
Econometric Society World Congress 2020, the Warwick 2019 Ph.D. Conference and the UPenn Empirical
Micro and Econometrics Workshops. Email: alesan@sas.upenn.edu

https://sites.google.com/site/sanchezbecerraalejandro/research
mailto:alesan@sas.upenn.edu


1 Introduction

Propensity score matching is a procedure for comparing the average outcomes of matched-pairs

of individuals. It is used to estimate program treatment effects, typically from observational

data on a cross-section of individuals whose outcome depends on their treatment status.1 At

its core, propensity score matching relies on a high level unconfoundedness (or selection-on-

observables) condition, assuming that the key determinants of treatment take-up are observed,

and a support condition, ensuring a match between comparable treated and control individuals.

Nevertheless, in many practical settings it is plausible that one person’s treatment can affect

the outcome of a friend in their social network. In these cases –known as spillovers– conven-

tional unconfoundedness and support conditions are insufficient to identify program treatment

effects. For example, job placement programs can displace non-participants from the labor mar-

ket (Crépon et al., 2013), cash transfers can affect informal insurance networks (Meghir et al.,

2020), and professional events can encourage the adoption of business practices (Fafchamps

and Quinn, 2018). In the presence of spillovers, researchers model the outcome as a function

of both an individual’s treatment status and a sufficient statistic of friends’ treatment deci-

sions. To address identification, a recent literature proposes analogs of the unconfoundedness

and support conditions (Forastiere et al., 2020; Liu et al., 2019; Sofrygin and van der Laan,

2017), intended for settings where the social network is observed by the researcher. In spite

of its technical convenience, unconfoundedness with respect to a constructed statistic is harder

to justify intuitively than unconfoundedness of the treatment, and recent work offers limited

guidance on its validity for specific situations.

This paper establishes a set of primitive conditions on the treatment, the network formation

process, and a flexible random coefficients model of the outcome, that rationalizes unconfound-

edness and support conditions to identify the average partial effects (APE). The APE’s in

my model are summarized by a vector of program treatment effects that includes an explicit

measure of spillovers. To build my argument, I exploit exchangeability: the key regressors of

my outcome equation are constructed from a common vector of treatment indicators, weighted

by another set of friendship indicators drawn from an exchangeable network process. I then

establish two key findings. First, the researcher can satisfy the unconfoundedness condition by

choosing individual determinants of treatment take-up and friendship choices. Second, there

exists a three-dimensional individual statistic –that I call the network propensity score (NPS)–

1This assumption is called the Stable Unit Treatment Value Assumption (SUTVA).
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which can be used as a matching variable. Crucially, the validity of the support condition

depends on heterogeneous take-up probabilities within a friend circle. From a theoretical per-

spective, the NPS can be expressed as an integrand of the take-up process, friend preferences

over traits, and the measure of traits in the population. I use this characterization to establish

when the NPS contains complementary information to the propensity score.

This paper builds on the intuitive idea that the determinants of network formation serve as

valid controls for identifying program treatment effects. This approach has been leveraged by

recent papers that assume exogenous treatment and homogeneous effects (Goldsmith-Pinkham

and Imbens, 2013; Johnsson and Moon, 2019). My paper formalizes this idea in a setting with

selection on observables and heterogeneous effects by proposing a model that nests the standard

potential outcomes used in program evaluation (Fisher et al., 1960; Rubin, 1980). This general-

ization is important for two reasons. First, nesting the standard model allows for a setting with

selection only and without spillovers, where propensity score methods should thrive. Second, it

shows that the network determinants approach imposes testable restrictions on the matrix Qxx,

defined as the (conditional) second moments of the endogenous regressors given covariates. I

further show that when the researcher has incomplete set of network determinants, then Qxx

can be expressed as a mixture of known matrices, and propose additional restrictions on the

unobserved heterogeneity that guarantee unconfoundedness. I extend this idea to construct a

covariate balancing test, as a robustness check.

I model program treatment effects using a random coefficients model, that allows for corre-

lation with the treatment decisions. The model’s average partial effects capture three distinct

estimands of interest: Direct effects capture the impact of the program in isolation, spillover

effects capture the impact’s of other’s treatment, and interaction effects capture the differential

effect of spillovers on those that are already treated. I propose a two-step identification strategy

based on inverse weighting in the style of Graham and Pinto (2018) and Wooldridge (2004). In

the first step, I estimate the network propensity score parameters and use them to construct

an individual-specific matrix Qxx. In the second stage, I estimate the average partial effects

by inversely weighting each observation and then averaging the resulting estimands across indi-

viduals. I then propose an estimator that is consistent and asymptotically normal in a setting

where the number of networks grows along the asymptotic sequence. I compute the standard

errors by rewriting the first and second stages as a single GMM system and computing standard

sandwich formulas.

I apply my methodology to two empirical examples. First, I consider an intervention de-
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signed to increase political participation in Uganda (Eubank et al., 2019; Ferrali et al., 2020).

Citizens voluntarily participated in quarterly information sessions about ways to engage with

local district officials. I find evidence of spillovers because individuals with a higher number of

friends participating in the sessions were more likely to be politically active, after controlling for

covariates. The estimates of the spillover effects under my approach are statistically significant

and about twice the size of comparable ordinary least squares (OLS) regressions with additive

covariates. The network propensity score matching methodology is better equipped to handle

heterogeneous spillover effects that can be correlated with the endogeneous regressors.

In the second example, I analyze the effects of an intervention to increase microfinance

adoption (Banerjee et al., 2013). This example has been analyzed extensively by the econo-

metrics literature (Candelaria, 2020; Chandrasekhar and Jackson, 2014) and has lead to many

follow-up projects (Banerjee et al., 2017; Breza and Chandrasekhar, 2019; Chandrasekhar et al.,

2018). The microfinance organization used a non-random selection rule based on occupation

of household members (shopkeepers, teachers), who received in-depth information about the

loans offered by the company. In practice, households with higher wealth and privileged castes

were both more likely to receive treatment themselves and to be friends with others that re-

ceived treatment as well. My network propensity score matching approach estimates large

treatment effects but limited spillover effects. Nevertheless, these results do not necessarily

rule out spillover effects through friends-of-friends in a diffusion model (Akbarpour et al., 2018;

Banerjee et al., 2013). In this case, the researcher observes loan adoption decisions, but not

whether they are informed at each moment in time. This might generate a possible attenuation

bias in the spillovers from direct friend connections, because it underestimates the diffusion of

information through the network.

Finally this paper considers applications of the network propensity score approach to strati-

fied experiments. I analyze experiments that exogenously assign treatment probabilities across

multiple networks (Baird et al., 2019; Crépon et al., 2013; Duflo and Saez, 2003; Vasquez-Bare,

2019) and experiments with treatment assignment variation within networks (Eckles et al.,

2017; Ugander et al., 2011). I find that the network propensity score has a simple form in both

cases under perfect compliance. I also consider settings with non-compliance and spillovers

(DiTraglia et al., 2021; Imai et al., 2020; Vasquez-Bare, 2019). I discuss the applicability of the

network propensity score to identify average spillover effects under non-compliance in sparse

networks.

There have been three recent approaches in the literature that extend propensity score
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methods for use with network data. The first approach uses relationship data and friend co-

variates to relax the selection on observables assumption. Jackson et al. (2020) assume that

program participation is the result of a strategic game with friends (spillovers in treatment),

but assume that there are no spillovers on outcomes. The second approach assumes selection

on observables (without spillovers) but focuses on pairwise outcomes. Arpino et al. (2015), for

example, compute the propensity score of adopting tariff agreements and use it to evaluate

their effect on bilateral trade between countries. The third approach, gaining traction in bio-

statistics, incorporates spillovers by assuming anonymous interactions (Manski, 2013), which

implies heterogeneous outcomes that depend on own treatment and the total number of treated

friends. This approach is sometimes called multi-treatment matching because it assumes that

individuals with different numbers of treated friends experience different intensities that satisfy

unconfoundedness (Forastiere et al., 2018; Liu et al., 2019; Sofrygin and van der Laan, 2017).

This literature focuses on predicting a propensity score for each intensity level, which is equiva-

lent to modeling the distribution of treated friends. No restrictions are imposed on the network

process but that generality comes at the cost of a very large vector of propensity scores that

needs to be estimated.

My approach is closest to multi-treatment matching, in the sense that I assume anonymous

interactions and focus on the distribution of treated friends. However, my paper shows that

augmenting the model with a network formation process introduces overidentifying restrictions

that reduce the dimensionality of the required propensity score. Moreover, the dyadic net-

work model that I assume –where individuals become friends based on the similarity of their

pairwise characteristics– is actually quite general. In two influential papers Aldous (1981) and

Hoover (1979) showed that any network process whose distribution is ex-ante independent of

the ordering of agents can be represented as a dyadic network with independent covariates

and independent shocks. Furthermore, there is a growing theoretical literature that provides

microfoundations of the dyadic model as a limiting network of a dynamic strategic game (Mele,

2017). The dyadic representation is extremely useful to analyze spillovers because it allows us

to focus on individual confounders rather than complicated functions of the covariates of others.

The network propensity score emerges quite naturally as a sufficient statistic that describes the

distribution of treated friends after conditioning on personal information.

The key empirical challenge is whether the covariates of the Aldous-Hoover representation

are actually observed or whether some of them may be latent. A recent literature (Gao, 2020;

Graham, 2017; Johnsson and Moon, 2019) proposes empirical dyadic models with a single
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source of unobserved heterogeneity called the popularity index because it generates variation

in the number of friends. Goldsmith-Pinkham and Imbens (2013) uses a bayesian model of

network formation, spillover effects, and exogenous treatment with a similar popularity index.

My model allows for plug-in estimates of the degree heterogeneity in the form of Johnsson and

Moon (2019) when there are multiple large networks. Testing whether the popularity index is

the only source of unobserved heterogeneity is an area of ongoing research. Pelican and Graham

(2019) test the validity of the empirical dyadic network model with popularity indexes, against

models with so-called strategic interactions (Chandrasekhar and Jackson, 2014; Leung, 2019a).

Another recent literature (Auerbach, 2019; Zeleneev, 2020) focuses on a “graphon” metric

to analyze more general forms of unobserved heterogeneity that allows for latent communities.

Auerbach (2019), however, argues that this form of heterogeneity cannot be separately identified

from spillovers in dense networks. Recent research typically assumes sequences of networks with

increasing degree for consistent estimating models with this form of heterogeneity. However, the

residual variance of the fraction of treated friends is inversely proportional to the degree, which

means that identification in dense networks is at best weak without any further regularization.

Handling these types of settings remains an open question.

There is a broader reduced form literature on networks and social interactions. Manski

(1993) studies a linear model with group level averages of key variables as regressors. Man-

ski’s model is similar to mine in the sense that he also includes summary measures of friend

treatment. However, he also includes an average of the outcome variable as a regressor and

calls its associated coefficient the endogenous peer effect. There has been significant interest in

estimating this coefficient (Bramoullé et al., 2009; Lee, 2007) although there has been skepti-

cism about whether it is plausible to identify it in practice (Angrist, 2014). The models that I

consider do not estimate the endogenous peer effects. There are many reasons to focus on the

coefficient on friend treatment instead of the endogenous peer effect. On one hand, the coverage

of the program can be adjusted by the policymaker, whereas changing the composition of peers

or the network itself is not always feasible, except in tightly controlled environments. On the

other hand, the average partial effects that I identify can be viewed as observational analogs of

the estimands recovered by random saturation experiments (Baird et al., 2019; Crépon et al.,

2013; Duflo and Saez, 2003; Vasquez-Bare, 2019), in which the researcher exogenously shifts

the proportion of people treated by design. Overall, understanding the trade-offs in expanding

the coverage of a program are essential to the policy maker’s cost-benefit calculations.

Section 2 introduces the model and the identification results. Section 3 proposes feasible
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estimator and presents the asymptotic results. Section 4 discusses the empirical examples.

Section 5 presents a discussion about extensions. Section 6 concludes.

2 Model

I assume that there are g � t1, . . . , Gu disjoint groups that contain i � t1, . . . , Ngu individuals

each. We can interpret g as the identifier for a school, village or city. Treatment status is

denoted by a binary variable Dig that equals one if individual tigu is treated and zero if she

is not. A social network is denoted by a Ng � Ng adjacency matrix Ag with binary entries.

Each entry Aijg equals one if individuals tigu and tjgu are friends and zero otherwise, using the

convention that Aiig � 0. To make the model tractable, I follow a recent literature that relies

on summary measures of friends’ treatment status (Aronow and Samii, 2017; Leung, 2019a;

Manski, 2013). To this end, I define two additional measures: the total number of tigu1s friends

Lig �
°Ng
j�1Aijg and the total number of tigu1s treated friends by Tig �

°Ng
j�1AijgDjg. The

variables Lig and Tig are meant to capture peer influence in tigu1s immediate friend circle.

I analyze a model where a scalar outcome Yig is determined by

Yig � αig �Digβig � ϕpTig, Ligq1γig �Dig � ϕpTig, Ligq1δig. (1)

Here, ϕ : Z2
� Ñ Rk is a known function, which maps pTig, Ligq to a set of individual covariates.

I define a vector of real-valued random coefficients τig � pαig, βig, γ1ig, δ1igq1 P R2�2k that can be

correlated with pDig, Tig, Ligq. I am interested in identifying the average partial effects for a

target population, defined as

τ � pα, β, γ, δq � Erτig | Fs. (2)

The average partial effects vector τ integrates the coefficients in (1). The conditioning F is

important to emphasize that the average is computed for a specific subpopulation (men or

women, old or young, etc.). When the conditioning set is empty, i.e F � H, the average is

computed for the entire population.

The potential outcomes model (Fisher et al., 1960; Rubin, 1980) that is routinely used in

program evaluation is a special case of (1). In that case we set γig � δig � 0 and define

individual-specific outcomes by treatment status as Yigp0q � αig and Yigp1q � αig � βig. The
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average treatment effect is defined as β � Erβig | Fs � ErYigp1q � Yigp0q | Fs. Heterogeneity of

βig is important to capture varying responses to treatment. Researchers are often interested in

testing β � 0, the null hypothesis that the treatment has no effect on average. If β ¡ 0 then

the treatment has a positive effect on the population of interest, and a negative effect if β   0.

The more interesting case is when γig and δig are not zero. For simplicity assume that

ϕpt, lq � t{l and l ¡ 0, which implies that the model in (1) is a linear function of own treatment,

the fraction of treated friends, and an interaction. We can define the potential outcomes as

Yigp0, t, lq � αig � γig � pt{lq and Yigp1, t, lq � αig � βig � pγig � δigq � pt{lq. The direct average

treatment effect is equal to ErYigp1, t, lq � Yigp0, t, lq | Fs � β � δ � pt{lq. In contrast to the

Fisher-Rubin model, the magnitude of the treatment effect depends on how many friends are

treated. For example, if δ ¡ 0 then having more treated friends widens the gap between the

treated and control. In addition to the ATE we can compute the spillover effect for control

individuals ErYigp0, t, lq � Yigp0, 0, lq | Fs � γ � t{l. If γ ¡ 0 then control individuals have

better outcomes when some of their friends are treated even if they are not participating in the

treatment directly. Modeling heterogeneity of pγig, δigq is important to capture the fact that

not everyone is equally susceptible to peer influence.

The choice of ϕ determines the shape of the potential outcomes function in terms of friend

treatment status. Many empirical examples choose a linear specification with homogeneous

coefficients where ϕpt, lq � t or ϕpt{lq � t{l following Manski (1993), although more general

forms are also possible. It is worth noting that the choice of ϕ is not essential to the identification

argument. Non-separable models are an alternative that can capture heterogeneous, non-linear

relationships between an outcome an endogenous variable (Blundell and Powell, 2003; Florens

et al., 2008; Imbens and Newey, 2009). In this case the equivalent of τ is a function known as

the average dose response or average structural function. In Section Appendix show that this

function is identified by using analogous arguments to the random coefficients.

The more substantial restriction in (1) is that individuals are only affected by the average

treatment status of their immediate friends rather than those of second order connections. This

assumption is known in the literature as anonymous interactions (Aronow and Samii, 2017;

Baird et al., 2019; DiTraglia et al., 2021; Leung, 2019a; Vasquez-Bare, 2019). This condition is

typically violated in so-called endogenous peer effects models that include an additional term

ρ
°Ng
j�1AigYjg on the right-hand side of (1). Bramoullé et al. (2009) show that in a setting

with homogeneous coefficients, i.e. pβig, γig, δigq � pβ, γ, δq, as well as exogenous treatment and

network, there is a reduced-form representation that depends on the entire treatment vector and
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the whole adjacency matrix. Some work has been done on accounting for endogenous network

formation (Johnsson and Moon, 2019) but the general case with higher order connections,

heterogeneous coefficients, endogenous treatment and network formation is still an ongoing

area of research (see Bramoullé et al. (2020) for a recent review).

2.1 Identification of τ : Main insights

Let Xig be the vector of regressors (1) which is defined as

Xig � p1, Dig, ϕpTig, Ligq, Dig � ϕpTig, Ligqq.

The random variable Xig has dimension 2� 2k. This allows us to write down the model in (1)

concisely as Yig � X 1
igτig.

The main barrier to identifying the average partial effect is that τig and Xig might be

correlated. To address this problem, I propose using individual covariates Vig that capture

the main determinants of treatment and network formation. I assume that Vig satisfies the

unconfoundedness condition τig |ù Xig | Vig and that F is Vig� measurable. For example,

F could include gender and Vig could include a finer set of variables such as gender, age and

wealth. I establish primitive assumptions on the network and treatment processes that justify

these conditions in the next section. Under unconfoundedness,

ErYig | Xig � x, Vig � vs � x1Erτig | Vig � vs � x1τpvq (3)

Here, τpvq is a localized average of τig in terms of observables. Unconfoundedness allows us to

separate the endogenous regressors from the random coefficients. Crucially, x and τpvq form a

system of equations that can be used to solve for τpvq.
For example, consider a restricted case where tigu does not have any friends and hence there

are no spillovers. For convenience, we can express the regressors as Xig � p1, Dig, 0, 0q, setting

the variables that involve peer treatment to zero. The system has two equations

ErYig | Xig � p1, 0, 0, 0q, Vig � vs � Erαig | Vig � vs if Dig � 1

ErYig | Xig � p1, 1, 0, 0q, Vig � vs � Erαig | Vig � vs � Erβig | Vig � vs if Dig � 0
(4)

We can solve for Erβig | Vig � vs by subtracting the first line from the second line of (4).
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Intuitively, for each treated individual we have to find another person with similar characteristics

in the control group, that proxies as a counter-factual. This matching process requires an

support/overlap condition 0   PpDig � 1 | Vig � vq   1, that ensures that the researcher can

find such a match with high probability. The probability PpDig � 1 | Vig � vq is commonly

known as the propensity score. If it is equal to either zero or one, then one of the outcomes

in Equation (4) is not identified and we cannot solve Erβig | Vig � vs. If the overlap condition

does hold over the support of Vig then we can obtain the average treatment effect as β � Erβig |
Fs � ErErβig | Vigs | Fs by applying the law of iterated expectations.

We now turn to the case where tigu has one or more friends. To solve the system of equations

involving τpvq we can pre-multiply (4) by Xig and apply the law of iterated expectations once

more. This means that ErXigYig | Vig � vs � ErXigX
1
ig | Vig � vsτpvq. We can solve for τpvq as

τpvq � ErXigX
1
ig | Vig � vslooooooooooomooooooooooon

�Qxxpvq

�1 ErXigYig | Vig � vsloooooooooomoooooooooon
�Qxypvq

Here, the weighting matrix Qxxpvq needs to be invertible over the support of Vig. The estimand

for τpvq resembles the form of a varying coefficients regression that conditions on Vig. Invertibil-

ity depends on both the choice of basis functions ϕ and the distribution of pDig, Lig, Tigq given

Vig. It ensures that the econometrician observes individuals with the same value of Vig but

different treatment status and different values of pTig, Ligq. If the weighting matrix is invertible

uniformly in the support of Vig, then we can identify τ � ErτpVigq | Fs � ErQxxpVigq�1QxypVigq |
Fs. Graham and Pinto (2018) and Wooldridge (2004) show that in a generic random coefficients

model with regressors Xig we can write an expression for τ that does not depend on QxypVigq,
by applying the law of iterated expectations.

Theorem 1 (Average Partial Effects). Suppose that (i) Yig � X 1
igτig, (ii) Xig |ù τig | Vig, (iii)

F is Vig�measurable and Qxxpvq � ErXigX
1
ig | Vig � vs is invertible almost surely over the

support of Vig | F . Then τ defined in (2) is equal to ErQxxpVigq�1XigYig | Fs.

Theorem 1 shows that the average partial effect can be identified by an inverse weighting

strategy that only depends on QxxpVigq. In contrast to a generic random coefficients model, in

the spillovers model Xig is a function of own and friend treatment indicators, which constrains
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the form of Qxxpvq. Let b denote the Kronecker product. The weighting matrix takes the form

Qxxpvq � E

���� 1 ϕpTig, Ligq1
ϕpTig, Ligq ϕpTig, LigqϕpTig, Ligq1

�b
�� 1 Dig

Dig Dig

�| Vig � v

��
The overlap condition is still necessary for invertibility. If PpDig � 1 | Vig � vq is either

zero or one, then some of the columns are colinear. However, the overlap condition is not

sufficient because of the other entries that involve ϕ. The remaining entries of Qxxpvq can be

interpreted as a generalized propensity score in the style of Hirano and Imbens (2004) to match

the first and second conditional moments of Xig. I show that imposing the network model

introduces over-identifying restrictions that drastically reduce the number of entries that need

to be computed, and provide guidance on the choice of Vig.

2.2 Endogenous Treatment and Network

I assume that the researcher has auxiliary covariates that explain tigu1s participation in the

treatment and choice of friends. Let Cig P Rdc be a vector of individual characteristics that are

sampled at random from a super-population and let Ψ�
g P RdΨ be a vector of group characteris-

tics. I next describe assumptions on the core structure that provide guidance on the choice of

Vig.

Assumption (Random Sampling).

(i) (Across Groups) tτig, Dig, CiguNgi�1, Ψ�
g are i.i.d. across groups.

(ii) (Within Groups) tτig, Dig, Cigu are i.i.d. within group given Ψ�
g .

The first part of Random Sampling –stating that groups are i.i.d– is plausible when the

groups are spatially, economically or socially separated. The second part states that the covari-

ates within a group are conditionally independent within groups, which is a common assumption

in the literature on network formation (Auerbach, 2019; Graham, 2017; Johnsson and Moon,

2019). This can also be interpreted as an exchangeability condition.

Assumption (Selection on Observables). τig |ù Dig | Cig,Ψ�
g .

The Selection on Observables assumption states that the treatment status is independent

of the treatment effects, after controlling for baseline characteristics. It puts the burden on

11



researchers to identify relevant confounding variables (such as gender, income or age) that are

motivated by either theory or practice. For example, the confounders can emerge from well-

defined institutional rules that constrain the assignment of slots to treatment or the stratifying

variables in experiments with perfect compliance. Selection on Observables is the same assump-

tion discussed by Rosenbaum and Rubin (1983), which justifies propensity score analysis.

Assumption (Dyadic Network). Suppose that there exists an unobserved vector of pair-

specific shocks tUijguNgi,j�1 P RNg for g � 1, . . . , G and an unknown link function L : Rkc �Rkc �
RkΨ � RÑ t0, 1u such that

(i) (Pairwise Links) Aijg � LpCig, Cjg,Ψ�
g , Uijgq.

(ii) (Shocks) Uijg are i.i.d. and mutually independent of tτig, Dig, CiguNgi�1 given Ψ�
g .

The Dyadic Network assumption states that friendships between pairs of individuals tigu
and tjgu depend on their observed characteristics pCig, Cjgq, a group component Ψ�

g and a pair-

specific shock Uijg. For example, let }c � c�} be the Euclidean distance between two sets of

covariates pc, c�q. In a random geometric graph, Lpc, c,Ψ�, uq � 1t}c� c�} ¤ uu, which implies

that individuals are more likely to be friends if their characteristics are similar. In economics,

dyadic networks have been used to analyze risk sharing agreements, political alliances and

business partnerships (Attanasio et al., 2012; Fafchamps and Gubert, 2007; Fafchamps and

Quinn, 2018; Graham, 2017; Lai and Reiter, 2000). The function L can be interpreted as a

decision rule that encodes preferences over friends, as a random meeting process that brings

two people together (Mele, 2017), or a combination of both.

Dyadic networks can also be motivated as reduced form objects by appealing to exchange-

ability. In two influential papers, Aldous (1981) and Hoover (1979) showed that any network

whose distribution is invariant to the ordering of the sample (exchangeability) can be repre-

sented as a dyadic network, where some of the components of Cig are possibly unobserved. From

a practical point of view, the Dyadic Network assumption states that the relevant determinants

are indeed observed by the researcher. Therefore it can be interpreted as a network analog of

the Selection on Observables assumption.
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2.3 The Network Propensity Score

Define the propensity score and the friend propensity score, respectively as

pdig � PpDig � 1 | Cig,Ψ�
gq,

pfig � PpDjg � 1 | Cig,Ψ�
g , Aijg � 1q.

The scalar pdig is the probability of treatment given individual characteristics, whereas pfig is

the probability that a potential friend is treated. The Random Sampling assumption ensures

that every friend is ex-ante identical and hence the probability does not depend on the subscript

tjgu. I call the three dimensional vector Pig � ppdig, pfig, Ligq the network propensity score.

Before presenting the general results I focus on a special case where τ has a closed form

expression. The following result in Theorem 2 is a special case of Theorem 1, by setting

Vig � pCig,Ψ�
g , Ligq and imposing a particular set of basis functions.

Theorem 2 (Closed form τ). If ϕpt, lq � t{l, F � 1tLig ¡ 0u, QxxpVigq is almost surely

full rank and Random Sampling, Selection on Observables and Dyadic Network hold, then the

average partial effects equal

(i) α � E
��

1� Tig�Ligpfig
1�pfig

	�
p1�DigqYig

1�pdig

	
| F

�
,

(ii) β � E
��

1� Tig�Ligpfig
1�pfig

	�
DigYig
pdig

� p1�DigqYig
1�pdig

	
| F

�
,

(iii) γ � E
��

Tig�Ligpfig
pfigp1�pfigq

	�
p1�DigqYig

1�pdig

	
| F

�
,

(iv) δ � E
��

Tig�Ligpfig
pfigp1�pfigq

	�
DigYig
pdig

� p1�DigqYig
1�pdig

	
| F

�
.

Theorem 2 shows that the average partial effects can be identified from ppdig, pfig, Tig, Lig, Dig, Yigq
for the subsample of individuals with at least one friend. The network propensity score is not

observed directly but it can be identified from the data.

The treatment effect β, in particular, looks very similar to its counterpart βATE in the

absence of spillovers. Robins et al. (1994) and many others have shown that

βATE � E
�
DigYig
pdig

� p1�DigqYig
1� pdig

| F
�
.

By plugging in the outcome from (1), and applying the law of iterated expectations, it

is possible to show that βATE � β � Erpfig � δig | Fs. In the special case where the friend
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propensity score is independent of the spillover effect on the treated pδigq, then this expression

simplifies to β � ErDjg | Fs � δ. That means that the treatment effect that is recovered from

propensity score matching can be interpreted for the average effect when ErDjg | Fs friends

are treated. This quantity is not directly policy relevant because does not reflect the average

outcomes when the program is implemented at a smaller or larger scale.

The example in Lemma 1 also highlights some of the relevant rank conditions for identifica-

tion that hold for more general settings. As in standard propensity score matching the overlap

condition 0   pdig   1 needs to hold, otherwise the denominator is not well defined. There is

a similar overlap condition for potential friends, where 0   pfig   1. This means that tigu1s
friend cannot all be part of the treatment or control with probability approaching one. Other-

wise, there is no residual variation to identify the spillover effects. Lastly, the distribution of

pTig, Ligq needs to have thin tails (not too many friends), otherwise expectation may not be well

defined. This suggests a potential weak identification problem in dense network limits where

Lig Ñ 8. This is not a problem for networks with a bounded number of friends.

The first step to prove the general result is to show that Vig � pCig,Ψ�
gq satisfies the key

unconfoundedness condition of Theorem 1 and can hence be used as matching variable to

compute the average causal effect τ .

Theorem 3 (Direct Confounders). Suppose that Yig is generated by (1). If Random Sampling,

Selection on Observables and Dyadic Network hold, then pXig, Ligq |ù τig | Cig,Ψ�
g .

Intuitively, Random Sampling and Dyadic Network imply that pCig,Ψ�
gq controls for others’

treatment whereas Selection on Observables ensures that it controls for own selection. From a

practical standpoint, Theorem 3 suggests that the researcher should include all the covariates

that she considers relevant for treatment participation and network formation in Vig. The

variables pCig,Ψ�
gq control for tigu1s friend preferences, and hence all the residual variation in

Xig is exogenous.

The second step is to prove that the network propensity score is a sufficient statistic for the

distribution of the endogenous regressors.

Lemma 1 (Conditional Distribution). If Random Sampling and Dyadic Network, then

(i) Dig | Tig, Lig, Cig,Ψ�
g � Bernoullippdigq,

(ii) Tig | Lig, Cig,Ψ�
g � Binomialppfig, Ligq and
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Lemma 1 shows that the distribution of pDig, Tigq given pCig,Ψ�
gq can be parametrized in

terms of Pig. Part (i) is an extension of the canonical result of Rosenbaum and Rubin (1983),

whereas par (ii) is a new result. This factorization holds regardless of the primitive function

pLq and shock distribution of network formation. The proof builds on the insight that Tig is

a sum of conditionally independent Bernoulli variables after conditioning on the key variables

of network formation. Under model (1), Xig is a deterministic function of pDig, Tig, Ligq which

means that Pig also parametrizes the distribution of Xig | Cig,Ψg, Lig. Lemma 1 also shows

that Pig is identified from the conditional means of pDig, Tigq.
The third and final step, is to show that the network propensity score can be used as a

matching variable for causal comparisons.

Theorem 4 (Balancing). If Random Sampling and Dyadic Network hold, then Pig is a balancing

score, in the sense that Xig |ù pCig,Ψ�
gq | Pig. If Selection on Observables also holds, then

Xig |ù τig | Pig.

Theorem 4 shows that Pig is a suitable generalization of the propensity score to setting with

spillovers and network formation by showing that inherits two key properties. First, it is a

balancing score which means that two individuals with the same value of Pig are guaranteed

to have the same distribution of covariates pCig,Ψ�
gq. This property is important for causal

analyses because it ensures that any matching procedure based on Pig will compare similar

individuals. Second, it shows that Pig satisfies the unconfoundedness property required to

identify the average partial effect τ in Theorem 1. The selection on observables ties the observed

characteristics pCig,Ψ�
gq to the random coefficients and is therefore crucial to prove the final

step.

From an economic point of view, the network propensity score can be interpreted as a

function of agents’ underlying preferences. To this end, it is convenient to represent tigu1s
treatment indicator as Dig � HpCig,Ψ�

g , ηq whereH is a measurable function and ηig | Cig,Ψ�
g �

F pη | c,Ψ�q is an unobserved participation shock. Since we can always define the participation

shock as η � Dig � PpDig � 1 | Cig � c,Ψ�
g � Ψ�q, this form does not entail any loss of

generality. The function H can also take the form of a threshold utility models or institutional

assignment rules based on observables. The first component of the network propensity score is

the propensity score conditional on pCig,Ψ�
gq, which is defined as

PpDig � 1 | Cig � c,Ψ�
g � Ψ�q �

»
Hpc,Ψ�, ηq dF pη | c,Ψ�q (5)
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The propensity score depends on the preference function H and the distribution of selection

shocks. The integral averages out the individual heterogeneity η, holding the characteristics

pc,Ψ�q fixed.

The friend propensity score can be written in a similar way. Let F pη�, c�, u | Ψ�q be the

distribution of traits of a potential friend in each group pη�, c�q and the friendship shock puq
given Ψ�

g . By Bayes’ rule

PpDjg � 1 | Cig � c,Ψ�
g � Ψ�, Aijg � 1q

�
»
Lpc, c�,Ψ�, uq Hpc�,Ψ�, η�q dF pη�, c�, u | Ψ�q³

Lpc, c�,Ψ�, uq dF pc�, u� | Ψ�q .
(6)

The friend propensity combines tigu1s friendship preferences/meeting likelihood and tjgu1s
preferences for participation in the program. In the extreme case that L � 1tc � c�u, agents

only befriend others with exactly the same characteristics and the friend propensity score is

equal to the propensity score. At the other extreme, when L � 1tu ¡ 0u the network is

exogenous then (6) reduces to
³
Hpc�,Ψ�, ηqdF pη�, c� | Ψ�q, which is a group-level constant.

Conversely, when the treatment is exogenous, that is when Hpc�,Ψ�, η�q � η and η is inde-

pendent of the other characteristics, then the propensity score and the friend propensity score

are constant. For intermediate cases the friend propensity score will not contain in the same

information as the propensity score.

2.4 Mixture Representation of Qxx

To compute the network propensity score, pCig,Ψ�
gq is either fully observed or can be consistently

estimated. Unobserved heterogeneity can be addressed in a variety of ways. For instance, by

estimating group-specific network propensity score to capture variation in Ψ�
g , by exploiting

restrictions on the network structure (Johnsson and Moon, 2019) or constraints on compliance

behavior in randomized experiments (DiTraglia et al., 2021). However, it is possible that all

the relevant heterogeneity cannot be captured by the data available to the researcher. In this

section I analyze the form of the weighting matrix when Vig does not contain all the relevant

determinants of selection and network formation.

To state the formal result we need some preliminary notation. Define the functions rϕ1ppf , lq �
ErϕpTig, Ligq | pfig � pf , Lig � ls and rϕ2ppf , lq � ErϕpTig, LigqϕpTig, Ligq1 | pfig � pf , Lig � ls
which are the conditional first and second moments given the friend propensity score and the
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total number of friends. Since Lemma 1 shows that ppfig, Ligq parametrizes the distribution of

pTig, Ligq given pCig,Ψ�
gq, these are equivalent to conditioning on pCig,Ψ�

gq directly by the de-

composition axiom (Constantinou et al., 2017). Lemma 1 also implies that rϕ1 and rϕ2 are known

functions that only change depending on the basis ϕ. In our running example, where ϕpt, lq � t{l
these function take a very simple form. In this case rϕ1ppf , lq and rϕ2ppf , lq � pf p1�pf q

l
� p2

f .

Lemma 2 shows that the matrix Qxx can be expressed as a mixture of known functions of

the network propensity score.

Lemma 2 (Mixture Representation). Suppose that Random Sampling and Dyadic Network

hold, and that Vig is measurable with respect to pCig,Ψ�
g , Ligq, then

Qxxpvq �
» �� 1 rϕ1ppf , lq1rϕ1ppf , l, pf , lq rϕ2ppf , lq

�b
�� 1 pd

pd pd

�dF ppd, pf , l | Vig � vq. (7)

In the special case where Vig � pCig,Ψ�
gq the distribution F is degenerate and we can drop

the integral sign. Therefore, observing the key variables for selection and network formation

imposes over-identifying restrictions on the weighting matrix. The integral is non-degenerate

when some of these key variables are unobserved by the researcher. This assumption is testable

by comparing the entries of Qxx. For example, in a parametric model F can be modeled as a

latent distribution that nests the degenerate case and ppdig, pfigq as link function such as probit

or logit.

If F is non-degenerate, then Vig is not guaranteed to satisfy the conditions of Theorem 1

from the Random Sampling, Selection on Observables and Dyadic Network assumptions alone.

We need an additional exclusion restriction.

Lemma 3. If Random Sampling, Selection on Observables, Dyadic Network hold, and τig |ù Pig |
Vig, where Pig � ppdig, pfig, Ligq, then Xig |ù τig | Vig.

Lemma 3 provides a high-level condition that says that the variation in the network propen-

sity is exogenous after conditioning on Vig, that ensures the validity of Vig. Since the network

propensity score is itself a function of pCig,Ψ�
gq this means that are exogenous shifter in individ-

ual behavior pCigq or variation across groups pΨ�
gq. In the discussion I present some examples

of experiments where this condition holds by construction.
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2.5 Covariate Balancing (“Placebo”) Test

The balancing property in Theorem 4 is testable. Parametric propensity score analyses typically

conduct so-called covariate balancing tests. I propose an analogous “placebo” test, where the

pretreatment covariates serve as an outcome variable. Let rVig P R be a variable in the covariate

set Vig � pCig,Ψgq. My test relies on the simple idea that rVig can be decomposed as

rVig � rVigloomoon
rαig

�0�Dig � 0� ϕpTig, Ligq � 0�Dig � ϕpTig, Ligq

Let rτig � prVig, 0, 0, 0q is the vector of coefficients of the placebo outcome. It is easy to ver-

ify that Xig |ù rτig | Vig since rτig is a measuarable function of Vig. Therefore by Theorem 1,

ErQxxpVigq�1Xig
rVigs � pErrVigs, 0, 0, 0q. Therefore, when Qxxpvq is properly specified the re-

searcher can test the null hypothesis that the slope coefficients are zero. This test only uses

information about the treatment, the network and the covariates but not the outcome.

In practice the test could be rejected in a parametric settings if the functional form is not

flexible enough. However, it could also be rejected because a violation of the over-identifying re-

strictions imposed by the Random Sampling and Dyadic Network assumptions. The researcher

may want to check whether there are omitted variables that might influence network formation

or treatment.

3 Estimation

I outline a two-step procedure to estimate the causal effects for linear models as a sample analog

of the estimand of τ . In the first stage, I fit a parametric model for Qxx using data from the

endogenous regressors Xig and the control variable Vig. In the second stage, I substitute the

estimated weighting matrix Qxx to compute τ by inverse weighting.

Notation: Let Zig denote a vector of individual variables, where Zig � pXig, Yig, Vigq in-

cludes the endogenous regresors, the outcome and the observed control variables. I let
°
ig fpZigq

be the sum
°G
g�1

°Ng
i�1 fpZigq, where fp�q is an arbitrary function. I also let n̄ � 1

G

°G
g�1Ng

denote the average group size. By construction, n̄G is equal to the total sample size. For

convenience, let vecp�q denote the vectorize operator, which stacks the columns of a matrix

into a single vector. I also use }x} to denote the Euclidean norm of the vector x, defined as

}x} �
b°K

k�1 x
2
k.
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In the first stage, I consider a parametric class of functions to model the weighting matrix,

tQxxpv,θq : θ P Θ � Rdθu, that nest the true model. This means that there is a θ0 P Θ such

that Qxxpv,θ0q � ErXigX
1
ig | Vig � vs. The matrix Qxx has to be symmetric and positive

semi-definite. If Random Sampling, Selection on Observables and Dyadic Network hold, and

Vig � pCig,Ψ�
gq the choice of parametric family can be disciplined by imposing over-identifying

restrictions of the network formation model, so that Qxxpv,θq can be expressed as a function

of the network propensity score. Alternatively we can use the mixture model representation of

Lemma 2 to inform the choice of Qxx for other choices of Vig. The control variable Vig is valid

as long as the conditions of Lemma 3 hold.

I define the vectorized residuals,

rpZig,θq � vecpXigX
1
ig �QxxpVig,θqq.

The residuals capture how well the control variables fit Xig. The sample criterion function

computes the average of square residuals as

pRpθq � 1

n̄G

¸
ig

}rpZig,θq}2. (8)

The sample criterion pRpθq is an approximation to Rpθq � Er}rpZig,θq}2s. The least squares

criterion is appropriate for three reasons. First, the population criterion Rpθq is minimized at

θ0 because the conditional mean of XigX
1
ig given Vig is the optimal prediction. This provides

a rationale for minimizing pRpθq. Second, joint-likelihood approaches are either impractical or

infeasible without strong assumptions. The variables Tig and Lig that enter Xig are constructed

based on the treatment status of friends, which introduces a mechanical dependence. For

example, when tigu and tjgu have all their friends in common, Tig and Tjg are functions of the

same information. It is therefore difficult to write down a likelihood without specifying the full

network formation model. Third quasi-likelihood approaches, such as those in Tchetgen et al.

(2017) and Sofrygin and van der Laan (2017) are valid under certain assumptions, but are more

sensitive to the specification of the model. My approach is more robust than quasi-likelihood

methods because it targets the conditional mean directly, which is the main object required for

identification.
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We can construct a feasible estimator by minimizing the sample criterion,

pθ � arg min
θPΘ

pRpθq. (9)

The estimated parameter pθ can be plugged-in to compute a feasible weighting matrix QxxpVig, pθq.
I propose the following sample analog of the inverse-weighting estimand of τ .

pτ � 1

n̄G

¸
ig

QxxpVig, pθq�1XigYig

The vector pτ is a feasible estimator of the average partial effects defined in (1). The estimator

is subject to two sources of uncertainty. First, the sample average is an approximation to

ErQxxpVigq�1XigYigs. Second, the inverse weighting method is subject to first-stage uncertainty

in the estimation of pθ. Under standard regularity conditions that I list in the Appendix, pθ
and pτ are consistent but the standard errors need to be adjusted. This is analogous to the

first stage uncertainty in propensity score methods, that can be corrected analytically or by

bootstrap procedures (Abadie and Imbens, 2016).

To adjust the standard errors it is useful to view the first and second stages as a single

system of equations. As before, let z � px, y, vq. I write down the first-order conditions in

terms of the jacobian of the square residuals ψqpz,θq � B
Bθ1
}rpv,θq}2 and the second stage

influence function ψIW pz,θq � Qxxpv,θq. I stack the first and second stage equations in a

single influence function ψ � rψq, ψ1IW s1. The estimated parameters solve

1

n̄G

¸
ig

ψpZig, pτ , pθq � 0 (10)

To this end, I define the within-group average ψgpZg,θq � 1
Ngt

°Ng
i�1 ψpZig,θq, where Zg �

tZiguNgti�1 is a matrix of individual covariates for each group. This allows me to decompose

(10) into group averages as 1
n̄G

°
ig ψpZig, pτ , pθq � 1

G

°G
g�1

�
Ng
n̄

	
ψgpZg,θq. The fraction pNg{n̄q

denotes the relative size of each group.

For inference, I compute heteroskedasticity-robust standard errors, clustered a the group

level. Let pΩ be an estimate of the second moments of the influence function (10) and let pH be
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a sample analog of the expected jacobian, defined as

pH � 1

G

Ģ

g�1

�
Ng
n̄

	 B
Bpθ,βq1ψgpZg, pτ , pθq (11)

pΩ � 1

G

Ģ

g�1

�
Ng
n̄

	2

ψgpZg, pτ , pθqψgpZg, pτ , pθq1 (12)

Then the covariance of the estimators is computed by the sandwich estimator pΣ � 1
G
pH�1pΩxH 1

�1

and the standard errors can be recovered from the square root of the diagonal of pΣ. Since the

estimator pτ P Rdτ only enters the second stage linearly,

pH � 1

G

Ģ

g�1

�
Ng
n̄

	�� B
Bθ1
ψq,gpZg, pτ , pθq 01dτ

B
Bθ1
ψIW,gpZg, pτ , pθq Idτ

�
Here, ψq,g and ψIW,g decompose the within-group average influence functions into the first and

second stages, respectively. Both pH and its inverse are lower triangular, which means that

the limiting covariance matrix of τ depends on the upper-left block of pΩ (which captures the

first-stage uncertainty).

3.1 Large Sample Theory

For the remainder of this section I propose inference procedures for a setting with many groups

G Ñ 8 and allow for the possibility that Ng is either fixed or growing with G. This is

intended to approximate the situation faced by empirical researchers who randomly collect

data from distinct geographic units, with few individuals (classrooms) or many individuals

(villages, cities), which matches the data that I use in the empirical example. Formally, I

assume that there is a sequence of probability distributions that is indexed by t, with Gt

groups of unequal size Ngt, and let Nt � ErNgts denote the expected group size. There is

a triangular array of covariates for individual tigu for the point t in the sequence, which I

denote by Zigt � pXigt, Yigt, Vigtq. The variables pLigt, Tigtq are the number of treated friends

and number of friends, respectively. Similarly, for each t, I compute estimators ppθt, pτ tq. The

estimator pτ t, in particular is compared to the population quantity τ 0t � Erτigt | Fts. Centering

the estimator around the mean of the triangular array is important to derive the right rate of

convergence. For simplicity, I define ρgt as the relative group size. Let 0   ρ   ρ   1 be an
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arbitrary constant that I use throughout the derivation.

Assumption (Bounded Group Ratios). ρgt � pNgt{Ntq P rρ, ρs � p0, 1q almost surely.

Bounded Group Ratios implies that all groups are approximately the same size, within a

range. It implies that the ratio of the largest to the smallest group is bounded by ρ{ρ. This

assumption is automatically satisfied when Ngt is bounded. However, if Nt Ñ 8 as tÑ 8, then

the assumption implies that the smallest group size is growing, because infgNgt ¥ ρNt Ñ 8 as

Nt Ñ 8. Bester and Hansen (2016) propose a weaker assumption for large unbalanced panels,

where the bounds hold in the limit experiment rather than for each point along the sequence,

which leads to qualitatively similar conclusions.

My asymptotic results allow for some or all of the regressors in Vigt to be estimated. For

example, Johnsson and Moon (2019) show the estimator Lig{pNg � 1q converges uniformly to

a measure of unobserved degree heterogeneity in dense networks, at rate
aplogNtq{Nt in sup-

norm. In related work in DiTraglia et al. (2021) we find that in randomized experiments with

non-compliance, the key dimensions of heterogeneity in spillover models is unobserved but can

be consistently estimated in large groups, with a
aplogGtq{Nt uniform rate of convergence.

Finally, researchers may also want to estimate group-level averages of the covariates that are

consistent in large groups. I define V 0
igt as the true, but unobserved value of the regressors. My

asymptotic results simply require that maxg�1,...,Gt maxi�1,...,Ngt }Vigt � V 0
igt} � Oppλtq and that

?
Gtλt � op1q. In the two examples above, this means that the expected size of each group

needs to be large relative to the number of groups. This is plausible in situations where data

is collected on large villages or other geographical units. If the key confounders are observed

without error then Vigt � V 0
igt. Otherwise the condition holds trivially and Nt does not need to

grow with G at any particular rate.

I list additional Regularity Conditions in the Appendix, where I impose conditions on the

moments of pXigt, Yigtq and smoothness conditions on the function Qxxp�,θq. In particular, I

provide conditions that ensure that the weighting matrix is almost surely invertible, by imposing

a lower bound on the eigenvalues of the matrix. When Vigt � pCigt,Ψ�
gtq and Random Sampling,

Selection on Observables and Dyadic Network hold, this is equivalent to saying that Ligt is

bounded, and that the remaining components of the network propensity score are bounded in a

compact subset of the unit interval, i.e. pdpCigt,Ψ�
gtq, pf pCigt,Ψ�

gtq P rρ, ρs � p0, 1q. That avoids

boundary cases, where there is not enough residual variation in the regressors after conditioning

on the controls. Finally, I define two more objects, H0t � ErpNgt{NtqψgpZgt, pτ , pθqs and Ω0t �
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ErpNgt{Ntq2ψgpZgt, pτ , pθqψgpZgt, pτ , pθq1s that are used to compute the covariance matrix Σt �
H�1

0t Ω0tH
�1
0t .

Theorem 5 (Limiting Distribution Estimators). Suppose that Vigt satisfied the conditions of

Theorem 1 and define the covariance matrix Σt � H�1
0t Ω0tH

�1
0t . If Bounded Group Ratios and

Regularity Conditions hold, then as tÑ 8, (i) pθt Ñp θ0t, pτ t Ñp τ 0t and (ii)

a
GtΣ

�1{2
t

��pθt � θ0tpτ t � τ 0t

�Ñd N p0, Iq

Theorem 5 shows that the estimators are consistent and converge to a normal distribution.

The estimator is centered around the value of pθ0t,β0tq that solves the population criterion,

at each point of the sequence. This allows for estimators that are consistent, even if the

networks itself does not converge to any particular structure. Theorem 5 can be viewed as

an approximation to the finite sample behavior. Researchers can construct test statistics by

substituting Σt with a sample analog pΣt to confidence intervals.

My results are agnostic about the dependence structure across groups, but it may be possible

to improve the
?
Gt to

?
GtNt under stronger conditions. For example, Kojevnikov et al.

(2020) develop a central limit theorem for network dependence and provide specific regularity

conditions for a single Dyadic Network. This requires the network to be sparse Ligt small

relative to Ngt so that individuals far apart in the network are approximately independent.

In practice, this does not change the estimation procedure but rather the way in which we

construct confidence intervals. Kojevnikov et al. (2020) propose a Network-HAC estimator and

Kojevnikov (2019) proposes a bootstrap procedure. Leung (2019b) proposes similar limiting

theory for spillover effects when the treatment is exogenously assigned, and Chandrasekhar and

Jackson (2014) propose alternative limit theorems under network dependence.

4 Empirical Examples

4.1 Political Participation in Uganda

I evaluate the role of an intervention on political participation in Uganda (Eubank et al., 2019;

Ferrali et al., 2020). U-Bridge is a novel political communications technology that allows citizens

to contact district officials via text-messages. In a pilot program, individuals in 16 villages
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were invited to participate in quarterly meetings, at a central location, where they received

information about national service delivery standards and ways to communicate with local

officials. The Governance, Accountability, Participation, and Performance (GAPP) program

collected survey data on 82% of adults in the 16 villages as well as social network data. Ferrali

et al. (2020) evaluated the adoption patterns of U-Bridge a couple years later. Eubank et al.

(2019) study the role of social network structure on voting patterns. For my analysis, I evaluate

the impact of attendance to UBridge meetings on political participation using the network

propensity score matching methodology. Spillovers are likely to occur in this context because

non-participants can receive information about ways to engage in politics from their friends,

which can increase their own political activity.

The data collected by the researchers contains four types of social networks: Family ties,

friendships, lenders and problem solvers. In my analysis, tigu is an identifier for an adult in

the pilot villages. The indicator Aijg equals one if tigu and tjgu have a connection along any of

the four dimensions and zero otherwise. Under this definition, individuals have 10 connections

on average. The indicator Dig equals one if tigu attended the Ubridge meetings, which is

around 8.6% of the sample. The outcome is a continuous variable Yig that denotes a political

participation index constructed by Ferrali et al. (2020). Table 3 presents summary statistics

comparing the treatment and control group. The average adult in the sample is around 40

years old. Men are more likely to attend the session than women. Individuals that a leader

position and/or completed their secondary education are more likely to attend as well.

I estimate the following linear model with random coefficients.

Yig � αig � βigDig � γig

�
Tig
Lig



� δig

�
Tig
Lig



(13)

Heterogeneity of βig means that agents engage in varying levels of political activity after at-

tending the meeting. In this case, we expect βig to be close to zero because individuals that

are already politically engaged are the ones opting to go to the meetings. Conversely, γig is the

effect of peers on non-participant adults. If γig ¡ 0, then individuals with a larger fraction of

treated friends are more politically active. The coefficient γig � δig captures the spillovers for

participants. In this case we expect δig   0 because the marginal effect of attending friends is

lower because they are already receiving the information first hand.

There is a potential identification in this example because individuals select connections

with similar preferences We expect pγig, δigq to be correlated with pTig{Ligq. To address this
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problem I leverage additional covariates collected by the researcher to tease out the causal

effects. The network propensity score matching methodology is the appropriate tool to identify

the average partial effect τ because it allows to incorporate additional covariates while allowing

for heterogeneous causal effects τig � pαig, βig, γig, δigq.

4.2 Feasible Network Propensity Score and Causal Effects

The propensity score in this case describes the probability of attending an Ubridge meeting

given covariates Cig � pCig1, . . . , CigKq. These include an indicator for holding a leadership

position in the village, gender, an indicator for secondary education, a self-reported relative

income measure, distance to the meeting place, number of friends and age. Ferrali et al.

(2020) also incorporated a public goods where participants were asked to donate part of their

remuneration to the village that were match researchers. The donation amount is meant to

capture pro-sociability attitudes.

I assume that the group-level variation Ψ�
g has an observed and an unobserved component.

For the observed component, I include a vector of group-level averages of the key variables in Cig,

which I denote by Ψg. I assume that Ψ�
g has a bivariate structure with mean pΨ1

gθdΨ,Ψ
1
gθdΨq1,

where pθdΨ,θfΨq is a vector of parameters to be estimated. The error term of Ψ�
g follows a

normally distributed random-effects structure with covariance matrix Σ � pσ2
11, σ12, σ12, σ

2
22q,

that is assumed to be independent of the observed covariates and the random coefficients τig.

The coefficient σ12 captures the correlation between the two unobserved components of Ψ�
g .

Formally,

Ψ�
g �

��Ψ�
gd

Ψ�
gf

�� N pµg,Σq, µg �
��Ψ1

gθdΨ

Ψ1
gθfΨ

�, Σ �
��σ2

1 σ12

σ12 σ2
2

�.
I assume that the own propensity score takes the form of a logit link function with an associated

vector of parameters θd � pθd0, θd1, . . . , θdKq as follows

pdpCig,Ψ�
g ;θdq �

exppθd0 �
°K
k�1Cigkθdk �Ψ�

gdq
1� exppθd0 �

°K
k�1Cigkθdk �Ψ�

gdq

I similarly construct the friend propensity score using a logit link function. I use the same

observables variables as the friend friend propensity score with different coefficients θf �
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Network Propensity OLS with covariates
Coefficients Std. Error Coefficients Std. Error

Direct Effect pβq 0.270 (0.165) -0.010 (0.060)
Spillover Effect pγq 0.348*** (0.116) 0.156** (0.068)
Interaction pδq -0.199 (0.862) 0.563*** (0.165)
N 2831 2831
Villages 16 16

Table 1: (Average Partial Effects Political Participation in Uganda) * Significant at 10%. ** Signif-
icant at 5%. *** Significant at 1%. The second and third columns show the coefficients and standard errors
of the inverse-weighted estimator, respectively. The fourth and fifth columns are the coefficients of am additive
ordinary least squares (OLS) regression that regresses Yig on a constant, Dig, pTig{Ligq, Dig �pTig{Ligq and the
observed controls used in the inverse-weighting procedure.

pθf0, θf1, . . . , θdf q as follows

pf pCig,Ψ�
g ;θf q �

exppθf0 �
°K
k�1Cigkθfk �Ψ�

gf q
1� exppθf0 �

°K
k�1Cigkθfk �Ψ�

gf q

The full vector of parameters to be estimated is

θ � pθdΨ,θfΨ, σ
2
1, σ12, σ

2
2,θd,θf q.

Let F pΨ�
g ;θq is the distribution of unobserved heterogeneity, which corresponds to that of a

normal distribution with parameters pµg,Σq. I construct a weighting matrix that satisfies the

mixture model representation of Lemma 2, where Vig � pCig,Ψg, Ligq. To simplify notation I

define the auxiliary matrix

ΛpCig,Ψ�
g , Lig;θq �

�� 1 pf pCig,Ψ�
g ;θf q

pf pCig,Ψ�
g ;θq pf pCig ,Ψ

�
g ;θf qp1�pf pCig ,Ψ

�
g ;θf qq

Lig
� pf pCig,Ψ�

g ;θf q2

�
The feasible weighting matrix is equal to

QxxpVig;θq �
»

ΛpCig,Ψ�
g , Lig;θq b

�� 1 pdpCig,Ψ�
g ;θq

pdpCig,Ψ�
g ;θq pdpCig,Ψ�

g ;θq

�dF pΨ�
g ;θq. (14)

where I evaluate the integral numerically via quadrature methods and estimate the parameter

θ by minimizing the sample criterion function in (8).

Table 4 reports the estimated parameters. Columns (2) shows the coefficients of the propen-

sity score. None of the variables in Cig appears to be statistically significant. Column (3) reports
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(a) Histogram of the number of friends (b) Histogram of same-caste friends

Figure 1: The figure shows the estimated pdig and pfig for the network graph of one Ugandan
village. Individuals are represented as nodes, and the links between them represent the relationships
reported in the baseline survey. Treated individuals are represented with larger nodes. In figure (a) a
darker shade of blue indicates a higher estimated probability of treatment, whereas a darker shade of
yellow indicates a low probability. Analogously, in figure (b) a darker shade of blue indicates a larger
probability of friend treatment.

the coefficients of the friend propensity score, which are far more interesting. The evidence sug-

gests that individuals that hold a leadership position and have completed a higher education or

more likely to have a treated friend. This is likely due because leaders tend to come in contact

with a greater variety of individuals. Similarly individuals in villages where individuals perceive

themselves as wealthier are more likely to see engagement with the U-Bridge sessions. Figure

1 plots the propensity score and friend propensity score, integrating out the heterogeneity Ψ�
g .

Each score contains complementary information about the selection patterns. Finally to test

the fit of the model I run a covariate test / placebo test by replacing the outcome variable

in (13) with each of the controls used in the analysis. None of the placebo coefficients are

statistically significant for 16 out of the 20 variables. There are slight imbalances on one the

relative income indicators, the distance to meeting and the average sociability.

Table 1 reports estimates of the average partial effects. Column (2) shows the coefficients

under the network propensity approach. The direct effect β is positive but not statistically

significant at the 10% level. The spillover effect δ increases the participation index by 0.348
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points, which is significant at the 1% level. This effect is quantitatively large relative to the

standard deviation of the political participation index, which is around 0.567 points. This

finding appears to suggest that the intervention had a large spillovers on non-participants, who

increased their political activity. The interaction coefficient δ is negative but not statistically

significant at the 1% level. The results are consistent with the idea that the intervention had

limited effects direct treatment effects, but promoted spillover effects on participants’ social

connections. Column (3) shows benchmark coefficients from an OLS regression with additive

covariates. On one hand, the OLS coefficient of β is also not statistically significant at the 10%

level. On the other hand, the OLS coefficient of γ is statistically significant but roughly half the

size of the network propensity estimate. Finally, the coefficient of δ is positive and statistically

significant. The discrepancies in the results for γ and δ can be explained by interactive spillover

effects γig and δig that are not captured by the additive OLS model.

4.3 Microfinance Adoption in India

In this section I re-evaluate a program that encouraged the adoption of microfinance in rural

areas of Southern India, by inviting select households to participate in an information about

the program (Banerjee et al., 2013). Participant households were more likely to take out a

loan. Spillovers are likely to occur in this context due to information transmission between

participants and non-participants, and peer pressure to adopt.

The outcome is a binary variable Yig that is equal to one if household tigu took out a loan

when researcher followed-up a few months later. I estimate the following linear probability

model with random coefficients.

Yig � αig � βigDig � γig

�
Tig
Lig



� δig

�
Tig
Lig



(15)

Heterogeneity of βig in the microfinance example means that some households are more likely to

take-out a loan after the information session than others. Conversely, heterogeneity of γig and

δig means that not every household is equally likely to get in debt after receiving information

from their friends. The coefficient δig is the difference in spillovers effects between participant

and non-participant households.

Identification of the average partial effect τ � pα, β, γ, δq is particularly challenging in this

setting, however, because the treatment was not randomly assigned. The microfinance orga-

nization followed a fixed targeting strategy in each village, that selected shopkeepers, teachers
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and related occupations. However, Table 6 shows that treated households were wealthier; they

were more likely to have stone or concrete houses as opposed to tile or thatch, have private

electricity, more bedrooms, and own a latrine. For instance, the treated were 13.45% more

likely to have access to some form of sanitation, with either a private or public latrine. These

differences are statistically significant at the 5% level, using clustered standard errors by village.

There were also significant differences by caste, a hereditary social category that still defines

many social boundaries, with household of so-called “general caste” more likely to be treated

as opposed to minorities.

To measure social network links, Banerjee et al. (2013) collected twelve different definitions

of the network at baseline, including favor exchange, commensality and community activities.

I choose a conservative definition of the network, such that Aijg is equal to one if respondents

reported a link along any of the dimensions. Figure 2a plots the resulting degree distribution,

which shows that the treated had a higher number of friends. Households have around ten

friends on average, which is around 5% of the average village size. Figure 2b shows that

households reported that most of their friends were in the same broad caste category. As a

matter of fact a significant portion of the households reported that all of their friends were in

the same category. The histogram shows that the treated had more diversified friendships, in

the sense that they had fewer friends of the same caste.

To estimate the network propensity score I use the same specification as in the example for

Uganda. The second and third columns of Table 7 show the coefficients of the own propensity

score and the corresponding standard errors. The structural parameters confirm the descriptive

evidence. The number of rooms in the house, as well as the access to sanitation and electricity

are statistically significant at the 5% level. Individuals of general caste and more connections,

are more likely to be part of the program, even after accounting for asset measures. The observed

group covariates are not statistically significant at the 10% level. Conversely, the fourth and

fifth columns show estimated coefficients of the friend propensity score and their standard

errors. Only the sociability index and the general caste indicator are statistically significant.

This suggests that caste plays a crucial role on the interplay between homophily and selection.

Treated individuals of general caste are more likely to befriend other treated individuals in their

same caste category. The results also show that the unobserved heterogeneity parameters are

not statistically significant at the 10% level.

Table 2 computes the treatment effects using my proposed inverse-weighting (IW) procedure

and an ordinary least squares (OLS) regression that includes the covariates as additive controls.
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(b) Histogram of same-caste friends

Figure 2: Figure (a) shows a histogram with the number of friends of each households, broken down by
the treated and control households. Leaders tend to have a higher number of friends. Figure (b) shows
a histogram with the fraction of same caste-friends. The general survey which contains information
on five broad categories “General”, “Minority”, “OBC”, “Scheduled Caste” and “Scheduled Tribe”. I
computed the fraction of treated friends for each household in the same caste category.

The IW results show that participants in the information session (leaders) are 8.5% more likely

to take-out a microfinance loan after controlling baselin characteristics, and is significant at the

1% level. The value of the direct effect is 1% higher than the effect estimated by OLS. The OLS

regression only controls for additive heterogeneity, but it does not account for the possibility of

heterogeneous slopes/treatment effects. The fact that the IW and OLS produce similar results

even though the leaders are highly selected suggests that the determinants of treatment are

exogenous. The spillover effect is not significant in either case. That means that local variation

in treated friends does not affect the outcome.
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Network Propensity OLS with covariates
Coefficients Std. Error Coefficients Std. Error

Direct Effect pβq 0.096** (0.046) 0.077*** (0.029)
Spillover Effect pγq 0.092 (0.091) 0.026 (0.036)
Interaction pδq -0.102 (0.292) 0.000 (0.121)
Village Controls Yes Yes
N 7480 7480
Villages 43 43

Table 2: (Average Partial Effects Microfinance in India) * Significant at 10%. ** Significant at 5%.
*** Significant at 1%. The table shows the coefficients of the causal effects. The second and third columns
show the coefficients and standard errors of the inverse-weighted estimator, respectively. The fourth and fifth
columns are the coefficients of a ordinary least squares (OLS) regression that regresses Yig on a constant, Dig,
pTig{Ligq, Dig�pTig{Ligq and the observed controls used in the inverse-weighting procedure. This sample merges
the census-level data with a detailed survey for a random subsample of households, to fill in missing caste data.
The sample excludes households without friends, households with more than 30 friends, and those that have
missing caste or electricity data, which is 0.77% of the overall sample. The standard errors are clustered at the
village level.

5 Discussion

5.1 Effects by subpopulation

In many cases social programs deliberately target individuals based on baseline characteristics,

and the policy maker may not be interested in the effects for the overall population. The

identification problem is that individuals are only observed in a single treatment status, which

means that the researcher has to find appropriates comparison individuals in the control group

that approximate the behavior of the treated under a different exposure. To this end, let us

define average partial effect on the treated (APT) and untreated (APU)

τAPT � Erτig | Dig � 1,Fs

τAPU � Erτig | Dig � 0,Fs

Theorem 6 presents identification results for τAPT and τAPU ,

Theorem 6 (Identification Subpopulations). Suppose that (i) Yig � X 1
igτig, (ii) pXig, Digq |ù τig |

Vig, (iii) F is Vig�measurable and Qxxpvq � ErXigX
1
ig | Vig � vs is invertible almost surely over
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the support of Vig | F , then

τAPT � 1

ErDigs � E
�
pdpVigq �QxxpVigq�1XigYig | F

�
τAPU � 1

1� ErDigs � E
�p1� pdpVigqq �QxxpVigq�1XigYig | F

�

The main intuition is fairly similar to Theorem 1, in the sense that the inverse weighting

ensures equal comparisons across with different strata of Vig whereas the own propensity pdpVigq
weights each strata by the relative number of treated individuals. Notice that the unconditional

average partial effects and the pAPT,APUq are mutually constrained by the law of iterated

expectations τ � ErDigsτAPT � p1� ErDigsqτAPU .

Table 9 computes the average partial effects by subpopulation for the political participation

example in Uganda. The coefficients pβAPT , δAPT q and pβAPU , δAPUq have similar magnitudes,

standard errors and significance. There are however, there are large differences in the mag-

nitudes and significance levels of the spillovers for the control group (in fact γAPT ¡ γAPU).

This suggested that individuals with a higher likelihood of participating in the session are more

likely to change the behavior if one of their friends is treated. Analogously, in Table 10, I com-

pute pβAPT , γAPT , δAPT and pβAPU , γAPU , δAPUq. The coefficients are similar in magnitude, with

comparable standard errors, which suggests that both groups of individuals are fairly similar.

In both tables, I compute the standard errors by replacing the definition of ψIW using a sample

analog of the moment conditions in Theorem 6.

5.2 Network Propensity Score and Experiments

One of the most effective ways to identify spillovers is to use a random saturation design.

This a two-stage design rising in popularity in the empirical literature (Bursztyn et al., 2019;

Crépon et al., 2013; Giné and Mansuri, 2018) and studied in several recent econometrics papers

(Baird et al., 2019; DiTraglia et al., 2021). I establish a tight connection between the network

propensity and identification in experiments. I show the applicability of my methods to study

non-compliance in sparse networks.

In the first stage each group is randomly a saturation, a real number Sg P r0, 1s. In the second

stage individuals within each group are randomly assigned to treatment with probability Sg.

This design is an extension of Bernoulli designs that treat individuals with a fixed probability,
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such as Sg � 0.5, and cluster design that assign complete groups to treatment or control, where

Sg P t0, 1u. The more interesting case combines corner an interior saturations. For example,

Crépon et al. (2013) chooses Sg P t0, 0.25, 0.5, 0.75, 1u, which generates more experimental

variation. To simplify my analysis I focus on the case where the experimenter uses Bernoulli

draws to offer treatment in the second stage.

The experimental setting relaxes the assumptions considerably. To discuss the identification

of τ in this experimental context it is useful to assume that Cig includes both baseline individual

characteristics (observed and unobserved). Similarly, I assume that Ψ�
g includes group charac-

teristics (observed or unobserved) heterogeneity and the exogenous saturations Sg. Under this

definition it is easy to see that Selection on Observables is automatically satisfied because the

treatment is exogenous. It is also easy to satisfy the Random Sampling and Dyadic Network

assumptions. We can invoke the Aldous (1981) and Hoover (1979) theorems that state that

any exchangeable network can be represented as a dyadic network with randomly sampled (and

possibly unobserved) Cig. The purpose of this exercise is to show that in certain experiments

there is a simple set of conditioning statistics suffices to identify the treatment effects, even if

there is rich unobserved heterogeneity determining the treatment and network choices.

Example 1 (Perfect Compliance): The random assignment of saturations and offers

means that the propensity score is equal to the group saturation when there is perfect compli-

ance. That means that individuals participate in the program when they are offered and are

part of the control when they are not offered. In that case

pdig � ErDig | Cig,Ψ�
g sloooooooomoooooooon

Definition

� ErDig | Cig,Ψ�
g , Sgsloooooooooomoooooooooon

Redundancy

� ErDig | Sgslooooomooooon
Second Stage

� Sgloomoon
First Stage

. (16)

Equation (16) breaks down the process to show that the propensity is equal to the group

saturation. The first equality defines pd. The second equality uses the fact that Sg is a group

characteristic that contains redundant information. The last two equality uses the property of

the design, that the treatment probability only depends on a saturation which is independent

of other characteristics.

I perform a similar break down for the friend propensity score.

pfig � ErDjg | Gijg � 1, Cig,Ψ
�
g slooooooooooooooomooooooooooooooon

Definition

� ErDjg | Gijg � 1, Cig,Ψ
�
g , Sgslooooooooooooooooomooooooooooooooooon

Redundancy

� ErDjg | Sgslooooomooooon
Second Stage

� Sgloomoon
First Stage
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Finally, the number of friends Lig is not randomly determined by the experimental design and

can still be a source of homophily bias that the researcher needs to account for. In networks

where everyone is connected pLig � Ng � 1q this is equivalent to condition on the size of the

group, such as classroom size.

The saturation Sg is independent of the random coefficients τig and the baseline information.

Formally τig |ù Sg | Lig and hence we can apply Lemma 3 to show that Xig |ù τig | Lig. That

means that matching individuals with similar numbers of friends suffices to identify the average

partial effects τ using Theorem 1.

Example 2: (One-sided compliance) In practice researchers randomly extend offers but

subjects may not be compelled to accept them. Under one-sided compliance treatment status is

defined by Dig � rCigZig where rCig is a binary indicator for whether tigu is a “complier” and Zig

is their offer. Compliers with rCig � 1 may perceive larger returns from the program and always

participate if offered, where never-takers rCig � 0 do not consider the program worthwhile. In

their empirical example from (Crépon et al., 2013), Dig is a job placement program. The peer

effects are potential displacement effect for non-participants that were disadvantaged in a tight

labor market. To fit this example within my framework I assume that rCig is a component of

the individual covariates Cig.

Non-compliance introduces additional complications because the treatment is no longer

randomly assigned. To analyze this problem it is useful to first compute an infeasible propensity

score that conditions on the latent complier indicator. If C̃ig were known

pdig � Er rCigZig | Gijg � 1, Cig,Ψ
�
g s � rCigSg

The propensity score for never-takers is always zero, whereas the propensity score for compliers

depends on the saturation. The friend propensity equals

pfig � Er rCjgZjg | Gijg � 1, Cig,Ψ
�
g s � Er rCjg | Gijg � 1, Cig,Ψ

�
g s � Sg.

The first equality applies the definition of the friend propensity and substitutes the expression

for Djg under one-sided compliance. Theorem 3 implies that the key dimensions of endogeneity

are captured by the vector Vig � p rCig,Er rCjg | Gijg � 1, Cig,Ψ
�
g s, Ligq since Sg is exogenous.

The second component of Vig can be interpreted as the probability that a potential complier
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is treated. This agrees with related work in DiTraglia et al. (2021), where we show which

causal effects are identified and show that pSgq for the spillover effects because of first-stage

heterogeneity. We propose a procedure that subsets Zig � 1 to recover complier status from

Dig and consistently estimates the probability of a friend complier using Tig{Sig to construct a

valid IV. The procedure relies on complete networks where Lig � Ng � 1 and Ng Ñ 8 in the

asymptotic experiment.

Identification of the causal effects in networks where Lig is bounded remains an open ques-

tion. Vazquez-Bare (2020) and Imai et al. (2020) develop identification results for complete

networks where Lig � Ng � 1 such as syblings, partners or classrooms without friendship infor-

mation. However, there are no equivalent results for the case where Lig � Ng�1 which captures

the majority of observed networks. For these situations, estimating the friend propensity score

from observed covariates by predicting the conditional mean of Tig{Sg can be a practical second-

best alternative to account for network endogeneity. Non-compliance in randomized saturations

designs introduces over-identifying restrictions on the matrix Qxx that fit within the framework

discussed in this paper. Similar analyses can be used for two-sided compliance.

Example 3: (Graph-clustering) Random saturation (RS) designs are infeasible in the

type of single-connected networks that are prevalent in online social media platforms like Face-

book, Twitter and Linkedin. (Ugander et al., 2011) and (Eckles et al., 2017) propose a vari-

ant that uses within-network variation. Consider a three stage design. In the first stage,

the researcher runs a graph-clustering algorithm to split the sample into distinct communities

κ P t1, . . . ,Ku. In the second stage each community is assigned a saturation Sκ P r0, 1s. In

the third stage each individual in κ is assigned to treatment with probability Sκ. A graph-

clustering experiment is identical to a random saturation design when the algorithm partitions

the network into disjoint groups, but will produce very different results otherwise.

To analyze this design within my framework I assume that each individual belongs to a

community κig P t1, . . . ,Ku and that the vector of saturations is a group level random variable

tS1, . . . , SKu are included in Ψ�
g . The own propensity score is equal to the saturation in tigu1s

community

pdig � ErDig | Cig,Ψ�
g s � ErDig | κig, Cig,Ψ�

g s � ErDig | κigs � Sκig

Unsurprisingly, the propensity score is equal to saturation assigned to tigu1s community.

The friend propensity score is more complicated. In a graph-clustering experiment we can
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define multiple network measures as

pfig � ErDjg | Gijg � 1, Cig,Ψ
�
g s � ErrDjg | Gijg � 1, Cig,Ψ

�
g , κjgs | Gijg � 1, Cig,Ψ

�
g s

� ErSκjg | Gijg � 1, Cig,Ψ
�
g s

�
κ̧

κ�1

Er1tκjg � κu | Gijg � 1, Cig,Ψ
�
g s � Sκ

The inner expectation is the probability that tigu1s potential friend belong to community κ.

In this case, since the saturations are exogenously assigned, we can apply Lemma 3 once

more to show that the key dimension of endogeneity is the probability of friendships between

communities and the number of friends Lig. This is a consequence of imperfect partitioning

which makes inference depending on the clustering algorithm used.

6 Conclusion

This paper proposed a novel strategy for identifying average treatment effects and average

spillover effects in settings with endogenous network formation and selection on observables.

My approach provides a simple and tractable way of estimating these types of average effects.

This method will be useful to program evaluators in a wide variety of non-experimental settings,

where there is network data and treatment that is not randomly assigned by an experiment.

Spillovers are important because they allows us to understand the broader implications of an

intervention. Causal estimates of spillover effects allow policy makers to perform more accurate

cost-benefit calculations. Spillovers are also important for welfare analysis. Interventions can

sometimes have harmful unintended consequences on non-participants that should be taken

into account at the time of generating new policies. Conversely, interventions can also have

positive consequences on non-participants that need to be properly understood before adapting

programs to new contexts.
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Treated Control Difference Std. Error

Political Participation 0.370 -0.035 0.406*** (0.043)
Leader 0.288 0.132 0.156*** (0.027)
Prosociabililty Index 0.198 0.196 0.001 (0.011)
Female 0.275 0.606 -0.331*** (0.044)
Secondary Education 0.458 0.207 0.251*** (0.046)
Relative income: Low 0.296 0.278 0.018 (0.043)
Relative income: Avg 0.108 0.103 0.005 (0.015)
Relative income: High 0.375 0.324 0.051 (0.034)
Relative income: Very High 0.025 0.022 0.002 (0.010)
Distance to meeting 1.702 1.788 - 0.086 (0.163)
Number of Friends 11.775 9.413 2.362*** (0.326)
Age 40.504 37.090 3.415*** (0.101)

N 250 2591
Villages 16 16

Table 3: (Summary statistics political participation in Uganda) Differences between leader households
selected by the microfinance organization and non-leader households. All the variables are measured at baseline.
This sample merges the census-level data with a detailed survey for a random subsample of households, to fill
in missing caste data. The sample excludes households without friends, households with more than 30 friends,
and those that have missing caste or electricity data, which is 0.77% of the overall sample. The standard errors
are clustered by village.
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Own Propensity Score Friend Propensity Score
Coefficient Std. Error. Coefficient Std. Error

Leader 0.662 (1.154) 0.116*** (0.037)
Sociability Index -1.122 (1.428) -0.157 (0.128)
Female -1.383 (1.712) -0.185 (0.055)
Has secondary education 0.876 (1.503) 0.179*** (0.050)
Relative income: Somewhat worse 0.411 (0.431) 0.013 (0.047)
Relative income: About the same 0.15 (0.367) 0.079* (0.046)
Relative income: Somewhat better 0.296 (0.325) 0.022 (0.057)
Relative income: Much better 0.137 (0.758) -0.111 (0.125)
Distance to meeting -0.191 (0.430) -0.084 (0.042)
Number of friends 0.187 (0.263) -0.03 (0.010)
Age 0.17 (0.210) 0.027 (0.020)
Share of leaders in village 0.167 (10.215) -2.406 (2.433)
Average sociability index -8.028 (11.269) -8.034 (3.334)
Share of women in village -2.332 (12.777) -9.321 (4.281)
Share of high-school educated 1.428 (4.434) 0.322 (1.748)
Share reporting ”Somewhat worse” 0.913 (15.164) -2.484 (4.092)
Share reporting ”About the same” 16.559 (17.025) 9.536*** (2.345)
Share reporting ”Somewhat better” 4.024 (17.623) 1.501 (4.555)
Average distance to meeting 0.233 (0.701) -0.07 (0.122)
Average age -1.192 (2.598) -1.167 (0.544)
logpσ1q 1.697 (3.071)
σ12 0.178 (0.190)
logpσ2q -3.324 (0.323)
Constant -2.168 (16.170) 9.934*** (3.328)

Number of Observations 2,831 2,831
Number of Villages 16 16

Table 4: (Network Propensity Score Parameters Uganda) * Significant at 10%. ** Significant at 5%.
*** Significant at 1%. Columns (2) and (4) show the estimated coefficients for propensity score and friend
propensity scores, respectively. Columns (3) and (5) show the corresponding standard errors, that are clustered
by village. The relative income asks how an individual’s perceives her household income relative the typical
household. The baseline category is ”Much worse than the typical household”. I dropped the “Share reporting:
Much Better” variable because there was very little variation (only 2% of the sample marked this category). The
bottom half of the table reports village-level averages and shares of the key variables. I omit the share for the
”Much better” category because there are two few individuals. The bottom rows displays the parameters of the
covariance matrix of the unobserved heterogeneity parameters. The sample for the table excludes households
without friends and missing data on distance to meeting, gender, age and income.
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rβ rγ rδ
Coeff. Std. Error. Coeff. Std. Error Coeff. Std. Error

Leader 0.039 (0.217) 0.097 (0.081) 0.097 (3.970)
Pro-Sociability Index 0.627 (1.961) -0.091 (0.107) -1.637 (0.359)
Female 0.064 (0.111) 0.083 (0.150) -0.242 (2.802)
Has secondary education 0.399 (1.454) 0.079 (0.102) -0.946 (3.161)
Income: Somewhat worse 0.456 (1.463) 0.123 (0.097) -1.323 (14.137)
Income: About the same 1.509 (6.494) 0.571 (0.638) -3.92 (58.105)
Income: Somewhat better 7.395 (26.897) 4.249** (1.917) -20.639 (18.984)
Income: Much better 2.877 (9.529) 0.796 (0.647) -7.198 (0.957)
Distance to meeting 0.129 (0.462) 0.048** (0.023) -0.327 (3.375)
Number of friends 0.453 (1.687) 0.081 (0.068) -1.108 (1.486)
Age 0.235 (0.749) 0.036 (0.027) -0.567 (3.031)
Share of leaders in village 0.401 (1.507) 0.087 (0.074) -1.013 (2.164)
Average sociability index Index (1.080) 0.067** (0.033) -0.736 (12.502)
Share of women in village 1.504 (5.791) 0.562 (0.745) -3.377 (22.216)
Share of high-school educated 3.032 (11.044) 0.597 (0.422) -7.452 (53.987)
Share of ”Somewhat worse” 7.243 (26.817) 1.966* (1.157) -18.381 (0.343)
Share of ”About the same” 0.007 (0.080) 0.021 (0.027) -0.012 (0.977)
Share of ”Somewhat better” 0.031 (0.245) 0.063 (0.072) -0.08 (7.409)
Average distance to meeting -0.098 (1.251) 0.708 (0.794) 0.776 (11.434)
Average age 0.23 (2.839) 0.668 (0.907) -0.566 0.000

Table 5: (Covariate Balancing Participation Uganda) * Significant at 10%. ** Significant at 5%.
*** Significant at 1%. This table shows the coefficients of inverse-weighted estimators, where each of the
baseline characteristics is treated as a (placebo) outcome variable. If the weighting matrix is correctly specified
rβ � rγ � rδ � 0. The relative income asks how an individual’s perceives her household income relative the
typical household. The baseline category is ”Much worse than the typical household”. I dropped the “Share
reporting: Much Better” variable because there was very little variation (only 2% of the sample marked this
category). The bottom half of the table reports village-level averages and shares of the key variables. I omit the
share for the ”Much better” category because there are two few individuals. The sample for the table excludes
households without friends and missing data on distance to meeting, gender, age and income.
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Non Leaders Leaders Difference Std. Error
(N = 6,551) (N = 929) (N = 7,480) (N = 7,480)

Roof Type
Thatch 2 % 1 % -1.12 % 0.43 %
Tile 38 % 31 % -6.32 % 2.42 %
Stone 26 % 30 % 4.2 % 2.19 %
Sheet 21 % 20 % -0.6 % 1.52 %
RCC (Reinforced Concrete) 10 % 15 % 4.69 % 1.2 %
Other 4 % 3 % -0.85 % 0.78 %

No. Rooms
Mean 0.77 1.06 0.29 0.06
Sd 1.1 1.39

Electricity
Yes, Private 61 % 72 % 10.94 % 1.98 %
Yes, Government 32 % 24 % -8.19 % 1.9 %
No 7 % 4 % -2.75 % 0.68 %

Latrine
Owned 25 % 39 % 13.5 % 1.7 %
Common 1 % 1 % -0.06 % 0.25 %
None 74 % 61 % -13.45 % 1.78 %

Residence
Owned 90 % 93 % 2.66 % 1.05 %
Owned but shared 1 % 1 % 0.34 % 0.35 %
Rented 6 % 3 % -2.65 % 0.76 %
Leased 0 % 0 % 0.08 % 0.16 %
Government 4 % 3 % -0.42 % 0.65 %

Caste
General 11 % 20 % 8.31 % 1.64 %
Minority 3 % 3 % -0.68 % 0.69 %
OBC 51 % 51 % 0.21 % 1.65 %
Scheduled Caste 29 % 22 % -6.69 % 1.57 %
Scheduled Tribe 5 % 4 % -1.14 % 0.79 %

Religion
Hinduism 95 % 95 % 0.09 % 0.87 %
Islam 5 % 5 % -0.1 % 0.91 %
Christianity 0.09 % 0.11 % 0.02 % 0.12 %

Number of Connections
Mean 9.91 12.5 2.59 0.25
Standard Deviation 6.64 7.31

Table 6: (Summary statistics microfinance in India) Differences between leader households selected
by the microfinance organization and non-leader households. All the variables are measured at baseline. This
sample merges the census-level data with a detailed survey for a random subsample of households, to fill in
missing caste data. The sample excludes households without friends, households with more than 30 friends, and
those that have missing caste or electricity data, which is 0.77% of the overall sample. The standard errors are
clustered by village.
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Own Propensity Score Friend Propensity Score
Coefficient Std. Error. Coefficient Std. Error

Tile Roof -0.074 (0.128) -0.08 (0.060)
Stone Roof 0.09 (0.123) 0.053 (0.061)
Sheet Roof 0.013 (0.134) -0.059 (0.061)
No. Rooms 0.124*** (0.037) 0.007 (0.013)
Access to Electricity 0.226* (0.124) 0 (0.041)
Access to Latrine 0.321** (0.143) 0.106** (0.052)
General Caste (base OBC) 0.602*** (0.194) 0.266*** (0.094)
Scheduled Caste (base OBC) -0.087 (0.106) -0.139 (0.076)
Scheduled Tribe (base OBC) -0.099 (0.234) 0.046 (0.097)
Share of general caste in village -0.19 (0.856) 0.253 (0.402)
Share of scheduled caste in village 0.032 (0.354) -0.208 (0.241)
Share of scheduled tribe in village 0.233 (2.040) 0.609 (1.255)
Share of latrine access in village 0.597 (0.852) 0.384 (0.567)
Share of electricity access in village -1.107 (0.793) -0.613 (0.479)
Total Friends / Village Size 9.371*** (2.155) 2.233*** (0.858)
logpσ1q -0.447 (2.087)
σ12 0.255 (0.339)
logpσ2q -2.071 (15.712)
Constant -2.663 (0.677) -1.565 (0.391)

Number of Observations 7,480 7,480
Number of Villages 43 43

Table 7: (Network Propensity Score Microfinance India) * Significant at 10%. ** Significant at 5%.
*** Significant at 1%. Columns (2) and (4) show the estimated coefficients for the propensity score and friend
propensity scores, respectively. Columns (3) and (5) show the corresponding standard errors, that are clustered
by village. All the variables are measured at baseline. The bottom rows displays the parameters of the covariance
matrix of the unobserved heterogeneity parameters. This sample merges the census-level data with a detailed
survey for a random subsample of households, to fill in missing caste data. The sample excludes households
without friends, households with more than 30 friends, and those that have missing caste or electricity data,
which is 0.77% of the overall sample.
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rβ rγ rδ
Coeff. Std. Error. Coeff. Std. Error Coeff. Std. Error

Tile Roof 0.029 (0.080) 0.092 (0.098) 0.092 (0.504)
Stone Roof 0.025 (0.095) 0.05 (0.085) -0.136 (0.381)
Sheet Roof 0.033 (0.067) 0.085 (0.122) -0.147 (4.082)
No. Rooms 0.214 (0.708) 0.551 (0.466) -1.436 (1.062)
Access to Electricity 0.07 (0.190) 0.186 (0.168) -0.433 (0.646)
Access to Latrine 0.057 (0.127) 0.078 (0.086) -0.334 (0.075)
General Caste (base OBC) -0.027 (0.016) -0.05 (0.128) 0.13 (0.710)
Scheduled Caste (base OBC) 0.069 (0.114) 0.161 (0.198) -0.551 (0.090)
Scheduled Tribe (base OBC) 0.005 (0.016) 0 (0.025) 0.009 (0.148)
Share of general caste in village 0.002 (0.021) -0.014 (0.050) 0.035 (0.421)
Share of scheduled caste in village 0.013 (0.069) 0.091 (0.099) -0.144 (0.102)
Share of scheduled tribe in village 0.008 (0.017) 0.01 (0.010) -0.036 (0.438)
Share of latrine access in village 0.02 (0.078) 0.052 (0.056) -0.178 (1.060)
Share of electricity access in village 0.051 (0.178) 0.144 (0.133) -0.391 (0.118)
Total Friends / Village Size 0.009 (0.021) 0.016 (0.014) -0.05 0.000

Number of Observations 7,480 7,480 7,480
Number of Villages 43 43 43

Table 8: (Covariate Balancing Microfinance India) * Significant at 10%. ** Significant at 5%. ***
Significant at 1%. This table shows the coefficients of inverse-weighted estimators, where each of the baseline
characteristics is treated as a (placebo) outcome variable. If the weighting matrix is correctly specified rβ � rγ �
rδ � 0. This sample merges the census-level data with a detailed survey for a random subsample of households,
to fill in missing caste data. The sample excludes households without friends, households with more than 30
friends, and those that have missing caste or electricity data, which is 0.77% of the overall sample.

Political Participation
Average Effect Average Effect

on Treated on Untreated
Direct Effect pβq 0.269 0.283

(0.165) (0.166)
Spillover Effect pγq 0.410** 0.222

(0.116) (0.170)
Interaction pδq -0.185 -0.303

(0.862) (1.138)
N 2831 2831
Villages 16 16

* p   0.1, ** p   0.05. *** p   0.01

Table 9: (Average partial effects by subpopulation Uganda) The left column shows the estimated
coefficients of the average partial effects on the treated Erpβig, γig, δigq | Dig � 1s. The right column shows the
estimated coefficients of Erpβig, γig, δigq | Dig � 0s.

42



Political Participation
Average Effect Average Effect

on Treated on Untreated
Direct Effect pβq 0.089 0.102**

(0.165) (0.052)
Spillover Effect pγq 0.090 0.093

(0.099) (0.090)
Interaction pδq -0.094 -0.108

(0.304) (0.300)
N 7480 7480
Villages 43 43

* p   0.1, ** p   0.05. *** p   0.01

Table 10: (Average partial effects by subpopulation India) The left column shows the estimated
coefficients of the average partial effects on the treated Erpβig, γig, δigq | Dig � 1s. The right column shows the
estimated coefficients of Erpβig, γig, δigq | Dig � 0s.

43



References

Abadie, A., Imbens, G. W., 2016. Matching on the estimated propensity score. Econometrica

84 (2), 781–807.

Akbarpour, M., Malladi, S., Saberi, A., 2018. Just a few seeds more: Value of targeting for

diffusion in networks. Tech. rep., Working paper.

Aldous, D. J., 1981. Representations for partially exchangeable arrays of random variables.

Journal of Multivariate Analysis 11 (4), 581–598.

Angrist, J. D., 2014. The perils of peer effects. Labour Economics 30, 98–108.

Aronow, P., Samii, C., 2017. Estimating average causal effects under general interference, with

application to a social network experiment. Annals of Applied Statistics.

Arpino, B., De Benedictis, L., Mattei, A., 2015. Implementing propensity score matching with

network data: The effect of gatt on bilateral trade.

Attanasio, O., Barr, A., Cardenas, J. C., Genicot, G., Meghir, C., 2012. Risk pooling, risk

preferences, and social networks. American Economic Journal: Applied Economics 4 (2),

134–67.

Auerbach, E., 2019. Identification and estimation of a partially linear regression model using

network data. arXiv preprint arXiv:1903.09679.

Baird, S., Bohren, J. A., McIntosh, C., Ozler, B., 2019. Designing experiments to measure

spillover effects.

Banerjee, A., Chandrasekhar, A. G., Duflo, E., Jackson, M. O., 2013. The diffusion of microfi-

nance. Science 341 (6144), 1236498.

Banerjee, A. V., Chandrasekhar, A. G., Duflo, E., Jackson, M. O., 2017. Gossip: Identifying

central individuals in a social network. Working Paper.

Bester, C. A., Hansen, C. B., 2016. Grouped effects estimators in fixed effects models. Journal

of Econometrics 190 (1), 197–208.

Billingsley, P., 1995. Probability and measure. John Wiley & Sons.

Blundell, R., Powell, J. L., 2003. Endogeneity in nonparametric and semiparametric regression

models. Econometric society monographs 36, 312–357.

44



Bramoullé, Y., Djebbari, H., Fortin, B., 2009. Identification of peer effects through social

networks. Journal of econometrics 150 (1), 41–55.
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A Appendix

A.1 Non-Separable Models

In this section I relax the random coefficients assumption in (1) by assuming that Yig �
mpXig, τigq as in Leung (2019a), where Xig � pDig, Tig, Ligq, m is an unknown function and

τig is a vector of unobserved heterogeneity of arbitrary dimension. The researcher is interested

in identifying the average structural function, defined as

Mpxq �
»
mpx, εqdF pεq

The function Mpxq identified the average effect if everyone was subject to the same exposure.

The proof of Theorem 3 does not make any explicit use of the functional form of the outcome.

If the assumptions of the theorem hold, then Xig |ù τig | pCig,Ψ�
gq and

ErYig | Xig � x,Cig � c,Ψ�
g � Ψ�, Lig � ls �

»
mpx, εqdF pε | x, c,Ψ�, lq

�
»
mpx, εqdF pε | c,Ψ�, lq

This first stage is analogous to matching individuals with similar characteristics and similar

levels of exposure. The conditional mean is only identified over the conditional support of

pCig,Ψ�
gq given Xig. When the conditional support of pCig,Ψ�

gq given Xig equals the uncon-

ditional support we say that the system has full support. This condition is similar to a rank

condition. In that case the average structural function can be identified by integrating the

conditional mean using standard arguments as in Imbens and Newey (2009).

ErErYig | Xig � x,Cig � c,Ψ�
g � Ψ�, Lig � lss �

» »
mpx, εqdF pε | c,Ψ�, lqdF pc,Ψ�, lq �Mpxq

Consequently, the average structural function is identified. Imbens and Newey (2009) show how

to extend this idea to identify quantile effects in addition to average outcomes. We can also

use the same set of arguments to prove identification of the average structural function for the

network propensity score using the result of Theorem 4.

A.2 Spurious Peer Effects

Consider the following example where an ordinary least squares (OLS) regression recovers

spurious peer effects. Suppose that Yig � αig, with Erεigs � 0 and that Random Sampling,

Selection on Observables and Dyadic Network are satisfied. Let Vig � pCig,Ψ�
g , Ligq denote
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the confounders and Xig � p1, D̄�igq, where D̄�ig is the fraction of treated friends, defined as

Tig{Lig. In this case there are no treatment effects, direct or indirect, but the outcome are

correlated with the confounders. The researcher runs the following regression over the subset

of individuals with at least one friend, F � 1tLig ¡ 0u,

Yig � β0 � β1D̄�ig � ε�ig.

The true value of the intercept is β0 � 0 and the slope is β1 � 0. The population OLS coefficient

is defined as

βOLS1 � CovpD̄�ig, Yigq | F
V arpD̄�ig | Fq

Plugging in Yig � αig and using the law of total covariance,

βOLS1 � Er
paqhkkkkkkkkkkkkkikkkkkkkkkkkkkj

CovpD̄�ig, αig | Vig,Fq | Fs � Covp
pbqhkkkkkkikkkkkkj

ErD̄�ig | Vigs,
pcqhkkkkkkkikkkkkkkj

Erαig | Vig,Fs | Fq
V arpD̄�ig | Fq . (A.1)

Theorem 4 ensures that D̄�ig |ù αig | Vig, which means that (a) is equal to zero. The term pbq
equals pfig, the friend propensity. To simplify notation define αpVigq � Erαig | Vig,Fs � Erαig |
Vigs. Consequently,

βOLS1 � Cov ppf pVigq, αpVigq | Fq
V arpD̄�ig | Fq (A.2)

The OLS coefficient is biased when αpVigq are correlated with pfig. For example, suppose that

Vig is a poverty index and that pfig is positively correlated with Vig. That means that vulnerable

individuals are more likely to have a higher fraction of friends who are targeted by the program.

Similarly, suppose that Yig is a measure of food insecurity and that αpVigq is increasing in Vig.

Then βOLS1 ¡ 0 because Vig drives both the homophily/selection patterns and the baseline

outcomes. Alternatively, when the network and treatment assignment are exogenous, pfig is a

constant and the OLS estimator is unbiased because the covariance in the numerator of (A.2)

equals zero.

A.3 Regularity Conditions

In this section I present conditions that are required to derive the asymptotic distribution

of the estimator. In order to do so I assume that there is a sequence of distributions in-

dexed by t. I denote the realization of variables of agent tigu at point t in the sequence by

including the subscript tigtu. I assume that one or more of the regressors need to be esti-

mated. Let Vigt � pV 0
1igt, V2igtq be the observed regressor and let V 0

igt � pV 0
1igt, V

0
2igtq. The

first vector of regressors is observed without error, but the second estimator is estimated
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at rate maxg�1,...,Gt maxi�1,...,Ngt }V2igt � V 0
2igt} � Opλtq. As in the main text, I assume that

Zigt � pXigt, Yigt, Vigtq is a vector of data.

I next outline the key regularity conditions for convergence. First, for the estimator to

be consistent the weighting matrix needs to by almost surely full rank in a neighborhood of

θ around the true parameter. A positive semi-definite matrix Qxx is full rank if and only if

its smallest eigenvalue is positive. Consequently, I quantify the almost sure requirement by

imposing a lower bound on the eigenvalues of the estimated matrix. Let λminpv1, v2,θq denote

the smallest eigenvalue of Qxxppv1, v2q,θq and let Bpθ0t, δq be a ball or radius δ ¡ 0 around

θ0t and suppose that V2igt belongs to a compact set V2 with probability approaching one. Let

λpV 0
1igt,θ0t, δq � infθPBpθ0t,δq infv2PV2 λminpV 0

1igt, v2,θq be a lower bound on the eigenvalues of

Qxx. I assume infimum holds over all values of v2 to ensure that the matrix is full rank, even

if the regressors are noisily estimated.

Second, the weighting matrix also needs to be sufficiently smooth in order to reduce the

impact of measurement error from estimating V2igt and θ. I define its Sobolev-norm as

QB
xxpv1, v2, θq � sup

0¤α1�α2¤3, α1,α2¤2

����Bα1�α2Qxxpv1, v2, θq
Bvα1

2 θ
α2

���� (A.3)

Equation (A.3) indicates the derivatives of the weighting matrix up to order three need to be

bounded. In settings without a generated regressor problem, i.e. V2igt � V 0
2igt, we typically only

require smoothness conditions over θ. In this case, however, bounding the derivatives with

respect to v2 as well, allows us to control the generated regressor error. In particular, I require

that certain moments of the Sobolev norm need to be bounded.

In addition, the following regularity conditions have to be satisfied.

Assumption (Regularity Conditions). (i) There exists a θ0t P int pΘq such that @δ ¡ 0,

inf}θ�θ0t}¡δRtpθq ¡ Rtpθ0tq, (ii) QxxpVigt;θq is three-times continuously differentiable almost

surely and ErsupθPΘ supv2PV2
pQB

xxpV 0
1igt, v2, θqq4s   8, (iii) Er}Xigt}4s,Er}Yigt}2s   8, (iv)

λpV 0
1igt,θ0t, δq ¡ λ ¡ 0 almost surely for some ν ¡ 0. (v) H0t � E

�
B

Bpθ,βq1
ψpZigt,θ0tq

�
is full

rank, (vi) Ω � E
�
ρgtψgpZgt,θ0tqψgpZgt,θ0tq1

�
is positive-definite, (vii) maxig }V2igt � V 0

2igt} �
Oppτtq, and (viii) τt

?
Gt � op1q and pGt, Ntq Ñ 8 as tÑ 8.

Condition (i) is an identification condition that says that the true weighting matrix is the

unique minimizer of the residuals. This is satisfied as long as the parametric family nests

the conditional mean and the true criterion has a unique minimum. Condition (ii) imposes

bounds on the moments of the Sobolev norm that hold uniformly over pθ, v2q. Condition (iii)

are bounds on the moments of the endogenous variable Xigt and Yigt. Condition (iv) is a full

rank condition for the average causal effect. Condition (v) is a rank condition on the system of

equation that is similar to non-colinearity. Condition (vi) says the group-level covariance matrix
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is non-degenerate and finite. Condition (vii) states the rate of convergence of the generated

regressors. Condition (viii) states that the rate needs to be more accurate than the rate of

growth of the groups Gt.

52



B Proofs

B.1 Main Proofs

Proof of Theorem 1 (Average Partial Effects). By (ii) Xig |ù τig | Vig. By the decom-

position property in Lemma B.1, XigX
1
ig |ù τig | Vig and by (i) Yig � X 1

igτig, which means

that

Qxypvq � ErXigYig | Vig � vs � ErXigX
1
igτig | Vig � vs

� ErXigX
1
ig | Vig � vsErτig | Vig � vs

� Qxxpvqτpvq.

If Qxxpvq is almost surely full rank then τpvq � Qxxpvq�1Qxypvq almost surely. Since F is

coarser than Vig, Erτig | Vig,Fs � Erτig | Vigs and»
Qxxpvq�1Qxypvq dF pv | Fq �

»
τpvq dF pv | Fq � τ

Finally, by the law of iterated expectations

ErQxxpVigq�1XigYig | Fs � ErErQxxpVigq�1XigYig | Vig,Fs | Fs � ErQxxpVigq�1QxypVigq | Fs � τ.

Proof of Theorem 2 (Closed form τ). I make use of the mixture representation of Qxx de-

rived in Lemma 2, assuming Random Sampling, Selection on Observables and Dyadic Network.

If Vig � pCig,Ψ�
g , Ligq, then the conditional distribution of the network propensity score is

degenerate and hence

Qxxpvq �
�

1 rϕ1ppf , lqrϕ1ppf , l, pf , lq rϕ2ppf , lq

�
b
�

1 pd

pd pd

�
.

When ϕpt, lq � t{l, then rϕ1ppf , lq � pf and rϕ1ppf , lq � pf p1�pf q{l�p2
f by using the moments in

Lemma 1. The inverse of kronecker product of matrices is equal to the inverse of the kronecker

products, which means that

Qxxpvq�1 �
�

1 pf

pf
pf p1�pf q

l
� p2

f

��1

b
�

1 pd

pd pd

��1

�
�

1

pdp1� pdq

�

l

pf p1� pf q

�pf p1�pf q

l
� p2

f �pf
�pf 1

�
b
�
pd �pd
�pd 1

�
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We can write the regressors in kronecker product form as X 1
ig � p1, Tig{Ligq b p1, Digq. Hence

QxxpVigq�1XigYig multiplies two kronecker products. I use the property that for conformable

matrices pM1,M2,M3,M4q, pM1 bM2qpM3 bM4q � pM1M2q b pM3M4q. After some algebraic

manipulations we can show that

QxxpVigq�1XigYig �
�

1� pfLig�Tig
1�pf

�pfLig�Tig
pf p1�pf q

�
b
�

p1�DigqYig
1�pd

DigYig
pd

� p1�DigqYig
1�pd

�
.

By Theorem 3, Vig satisfies τig |ù Xig | Vig. Assuming the inverse of QxxpVigq is well defined

then we can apply Theorem 1 to show that τ � ErQxxpVigq�1XigYig | Fs. We can obtain the

individual coefficients pα, β, γ, δq by expanding the kronecker product inside the expectation.

Proof of Theorem 3 (Direct Confounders) . I represent tigu1s treatment indicator asDig �
HpCig,Ψ�

g , ηq whereH is a measurable function and ηig | Cig,Ψ�
g � F pη | c,Ψ�q is an unobserved

participation shock. Since we can always define the participation shock as η � Dig � PpDig �
1 | Cig � c,Ψ�

g � Ψ�q, this form does not entail any loss of generality.

Let ζig � pτig, ηig, Cigq. By Random Sampling and Dyadic Network,

ζig |ù tUijguNgj�i, tζjguNgj�i | Ψ�
g (B.1)

By (B.1), as well as the weak union and decomposition properties in Lemma B.1,

ζig |ù tUijguNgj�i, tζjguNgj�i | ηig, Cig,Ψ�
g

ùñ τig |ù tUijguNgj�i, tηjg, CjguNgj�i | ηig, Cjg,Ψ�
g

The second line subsets the relevant variables on either side of the independence relation. The

participation decisions are functions of personal covariates and selection shocks. Similarly, the

friendship vector tigu only depends on the list of preference shocks pUq and covariates pCq.
Since Lig �

°Ng
j�1,j�iAijg and X 1

ig � p1, Digq b
�

1, ϕ
�°Ng

j�1,j�iAijgDjg,
°Ng
j�1,j�iAijg

		
, that

means that pLig, Xigq are both measurable with respect to tUijguNgj�i, tζjguNgj�1. Then by the

decomposition property,

τig |ù pXig, Ligq | ηig, Cig,Ψ�
g . (B.2)

By Selection on Observables, the outcome heterogeneity is conditionally independent of the

selection unobservables, τig |ù ηig | Cig,Ψ�
g . By the contraction and decomposition properties,

τig |ù pXig, Lig, ηigq | Cig,Ψ�
g ùñ τig |ù pXig, Ligq | Cig,Ψ�

g (B.3)
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Proof of Lemma 1 (Conditional Distribution). Let rCig � pCig,Ψ�
gq and letAig � tAijguNgj�1,j�i.

If Random Sampling and Dyadic Network holds, then we can apply Lemma B.3 (Egocentric

Likelihood Factorization) to show that

PpDg, Aig | rCigq � PpDig | rCigq Ng¹
j�i

PpDjg, Aijg | rCigq (B.4)

By Bayes’ rule, PpDjg, Aijg | C̃igq � PpDjg | Aijg, C̃igqPpAijg | C̃igq and substituting into (B.4)

PpDg, Aig | rCigq
� PpDig | rCigq Ng¹

j�i

PpAijg | rCigq Ng¹
j:Aijg�1

PpDjg | Aijg � 1, rCigq Ng¹
j:Aijg�0

PpDjg | Aijg � 0, rCigq
This proves that Dig |ù tDjg, AijguNgj�i | rCig. Let Lig �

°
j�iAijg be the total friends, Tig �°

j�iDjgAijg the total number of treated friends and Mig �
°
j�iDjgp1 � Aijgq be the total

number of treated non-friends. Consequently, by the decomposition property in Lemma B.1,

Dig |ù pLig, Tig,Migq | rCig ùñ Dig |ù pLig, Tigq | rCig
Furthermore, the likelihood can be factorized in terms of four sets of Bernoulli random variables,

with a distinct event probability and p1, Ng, Lig, Ng � Ligq trials, respectively.

Let pf pC̃igq and pmpzq denote the participation probability of friends and non-friends. Then

PpAijg | rCigq � p`p rCigqAijgp1� p`p rCigqq1�Aijg
PpDjg | Aijg � 1, rCigq � pf p rCigqDjgp1� pf p rCigqq1�Djg
PpDjg | Aijg � 0, rCigq � pmp rCigqDjgp1� pmp rCigqq1�Djg

(B.5)

The product of the probabilities is

Ng¹
j�i

PpAijg | rCigq � p`p rCigqLigp1� p`p rCigqqNg�Lig
Ng¹

j:Aijg�1

PpDjg | Aijg � 1, rCigq � pf p rCigqTigp1� pf p rCigqqLig�Tig
Ng¹

j:Aijg�0

PpDjg | Aijg � 0, rCigq � pmp rCigqMigp1� pmp rCigqqNg�Lig�Mig

(B.6)
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Let Bpd,l,t,mq be the set of permutations of treatment and link formation decisions that pro-

duce Big � pd, l, t,mq, where Big � pDig, Lig, Tig,Migq. Then PBig | rCigpd, l, t,mq is equal to°
pDg ,AijgqPBpd,l,t,mq PpDg, Aijgq. The resulting distribution has the form

Lig | rCig � Binompp`p rCigq, Ngq
Tig | Lig, rCig � Binomppf p rCigq, Ligq

Dig | Tig, Lig, rCig � Bernoullippdp rCigqq
Mig | Dig, Tig, Lig, rCig � Binomppmp rCig, Ng � Ligqq

To complete the statement of the lemma, we only report the distribution of pDig, Tigq | rCig, Lig,
which does not depend on Mig. The resulting distribution does not involve pmp rCigq.
Proof Theorem 4 (Balancing). If Random Sampling and Dyadic Network hold, then we

can apply Lemma 1 to show that Dig |ù pTig, Ligq | Cig and

Dig | Tig, Lig, Cig,Ψ�
g � Bernoullippdigq

Tig | Lig, Cig,Ψ�
g � Binomialppfig, Ligq

The distribution of pDig, Tig, Ligq is parametrized by Pig � ppdig, pfig, Ligq, which means that

pDig, Tig, Ligq | Cig,Ψ�
g , Pig � pDig, Tig, Ligq | Pig. Consequently, the network propensity score

and the group size summarizes all the pretreatment information and

pDig, Tig, Ligq |ù Cig,Ψ�
g | Pig.

By construction Xig is a measurable function of pDig, Lig, Tigq. By applying the decomposition

property in Lemma B.1,

Xig |ù Cig,Ψ�
g | Pig. (B.7)

This shows that Pig is a balancing score.

If Random Sampling, Selection on Observables and Dyadic Network hold, then Theorem

3 states that τig |ù pXig, Ligq | Cig,Ψ�
g which implies τig |ù | Cig,Ψ�

g , Lig. By combining the

redundancy and weak union properties, it follows that τig |ù Xig | Cig,Ψ�
g , Pig. Consequently,

by (B.7) and the contraction property, pτig, Cig,Ψ�
gq |ù Xig | Pig. We can simplify the final

expression by the decomposition property,

τig |ù Xig | Pig.
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Proof of Lemma 2 (Mixture Representation). By construction we can write the covari-

ates as X 1
ig � p1, ϕpTig, Ligqq b p1, Digq. Therefore we can write XigX

1
ig as

XigX
1
ig �

�
1 ϕpTig, Ligq1

ϕpTig, Ligq ϕpTig, LigqϕpTig, Ligq1
�
b
�

1 Dig

Dig Dig

�

Define the functions

rϕ1ppf , lq � ErϕpTig, Ligq | pfig � pf , Lig � lsrϕ2ppf , lq � ErϕpTig, LigqϕpTig, Ligq1 | pfig � pf , Lig � ls.

Under Lemma 1, Dig is conditionally independent of pTig, Ligq given pCig,Ψ�
g , Ligq, and the

distributions are parametrized by the components of the network propensity score. Therefore

we can decompose the conditional moments of XigX
1
ig as

ErXigX
1
ig | Cig � c,Ψ�

g � Ψ, Lig � ls �
�

1 rϕ1ppf , lq1rϕ1ppf , lq rϕ2ppf , lq1
�
b
�

1 pd

pd pd

�

Since Vig is measurable with respect to pCig,Ψ�
g , Ligq we can apply the law of iterated expecta-

tions to obtain

Qxxpvq �
» �

1 rϕ1ppf , lqrϕ1ppf , l, pf , lq rϕ2ppf , lq

�
b
�

1 pd

pd pd

�
dF ppd, pf , l | Vig � vq. (B.8)

Proof of Lemma 3 (). Let rCig � pCig,Ψ�
gq and X�

ig � pXig, Ligq. If Random Sampling,

Selection on Observables and Dyadic Network hold, then we can apply Theorem 4 to show that

pXig, Ligq |ù rCig | pdp rCigq, pf p rCigq, Lig.
Under Random Sampling, Selection on Observables and Selection on Observables we can ap-

ply Theorem 3 to show that pXig, Ligq |ù τig | rCig. By the weak union property, pXig, Ligq |ù τig |rCig, pdp rCigq, pf p rCigq, Lig. Applying the contraction axiom,

pXig, Ligq |ù pτig, rCigq | pdp rCigq, pf p rCigq, Lig
Since Vig is p rCig, Ligq�measurable, we can apply the weak union property, as

pXig, Ligq |ù pτig, rCigq | pdp rCigq, pf p rCigq, Lig, Vig
‘ By decomposition Xig |ù τig | pdp rCigq, pf p rCigq, Lig, Vig. Since by assumption of the theorem
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pdp rCigq, pf p rCigq, Lig |ù τig | Vig, we can apply the contraction axiom again to show that

pXig, pdp rCigq, pf p rCigq, Ligq |ù τig | Vig.

Finally, by the decomposition property, Xig |ù τig | Vig.
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B.2 Proof Asymptotics

Proof of Theorem 5 (Limiting Distribution Estimators) . Define the square residual func-

tion as Rpz, v2, θq � rppx, y, pv1, v2qq, θq2, so that the estimated and population criterion func-

tions can be written as pRtpθq � 1

Gtn̄

¸
ig

RpZigt, V2igt,θq,

Rtpθq � ErRpZigt, V 0
2igt,θqs.

Our first task is to prove uniform convergence of the criterion function by verifying the condi-

tions of Lemma B.8. First, by Assumption (vii) maxig }V2igt � V 0
2igt} � Op pλtq. By assumption

(viii),
?
Gtλt � op1q which means that the maximum discrepancy is τt � op1q, as required.

Second we verify the uniform bounds on the moments. Assumptions (ii) and (iii) in Regu-

larity Conditions imply that RtpZigt, V 0
2igt,θq has bounded moments. Conversely, let RV

igt and

Sigt be uniform bounds on the derivatives BR
Bv2

and the score ψq � BR
Bθ

as defined in (B.17) and

(B.18). These bounds hold uniformly over τ because the average effect parameter does not

enter R. The bound on the expectation of the Sobolev-norm in Regularity Conditions part

(ii) and Lemma (B.6) imply that ErRV
igts   8 and ErSigts   8. Consequently, R satisfies the

requirements of Lemma B.8, and hence

sup
θPΘ

} pRtpθq �Rtpθq} Ñp 0 (B.9)

Our next task is to show that pθt is consistent. By Regularity Conditions part (i) for any δ ¡ 0

there exists a ν ¡ 0 such that

P
����pθt � θ0t

��� ¡ δ
	
¤ PpRtppθtq �Rtpθ0tq ¥ νq
� PpRtppθtq � pRtppθtq � pRtppθtq �Rtpθ0tq ¥ νq Adding/subtracting Rtppθtq
¤ PpRtppθtq � pRtppθtq � pRtpθ0tq �Rpθ0tq ¥ νq Since pRtppθtq ¤ pRtpθ0tq

¤ P
�

2 sup
θPΘ

��� pRtpθq �Rtpθq
��� ¥ ν



Uniform Bound

Ñp 0 By (B.33)

Consequently pθt Ñp θ0t.

We now turn to the task of proving asymptotic normality. In a slight abuse of notation, I

use ψpz, v2, τ ,θq to denote the influence function ψppx, y, pv1, v2qq, τ ,θq

op pτq � 1

GtNt

¸
ig

ψpZigt, V2igt, pτ t, pθtq
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By a first-order expansion

0 � 1

GtN

¸
ig

ψpZigt, V 0
2igt, τ 0t,θ0tq

� 1

GtN

¸
ig

B
Bv2
ψpZigt, rV2igt, rτ , rθtq∆igt � 1

NGt

¸
ig

�
B
Bτ 1
ψpZigt, rV2igt, rτ , rθtq

B
Bθ1
ψpZigt, rV2igt, rτ , rθtq

� �pτ t � τ 0tpθt � θ0t

�
(B.10)

Our next task is to show that the second term is Op

�
λt
?
Gt

�
. To this end it is useful to

decompose that influence function into two sets of equations ψ � rψq, ψIW s1, for the weighting

matrix and the average effects, respectively. Let Bpθ0t, νq denote a ball of radius ν around

the true parameter. By assumption (iv) the smallest eigenvalue of Qxx is bounded by a fixed

constant for θ P Bpθ0t, νq. Since pθt and rθt are both consistent, the estimator is contained in

the ball with probability approaching one as pGt, Ntq Ñ 8.

Define SVigt and ψBIW,ig as uniform upper bounds for the partial derivatives of s and ψIW as

defined in (B.19) and (B.21). Furthermore, let ∆max � maxig }V2igt � V 0
2igt} be the maximum

discrepancy between the generated and true regressors. By the triangle inequality.����� 1

Gtn̄t

¸
ig

B
Bv2
ψpZigt, rV2igt, rτ , rθtq∆igt

�����
¤ 1

Gtn̄t

¸
ig

��� B
Bv2
ψpZigt, rV2igt, rτ , rθtq��� � ∆max

¤ 1

Gtn̄t

¸
ig

����BspZigt,rV2igt,rτ ,rθtq

Bv2

���� ���BψIW pZigt,rV2igt,rτ ,rθtq

Bv2

���	 � ∆max Component Bounds

¤
�

1

Gtn̄t

¸
ig

SVigt � ψBIW,ig

�
�∆max � opp1q Since rθt P Bpθ0t, νq w.p.a.1

(B.11)

The discrepancy ∆max is Op pλtq by Assumption (vii). Conversely, the bounds on the expec-

tation of the Sobolev-norm in Regularity Conditions part (ii) and the moments in (iii) can be

used to show that ErSVigts,ErψBIW,igs   8 and 1
Gtn̄t

°
ig

�
SVigt � ψBIW,ig

� � Opp1q, by Lemmas B.6

and B.7, respectively. By combining the two findings we conclude that the right-hand side of

(B.11) is Op pλtq.
The partial derivative with respect to τ in (B.10) has a simple form

B
Bτ 1ψpZigt,

rV2igt, rτ , rθtq � �
0

�I

�
� H0,τ
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The first set of rows is zero because the equations to compute to the weighting matrix and

the second rows is the identity because τ enters linearly in ψIW . In this case the derivative is

constant and crucially, does not depend on the estimated parameters.

Since the components that contain θ and τ are additively separable, the partial derivative

with respect to θ in (B.10) does not depend on τ . We write this concisely as

B
Bθ1ψpZigt,

rV2igt, rτ , rθtq � B
Bθ1ψpZigt,

rV2igt, rθtq � �
B
Bθ1
ψqpZigt, rV2igt, θ̃q

B
Bθ1
ψIW pZigt, rV2igt, θ̃q

�
(B.12)

Our next task is to impose integrable bounds on (B.12) in order to apply the uniform consistency

result in B.8. On one hand, our bounds on the expectations in assumptions (ii) and (iii) allow

us to apply the first part of Lemma B.6. The lemma shows that Bψq
Bθ
, B

2ψq
BθBθ1

, B2ψq
Bv2Bθ

1 are uniformly

bounded over pV2,θq P V2 �Θ by integrable random variables. On the other hand, assumption

(ii), (iii) and (iv) allow us to apply the second part of the lemma, which implies B2ψIW
BθBθ1

, B
2ψIW
Bv2Bθ

1 are

uniformly bounded over pV2,θq P V2�Bpθ0t, νq by an integrable random variable. Consequently,

we can apply Lemma B.8 to show that

sup
θPBpθ0t,νq

����� 1

Gtn̄t

¸
ig

B
Bθ1
ψpZigt, rV2igt, rθtq � E

�
B
Bθ1
ψpZigt, V 0

2igt,θq
������Ñp 0 (B.13)

Since pθt is consistent }rθt � θ0t} ¤ }pθt � θ0t} � opp1q. Therefore, by the uniform consistency

result in (B.13),

1

Gtn̄t

¸
ig

B
Bθ1
ψpZigt, rV2igt, rθtq Ñp E

�
B
Bθ1
ψpZigt, V 0

2igt,θ0tq
� � H0,θ

By assumption (iv), H0 � rH0,τ , H0,θs is full rank. Therefore, solving for the parameter in

(B.10) and multiplying by
?
Gt,

a
Gt

�pτ t � τ 0tpθt � θ0t

�
� �pH0 � opp1qq�1

�a
Gt

�
1

NGt

¸
ig

ψpZigt, V 0
2igt,θ0tq

�
�Op

�
λt
a
Gt

	�

Let E� and E denote the sampling (equal-weighted-group) measure and the population measure

respectively. By construction, E�rρgtψpZigt, θqs � ErψpZigt, θqs, where ρgt � Ngt{Nt is the rela-

tive size of each group. By Lemma B.7, n̄t
Nt
Ñp 1 as pGt, Ntq Ñ 8. Conversely, define the within-

group average ψgpZg,θ0tq � 1
Ngt

°Ngt
i�1 ψpZigt, V 0

2igt,θ0tq, where Zg � tpXigt, Yigt, pV 0
igtqquNgti�1 is a
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matrix of individual covariates. By some algebraic manipulations

?
Gt

n̄tGt

¸
ig

ψpZigt, V 0
2igt,θ0tq �

�
Nt

n̄t


�
1?
Gt

Gţ

g�1

ρgtψgpZg,θ0tq
�

Our final task is to apply the central limit theorem. First, we check that the influence function

is mean zero. By distributing the expectation

E�rρgtψgpZg, τ 0t,θ0tqs � E�rρgtψpZigt, V 0
2igt, τ 0t,θ0tqs � ErψpZigt, V 0

2igt, τ 0t,θ0tqs

Recall that ψ � rs, ψIW s. The mean of s is equal to zero at the true value when the weighting

matrix is properly specified. Similarly, ψIW is equal to zero by Theorem 1.

Finally, by assumption (v), E�rρ2
gtψgψ

1

gs � Erρgtψgψ
1

gs � Ω0t is a positive-definite matrix.

By the Lindenber-Feller central limit theorem, as pGt, Ntq Ñ 8,

Ω�1
0t

�
1?
Gt

Gţ

g�1

ρgtψgpZg,θ0tq
�
Ñd N p0, Iq.

Combining the results we prove that the estimator converges to a normal distribution plus a

bias term, a
GtΣ

�1{2
t

�pθt � θ0tpτ t � τ 0t

�
Ñd N p0, Iq �Op

�
λt
a
Gt

	
.

where Σt � H�1
0t Ω0tH

�1
0t . Under assumption (viii) the second term is opp1q,
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B.3 Proofs Extensions and Experiments

Proof of Theorem 6 (Identification Subpopulations). For the APT, our first objective

is to rewrite the inner term of the expectation in terms of the localized effect τ pvq, instead of

pQxx, Xig, Yigq. To this end we compute the conditional expectation given a particular value of

the control variable Vig. In this case pdpVigq is a constant given Vig, so we can directly apply

part (i) of Lemma 1,

ErpdpVigq �QxxpVigq�1XigYig | Vig � vs � pdpVigq �Qxxpvq�1ErXigYig | Vigs
� pdpVigq �Qxxpvq�1QxypVigq
� pdpvq � τ pvq

(B.14)

The second task is to express (B.14) in terms of of the primitives pDig, τigq. By definition

pdpvq � PpDig � 1 | Vig � vq. Since Vig is a control variable for Dig, it follows that

τ � Erτig | Vig � vs � Erτig | Vig � v,Dig � 1s

Then by the law of iterated expectations pdpvq � τ pvq equals

PpDig � 1 | Vig � vq � Erτig | Vig � v,Dig � 1s � ErDigτig | Vig � vs (B.15)

Therefore (B.15) produces a simplified expression for the conditional expectation in (B.14).

Applying the law of iterated expectations and substituting the expression in (B.15),

E
�
pdpVigq �QxxpVigq�1XigYig

� � ErErDigτig | Vigss � ErDigτigs

By Bayes’s rule and the fact that Dig is binary,

ErDigτigs
PpDig � 1q � Erτig | Dig � 1s � τAPT (B.16)

The unconditional effect, the APT and APU effects are mutually constrained by the law of

iterated expectations, which implies that τ � PpDig � 1qτAPT � PpDig � 0qτAPU . Lemma 1

implies that τ � ErQxxpVigq�1XigYigs. Therefore, we can solve for the APU effect by substi-

tuting the expressions for pτ , τAPT q and solving for τAPU ,

τAPU � 1

1� ErDigs � E
�p1� pdpVigqq �QxxpVigq�1XigYig

�
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B.4 Supporting Lemmas

Lemma B.1 (Properties of Conditional Independence). Let X, Y, Z,W be random vectors de-

fined on a common probability space, and let h be a measurable function. Then:

(i) (Symmetry): X |ù Y |Z ùñ Y |ù X|Z.

(ii) (Redundancy): X |ù Y |Y .

(iii) (Decomposition): X |ù Y |Z and W � hpY q ùñ X |ùW |Z.

(iv) (Weak Union): X |ù Y |Z and W � hpY q ùñ X |ù Y |pW,Zq.

(v) (Contraction): X |ù Y |Z and X |ùW |pY, Zq ùñ X |ù pY,W q|Z.

Proof. Constantinou et al. (2017)

Lemma B.2 (Combining Events). Let E,E�, U, U�,Ψ be random variables on a common proba-

bility space. Suppose that (i) E |ù E� | Ψ, (ii) pE,E�q |ù U� | Ψ and (iii) U |ù pU�, E, E�q | Ψ.

Then

pE,Uq |ù pE�, U�q | Ψ

Lemma B.3 (Egocentric Likelihood Factorization). Suppose that Dig is pCig,Ψ�
g , ηigq�measurable

and Aijg is pCig, Cjg,Ψ�
g , Uijgq�measurable. If Random Sampling and Dyadic Network hold, then

for Vig � pCig,Ψ�
gq

PpDg, Aig | Vigq � PpDig | Vigq
Ng¹
j�i

PpDjg, Aijg | Vigq

Lemma B.4 (Bounds Quotients). Let a, b be non-zero scalars and suppose that }b} ¥ b ¡ 0.

Then

}a�1 � b�2} ¤ b�2}b� a}
1� b�1}b� a} .

Lemma B.5 (Derivative of Inverse Matrix). Let v P R and suppose that Qpvq is differentiable

and full rank in an open set around v0. Then B
Bv
Q�1pv0q � �Q�1pv0qBQpv0q

Bv
Q�1pv0q.

Lemma B.6 (Uniform Bounds Criterion Derivatives). Let λminpv1, v2,θq denote the small-

est eigenvalue of Qxxppv1, v2q,θq and let Bpθ0, δq be a ball or radius δ ¡ 0 around θ0. Let
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λpV 0
1igt,θ0t, δq � infθPBpθ0t,δq infv2PV2 λminpV 0

1igt, v2,θq be a lower bound on the eigenvalues of Qxx

for parameters in that set. Furthermore, define

RA
ig � sup

θPΘ
sup
v2PV2

��� B
Bv2
RpZig, v2, θq

��� (B.17)

Sig � sup
θPΘ

sup
v2PV2

}spZig, v2, θq} (B.18)

SAig � sup
θPΘ

sup
v2PV2

��� B
Bv2
spZig, v2, θq

��� (B.19)

SAθig � sup
θPΘ

sup
v2PV2

��� B2

Bv2Bθ
spZig, v2, θq

��� (B.20)

ψBIW,ig � sup
θPBpθ0,νq

sup
v2PV2

sup
0¤α1�α2¤2

��� Bα1�α2

Bv
α1
2 Bθα2

ψIW pZig, v2, τ ,θq
��� (B.21)

then the following statements hold

(i) If Er}Xig}4s   8 and ErsupθPΘ supv2PV2
pQB

xxpV1ig, v2, θqq2s is bounded, then ErRA
igs ErSigs,

ErSAigs and ErSAθig s are bounded.

(ii) Suppose that in addition Er}Yig}2s   8, ErsupθPΘ supv2PV2
pQB

xxpV1ig, v2, θqq4s   8 and

λ ¡ 0 almost surely. Then ErψBIW,igs is also bounded.

Lemma B.7 (Stochastically Bounded Averages). Let Xigt be a sequence of random variable

such that Er}Xigt}s   8, X̄t � 1
GN

°
igXigt the sample average and Nt � ErNgts be the expected

group size, and pGt, Ntq Ñ 8 as t Ñ 8. Suppose that the groups are randomly sampled with

equal weight from a superpopulation and that Bounded Group Ratios holds, then E�r n̄tNt X̄ts �
E rXigts and X̄t � Opp1q as pG,N�q Ñ 8, where E� is the sampling (equal-group-weight)

measure and E is the population measure. Furthermore, if Random Sampling holds then X̄t Ñp

EtrXigs and n̄
Nt
Ñp 1.

Lemma B.8 (Uniform Consistency with Generated Regressors). Let f be a measurable function

of pz, v2, τ ,θq that is continuously differentially with respect to pv2, τ ,θq. Suppose that

(i) maxigt }V2igt � V 0
2igt} Ñp 0

(ii) E
�
suppτ ,θ,v2qPT �Θ�V2

}fpZigt, v2, τ ,θq}
�   8.

(iii) E
�
suppτ ,θ,v2qPT �Θ�V2

��� B
Bpv2,τ ,θq

fpZigt, v2, τ ,θq
����   8.

If Random Sampling holds, and pGt, Ntq Ñ 8 as tÑ 8, then

sup
τPT

sup
θPΘ

����� 1

Gtn̄t

¸
ig

fpZigt, V2igt, τ ,θq � ErfpZigt, V 0
2igt, τ ,θqs.

�����Ñp 0
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B.5 Proof Supporting Lemmas

Proof of Lemma B.2 (Combining Events). By property (ii), weak union and decomposi-

tion

piiq ùñ pE,E�q |ù U� | E�,Ψ ùñ E |ù U� | E�,Ψ (B.22)

By property (i), (B.22) and contraction, E |ù pE�, U�q | Ψ.

Similarly, by property (iii), weak union and decomposition.

piiiq ùñ U |ù pU�, E, E�q | E,Ψ ùñ U |ù pE�, U�q | E,Ψ (B.23)

Combining the two results via the contraction property, pE,Uq |ù pE�, U�q | Ψ.

Proof of Lemma B.3 (Egocentric Likelihood Factorization). Let Vig � pCig,Ψ�
gq. By

Bayes’ rule:

PpDg, Aig | Vigq �
n¹
j�1

PpDjg, Aijg | tDkg, Aikguj�1
k�1, Vigq (B.24)

We can factor the joint probability in any order, so I set i � 1 without loss of generality. By

definition Giig � 0 (no self-loops in the network), so PpGiig � 0 | Vigq � 1 and we can denote

the probability as PpDig | Aig, Vigq � PpDig | Vigq without loss of generality.

For j ¡ 1, define the random variables E � pηjg, Cjgq and E� � tpηkg, Ckgqujk�1, which denote

the personal covariates of j and a vector of the covariates of agents 1 through pj�1q, respectively.

Similarly, let U � Uijg and U� � tUikgupj�1q
k�1 , denote the respective link formation shocks.

Random Sampling.(i) allows us to ignore covariates across groups. Random Sampling.(ii) states

that the covariates of different agents are conditionally independent, which implies E |ù E� | Ψg.

Dyadic Network says that the personal covariates are conditionally independent of the link

shocks, which implies that pE,E�q |ù U� | Ψg. Furthermore, the links are also mutually

conditionally independent of each other, which means that U |ù pU�, E, E�q | Ψg.

Consequently pE,E�, U, U�,Ψgq meet the conditions of Lemma B.2 and

pηjg, Cjg, Uijgq |ù tηkg, Ckguj�1
k�1, tUijguj�1

k�2 | Ψg (B.25)

The right-hand side of (B.25) contains enough information to compute Dkg � hpCkg,Ψ�
g , ηkgq

and Aijg � LpCig, Cjg,Ψ�
g , Uijgq. Therefore, we can use the decomposition property to show

that

pUijg, ηjg, Cjgq |ù tDjg, Aijguj�1
k�1, Cig | Ψ�

g (B.26)
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By combining (B.26), weak union and decomposition,

pUijg, ηjg, Cjgq |ù tDjg, Aikguj�1
k�1 | Cig,Ψ�

g (B.27)

Finally Djg is pCjg,Ψ�
g , ηjgq-measurable and Aijg is pCig, Cjg,Ψ�

g , Uijgq-measurable. We can use

the redundancy property to incorporate the variables in the conditioning set and then apply

the decomposition property to show that

pDjg, Aikgq |ù tDkg, Aikguj�1
k�1 | Cig,Ψ�

g

By applying this argument recursively, we can show that potential link and participation deci-

sions are conditionally independent. By (B.24)

PpDg, Aig | Vigq � PpDig | Vigq
Ng¹
j�i

PpDjg, Aijg | Vigq

Proof of Lemma B.4 (Bounds Quotients). By finding a common denominator, a�1�b�1 �
b�1pb� aqa�1. By the triangle inequality

}a�1 � b�1} � }b�1} }b� a} }a�1}
¤ }b�1} }b� a} p}b�1} � }a�1 � b�1}q
¤ b�1 }b� a} pb�1 � }a�1 � b�1}q.

Solving for }a�1 � b�1},
}a�1 � b�1} ¤ b�2}b� a}

1� b�1}b� a} .

Proof of Lemma B.5 (Derivative of Inverse Matrix). Let Mpvq � Q�1pvq and define

F pvq � QpvqMpvq � I. By construction F pvq � 0 uniformly for v in open set around v0.

Let Fi` denote the entry in the ith and the `th column of F , which can be decomposed as

Fi`pvq �
¸
k`

QijMk` � ai` � 0

where ai` are the entries of the identity matrix I. We can differentiate each component by the
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scalar v. By the product rule,

BFi`pvq
Bv �

¸
k`

BQij

Bv Mk` �Qij
BMk`

Bv � 0

Define BF
Bv

denote the matrices with entries BF
Bv

. Define BQ
Bv
, BM
Bv

analogously. Then

BF pv0q
Bv � BQpv0q

Bv
Mpv0q �Qpv0qBMpv0q

Bv � 0

Solving the equation, BMpv0q
Bv

� �Qpv0q�1 BQpv0q
Bv

Mpv0q and substituting the definition of M ,

B
Bv
Q�1pv0q � �Q�1pv0qBQpv0q

Bv
Q�1pv0q.

Proof of Lemma B.6 (Uniform Bounds Criterion Derivatives). The first task is to ex-

press the derivatives of Rp�q and sp�q in terms of Xig and the weighting matrix Qxxp�q. It will

be convenient to work with the vectorized version of the weighting matrix, which I denote by

qpZig, v2,θq. Similarly, define xig � vecpXigX
1
igq. In matrix form the criterion can be expressed

as

RpZig, v2,θq � px� qq1px� qq

Since the score function is defined as the jacobian of R, then spZig, v2,θq � �2px� qq1 Bq
Bθ1

. We

can compute the following derivatives by applying the chain rule. Let pxk,qkq denote the kth

rows of px,qq, respectively. Then

B
Bv2
RpZig, v2,θq � �2px� qq1 Bq

Bv2

B
Bθ
spZig, v2,θq � 2Bq

Bθ
Bq
Bθ1

� 2
¸
k

pxk � qkq B2qk
BθBθ1

B
Bv2
spZig, v2,θq � 2� Bq1

Bv2

Bq
Bθ1

� 2
¸
k

pxk � qkq B2qk
Bv2Bθ

1

B
B2ABθ

spZig, v2,θq � 2�
�
B2q1

Bv2
2

Bq
Bθ1

� Bq1

Bv2

B2q
Bv2Bθ

1

	
� 2

¸
k

�
�Bqk

Bv2

B2qk
Bv2Bθ

1 � pxk � qkq B2qk
Bv2

2Bθ
1

�
Let QB

xxpZig, v2,θq denote the Sobolev norm, as defined in (A.3), which is a bound on the

derivatives of order t0, 1, 2, 3u. Similarly, let }x} denote the Euclidean norm of x. It is useful

to use the fact that
°
k }xk} ¤ κ}x}, for some universal constant κ that only depends on the

dimension. We denote this inequality as
°
k }xk} À }x}.

68



By the triangle inequality,��� B
Bv2
RpZig, v2,θq

��� ¤ 2p}xig} � }q}q
��� BqBv2

��� ¤ 2}xig} QB
xxpZig, v2,θq � 2QB

xxpZig, v2,θq2�� B
Bθ
spZig, v2,θq

�� ¤ 2
��Bq
Bθ

�� �� Bq
Bθ1

��� 2
¸
k

p}xk} � }qk}q
��� B2qk
BθBθ1

���
À 4QB

xxpZig, v2,θq2 � 2}xig}QB
xxpZig, v2,θq��� B

Bv2
spZig, v2,θq

��� ¤ 2
��� BqBv2

��� �� BqBθ1 ��� 2
¸
k

p}xk} � }qk}q
��� B2qk
Bv2Bθ

1

���
À 4QB

xxpZig, v2,θq2 � 2}xig}QB
xxpZig, v2,θq

(B.28)

At each step we bound the derivatives by the Sobolev-norm and Euclidean norms, respectively.

By using a similar procedure we can show that

�� B
B2ABθ

spZig, v2,θq
�� À 8QB

xxpV 0
1ig, v2,θq2 � 2}xig}QB

xxpV 0
1ig, v2,θq (B.29)

Our next task is to derive a uniform bounds for the expectations of the derivatives. All of the

derivatives in (B.28) and (B.29) are bounded uniformly by combinations of }xig} and QB
xxp�q.

By assumption ErsupθPΘ supv2PV2
pQB

xxpV 0
1ig, v2, θqq2s   8, which allows us to bound some of the

terms directly. To bound the rest of the terms we use the Cauchy-Schwartz inequality,

E
�

sup
θPΘ

sup
v2PV2

QB
xxpV 0

1ig, v2,θq
�
¤
d
E
�

sup
θPΘ

sup
v2PV2

pQB
xxpV 0

1ig, v2, θqq2
�
  8.

E
�

sup
θPΘ

sup
v2PV2

}xig}QB
xxpV 0

1ig, v2,θq
�
¤
d
E r}xig}2s � E

�
sup
θPΘ

sup
v2PV2

pQB
xxpV 0

1ig, v2, θqq2
�
  8.

Recall that xig � vecpXigX
1
igq (the product of Xig) which means that Er}xig}2s À Er}Xig}4s,

which is finite by assumption.

Define pRV
ig, Sig, S

V
ig , S

V θ
ig q as in the statement of the Lemma. By (B.28) and (B.29)

RV
ig, Sig, S

V
ig , S

V θ
ig À 8 sup

θPΘ
sup
v2PV2

QB
xxpV 0

1ig, v2,θq2 � 2 sup
θPΘ

sup
v2PV2

p1� }xig}qQB
xxpV 0

1ig, v2,θq.

The expectations of the right-hand side is bounded and therefore ErRV
igs,ErSigs,ErSVigs,ErSV θig s  

8.

Now we turn our attention to the derivatives of the influence function

ψIW pZigt, v2,β,θq � QxxpZigt, v2,θq�1XigYig
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By Lemma B.5 we can compute the derivatives of the inverse.

Bψ
Bv2

� �Q�1
xx

BQxx

Bv2
Q�1
xxXigYig

Bψ
Bθm

� �Q�1
xx

BQxx

Bv2
Q�1
xxXigYig

Similarly, by applying the product rule and grouping terms

B2ψ
Bv2Bθ

� r2 Q�1
xx

BQxx

Bv2
Q�1
xx

BQxx

Bθj
Q�1
xx �Q�1

xx
B2Qxx

Bv2Bθj
Q�1
xx sXigYig

B2ψ
BθmBθj

� r2 Q�1
xx

BQxx

Bθm
Q�1
xx

BQxx

Bθj
Q�1
xx �Q�1

xx
B2Qxx

BθmBθj
Q�1
xx sXigYig

By assumption, the smallest eigenvalue of Qxx is bounded below by λ ¡ θ for θ P Bpθ0, δq. For

parameter values in this set, }Q�1
xx } ¤ λ�1 by Lemma X and��� BψBv2

��� ¤ ��Q�1
xx

�� ���BQxx

Bv2

��� ��Q�1
xx

�� }X} }Y } ¤ λ�2QB
xx}XigYig}��� Bψ

Bθm

��� ¤ ��Q�1
xx

�� ���BQxx

Bθm

��� ��Q�1
xx

�� }X} }Y } ¤ λ�2QB
xx}XigYig}

By bounding the respective terms, we can also show that��� B2ψ
Bv2Bθm

��� ¤ p2λ�3pQB
xxq2 � λ�2QB

xxq}XigYig}��� B2ψ
BθmBθj

��� � p2λ�3pQB
xxq2 � λ�2QB

xxq}XigYig}

By the Cauchy Schwartz inequality, Er}XigYig}s  
a
Er}Xig}2sEr}Yig}2s, which is bounded by

assumption.

By applying the Cauchy-Schwartz inequality a second time,

E
�

sup
θPΘ

sup
v2PV2

QB
xxpV 0

1ig, v2,θq}XigYig}
�
¤
d
E
�

sup
θPΘ

sup
v2PV2

pQB
xxpV 0

1ig, v2, θqq2
�
E r}XigYig}s   8.

E
�

sup
θPΘ

sup
v2PV2

QB
xxpV 0

1ig, v2,θq2}XigYig}
�
¤
d
E
�

sup
θPΘ

sup
v2PV2

pQB
xxpV 0

1ig, v2, θqq4
�
E r}XigYig}s   8.

The fourth moment of the Sobolev norm is bounded by assumption. Consequently, ErψBIW,igs
as defined in (B.21) is bounded.

Proof of Lemma B.7 (Stochastically Bounded Averages). We start by writing X̄t in

terms of within-group averages X̄g.

X̄t � 1

G

Ģ

g�1

Ngt

n̄t

�
1

Ngt

Ngt¸
i�1

Xigt

�
� 1

G

Ģ

g�1

Ngt

n̄t
pX̄gtq
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Determining the properties of the average is slightly complicated by the fact that Ngt is a

random variable, which means that X̄gt is an average with a random number of terms.

Let E� be a measure where groups are given equal weight regardless of their size, which

satisfies two properties: (i) E�rρgtXigts � ErXigts and (ii) E�rXigt | Ngt � ns � ErXigt | Ngt �
ns, where ρgt � Ngt{Nt and Nt � E�rNgts. Property (i) links the equal-weighted measure to

the population measure by including importance weights, whereas property (ii) states the two

measures are identical after conditioning on group size.

Our first task is to show that N
Nt
X̄ is unbiased. By substituting the definition of ρgt,

N

Nt

X̄t � 1

G

Ģ

g�1

ρgtX̄gt (B.30)

Conditional on group size, X̄gt is an average of a fixed number of terms and hence ErX̄gt |
Ngt � ns � ErXigt | Ngt � ns. Therefore by the law of iterated expectations and distributing

the expectation over each group

E�

�
N

Nt

X̄t

�
� E�rρgtX̄gts � E�rρgtE�rXigt | Ngtss � E�rρgtXigts � ErXigts

Our next task is to show that X̄ is bounded in probability. By the triangle inequality and the

law of iterated expectations.

E�r}X̄}s ¤ 1

G

Ģ

g�1

E�

�
Ngt
N
E�

�}X̄gt} | N
�� ¤ 1

G

Ģ

g�1

E�

�
Ngt
N
E� r}Xigt} | Ns

�
� E

�
Ngt
N
}Xigt}

�
Assumption Bounded Group Ratios states that the Ngt P rρ, ρs � p0, 1q which means that the

sample size average n̄t P rρ, ρs. Consequently,

Ngt

n̄t
� Ngt

Nt

� Nt

n̄
� ρgt � Nt

n̄
¤ ρgt � p1{ρq

Hence E�r}X̄t}s ¤ p1{ρqE�rρgt}Xigt}s � 1{ρEr}Xigt}s, which is bounded. Then by Markov’s

inequality, for fixed δ ¡ 0,

Pp}X̄t} ¡ δq ¤ Er}X̄t}s
δ

Therefore X̄t � Opp1q.
Finally, under Random Sampling the observations in each group are independent. Since the

(B.30) is an average of i.i.d variables with finite moments, then we can apply the strong law of

large numbers in (Billingsley, 1995, p.282), to show that N
Nt
X̄t Ñp ErXigts. As a special case,

N
Nt
Ñp 1. By combining the two results, we find that X̄t Ñp ErXigts.

71



Proof of Lemma B.8 (Uniform Consistency with Generated Regressors). I start by

proving point-wise convergence of the criterion function. For simplcity define ∆igt � }V2igt �
V 0

2igt}. By a first-order Taylor expansion

pfpτ ,θq � 1

Gtn̄t

¸
ig

fpZigt, V2igt, θq � 1

Gtn̄t

¸
ig

fpZigt, V 0
2igt, θq �

1

Gtn̄t

¸
ig

B
Bv2
fpZigtṼ2igt, θq∆igt

I apply the triangle inequality to bound the second term. By the triangle inequality����� 1

Gtn̄t

¸
ig

B
Bv2
fpZigtṼ2igt, τ ,θq∆igt

����� ¤
�

1

Gtn̄t

¸
ig

��� B
Bv2
fpZigtṼ2igt, θq

����max
ig

∆igt

¤
�

1

Gtn̄t

¸
ig

sup
pτ ,θ,v2qPT �Θ�V2

��� B
Bv2
fpZigt, v2, τ ,θq

���� max
ig

∆igt

�
�

1

Gtn̄t

¸
ig

fVigt

�
max
ig

∆igt

(B.31)

The discrepancy maxig }∆igt} is opp1q by assumption (i). Conversely, by assumption (iii)

ErfVigts   8 and Lemma B.7 imply that 1
Gtn̄t

°
ig f

V
igt � Opp1q. Finally, by combining the

two finding we conclude that the right-hand side of (B.31) is opp1q.
Assumptions (i) implies that fpZigt, V 0

2igt, θq has bounded moments. Similarly, Random

Sampling implies that groups are independent. Therefore, we can apply a group level law of

large numbers to show that as pG,Nq Ñ 8,

pfpτ ,θq � 1

Gtn̄t

¸
ig

fpZigt, V 0
2igt, τ ,θq � opp1q � ErfpZigt, V 0

2igt, τ ,θqs � opp1q

Our next task is to show that the criterion function is stochastically equicontinuous, in the sense

defined by Newey (1991). Let pθ, θ�q be two distinct parameter values and define a uniform
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bound on the derivative Sigt as in Lemma B.6. Then

} pfpτ ,θq � pfpτ �,θ�q} � ����� 1

Gtn̄t

¸
ig

B
Bpτ ,θq

fpZigt, V 0
2igt, rτ , rθqrpτ ,θq1 � pτ �,θ�q1s

�����
¤
�

1

Gtn̄t

¸
ig

sup
pτ ,θ,v2qPT �Θ�V2

��� B
Bpτ ,θq

fpZigt, v2, rτ , rθq���� }pτ ,θq1 � pτ �,θ�q1}

¤
�

1

Gtn̄t

¸
ig

f
pτ ,θq
igt

�
}pτ ,θq1 � pτ �,θ�q1}

(B.32)

By assumption (iv) Erf pτ ,θqigt s   8 and by Lemma B.7, 1
Gtn̄t

°
ig f

pτ ,θq
igt � Opp1q. This exactly fits

the definition of stochastic equicontinuity. Since the parameter space is compact, the function

converges point-wise and the sample-criterion is stochastically equicontinuous, then by Theorem

2.1 in Newey (1991),

sup
τPT

sup
θPΘ

} pfpτ ,θq � ErfpZigt, V 0
2igt, τ ,θqs} Ñp 0 (B.33)
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