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Abstract

This paper explores the extent to which information design can increase the auc-

tioneer’s revenue in the US offshore oil/gas lease auctions. In our setting, firms first

submit cash bids in a first-price sealed-bid auction; the winning firm then decides

whether to explore a tract, and the government receives a royalty payment on the

production value of the tract. We first document that when all the bids are revealed

to the winning bidder after the auction, the exploration rate is positively correlated

with the losing bids, suggesting that the winning bidder utilizes the rivals’ bids to infer

their private information on the tract’s production value. We then characterize the

equilibrium bidding strategy in an environment in which the auctioneer can design and

commit to how to reveal information on the losing bids to the winning bidder. Our

counterfactual exercises show that information design can significantly improve the

auctioneer’s revenue. For example, fully withholding information on the losing bids

results in a $80 million increase in the auctioneer’s annual revenue.
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1 Introduction

Many economic questions involve understanding how to alter an economic agent’s behavior.

Besides using monetary transfers, another useful way of changing behavior is strategically

controlling the agent’s information, thus affecting the action he takes. Since the work of

Kamenica and Gentzkow (2011), there is a rapidly growing theoretical literature on how

to optimally design information revelation policy. However, there is a dearth of empirical

research quantifying the potential benefit of information design.

This paper provides an empirical analysis of how information on the losing bids should be

strategically revealed in a common value auction.1 Our setting is the US Outer Continental

Shelf (OCS) leasing auction from 2000 to 2019. In an OCS leasing auction, the auctioneer

(the government) auctions off the right to explore and produce oil and gas on federal offshore

tracts via first-price sealed-bid auctions. In addition to receiving the winning cash bid from

the auction, the government also charges a royalty on the production value of oil and gas

extracted from the tract, and unexplored tracts do not produce oil and gas. Therefore,

the government’s revenue also depends on whether the winning bidder conducts exploratory

drilling.

Two empirical observations render it potentially beneficial for the auctioneer to restrict

the winning bidder’s access to the losing bids’ information. First, in our data period, the

government fully discloses all the bids’ values and the identities of the bidders, and the ex-

ploratory drilling rate is low—only 24.5% of leased tracts were explored. This low exploration

rate is an ongoing concern for the federal government, and multiple policy adjustments aimed

at improving the exploratory drilling rate have been proposed.2 Second, our reduced-form

analysis highlights a strong and positive correlation between the losing bids and the winning

bidder’s exploration likelihood. According to our regression results, a 1% increase in the

second-highest bid leads to a 3.9 percentage point increase in the probability of exploratory

drilling. This suggests that the winning bidder utilizes the rival firms’ bids to infer the rivals’

private information on the tract’s production value. As a comparison, a 1% increase in the

winning bid leads to only a 4.5 percentage point increase in the probability of exploratory

1The idea of controlling the information about the losing bids in auctions is not new. For example, in
2009, the FDIC stopped releasing the identity of losing bidders and the second-highest bid in the failed bank
acquisition auctions, which sparked outrage from industry insiders (Fajt, 2009). Similarly, bidders on Google
Ads auction were concerned about the lack of transparency on the information of losing bids (Joseph, 2020).
In some cases, losing bidders prefer to withhold information on their bids. For instance, several US states
block the release of information on their offers to host Amazon’s second headquarter.

2For example, the 1995 Deepwater Royalty Relief Act provided large royalty suspension volumes to lessees
of deep water tracts to promote exploration, development, and production.
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drilling. As a firm’s bid is increasing in its expectation of the tract’s production value, this

implies that the winning firm’s exploration decision is similarly affected by the (inferred)

information of its rival firms as by its own private information.

In this paper, we empirically study the effects of various bid disclosure policies on the

government’s revenue in the OCS leasing auctions. To do so, we first estimate a model of

first-price sealed-bid pure common-value auction (à la Milgrom and Weber (1982)) for an

offshore tract lease in which the winner also makes an exploratory drilling decision after the

auction. The auctioneer is the government. Before the auction, each firm (bidder) receives a

private signal about the production value of the tract. After the auction, all the submitted

bids are revealed, and the winner observes the realization of the cost to engage in exploratory

drilling in the tract. Based on this additional information, the winning firm then decides

whether to engage in exploratory drilling. If a tract is explored, the tract’s actual production

value is realized, and the firm pays a royalty on the production value to the government based

on a rate announced before the auction.

Any empirical analysis of information design requires knowing the agents’ posterior be-

liefs. In our case, this is equivalent to identifying the firm’s posterior belief of the production

value of the tract conditional on the bidders’ private signals. Our other objects of interest

include the joint distribution of the firms’ private signals and the distribution of the (post-

auction) exploration cost. We identify these objects using two datasets. The first dataset is

a publicly available dataset on the US offshore auction outcomes and the tracts’ drilling and

production activities post-auction. The second dataset is a proprietary dataset on all the

contracts between the oil/gas firms and the offshore rig company employed by the oil/gas

firms to engage in drilling. Subsequently, we use our estimates to conduct counterfactual

analysis on the government’s expected revenue when, before the auction, it can commit to a

disclosure policy of the losing bids.

In our model, we can nonparametrically identify the firms’ posterior beliefs of the pro-

duction value of the tract conditional on the bidders’ private signals. The main empirical

challenge in identifying these posterior beliefs is that we need to separate the variation in the

realized exploration cost, which is unobserved, from the variation in the observed exploratory

drilling rate. We do this by constructing a cost shifter using the rig costs in past rig contracts

associated with the nearby tracts. We show that this cost shifter is informative of the ex-

ploration decision and, by construction, independent of the latent tract’s production value.

Under the assumption that every bidder’s prior belief (before observing its private signal)

about the production value of the offshore tract is the observed distribution of the tracts’
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production values, we can identify the joint distribution of the bidders’ private signals, the

posterior belief of the winning bidder, and the distribution of the exploration cost.

We estimate the model in three steps. In the first step, for each auction, we estimate the

bidders’ prior beliefs using the realized production quantities and the exploration outcomes

of the other tracts that were explored before the auction. In the second step, we use the

observed bid distribution to construct the bidders’ private signals. In the third step, we

estimate the model using GMM, matching the realized bids and exploration decisions with

the model’s predictions.

Our contribution in this paper is two-fold. First, we provide a characterization of the

equilibrium bidding strategy in such a common-value first-price auction model with ex post

moral hazard for a large class of disclosure policies for the losing bids. Under a policy

of full disclosure of the losing bids, the equilibrium bidding strategy resembles that of a

standard common value auction, exhibiting the “winner’s curse” phenomenon: winning the

auction indicates that the winning firm is overly optimistic of the production value of the

tract; anticipating this effect, every firm depresses its bid. When the losing bids are not

expected to be fully disclosed after the auction, there are two effects on the equilibrium

bidding strategy. The first effect is a negative effect on the bids, which arises because the

winning firm will be making its exploration decision under less information, thus decreasing

every firm’s expected value of winning the auction. The second effect, which is positive, is

more subtle. Regardless of the disclosure policy, winning the auction with a bid of b always

reveals that all the losing bids are lower than b. Therefore, winning an auction with a higher

bid increases the winner’s optimism about the (undisclosed) values of the losing bids and,

hence, its expectation of the tract’s production value; in turn, this incentivizes the firm to

bid higher. However, the second effect is always dominated by the first effect; thus, the bids

are always lower than when there is full disclosure of the losing bids.

Our second contribution is quantifying the gains from various bid disclosure policies

in the OCS leasing auctions. Withholding information on the losing bids creates a trade-

off between the government’s bid revenue and the royalty revenue. As the winning firm

responds to “bad news” (i.e., low losing bids) by not engaging in exploratory drilling, by

strategically pooling information between “goods news” (i.e., high losing bids) and bad news,

the auctioneer can increase the expected exploratory drilling rate. In turn, the high royalty

revenue could offset the loss in the bid revenue from withholding information about the losing

bids. Preliminary results from the counterfactual analysis reveal that, under a complete non-

disclosure policy of the losing bids, the bidders decrease their bids by 1.77%. However, the
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post-auction exploration rate increases by a 0.3 percentage point, which leads to a 1.50%

increase in the government’s royalty revenue; to achieve this increase in exploration rate with

full disclosure of the losing bids, the government has to decrease its royalty rate by 37%.

Overall, by committing not to disclose any information on the losing bids, the government

earns an expected net increase in annual profit of 1.01%, which amounts to approximately

$80 million each year.

2 Literature Review

Our paper contributes to the empirical literature on auction design with ex post actions.

Earlier works, such as Athey and Levin (2001), Lewis and Bajari (2011), and Bajari et al.

(2014), study the equilibrium bidding strategy in scoring auctions in which each bid is an

incentive contract. For example, Athey and Levin (2001) study timber auctions in which

firms bid a per-unit price for each timber species, and bidders have private information

about volumes of species. In these papers, however, there is no ex post uncertainty. More

recently, Bhattacharya et al. (2018) studies auction design for onshore oil auctions in which

they model the winning bidders observing the production value of the lease ex post and

strategically delaying production in response to oil price uncertainty. In our OCS setting,

the incentive to strategically delay production is not a first-order issue because the production

duration of an offshore lease can be longer than 30 years. Instead, we focus on the effect of

auction outcomes on the winning bidder’s belief about the tract’s latent production value

and subsequent drilling decisions.

Our paper also complements the literature on the role of information in auctions. The-

oretically, Milgrom and Weber (1982) and Eső and Szentes (2007) study the auctioneer’s

information disclosure policy when the auctioneer has access to exogenous signals that are

affiliated with the bidders’ valuations. Empirically, Takahashi (2018); Allen et al. (2019), and

Krasnokutskaya et al. (2020) study environments in which the bidders are uncertain about

the scoring rule of an auction with multidimensional bids. In these papers, the uncertainty

in the scoring rule stems from the auctioneer having private information on the project, and

whether this information is revealed to the bidder has implications on the bidding strategies.

In contrast, in our paper, we study the strategic decision of an auctioneer to disclose the

rival bidders’ information that is privately revealed to the auctioneer through their sealed

bids.

In addition, our paper contributes to the literature on the identification of auction models.
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Hendricks et al. (2003) and Athey and Haile (2007) establish the identification result for a

standard pure common value when the ex post values are observed, utilizing the bid inversion

method by Guerre et al. (2000). However, in our setting, the ex post values are not perfectly

observed because only the explored tracts can be productive, and the exploration decision is

endogenous to the latent production value. Therefore, the bid information and the realized

production value are insufficient to achieve identification in our setting. Instead, much of

our identification results leverage the variation in the observed exploration decisions.

Finally, our paper is related to the literature on the role of information on strategic

exploration decisions in the oil and gas market. Porter (1995)and Hendricks and Porter

(1996) document the determinants of exploratory drilling in the US offshore oil and gas

auctions from 1954 to 1979, focusing on the information spillover among neighboring leases

and the information effect from auction outcomes. Lin (2009, 2013) and Hodgson (2018)

study the strategic decision of oil and gas companies to delay exploration to free ride on the

information from the exploration outcomes of neighboring leases. In our paper, we abstract

from the timing of the exploration decision and focus on the impact of auction outcomes on

whether exploration occurs and how it affects the optimal auction design.

3 Institutional Setting and Data

We use the publicly available data from the Bureau of Ocean Energy Management (BOEM)

on the OCS auctions from 2000 to 2019.3 Each year, the BOEM holds sales in which the

right to drill and extract the oil and gas from each tract is auctioned. If there is no drilling

activity within a fixed lease term, the ownership of the tract reverts to the government.

During this period, all of the available unleased areas are available to be auctioned. The

auctions’ format is first-price sealed-bid with an announced minimum bid and a fixed royalty

rate. The royalty rate determines the amount of post-production revenue that the winning

bidder must pay to the government should production occurs. The government might choose

to reject the highest bid if it deems that there is not enough competition for the lease. During

our data period, the government rejects the highest bid only when there is one bidder.

Prior to the auction, potential bidders first acquire seismic information from a geophysical

company, which are then processed by geophysicists at the oil and gas firms and will be

further updated as new data arrive. The methods used by the bidders to process the data

are proprietary. After the auction’s outcome is revealed, the winning bidder decides whether

3Hendricks and Porter (2014) provides an excellent overview of the OCS auctions and how they evolve.
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to conduct exploratory drilling to determine whether the tract contains profitable natural

resources. If the outcome of the exploratory well is successful, the firm may decide to drill

development wells to start production, and the result of this development stage is more

certain than that of the exploration stage.

Oil and gas firms are allowed to bid jointly unless they are placed on a restricted joint

bidders list. This list consists of producers whose production is above a threshold for either

crude oil or natural gas for the prior production period. The bidders in the restricted joint

bidders list are also not allowed to bid separately if they have an agreement with another

restricted bidder that will result in joint ownership of an OCS lease during the 6-month

bidding period. They are also prohibited from making any pre-bidding agreement to convey

any potential lease interest to any person on the list of restricted joint bidders. For our

analysis, we do not differentiate between joint bids and single bids.

Table 3.1: Summary statistics of 2000-2019 auctions

Statistic N Mean St. Dev. Max Min

First Bid 2,510 5,089,434.000 11,732,752.000 157,111,000 10,100
Second Bid 2,510 2,066,882.000 6,180,480.000 84,391,221 4,235
N Bids 2,510 2.706 1.298 13 2
Oil Production 288 1,819,866.000 5,571,431.000 42,879,958.000 0.000
Gas Production 288 11,498,482.000 27,151,315.000 253,421,389.000 0.000
Explored 2,510 0.245 0.430 1 0

Table 3.1 presents the summary statistics of the auction outcomes and subsequent ex-

ploration and production outcomes from 2000 to 2019 with at least 2 bidders. There is

substantial bid heterogeneity both across and within the auctions. For example, the average

highest bid is more than twice as high as the average second bid. The BOEM data also

include information on all well activities, such as when a well was drilled and when it was

abandoned, and production activities of each well. The exploration rate during this period is

low: only 24.5% of leases were explored, among which 46.8% were subsequently developed.4

We supplement the BOEM data with the rig contract data from Rystad, which document

all the rig contracts that were active at any point in the period from 2000 to 2019. Rigs are

a vital capital required for well drilling and are not owned by the oil and gas companies who

4For the purpose of our analysis, we will rely on all available production data, which cover 1954 to 2019,
to estimate the tracts’ oil and gas priors. Table D.2 in the Appendix presents the summary statistics of this
data period.
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are the tracts’ leaseholders. They are often contracted on a daily rate for a period between

3 months and a year. The data specify the tender date, the commencement date, the parties

involved in the contracts, the daily rig rates, and the contract scope for each rig contract.

Table D.3 in the Appendix summarizes the average duration and costs of rig contracts.

Table 3.2: Correlation between the exploratory drilling rate and the auction outcomes

Explored

(1) (2) (3)

Log First Bid 0.057∗∗∗ 0.047∗∗∗ 0.045∗∗∗

(0.010) (0.010) (0.010)

Log Second Bid 0.048∗∗∗ 0.038∗∗∗ 0.039∗∗∗

(0.012) (0.012) (0.012)

N Bids 0.007 0.006 0.005
(0.008) (0.007) (0.007)

Year FE Yes Yes Yes
Area FE Yes Yes Yes
Neighbor Characteristics No Yes Yes
Winning Bidder Characteristics No No Yes
Observations 2,510 2,316 2,316
Adjusted R2 0.242 0.314 0.318

Table 3.2 shows the correlation between the exploration decisions and the first and sec-

ond bids. In this regression, we control for the neighboring tracts’ characteristics such as

whether a neighboring tract was explored and whether that happens before or after the

auction.5 We also control for the winning bidder’s characteristics, including whether the

winning bidder owns neighboring leases, and whether these leases have been explored and

productive. The results suggest that, conditional on the winning bid, the firms are more

likely to explore when the second bid is higher, which is consistent with a model in which

the firms use auction outcomes to update their beliefs about the tract’s profitability before

deciding whether to explore. Furthermore, the magnitude of the effect of the second-highest

bid on the exploration rate is similar to that of the winning firm’s own bid, suggesting that

5For each tract, we define ‘neighboring tracts’ using a similar metric as in Hendricks et al. (2003), which
are tracts within 0.11 degree of latitude and 0.12 degree of longitude.
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the winning firm’s exploration decision is similarly affected by the inferred information of its

rivals as by its own private information.

In our benchmark model, we assume that each winning bidder considers its exploration

decision independently between tracts. However, because the exploration outcomes on the

adjacent tracts are usually positively correlated, the leaseholders of the adjacent tracts might

choose to explore cooperatively to mitigate potential losses from over drilling inefficiencies

(Hendricks and Porter, 2014). To measure the extent to which firms cooperate on their

exploration decisions among neighboring leases, we look at the unexplored (explored) leases

whose owners got into ownership agreements with nearby explored (unexplored) tracts’ lease-

holders after the auction. The results show that 13.2% of leases in our sample might exhibit

some cooperative behavior among at least some owners. In the Appendix, we do a robustness

check of our analysis by excluding these subsample of leases.

4 Model

We first present a model of a common-value auction with ex post moral hazard under full

revelation of the bids ex post. In this section, we abstract from some empirically relevant

details, which will be introduced in Section 5.

The federal government (auctioneer) wants to auction off the lease of an offshore tract via

a first-price sealed-bid auction. There are N ≥ 2 firms/bidders. The expected production

value during the lease term is a random variable Q, and the common prior belief about Q is

represented by the distribution FQ, which has a full support on [0, q̄], where q̄ <∞. Prior to

the auction, each firm i ∈ {1, . . . , N} receives a private signal Si about Q, which represents

each firm’s private information about the potential production value in the tract. Let SSS =

(S1, . . . , SN) and fSSS (SSS|q) be the joint density of the firms’ signals conditional on Q = q;

therefore, fSSS (SSS) =
∫ q̄

0
fSSS (SSS|q) dFQ (q) . Let the expected production value conditional on

the information of every firm be denoted by

V (s1, . . . , sN) := E [Q|S1 = s1, . . . , SN = sN ] .

We normalize the signals such that V (0, . . . , 0) is 0.

Besides the winning bid, the government also charges a royalty rate of r < 1 on the

tract’s production value, where r is announced before the auction. To extract the natural

resources from the tract, the firm must incur an exploration cost. This cost is realized

only after the auction — for example, such exploration costs depend on the physical and
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geological characteristics of the tract and can be fully assessed by a firm only after it has

won the auction and gained access to the tract. We let C denote the random variable of the

exploration cost and FC be its distribution with a full support on [0, c̄], where c̄ < ∞. FC

is common knowledge.

To summarize, suppose that firm i wins the auction with a bid of b. Under the realizations

Q = q and C = c, if firm i explores the tract, then its overall profit is (1− r) q − c− b, and

the government’s profit is b+ rq. On the other hand, if firm i does not explore, its profit is

−b, whereas the government profit is b. The game proceeds as follows:

1. Each firm i privately observes the realization of Si.

2. All the firms simultaneously submit a sealed bid to the auctioneer.

3. The government announces the winner, who is the highest bidder; the winner then

pays its bid. In the event of a tie, the winner is randomly chosen from among the

highest bidders.

4. The auctioneer reveals all the submitted bids.

5. The winner observes the realization of the exploration cost C.

6. The winner decides whether to explore the tract. If the winner decides to explore, it

incurs C, and the value of Q is realized. Subsequently, the firm collects Q and pays

rQ to the government. On the other hand, if the firm decides not to explore, the game

ends.

Assumption 1. The following conditions hold:

1. C and Q are independent.

2. For all q in the support of FQ, fSSS (S1, . . . , SN |q) has a full support over [0, s̄]N and is

symmetric in the signals.6 This implies that V (·) is also symmetric.

3. S1, S2, . . . , and SN are affiliated — i.e., for any sss = (s1, . . . , sN) and sss′ = (s′1, . . . , s
′
N),

fSSS (sss ∨ sss′) fSSS (sss ∧ sss′) ≥ fSSS (sss) fSSS (sss′) ,

where sss ∨ sss′ and sss ∧ sss′ are the component-wise maximum (i.e., join) and minimum

(i.e., meet) between sss and sss′, respectively.

6Since fSSS (·|q) has a full support, by Bayes rule, fQ (q|S = s) = fSSS(SSS|q)
fSSS(SSS)

.
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4. V (S1, . . . , SN) is increasing in S1 to SN .

Assumption 1.1 assumes that the realization of the exploration cost in Stage 5 does

not change the winning bidder’s posterior belief about the tract’s production value. In our

setting, the exploration cost is mainly determined by the available rigs’ locations and the

tract’s water depth. Therefore, the realization of the exploration cost is unlikely to carry any

additional information about the tract’s production value beyond the information observed

by the bidders prior to the auction. The symmetry assumption on V (·) in Assumption 1.2

implies that the bidders are symmetric. Furthermore, the bidders’ identities do not matter

to the winning bidder’s posterior belief about the tract’s production value. Assumption

1.3 is a standard assumption in the literature to ensure the monotonicity of the symmetric

equilibrium.7 Finally, Assumption 1.4 is a normalization in which higher private signals are

associated with a higher production value.

4.1 Equilibrium Analysis

Each firm’s strategy consists of a bidding function βi : Si → R+ and an exploration decision

(conditional on winning the auction) that depends on the realization of C and all the infor-

mation about the expected production value after the auction. The winner of the auction will

explore if and only if its expected value of (1− r)Q conditional on all the available informa-

tion is higher than the realization of C. Given the simplicity of the drilling decision, we only

need to focus on the equilibrium bidding functions in our equilibrium analysis. Henceforth,

we abuse terminology and refer to an equilibrium as only the profile of the bidding functions

of the equilibrium strategies. We will restrict our attention to symmetric Bayes Nash equi-

libria in which each firm i bids according to the same bidding function β : Si → R+, where

β is strictly increasing.

To derive the equilibrium, first, let Yi denote the first order statistics of the N − 1

random variables Sj for j 6= i (i.e., Yi = maxj 6=i Sj). Let GY (Yi|s) denote the distribution of

Yi conditional on Si = s, and let gY (Yi|s) be the corresponding density; let ZZZi denote the

(N − 2)-dimensional random vector
(
Z

(2)
i , Z

(3)
i , . . . , Z

(N−1)
i

)
, where Z

(k)
i denote the k-order

statistics, and let GZ (ZZZi|s, y) denote the distribution of ZZZi conditional on Si = s and Yi = y,

and let gZ (ZZZi|s, y) be the corresponding density; finally, let GY,Z (Yi, Zi|s) denote the joint

distribution of (Yi, Zi) conditional on Si = s, and let gY,Z (Yi, Zi|s) be the corresponding

density.

7Affiliation is a strong notion of positive correlation. See Milgrom and Weber (1982) for more details.
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Next, let v (s, y) be firm i’s expected profit from winning the auction conditional on

Si = s and Yi = y, where the expectation is taken at the start of Stage 2. To derive v (s, y),

first note that from firm i’s perspective at the start of Stage 2, the bids of the other firms are

random variables. Let B
(1)
i , B

(2)
i , . . . , B

(N−1)
i denote these random variables, where B

(k)
i is

the k-th highest bid of the other firms, and let χβ

(
B

(2)
i , . . . , B

(N−1)
i |s, y

)
denote their joint

distribution conditional on Si = s and Yi = y when firm i conjectures that all the other firms

bid according to a strictly increasing bidding function β. This implies that

χβ

(
b

(2)
i , . . . , b

(N−1)
i |s, y

)
= Pr

[
B

(2)
i ≤ b

(2)
i , . . . , B

(N−1)
i ≤ b

(N−1)
i |Si = s, Yi = y

]
= Pr

[
Z

(2)
i ≤ β−1

(
b

(2)
i

)
, . . . , Z

(N−1)
i ≤ β−1

(
b

(N−1)
i

)
|Si = s, Yi = y

]
=GZ

(
β−1

(
b

(2)
i

)
, . . . , β−1

(
b

(N−1)
i

)
|s, y

)
Conditional on Si = s and Yi = y and observing that B

(2)
i = b

(2)
i , . . . , B

(N−1)
i = b

(N−1)
i at

Stage 4, firm i’s expectation of the production value is V
(
s, y, β−1

(
b

(2)
i

)
, . . . , β−1

(
b

(N−1)
i

))
,

and firm i explores if and only if the realization of C is less than

(1− r)V
(
s, y, β−1

(
b

(2)
i

)
, . . . , β−1

(
b

(N−1)
i

))
. Let

ψ (V ) :=

∫ c̄

0

max { 0 , (1− r)V − c} dFC (c) =

∫ (1−r)V

0

[(1− r)V − c] dFC (c) (1)

=⇒ ψ′ (V ) = (1− r)FC ((1− r)V ) (2)

Therefore,

v (s, y) =

∫
b
(2)
i ,...,b

(N−1)
i

ψ
(
V
(
s, y, β−1

(
b

(2)
i

)
, . . . , β−1

(
b

(N−1)
i

)))
dχβ

(
b

(2)
i , . . . , b

(N−1)
i |s, y

)
=

∫
z

ψ (V (s, y,z)) dGZ (z|s, y) (3)

where the second line follows from a change of variable of β
(
Z

(k)
i

)
= B

(k)
i for k = 2, . . . , N−

1.8

Consequently, at the start of Stage 2, if Si = s and firm i conjectures that all the other

8Throughout, we adopt the natural notation that, for any function T ,
∫
z
T (z) dz =∫

z(2)

∫
z(3)...

∫
z(N−1) T

(
z(2), z(3), . . . , z(N−1)

)
dz(N−1) . . . dz(3)dz(2).
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firms bid according to β, firm i’s expected overall profit from bidding b is∫ β−1(b)

0

[v (s, y)− b] gY (y|s) dy (4)

Let L (s′|s) := exp
(
−
∫ s
s′

gY (t|t)
GY (t|t)dt

)
.

Proposition 1. When all the bids are fully disclosed after the auction, the increasing and

symmetric Bayes Nash equilibrium is uniquely

βFD (s) =

∫ s

0

v (s′, s′) dL (s′|s) . (5)

The proof of Proposition 1 is found in Appendix A. In the proof, we show that, for

any s, L (s′|s) is a proper distribution that is first order stochastically dominated by the

distribution GY (s′|s′ ≤ s). Therefore, βFD(s) < E[v(s′, s′)|s′ ≤ s] for all s > 0. This bidding

strategy thus reflects the firm’s understanding of the “winner’s curse” — winning the auction

indicates that the firm is overly optimistic of the tract’s production value; anticipating this

effect, the firm depresses its bid.9

5 Identification and Estimation

This section introduces two empirically relevant features that were not included in the the-

oretical model in Section 4. We then discuss the identification and estimation strategies.

5.1 Additional Empirical Features

First, in our data, a lease can produce both oil and gas. Therefore, we decompose the oil

and gas quantity in each tract into oil quantity, Qo (measured in barrels), and gas quantity,

Qg (measured in MCF). The total value of each tract is given by

Q = QoP o +QgP g,

where P o and P g are the prices of oil and gas, respectively. We choose P o and P g to be the

annual average offshore U.S. Gulf Coast crude oil first purchase price and the Henry Hub

spot price in the year of the auction, respectively.

9See Milgrom and Weber (1982) and Krishna (2009) for an illustration.
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Second, our theoretical model also does not take into account that the firms’ profits, in

reality, also depend on their discount factors and the volatility in the prices of oil and gas. In

addition, paying the exploration cost C only reveals the production value Q to the firm, but

to fully extract Q, the firm must also pay additional development costs. Thus, we introduce

two additional cost components, δ < 1 and κ ≥ 0, which are known to all the bidders prior

to the auction, and they are objects to be identified. δ represents the impact of the discount

factor and the price volatility on the present value of the tract’s production value, and κ is a

multiplicative cost that represents any potential development cost incurred after exploratory

drilling. Therefore, if the firm engages in exploratory drilling after winning the auction with

a bid of b and observing that the exploration cost is C = c and the production value is

Q = q, its profit is (δ(1− r)− κ)q − c− b, where δ(1− r)− κ is assumed to be positive.

5.2 Identification

For our analysis, for each tract t, the objects of interest are the functions {FQ
t , F

SSS
t , F

C
t , Vt}

and the constants {κt, δt}. We observe the equilibrium bids BBBt, the exploration decisions,

and Qt if drilling occurred. Throughout this subsection, to simplify notations, we will ex-

clude each auction’s observed characteristics, and we describe how to incorporate them in

Subsection 5.3.

To identify the prior FQ
t , we assume that the prior belief is, on average, correct; hence,

FQ
t is identified directly from the production data of the explored tracts.

Next, to identify the joint distribution of the signals FSSS
t , we first group all the auctions

with a similar prior together and estimate the bid distribution associated with this prior.

As it is WLOG to normalize the marginal distribution of Sit to be U [0, 1] for all i,10 a signal

associated with a bid b is thus the value of the bids’ CDF evaluated at b. Therefore, the

joint distribution of the signals FSSS
t is also identified. In turn, the conditional distributions

of the order statistics, GZZZ
t (ZZZ|S, Y ) and GYYY

t (Y |S), are also identified.

Next, to identify FC
t , Vt, κt, and δt. we make the following assumptions:

Assumption 2. There exists a cost shifter instrument It such that

• The exploration cost of tract t is

Ct = C0
t ζ(It)

10By Sklar’s theorem, by normalizing the signals to be uniformly distributed, the joint distribution that
we identify is the copula of the true joint distribution.
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where ζ : R → R is a differentiable and non-constant function, C0
t a random variable

with a strictly increasing distribution FC0
, and C0

t , It, and Qt are pairwise independent.

• The development cost of tract t is

κt = κ(It),

where κ : R→ R is a differentiable function.

It is a tract-level observed variable that affects the exploration and development costs

but does not carry any information about the tract’s production value Qt. C0
t represents

the aspect of the exploration cost whose distribution FC0
is common across all the tracts.

Henceforth, we refer to C0
t as the base exploration cost.

Assumption 3.

1. δt = δ ∀t.

2. Vt(·) is differentiable almost everywhere.

We assume that the discount factor δt is common across all the tracts. Vt(·) is the expected

production value conditional on all the signals; therefore, the smoothness condition on Vt(·)
is an assumption on the distribution of Qt conditional on SSSt.

Proposition 2. Under Assumptions 2-3, FC0
, ζ(·), Vt(·), κ(·), and δ are identified.

The proof of Proposition 2 relies on the observed exploration rate in the data conditional

on BBBt and It. The exploration rate depends on (i) the firm’s posterior of the tract’s pro-

duction value, which is determined solely by the firms’ private signals (which we identified

above), and (ii) the exploration and development costs. Since the instrument It affects the

exploration cost distribution FC
t and the development cost κt but not the posterior of the

tract’s production value, we can identify FC0
, ζ(·), Vt(·), κ(·), and δ up to a scale. These

objects are then pinned down using the bid inversion method of Guerre et al. (2000) and

the fact that, by Bayes’ theorem, the posterior distribution of Qt must average back to the

prior FQ
t .

Our identification argument differs from the standard identification argument in the auc-

tion literature. In a common-value framework, it is widely known that the joint distribution

of the signals and the value of the object being auctioned (the production value Qt in our

case) can be identified directly from the bid information and the realized ex post value of
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the object. This argument does not apply to our case because Qt is unobserved when the

winning bidder chooses not to explore the tract, and the exploration decision is endogenous

to the tract’s latent production value (Athey and Haile, 2007). In addition, the identification

argument in the literature usually relies on normalizing the bidder’s signal to be his value

from marginally winning the auction—i.e., when the true signal is Sit = s, the normalized

signal is S̃it := v(s, s). However, due to the unknown distribution of the exploration cost,

the bid information alone is insufficient to identify Vt(·), which is required for our counter-

factual analysis. Therefore, much of our identification argument relies on the variation in

the exploration decisions between the auctions with a similar prior and how these decisions

vary with the bids to identify Vt(·).

5.3 Estimation

5.3.1 Constructing priors FQ
t

We use the realized production and exploration outcomes to construct the firms’ prior belief

for each tract. The prior beliefs’ construction focuses on accounting for the correlation in

adjacent tracts’ exploration and production outcomes, which is an important feature of this

market.

The locations of explored leases with and without production are displayed in Figure 5.1.

We assume that once production begins at a tract, all the potential bidders can observe that

tract’s production value. All the tracts that were explored but not developed are assumed to

have Qo
t = Qg

t = 0. For the leases that have expired—which we term ‘completed’ leases—the

oil and gas quantities in the associated tract are the total amount of oil and gas the tract has

produced. For tracts that are still in production at the end of our data period, we construct

a measure of the total amount of oil and gas that will be produced using the production

data of the previous 2 years. Further details of our construction of Qo
t and Qg

t are found in

the Appendix.

To construct FQ
t , we first construct the prior for the oil and gas quantities, denoted by

FQg

t and FQo

t , respectively. For each prior FQi

t , i ∈ {o, g}, the distribution of the quantity of

resource i is assumed to follow a mixture distribution as follows:Qi
t = 0 with probability

exp(βi0+νi0t)

1+exp(βi0+νi0t)

Qi
t ∼ Gamma(·, ·) with probability 1

1+exp(βi0+νi0t)

(6)

βi0 is a parameter to be estimated. νi0t is assumed to be a Gaussian random field with a
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Figure 5.1: Observed oil and gas production

Matérn correlation function, where the covariance between νi0t and νi0t′ is

σi0
2 (
γi0||st − st′ ||

)
K1

(
γi0||st − st′||

)
, (7)

where σi0 and γi0 are parameters to be estimated, ||st− st′ || denotes the distance between the

centroid of tract t and tract t′, and K1(.) is the modified Bessel function of the second kind

with a smoothness parameter of one (Krainski et al., 2018). Next, the Gamma distribution

in Eq. (6) is assumed to have mean µit and standard deviation
(µit)

2

φi
, where

log µit = βi1 + νi1t,

in which φi and βi1 are parameters to be estimated, and νi1t is also a Gaussian random field

similarly defined as in Eq. (7), with parameters σi1 and γi1. To estimate γi0, we follow the

literature and, instead, estimate the range value ρi0 =
√

8
γi0

. We do the same thing for γi1—i.e.,

estimate ρi1 =
√

8
γi1

.

Thus, in summary, the parameters that need to be estimated are {βi0, σi0, ρi0, φi, βi1, σi1, ρi1}.
We estimate these parameters using R-INLA (Rue et al., 2009).11 The estimated parameters

of the priors are summarized in Table D.1 in the Appendix.

Since the bidders observe only the production outcomes that have been realized prior

11The package can be downloaded at www.r-inla.org. I thank David Childers for introducing me to
R-INLA.
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to the auction, for each tract t, we use only the data of the tracts that have either begun

production or expired before tract t’s auction date. This naturally implies that the earlier

tracts have less informative priors than the later tracts. Table 5.1 summarizes the prior

probability of having oil/gas and the prior mean quantity of oil/gas if oil/gas is found,

taking into account each tract’s exploration date. The estimated priors show substantial

heterogeneity in both the probability of a tract having natural resources and the production

value of the tract (if any).

Table 5.1: Estimated priors FQo , FQg

Statistic N Mean St. Dev. Max Min

Bernoulli Prior Mean (Oil) 2,510 0.102 0.108 0.553 0.001
Bernoulli Prior Mean (Gas) 2,510 0.236 0.274 0.884 0.001
Gamma Prior Mean (Oil) 2,510 24,198,967.000 24,648,355.000 113,176,544.000 49,128.330
Gamma Prior Mean (Gas) 2,510 57,962,001.000 27,224,458.000 321,959,317.000 9,152,942.000

5.3.2 Estimation

Our estimation procedure is conducted in two steps. In the first step, we use kernel estimation

to estimate the CDF of the bids, which then gives us the estimated private signals of the

bidders. In the second step, we estimate the parameters of the model using GMM. Our first

set of moments is the derivative of the sum of the squared errors between the predicted bids

and the actual bids. The second set of moments is the derivative of the likelihood function of

the binary drilling outcomes. Since our first step relies on the estimated signals, the standard

errors are computed by bootstrap. More details are found in the Appendix.

Number of potential bidders. In our model, we did not consider reserve prices in the

auction nor the possibility that some bidders did not bid because their optimal bids are

below the reserve prices; therefore, we set Nt to be the number of bids for tract t observed

in the data. This assumption is innocuous for the following reasons. First, in our setting,

the reserve prices are determined solely by each tract’s water depth (≤ 400m and > 400m)

and the auction year (before 2013 and after 2013), and the water depth and the auction year

are already taken into account in our estimation as auction-level observed heterogeneities,

which we will describe in more details later. Moreover, when the reserve price is not 0, the

only difference that affects our estimation procedure is that the number of potential bidders

is not the same as the number of bids observed. To account for this difference, we only have
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to change the interpretation of the signals accordingly, with the lowest signal (Sit = 0) being

interpreted as the signal whose bids is the reserve price.

We divide the sample into three subsamples: (1) auctions with Nt = 2, (2) auctions with

Nt = 3, and (3) auctions with Nt > 3. We estimate the parameters for each subsample

separately. Thus, we are not imposing any parametric assumptions on how the parameters

of the model vary with the number of potential bidders Nt.

Cost Shifter Instrument. We use the rig rates of the rig contracts signed within one year

of and prior to tract t’s auction date to construct the cost shifter instrument It. Since the

rig contract is signed between a rig company and an operator, which is an oil/gas company

appointed by the leaseholder(s) to determine exploration and production decisions, a rig can

be moved between different tracts with the same operator. Therefore, we identify a set of

matching leases with the same operator and having drilling activities during the contract’s

length for each rig contract. It is then defined as the average rig rate across all the operators

weighted by the distance between the matching leases and tract t. Thus, our cost shifter

instrument reflects the rig market condition at the tract’s location before the auction occurs,

and a higher It is associated with a lower exploration rate. Moreover, It is unlikely to carry

additional information about Qt because the construction of It uses the information about

nearby tracts, which has already been taken into account in FQ
t . Table 5.2 shows that the

constructed cost shifter instrument is indeed negatively correlated with the exploration rate,

providing evidence that our constructed cost shifter instrument is relevant.

Table 5.2: Relevance of Cost Instrument

Explored

(1) (2)

Log Average Rig Rate −0.811∗∗∗ −0.595∗∗∗

(0.062) (0.065)

Number of Bids 0.057∗∗∗ 0.059∗∗∗

(0.006) (0.006)

Area FE No Yes
Observations 2,510 2,510
Adjusted R2 0.082 0.171
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Auction Heterogeneity. To accommodate auction-level observed heterogeneities, we fol-

low the method of Haile et al. (2003) to ‘homogenize’ the bids. In our benchmark estimates,

the auction-level observed heterogeneities are year fixed effects, the royalty rate, and the

tract’s water depth. To implement Haile et al. (2003)’s approach, we first regress the log of

the observed bids on year fixed effects and water depth fixed effects (≤ 400m or > 400m)

for each subsample with the same royalty rate. The residuals are then treated as the log of

the bids of auctions with homogeneous observed characteristics, conditional on It and FQ
t .

The homogenized bids preserve the optimality of the original bids when the observed het-

erogeneity commonly affects both the exploration cost and the tract’s expected production

value Vt(·) in a multiplicatively separable manner.

Signal Estimation. We use kernel estimation to estimate the CDF of the bids, denoted by

FB(BBB|It, FQ
t ), using the homogenized bids. To reduce the conditional variables’ dimension,

we make a simplification assumption that the prior mean µQt is a sufficient statistic for the

priors’ heterogeneity.

µQt = µgtP
g(1− µ0g) + µotP

o(1− µ0o)

where µ0g and µ0o are the probability that Qg
t = 0 and Qo

t = 0, respectively, as defined in Eq.

(6). We estimate FB(BBB|It, µQt) using the Gaussian kernel and least-squares cross-validation

method to select bandwidths (Li et al., 2013). The CDF of the bids give us our estimates of

SSSt.

Joint distribution of SSS and Q. For each tract, we assume a Gaussian copula for the

joint distribution of (S1, S2, ..., SN , Q) as follow. We drop the tract identifier t for notational

convenience.

FSSS,Q(S1, S2, ..., SN , Q) = ΦR

(
Φ−1

(
F S(S1)

)
, ...,Φ−1

(
F S(SN)

)
,Φ−1

(
FQ(Q)

))
where ΦR is the joint CDF of a multivariate normal distribution with mean 0 and covariance

matrix R, and Φ−1 is the inverse of the CDF of a standard normal distribution. Since the

bidders are ex ante symmetric, R must satisfy the following constraints:
Rij = Rik for i, j, k ≤ N

Rii = Rjj for i, j ≤ N

Ri,N+1 = Rj,N+1 for i ≤ N
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The conditional distribution of
(
Φ−1

(
FQo(Qo)

)
,Φ−1

(
FQg(Qg)

))
|SSS is thus

N

([
M o

∑
i Si

M g
∑

i Si

]
,ΣQ

)
(8)

where

M o =
R1,N+1

R11 +R12

M g =
R1,N+2

R11 +R12

ΣQ =

[
RN+1,N+1 0

0 RN+2,N+2

]
−N 1

R11 +R12

[
R2

1,N+1 R1,N+1R1,N+2

R1,N+1R1,N+2 R2
1,N+2

]

Cost Distribution. We parameterize ζ and κ as B-spline functions of It. For the dis-

tribution of the base exploration drilling cost, we discretize the support of logC0 to be

{c0
1, c

0
2, ..., c

0
J}, which is chosen by the econometrician. We then parameterize the distribu-

tion to be

FC0

(c) =
J∑
j=1

pjΦ

(
log(c)− c0

j

σC0

)
where pj ∈ [0, 1] ∀j and

∑
j pj = 1. pj and σC

0
are parameters to be estimated. This

parameterization’s key property is that it does not restrict the CDF of the base drilling cost

to be either concave or convex.

5.4 Estimation Results

In this subsection, we discuss the estimation results for N = 2.12

Our model fit is summarized in Figure 5.2. In panel (a), we plot the predicted bids, com-

puted using our equilibrium bidding strategy under full disclosure (Proposition 1), against

the actual bids. Our predicted median bid is $687K, compared to $765K in the data. Our

predicted first quantile and third quantile of the bid distribution are $346K and $2.02M,

respectively. These also fit well with the data ($361K and $1.88M, respectively). In panel

(b), we plot the distribution of the predicted drilling probability in which the red vertical

line is the mean of the distribution, and the black line is the mean drilling rate in the data.

12I am working on estimating the parameters for the N = 3 and N ≥ 3 subsamples, and the results will
be included in a future version.
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Our data predicted a 0.18 drilling rate, comparable to the 0.20 drilling rate in the data for

the case of N = 2.

Figure 5.2: Model fit
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6 Alternative Bid Revelation Policies

In this section, we conduct multiple counterfactual exercises to estimate the effect of alter-

native disclosure policies of the losing bids.

One the one hand, when the losing bids are not fully disclosed after the auction, the

winning firm will determine its exploration decision based on less information, thus increasing

its chances of making a ‘mistake’ and decreasing its value of winning the auction. In turn,

this leads to every firm decreasing its bid. On the other hand, withholding information

on the losing bids can increase the expected exploration drilling rate, which increases the

government expected royalty revenue.

To provide a heuristic explanation of the latter effect, suppose that there are two firms.

Let π(s, y) denote the probability of the winning firm engaging in exploratory drilling when

the higher signal is s and the lower signal is y.13 When the losing bid is fully disclosed

after the auction, the winning firm perfectly infers the value y; therefore, conditional on

s, the expected exploration probability is E[π(s, Y )|s] =
∫
π(s, y)dGY (y|s). In contrast,

13i.e., in the model in Section 4, π(s, y) = Pr[(1− r)V (s, y)− c ≥ 0] = F c((1− r)V (s, y)).
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if the losing bid is not revealed, the winning firm makes its exploration decision based on

its expectation of the losing signal; therefore, the expected exploration probability becomes

π(s, E[Y |s]) = π(s,
∫
ydGY (y|s)). If π(s, y) is strictly concave in y, then by Jensen’s inequal-

ity, π(s, E[Y |s]) > E[π(s, Y )|s].
Figure 6.1 plots the function π(s, y) for two different auctions in our data (under some

fixed values of s). In panel (a), π is concave in y; therefore, by the argument above, com-

pletely withholding information on the losing bid in this auction always increases the ex-

ploration rate. In panel (b), π is not concave everywhere; nevertheless, by an analogous

argument, the expected exploration rate can still be increased by only pooling information

within the concave region of π—i.e., only the losing bids associated with a signal of y ≥ 0.3

are pooled together.

Figure 6.1: Example of changes in drilling probabilities under FD
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In Subsection 6.1, we present the counterfactual analysis and empirical results for the

case in which information on the losing bids are completely withheld after the auction.

Subsequently, in Subsection 6.2, we present the framework for the counterfactual analysis

of more general form of disclosure policies of the losing bids; the empirical results for these

disclosure policies will be presented in a future draft.

We are particularly interested in the effect of the disclosure policy on the equilibrium

bids, the equilibrium exploration rate, and the government’s revenue. Because our model

abstracts from how the government discounts the royalty payments and our estimates yield

only predictions on the undiscounted royalty payments, we rely on the current composition

of the source of government revenue (Figure 6.2) to determine the net effect of each coun-

terfactual policy on the government’s yearly revenue. Between 2003 and 2020, the payment

from the cash bids (royalties) accounts for 15% (85%) of the total revenue. Henceforth, we

use these weights to compute the net effect of our policies on the government’s total revenue.
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For example, if a disclosure policy causes the cash bid revenue to decrease by 20% and the

royalty revenue to increase by 10%, then the overall net change in the government’s revenue

is −0.15× 20% + 0.85× 10% = 5.5%

Figure 6.2: Current composition of source of revenue

6.1 Non-disclosure Policy

In this exercise, we consider what happens when the auctioneer announces at the start of

the auction that it will no longer reveal the losing bids in Stage 4 of the game in Section 4.

We call this the “non-disclosure auction,” which contrasts with the “full-disclosure auction”

considered in in Section 4, in which the auctioneer commits to reveal all the submitted bids

in Stage 4. We first characterize the equilibrium bidding strategy and then summarize the

empirical findings.

6.1.1 Equilibrium Analysis

As before, we focus on symmetric Bayes Nash equilibria of the non-disclosure auction in

which each firm i bids according to a strictly increasing function β : Si → R+. Let

V̂0 (s, y) :=E [V (Si, Yi,Zi) |Si = s, Yi ≤ y] (9)

=
1

GY (y|s)

∫
z

∫ y

0

V (s, y′, z) gY,Z (y′, z|s) dy′dz
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V̄0 (s, y) :=E [V (Si, Yi,Zi) |Si = s, Yi = y] (10)

=

∫
z

V (s, y,z) gZ (z|s, y) dz

Suppose that firm i wins the auction with a bid of b. In Stage 4, unlike in the full-disclosure

auction, firm i does not know the realization of B
(k)
i in the non-disclosure auction, except

the inference that B
(2)
i ≤ b. If firm i conjectures that all the other firms bid according to β,

its posterior density of (Yi,Zi) is gY,Z(Yi,Zi|s)
Pr(β(Yi)≤b|s) = gY,Z(Yi,Zi|s)

GY (β−1(b)|s) . Therefore, firm i’s expectation

of Q conditional on Si = s and winning the auction with a bid of b is∫
z

∫ β−1(b)

0

V (s, y,z)
gY,Z (y, z|s)
GY (β−1 (b) |s)

dydz = V̂0

(
s, β−1 (b)

)
In turn, at the start of Stage 2, conditional on Si = s, firm i’s expected profit from winning

the auction with a bid of b is ψ
(
V̂0 (s, β−1 (b))

)
, where ψ is defined in Eq. (1). Consequently,

at the start of Stage 2, firm i’s expected profit from bidding b is

GY
(
β−1 (b) |s

) [
ψ
(
V̂0

(
s, β−1 (b)

))
− b
]

(11)

Proposition 3. In the non-disclosure auction, the increasing and symmetric Bayes Nash

equilibrium is uniquely

βND (s) =

∫ s

0

(
ψ
(
V̂0 (s′, s′)

)
+
[
ψ′
(
V̂0 (s′, s′)

)(
V̄0 (s′, s′)− V̂0 (s′, s′)

)])
dL (s′|s) . (12)

Moreover,

• βND (s) < βFD (s) for all s — i.e., the equilibrium bids in the non-disclosure auction

are lower than that in the full-disclosure auction.

• for every s, there exist y and z such that V̂0 (s, s) > V (s, y,z) — i.e., there exist

realizations of signals and C in which the winning firm drills in equilibrium in the

non-disclosure auction but does not drill in equilibrium in the full-disclosure auction .

To explain the difference between βND (·) with βFD (·) in Eq. (5), first recall that v (s′, s′)

is firm i’s expected profit from winning the full-disclosure auction when conditioned on

Si = Yi = s′. In the non-disclosure auction, firm i’s expected profit from winning when

conditioned on Si = Yi = s′ — i.e., the analog of v (s′, s′) — is ψ
(
V̂0 (s′, s′)

)
. Therefore, the

first part of βND (s) is the part of the equilibrium bidding strategy that reflects the winner’s
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curse, as explained earlier. The second term (in the square bracket of Eq. (12)) represents

an incentive to bid higher, which is not present in the equilibrium bidding strategy of the

full-disclosure auction. This additional incentive arises because if firm i wins the auction

with a higher bid, it becomes more optimistic about the value of Yi and, hence, the expected

oil/gas value in the tract. By contrast, in the full-disclosure auction, this incentive is absent

because there is no uncertainty (in equilibrium) about the value of Yi after the auction.

Finally, Proposition 3 also illustrates the auctioneer’s tradeoff from concealing the losing

bids. First, one can verify that v (s′, s′) > ψ
(
V̂0 (s′, s′)

)
— the value of winning the full-

disclosure auction is higher than the value of winning the non-disclosure auction because

the winning firm acts with more information about the oil/gas value after the full-disclosure

auction. Moreover, the additional incentive to bid higher in the non-disclosure auction (as

described above) is not sufficient to offset the difference between v (s′, s′) and ψ
(
V̂0 (s′, s′)

)
.

Therefore, on the one hand, the equilibrium bids are always higher in the full-disclosure

auction than in the non-disclosure auction; on the other hand, it is possible that the post-

auction drilling rate is higher in the non-disclosure auction. Thus, it is not clear which of

the two auctions gives the auctioneer a higher expected total profit.

6.1.2 Counterfactual Outcomes

We explore the impacts of a non-disclosure policy in which the winning bidder does not

receive any information on the losing bids in Figure 6.3 and Table 6.1. As our current

estimation is using only the auctions with 2 bidders, our counterfactual results here are

also for the same subsample. In this exercise, we fix the realization of the bidders’ private

signals and compute the distribution of the non-disclosure policy’s impact across all the

auctions in our data. The equilibrium bids are computed using our result in Proposition 3.

The winning bidder’s probability of drilling is straightforwardly computed from the model,

and the undiscounted royalty payment is calculated using all the information available to

the auctioneer, i.e., all the bidders’ private signals. We compare the drilling probability of

the non-disclosure policy to the expected outcome of a full disclosure policy over all the

realizations of the second-highest signals.

The changes in the probability of drilling is highlighted in panel (a). For most tracts,

a non-disclosure policy increases the likelihood of drilling. The average drilling probability

increases by 0.3 percentage point, and, for some tracts, the drilling probability increases by

more than 1.5 percentage points (recall that the average drilling rate under full disclosure

is about 20%). As a result, the royalty revenue increases by 1.5%, on average, per tract,

25



Figure 6.3: Changes in bids and drilling probabilities from full disclosure to non-disclosure
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Table 6.1: Estimated effects on revenue from full disclosure to non-disclosure

Average SD 25pct 75pct

Change in Bids -0.112 0.009 -0.050 -0.001
Pct Change in Bid -1.771 0.050 -3.010 -0.273

Change in Drilling Probability 0.003 0.0001 0.001 0.005
Pct Change in Royalty Revenue 1.499 0.040 0.271 2.643

Change in Royalty Revenue 1.555 0.134 0.032 0.699
Change in Net Revenue 1.443 0.128 0.029 0.628

which is equivalent to $1.55M per tract. Panel (b) illustrates our result in Proposition 3:

the equilibrium bids under non-disclosure is always lower than those under full disclosure.

On average, the non-disclosure bids are 1.77% lower than the full disclosure bids, which is

equivalent to $112K. Using the weights mentioned above, this is equivalent to an expected

1.01% increase in the federal government’s annual net revenue, which is equivalent to an

$80M annual increase in revenue.

To determine the magnitude of a change in the information disclosure policy relative to

other policy tools, we also conduct a counterfactual exercise in which the royalty rate is

reduced to 10%. Currently, the royalty rate is either 12.5%, 16.67%, or 18.75%, and the

average royalty rate across tracts in our sample is approximately 16%. We focus on the

royalty rate in this exercise as a useful benchmark because the royalty rate has been the

most utilized policy tool by the government to increase the exploration rate. Our estimates

show that the reduction of the royalty rate to 10% leads to an 8.09% increase in bids and
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a 0.3 percentage point increase in the probability of drilling than our full disclosure bench-

mark. This increase in the exploration rate from the royalty reduction is comparable to the

increase in the exploration rate from changing to a non-disclosure policy. However, due to

the reduction in the royalty rate, the royalty revenue is reduced by 40%.

6.2 Partial Information Revelation of Bids Ex Post

Next, instead of considering the winner of the auction either observing all the submitted bids

or not observing anything, we allow the auctioneer to commit to more general types of bid

disclosure policies. Below, we first extend our baseline model to incorporate such disclosure

policies and characterize the equilibrium bid. The counterfactual results will be included in

a future version.

Formally, we define a disclosure policy D as a double (M, µ), where M is a compact

metric space of messages, and µ : RN−1
+ → ∆ (M) is a measurable map from the set of bids

to ∆ (M), which denotes the set of Borel probability measures over M , endowed with the

weak∗ topology. Fixing a set of N bids received by the auctioneer and ordering them in

decreasing order, with b(1) ≥ b(2) ≥ · · · ≥ b(N), µ
(
·|b(2), . . . , b(N)

)
∈ ∆ (M) is the probability

measure of the messages that are sent to the winner after the auction — i.e., the bidder who

submitted b(1).

The modifications to the game are as follows: at the start of Stage 1, the auctioneer

announces the disclosure policy D = (M,µ). Subsequently, in Stage 4, instead of observing

all the losing bids, the winner now receives only a message from the auctioneer according to

µ. Upon receiving the message, the winning firm then updates its belief about the values of

the bids submitted by the other firms using Bayes rule before making its drilling decision in

the subsequent stage.

Although the disclosure policy is an endogenous choice of the auctioneer (and a point

of interest in our subsequent counterfactual exercises), our equilibrium analysis here takes

the disclosure policy as given and only considers the equilibrium of the subgame after the

disclosure policy is announced. Therefore, we do not specify the set of disclosure policies

available to the auctioneer.14

Our formulation of a disclosure rule is flexible, but there are still two substantial restric-

14Allowing the auctioneer the access to the “universal” set of disclosure policies would lead to the paradox
of specifying a “set of all sets” that the auctioneer can optimize over. More pertinently, the feasibility
of implementing any particular disclosure policy depends on the commitment power that the auctioneer
possesses, which, in turn, depends on the context. Therefore, we do not take up this issue in our general
framework.
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tions. First, the message received is independent of the highest bid. This eliminates any

strategic concerns of firms choosing their bids to influence the message that it receives upon

winning. In terms of information provision, this restriction implies that the message does

not carry any information on the winning bid, but this is without loss of generality because

the message is meant for only the winning firm, who clearly knows its own bid. Second,

the message carries only information about the values of the losing bids but not information

about the identity of the firm that places each bid — this is natural because the firms are

ex ante identical and we focus on only symmetric equilibria.

We provide a few examples of simple disclosure policies to fix idea. Let bbb denote an

arbitrary set of bids
(
b(2), . . . , b(N)

)
∈ RN−1

+ , ordered in a decreasing order as above.

“Truth-or-noise” disclosure: M = {φ} ∪ RN−1
+ ; for any bbb, µ (bbb|bbb) = λ, and µ (φ|bbb) =

1 − λ. Here, the auctioneer fully discloses all the losing bids with a probability of λ, and

does not disclose any information with the complement probability.

Disclosure of the k highest bids: M = Rk
+, where k ≤ N − 1; for any bbb,

µ
((
b(2), . . . , b(k+1)

)
|
(
b(2), . . . , b(N)

))
= 1.

Here, the auctioneer discloses only the k highest losing bids

Threshold Disclosure: M = {φ} ∪ R+ ∪ R2
+ ∪ · · · ∪ RN−1

+ ; for any bbb, if b(2) < α, then

µ (φ|bbb) = 1; if b(N) ≥ α, then µ (bbb|bbb) = 1; if b(2) ≥ α and b(N) < α, then µ
((
b(2), . . . , b(j)

)
|bbb
)

=

1, where b(j) is the lowest bid that is above α. Here, the auctioneer discloses only the bids

that are higher than α.

Disclosure of a summary statistics: M = R; for any bbb, µ (ξ (bbb) |bbb) = 1. where ξ (bbb)

is a summary statistics function, such as the mean or the median of bbb. Here, the auctioneer

discloses only a summary statistics of the losing bids.

6.2.1 Equilibrium Bids

Fix a disclosure rule D = (M, µ). Note that, besides information from the message, the

knowledge that a firm has won the auction with a bid of b also provides information that

all the other bids are lower than b, and this is potentially a piece of information that is

not revealed by the message (e.g., in the non-disclosure case). Therefore, the winning firm

28



essentially updates her belief twice — first, upon knowing that its bid is the highest, and,

second, upon receiving the message. Because the firms are Bayes-rational, the order of belief-

updating is inconsequential, and it is more instructive to consider the winning firm updating

its belief using the message first, before using the knowledge that it is the winning firm.

Accordingly, let B
(1)
i , B

(2)
i , . . . , B

(N−1)
i denote the random variables representing the bids

of all firms j 6= i, where B
(k)
i is the k-th highest bid among them. Let P Y,Z

D,β (Yi,Zi|Si;m) be

firm i’s posterior joint distribution of (Yi, Zi), conditioned on Si = s, firm i observing a mes-

sage m that is generated according to the probability measure µ
(
·|B(1)

i , B
(2)
i , . . . , B

(N−1)
i

)
,

and firm i conjecturing that every other firm bids according to an increasing function β (·).15

In addition, let P Y
D,β (Yi|Si,m) be the associated posterior distribution of Yi.

16 When firm

i further updates its belief based on the knowledge that its bid bi is the winning bid, its

posterior belief is

P Y,Z
D,β (Yi,Zi|Si;m, bi) =


PY,ZD,β (Yi,Zi|Si,m)

PYD,β(β−1(bi)|Si,m)
if Y ≤ β−1 (bi)

1 if Y > β−1 (bi)
(13)

Note that if B
(2)
i is always perfectly revealed, then P Y,Z

D,β (Yi,Zi|Si;m, bi) = P Y,Z
D,β (Yi,Zi|Si;m)

for all bi — i.e., firm i’s posterior is independent of its own bid.

Therefore, conditional on Si = s, firm i winning the auction with a bid of b and receiving

message m, firm i’s expected value of the oil/gas reserve at the end of Stage 4 is

ṼD,β (s;m, b) :=
1

P Y
D,β (β−1 (b) |s,m)

∫
z

∫ β−1(b)

0

V (s, y,z) P̄ Y,Z
D,β (dy, dz|s;m) ,

where P̄ Y,Z
D,β (·|s;m) denote the probability measure associated with the distribution P Y,Z

D,β (·|s;m, ).17

In turn, conditional on Si = s, Yi = y and firm i winning the auction with a bid of b, firm

15i.e., given D, β and Si = s, for any
(
Yi, Ẑi

)
= (ŷ, ẑ) and Borel set M ⊂M,∫

yi∈[0,s̄]

∫
zi∈[0,s̄]N−2

[∫
m∈M

PY,ZD,β (ŷ, ẑ|s,m) dµ
(
m|β (yi) , β

(
z

(2)
i

)
, . . . , β

(
z

(N)
i

))]
h (yi, zi|s) dzidyi

=

∫
yi≤ŷ

∫
zi≤ẑ

µ
(
M |β (yi) , β

(
z

(2)
i

)
, . . . , β

(
z

(N)
i

))
h (yi, zi|s) dzidyi.

16i.e., PYD,β (Yi|Si,m) = PY,ZD,β (Yi,Zi|Si;m)
∣∣∣(
Z

(2)
i ,Z

(3)
i ,...,Z

(N−1)
i

)
=(s̄,s̄,...,s̄)

.

17i.e., P̄Y,ZD,β

(
[y, y′] ,

[
z(2), z(2)′

]
, . . . ,

[
z(N−1), z(N−1)′

]
|s;m

)
= PY,ZD,β

(
y′, z(2)′ , . . . , z(N−1)|s;m

)
−

PY,ZD,β

(
y, z(2), . . . , z(N−1)′ |s;m

)
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i’s expected profit from the perspective at the start of Stage 2 is

ṽD,β (s, y; b) :=

∫
m

ψ
(
ṼD,β (s;m, b)

)
RD,β (dm|s, y) ,

where, RD,β (·|s, y) ∈ ∆ (M) denotes the ex ante probability measure over the set of messages

that firm i receives after winning the auction when conditioned on Si = s, Yi = y, and every

firm j 6= i using the bidding strategy β.18 Therefore, at the start of Stage 2, if the disclosure

policy is D, Si = s, and firm i conjectures that every other firm j 6= i bids according to β,

firm i’s expected profit from bidding b is∫ β−1(b)

0

[ṽD,β (s, y; b)− b] gY (y|s) dy. (14)

Let

V̂ ∗D,β (s, y;m) :=EPY,ZD,β (·|s,m) [V (s, Yi, Zi) |Yi ≤ y]

V̄ ∗D,β (s, y;m) :=EPY,ZD,β (·|s,m) [V (s, Yi, Zi) |Yi = y] ,

where EPY,ZD,β (·|s,m) denote the expectation operator with respect to the distribution P Y,Z
D,β (Yi, Zi|s,m).19

Let

∆∗D,β (s, y;m) := V̄ ∗D,β (s, y;m)− V̂ ∗D,β (s, y;m) ,

and let HY
D,β (Yi|Si,m) denote the reverse hazard rate associated with the distribution

P Y
D,β (Yi|Si,m).20

Proposition 4. Fix a disclosure policy D. If β (·) is an increasing and symmetric Bayes

Nash equilibrium of the auction, then β (·) satisfies

β (s) =

∫ s

0

[
v∗D,β (s′, s′) + w∗D,β (s′, s′)

]
dL (s′|s) ∀s ∈ [0, s̄] , (15)

where

v∗D,β (s, y) :=

∫
m

ψ
(
V̂ ∗D,β (s, y;m)

)
RD,β (dm|s, y) ,

18i.e., for any Borel setM ⊂M, RD,β (M |s, y) =
∫
z
µ
(
M |β (y) , β

(
z(2)
)
, . . . β

(
z(N)

))
gz
(
z(2), . . . , z(N)|s, y

)
dz

19It is useful to note that ṼD,β (s;m, b) = V̂ ∗D,β
(
s, β−1 (b) ;m

)
.

20The reversed hazard rate is the ratio of the probability density/mass function and the cumulative dis-
tribution function. We take the convention that if PYD,β (y|s,m) = 0, then HY

D,β (y|s,m) = 0.

30



w∗D,β (s, y) :=

∫ y

0

(∫
m

[
ψ′
(
V̂ ∗D,β (s, y;m)

)
HY
D,β (y|s,m) ∆∗D,β (s, y;m)

]
RD,β (dm|s, y′)

)
gY (y′|s)
gY (y|s)

dy′

Moreover, if a function β (·) satisfies Eq. (15) and v∗D,β (s, y)+w∗D,β (s, y) is increasing in both

s and y, then β (·) is an increasing and symmetric Bayes Nash equilibrium of the auction.

As observed in the non-disclosure auction previously, when there is ex post uncertainty

about the value of Yi, there is an additional incentive for firm i to bid higher. This effect

arises in Eq. (15) through the term w∗D,β. To see this, note that if P Y
D,β (Yi|s,m) is a

degenerate distribution,21 then V̂ ∗D,β (s, y;m) = V̄ ∗D,β (s, y;m) for all y, which implies that

∆∗D,β (s, y;m) = 0. If this holds for all m — i.e., there is never uncertainty about Yi after

every message — then the term w∗D,β (s, y) is always zero.

7 Conclusion

In this paper, we empirically study how information on the losing bids should be strategi-

cally revealed to the winning bidder in the context of the US OCS auctions and quantify

the potential revenue gain from such an information mechanism. In an OCS auction, the

auctioneer (the government) auctions off the right to extract oil and gas on federal offshore

tracts via a first-price sealed-bid auction. In addition to receiving the winning cash bid from

the auction, the government also charges a royalty on the tract’s production value. The

winning bidder decides whether to explore the tract, which is a costly decision. Unexplored

tracts do not produce oil and gas; therefore, the winning bidder’s post-auction action also

affects the auctioneer’s payoff.

Two features in this setting suggest the importance of considering a bid disclosure policy

as part of the auction’s design. First, the low exploratory rate of these leases has been

an ongoing issue that adversely affects the federal’s government revenue from these leases.

Second, the current policy allows the winning bidder to observe all the losing bids. Our

reduced-form analysis offers encouraging evidence highlighting the significance of rival firms’

private information, inferred by the winning bidder through the rivals’ bids, on the winning

bidder’s exploration decision. According to our analysis, a 1% increase in the second-highest

bid leads to a 3.9 percentage point increase in the probability of exploratory drilling. As a

comparison, a 1% increase in the winning bid leads to only a 4.5 percentage point increase

in the probability of exploratory drilling, thus implying that the winning firm’s exploration

21i.e., there exists ŷ such that PYD,β (ŷ|s,m) = 1 and PYD,β (y|s,m) = 0 for all y < ŷ.
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decision is similarly affected by the information of its rival firms as by its own private

information.

We first construct and estimate a model of first-price sealed-bid pure common value

auction in which the winner also chooses whether to explore the tract after the auction at

a cost after observing all the losing bids. We show that, by combining the bid data, the

variation in the exploration rate across auctions, and an exploration cost shifter instrument,

the firms’ posterior beliefs of the production value of the tract conditional on all the bidders’

private signals are nonparametrically identified.

We then extend the model to the case in which the auctioneer can use an alternative bid

disclosure policy, for example, not disclosing any losing bids (non-disclosure) or disclosing

only summary statistics of the losing bids. We provide a characterization of the equilibrium

bidding strategy for a large class of disclosure policies of the losing bids. Our counterfac-

tual analysis reveals that an alternative bid disclosure policy can significantly impact the

government’s revenue. For example, taking into account the policy’s effect on the equilib-

rium bids, a complete non-disclosure policy increases the government’s annual revenue by

approximately $80 million.
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A Proofs for Section 4 and Section 6

As the full-disclosure and non-disclosure auctions are special cases of disclosure policies, we

can use Proposition 4 to derive their equilibria. Therefore, we first provide the proof of

Proposition 4 before proving Propositions 1 and 3.

A.1 Proof of Proposition 4

Proof. Fix any strictly increasing β (·) and suppose that all firms j 6= i play according to β.

Firm i’s expected profit from bidding b when Si = s is in Eq. (14). Differentiating Eq. (14)

with respect to b, we get the first-order necessary condition (FOC) of

0 =−GY
(
β−1 (b) |s

)
+

1

β′ (β−1 (b))

[
ṽD,β

(
s, β−1 (b) ; b

)
− b
]
gY
(
β−1 (b) |s

)
+

∫ β−1(b)

0

∂ṽD,β (s, y; b)

∂b
gY (y|s) dy. (16)

Note that

ṽD,β
(
s, β−1 (b) ; b

)
=

∫
m

ψ
(
V̂ ∗D,β

(
s, β−1 (b) ;m

))
RD,β

(
dm|s, β−1 (b)

)
= v∗D,β

(
s, β−1 (b)

)
= v∗D,β

(
s, β−1 (b)

)
and

∂ṽD,β (s, y; b)

∂b
=

∫
m

ψ′
(
V̂ ∗D,β

(
s, β−1 (b) ;m

)) [∂ṼD,β (s;m, b)

∂b

]
dRD,β (m|s, y)

where

∂ṼD,β (s;m, b)

∂b

=

(
1

β′ (β−1 (b))

)[∫
z
V (s, β−1 (b) , z) P̄ Y,Z

D,β (β−1 (b) , dz|s;m)

P Y
D,β (β−1 (b) |s,m)

−HY
D,β

(
β−1 (bi) |s,m

)
ṼD,β (s;m, b)

]

=

(
1

β′ (β−1 (b))

)
HY
D,β

(
β−1 (bi) |s,m

) [
V̄ ∗D,β

(
s, β−1 (b) ;m

)
− V̂ ∗D,β

(
s, β−1 (b) ;m

)]
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Therefore,
∫ β−1(b)

0

∂ṽD,β(s,y;b)

∂b
gY (y|s) dy =

gY (β−1(b)|s)
β′(β−1(b))

w∗D,β (s, β−1 (b)) . In turn, FOC (16) be-

comes

0 = −GY (β−1 (b) |s) +
gY (β−1(b)|s)
β′(β−1(b))

[
v∗D,β (s, β−1 (b)) + w∗D,β (s, y)− b

]
(17)

At a symmetric equilibrium in which every firm plays β, FOC (17) must be satisfied at

b = β (s), which implies that

0 = −GY (s|s) + gY (s|s)
β′(s)

[
v∗D,β (s, s) + w∗D,β (s, s)− β (s)

]
⇐⇒ β′ (s) + β (s) gY (s|s)

GY (s|s) =
[
v∗D,β (s, s) + w∗D,β (s, s)

] gY (s|s)
GY (s|s) (18)

Eq. (18) is a linear ordinary differential equation (ODE). It is well-know that the solution

to a linear ODE of the form β′ (s) + β (s) ξ (s) = γ (s) ξ (s) is

θ (s) β (s) = θ (0) β (0) +

∫ s

0

γ (s′) ξ (s′) θ (s′) ds′,

where θ (s) = exp
(∫ s

0
ξ (s′) ds′

)
. Using the boundary condition of β (0) = 0, we thus have

β (s) =

∫ s

0

[
v∗D,β (s′, s′) + w∗D,β (s′, s′)

] gY (s′|s′)
GY (s′|s′)

exp
(∫ s′

0
gY (t|t)
GY (t|t)dt

)
exp

(∫ s
0
gY (t|t)
GY (t|t)dt

)
 ds′

=

∫ s

0

[
v∗D,β (s′, s′) + w∗D,β (s′, s′)

]( gY (s′|s′)
GY (s′|s′)

exp

(
−
∫ s

s′

gY (t|t)
GY (t|t)

dt

))
ds′

=

∫ s

0

[
v∗D,β (s′, s′) + w∗D,β (s′, s′)

]
dL (s′|s) . (19)

This proves the first (necessity) part of the proposition.

Next, to prove the sufficiency part, suppose that v∗D,β (s′, s′) +w∗D,β (s′, s′) is also increas-

ing. Note that for any s, L (0|s) = 0, L (s|s) = 1 and L (·|s) is increasing; therefore, L (·|s)
is a CDF with a support on [0, s]. Moreover, if ŝ > s, then L (y|ŝ) < L (y|s) for all y —

i.e., first-order stochastic dominance. In turn, because the integrand term in Eq. (19), β (s)

is (indeed) an increasing function. to show that bidding b = β (s) is indeed firm i’s best

response against all other firms playing β, first note that bidding above β (s̄) is worse than

bidding β (s); therefore, firm i’s best response (if it exists) is a bid in [β (0) , β (s̄)]. Suppose
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that firm i bids β (s̃), where s̃ 6= s. Its expected profit (using Eq. (14)) is

U (s̃|s) :=

∫ s̃

0

[ṽD,β (s, y; β (s̃))− β (s̃)] gY (y|s) dy.

Let

∆ (s̃|s) =
∂U (s̃|s)
∂s̃

= −GY (s̃|s) β′ (s̃) + [ṽD,β (s, s̃; β (s̃))− β (s̃)] gY (s̃|s) + β′ (s̃)

∫ s̃

0

∂ṽD,β (s, y; β (s̃))

∂b
gY (y|s) dy

= GY (s̃|s)

([
v∗D,β (s, s̃) + wD,β (s, s̃)− β (s̃)

] gY (s̃|s)
GY (s̃|s)

− β′ (s̃)

)
.

From FOC (18), ∆ (s̃|s̃) = 0. If s̃ > s, then v∗D,β (s, s̃) +wD,β (s, s̃) < v∗D,β (s̃, s̃) +wD,β (s̃, s̃);

moreover, because the signals are affiliated, gY (s̃|s)
GY (s̃|s) <

gY (s̃|s̃)
GY (s̃|s̃) . Together with ∆ (s̃|s̃) = 0, we

have ∆ (s̃|s) < 0. On the other hand, if s̃ < s, then v∗D,β (s, s̃) + wD,β (s, s̃) > v∗D,β (s̃, s̃) +

wD,β (s̃, s̃) and gY (s̃|s)
GY (s̃|s) >

gY (s̃|s̃)
GY (s̃|s̃) , which implies that ∆ (s̃|s) > 0. Therefore, bidding β (s) is

firm i’s best response.

A.2 Proof of Proposition 1

Proof. The full-disclosure auction is equivalent to an auction with a disclosure policy ofM =

RN−1
+ and µ (bbb|bbb) = 1 for all b. Under this disclosure policy, for any m =

(
b(2), . . . , b(N)

)
, for

any β, the posterior belief P Y,Z
D,β (Yi,Zi|Si,m) is always a Dirac measure on

(
Yi, Z

(2)
i , . . . , Z

(N−1)
i

)
=(

β−1
(
b(2)
)
, β−1

(
b(3)
)
, . . . , β−1

(
b(N−1)

))
. This implies that

V̂ ∗D,β
(
s, y;

(
b(2), . . . , b(N)

))
= V

(
s, y, β−1

(
b(3)
)
, . . . , β−1

(
b(N−1)

))
and V̄ ∗D,β (s, y;m) = V̂ ∗D,β (s, y;m). Therefore, w∗D,β is always the zero function. Next, abusing

notation slightly, let RD,β (·|s, y) denote the probability distribution (instead of measure)

over the set of messages. For any m in which b(2) = β (y), RD,β

((
b(2), b(3), . . . , b(N)

)
|s, y

)
=

GZ
(
Z

(2)
i = β−1

(
b(3)
)
, . . . , Z

(N−1)
i = β−1

(
b(N)

)
|s, y

)
. Therefore,

v∗D,β (s, y)

=

∫
β−1(b(3)),...,β−1(b(N−1))

ψ
(
V
(
s, y, β−1

(
b(3)
)
, . . . , β−1

(
b(N−1)

)))
dGZ

(
β−1

(
b(3)
)
, . . . , β−1

(
b(N)

)
|s, y

)
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=v (s, y) ,

as defined in Eq. (3). Therefore, by Proposition 4, if there exists an increasing and symmetric

equilibrium, then it must be βFD (·). Moreover, if v (s, y) is strictly increasing in both

its arguments, then βFD (·) is indeed an equilibrium, and this holds because V is strictly

increasing and the signals are affiliated.

A.3 Proof of Proposition 3

Proof. The non-disclosure auction is equivalent to an auction with a disclosure policy ofM =

{φ} and µ (φ|bbb) = 1 for all b. This implies that, for any β, RD,β (·|s, y) is a Dirac measure

on φ, and P Y,Z
D,β (Yi,Zi|Si,m = φ) = GY,Z (Yi,Zi|Si). Therefore, for all β, V̂ ∗D,β (s, y;φ) =

V̂0 (s, y) (as defined in Eq. (9)), and V̄ ∗D,β (s, y;φ) = V̄0 (s, y) (as defined in Eq. (10)). In

turn,

v∗D,β (s, y) := ψ
(
V̂0 (s, y)

)
,

and, because HY
D,β (y|s, φ) = gY (y|s)

GY (y|s) ,

w∗D,β (s, y) =

∫ y

0

ψ′
(
V̂0 (s, y)

) gY (y|s)
GY (y|s)

[
V̄0 (s, y)− V̂0 (s, y)

] gY (y′|s)
gY (y|s)

dy′.

=ψ′
(
V̂0 (s, y)

) 1

GY (y|s)

[
V̄0 (s, y)− V̂0 (s, y)

] ∫ y

0

gY (y′|s) dy′

=ψ′
(
V̂0 (s, y)

) [
V̄0 (s, y)− V̂0 (s, y)

]
Therefore, by Proposition 4, if there exists an increasing and symmetric equilibrium, then

it must be βND (·). Moreover, if ψ
(
V̂0 (s, y)

)
+ψ′

(
V̂0 (s, y)

) [
V̄0 (s, y)− V̂0 (s, y)

]
is strictly

increasing in both its arguments, then βND (·) is indeed an equilibrium; as before, this holds

because V is strictly increasing and the signals are affiliated.

Next, to show that βND (s) < βFD (s), note that

ψ′
(
V̂0 (s′, s′)

) [
V̄0 (s′, s′)− V̂0 (s′, s′)

]
=

∫ (1−r)V̂0(s′,s′)

0

(1− r)
[
V̄0 (s′, s′)− V̂0 (s′, s′)

]
dFC (c)

=

∫ (1−r)V̂0(s′,s′)

0

(
(1− r) V̄0 (s′, s′)− c

)
dFC (c)−

∫ (1−r)V̂0(s′,s′)

0

(
(1− r) V̂0 (s′, s′)− c

)
dFC (c)

<ψ
(
V̄0 (s′, s′)

)
− ψ

(
V̂0 (s′, s′)

)
36



Therefore,

ψ
(
V̂0 (s′, s′)

)
+ ψ′

(
V̂0 (s′, s′)

) [
V̄0 (s′, s′)− V̂0 (s′, s′)

]
<ψ

(
V̄0 (s′, s′)

)
=ψ (E [V (Si, Yi,Zi) |Si = s′, Yi = s′])

<E [ψ (V (Si, Yi,Zi)) |Si = s′, Yi = s′]

=v (s′, s′) ,

where the inequality in the third line follows from ψ being convex. Therefore, βFD (s) <

βND (s). The last point that there exist y and z such that V̂0 (s, s) > V (s, y,z) holds

trivially.

B Proof for Section 5

B.1 Proof of Proposition 2

Proof. All of the objects to be identified in this proof are conditional on FQ and N . For

notational convenience, we drop |FQ, N , and the tract’s identifier from the conditional

distribution.

Conditional on I, firm i’s profit maximization problem if the firm bids b is

arg max
b

∫ β−1(b)

0

[v(s, y|I)− b] dGY (y|s)

=⇒ v(s, s|I) = b+
G̃(b|b, I)

g̃(b|b, I)
(20)

where G̃(m|b, I) is the conditional distribution of the second-highest bid M when M = m

conditional on the highest bid being B = b. The density of this distribution is g̃(m|b, I).

Let FB denote the marginal distribution of firm i’s bid Bi. FB is the same for all the

firms because the firms are symmetric. Hence, firm i’s private signal is Si = FB(Bi). Eq.

(20) becomes

v(s, s|I) = FB−1

(s) +
G̃(FB−1

(s)|FB−1
(s), I)

g̃(FB−1(s)|FB−1(s), I)

Let Ω (s, I) denote the right-hand side of the above equation. Ω(·) is identified from the
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data.

Let ∆(sss, I) be the probability that exploration occurs conditional on I and the firms’

private signals SSS = sss. ∆(·) is also identified from the data.

Let φ(I) = ζ(I)
δ(1−r)−κ(I)

, the winner’s exploration rate conditional on all the firms’ signals

SSS = sss and the cost shifter I is

∆(sss, I) = FC0

(
V (sss)

φ(I)

)
(21)

Conditional on Si = s, Yi = s, using the definition of v(s, s),

Ω (s, I) =


ζ(I)
φ(I)

∫ s ∫ z
∆ (s, s, z̃zz, I) ∂

∂z̃zz
V (s, s, z̃zz) dz̃zz dGZZZ(zzz|s, s) If N > 2

ζ(I)
φ(I)

∫ s
∆ (s′, s′, I) ∂

∂s′
V (s′, s′) ds′ If N = 2

(22)

We prove by contradiction. Suppose that there exists
{
Ṽ (·), ζ̃(·), F̃C0

, φ̃(I), δ̃
}

and{
V (·), ζ(·), FC0

, φ(I), δ
}

that both satisfy Eq. (21) and Eq. (22). Since FC0
and F̃C0

are both strictly increasing and differentiable, for any i ∈ {1, .., N}

∂
∂si

log Ṽ (sss)
∂
∂si

log V (sss)
=

∂
∂I

log ζ̃(I)
∂
∂I

log g(I)
∀sss, I, i = 1, 2, ..., N

Therefore, there exists two constants k0, k1 > 0 such that

φ̃(I) = k1φ(I)k0

Ṽ (sss) = k1V (sss)k0

We first prove k0 = 1 by contradiction. WLOG, assume that k0 > 1.

We consider two cases:

Case 1: N > 2. From Eq (22), conditional on Si = s

0 =

∫ s ∫ z

∆ (s, s, z̃zz, I)

[
ζ(I)

φ(I)

∂

∂z̃zz
V (s, s, z̃zz)− ζ̃(I)

φ̃(I)
k1
∂

∂z̃zz
V k0(s, s, z̃zz)

]
dz̃zz dGZZZ(zzz|s, s)

=

∫ s ∫ z

∆ (s, s, z̃zz, I)

[
∂

∂z̃zz
V (s, s, z̃zz)

(
ζ(I)

φ(I)
− ζ̃(I)

φ̃(I)
k1k0V

k0−1(s, s, z̃zz)

)]
dz̃zz dGZZZ(zzz|s, s)
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≥
∫ s ∫ z

∆ (s, s, z̃zz, I)

[
∂

∂z̃zz
V (s, s, z̃zz)

(
φ(I)

ζ(I)
− k1k0V

k0−1(s, s, z̃zz)

)]
dz̃zz dGzzz(zzz|s, s) (23)

where the last inequality is due to φ̃(I)

ζ̃(I)
≤ 1. Due to the affiliation property of SSS, ∂

∂z̃zz
V (s, s, z̃zz) >

0. Since V (000) = 0, for Si = s sufficiently small, the right hand side of Eq. (23) is positive,

which is a contradiction.

Case 2: N = 2. From Eq (22), conditional on Si = s

0 =

∫ s

∆ (s′, s′, I)

(
ζ(I)

φ(I)

∂

∂s′
V (s′, s′)− ζ̃(I)

φ̃(I)
k1

∂

∂s′
V k0(s′, s′)

)
ds′ (24)

Similar to the N > 2 case, for Si = s sufficiently small, the right hand side of Eq. (24) is

positive, which is a contradiction.

Therefore, k0 = 1. Since E(Q) = EV (SSS), k1 = 1. Combining with Eq. (22), this implies

ζ(I) = ζ̃(I). Therefore,
{
V (·), ζ(·), φ(·), FC0

}
are identified. Since we have variation in r, δ

and κ(·) are also identified.

C More Details on Estimation

C.1 Estimate oil capacity of productive wells that are still in pro-

duction

We assume that once leases begin production, the lease’ oil and gas quantities are perfectly

observed by all potential bidders. For leases that have expired —which we term ’completed’

leases—the oil and gas quantities are the total amount of oil/gas the lease has produced. For

leases that have not expired by the end date of our data set, we use the following regression

on completed lease to predict the total amount of oil and lease in the tract:

log

(
∞∑
τ=T

Qi,T
t

)
= β0 +

T∑
j=1

βjQ
i,T−j
t + αXt + γT + εit (25)

where i ∈ {o, g}, and Qi,τ
t is the total amount of reserve type i produced by tract t after τ

months of production, and Xt are tract characteristics. We allow the regression coefficients

{β0, βj,j=1,2,...,T , α, γ} to be dependent on the range of T. In our benchmark estimates, T = 2

years, and we estimate regressions separately for T < 5 years, T < 10 years, ..., up to 30
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years. Table C.1 summarizes the number of completed and uncompleted tracts in our data,

and figure C.1 shows the model fit of (25).

Table C.1: Summary of tract types

Tract type N obs Average Production Duration (in month)

Uncompleted oil tracts with sufficient data 770 335.4
Completed oil tracts 691 157.6

Uncompleted oil tracts without sufficient data 56 9
Uncompleted gas tracts with sufficient data 724 335.4

Completed gas tracts 2786 147.9
Uncompleted gas tracts without sufficient data 40 10.7

Figure C.1: Oil and gas production model fit

D Tables and Figures
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Table D.1: Estimated parameters of the priors

βo0 βo1 φo1 ρo1 (σo1)2 ρo0 (σo0)2

Estimate -6.560 14.799 0.385 2.412 1.923 2.080 3.108
SE 1.124 0.873 0.016 0.874 0.370 0.432 0.505

βg0 βg1 φg1 ρg1 (σg1)2 ρg0 (σg0)2

Estimate -5.437 17.555 0.659 0.440 0.891 2.284 3.337
SE 1.074 0.113 0.016 0.084 0.060 0.391 0.468

Table D.2: Summary statistics of all available auctions and production data

Statistic N Mean St. Dev. Max Min

First Bid 4,006 3,773,542.000 9,583,399.000 157,111,000.000 10,100.000
Second Bid 4,006 1,555,405.000 5,015,138.000 84,391,221.000 4,235.000
N Bids 4,006 2.730 1.298 13.000 2.000
Oil Production 4,119 4,702,255.000 19,445,629.000 581,873,368.000 0.000
Gas Production 4,117 38,546,829.000 80,892,812.000 1,100,616,644.000 0.000
Explored 30,757 0.282 0.450 1 0

Table D.3: Summary statistics of rig contracts

Statistic Mean N St. Dev.

Contract Duration (Days) 143.53 4,649 275.47
Daily Rate 90,821.19 4,649 113,670.80
Total Rig Cost 27,551,327.00 4,649 121,521,975.00
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