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Abstract

Assessing sampling uncertainty in extremum estimation can be challenging when the
asymptotic variance is not analytically tractable. Bootstrap inference offers a feasible
solution but can be computationally costly especially when the model is complex. This
paper uses iterates of a specially designed stochastic optimization algorithm as draws
from which both point estimates and bootstrap standard errors can be computed in
a single run. The draws are generated by the gradient and Hessian computed from
batches of data that are resampled at each iteration. We show that these draws yield
consistent estimates and asymptotically valid frequentist inference for a large class
of regular problems. The algorithm provides accurate standard errors in simulation
examples and empirical applications at low computational costs. The draws from the
algorithm also provide a convenient way to detect data irregularities.
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1 Introduction

Many questions of economic interest can be expressed as non-linear functions of unknown pa-
rameters θ that need to be estimated from a sample of data of size n. The typical econometric
routine is to first obtain a consistent estimate θ̂n of the true value θ0 by minimizing an objec-
tive function Qn(θ), after which its sampling uncertainty is assessed. Though gradient-free
optimizers provide point estimates, its asymptotic variance is often analytically intractable.
One remedy is to use bootstrap standard errors, but this requires solving the minimization
problem each time the data is resampled, and for complex models, this is no simple task.
There is a long-standing interest in finding ‘short-cuts’ that can relieve the computation
burden without sacrificing too much accuracy. Examples include Davidson and MacKinnon
(1999), Andrews (2002), Kline and Santos (2012), Armstrong et al. (2014) and more re-
cently Honoré and Hu (2017). These methods provide standard errors by taking a converged
estimate θ̂n as given. As such, estimation always precedes inference.

This paper proposes a resampling scheme that will deliver both the point estimates of θ
and its standard errors within the same optimization framework. Since the standard errors
are obtained as a by-product of point estimation, we refer to the procedure as a ‘free-lunch
bootstrap’.1 The free-lunch is made possible by a specially designed stochastic optimization
algorithm that resamples batches of data of size m ≤ n. Given an initial guess θ0, one
updates θb for b ≥ 0 to θb+1 using the gradient, the inverse Hessian as conditioning matrix,
and a suitably chosen learning rate. We first show that the average over B draws of θb is
equivalent to the mode θ̂n obtained by classical optimization up to order 1

m
. We then show

that the distribution of
√
m(θb− θ̂n) conditional on the original sample of data is first-order

equivalent to that of
√
n(θ̂n−θ0) upon rescaling, making it a bootstrap distribution. Because

the conditioning matrix is the inverse Hessian, the procedure is a resampled Newton-Raphson
(rnr) algorithm. For other conditioning matrices, the draws from resampling still produce
a consistent estimate but cannot be used for inference.

The main appeal of the proposed methodology is its simplicity. If the optimization prob-
lem can be solved by our stochastic optimizer, inference can be made immediately without
further computations. Natural applications include two-step estimation when the parameters
in the two steps are functionally dependent in a complicated way, as well as minimum dis-
tance estimation that compares the empirical moments with the model moments expressed

1In optimization, the no-free lunch theorem of Wolpert and Macready (1997) states that, when averaged
over all problems, the computation cost of finding a solution is the same across methods. We use the term
to refer to the ability to compute the quantities for inference when the estimator is constructed.
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as a function of the parameters. When such a mapping cannot be expressed in closed-form,
simulation estimation makes progress by using Monte-Carlo methods to approximate the
binding function, but computing standard errors of the simulation-based estimates remains
a daunting task. Our algorithm provides an automated solution to compute standard er-
rors and removes simulation noise, resulting in more accurate estimates. The algorithm also
provides a convenient way to compute clustered standard errors and model diagnostics.

As compared to other stochastic optimization algorithms, we use a learning rate that
is fixed rather than vanishing, and though a small m is desirable from a pure computation
perspective, valid inference necessitates that m cannot be too small. As compared to con-
ventional bootstrap methods, the simultaneous nature of estimation and inference means
that a preliminary θ̂n is not needed for resampling. Though θb is a Markov chain, no prior
distribution is required, nor are Bayesian computation tools employed. In simulated exam-
ples and applications, our bootstrap standard errors match up well with the asymptotic and
bootstrap analogs, but at significantly lower computational costs.

The plan of the paper is as follows. Section 2 begins with a review of classical and
stochastic optimization. The proposed free-lunch algorithm is presented in Section 3 and
its relation to other resampling procedures is explained. The properties of the draws from
the algorithm are derived in Section 4. Simulated and empirical examples are presented in
Section 5. Section 6 extends the main results to simulation-based estimation. Appendix
A provides derivations of the main results. An on-line supplement2 provides the r code to
implement one of the applications considered, additional results with details for replications,
as well as an analytical example for Section 6.

2 Review of the Related Literature

Consider minimization of the objective function Qn(θ) with respect to θ whose true value is
θ0. The sample gradient and Hessian of Qn(θ) are defined respectively by

Gn(θ) = ∇Qn(θ;x) =
1

n

n∑
i=1

∇Qn(θ;xi)

Hn(θ) = ∇2Qn(θ;x) =
1

n

n∑
i=1

∇2Qn(θ;xi).

The necessary conditions for a local minimum are ‖Gn(θ̂n)‖ = 0 and Hn(θ̂n) positive semi-
definite. The sufficient conditions are ‖Gn(θ̂n)‖ = 0 and Hn(θ̂n) positive definite. To find

2The file is available for download at www.columbia.edu/~sn2294/papers/freelunch-supp.pdf.
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the optimal solution, a generic rule for updating from the current estimate θk is

θk+1 = θk − γkZn(θk)

where γk is the step size and Zn = ∂θk+1

∂γk
is the direction of change.

Gradient based methods specify Zn(θk) = Pn(θk)Gn(θk) where Pn(θn) is a conditioning
matrix. The updating rule then becomes

θk+1 ≡ θk − γkPn(θk)Gn(θk). (1)

The method of gradient descent (gd) (also known as steepest descent) sets Pn = Id. Since
gd does not involve the Hessian, it is a first order method and is less costly. Convergence of θ̂k
to the minimizer θ̂n is linear under certain conditions,3 but the rate depends on Id−γHn(θk)

being in the restricted region of (−1, 1), and can be slow when the ratio of the maximum to
the minimum eigenvalue ofHn is large. The Newton-Raphson algorithm puts Pn = Hn(θk)

−1.
It is a second-order method since it involves the Hessian matrix. When γk = 1, the algorithm
converges quadratically if Qn satisfies certain conditions. A drawback of Newton’s algorithm
is that it requires computation of the inverse of the Hessian. When strong convexity fails,
the Hessian could be non-positive definite for θ away from the minimum. In such cases,
it is not uncommon to replace the Hessian by Hn(θk) + c · Id for some c > 0, or specify
Pn = (Hn(θk)

′Hn(θk))
1/2 to restore positive definiteness around saddle-points, see Nocedal

and Wright (2006, Chapter 3.4). Quasi-Newton methods bypass direct computation of the
Hessian or its inverse, but analytical convergence results are more difficult to obtain. We
focus our theoretical analysis on gradient descent and Newton-Raphson based algorithms
but will consider quasi-Newton methods in some simulations.

2.1 Stochastic Optimization

Stochastic optimization finds the optima in noisy observations using carefully designed re-
cursive algorithms. The idea can be traced to the theory of stochastic approximation when
the goal is to minimize some function Q(θ) with gradient G(θ), which is equivalent to the
root-finding problem G(θ) = 0 whose the true value is θ0. A classical optimizer would per-
form θk+1 = θk − γkG(θk). Robbins and Monro (1951) considers the situation when we only

3In statistical computing, the convergence of θk to θ̂n is said to be linear if ‖θk+1− θ̂n‖/‖θk− θ̂n‖q < r for
some r ∈ (0, 1) if q = 1 and quadratic if q = 2. Convergence is superlinear if limk→∞ ‖θk+1− θ̂n‖/‖θk− θ̂n‖ =
0. See Boyd and Vanderberghe (2004) Section 9.3.1 for linear convergence of gradient methods, and Nocedal
and Wright (2006, Theorem 3.5) for quadratic convergence of Newton’s method when γ = 1 or γk → 1 at an
appropriate rate. ‘Damped Newton’ updating with γk ∈ (0, 1) has a linear convergence rate, see Boyd and
Vanderberghe (2004) Section 9.5.3 and Nesterov (2018) Section 1.2.4.
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observe G(θk) + ek with E(ek) = 0 and suggests to update according to

θk+1 = θk − γk(G(θk) + ek).

Robbins and Monro (1951) proved that θk
as−→θ0 for G non-decreasing with step size sequence

γk ≥ 0 satisfying

(i)
∞∑
k=1

γk = +∞, (ii)
∞∑
k=1

γ2
k < +∞. (2)

The first condition ensures that all possible solutions will be reached with high probabil-
ity regardless of the starting value, while the second ensures convergence to the true value.
Building on the Robbins-Monro algorithm, the Kiefer-Wolfowitz algorithm uses a finite dif-

ference approximation G(θk) ≈ Gn(θk) = 1
2εk

[
Qn(θk + εk) − Qn(θk − εk)

]
. This is often

recognized as the first implementation of stochastic gradient descent. Kiefer and Wolfowitz
(1952) proves convergence of θk to the maxiumum likelihood estimate θ̂n assuming that the
likelihood Qn is convex, εk goes to zero, and that the two conditions stated in (2) hold.

Modern stochastic gradient descent updates according to

θk+1 = θk − γkGm(θk)

where Gm(θk) = 1
m

∑m
i=1G(θk;xi) is an estimate of G(θ). It can be seen as Monte-Carlo

based since the m observations used to compute Gm(θk) are usually chosen from {1, . . . , n}
randomly. Though m = 1 is computationally inexpensive and is a popular choice, a small
γk is often needed to compensate for the higher variation. A common rule is to choose
γk = γk−δ, where δ ∈ (1/2, 1] and γ > 0 are the choice parameters. Depending on δ,
convergence as measured by E(‖θk − θ0‖2) can occur at a 1/k rate or slower. To reduce
sensitivity to the tuning parameters, Ruppert (1988) and Polyak and Juditsky (1992) propose
to accelerate convergence using what is now known as Polyak-Ruppert averaging: θk =
1
k

∑k
i=1 θi. Importantly, θk converges at the fastest 1/k rate for all choices of δ ∈ (1/2, 1].

Moulines and Bach (2011) shows that the improvements hold even for a finite number of
iterations k. We will return to Polyak-Ruppert averaging below.

Stochastic optimization presents an interesting alternative to classical optimization as it
approximates the gradient on minibatches of the original data. This is particularly helpful in
large scale learning problems such Lasso, support-vector machines and K-means clustering
when non-linear optimization can be challenging. Improvements to sgd with Pm = Id include
momentum (Polyak, 1964) and accelerated gradient (Nesterov, 1983) methods. Besides its
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computational appeal, stochastic optimization can improve upon its classical counterpart in
non-convex settings.4

A variation of sgd, known as Stochastic gradient Langevin dynamics (sgld) incorporates
Langevin dynamics into a Bayesian sampler. As will be discussed further below, the update
is based on the gradient of the posterior distribution. Of note now is that sgld has two types
of noises: an injected noise, and the stochastic gradient noise based on m� n observations.
They play different roles in the algorithm. In the early phase of sgld, the stochastic gradient
dominates and the algorithm performs optimization. In the second phase, the injected noise
dominates and the algorithm behaves like a posterior sampler. The algorithm seamlessly
switches from one phase to another for an appropriate choice of the learning rate.

Unlike classical optimization, stochastic Newton-Raphson with the inverse HessianHm(θ)

as conditioning matrix is not popular because the Hessian is often noisy and near singular for
m small, rendering the algorithm unstable. We will show that using a variation of stochastic
Newton-Raphson with larger batches of data can produce draws that not only provide an
accurate estimate of θ0 but also yields frequentist assessment of sampling uncertainty. It thus
integrates numerical optimization with statistical inference. In contrast, other conditioning
matrices will yield consistent estimates but would not provide valid inference in our setup.

3 Extremum Estimation and Inference by Resampling

Consider extremum estimation of parameters θ ∈ Θ ⊂ Rd from data x = (x1, . . . , xn). Let θ0

be the minimizer of a twice differentiable population objective function Q(θ) whose sample
analog is Qn(θ) ≡ Qn(θ;x). The sample extremum estimator is

θ̂n = argminθ∈ΘQn(θ).

For likelihood estimation, Qn(θ) = −
∑n

i=1 `i(θ) where `i is the likelihood of θ at observation
xi. For least squares estimation, Qn(θ) is the sum of squared residuals

∑n
i=1 e

2
i (θ). For GMM

estimate with positive weighting matrix Wn, Qn(θ) = gn(θ)′Wngn(θ) where E[gi(θ
0)] = 0.

Under regularity conditions stated in Theorem 2.1 of Newey and McFadden (1994) θ̂n is
consistent for θ0. If, in addition, the assumptions in Theorem 3.1 of Newey and McFadden

4See Goodfellow et al. (2016, Chapter 8) for an overview of sgd. Ge et al. (2015) shows that noisy
gradient descent can escape all saddle points in polynomial time under a strict saddle property whereas
classical gradient methods converge at saddle points where the gradient is zero. Jin et al. (2017) shows that
the dimension of θ has a negligible effect on the number of iterations needed to escape saddle points, making
it an effective solution even in large optimization problems.
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(1994) hold, then θ̂n is also
√
n-asymptotically normal:

√
n(V0)−1/2(θ̂n − θ0)

d−→N(0, Id)

where V0 = [H(θ0)]−1var(
√
nGn(θ0))[H(θ0)]−1. Finite sample inference is typically based

on an estimate of V0 which can be analytically intractable or costly to compute on the full
sample. It is not uncommon to resort to bootstrap inference. We consider the m out of n
bootstrap with m→∞,m/n→ c ∈ [0, 1] and samples (x

(b)
1 , . . . , x

(b)
m ) with replacement from

the data (x1, . . . , xn) for b = 1, . . . , B and solve B minimization problems:

θ̂(b)
m = argminθ∈ΘQ

(b)
m (θ),

where the resampled objective Q(b)
m (θ) = Q

(b)
m (θ, x(b)) is computed over the sample x(b).

Let E? and var? denote the bootstrap expectation and variance which are taken con-
ditional on the sample data (x1, . . . , xn), and d?→ denotes the convergence in distribution
conditional on the data. Since we only consider correctly specified regular estimators, the
desired convergence is to a Gaussian limit. The m out of n bootstrap can allow for different
sampling schemes. Assuming that the resampling scheme is chosen to reflect the dependence
structure of the data, it holds in a variety of settings that5

√
m(Vm)−1/2

(
θ̂(b)
m − θ̂n

)
d?→ N (0, Id) ,

where Vm = [Hn(θ̂n)]−1var?(
√
mG

(b)
m (θ̂n))[Hn(θ̂n)]−1 depends on the inverse Hessian as well

as the variance of the resampled score. The result implies that the resampled distribution
of θ̂(b)

m can be used to approximate the sampling distribution of θ̂n.
An m out of n bootstrap with m < n uses smaller samples and performs as well as a n

out of n bootstrap in simulations while requiring similar or weaker conditions, (Bickel et al.,
2012). Nonetheless, it still makes multiple calls to a classical optimizer. As will be seen
below, our proposed algorithm only requires one call to the optimizer.

We propose the following two algorithms and use ‘b’ to index the iterates of the algorithm.
In this notation, G(b+1)

m (θb) is the gradient computed on the (b + 1)-th batch of resampled
data of size m and evaluated at θb, the parameter value in the previous draw, and H(b+1)

m (θb)

is similarly defined.
5For two-way clustering, a recommended procedure is to resample over one cluster dimension and reweigh

along the other (Roodman et al., 2019). See also Cameron et al. (2011) on multiway clustering. For time-
series data, block resampling is needed to preserve the dependence structure. For correctly specified GMM
models the bootstrap described above is valid (Hahn, 1996).
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Algorithm 1 Estimation by Resampling
Input: (a) an initial guess θ0, (b) a bootstrap sample size B and a burn-in period burn,
(c) a batch size m ≤ n, (d) a fixed learning rate γ ∈ (0, 1], (e) a conditioning matrix Pb
Burn-in and Resample:
for b = 1, . . . ,burn +B do

Resample the (b+ 1)-th batch of data of size m
Update Pb and Gb = G

(b+1)
m (θb).

Update θb+1 = θb − γPbGb,
end for
Discard the first burn draws, re-index θburn+b to θb for b = 1, . . . B.
Let θre = 1

B

∑B
b=1 θb.

Algorithm 2 The Free-Lunch Bootstrap
Implement Algorithm 1 with Pb = H−1

b .
Let θrnr = 1

B

∑B
b=1 θb and define v̂ar(θb) = 1

B

∑B
b=1(θb − θrnr)(θb − θrnr)′.

Output: θrnr and Vrnr = m
φ(γ)

v̂ar(θb), where φ(γ) = γ2

1−(1−γ)2
.

Algorithm 1 produces an estimate θre by resampling, hence the acronym re. It works
for any conditioning matrix Pb satisfying assumptions to be made precise in Theorem 1.
Algorithm 2 produces draws using the inverse Hessian as Pb as in Newton-Raphson, hence
the acronym rnr. The free-lunch aspect relates to the fact that we get both an estimate
θrnr and its standard error in one run. The bootstrap aspect comes from the fact that
under the assumptions of Theorem 2,

√
m(θb − θ̂n) has the same asymptotic distribution as

√
n(θ̂n − θ0) after an adjustment of m

φ(γ)
. The quantity Vrnr is an estimate of the sandwich

variance that is computationally costly for classical estimation. A Wald test for H0 : θ = θ†

can be constructed as
wald = n(θrnr − θ†)′V −1

rnr(θrnr − θ†)

which has an asymptotic Chi-squared distribution under the null hypothesis. A 95% level
bootstrap confidence interval can also be constructed after adjusting for m

n
and φ(γ) by

taking the (0.025,0.975) quantiles of
{
θrnr +

√
m

nφ(γ)
(θb − θrnr)

}
b≥1

.
Algorithms 1 and 2 have three features that distinguish them from existing gradient-based

stochastic optimizers. First, γ ∈ (0, 1] does not change with b. Fixing γ rather than letting
γb → 0 potentially permits faster convergence. Second, we sample m out of n observations
with m/n → c ∈ [0, 1] and

√
n/m → 0. This precludes the popular choice in stochastic
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optimization of m = 1, but admits m = n. We thus accept a higher computation cost to
accommodate inference. Third, compared to sgd Algorithm 2 uses the inverse Hessian as
conditioning matrix.

3.1 The Linear Regression Model

This subsection uses the linear regression model to gain intuition of the Free-Lunch bootstrap.
The model is yi = x′iθ+ ei. Let ên = yn−Xnθ̂n be the n× 1 vector of least squares residuals
evaluated at the solution θ̂n. Xn denote the n×K matrix of regressors. The linear model is of
interest because the objective function is quadratic and the quantities required for updating
are analytically tractable. The gradient and Hessian of the full sample objective function
Qn(θ) = (yn −Xnθ)

′(yn −Xnθ)/(2n) are Gn(θ) = −X ′n(yn −Xnθ)/n and Hn(θ) = X ′nXn/n.
The updates for this linear model evolve as

θk+1 = θk + γPkX
′
n(yn −Xnθk)/n

= θk + γPkX
′
n

(
Xn(θ̂n − θk) + ên

)
/n.

Convergence of θk for a given conditioning matrix Pk can be studied by subtracting θ̂n from
both sides of the updating equation and re-arranging terms (see Appendix A.1 for details).
Table 1 summarizes convergence of gd, nr, sgd, rgd and rnr. snr is not considered
because X ′mXm/m is singular for m = 1 so θb is not well defined. The left panel of the table
gives the updating rule in closed form and the right panel expresses the deviation of the
draws from θ̂n as the sum of a deterministic and a stochastic component.

Table 1: OLS: updating rules and convergence

Method Conditioning Update: Convergence: θk+1 − θ̂n=
Matrix Pk θk+1 − θk = deterministic + stochastic

gd Id −γkGk (Id − γHn)(θk − θ̂n)

sgd Id −γbGb (Id − γbHb)(θb − θ̂n) − γbGb(θ̂n)

rgd Id −γGb (Id − γHb)(θb − θ̂n) + γHb(θ̂
(b+1)
m − θ̂n)

nr H−1
k −γH−1

k Gk (1− γ)(θk − θ̂n)

rnr H−1
b −γH−1

b Gb (1− γ)(θb − θ̂n) + γ(θ̂
(b+1)
m − θ̂n)

Note: Gk = G
(k+1)
n (θk), Gb = G

(b+1)
m (θb), Hk = H

(k+1)
n (θk), Hb = H

(b+1)
m (θb).

As seen from Table 1, gd updates do not depend on the Hessian but convergence does,
while for nr the opposite is true. Convergence of nr can be achieved after one iteration if

8



γ = 1. In sgd, rgd and rnr, batch resampling adds a stochastic component to the updates
and convergence is no longer deterministic. The deviations for sgd and rgd θb+1 − θ̂n

follow a VAR(1) process with varying and fixed coefficient matrices Id− γbHb and Id− γHb,
respectively. In contrast, the rnr draws have an AR(1) representation with a fixed coefficient
(1− γ) that is dimension-free and independent of the Hessian. Note that rgd and rnr keep
γ fixed and rely on averaging over b for convergence.

Our main result pertains to rnr so it is useful to have a deeper understanding of how it
works. Unlike stochastic optimizers which require γb vanishing, the learning rate γ used to
generate the rnr draws is constant. The draws evolve according to

θb+1 − θ̂n = (1− γ)(θb − θ̂n) + γ(θ̂(b+1)
m − θ̂n) (3)

where θ̂(b+1)
m = (X

(b+1)′
m X

(b+1)
m )−1X

(b+1)′
m y

(b+1)
m is obtained by classical optimization using the

(b + 1)-th bootstrap sample (y
(b+1)
i , x

(b+1)
i )i=1,...,m. Being a bootstrap estimate, it holds un-

der regularity conditions that the distribution of
√
m(θ̂

(b+1)
m − θ̂n) conditional on the data

approximates the sampling distribution of
√
n(θ̂n − θ0)

d−→N(0,V0).
Clearly when γ = 1, (3) implies θb = θ̂

(b)
m , meaning that each rnr draw equals the

bootstrap estimate θ̂(b)
m . We want to show that the draws are still bootstrap estimates when

γ ∈ (0, 1). For such γ, θb+1 − θ̂n is an AR(1) process where for each b, the innovations
γ(θ̂

(b+1)
m − θ̂n) are iid conditional on the original sample. Iterating the AR(1) formula back-

wards to the initial value θ0, we can decompose the draws θb+1 into two terms:

θb+1 − θ̂n = (1− γ)b+1(θ0 − θ̂n)︸ ︷︷ ︸
initialization bias

+ γ
b∑

j=0

(1− γ)j(θ̂(b+1−j)
m − θ̂n)︸ ︷︷ ︸

resampling noise

, (4)

where {θ̂(b+1−j)
m }j≥0 are the bootstrap estimates in the previous iterations. The constant

learning rate is crucial in achieving this representation.
To show that our estimator θrnr is

√
n-consistent for θ̂n, i.e. θrnr = θ̂n + op?(

1√
n
), we

need to evaluate the average of the two terms in (4) over b. The initialization bias in (4)
is due to taking an arbitrary starting value θ0 and is identical to the optimization error in
classical Newton-Raphson. For γ ∈ (0, 1], 1

B

∑B
b=1(1−γ)b+1 = O( 1

B
) because {(1−γ)b}b≥1 is

a summable geometric series. Another bias term of order O( 1
m

) arises when E?(θ̂(b)
m − θ̂n) =

O( 1
m

). Since θ̂n is fixed as b varies, we now have E?(θrnr) = θ̂n + O( 1
B

) + O( 1
m

). Thus
E?(θrnr) = θ̂n + o( 1√

n
) as required, assuming

√
n

min(m,B)
→ 0. Turning to the variance, first

note that by virtue of bootstrapping, {θ̂(b+1−j)
m −θ̂n}j≥0 constitutes a sequence of conditionally
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iid errors each with variance that is O( 1
m

). Since {(1− γ)b}b≥1 is summable, the variance in
θrnr due to resampling is O( 1

mB
). This becomes o( 1

n
) when n

mB
→ 0, a sufficient condition

being
√
n

min(m,B)
→ 0, which is also required for the bias to be negligible. We have thus shown

that θrnr = θ̂n + op?(
1√
n
) for

√
n

min(m,B)
→ 0, which is a simplified version of Theorem 1 below.

Though the result has the flavor of Polyak-Ruppert averaging in stochastic optimization, γ
is fixed here and m increases with n.

To show bootstrap validity of rnr, we need to establish that, conditional on the sample of
data, the distribution of

√
m(θb+1−θ̂n) is asympotically equal, up to a constant scaling factor,

to that of
√
m(θ̂

(b+1)
m − θ̂n). This requires that the initialization bias in each θb is o( 1√

m
),

which holds when log(m)
b
→ 0. From (4),

√
m(θb+1− θ̂n) has variance γ2Vm conditional on θb

and unconditional variance

var
(√

m(θb+1 − θ̂n)

)
=
γ2 +O([1− γ]b+2)

1− [1− γ]2
Vm ≈ φ(γ)Vm

where φ(γ) = γ2

1−[1−γ]2
, and Vm = var(

√
m(θ̂

(b+1)
m − θ̂n)) is the bootstrap estimate of the

sandwich variance V0 defined above. This establishes that the variance of θb is proportional
to that of the bootstrap estimate. As shown in Gonçalves and White (2005), Vm is consistent
for V0 under certain moment conditions. This implies that, up to the scaling factor φ(γ),
the co-variance of θb is also consistent for V0. Combined with asympotic normality of each
√
m(θ̂

(b+1)
m − θ̂n) for each b and additional conditions to be made precise in Theorem 2, we

have (
φ(γ)Vm

)−1/2√
m
(
θb+1 − θ̂n

)
d?→ N (0, Id) .

But asymptotic theory gives the distribution of
√
n(θ̂n − θ0) with sample size n, not m. An

adjustment for φ(γ) and m is needed. Let Vrnr = m
φ(γ)

var?(θb) = Vm + o(1). For appropriate

choice of m and γ, V−1/2
rnr
√
n(θrnr − θ0)

d?→ N (0, Id) and Algorithm 2 proposes a plug-in
estimate of Vrnr.

4 Properties of the Draws θb

This section studies the properties of draws θb produced by Algorithms 1 and 2 for non-
linear models. The proofs are more involved for two reasons. First, an arbitrary γ ∈ (0, 1]

may not lead to convergence even for classical optimizers. Second, whereas in quadratic
problems the draws θb have a tractable AR(1) representation, for non-quadratic objectives
the draws θb follow a non-linear process which is more difficult to study. Hence we need to
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first show, under strong convexity conditions, that there exist fixed values of γ ∈ (0, 1] such
that optimization of Qn(θ) has a globally convergent solution. We then show, using the idea
of coupling, for appropriate choices of m and B that θb+1 can be made very close to a linear
AR(1) sequence θ?b+1 that is constructed as if the objective were quadratic. This allow us to
establish consistency of θre for θ̂n in Theorem 1 for a large class of Pb, and a distribution
result in Theorem 2 that validates inference for a particular choice of Pb.

4.1 Convergence of θk to θ̂n from Classical Updating

Econometric theory typically studies the conditions under which θ̂n is consistent for θ0, taking
as given that a numerical optimizer exists to produce a convergent solution θ̂n. From Newey
and McFadden (1994), the regularity conditions for consistent estimation of θ are continuity
of Q(θ) and uniform convergence of Qn(θ) to Q(θ). Asymptotic normality further requires
smoothness of Qn(θ), θ0 being in the interior of the support, and non-singularity of H(θ0).
But classical Newton-type algorithms may only converge to a local minimum and a global
convergent solution is guaranteed only when the objective function is strongly convex on the
parameter space Θ. For gradient-based optimizers to deliver such a solution, the following
provides the required conditions.

Assumption 1. Qn is twice continuously differentiable on Θ, a convex and compact subset
of Rd. There exists a constant C1 < +∞ such that for all θ ∈ Θ:

i. 0 < λH ≤ λmin(Hn(θ)) ≤ λmax(Hn(θ)) ≤ λH < +∞,

ii. ‖Hn(θ)−Hn(θ̂n)‖2 ≤ C1‖θ − θ̂n‖2,

iii. 0 < λP ≤ λmin(Pk) ≤ λmax(Pk) ≤ λP < +∞.

Condition i. implies strong convexity of Qn on Θ.6 Condition ii. imposes Lipschitz
continuity of the Hessian. Assumption 1 implies the following two inequalities which are
known as the Polyak-Łojasiewicz inequalities:

〈θ − θ̂n, Gn(θ̂n)〉 = (θ − θ̂n)′Hn(θ̃n)(θ − θ̂n) ≥ λH‖θ − θ̂n‖2
2, (5)

‖Gn(θ̂n)‖2
2 = (θ − θ̂n)′Hn(θ̃n)2(θ − θ̂n) ≤ λ

2

H‖θ − θ̂n‖2
2, (6)

6See Boyd and Vanderberghe (2004), Chapter 9.1. A function Qn is strongly convex on Θ if for all
θ ∈ Θ, there exists some λ > 0 such that ∇2Qn(θ) ≥ λId. For bounded Θ, there also exists λ such that
∇2Qn(θ) ≤ λId. Then λ/λ is an upper bound on the condition number of ∇2Qn(θ).
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where θ̃n is an intermediate value between θ and θ̂n. Inequality (5), due to Łojasiewicz (1963)
and Polyak (1963), follows from the positive definiteness of Hn(θ̃n). Together, (5) and (6)
ensure that θ̂n is a unique (or global) minimizer of Qn.

Assumption 1 also implies that there exists γ such that gradient based optimization is
globally convergent. To see why, consider

‖θk+1 − θ̂n‖2
2 = ‖θk − θ̂n − γPkGk‖2

2

= ‖θk − θ̂n‖2
2 − 2γ〈θk − θ̂n, PkGk〉+ γ2‖PkGk‖2

2

≤
(
1− 2γλPλH + γ2[λPλH ]2

)︸ ︷︷ ︸
=A(γ)

‖θk − θ̂n‖2
2,

where the last inequality is implied by Assumption 1 i. and iii. Since a contraction occurs
if A(γ) ∈ [0, 1), global convergence follows. Now at γ = 0, A(0) = 1 and ∂γA(0) < 0, so by
continuity and local monotonicity of A(·), there exists a nonempty subinterval of the form
(0, γ̃] with γ̃ ∈ (0, 1] such that A(γ) ∈ [0, 1) for all γ ∈ (0, γ̃]. This establishes existence of
an interval of values for γ close to zero such that the gradient-based optimizer is globally
convergent. But depending on λPλH and λPλH , there may exist larger values of γ ∈ (0, 1]

with A(1) ≥ 1 that could frustrate convergence. The following Lemma shows that
√
A(γ)

is the global convergence rate of θk to θ̂n.

Lemma 1. Suppose Assumption 1 holds, then there exists γ ∈ (0, 1] such that A(γ) ∈ [0, 1).
Let γ be such that A(γ) = (1− γ)2, then ‖θk − θ̂n‖2 ≤ (1− γ)k‖θ0 − θ̂n‖2 → 0, as k →∞.

Proof of Lemma 1: As discussed above, there exists γ such that A(γ) ∈ [0, 1). For such
γ, let γ(λP , λH , λK , λH) ∈ (0, 1] independent of k be such that: A(γ) = (1− γ)2 ∈ [0, 1). It
follows that

‖θk+1 − θ̂n‖2 ≤
√
A(γ)‖θk − θ̂n‖2

≤ (1− γ)‖θk − θ̂n‖2

≤ (1− γ)k‖θ0 − θ̂n‖2 → 0, as k →∞.

In general, a larger value of γ would result in faster convergence of ‖θk − θ̂n‖2 to zero.
The choice of γ and the implied γ in Lemma 1 are typically data-dependent, but further
insights can be gained in two special cases. For gd, the largest globally convergent γ is
λH/λ

2

H . In ill-conditionned problems when this ratio is small, convergence will be slow
since (1 − γ)2 = (1 − [λH/λH ]2) will be large. For nr when P (θ) = H(θ)−1, we can use
λPH ≤ λPλH and λPH ≥ λPλH to obtain a tighter bound. The globally convergent γ that
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minimizes 1− 2γλPH + γ2λ
2

PH is then γ = λPH/[λPH ]2 which is strictly less than 1 for non-
quadratic objectives. Since the (1− γ)2 = (1− [λPH/λPH ]2) associated with nr is typically
smaller than for gd, nr will converge faster.

4.2 Consistency of θre

Resampling is usually used for inference, but Algorithm 1 uses resampling for estimation.
Unlike classical optimizers, the resampled gradient is noisy. As a consequence, the draws
(θb)b≥1 constructed by Algorithm 1 no longer converge deterministically. The following con-
ditions will be imposed on the resampled objective Q(b)

m .

Assumption 2. Suppose that m/n → c ∈ [0, 1] as both m and n → +∞ and there exists
positive and finite constants C2, C3, C

′
3, C4 such that for all θ ∈ Θ, the resampled gradient

G
(b)
m (θ) and Hessian H(b)

m (θ) satisfy the following for all b ≥ 1 and θ ∈ Θ:

i. ‖G(b)
m (θ)−G(b)

m (θ̂n)−H(b)
m (θ̂n)(θ − θ̂n)‖2 ≤ C2‖θ − θ̂n‖2

2,

ii. 0 < λH ≤ λmin(H
(b)
m (θ)) ≤ λmax(H

(b)
m (θ)) ≤ λH < +∞,

iii.
[
E?
(

supθ∈Θ ‖G
(b)
m (θ)−Gn(θ)‖2

2

)]1/2

≤ C3√
m
,

iv. ‖E?
(
G

(b)
m (θ̂n)

)
‖2 ≤ C′3

m
,

v.
[
E?
(

supθ∈Θ ‖H
(b)
m (θ)−Hn(θ)‖2

2

)]1/2

≤ C4√
m
,

vi. 0 < λP ≤ λmin(Pb) ≤ λmax(Pb) ≤ λP < +∞.

Assumption 2 i. bounds the remainder term in the Taylor expansion of each resampled
gradient around the sample minimizer θ̂n. Assumption 2 ii. implies that each resampled
objective is also strongly convex. Conditions iii.-v. are tightness condition on the resampled
gradient and Hessian empirical process. It implies uniform convergence over Θ at a

√
m-rate.7

Condition iv. is satisfied with C ′3 = 0 for MLE and NLS estimators because Gn is a sample
mean. For over-identified GMM, gn(θ̂n) 6= 0 and the gradient Gn(θ̂n) = 2∂θgn(θ̂n)′Wngn(θ̂n)

is not a sample mean. Condition iv. requires correct specification in GMM so that ‖gn(θ̂n)‖2

goes to zero sufficiently fast as n→∞.
The following lemma shows that θb will converge in probability to and stays within a 1√

m

neighborhood of θ̂n as b increases.
7This is implied by a conditional uniform Central Limit Theorem. See van der Vaart and Wellner (1996,

Chapter 2.9) and Kosorok (2007, Chapter 10) for iid data. Chen et al. (2003) provide high-level conditions
for resampling two-step estimators when the first-step estimator can be nonparametric.
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Lemma 2. Under Assumptions 1-2 and given γ ∈ (0, 1] such that (1− γ)2 = A(γ) ∈ [0, 1),
as defined in Lemma 1, there exists a constant C5 = C5(C3, λP , γ) such that[

E?
(
‖θb+1 − θ̂n‖2

2

)]1/2

≤ (1− γ)b+1

[
E?(‖θ0 − θ̂n‖2

2)

]1/2

+
C5

γ
√
m
.

Proof of Lemma 2: For any θ ∈ Θ, let Gb(θ) =
√
m
(
G

(b+1)
m (θ)−Gn(θ)

)
. By construction

of θb, we have θb+1 − θ̂n = θb − θ̂n − γPbGb. It follows that

θb+1 − θ̂n = θb − θ̂n − γPbGn(θb) +
γ√
m
Gb(θb).

Taking the ‖ ·‖2 norm on both sides, applying the triangular inequality and using arguments
analogous to Lemma 1, we have for γ ∈ (0, 1] small enough such that the same A(γ) ∈ [0, 1):

‖θb+1 − θ̂n‖2 ≤ ‖θb − θ̂n − γPbGn(θb)‖2 +
γλP√
m

(
sup
θ∈Θ
‖Gb(θ)‖2

)
≤ (1− γ)‖θb − θ̂n‖2 +

γλP√
m

(
sup
θ∈Θ
‖Gb(θ)‖2

)
.

Taking expectations on both sides:[
E?
(
‖θb+1 − θ̂n‖2

2

)]1/2

≤ (1− γ)
[
E?
(
‖θb − θ̂n‖2

2

)]1/2

+
γλPC3√

m
.

The desired result is then obtained with C5 = γλPC3.
Lemma 2 shows stochastic convergence of θb to θ̂n. To study the properties of our

estimator θre, we will use a concept known as coupling. A coupling between two distributions
µ and ν on an (unrestricted) common probability space is a pair of random variables X and
Y such that X ∼ ν and Y ∼ µ, and are equal, on average, up to Wasserstein distance of
order p ≥ 1. Precisely, the Wasserstein-Fréchet-Kantorovich coupling distance between two
distributions ν and µ is defined as: Wp(ν, µ)p = inf(X,Y ),X∼ν,Y∼µ E(‖X − Y ‖p), p ≥ 1.

Of interest here is the coupling between θb and θ?b , where θ?b is a linearized sequence of
θb defined below. They have different marginal distributions because one is a linear and the
other is a non-linear process. Nonetheless, they live on the same probability space because
they rely on the same source of randomness originating from the resampled objective Q(b)

m .
Hence if we can show that ‖θb − θ?b‖ is small in probability, then we can work with the
distribution of θ?b which is more tractable.

Precisely, we are interested in a linearized sequence defined as

θ?b+1 − θ̂n = Ψ(θ̂n)(θ?b − θ̂n)− γPmG
(b+1)
m (θ̂n), (7)
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where Ψ(θ̂n) = Id − γPmHn(θ̂n) and Pm = Id for rgd and Pm = [Hn]−1 for rnr. We saw
earlier from (3) in the linear regression model that Ψ(θ̂n) = (1 − γ)Id for rnr. We now
provide conditions on Pb for the draws produced in Algorithm 1 to be close to those defined
in (7) in non-quadratic settings.

Assumption 3. Define d2
0,n = E?(‖θ0 − θ̂n‖2

2) and let Pm be a symmetric positive definite
matrix such that for Ψ(θ̂n) = Id − γPmHn(θ̂),

i. 0 ≤ λmax(Ψ(θ̂n)Ψ(θ̂n)′) < 1,

ii.
[
E?
(
‖Id − PbP

−1

m ‖2
2

)]1/2

≤ C6

(
ρbd0,n + 1√

m

)
, for some ρ ∈ [0, 1) and some C6 > 0.

Assumption 3 ii. is needed to ensure that the resampled conditioning matrix Pb converges
to Pm used in (7) and Assumption 3 i. ensures stability of the linearized process (7). These
assumptions allow us to study θ?b+1 − θ̂n as a VAR process with parameters that depend on
the Hessian, the conditioning matrix and the learning rate as in the OLS example.

For rgd with Pb = Pm = Id, Condition ii. holds automatically, while Condition i.
requires γ < 2/λH . For rnr with Pm = [Hn(θ̂n)]−1, it will be shown in Theorem 2 that
Conditions i.-ii. hold for any γ ∈ (0, 1] such that A(γ) ∈ [0, 1) under the assumptions of
Lemmas 1, 2. This implies that θ?b constructed in (7) for rnr is an AR(1) process with
autoregressive coefficient 1− γ as in the OLS case. Now define

ρ = max
[√

λmax(Ψm(θ̂n)Ψm(θ̂n)′), 1− γ, ρ
]
< 1. (8)

The autoregressive structure of θ?b − θ̂n and θb − θ̂n together with the assumed convergence
of Pb to Pm lead to the following result on the coupling distance between θb and θ?b .

Lemma 3. Suppose that Lemmas 1 and 2 hold, and there exists a matrix Pm > 0 satisfying
Assumption 3. Let ρ be defined as in (8). Then θ?b defined in (7) satisfies:

E? (‖θb − θ?b‖2) ≤ C7

(
1

m
+ ρb[d0,n + d2

0,n]

)
.

The statement holds for any conditioning matrix Pb evaluated on the subsamples satis-
fying Assumption 3. Since

∑B
b=1 ρ

b ≤ 1
1−ρ , Lemma 3 implies

E?
(
‖θre − θ

?

re‖2

)
≤ C7

1− ρ

(
1

m
+
d0,n + d2

0,n

B

)
. (9)
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The result is useful because it implies that our estimator θre equals θ?re = 1
B

∑B
b=1 θ

?
b up

to vanishing terms. By the triangular inequality:

E?
(
‖θre − θ̂n‖2

)
≤ E?

(
‖θre − θ

?

re‖2

)
+ E?

(
‖θ?re − θ̂n‖2

)
. (10)

The first term can be bounded by Lemma 3 as discussed above, and E?(θ?b ) = θ̂n by con-
struction of θ?b in (7). Furthermore, Assumption 3 i. implies that the difference θ?re − θ̂n is
a Op?(

1√
mB

) since θ?b is asymptotically ergodic and its innovations have variance of order 1
m
.

Theorem 1. Let θ0 be the population minimizer, θ̂n be the estimate obtained by a classical
optimizer, and {θb} be generated by Algorithm 1. Suppose that {

√
mPmG

(b)
m (θ̂n)}b≥1 are iid

with finite and bounded variance-covariance matrix. Under the conditions of Lemma 3,

E?
(
‖θre − θ̂n‖2

)
≤ C8

(
1

m
+
d0,n + d2

0,n

B
+

1√
mB

)
,

where C8 depends on the constants and the largest eigenvalue of var?(PmG
(b)
m (θ̂n)). Further-

more, suppose that
√
n

min(B,m)
→ 0 and d0,n = O(1) then:

√
n
(
θre − θ0

)
=
√
n
(
θ̂n − θ0

)
+ op?(1).

Theorem 1 says that the average of draws θre is a consistent estimate of θ̂n for any choice
of conditioning satisfying Assumption 3. The inverse Hessian (rnr) and the identity matrix
(rgd) are examples of such conditioning matrices Pb.

4.3 Asymptotic Validity of rnr for Frequentist Inference

Theorem 1 is valid for Pb satisfying the assumptions of the analysis. This subsection special-
izes to rnr produced by Algorithm 2 which uses the inverse Hessian as conditioning matrix.
There are two reasons for this choice. First, it implies a faster decline in the initialization
bias compared to e.g. Pm = Id used in gradient descent. Second, such a conditioning matrix
has a limit Pm = [Hn(θ̂n)]−1. For Pm 6= [Hn(θ̂n)]−1 the dynamics are approximated by a
VAR(1) instead of a simple AR(1). While the variance of the AR(1) is proportional to the
desired Vm, up to a simple adjustment, this is generally not the case for the VAR(1).

Once Assumption 3 is granted with Pm = [Hn(θ̂n)]−1, the general idea of deriving the
limiting distribution of the rnr draws is to ensure the increasing sum θ?b = θ̂n− γ

∑b−1
j=0(1−

γ)jHn(θ̂n)−1G
(b−j)
m (θ̂n) preserves the convergence of each resampled G(b−j)

m (θ̂n). The autore-
gressive nature of θb makes the argument somewhat different from the standard setting where
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each resampled minimizer θ̂(b)
m can usually be expressed as a function of a single G(b)

m (θ̂n) plus
negligible terms. In such cases, distributional statements about θ̂(b)

m follow from the conver-
gence of each resampled G(b)

m . Here, the increasing sum θ?b depends on the entire history of
the independently resampled {G(b−j)

m (θ̂n)}j=0,...,b−1 for which we need to prove convergence.

Assumption 4. Let Pm in Theorem 1 be [Hn(θ̂n)]−1. Suppose that {
√
mPmG

(b)
m (θ̂n)}b≥1

has a non-singular variance-covariance matrix denoted Vm. For some β ∈ (0, 1/2] and
‖rm(τ)‖ ≤ Cψ‖τ‖α with α > 0, it holds that for i2 = −1:

E?
(

exp
[√

miτ ′(Vm)−1/2[Hn(θ̂n)]−1G(b)
m (θ̂n)

])
= exp

(
−‖τ‖

2
2

2

)
·
(

1 +
rm(τ)

mβ

)
.

Assumption 4 requires non-degeneracy of the variance-covariance matrix which is required
for Central Limit Theorems (White, 2000, Theorem 5.3). Assumption 4 provides higher-order
conditions to ensure that the bootstrap converges in distribution at a sufficiently fast rate. It
can be understood as requiring the resampled data to have an Edgeworth expansion, the first
term being the characteristic function of the standard normal distribution. This occurs with
β = 1/2, α = 1 for averages of iid data with finite third moment (Lahiri, 2013, Chapters 6.2-
6.3). By Assumption 4, the error in the Gaussian approximation of

√
n[Hn(θ̂n)]−1G

(b)
m (θ̂n)

depends on α through rm(τ) and on β through the inflation factor 1 + rm(τ)
mβ

. These two
parameters are of significance because the error in the asymptotic approximation for θ?b
inherits the error in

√
n[Hn(θ̂n)]−1G

(b)
m . The following theorem takes as given the validity of

bootstrap standard errors, i.e.
√
m(Vm)−1/2

(
θ̂n − θ0

)
d→ N (0, Id).

Theorem 2. Let {θb} be generated by Algorithm 2 and suppose that the conditions of Lemmas
1, 2 hold then Assumption 3 holds with Pm = [Hn(θ̂n)]−1. Furthermore, suppose Assumption
4 holds and let φ(γ) = γ2

1−(1−γ)2
, then as m, b→ +∞ with log(m)/b→ 0,

(φ(γ)Vm)−1/2
√
m
(
θb − θ̂n

)
d?→ N (0, Id) .

The thrust of the Theorem is that [Hn(θ̂n)]−1G
(b)
m (θ̂n) is approximately normal when

properly standardized by (Vm)−1/2 and scaled by
√
m. The summation in the AR(1) repre-

sentation (4) preserves this property under the stated assumption but inflates the variance
by a factor φ(γ) which needs to be adjusted. As pointed out above, the error in the Gaussian
approximation of θ?b is of the same order as

√
n[Hn(θ̂n)]−1G

(b)
m (θ̂n), which depends on α, β

according to Assumption 4. But rm(τ) is inflated by a factor of (2−γ)α

1−[1−γ]α
which is 1 when

γ = 1 and goes to infinity as γ → 0. The Gaussian approximation is better for larger γ.
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An implication of Theorems 1 and 2 is that

V−1/2
rnr

√
n
(
θrnr − θ0

)
= V−1/2

rnr

√
n
(
θ̂n − θ0

)
+ op?(1)

d→ N (0, Id) ,

where Vrnr = m
φ(γ)

var?(θb− θ̂n), and a plug-in estimator Vrnr is defined in Algorithm 2. This
implies that standard errors and quantiles computed from the draws θb, after adjusting for
m and φ(γ), can be used to make asymptotically valid inference. Confidence intervals can
be constructed to test linear and non-linear hypotheses.

Theorem 2 specializes to rnr where Pb = [H
(b+1)
m (θb)]

−1. Because the AR(1) representa-
tion in (7) does not hold for rgd, simple adjustments cannot be designed that would allow
rgd to provide valid inference. Furthermore, when γ ∈ (0, 1] is small enough such that rgd

converges, it is not uncommon that λmax(Ψ(θ̂n)Ψ(θ̂n)′) ' 1 because of ill-conditioning, and
when θb is very persistent, a much larger B will be required.

Given the Markov chain nature of our θb, convergence of the chain can be diagnosed using
the standard tools from the MCMC literature such as convergence diagnostics considered
in Gelman and Rubin (1992); Brooks and Gelman (1998). As seen from (7), the draws
θb approximately follow d univariate AR(1) processes with the same persistence parameter
(1 − γ) which is user-chosen. This can be used to gauge the quality of our large sample
approximation in the data for a given pair (γ,m). We will illustrate this feature below.

It is noteworthy that while the appeal of stochastic optimization is the savings from
using m � n, our rnr requires m not to be too small. This can be seen as the cost
of valid inference. Nonetheless, several additional shortcuts could improve the numerical
performance of rnr. Our algorithm can be modified so that the Hessian is updated every few
iterations rather than at each iteration. The draws would still be valid since the assumptions
of Theorem 2 would still hold. The Hessian could also be approximated using quasi-Newton
methods which only requires computing gradients. However, as shown in Dennis and Moré
(1977), Nocedal and Wright (2006), the analytical properties of the Hessian approximated
by bfgs can only be guaranteed under strong conditions for quadratic objectives. Ren-Pu
and Powell (1983) show that the bfgs estimate Pk may not converge to the Hessian even for
quadratic objectives. Theoretical guarantees can be given for less popular but more tractable
methods such as Broyden’s method or the Symmetric Rank-1 (SR1) update (Conn et al.,
1991). These, unfortunately, tend to be less stable than bfgs even in classical optimization.
Though an extension of Theorems 1 and 2 to quasi-Newton updating is left to future work,
the results based on a resampled bfgs procedure are promising, as will be seen below.
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4.4 Relation to other Bootstrap and Quasi-Bayes Methods

Our algorithm is related to several other fast bootstrap methods. As discussed in the in-
troduction, solving the minimization problem B times can be computationally challenging
or infeasible. Some shortcuts have been proposed to generate bootstrap draws for inference
at a lower cost. Davidson and MacKinnon (1999) (hereafter dmk) proposes a n out of n
approximate bootstrap that replaces non-linear estimation on each batch of re-sampled data
by a small number of Newton steps using θ̂n as starting value. In our notation, they perform
Newton-Raphson updating θ(b)

dmk,j+1 = θ
(b)
dmk,j − [H

(b)
n (θ

(b)
dmk,j)]

−1G
(b)
n (θ

(b)
dmk,j) with θ

(b)
dmk,0 = θ̂n

and j = 0, . . . , k − 1 times for each b = 1, . . . , B and report the draws θ(b)
dmk,k. Armstrong

et al. (2014) extends this approach for two-step estimation with a finite dimensional or non-
parametric first-step estimator. Kline and Santos (2012) (hereafter, ks) suggests a score
bootstrap that uses random weights to perturb the score while holding the Hessian at the
sample estimate. If the random weights are {ω(b)

i } with E[ωi] = 0,E[ω2
i ] = 1, then the dis-

tribution [Hn(θ̂n)]−1 1√
n

∑n
i=1 ω

(b)
i Gi(θ̂n; yi, xi) conditional on the data is used to approximate

that of
√
n(θ̂n−θ0). The appeal is that the Hessian only needs to be computed once. Honoré

and Hu (2017) proposes an approach where the resampled objective is minimized only in a
scalar direction for a class of models.

The methods above all rely on a preliminary converged estimate, θ̂n and hence estimation
precedes inference. We compute θrnr and an estimate of its sampling uncertainty in the same
loop, so no further computation is needed once θrnr is available. Under our assumptions,
the initialization bias will vanish. The practical implication is that for B large enough, the
initial values of rnr can be far away from the global minimum θ̂n, and the algorithm will
not be sensitive to the usual stopping criteria used in optimization to find θ̂n.

Liang and Su (2019) suggests a ‘moment-adjusted’ algorithm (masgrad) that, in our
notation, updates according to γb → 0 with Pb = var(

√
nGn(θ))−1/2, which is the asymp-

totic variance-covariance matrix of the sample gradient. In practice, they recommend to
evaluate this quantity using the full sample. Under the information matrix equality, we have
E[(Gn(θb)Gn(θb)

′] = E[H(θb)] so that the difference amounts to using H(θb)
−1/2 instead of

H(θb)
−1. While such a conditioning matrix would result in consistent estimates, it would

not provide asymptotically valid bootstrap draws, which requires Pb = H(θb)
−1 and γ fixed

as shown in our Theorem 2.
The sgld algorithm proposed in Welling and Teh (2011) updates according to

θb+1 = θb +
γb+1

2

(
∇ log p(θb) +

n

m

m∑
i=1

∇ log p(x
(b)
i |θb)

)
+ vb+1 (11)
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where vb ∼ N(0, γbId) is an injected noise, γb satisfies (2) and p(θb) is the prior distribution
evaluated at θb while log p(x

(b)
i |θb) is the log-likelihood of a resampled observation x(b)

i eval-
utated a θb. The update is thus based on the gradient of the log posterior distribution. Like
sgld draws, the draws of our free-lunch bootstrap involve two phases: optimization and
sampling. First, in the optimization phase, the shape of the objective function dominates
the resampling noise until θb attains a neighborhood of θ̂n. Then, in the sampling the re-
sampling phase, the noise dominates and rnr draws have bootstrap properties. Compared
to sgld, the noise is not injected exogenously and our γ is fixed. Welling and Teh (2011)
shows that with carefully chosen step size γb and noise variance σ2

v , sgld draws can be used
for Bayesian inference. Our free-lunch algorithm does not involve any prior and the goal is
frequentist inference, as in the Laplace-type inference proposed in Chernozhukov and Hong
(2003) (hereafter CH).

Like CH, our goal is also to simplify the estimation of complex models. CH tackles
non-smooth and non-convex objective functions by combining a prior with a transformation
of the objective function. In principle, we can also handle non-convex objective functions
through regularization, but smoothness is an assumption we need to maintain. CH relies on
a Laplace approximation to validate the theory while we use the idea of coupling. By nature
of the Metropolis-Hastings algorithm, not all CH draws are accepted and the Markov chain
is better described as a threshold autoregressive process. All our draws are accepted and
they constitute a nonlinear but smooth autoregressive process. Valid quasi-Bayes inference
requires the optimal weighting matrix Wn = var(

√
n(gn(θ̂n)) which needs to be estimated.

Continuously updating Wn(θ) can result in local optima so that the MCMC chain can take
significantly more time to converge. Whether or not convexification is required, our approach
does not require a specific weighting matrix.

In terms of tuning parameters, CH requires as input the proposal distribution in the
Metropolis-Hastings algorithm and the associated hyper-parameters. Our tuning parameters
are confined to the fixed learning rate γ and the resampling size m, which do not depend
on the dimension of θ. The complexity of the problem also affects the two algorithms in
different ways. As seen from Lemma 1, nr converges at a dimension-free linear rate of (1−γ),
whereas MCMC converges more slowly as the dimension of θ increases. For instance, the
number of iterations needed for the random walk Metropolis-Hastings to converge increases
quadratically with the condition number of the Hessian of the log-density and linearly in
the dimension d of θ. To alleviate this issue, several samplers exploit gradient information
(Roberts and Tweedie, 1996; Girolami and Calderhead, 2011; Neal, 2011; Welling and Teh,
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2011). While these methods improve upon random walk Metropolis-Hastings, ill-conditioning
can still render slow convergence. Scaling the proposal using Hessian information can reduce
the effect of ill-conditioning but requires a preliminary estimate. See Dwivedi et al. (2019),
Table 1, for an overview of mixing times in Metropolis-Hastings algorithms.

5 Examples

This section illustrates the properties of the rnr draws using simulated data and data used in
published work. Throughout, we use a burn-in period of burn = 1+round(log(0.01)/ log(1−
γ)) so that the bias is approximately less than 1% of the initialization error ‖θ0 − θ̂n‖.
Additional implentation details are given in Appendix C. The set of γ values satisfying the
conditions for Lemma 1 are data dependent, but in all simulated and empirical examples,
γ ∈ [0.1, 0.3] performed well.

5.1 Simulated Examples

Example 1: OLS We simulate data from the linear model with intercept β0 = 1, slope
β1 = 1, xi ∼ E(2), ei ∼ t(6), n = 200. We set B = 1000 plus burn-in draws. Homoskedastic
standard errors with a degree of freedom adjustment are computed. Table 2 reports estimates
and standard errors for one simulated sample. We consider three values of batch size m =

200, 50, 10 and for each batch size, three values of the learning rate γ. The results are denoted
rnrγ for γ = 1, 0.1, and 0.01. The smaller the γ, the more persistent are the draws. Thus
γ = 0.01 is a case of extreme persistence, and as seen from the analysis of the linear model,
the variance of the draws are larger the smaller γ is.

Table 2: OLS: Estimates and Standard Errors for β1

Estimates Standard Errors
m ols rnr1 rnr0.1 rnr0.01 ase boot rnr1 rnr0.1 rnr0.01

200 1.230 1.236 1.234 1.234 0.180 0.159 0.164 0.155 0.193
50 - 1.251 1.241 1.262 - 0.184 0.179 0.187 0.161
10 - 1.288 1.258 1.296 - 0.255 0.270 0.254 0.205

Remark: Results reported for one simulated sample of size n = 200.

The OLS estimator takes the value β̂1 = 1.230 for this simulated sample. We see from
Table 2 that the rnr estimate is very close to OLS when m = 200 (= n) and the choice of
γ makes little difference. Theorem 1 suggests that the estimation error should be of order

1√
m
. The large bias associated with a m small is most visible at m = 10, which is less than
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√
n. The difference between the OLS and rnr estimates is nearly a third of a standard error

for γ = 1. The m out of n Bootstrap and rnr standard errors are also less accurate with
m = 10.

Example 2: MA(1) Consider the estimation of a MA(1) model by non-linear least
squares (nlls). The data is generated as yt = µ+et+ψet−1. We set µ = 0, ψ = 0.8, n = 500

and B = 2, 000. In this example, Qn(θ) =
∑n

t=1 et(θ)
2 where et(θ) are the nlls filtered

residuals computed as described in Appendix C. In estimation, the gradient and Hessian are
computed analytically. For the standard bootstrap, we implement a state-space resampling
algorithm described in Appendix C. For rnr, we initialize at θ0 = (0, 0) with a learning rate
set to γ = 0.6, 0.1 and 0.01, noting that γ = 1 was too large to get stable results in this
example.

Table 3: MA(1): Estimates of ψ and Standard Errors
Estimates Standard Errors

m nlls rnr0.6 rnr0.1 rnr0.01 ase boot dmk rnr0.6 rnr0.1 rnr0.01

500 0.816 0.825 0.822 0.820 0.026 0.027 0.023 0.025 0.029 0.113
250 - 0.819 0.819 0.814 - 0.028 - 0.034 0.034 0.081
50 - 0.805 0.786 0.780 - 0.035 - 0.042 0.040 0.050

Remark: Results reported for one simulated sample of size n = 500.

In this synthetic data, the nlls estimator is ψ̂ = 0.816. Table 3 shows that when m = n,
rnr produces a θrnr that is very close to the full sample nlls estimate for all three values of
γ. As in the OLS example above, the bias and standard errors are larger when m is smaller,
as suggested by Theorem 1. The rnr standard errors are very similar to those obtained by
the m out of n bootstrap for all values of m. The standard errors are quite poor for γ = 0.01,
most likely because of the strong persistence of the draws.

5.2 Empirical Examples

This subsection considers three examples, the first concerns probit estimation of labor force
participation, the second is covariance structure estimation of earnings dynamics, and the
third is structural estimation of a BLP model.

Application 1: Labor Force Participation The probit model is of interest because the
objective function is strictly convex. To illustrate, we estimate the model for female labor
force participation considered in Mroz (1987). The data consist of n = 753 observations
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assumed iid. We set B = 1000 and γ = 0.3. Three values of m are considered: m = n,
200, 100. Appendix B provides r code for replicating rnr in this example. There are 8
parameters in this exercise and to conserve space, we only report 4 to get a flavor of the
results. Table C1 in the on-line Appendix reports all coefficients. As seen from Table 4, the
rnr estimates are close to the MLE ones. Furthermore, the rnr standard errors are close
to the bootstrap standard errors. Table 4 also shows results for resampled bfgs which is
labeled rqn. Evidently, the rqn estimates are similar to rnr; but is much faster to compute
because the Hessian is not computed directly.

Table 4: Labor Force Participation: Estimates and Standard Errors
Estimates

mle rnrn rnr200 rnr100 rqnn rqn200 rqn100

nwifeinc -0.012 - - - -0.012 -0.013 -0.014 -0.012 -0.011 -0.012
educ 0.131 - - - 0.132 0.138 0.143 0.131 0.129 0.129
exper 0.123 - - - 0.123 0.124 0.123 0.123 0.124 0.125
exper2 -0.002 - - - -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

Standard Errors
ase boot dmk ks rnrn rnr200 rnr100 rqnn rqn200 rqn100

nwifeinc 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.005
educ 0.025 0.026 0.026 0.025 0.025 0.027 0.028 0.027 0.025 0.025
exper 0.019 0.020 0.019 0.019 0.019 0.020 0.021 0.019 0.018 0.017
exper2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Panel (a) of Figure 1 illustrates the behavior of the draws produced by rnr. The dashed
red line corresponds to the MLE estimate θ̂n. The black line corresponds to rnr draws
based on resampling the data with replacement. The blue line shows iterates from classical
nr with the same γ = 0.3. The top left panel shows the first 20 draws in the convergence
phase when the classical nr and the proposed rnr should behave similarly. While in this
example, rnr converges after 5 draws, nr requires 10 to 15 iterations to achieve convergence.
The top right panel plots the next 200 draws. Since convergence is achieved after 5 draws,
these draws are in the re-sampling phase. Evidently, the transition between the convergence
and the resampling phase of rnr is seamless. The AR(1) coefficient on θb,educ based on the
converged draws (after discarding the first five) is estimated to be 0.673 with a standard
error 0.016, which is not significantly different from 0.7 = 1− γ predicted by Lemma 3.

Panel (b) of Figure 1 uses the Mroz (1987) data to further illustrate Lemma 3. We
compare the rnr draws with two AR(1) sequences generated according to coupling theory
in (7), ie. θ?b+1 = θ̂n + (1− γ)(θ?b − θ̂n)− γH−1

n G
(b+1)
m (θ̂n) with θ?0 = θ0. For m = n shown in
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the left panel, the coupling result is very accurate after the short initial convergence phase
as the two series are nearly indistinguishable. The right panel shows that coupling distance
is noticeably greater when m = 100.

Panel (c) of Figure 1 illustrates Theorem 2 by comparing the asymptotic Gaussian dis-
tribution with the bootstrap, rnr, dmk and ks distributions for the education coefficient
with m = n and γ = 0.3. The distribution of the rnr draws is rescaled using the simple
adjustment: θrnr +

√
m

nφ(γ)
(θb− θrnr) after discarding a burn-in period of 10 draws. The rnr

distribution approximates the bootstrap distribution quite well.

Figure 1: Labor force participation: draws for θeduc

Application 2: Earnings Dynamics Moffitt and Zhang (2018) estimates earnings volatil-
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ity using a subsample of 3508 males in the Panel Study of Income Dynamics (PSID) dataset
between 1970 and 2014 for a total of 36403 observations. Let yiat denote an individual’s
earnings i in age group a (between 24 and 54) at time t. Earnings are assumed to be the
sum of a permanent µia and a transitory νiat component:

yiat = αtµia + βtνia, µia = µi0 +
a∑
s=1

ωis, νia = εia +
a∑
s=1

ψa,a−sεis, for a ≥ 2.

In Moffitt and Zhang (2018), the variances are modeled via 11 parameters and estimated by a
sequential quadratic programming algorithm (SQP). The Hessian in their example has both
positive and negative eigenvalues, suggesting that the solution could be a saddle point. To
abstract from identification issues, we estimate θ = (ν0, δ0, γ0, γ1) and fix the remaining 7 pa-
rameters.8 We specify the conditioning matrix as Pb = (H ′bHb)

−1/2 to ensure positive definite-
ness. Algorithm 2 converges using the starting values θ0 = (0.054,−10.257,−4.355, 0.012)

as in the original paper, with m = n, γ = 0.2 B = 2000, and resampling at the age-cohort
level. We also consider re-weighting instead of resampling which is denoted as rnrw. Though
our theory does not cover resampled quasi-Newton methods, we also use an implementation
of bfgs that sets Pb = (H ′b,bfgsHb,bfgs)

−1/2, where Hb,bfgs is the bfgs approximation of the
Hessian matrix, and report the results as rqn.

Table 5 shows that the rnr, rnrw and rqn estimates are very close to θ̂n obtained by
SQP. The rnrw standard errors are larger than the rnr ones, which are in turn larger than
the bootstrap ones, but the differences are not enough to change the conclusion that all four
parameters are statistically different from zero. However, bootstrap inference of θ̂n is time-
consuming, requiring 5h48m to produce 2000 draws, even after the original Matlab code was
ported to r and C++ using Rcpp to get a greater than 10 times speedup in computation
time. In contrast, rnr produces estimates and standard errors in 1h4m, and the rqn in
38m. The time needed for dmk to produce standard errors is comparable to rnr, while rqn

is more comparable to ks. However, both have an overhead of having to first obtain θ̂n,
which entails minimization of the objective function by SQP.

In addition to providing standard errors, an additional by-product of Algorithm 2 is that
the draws can be used for model diagnostics. Gentzkow et al. (2017) provides statistics to
assess the sensitivity of the parameter estimates to assumptions of the model, taking the
data as given. Our algorithm takes the model assumptions as given, but takes advantage of
resampling to shed light on the sensitivity of the estimates to features of the data themselves.

8Specifically, var(µi,0) by ν0, var(ωir) by δ0, δ1, var(εir) by γ0, γ1, k, and ψa,a−r by π, λ1, η1, η2, η3. We
set k = 1, λ = 5, and all remaining parameters to zero.
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Table 5: Earnings Volatility: Estimates and Standard Errors
Estimates Standard Errors

θ̂n rnr rnrw rqn rqnw boot dmk ks rnr rnrw rqn rqnw
ν0 0.109 0.109 0.109 0.109 0.109 0.002 0.002 0.002 0.002 0.002 0.002 0.002
δ0 -5.768 -5.779 -5.779 -5.767 -5.766 0.050 0.062 0.049 0.063 0.060 0.051 0.049
γ0 -1.839 -1.819 -1.819 -1.841 -1.842 0.083 0.101 0.079 0.094 0.091 0.089 0.082
γ1 0.010 0.011 0.011 0.010 0.010 0.010 0.012 0.010 0.011 0.012 0.011 0.011

time 5h48m 1h4m 13m 1h4m 1h4m 38m 38m

As pointed out in Chatterjee et al. (1986), influential observations could be outliers, or could
be points of high leverage. If no such observations exist, removing them in the resampled
data should not significantly affect the Markov chain. If their presence is influential, we
should witness a ‘break’ in the draws.

With this motivation in mind, we examine whether the parameter estimates of the earn-
ings model are sensitive to data of a particular age group. Figure 2 presents results for

Figure 2: Earnings Volatility: Sensitivity to Age Groups

Legend: solid blue: full sample estimate; black line: rnr draws excluding the age group
indicated above in parenthesis; red dashed line: change in excluded age group

estimation based on resampled data that exclude one age group at a time. The parameter
that is least sensitive to age-groups appears to be γ1. The parameter ν0 tends to be lower
when the age group (29-33) is excluded, while γ0 is higher when the age group (44-48) is
excluded. The parameter most sensitive to age is γ0, which is evidently smaller in absolute
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magnitude when the younger age groups are excluded. For example, it is -1.2 when the
youngest age group is dropped, but is around -2.0 when the oldest age group is excluded.

Application 3: Demand for Cereal We evaluate the rnr algorithm on the BLP model
of Berry et al. (1995) using the cereal data generated in Nevo (2000). The sample consists
of market shares for 24 cereal products across 94 markets for a total of 2256 market/product
observations. This example is of interest because bootstrapping the BLP model is demand-
ing. We use the BLPestimatoR R package which builds on C++ functions to evaluate the
GMM objective and analytical gradient. The data consists of market shares for 24 products
in 94 markets. In the BLP framework, parameters on terms that enter linearly can pro-
jected out by 2SLS. Of the remaining parameters that need to be estimated, we drop some
interaction terms from the original paper that may be difficult to identify. This allows us to
focus on coefficients that enter the moment conditions non-linearly since the BLP procedure
requires a fixed-point inversion for these, making the moment conditions costly to evaluate.
The parameter dimension including market fixed effects is d = 33. To control for possible
correlations in the unobservables at the market level, we compute cluster-robust standard
errors. See Appendix C for details

The data consists of market shares sgj in market g ∈ {1, . . . , 94} for product j ∈
{1, . . . , 24} with characteristic matrix Xgj. To resample at the market level, for each
b = 1, . . . , B we draw markets g(b)

1 , . . . , g
(b)
94 from {1, . . . , 94} with replacement and take

the associated shares and characteristics {sg(b)j, Xg(b)j}j=1,...,24 as observations within each
market. Since the number of clusers is relatively small, we only consider m = n. We set
γ = 0.2 and a burn-in period of 10 draws. Additional values of γ are considered in Table C2.
Both rnr and rqn deliver estimates similar to those obtained from classical optimization
and the standard errors are similar to the bootstrap ones. However, there is a significant
difference. To generate B = 1000 draws the standard bootstrap requires 4h45m while the
rnr runs in 1h04m which is almost 5x faster. The rqn estimate only requires 13m, which is
about 20x faster than the bootstrap. While dmk is similar to rnr, a preliminary estimate
of θ is needed.9 Estimation of the AR(1) coefficient for the rnr draws associated with the
parameters reported in Table 6 finds that the estimates range from 0.78 to 0.82 with 95%
confidence levels that always include the value of (1− γ) = 0.8 predicted by theory.

For this example we also consider the CH quasi-Bayesian estimator implemented using a
random walk Metropolis-Hastings MCMC algorithm. The prior for each of the 33 parameters

9ks is not reported here because it needs significant rewriting of the BLPestimatoR package. Further-
more, ks only consider just-identified GMM models as indicated in their footnote 8.
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is a N (0, 100) distribution, and the inverse of the clustered variance-covariance matrix of the
moments evaluated at θ̂n is used as the optimal weighting matrix Wn. The Markov chain is
initialized at θ0 = θ̂n, the proposal in the random walk step is scaled by 0.2Hn(θ̂n)−1/2/

√
n

which yields an acceptance rate of 0.335. Though we generate a large number of draws
(B = 50000), the Markov chain is strongly persistent and the effective sample size as defined
in Gelman et al. (2013) is typically less than 100. The CH estimates are further away from
θ̂n than the rnr estimates, and the standard errors are also smaller than the m out of n
bootstrap and the rnr or the dmk.

Table 6: Demand for Cereal: Estimates and Standard Errors (Random Coefficients)
Estimates Standard Errors

θ̂n ch rnr rqn ch boot dmk rnr rqn

st
de
v

const. 0.284 -0.016 0.263 0.277 0.130 0.129 0.127 0.123 0.105
price 2.032 2.364 2.188 1.917 0.738 1.198 1.026 0.975 0.880
sugar -0.008 -0.013 -0.006 -0.006 0.011 0.017 0.012 0.012 0.010
mushy -0.077 -0.248 -0.055 -0.042 0.132 0.177 0.168 0.166 0.154

in
co
m
e const. 3.581 4.414 3.464 3.702 0.453 0.666 0.738 0.714 0.636

price 0.467 -3.255 1.335 -0.295 2.449 3.829 4.275 4.040 3.603
sugar -0.172 -0.195 -0.171 -0.174 0.021 0.028 0.028 0.027 0.025
mushy 0.690 0.888 0.647 0.702 0.203 0.345 0.346 0.339 0.312

time 1h50m 4h45m 1h4m 1h8m 13m

6 Implications for Simulation-Based Estimation

Simulation-based estimation is routinely used to analyze structural models associated with
analytically intractable likelihoods. Estimators in this class include the simulated method of
moments, indirect inference and efficient method of moments, and following Forneron and Ng
(2016), we will generically refer to them as simulated minimum distance (smd) estimators.
We now show that rnr will still provide valid inference. This is useful because computing
standard errors for the smd estimates is not always straightforward.

The minimum-distance (md) estimator minimizes the distance between a sample auxiliary
statistic ψ̂n = ψ̂n(θ0) and it’s expected value ψ(θ) and is defined as

θ̂n,md = argminθ‖gn(θ)‖2
Wn
, gn(θ) = ψ̂n − ψ(θ) (md)

where Wn is a weighting matrix. In cases when the binding function ψ(·) that maps θ to the
auxiliary statistic is tractable, Algorithm 2 provides a convenient way to compute standard
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errors for θ̂n,md. When ψ(θ) is not tractable, smd simulates data yi,s(θ) for given θ using iid
errors ei,s and estimates ψ(θ) by ψ̂n,S(θ) = 1

S

∑S
s=1 ψn,s(yn,s(θ)). The estimator is

θ̂n,smd = argminθ‖gn,S(θ)‖2
Wn

gn,S(θ) = ψ̂n − ψ̂n,S(θ) (smd)

To motivate our simulation based rnr, consider the exactly identified case when it holds
that ψ̂n−ψ(θ̂n,md) = 0. Note that while the vector of auxiliary statistics ψ̂(b)

m computed using
resampled data satisfies E?(ψ̂(b)

m ) = ψ̂n, the statistics ψ̂(b)
m,S(θ) computed by smd satisfies

E?[ψ̂(b)
m,S(θ)] = ψ(θ), for all θ. The two results together imply that E?[ψ̂(b)

m − ψ̂(b)
m,S(θ)] when

evaluated at θ = θ̂n,md is ψ̂n − ψ(θ̂n,md) which takes the value of zero as in md estimation.
This suggests a simulation based resampled objective function defined as:

Q
(b)
m,S(θ) = ‖ψ̂(b)

m − ψ̂
(b)
m,S(θ)‖2

Wn
, gm,S(θ) = ψ̂(b)

m − ψ̂
(b)
m,S(θ) (rnr,s)

will have the same minimizer as the infeasible md, at least to a first-order. Let the draws
be generated according θb+1,S = θb,S − γPb+1,SG

(b)
m,S(θb) with gradient

G
(b)
m,S(θb,S) = −2∂θ′ψ̂

(b)
m,S(θb,S)Wn(ψ̂(b)

m − ψ̂
(b)
m,S(θ)). (12)

By Theorem 1, the mean θrnr,S is consistent for θ̂n,md. By implication, θre,S will also be more
efficient than θ̂n,smd, which we will verify in simulations below. To analyze θre,S, we need the
following:

Assumption 2.iii′. Suppose there exists finite constants C7, C8 such that for any S ≥ 1

a.
[
E?
(
‖ψ̂(b)

m − ψ̂n‖4
2

)]1/4

≤ C7√
m
;
[
E?
(

supθ∈Θ ‖ψ̂
(b)
m,S(θ)− ψ(θ)‖4

2

)]1/4

≤ C7√
mS

b.
[
E?
(
‖∂θψ̂(b)

m,S(θ̂n)− ∂θψ(θ̂n)‖4
2

)]1/4

≤ C8√
mS

.

Assumption 2.iii’ implies Assumption 2.iii where Gn(θ) is the gradient of md by taking
the difference G(b)

m,S(θ)−Gn(θ) and using the Cauchy-Schwarz inequality.
It remains to construct the variance of θrnr,S. The foregoing analysis would suggest that

valid inference would follow after the variance adjustment defined in Algorithm 2. However,
this is not the case. Intuitively, the estimator θrnr,S is consistent for θ̂n,md whose variance V0

does not involve simulation noise. But the quantity Vrnr defined in Algorithm 2 presumes
the presence of simulation noise in the estimate θrnr,S and will give standard errors that will,
in general, be too large. The are many ways to overcome this problem, and most involve
running a second chain of draws in parallel with the one used to compute the estimator. For
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example, taking the difference of two chains with the same simulated samples would work
as the simulation noise will offset.

Our preferred approach is to use a second chain that directly estimates the variance
of θrnr,S. As in the first chain, this second chain is generated as θ2

b+1,S = (1 − γ)θ2
b,S −

γPb+1,SG̃
(b)
m,S(θ2

b,S) as defined in (7), but the gradient is

G̃
(b)
m,S(θ1

b,S) = −2∂θ′ψ̂
(b)
m,S(θ1

b,S)Wn(ψ̂(b)
m − ψ̂n). (13)

Compared to the first chain defined by (12), the second chain replaces the simulated auxiliary
statistics ψ̂(b)

m,S(θ̂n) by the sample estimates ψ̂n which is already computed. As all other
quantities involved in computing (13) are taken from (12), the computation overhead of
generating θ2

b,S is thus negligible.

Proposition 1. Suppose that the Assumptions for Qn and Q(b)
m,S in Theorems 1 and 2 hold,

with Assumption 2.iii replaced by 2.iii’. Let θ̂n,md be the infeasible minimum-distance esti-
mator. Let {θ1

b,S} be a chain generated with G(b)
m,S defined as in (12), and {θ2

b,S} be generated
using G̃(b)

m,S defined as in (13). Let θrnr,S = 1
B

∑B
b=1 θ

1
b,S, Pb+1,S = [H

(b+1)
m,S (θ1

b,S)]−1, and define
Vrnr,S = m

φ(γ)
var?(θ2

b,S). Then for any S ≥ 1 fixed,

i.
√
n
(
θrnr,S − θ0

)
=
√
n
(
θ̂n,md − θ0

)
+ op?(1).

ii. As m, b→ +∞ with log(m)/b→ 0:

V−1/2
rnr,S

√
n
(
θrnr,S − θ0

) d?→ N (0, Id) ,

Forneron and Ng (2016, 2018) shows that a weighted average of smd estimates with in-
dependent simulation draws constitutes a posterior mean which is asymptotically equivalent
to the infeasible md estimator. This requires solving the optimization problem as many
times (ie. S > 1). Part i. of the proposition shows that this type of statistical efficiency
can be achieved by rnr in a single run, ie(S = 1). Resampling by rnr involves taking
draws from the joint distribution Fn × Fshocks to produce ψ̂(b)

m,S(θ), which is an estimate of
population mapping ψ(θ). In practice, the simulation and resampling noise in ψ̂(b)

m,S(θ) and
ψ̂

(b)
m are averaged out so that the variance of θrnr,S does not depend on S asymptotically.

This contrasts with the smd estimator θ̂n,smd which has vanishing simulation noise only when
S →∞ as n→∞.

Part ii of the Proposition involves a second sequence θ2
b,S which, as noted above, is used

to compute the variance of the estimator. To understand its underpinnings, recall that
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the sandwich variance for θ̂n,md has a meat component that is the variance of the score
−2∂θ′ψ(θ̂n,md)Wn(ψ̂n − ψ(θ̂n,md)). If ψ were tractable, a bootstrap draw of this score would
be −2∂θ′ψ(θ̂n,md)Wn(ψ̂

(b)
m − ψ(θ̂n,md)). But this is approximately −2∂θ′ψ̂

(b)
m,S(θ1

b,S)Wn(ψ̂
(b)
m −

ψ̂n) which is precisely the gradient (13) used to generate θ2
b,S. Hence it provides a correct

approximation of the variance of the scores. Though two chains are needed in the case of
simulation estimation, it only needs S = 1. These arguments are further illustrated using a
simple example in Appendix D.

Example 3: Dynamic Panel Consider the dynamic panel regression:

yit = αi + ρyit−1 + x′itβ + σeeit,

with ρ = 0.6, β = 1, σe = 1, xit ∼ N (0, 1), e ∼ N (0, 1), n = 1000 and T = 5. Let
A = IT − 1T1′T/T , a matrix which computes the time de-meaned yit− yi. The Least-Squares
Dummy Variable (LSDV) estimator is obtained by regressing Ay2:T on Ay1:T−1 and Ax2:T .
The estimator is inconsistent for fixed T as n→∞.

The LSDV estimator is inconsistent when n→∞ and T is fixed. Gouriéroux et al. (2010)
shows that indirect inference, which has an automatic bias correction property, is consistent
for fixed T . The idea is to match the sample LSDV estimator ψ̂n = θ̂n,LSDV with a simulated
ψ̂n,S(θ) = θ̂simn,LSDV (θ) using S ≥ 1 simulated samples.

To generate rnr draws, we resample (yi1, . . . , yiT , xi1, . . . , xiT )i=1,...,m with replacement
over i for given m and compute ψ̂(b)

m = θ̂
(b)
m,LSDV , our resampled moments. Using the new

simulation draws e(b+1)
it at each b, we simulate S ≥ 1 panels: y(b+1)

it,s = ρyit−1,s + x
(b+1)′
it,s β +

σee
(b+1)
it,s , for t = 1, . . . , T and i = 1, . . . ,m and compute the simulated moments ψ̂(b)

m,S =

θ̃
(b)
m,LSDV (θb). An addional moment is needed to estimate σe; we use the standard deviation
of the OLS residuals in the LSVD regression. The gradient and Hessian are computed using
finite differences. We illustrate with m = n, 100, 50 for n = 1000.

The LSDV estimate is 0.329 which is significantly downward biased. However, the indirect
inference (ind) estimator corrects the bias as shown in Gouriéroux et al. (2010). The estimate
of 0.619 in Table 7 for S = 1 bears this out. The rnr estimates are closer to θ0 than ind

for m = n, 100 and is similar for m = 50. The ind estimates with S = 10 are very close
to the rnr estimates obtained over all γ,m and S including S = 1. This implies that rnr

achieves the efficiency of ind with large S using just S = 1. The standard errors are smaller
than other methods except for S = 10. Results for S = 2, 5 are reported in Table D1.

We close the analysis with two remarks about the examples. As noted earlier, an ill-
conditioned Hessian can render slow convergence of gradient-based optimizers. The values
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Table 7: Dynamic Panel: Estimates of ρ and Standard Errors
Estimates Standard Errors

S m ind rnr0.3 rnr0.1 rnr0.01 ase boot dmk rnr0.3 rnr0.1 rnr0.01

200 0.619 0.589 0.592 0.590 0.045 0.049 0.050 0.034 0.034 0.025
1 100 - 0.589 0.588 0.586 - 0.048 - 0.036 0.039 0.037

50 - 0.580 0.588 0.581 - 0.050 - 0.037 0.037 0.024
200 0.584 0.591 0.589 0.589 0.035 0.036 0.036 0.035 0.036 0.032

10 100 - 0.589 0.591 0.587 - 0.034 - 0.034 0.037 0.030
50 - 0.586 0.589 0.587 - 0.035 - 0.038 0.031 0.032

Remark: Results reported for one simulated sample of size n = 200, T = 5.

of λmin(Hn)
λmax(Hn)

evaluated at θ = θ̂n, are 10−7, 8·10−4 and 7·10−6 for the probit, earnings dynamics,
and BLP examples, respectively. Classical gd should be slow in converging in these cases,
and the applications bear this out. Second, to reinforce the main result that Algorithm 2
provides valid inference, we evaluate the coverage of rnr in all of the simulated examples
considered. As seen from Table 8, rnr delivers a 5% size in almost all cases. Details are
given in Appendix C of the online supplement.

Table 8: Size of Confidence Intervals Across Methods and Examples
ase boot dmk ks rnr boot rnr

OLS
m = n = 200 m = 50

β0 0.044 0.043 0.043 0.041 0.049 0.040 0.047
β1 0.045 0.056 0.056 0.070 0.069 0.043 0.048

MA(1)
m = n = 500 m = 250

µ 0.291 0.048 0.294 - 0.183 0.051 0.169
ψ 0.066 0.047 0.067 - 0.064 0.035 0.044

m = n = 1000 m = 100
Dynamic ρ 0.055 0.047 0.044 - 0.050 0.052 0.040
Panel β 0.055 0.054 0.051 - 0.057 0.051 0.049
(S = 1) σ 0.060 0.053 0.046 - 0.057 0.052 0.059

m = n = 1000 m = 100
Dynamic ρ 0.051 0.054 0.055 - 0.053 0.059 0.053
Panel β 0.040 0.046 0.046 - 0.049 0.045 0.049
(S = 2) σ 0.065 0.056 0.053 - 0.056 0.056 0.056

m = n = 1000 m = 100
Dynamic ρ 0.052 0.054 0.053 - 0.048 0.051 0.050
Panel β 0.040 0.047 0.042 - 0.036 0.043 0.038
(S = 5) σ 0.065 0.058 0.056 - 0.064 0.061 0.061

Results based on 1000 replications with B = 1000, γ = 0.1; burn=45.
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7 Conclusion

In this paper, we design two algorithms to produce draws that, upon averaging, is asymptot-
ically equivalent to the full-sample estimate produced by a classical optimizer. By using the
inverse Hessian as conditioning matrix, the draws of Algorithm 2 immediately provide valid
standard errors for inference, hence a free lunch. In problems that require S simulations to
approximate the binding function, our algorithm achieves the level of efficiency of smd with
a large S, but at the cost of S = 1. Numerical evaluations show that Algorithm 2 produces
accurate estimates and standard errors but runs significantly faster than the conventional
bootstrap and most of the ‘short-cut’ methods.
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Appendix A

A.1 Derivations for the Least-Squares Example

In this example, yn = Xnθ̂n + ên, Qn(θ) = 1
2n

(yn − Xnθ)
′(yn − Xnθ), Hn = X ′nXn/n,Gn =

−X ′nên/n, and Q
(b)
m (θ) = 1

2m
(y

(b)
m −X(b)

m θ)′(y
(b)
m −X(b)

m θ), Hb = H
(b+1)
m (θb) = X

(b+1)′
m X

(b+1)
m /m.

Gb(θ) = −X(b+1)′
m [y

(b+1)
m −X(b+1)

m θ]/m. Let θ̂(b+1)
m = (X

(b+1)′
m X

(b+1)
m )−1X

(b+1)′
m y

(b+1)
m be the m

out of n bootstrap estimate. Orthogonality of least squares residuals will be used repeatedly.

Gradient Descent θk+1 = θk − γ [−X ′n(yn −Xnθk)/n]. Subtract θ̂n on both sides and
note that yn = Xnθ̂n + ên (full sample estimates), then:

θk+1 − θ̂n = θk − θ̂n − γ
[
−X ′n(Xnθ̂n + ên −Xnθk)/n

]
= θk − θ̂n − (γHn)(θk − θ̂n) + γX ′nên/n = (I − γHn)(θb − θ̂n) since X ′nên = 0.

Newton-Raphson θk+1 = θk − γ [Hn]−1 [−X ′n(yn −Xnθk)/n] . Subtract θ̂n on both sides:

θk+1 − θ̂n = θk − θ̂n − γH−1
n

[
−[X ′nXn/n][θ̂n − θk] +X ′nên/n

]
= (1− γ)(θk − θ̂n) since X ′nên = 0.

Stochastic Gradient Descent θb+1 = θb − γb
[
−X(b)′

m (y
(b)
m −X(b)

m θb)/m
]
. Thus

θb+1 − θ̂n = θb − θ̂n − γb
[
−X(b+1)′

m (y(b+1)
m −X(b+1)

m θ̂n −X(b+1)
m [θb − θ̂n])/m

]
= (I − γbHb)(θb − θ̂n) + γbX

(b+1)′
m (y(b+1)

m −X(b+1)
m θ̂n)/m

= (I − γbHb)(θb − θ̂n)− γbGb(θ̂n) since X(b+1)′

m ê(b+1)
m = 0.

Resampled Gradient Descent θb+1 = θb − γ
[
−X(b+1)′

m (y
(b+1)
m −X(b+1)

m θb)/m
]
. Subtract

θ̂n on both sides and note that y(b+1)
m = X

(b+1)
m θ̂

(b+1)
m + ê

(b+1)
m (bootstrap estimates). Then

θb+1 − θ̂n = θb − θ̂n − γ
[
−X(b+1)′

m (X(b+1)
m [θ̂(b+1)

m − θ̂n] + ê(b+1)
m −X(b+1)

m [θb − θ̂n])/m
]

= θb − θ̂n − (γHb)(θb − θ̂n) + γHb(θ̂
(b)
m − θ̂n)

= (I − γHb)(θb − θ̂n) + γHb(θ̂
(b+1)
m − θ̂n) since X(b+1)′

m ê(b+1)
m = 0.

Resampled Newton-Raphson θb+1 = θb−γ[Hb]
−1
[
−X(b+1)′

m (y
(b+1)
m −X(b+1)

m θb)/m
]
. Then

θb+1 − θ̂n = θb − θ̂n − γ[Hb]
−1
[
−X(b+1)′

m (X(b+1)
m [θ̂(b+1)

m − θ̂n] + ê(b+1)
m −X(b+1)

m [θb − θ̂n])/m
]

= (1− γ)(θb − θ̂n) + γ(θ̂(b+1)
m − θ̂n) since X(b+1)′

m ê(b+1)
m = 0.

A-1



A.2 Proof of Lemma 3:

Note first that by construction,

γ
(
PbG

(b+1)
m (θb)− PmG

(b+1)
m (θ̂n)

)
= γPmHn(θ̂n)[θb − θ̂n]

+ γPm

(
G(b+1)
m (θb)−G(b+1)

m (θ̂n)−Hn(θ̂n)[θb − θ̂n]
)

(A.1)

+ γ
(
Pb − Pm

) (
G(b+1)
m (θb)−G(b+1)

m (θ̂n)
)
. (A.2)

From the definition of θb and θ?b , the difference can be expressed as:

θb+1 − θ?b+1 =
(
θb − γPbG(b+1)

m (θb)
)
−
(
θ̂n + Ψ(θ̂n)(θ?b − θ̂n)− γPmG

(b+1)
m (θ̂n)

)
= Ψ(θ̂n)(θb − θ?b ) + (Id −Ψ(θ̂n))(θb − θ̂n)− γ

(
PbG

(b+1)
m (θb)− PmG

(b+1)
m (θ̂n)

)
= Ψ(θ̂n)(θb − θ?b ) + γPmHn(θ̂n)[θb − θ̂n]− γ

(
PbG

(b+1)
m (θb)− PmG

(b+1)
m (θ̂n)

)
= Ψ(θ̂n)(θb − θ?b )− (A.1)− (A.2)

where the third equality follows from the fact that Id−Ψ(θ̂n) = γPmHn(θ̂n). By Assumption
2 i. and vi. as well as Lemma 2,

E?(‖(A.1)‖2) ≤ γλPC2E?(‖θb − θ̂n‖2
2)

≤ 3γλPC2

(
(1− γ)2b+2d2

0,n +
C2

5

γ2m

)
.

By Assumptions 2 ii., 3 ii., Lemma 2, mean-value theorem, and Cauchy-Schwarz inequality,

E? (‖(A.2)‖2) ≤ γ
[
E?
(
‖Pb − Pm‖2

2

)]1/2 [E? (‖H(b+1)
m (θ̃b)(θb − θ̂n)‖2

2

)]1/2

≤ γλHC6

(
ρbd0,n +

1√
m

)(
(1− γ)b+1d0,n +

C5

γ
√
m

)
,

where θ̃b is some intermediate value between θb and θ̂n, and an upper bound defined in terms
of ρ to simplify notation.

The two bounds leads to the following recursion on the coupling distance:

E?
(
‖θb+1 − θ?b+1‖2

)
≤ ρE? (‖θb − θ?b‖2) + E?(‖(A.1)‖2) + E?(‖(A.2)‖2)

≤ ρE? (‖θb − θ?b‖2) + C+
6 (ρb[d0,n + d2

0,n] +
1

m
)

≤ C+
6

1− ρ

(
ρb[d0,n + d2

0,n] +
1

m

)
,
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where C+
6 is a constant which depends on the terms used to bound (A.1) and (A.2). Recall

that θ0 = θ?0 so that the coupling distance is zero for b = 0. Putting C7 = C+
6 /(1− ρ) proves

the desired result.

A.3 Proof of Theorem 1

To bound E?
(
‖θ?re − θ̂n‖2

)
, we use the recursive representation of (7) and take the average:

θ
?

re − θ̂n =
1

B

B∑
b=1

Ψ(θ̂n)b(θ0 − θ̂n)− γ 1

B

B∑
b=1

b−1∑
j=0

Ψ(θ̂n)jPmE?
(
G(b−j)
m (θ̂n)

)
− γ 1

B

B∑
b=1

b−1∑
j=0

Ψ(θ̂n)jPm

[
G(b−j)
m (θ̂n)− E?

(
G(b−j)
m (θ̂n)

)]
︸ ︷︷ ︸

∆
(b−j)
m (θ̂n)

.

Assumption 3 i. implies that ‖Ψ(θ̂n)b(θ0 − θ̂n)‖2 ≤ ρb‖θ0 − θ̂n‖2, so the first term is
less than d0,n

(1−ρ)B
in expectation. Consider now the second term. By Assumption 2 iv,

‖Ψ(θ̂n)jPmE?
(
G

(b−j)
m (θ̂n)

)
‖2 ≤ ρjλP

C′3√
m

so the second term is less than λPC
′
3

(1−ρ)
√
m
. For the

third term and with ∆
(b−j)
m (θ̂n) defined above, we have by conditional independence,

[
E?
‖ 1

B

B∑
b=1

b−1∑
j=0

Ψ(θ̂n)jPm∆(b−j)
m (θ̂n)‖22

]1/2

=

[
E?
‖ 1

B

B∑
b=1

B−b+1∑
j=0

Ψ(θ̂n)jPm∆(b)
m (θ̂n)‖22

]1/2

=
1√
mB

[
1

B

B∑
b=1

E?
‖B−b+1∑

j=0

Ψ(θ̂n)j
√
mPm∆(b)

m (θ̂n)‖22

]1/2

≤ λP

(1− ρ)
√
mB

[(
sup

1≤b≤B
E?‖
√
m∆(b)

m (θ̂n)‖22

)]1/2

≤ γλP [C3 + C ′3]

(1− ρ)
√
mB

where the first inequality follows from the average being less than the sup, combined with
‖Ψ(θ̂n)jPm∆

(b)
m (θ̂n)‖ ≤ ρjλP‖∆(b)

m (θ̂n)‖ which is summable over j ≥ 0. The last inequality

uses Assumption 2 iii-iv. Recall that Lemma 3 implies (9) which states that E?
(
‖θre −
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θ
?

re‖2

)
≤ C7

1−ρ

(
1
m

+
d0,n+d20,n

B

)
. Now putting everything together, we have:

E?
(
‖θre − θ̂n‖2

)
≤ E∗

(
‖θre − θ

∗
re‖2

)
+ E∗

(
θ
∗
re − θ̂n‖2

)
≤ C8

(
1

m
+
d0,n + d2

0,n

B
+

1√
mB

)
,

which is a o( 1√
n
) when

√
n

min(m,B)
→ 0 and d0,n = O(1).

A.4 Proof of Theorem 2

The property that Pm = [Hn(θ̂n)]−1 when Pb = [H
(b+1)
m (θb)]

−1 is crucial for what is to follow,
and it is useful to understand why. Under Assumption 2 vi.,[

E?
(
‖Id − PbHn(θ̂n)‖2

2

)]1/2

≤ 1

λP

[
E?
(
‖P−1

b −Hn(θ̂n)‖2
2

)]1/2

.

Given that Pb = [H
(b+1)
m (θb)]

−1, an application of the triangular inequality, Assumption 1 ii.
and 2 v. together with Lemma 2 give[
E?
(
‖P−1

b −Hn(θ̂n)‖2
2

)]1/2

=
[
E?
(
‖H(b)

m (θb)−Hn(θ̂n)‖2
2

)]1/2

≤
[
E?
(
‖Hn(θb)−Hn(θ̂n)‖2

2

)]1/2

+
[
E?
(
‖H(b+1)

m (θb)−Hn(θb)‖2
2

)]1/2
≤ C1

[
E?
(
‖θb − θ̂n‖2

2

)]1/2

+

[
E?
(

sup
θ∈Θ
‖H(b+1)

m (θ)−Hn(θ)‖2
2

)]1/2

≤ (1− γ)bC1d0,n +

(
C1C5

γ
+ C4

)
1√
m
.

This implies that Assumption 3 ii. holds with C6 = max(C1,
C1C5

γ
+C4) and Pm = [Hn(θ̂n)]−1.

Assumption 3 i. automatically holds since we now have Ψ(θ̂n) = (1− γ)Id which has all its
eigenvalues in [0, 1) for any γ ∈ (0, 1].

To prove Theorem 2, we first substitute θb for the linear process θ?b using:
√
m√
φ(γ)

(Vm)−1/2(θb − θ̂n) =

√
m√
φ(γ)

(Vm)−1/2(θb − θ?b ) +

√
m√
φ(γ)

(Vm)−1/2(θ?b − θ̂n).

By Lemma 3,
√
m√
φ(γ)

(Vm)−1/2(θb − θ?b ) = op?(1) when log(m)/b→ 0 since it implies
√
mγb =

exp(b[ log(m)
2b

+ log(γ)])→ 0.
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For rnr we have Pm = Hn(θ̂n)−1 so that Ψ(θ̂n) = (1− γ)Id. Using the recursion (7), we
have:

√
m√
φ(γ)

(Vm)−1/2(θ?b − θ̂n) =

√
m√
φ(γ)

(Vm)−1/2(1− γ)b(θ0 − θ̂n)

− γ
b−1∑
j=0

(1− γ)j
√
m√
φ(γ)

(Vm)−1/2[Hn(θ̂n)]−1G(b−j)
m (θ̂n).

Since the [Hn(θ̂n)]−1G
(b−j)
m (θ̂n) are independent (conditional on the data) and identically

distributed, we have by a convolution argument:

E?
(

exp(iτ ′
√
mγ

b−1∑
j=0

(1− γ)j
√
m√
φ(γ)

(Vm)−1/2[Hn(θ̂n)]−1G(b−j)
m (θ̂n))

)

=
b−1∏
j=0

E?
(

exp(iτ ′
√
mγ(1− γ)j

√
m√
φ(γ)

(Vm)−1/2[Hn(θ̂n)]−1G(b−j)
m (θ̂n))

)

=
b−1∏
j=0

[
exp

(
−‖τ‖

2
2

2

γ2(1− γ)2j

φ(γ)

)(
1 +

rm(γ(1− γ)jτ/φ(γ))

mβ

)]

= exp

(
−‖τ‖

2
2

2

γ2[1− (1− γ)2b]

[1− (1− γ)2]φ(γ)

)
︸ ︷︷ ︸

=exp(−‖τ‖22/2)(1+o(1))

b−1∏
j=0

[(
1 +

rm(γ(1− γ)jτ/φ(γ))

mβ

)]
︸ ︷︷ ︸

(I)

.

To show that the last product is convergent under the stated assumptions, take logs and use
the inequality x

1+x
≤ log(1 + x) ≤ x for x > −1. Then

log (‖I‖) =
b−1∑
j=0

log

(
1 +
|rm(γ(1− γ)jτ/φ(γ))|

mβ

)
≤

b−1∑
j=0

|rm(γ(1− γ)jτ/φ(γ))|
mβ

≤
b−1∑
j=0

‖γτ/φ(γ)‖α(1− γ)αj

mβ
≤ ‖γτ/φ(γ)‖α

[1− (1− γ)α]mβ
.

Note that γ
φ(γ)

= 2− γ ≥ 1 for γ ∈ (0, 1]. Putting everything together we have:

E?
(

exp(iτ ′
√
m√
φ(γ)

(Vm)−1/2(θb − θ̂n)

)
= exp

(
−‖τ‖

2
2

2

)(
1 +O

(
‖τ‖α

mβ

(2− γ)α

[1− (1− γ)α]

))
,

which implies the desired convergence in distribution.
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Appendix B Implementing rNR in R

To illustrate how the rnr is implemented in a real-data setting, we provide some detailed
commented r code below which estimates a probit model on the Mroz (1987) data.

set.seed (123) # set the seed
library(numDeriv) # compute numerical derivaties using finite differences ,

alternative: library(pracma) is usually faster
library(foreign) # to load the data set in Stata dta format

data = read.dta(’mroz.dta’) # read the mroz data

y = data$inlf # outcome variable
X = cbind(data$nwifeinc ,data$educ ,data$exper , # regressors

data$exper^2,data$age ,data$kidslt6 ,data$kidsge6 ,1)

colnames(X) = c(’nwifeinc ’,’educ’,’exper ’,’exper2 ’, # labels
’age’,’kidslt6 ’,’kidsge6 ’,’constant ’)

n = 753 # sample size
index0 = 1:n # indices for the sample data

loglik <- function(coef ,index=index0) {
# compute the log -likelihood for the Probit model on the

observations indexed by index (default 1:n, the original sample)
at theta = coef

score = X[index ,]%*%coef # compute the z-scores
ll = y[index]*log( pnorm(score) ) +

(1-y[index ])*log( 1-pnorm(score) )
return( sum( ll ) )

}

d_loglik <- function(coef ,index=index0) {
# compute the gradient of the log -likelihood for the Probit model on

the observations indexed by index (default 1:n, the original
sample) at theta = coef

# In this example , the gradient is analytically tractable , it could
be evaluated by finite differences by using the following:

# d_loglik <- function(coef ,index=index0) { return(jacobian(loglik ,
coef ,index=index)) }

yy = y[index] # keep observations indexed by index
XX = X[index ,] # keep observations indexed by index
score = XX%*%coef # compute the z-score
dll = 0 # initialize the gradient

for (i in 1: length(index)) {
dll = dll +
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(yy[i]*XX[i,]*dnorm(score[i])/pnorm(score[i]) -
(1-yy[i])*XX[i,]*dnorm(score[i])/(1-pnorm(score[i])))

}
return(dll)

}

rNR <- function(coef0 , learn = 0.1, iter = 500, m = n) {
# generate ’B = iter ’ rNR draws with learning rate ’gamma = learn ’

with m out of n resampling

coefs = matrix(NA,iter ,length(coef0)) # matrix where draws will
be stored

coefs[1,] = coef0 # initialize the first -draw

for (i in 2:iter) {
index = sample (1:n,m,replace=TRUE) # sample m out of n

observations with replacement

G = d_loglik(coefs[i-1,],index=index) # compute the resampled
gradient G using analytical derivatives. Alternative using
finite differences:

# G = jacobian(loglik ,coefs[i-1,],index=index)
H = hessian(loglik ,coefs[i-1,],index=index) # compute the

resampled hessian H using finite differences; we could also
compute the jacobian of the gradient d_loglik

coefs[i,] = coefs[i-1,] - learn*solve(H,G) # update
}
colnames(coefs) = colnames(X) # label the coefficients
return( list(coefs = coefs) ) # return draws

}
# estimates and standard errors (source: Introductory Econometrics , A

Modern Approach 2nd Edition , Wooldridge)
coef = c( -0.012 ,0.131 ,0.123 , -0.0019 , -0.053 , -0.868 ,0.036 ,0.270)
ses = c( 0.005 ,0.025 ,0.019 , 0.0006 , 0.008, 0.119 ,0.043 ,0.509)

iter_rNR = 2e3 # number of rNR draws
learn = 0.3 # learning rate
coef0 = coef*3.25 # starting value

m1 = 753 # m = n
m2 = 200 # m = 200
m3 = 100 # m = 100

# adjustments to get valid standard errors
adj_rnr1 = sqrt(m1/n)*sqrt( (1-(1-learn)^2)/learn ^2 )
adj_rnr2 = sqrt(m2/n)*sqrt( (1-(1-learn)^2)/learn ^2 )
adj_rnr3 = sqrt(m3/n)*sqrt( (1-(1-learn)^2)/learn ^2 )

b1 = 1 + round(log (0.01)/log(1-learn)) # burn -in sample size
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# generate rNR draws
out_rNR1 = rNR(coef0 ,learn ,b1 + iter_rNR , m1)
out_rNR2 = rNR(coef0 ,learn ,b1 + iter_rNR , m2)
out_rNR3 = rNR(coef0 ,learn ,b1 + iter_rNR , m3)

# format output
estimates =

rbind( coef ,
apply(out_rNR1$coef[b1:(iter_rNR+b1) ,],2,mean),
apply(out_rNR2$coef[b1:(iter_rNR+b1) ,],2,mean),
apply(out_rNR3$coef[b1:(iter_rNR+b1) ,],2,mean))

std_errs =
rbind( ses ,

apply(out_rNR1$coef[b1:(iter_rNR+b1) ,],2,sd)*adj_rnr1 ,
apply(out_rNR2$coef[b1:(iter_rNR+b1) ,],2,sd)*adj_rnr2 ,
apply(out_rNR3$coef[b1:(iter_rNR+b1) ,],2,sd)*adj_rnr3)

estimates = as.data.frame(estimates)
colnames(estimates) = colnames(X)
rownames(estimates) = c(’MLE’,’rNRn’,’rNR200 ’,’rNR100 ’)

std_errs = as.data.frame(std_errs)
colnames(std_errs) = colnames(X)
rownames(std_errs) = c(’ase’,’rNRn’,’rNR200 ’,’rNR100 ’)

# print results
print(round( cbind( t(estimates), t(std_errs) ), digits = 3 ))

# output printed below:
# MLE rNRn rNR200 rNR100 ase rNRn rNR200 rNR100
#nwifeinc -0.012 -0.012 -0.013 -0.014 0.005 0.005 0.005 0.005
#educ 0.131 0.132 0.136 0.140 0.025 0.026 0.026 0.028
#exper 0.123 0.123 0.123 0.125 0.019 0.019 0.020 0.021
#exper2 -0.002 -0.002 -0.002 -0.002 0.001 0.001 0.001 0.001
#age -0.053 -0.053 -0.054 -0.055 0.008 0.008 0.009 0.009
#kidslt6 -0.868 -0.872 -0.895 -0.917 0.119 0.121 0.121 0.126
#kidsge6 0.036 0.038 0.040 0.038 0.043 0.045 0.047 0.049
#constant 0.270 0.272 0.282 0.276 0.509 0.506 0.505 0.535
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Appendix C Additional Empirical and Simulation Results

C.1 Simulated Examples

Example 2: MA(1) The following provides additional details on computing the estimates
found in Table 3. The data generating process is yt = µ + et + ψet−1 where et ∼ N (0, 1)

iid. For a given θ = (µ, ψ), the filtered residuals are computed as et(θ) = yt − µ− ψet−1(θ)

initialized with e0 = 0. The nlls objective is then Qn(θ) =
∑n

t=1 et(θ)
2. To find the gradient

of Qn we compute the jacobian and the Hessian of xt(θ) = µ+ ψet−1(θ) which are given by:

∇xt(θ) =

(
1

ψ det−1(θ)
dψ

+ et−1(θ).

)
, ∇2xt(θ) =

(
0 0

0 det−1(θ)
dψ

)
.

The gradient of Qn is Gn(θ) = 2
∑n

t=1 et(θ̂n)∇xt(θ̂n) = 0. Similarly, the Hessian is Hn(θ) =

2
∑n

t=1[et(θ̂n)∇2xt(θ̂n)+∇xt(θ̂n)∇′xt(θ̂n)]. The objective is minimized using Newton-Raphson
iterations based on the analyticalGn, Hn. The asymptotic standard errors are computed from
the inverse Hessian, based on the information matrix equality.

For the standard bootstrap, we implement a resampling scheme desgined for State-Space
models described in Stoffer and Wall (2004). Given a converged estimate θ̂n, compute the
filtered et(θ̂n). The resampled data is then generated as y(b)

t = µ̂n + e
(b)
t (θ̂n) + ψ̂ne

(b)
t−1(θ̂n)

where e(b)
t (θ̂n) are iid draws with replacement taken from {êt(θ̂n)}t=1,...,n. The resampled

nlls objective Q(b)
n (θ) is then computed and minimized as described above. This procedure

is very time-consuming and is implemented in C++ using Rcpp to reduce computation time.
Other methods described below are implemented using only r.

To implement dmk, given a converged estimate θ̂n, filtered residuals et(θ̂n) and their
derivates, we sample indices t1,b, . . . , tn,b with replacement from {1, . . . , n} for each b and
compute the resampled gradient and Hessian as G(b)

n = 2
∑n

j=1 etj,b(θ̂n)∇xtj,b(θ̂n) and H(b)
n =

2
∑n

j=1[etj,b(θ̂n)∇2xtj,b(θ̂n) +∇xtj,b(θ̂n)∇′xtj,b(θ̂n)]. We then generate the draws using one nr

iteration θ(b)
dmk = θ̂n − [H

(b)
n (θ̂n)]−1G

(b)
n (θ̂n).

To implement rnr with m ≤ n, sample a block of m observations (y
(b)
1 , . . . , y

(b)
m ) =

(yt, yt+1, . . . , yt+m) with 1 ≤ t ≤ n−m+1 and compute the filtered residuals e(b)
t (θb−1) = y

(b)
t −

µb−1−ψb−1e
(b)
t−1(θb−1) for t = 1, . . . ,m where (µb−1, ψb−1) = θb−1 is the previous rnr draw. As

above, the filtered residuals are initialized at e0 = 0 and the rnr draws are initialized at θ0 =

(0, 0). Similarly to our implementation of dmk, we then we sample indices t1,b, . . . , tm,b with
replacement from {1, . . . ,m} and compute the resampled gradient and Hessian G

(b)
m , H

(b)
m ,

the updating equation gives the draws θb = θb−1 − γ[H
(b)
m (θb−1)]−1G

(b)
m (θb−1).
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Size of Confidence Intervals in the Simulated Examples The table below presents
the size of confidence intervals over 1000 replications in the simulated examples of Section
5. Frequentist confidence intervals (ase) are computed using θ̂n ± 1.96se(θ̂n). Bootstrap
confidence intervals for the standard bootstrap (boot), dmk and ks are computed by
taking the 2.5 and 97.5% percentiles of the draws θ(b) except for the dynamic panel as
discussed below. For rnr, the confidence intervals are computed by taking the 2.5 and
97.5% percentiles of θre +

√
m

nφ(γ)
(θb − θre) where φ(γ) = γ2

1−(1−γ)2
.

For the dynamic panel, the standard bootstrap (boot), dmk and ks draws are adjusted
so that confidence intervals are computed by taking the 2.5 and 97.5% percentiles of θ̂n,smd +

(θ(b)− θB), where θB is the average bootstrap draw. Without this recentering the confidence
intervals display significant size distortion, see Appendix D for a discussion of this recentering.
For rnr, we take the 2.5 and 97.5% percentiles of θre,S+

√
m

nφ(γ)
θ2
b,S where θre,S = 1

B

∑B
b=1 θ

1
b,S

after discarding the burn-in draws.

C.2 Empirical Examples

Application 1: Labor Force Participation The table below presents the estimates and
standard errors for all methods and coefficients in the Mroz (1987) application.

Table C1: Labor Force Participation: Estimates and Standard Errors
Estimates

mle rnrn rnr200 rnr100 rqnn rqn200 rqn100

nwifeinc -0.012 - - - -0.012 -0.013 -0.014 -0.012 -0.011 -0.012
educ 0.131 - - - 0.132 0.138 0.143 0.131 0.129 0.129
exper 0.123 - - - 0.123 0.124 0.123 0.123 0.124 0.125
exper2 -0.002 - - - -0.002 -0.002 -0.002 -0.002 -0.002 -0.002
age -0.053 - - - -0.053 -0.053 -0.055 -0.052 -0.052 -0.052
kidslt6 -0.868 - - - -0.874 -0.892 -0.902 -0.864 -0.855 -0.844
kidsge6 0.036 - - - 0.037 0.038 0.041 0.036 0.035 0.032
const. 0.270 - - - 0.271 0.216 0.234 0.248 0.256 0.249

Standard Errors
ase boot dmk ks rnrn rnr200 rnr100 rqnn rqn200 rqn100

nwifeinc 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.005
educ 0.025 0.026 0.026 0.025 0.025 0.027 0.028 0.027 0.025 0.025
exper 0.019 0.020 0.019 0.019 0.019 0.020 0.021 0.019 0.018 0.017
exper2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
age 0.008 0.009 0.008 0.008 0.009 0.008 0.009 0.009 0.008 0.008
kidslt6 0.119 0.120 0.118 0.118 0.120 0.119 0.129 0.117 0.113 0.117
kidsge6 0.043 0.046 0.045 0.045 0.045 0.048 0.047 0.044 0.042 0.045
const. 0.509 0.512 0.507 0.505 0.494 0.535 0.544 0.544 0.494 0.506
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We also implemented rgd in this application to evaluate its feasibility in a real-data
setting. We found that rgd requires a burn-in greater than 1000 draws to converge and
the high persistence of the draws results in a very small effective sample size while the rnr

converges quickly (≤ 20 draws) and has good mixing properties. This is mainly due to the
ill-conditioning of the problem since λmin(Hn)

λmax(Hn)
evaluated at θ = θ̂n is 10−7 which implies a

very slow convergence for gd sgd and rgd.

Application 2: Earnings Dynamics During the initial convergence phase some ad-
justments to the rnr updating equations were required to handle the non-convexity of the
objective in the Moffitt and Zhang (2018) application. For rnr and rqn, draws such that
the sample objective Qn increases 6-folds or more are discarded, i.e. we only keep θb if
Qn(θb) ≤ 6Qn(θb−1). This never occurs for rnr and rnrw. It occurred twice for rqn and
four times for rqnw but only in the burn-in sample with burn = 50. When a draw is dis-
carded, the bfgs approximation of the Hessian is reset to the Hessian computed using finite
differences. These adjustments ensured that rqn converged from the original starting values.
For rnrw, we reweight the observations using exponential E(1) draws. For ks, the score is
reweighted using draws from the Rademacher distribution. Results presented in Table 5 were
computed using 4 cluster nodes with an eight-core 2.6 GHz Intel Xeon E5-2650v2 processor.

Application 3: Demand for Cereal To side-step possible identification issues, we omit
the income2∗price interaction as well as the child∗price and age-related coefficients. The
results are broadly similar when the child∗price coefficient is included.

The r package BLPestimatoR does not offer a bootstrap option. The ‘parametric’
bootstrap implemented in the Python pyBLP package of Conlon and Gortmaker (2019)
draws from the asymptotic distribution, making Gaussian draws centered at θ̂n with a sand-
wich variance-covariance matrix. BLPestimatoR, implements estimation taking as input
a dataset, initial values and a model specification. To implement the standard bootstrap
using this package, we simply update the data by resampling at the market level and use the
built-in functions to re-estimate using as initial value the sample estimate θ̂n. For dmk, rnr

and rqn the data is updated as described above, then built-in functions provide analytical
gradient estimates. The Hessian is computed for dmk and rnr using finite differences.

Table C2 replicates the rnr estimates and standard errors from Section 5 with different
learning rates γ = 0.1, 0.3, 0.6. The results are similar using γ ∈ [0.1, 0.3] while γ = 0.6 is
less stable and results in large standard errors for the income∗price interaction coefficient.
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Table C2: Demand for Cereal: Estimates and Standard Errors for γ = 0.1, 0.3, 0.6

Estimates Standard Errors
θ̂n rnr0.1 rnr0.3 rnr0.6 boot rnr0.1 rnr0.3 rnr0.6

st
de
v

const. 0.284 0.264 0.266 0.260 0.129 0.126 0.127 0.176
price 2.032 2.191 2.183 2.162 1.198 0.930 1.013 1.689
sugar -0.008 -0.006 -0.006 -0.005 0.017 0.011 0.011 0.017
mushy -0.077 -0.057 -0.056 -0.057 0.177 0.151 0.163 0.233

in
co
m
e const. 3.581 3.475 3.463 3.459 0.666 0.721 0.747 1.451

price 0.467 1.235 1.360 1.255 3.829 3.744 4.187 16.458
sugar -0.172 -0.170 -0.170 -0.166 0.028 0.029 0.028 0.135
mushy 0.690 0.643 0.634 0.535 0.345 0.353 0.355 1.582

Results presented in Table 5 were computed using 4 cluster nodes with a fourteen-core 2.4
GHz Intel Xeon E5-2680v4 processor. The CH estimates were computed on a different batch
job and were assigned at runtime to an eight-core 2.6 GHz Intel Xeon E5-2670 processor.
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Appendix D SMD Estimation

Table D1: Dynamic Panel: Estimates of ρ and Standard Errors
Estimates Standard Errors

S m ind rnr0.3 rnr0.1 rnr0.01 ase boot dmk rnr0.3 rnr0.1 rnr0.01

200 0.619 0.589 0.592 0.590 0.045 0.049 0.050 0.034 0.034 0.025
1 100 - 0.589 0.588 0.586 - 0.048 - 0.036 0.039 0.037

50 - 0.580 0.588 0.581 - 0.050 - 0.037 0.037 0.024
200 0.604 0.587 0.589 0.588 0.041 0.042 0.041 0.036 0.034 0.024

2 100 - 0.588 0.587 0.589 - 0.041 - 0.033 0.036 0.037
50 - 0.588 0.592 0.581 - 0.041 - 0.037 0.038 0.038
200 0.578 0.589 0.590 0.590 0.037 0.038 0.037 0.033 0.035 0.034

5 100 - 0.591 0.589 0.588 - 0.038 - 0.036 0.038 0.037
50 - 0.583 0.581 0.581 - 0.038 - 0.037 0.035 0.029
200 0.584 0.591 0.589 0.589 0.035 0.036 0.036 0.035 0.036 0.032

10 100 - 0.589 0.591 0.587 - 0.034 - 0.034 0.037 0.030
50 - 0.586 0.589 0.587 - 0.035 - 0.038 0.031 0.032

Remark: Results reported for one simulated sample of size n = 200, T = 5.

SMD Estimation of a Sample Mean

To illustrate Proposition 1, consider the simple model yi ∼ N (θ0, 1). The md estimator of
θ0 is θ̂md = yn ≡ ψ̂n. For any given θ, let ysi (θ) = θ + esi where esi ∼ N (0, 1). The smd

estimator is the θ that equates ψ(θ, yS) = yn,S(θ) to ψ̂n, and is found to be θ̂smd = θ̂md−en,S.
The rnr resamples and simulates the binding function to give

θ1
b+1,S − θ̂n,md = (1− γ)(θ1

b,S − θ̂n,md) + γ(θ̂(b)
m,md − θ̂n,md − e(b)

m,S).

Note that resampling alone gives θb+1 − θ̂n,md = (1 − γ)(θb − θ̂n,md) + γ(θ̂
(b)
m,md − θ̂n,md).

Taking conditional expectations, we have E?(θ1
b+1,S) = θ̂n,md + (1− γ)b+1(θ0 − θ̂n,md) so that

E?(θre,S) = θ̂n,md +O( 1
B

), as in the OLS example. Furthermore, var?(θre,S) = O( 1
mB

+ 1
mSB

)

where the first term is due to resampling (θ̂(b)
m − θ̂n,md) and the second is due to simulation

noise (e(b)
m,S). Hence for this example, θre = θ̂n,md + Op?(

1
B

+ 1√
mB

+ 1√
mSB

), showing that
by averaging over both the resampling and simulation noise, θre,S is first-order equivalent to
θ̂n,md if

√
n

min(m,B)
→ 0 for any S ≥ 1.

Part ii. of the Proposition involves a second sequence θ2
b,S because the variance of the

rnr draws are comprised of two quantities: var?(θ̂(b)
m ) and var?(e(b)

m,S). But m
φ(γ)

var?(θb) =

mvar?(θ̂(b)
m ) + mvar?(e(b)

m,S) > mvar?(θ̂(b)
m ), and as a consequence var∗(θ̂(b)

m ) is larger than the
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actual sampling uncertainty of θre,S. Running the second chain in parallel using the same
resampled statistic {y(b)

m }b=1,...,B produces the AR(1) draws {θ2
b,S}. We can rewrite these

draws as:
θ2
b+1,S = (1− γ)θ2

b,S + γ(θ̂(b)
m,md − θ̂n,md).

This is an AR(1) process that targets the infeasible sampling distribution based on the
intractable md objective function. From the OLS example, we know that var?(θ2

b,S) =
γ2+o(1)

1−[1−γ]2
var?(θ̂(b)

m,md) which is proportional to the desired variance. Hence, Vre,S = m
φ(γ)

var?(θ2
b ) =

mvar?(θ̂(b)
m,md) yields valid standard errors for θre,S.

Note also that the smd bootstrap draws θ̂(b)
m,smd = θ̂

(b)
m,md− ebm,S are centered around θ̂n,md

instead of θ̂n,smd because the simulation noise ebm,S averages out. Since E?(θ̂(b)
m,smd) = θ̂n,md,

the bootstrap confidence interval must be re-centered around θ̂n,smd to have correct size. In
contrast with rnr, the variance does not need to be adjusted. In the numerical examples
below, the draws were re-centered around θ̂n,smd. A numerical illustration of this example is
given below.

Example 4: Sample Mean To illustrate that the rnr draws achieve the same efficiency
as an smd estimators with S = ∞ at a lower computation cost of S = 1, we simulate
yi ∼ N (θ, 1) with θ = 1, n = 1000. Table D2 illustrates the variance properties of rnr

relative to indirect inference and the size of confidence intervals derived from the quantiles
of the draws θ2

b,S. With m = 200 < n = 1000, the variance of rnr is comparable to the
method of moments (which has no simulation noise) and indirect inference with S = 20

simulated samples of n = 1000 observations. The size of m out of n bootstrap confidence
intervals are reported in the last line of the table for each estimator. Size for rnr is again
comparable to the method of moments and indirect inference.

Table D2: Mean Estimaton: standard deviation and size
mm rnr ind1 ind5 ind10 ind20

std 0.031 0.032 0.047 0.035 0.033 0.032
size 0.059 0.056 0.059 0.059 0.044 0.050

Legend: n = 1000; rnr γ = 0.3,m = 200, B = 1000;
indS: indirect inference with S = 1, 5, 10, 20. 1000 replications.
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