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Abstract
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can benefit the receiver and can lead to a discontinuous drop in the sender’s
payoffs. We also examine a public-persuasion setting, where we show the sender
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which is based on the concave envelope of her capped value function.
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1 Introduction

Many institutions routinely collect and disseminate information. Although the col-

lected information is instrumental to its consumers, the goal of dissemination is often

to persuade. Persuading one’s audience, however, requires the audience to believe what

one says. In other words, the institution must be credible, capable of delivering both

good and bad news. Delivering bad news might be especially difficult, requiring the

institution to withstand pressure exerted by its superiors. The current paper studies

how an institution’s susceptibility to such pressures influences its persuasiveness and

the quality of the information it provides.

We study a persuasion game between a receiver (R, he) and a sender (S, she) who

cares only about R’s chosen action. The game begins with S publicly announcing an

official reporting protocol, which is a Blackwell experiment about the state. After

the announcement, S privately learns the state and whether her reporting protocol

is credible. If credible, R observes a message drawn from the announced reporting

protocol. Otherwise, S can freely choose the message that R sees. R then takes an

action, not knowing the message’s origin. Given state θ, reporting is credible with

probability χ(θ), a probability that we interpret as the strength of S’s institution in

said state.

As in the recent Bayesian persuasion literature (e.g., Kamenica and Gentzkow, 2011;

Alonso and Câmara, 2016; Ely, 2017), we view S as a principal, capable of steering

R toward her preferred equilibrium. Our main result (Theorem 1) characterizes S’s

highest equilibrium payoff . The characterization is geometric and is based on S’s value

function, which specifies the highest value S can obtain from R responding optimally

to a given posterior belief. Under full credibility (χ(θ) = 1 for all θ), our model

is equivalent to the one studied by Kamenica and Gentzkow (2011). As such, in

this case, S’s highest equilibrium value is given by the concave envelope of S’s value

function. The value function’s quasiconcave envelope gives S’s highest value under

cheap talk (see Lipnowski and Ravid (2019)), and therefore S’s highest equilibrium

value under no credibility (χ(θ) = 0 for all θ). For intermediate credibility values,

Theorem 1’s characterization combines the quasiconcave envelope of S’s value function

and the concave envelope of S’s capped value function, which captures S’s incentive

constraints.

Using our characterization, we analyze how S’s and R’s values change with χ(·). To

illustrate, consider a multinational firm (R) that can make a large investment (a = 1),
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a small investment (a = 1
2
), or no investment (a = 0) in a small open economy. Profits

from each investment level depend on the state of the economy, θ, which can be good

(θ = 1), or bad (θ = 0) with equal probability. In particular,1

uR(a, θ) = aθ − 1
2
a2.

Because the state of the world is binary, the firm’s beliefs can be identified with the

probability that the economy is good, µ. Given the above preferences, no investment is

optimal when µ ≤ 1
4
; a large investment is optimal when µ ≥ 3

4
; and a small investment

is optimal when µ ∈
[

1
4
, 3

4

]
. A local policymaker (S) wants to maximize the firm’s

investment, and receives a payoff of 0, 1, and 2 from no, small, and large investments,

respectively. To persuade the firm, the policymaker publicly commissions a report by

the central bank. Formally, a report is a Blackwell experiment producing a stochastic

investment recommendation conditional on the economy’s state.2 The reliability of

this recommendation is questionable, as it is produced by the announced experiment

only with probability x, independent of the state. With probability 1 − x, the bank

succumbs to the policymaker’s pressure, producing the policymaker’s recommendation

of choice.

Proposition 1 shows R is often better off with a less credible S. The proposition

applies to the above example. To see this, suppose first that the bank’s report is

fully credible, that is x = 1. In this case, the optimal report recommends either a

large or a small investment with equal ex-ante probability in a way that makes the

firm just willing to accept each recommendation. In other words, the firm’s posterior

belief that the state is good is uniformly distributed on {1
4
, 3

4
}, with the firm making

a large investment when its belief is 3
4
, and a small investment otherwise. In this

case, the firm’s expected utility is 1
8
. Consider now a weaker central bank, capable

of resisting the policymaker’s pressure with a lower probability of x = 2
3
. Take any

report that leads to an incentive-compatible large investment recommendation with

positive probability. Because the policymaker gets to secretly influence the report with

probability 1− x = 1
3
, the report produces a large investment recommendation with a

probability of at least 1
3
, regardless of the state. By Bayes’ rule, conditional on such a

recommendation, the firm’s posterior belief that the state is good is no greater than 3
4
.

Note this upper bound can be achieved only if the bank’s official report fully reveals the

1An alternative, behaviorally equivalent specification has uR(a, θ) = −(a− θ)2.
2Restricting attention to such experiments in this example turns out to be without loss.
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state. Hence, the report must generate a “no investment” recommendation whenever

the economy is bad and reporting is uninfluenced (which happens with probability
1
3
), and a “large investment” recommendation otherwise. This policy is strictly better

for the policymaker than conveying no information (which yields a small investment

with certainty), and so is the policymaker’s unique preferred equilibrium. Thus, when

x = 2
3
, the firm’s expected utility is 1

6
. In particular, the firm strictly benefits from a

weaker central bank; that is, productive mistrust occurs.

Our next result, Proposition 2, shows that small decreases in credibility lead to large

drops in the sender’s value for all interesting instances of our model. More precisely, we

show such a collapse occurs at some full-support prior and some credibility level if and

only if S can benefit from persuasion. Such a collapse is clearly present in our example:

Given the preceding analysis, 2
3

is the lowest credibility level that allows the bank to

credibly recommend a large investment. For any x < 2
3
, the policymaker can do no

better than have the bank provide no information to the firm, giving the policymaker

a payoff of 1
2
. Because 2

3
is the policymaker’s payoff when x = 2

3
, even an infinitesimal

decrease in credibility results in a discrete drop in the policymaker’s value.

One can construct examples in which S’s value collapses at full credibility. For

example, suppose the firm can make a very large investment, which yields a payoff of

10 to the policymaker, and is optimal if and only if the firm is certain the economy

is good. Under full credibility, the policymaker can obtain a payoff of 5 by revealing

the state and having the central bank recommend no investment when the economy is

bad and a very large investment when the economy is good. A very large investment

recommendation, however, is never credible for any x < 1. If it were, the policymaker

would always send it when influencing the bank’s report, regardless of the economy’s

state, and so the firm could never be completely certain that the economy’s state is

good. As such, the policymaker’s optimal equilibrium policy for any x ∈ [3
4
, 1) remains

as it was in the unmodified example, giving her a payoff of 3
4
. Thus, even a tiny

imperfection in the central bank’s credibility causes the policymaker’s payoff to drop

from 5 to 3
4
.

One may suspect the non-robustness of the full-credibility solution in the above

modified example is rather special. Proposition 3 confirms this suspicion. In particular,

it shows S’s value can collapse at full credibility if and only if R does not give S the

benefit of the doubt; that is, to obtain her best feasible payoff, S must persuade R

that some state is impossible. This property is clearly violated in the above modified

example: The firm is willing to make a very large investment only if it assigns a zero
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probability to the economy’s state being bad. Thus, although S’s value often collapses

due to small decreases in credibility, such collapses rarely occur at full credibility.

Section 5 abandons our general analysis in favor of a specific instance of public

persuasion, which enables us to assess the relative value of credibility in different states.

In this specification, S uses her weak institution to release a public report whose purpose

is to sway a population of receivers to take a favorable binary action. For example,

S may be a seller who markets her product by sending it to reviewers or a leader

vying for the support of her populace using state-owned media. Each receiver’s utility

from taking S’s favorite action is additively separable in the unknown state and his

idiosyncratic type, which follows a well-behaved single-peaked distribution. We show

(Claim 1) it is S-optimal for the official report to take an upper-censorship form,

characterized by a threshold below which states are fully separated. States above

this threshold are pooled into a single message, which is always sent when S influences

the report. We also show that concentrating the credibility of S’s institution in low

states uniformly increases S’s payoffs across all type distributions (Claim 2). Hence, S

especially prefers her institution to be resistant to pressure in bad states.

To conclude our analysis, we allow S to design her institution at a cost. More

precisely, we let S publicly choose the probability with which reporting is credible in

each state. S’s credibility choice is made in ignorance of the state, and comes at a

cost that is a continuous and increasing function of the institution’s average credibil-

ity. We explain how to adjust our analysis to this setting, and observe that R may

benefit from an increase in S’s costs, echoing the productive-mistrust phenomenon of

the fixed-credibility model. By contrast, an infinitesimal increase in S’s costs never

leads to a sizable decrease in S’s value, suggesting collapses in trust are a byproduct

of rigid institutional structures. Finally, we show that in the public-persuasion setting

of Section 5, S always chooses an institution that is immune to influence in low states,

and perfectly amenable otherwise.

Related Literature. This paper contributes to the literature on strategic informa-

tion transmission. To place our work, consider two extreme benchmarks: full credi-

bility and no credibility. Our full-credibility case is the model used in the Bayesian

persuasion literature (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011;

Kamenica, 2019),3 which studies sender-receiver games in which a sender commits to

an information-transmission strategy. By contrast, our no-credibility case reduces to

3See also Aumann and Maschler (1966).
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cheap talk (Crawford and Sobel, 1982; Green and Stokey, 2007). In particular, we build

on Lipnowski and Ravid (2019), who use the belief-based approach to study cheap talk

under state-independent sender preferences.

Two recent papers (Min, 2018; Fréchette, Lizzeri, and Perego, 2019) study closely re-

lated models. Fréchette, Lizzeri, and Perego (2019) test experimentally the connection

between the informativeness of the sender’s communication and her credibility in the

binary-state, binary-action, independent-credibility version of our model. Min (2018)

looks at a generalization of the independent-credibility version of our model in which the

sender’s preferences can be state dependent. He shows the sender weakly benefits from

a higher commitment probability. Applying Blume, Board, and Kawamura’s (2007)

insights, Min (2018) also shows allowing the sender to commit with positive probability

strictly helps both players in Crawford and Sobel’s (1982) uniform-quadratic example.

Our paper is related to the literature on cheap talk with lying costs. In Kartik

(2009), each message includes a reported state, and the cost of a message is measured

via the distance between the reported and true states; as the cost increases, the sender’s

strategy becomes (in some sense) more truthful. In Guo and Shmaya (2019a), each

communicated message is a distribution of states, and the sender faces a miscalibration

cost that increases in the distance between the message and its induced equilibrium

posterior belief. They obtain a surprising result: When costs are sufficiently large,

the sender attains her full-commitment payoff under any extensive-form rationalizable

play. Therefore, like our work, Guo and Shmaya’s (2019a) model bridges the cheap

talk and the Bayesian persuasion models.

Another related paper is Nguyen and Tan (2019). In Nguyen and Tan (2019), a

sender has the opportunity to privately change the publicly observed outcome of a

previously announced experiment. Such a change comes at a cost that may depend

on the outcome. They find conditions under which the sender does not alter the

experiment’s outcome in the sender-optimal equilibrium, and identify examples under

which the sender obtains her commitment payoff.

We also speak to the literature that studies Bayesian persuasion under additional

sender incentive constraints. In Salamanca (2019), a sender can use a mediator to

design a communication protocol, but cannot commit to her own reporting strategy,

and therefore must satisfy truth-telling constraints. Best and Quigley (2017) and

Mathevet, Pearce, and Stacchetti (2019) both study a long-lived sender who interacts

with a sequence of short-lived receivers via cheap talk. Each shows how enriching the

environment can restore the sender’s commitment value: in Best and Quigley (2017),
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by coarsening receivers’ information via a review aggregator, and in Mathevet, Pearce,

and Stacchetti (2019), via a reputational concern for the sender. A number of papers

(Perez-Richet, 2014; Hedlund, 2017; Alonso and Câmara, 2018) study persuasion by a

privately informed sender who might face exogenous constraints in her choice of signal.

Perez-Richet (2014) studies the information-design analogue of an informed-principal

(Myerson, 1983) problem. In Alonso and Câmara (2018) and Hedlund (2017), the

sender is imperfectly informed. The former compares the value of expertise with the

uninformed case and shows that private information cannot be beneficial if the sender’s

private information is (sequentially) redundant relative to the set of available signals.

The latter shows that in a two-state model with state-independent preferences, the

sender’s behavior in any D1 equilibrium reveals either the sender’s private information

or the state. Perez-Richet and Skreta (2018) introduce the possibility of falsification in

the context of test design, where a sender can make each state produce the conditional

signal distribution associated with the other. Thus, their sender can manipulate a

Blackwell experiment’s input, whereas our sender manipulates the experiment’s output.

Our productive-mistrust result relates to Ichihashi (2019), who analyzes the effect

of bounding the informativeness of the sender’s experiment in the binary-action special-

ization of Kamenica and Gentzkow (2011). Ichihashi’s (2019) main result characterizes

the equilibrium outcome set as a function of said upper bound. He also shows that,

whereas such a bound often helps the receiver, the receiver is always harmed from such

a bound when the state is binary. By contrast, productive mistrust can occur with any

number of states.

The model we analyze in Section 5 concerns persuasion of a population, and so re-

lates thematically to the literature on persuasion with multiple receivers (e.g., Alonso

and Câmara, 2016; Bardhi and Guo, 2018; Chan et al., 2019). Because our sender’s

motive is separable across audience members, the model in that section can be rein-

terpreted as communication to a single receiver who holds private information. Conse-

quently, it relates to work by Kolotilin (2018), Guo and Shmaya (2019b), and Kolotilin

et al. (2017), all of whom study information design under full commitment. We con-

tribute to this literature by studying the effects of limited credibility.

Whereas our sender derives credibility through an institution, credibility can also

arise via hard evidence. The effect of evidence on communication has been the subject

of many studies (Glazer and Rubinstein, 2006; Sher, 2011; Hart, Kremer, and Perry,

2017; Ben-Porath, Dekel, and Lipman, 2019; Rappoport, 2017). Many such studies

share our assumption of sender state-independent preferences but focus on receiver-
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(rather than sender-) optimal equilibria. The equivalence between such equilibria and

the receiver’s commitment outcome is a common point of inquiry.

Weak institutions often serve as a justification for examining mechanism design

under limited commitment (Bester and Strausz, 2001; Skreta, 2006; Deb and Said, 2015;

Liu et al., 2019). We complement this literature by relaxing a principal’s commitment

power in the control of information rather than of mechanisms.

2 A Weak Institution

There are two players: a sender (S, she) and a receiver (R, he). Whereas both players’

payoffs depend on R’s action, a ∈ A, R’s payoff also depends on an unknown state,

θ ∈ Θ. Thus, S and R have objectives uS : A→ R and uR : A× Θ→ R, respectively,

and each aims to maximize expected payoffs.

The game begins with S commissioning a report, ξ : Θ → ∆M , to be delivered

by a research institution. The state then realizes, and R receives a message m ∈ M
(without observing θ). Given θ, S is credible with probability χ(θ), meaning m is drawn

according to the official reporting protocol, ξ(·|θ). With probability 1− χ(θ), S is not

credible, in which case S decides which message to send after privately observing θ.

Only S learns her credibility type, and she learns it only after announcing the official

reporting protocol.

We now introduce some notation, which we use throughout. For a compact metriz-

able space, Y , we denote by ∆Y the set of all Borel probability measures over Y ,

endowed with the weak* topology. If f : Y → R is bounded and measurable and

ζ ∈ ∆Y , define the measure fζ on Y via fζ(Ŷ ) :=
∫
Ŷ
f dζ for each Borel Ŷ ⊆ Y .

When the domain is not ambiguous, we use 1 and 0 to denote constant functions taking

value 1 and 0, respectively.

We impose some technical restrictions on our model. Both A and Θ are compact

metrizable spaces with at least two elements, the objectives uR and uS are continuous,

and χ : Θ → [0, 1] is measurable. We say the model is finite when referring to the

special case in which both A and Θ are finite. The state, θ, is assumed to follow some

full-support prior distribution µ0 ∈ ∆Θ, which is known to both players. Finally, we

assume the message space M is an uncountable compact metrizable space.4

4This richness condition enables our complete characterization of equilibrium outcomes (Lemma
1). If Θ is finite, our characterization of sender-optimal equilibrium values (Theorem 1) and our
applied propositions hold without change for all M such that |M | ≥ 2|Θ|.
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We now define an equilibrium, which consists of four objects: S’s official reporting

protocol, ξ : Θ → ∆M , executed whenever S cannot influence reporting; the strategy

that S employs when not committed, σ : Θ → ∆M ; R’s strategy, α : M → ∆A; and

R’s belief map, π : M → ∆Θ, assigning a posterior to each message. A χ-equilibrium

is an official reporting policy announced by S, ξ, together with a perfect Bayesian

equilibrium of the subgame following S’s announcement. Formally, a χ-equilibrium

is a tuple (ξ, σ, α, π) of measurable maps such that

1. π : M → ∆Θ is derived from µ0 via Bayes’ rule, given message policy

χξ + (1− χ)σ : Θ→ ∆M,

whenever possible;

2. α(m) is supported on argmaxa∈A
∫

Θ
uR (a, ·) dπ(·|m) for all m ∈M ;

3. σ(θ) is supported on argmaxm∈M
∫
A
uS dα(·|m) for all θ ∈ Θ.

We view S as a principal capable of steering R toward her favorite χ-equilibria. Because

such equilibria automatically satisfy S’s incentive constraints on choice of ξ, we omit

said constraints for the sake of brevity.

3 Persuasion with Partial Credibility

This section presents Theorem 1, which geometrically characterizes S’s optimal χ-

equilibrium value. To prove the theorem, we adopt a belief-based approach by using

R’s ex-ante belief distribution, p ∈ ∆∆Θ, to summarize equilibrium communication.

When communication is sufficiently flexible, the sole restriction imposed on an induced

belief distribution is Bayes plausibility: R’s average posterior belief equals his prior

belief; that is,
∫

∆Θ
µ dp(µ) = µ0. We refer to any such p as an information policy

and denote the set of all information policies by R(µ0).

We represent each of S’s messages with the posterior belief it induces in equilibrium

and use S’s value correspondence,

V : ∆Θ ⇒ R

µ 7→ co uS

(
argmaxa∈A

∫
uR(a, ·) dµ

)
,
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to account for R’s incentive constraints. In words, V (µ) is the set of payoffs that S

can attain when R behaves optimally given posterior belief µ. Note that (appealing

to Berge’s theorem) V is a Kakutani correspondence, that is, a nonempty-compact-

convex-valued, upper hemicontinuous correspondence. As such, S’s value function,

v(µ) := maxV (µ), which identifies S’s highest continuation payoff from inducing pos-

terior µ, is a well-defined, upper semicontinuous function.

When S is fully credible (χ(·) = 1), only S’s official reporting protocol matters.

Because S publicly commits to this rule at the beginning of the game, Bayes plausi-

bility is the only constraint imposed on equilibrium communication. Hence, R may

as well break ties in S’s favor, reducing the maximization of S’s equilibrium value to

the maximization of v’s expected value across all information policies. Aumann and

Maschler (1995) and Kamenica and Gentzkow (2011) show the highest such value is

given by the pointwise lowest concave upper semicontinuous function that majorizes

v.5 This function, which we denote by v̂, is known as v’s concave envelope.

Under no credibility (χ(·) = 0), the official reporting protocol plays no role, because

S always influences the report. Therefore, S’s messages must satisfy her incentive

constraints, which take a very simple form due to S’s state-independent payoffs: All

on-path messages must give S the same continuation payoff. Lipnowski and Ravid

(2019) show the maximal value that S can attain subject to this constraint is given by

v’s quasiconcave envelope, which is the lowest quasiconcave upper semicontinuous

function that majorizes v. We denote this function by v̄.

Theorem 1 shows that for intermediate χ(·), S’s highest χ-equilibrium value is

characterized by an object that combines the concave and quasiconcave envelopes. For

γ ∈ ∆Θ, define

v∧γ : ∆Θ→ R
µ 7→ min{v̄(γ), v(µ)}.

Theorem 1’s characterization is based on the concave envelope of v∧γ, which we denote

by v̂∧γ. Figure 1 below visualizes the construction of v̂∧γ in the binary-state case.

With the relevant building blocks in hand, we now state our main result.

5In the case in which Θ is finite, the qualifier “upper semicontinuous” may be ommited in the
definition of the (quasi)concave envelope. For instance, see Lipnowski and Ravid (2019), Corollary 4.
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(a) v̄ (b) v̂ (c) v̂∧γ

Figure 1: Quasiconcave envelope, concave envelope, and concave envelope with a cap.

Theorem 1. A sender-optimal χ-equilibrium exists and yields ex-ante sender payoff

v∗χ(µ0) = max
β,γ∈∆Θ, k∈[0,1]

kv̂∧γ(β) + (1− k)v̄(γ)

s.t. kβ + (1− k)γ = µ0, (R-BP)

(1− k)γ ≥ (1− χ)µ0. (χ-BP)

To understand Theorem 1, note that every χ-equilibrium partitions the messages

R sees into two sets: the messages that are sometimes sent under influenced reporting,

Mγ (messages that are “good” for S), and the messages that are not, Mβ (those that are

“bad” for S). Official reporting can send messages from either set. The theorem follows

from maximizing S’s expected payoffs from Mγ and Mβ, holding R’s expected posterior

conditional on Mγ and Mβ fixed at γ and β, respectively. As we explain below, this

maximization yields a value of kv̂∧γ(β) + (1 − k)v̄(γ), where k is the probability that

the realized message is in Mβ. All that remains is to maximize this value over the set

of feasible triplets, (β, γ, k), which are constrained by Bayes plausibility in two ways,

corresponding to (R-BP) and (χ-BP), respectively. First, the average posteriors must

be equal to the prior, yielding (R-BP). Second, the ex-ante probability that R sees

a message from Mγ and an event Θ̂ occurs is at least the ex-ante probability that Θ̂

occurs and reporting is influenced.

We now explain the characterization of S’s optimal values from Mγ and Mβ, which is

based on the no-credibility and full-credibility cases, respectively. Because all messages

in Mγ are sent under influenced reporting, they must satisfy the same constraints as

in the no-credibility case. By Lipnowski and Ravid’s (2019) arguments, v̄(γ) is the

highest payoff that S can obtain from sending a message under these constraints. For

11

 Electronic copy available at: https://ssrn.com/abstract=3168103 



S to send such messages, though, S’s payoff from Mγ must be above her continuation

payoff from any message in Mβ. This requirement restricts Mβ in two ways: (1) It

caps S’s continuation payoff from any feasible posterior, and (2) it restricts the set

of feasible posteriors in Mβ, precluding posteriors from which S must obtain too high

a continuation payoff. In the proof, we argue the second constraint is automatically

satisfied at the optimum. As such, one can apply the same arguments as in the full-

credibility case, but with v replaced by v∧γ. That S’s highest payoff from Mβ is given

by v̂∧γ(β) follows.

4 Varying Credibility

This section uses Theorem 1 to conduct general comparative statics in the model’s

finite version. First, we study how a decrease in S’s credibility affects R’s value. In

particular we provide sufficient conditions for R to benefit from a less credible S. Second,

we show that small reductions in S’s credibility often lead to a large drop in S’s payoffs.

Finally, we note that these drops rarely occur at full credibility. In other words, the

full credibility value is robust to small decreases in S’s commitment power.

Productive Mistrust We now study how a decrease in S’s credibility impacts R’s

value and the informativeness of S’s equilibrium communication. In general, the less

credible the sender, the smaller the set of equilibrium information policies.6 However,

that the set of equilibrium policies shrinks does not mean less information is transmitted

in S’s preferred equilibrium. Our introductory example is a case in point, showing that

lowering S’s credibility can result in a more informative equilibrium (à la Blackwell,

1953). Moreover, this additional information is used by R, who obtains a strictly higher

value when S’s credibility is lower. In what follows, we refer to this phenomenon as

productive mistrust, and provide sufficient conditions for it to occur.

Our key sufficient condition involves S’s optimal information policy under full cred-

ibility. Given prior µ, an information policy p ∈ R(µ) is a show-or-best (SOB) policy

if it is supported on {δθ}θ∈Θ ∪ argmaxµ′∈∆[supp(µ)]v(µ′). In words, p is an SOB policy if

it either shows the state to R, or brings R to a posterior that attains S’s best feasible

value. Say S is a two-faced SOB if, for every binary-support prior µ ∈ ∆Θ, every

p ∈ R(µ) is outperformed by an SOB policy p′ ∈ R(µ); that is,
∫

∆Θ
v dp ≤

∫
∆Θ

v dp′.

6See Lemma 1 in the appendix.
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Figure 2 depicts an example in which S is a two-faced SOB. Note that productive

mistrust cannot occur in this example. Indeed, one can show that, if S’s favorite equi-

librium policy changes as credibility declines, it must switch to no information. As

such, R prefers a more credible S.

Finally, say a model is generic if R is (i) not indifferent between any two actions

at any degenerate belief, and (ii) not indifferent between any three actions at any

binary-support belief.7

P(θ = θ1)

V

v̂

Figure 2: Sender is a two-faced SOB

Proposition 1 below shows that, in generic finite settings, S not being a two-faced

SOB is sufficient for productive mistrust to occur for some full-support prior. Intu-

itively, S being an SOB means that a highly credible S has no bad information to

hide: under full credibility, S’s bad messages are maximally informative, subject to

keeping R’s posterior fixed following S’s good messages. S not being an SOB at some

prior means that S’s bad messages optimally hide some instrumental information. By

reducing S’s credibility just enough to make the full-credibility solution infeasible, one

can push S to reveal some of that information to R. In other words, S commits to

potentially revealing more-extreme bad information in order to preserve the credibility

of her good messages. Proposition 1 below formalizes this intuition.

7Given a fixed finite A and Θ, genericity holds for (Lebesgue) almost every uR ∈ RA×Θ. In partic-

ular, it holds if uR(a, θ) 6= uR(a′, θ) for all distinct a, a′ ∈ A and all θ ∈ Θ, and uR(a1,θ1)−uR(a2,θ1)
uR(a1,θ2)−uR(a2,θ2) 6=

uR(a2,θ1)−uR(a3,θ1)
uR(a2,θ2)−uR(a3,θ2) for all distinct a1, a2, a3 ∈ A and all distinct θ1, θ2 ∈ Θ.
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Proposition 1. Consider a finite and generic model in which S is not a two-faced

SOB. Then, a full-support prior and credibility functions χ′(·) < χ(·) exist such that

every sender-optimal χ′-equilibrium is strictly better for R than every sender-optimal

χ-equilibrium.8

We should emphasize that Proposition 1’s conditions are not necessary. We provide

a necessary and sufficient condition for productive mistrust to occur at a given prior

for the binary-state, finite-action case in the appendix. In particular, we weaken the

SOB condition by requiring only that S wants to withhold information at the lowest

credibility level at which she can beat her no-credibility payoff. We refer the reader

to Lemma 2 in the appendix for precise details. We do not know an analogous tight

characterization of when productive mistrust occurs in the many-state model.

Collapse of Trust Theorem 1 immediately implies lowering S’s credibility can only

decrease her value.9 Below we show this decrease is often discontinuous. In other

words, small decreases in S’s credibility often result in a large drop in S’s benefits from

communication.

Proposition 2. In a finite model, the following are equivalent:

(i) A collapse of trust never occurs:10

lim
χ′(·)↗χ(·)

v∗χ′(µ0) = v∗χ(µ0)

for every χ(·) ∈ [0, 1]Θ and every full-support prior µ0.

(ii) Commitment is of no value: v∗1 = v∗0.

(iii) No conflict occurs: v(δθ) = max v(∆Θ) for every θ ∈ Θ.

Proposition 2 establishes that, in most finite examples, S’s value collapses discontin-

uously when credibility decreases. In particular, such collapses are absent for all priors

if and only if S wants to tell R all that she knows, or if, equivalently, commitment is

immaterial to S.

8Moreover, when |Θ| = 2, every sender-optimal χ′-equilibrium is more Blackwell-informative than
every sender-optimal χ-equilibrium.

9It also implies value increases have a continuous payoff effect: A sufficiently small increase in S’s
credibility never results in a large gain in S’s benefits from communication.

10Convergence of χ′(·)→ χ(·) is in the Euclidean topology on RΘ.
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Robustness of the Commitment Case Given the large and growing literature

on optimal persuasion with commitment, wondering whether the commitment solution

is robust to small decreases in S’s credibility is natural. The answer turns out to be

almost never. Thus, although small decreases in credibility often lead to a collapse in

S’s value, these collapses rarely occur at χ(·) = 1.

Proposition 3. In a finite model, the following are equivalent:

(i) The full commitment value is robust: limχ(·)↗1 v
∗
χ(µ0) = v∗1(µ0) for every full-

support µ0.

(ii) S gets the benefit of the doubt: Every θ ∈ Θ is in the support of some member of

argmaxµ∈∆Θv(µ).

Proposition 3 shows that the full-credibility value is robust if and only if S can

persuade R to take her favorite action without ruling out any states. In other words,

robustness of the commitment solution is equivalent to S getting the benefit of the

doubt.

5 Persuading the Public

This section considers a single sender interested in persuading a population of receivers

to take a favorable action. For example, S could be a government of a small open

economy trying to encourage foreigners to invest in the local market, a seller advertising

to entice consumers to buy her product, or a leader vying for the support of her

populace. To persuade the receivers, S commissions a weak institution (e.g., a central

bank, product reviewer company, or state-owned media outlet) to issue a public report.

In this section, we analyze the S-optimal report under partial credibility, and identify

the states at which credibility is most valuable for S.

We modify our model as follows. The report of S’s institution is now publicly

revealed to a unit mass of receivers. After observing the institution’s report, receivers

simultaneously take a binary action. Each receiver i cares only about his own action,

ai ∈ A = {0, 1}. Receiver i’s payoff from ai is given by ai(θ− ωi), where θ ∈ Θ = [0, 1]

is the unknown state, distributed according to an atomless, full-support prior µ0, and

ωi ∈ R is receiver i’s type. The mass of receivers whose type is below ω is given by

H(ω), an absolutely continuous cumulative distribution function whose density h is
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continuous, strictly quasiconcave, and strictly positive on (0, 1). S’s objective is to

maximize the proportion of receivers taking action 1.

An equilibrium of the modified game is tuple, (ξ, σ, α, π), where ξ : Θ → ∆M ,

σ : Θ→ ∆M , and π : M → ∆Θ respectively represent S’s official report, S’s strategy

when not committed, and the public’s belief mapping, as in the original game. We let

α : M → [0, 1] represent the proportion of receivers taking action 1 conditional on the

realized message. Observe action 1 is optimal for receiver i if and only if ωi ≤ Eµ, where

µ ∈ ∆Θ is the publicly held posterior about θ, and E maps beliefs to their associated

expectations.11 As such, given a posterior µ, the proportion of receivers taking action

1 is given by H(Eµ). Thus, a χ-equilibrium is a tuple (ξ, σ, α, π) where π is derived

from µ0 via Bayes’ rule, α(·) = H(Eπ(·)), and σ(θ) is supported on arg maxm∈M α(m)

for all θ.

Theorem 1 applies readily to the current setting. Because H(Eµ) is the proportion

of the population taking action 1 given posterior µ ∈ ∆Θ, S’s continuation payoff from

a public message inducing µ is v(µ) := H(Eµ). Taking v to be S’s value function, we

can directly apply Theorem 1 to the current game.

Next, we use Theorem 1 to find S’s optimal χ-equilibrium. We begin with the

extreme credibility levels. Suppose first S has no credibility; that is, χ = 0. In

this case, S’s optimal value is given by the quasiconcave envelope of S’s value function

evaluated at the prior, v̄(µ0). Because an increasing transformation of an affine function

is quasiconcave, v = H ◦ E = v̄. Hence, with no credibility, S cannot benefit from

communication.

Suppose now that S has full credibility; that is, χ = 1. In this case, S’s maximal

χ-equilibrium value equals v’s maximal expected value across all information policies,

p ∈ R(µ0). Notice that a given information policy p yields an expected value of∫
H(·) dµ, where µ = p ◦ E−1 ∈ ∆Θ is the distribution of the population’s posterior

mean. As such, maximizing S’s value across all information policies is the same as

maximizing the expectations of H(·) across all posterior mean distributions produced

by some information policy. Such posterior mean distributions are characterized via the

notion of mean-preserving spreads.12 Formally, we say µ ∈ ∆Θ is a mean-preserving

11That is, Eµ :=
∫
θ dµ(θ) for all µ ∈ ∆Θ.

12See Blackwell and Girshick (1979) and Rothschild and Stiglitz (1970).
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spread of µ̃ ∈ ∆Θ, denoted by µ � µ̃, if

∫ θ̂

0

µ[0, θ] dθ ≥
∫ θ̂

0

µ̃[0, θ] dθ, ∀θ̂ ∈ [0, 1], with equality at θ̂ = 1. (MPS)

As is well known,13 µ0 being a mean-preserving spread of µ is both necessary and

sufficient for µ to arise as the posterior mean distribution of some information policy.

Thus, S’s value under full credibility is given by

v̂(µ0) = max
µ∈∆Θ: µ�µ0

∫
H(·) dµ.

The solution to the above program is dictated by the shape of the CDF H. Because

the CDF’s density, h, is strictly quasiconcave, H is a convex-concave function over

[0, 1]. Said differently, an ω∗ ∈ [0, 1] exists such that H is strictly convex on [0, ω∗], and

strictly concave on [ω∗, 1]. As noted by Kolotilin (2018) and Dworczak and Martini

(2019), when H is convex-concave, the above program can be solved via θ∗ upper

censorship, which we now formally define. Under full credibility, θ∗ upper censorship

arises whenever S’s official report reveals (pools) all states below (above) θ∗. Given such

an official reporting protocol, it is optimal for S to say the state is above θ∗ whenever

she influences the report. Thus, we say (ξ, σ) is a θ∗-upper-censorship pair if every

θ ∈ Θ has σ(·|θ) = δ1 and

ξ(·|θ) =

δθ if θ ∈ [0, θ∗),

δ1 if θ ∈ [θ∗, 1].

Given a θ∗-upper-censorship pair, we refer to the resulting posterior mean distribu-

tion,14

1[0,θ∗)µ0 + µ0[θ∗, 1]δEµ0 [θ|θ≥θ∗],

as a θ∗ upper censorship of µ0. That upper censorship solves the full-credibility

problem has been discussed by the aforementioned papers under slightly different as-

sumptions. Still, we provide an elementary proof in the appendix for completeness.

We find upper-censorship pairs are also optimal when credibility is partial, although

the reasoning is more delicate. One complication is that not every upper-censorship

13See Gentzkow and Kamenica (2016) and references therein.
14Recall our notational convention: For bounded measurable f : Θ → R+ and µ ∈ ∆Θ, we let fµ

represent the measure defined via fµ(Θ̂) =
∫

Θ̂
f dµ.
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pair induces a χ-equilibrium. The reason is that under partial credibility, the posterior

mean following message 1 can be strictly below the posterior mean induced by other

messages, thereby violating S’s incentive constraints. To avoid such a violation, the

mean induced by message 1 must be above the upper-censorship cutoff, θ∗, which is

equivalent to15 ∫
(θ − θ∗)(1− 1[0,θ∗)χ(θ))dµ0(θ) ≥ 0. (θ∗-IC)

Observe that with intermediate credibility,16 the left-hand side of (θ∗-IC) is continuous

and strictly decreasing in θ∗, strictly positive for θ∗ = 0, and strictly negative for

θ∗ = 1.17 As such, (θ∗-IC) holds whenever θ∗ is below the unique upper-censorship

cutoff at which it holds with equality, a cutoff that we denote by θ̄χ.

Another complication arising from partial credibility is that a θ∗-upper-censorship

pair does not typically yield an upper censorship of µ0 as its posterior mean distribution.

Instead, every θ∗-upper-censorship pair with θ∗ ≤ θ̄χ turns out to yield a θ∗ upper

censorship of

µ̄χ = 1[0,θ̄χ)χµ0 +
(
1− χµ0[0, θ̄χ)

)
δθ̄χ ,

which is the posterior mean distribution induced by the θ̄χ-upper-censorship pair.

Claim 1 below shows that upper censorship always yields an S optimal χ-equilibrium.

Moreover, to find the optimal censorship cutoff, one can solve the full-credibility prob-

lem with the modified prior µ̄χ.

Claim 1. A θ∗ ∈ [0, θ̄χ] exists such that the θ∗ upper censorship of µ̄χ, denoted by

µχ,θ∗, satisfies

v∗χ(µ0) = v̂(µ̄χ) =

∫
H(·) dµχ,θ∗ .

Moreover, the corresponding θ∗-upper-censorship pair is an S-optimal χ-equilibrium

that induces µχ,θ∗ as its posterior mean distribution.

Using Claim 1, we can compare the value of credibility in different states. Indeed,

the claim makes it obvious that, regardless of the population’s type distribution, S

prefers the credibility distribution χ over χ̃ whenever µ̄χ is a mean-preserving spread

of µ̄χ̃. One can then show by construction that the converse is also true; that is, S

15To see this equivalence, note that R’s posterior mean conditional on seeing message 1 from a

θ∗-upper-censorship pair equals
∫
θ[1[θ∗,1]χ(θ)+1−χ(θ)]dµ0∫
[1[θ∗,1]χ(θ)+1−χ(θ)]dµ0

=
∫
θ[1−1[0,θ∗)χ(θ)]dµ0∫
[1−1[0,θ∗)χ(θ)]dµ0

, which is larger than θ∗

only if (θ∗-IC) holds.
16That is, if µ0{χ = 0}, µ0{χ = 1} < 1.
17Recall µ0 is assumed to be an atomless, full-support distribution over [0, 1].
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prefers χ to χ̃ for all population type distributions only if µ̄χ̃ is a mean-preserving

spread of µ̄χ. We present this result in Claim 2 below.

Claim 2. v∗χ(µ0) ≥ v∗χ̃(µ0) for all type distributions18 if and only if µ̄χ � µ̄χ̃.

The economic intuition behind the claim is that credibility is most valuable when

the conflict between S’s ex-ante and ex-post incentives is large. Indeed, it is useful to

notice that µ̄χ � µ̄χ̃ holds if and only if19

∫ θ̂

0

∫ θ

0

(χ− χ̃) dµ0 dθ ≥ 0 for all θ ∈ [0, θ̄χ̃].

Thus, the claim shows a sense in which S prefers to have more credibility in low states.

Intuitively, low states are those which S benefits from revealing ex ante but would

like to hide ex post. The more credibility S has in those states, the less S’s ex-post

incentives interfere with his ex-ante payoffs, and so the higher is S’s value.

6 Investing in Credibility

In this section, we extend our model to endogenize S’s credibility χ. Specifically,

suppose S can choose any measurable χ : Θ → [0, 1] at a cost of c
(∫

χ dµ0

)
prior to

the persuasion game, where c : [0, 1]→ R+ is continuous and strictly increasing. Then,

S chooses χ to solve

v∗∗c (µ0) = max
χ

[
v∗χ(µ0)− c

(∫
χ dµ0

)]
.

Clearly, S never invests in greater credibility than is necessary to induce her equilibrium

information. As such, S always chooses (χ, k, β, γ) so that (χ-BP) holds with equality.

Combining this observation with (R-BP) yields∫
χ dµ0 = kβ(Θ) = k.

18That is, for all H admitting a continuous, quasiconcave density.
19To see the equivalence, one can verify that θ̂ ∈ [0, θ̄χ] has

∫ θ̂
0
µ̄χ[0, θ] dθ =

∫ θ̂
0

∫ θ
0
χ dµ0 ≥ θ−Eµ0,

and each θ̂ ∈ [θ̄χ, 1] has
∫ θ̂

0
µ̄χ[0, θ] dθ = θ−Eµ0 — and similarly for χ̃. Therefore, the ranking (MPS)

holds vacuously above θ̄χ̃ and reduces to the given equation below θ̄χ̃.
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S’s problem therefore reduces to

v∗∗c (µ0) = max
β,γ∈∆Θ, k∈[0,1]

kv̂∧γ(β) + (1− k)v̄(γ)− c(k)

s.t. kβ + (1− k)γ = µ0.

We now discuss how our results change when credibility is endogenized as above.

We begin by revisiting productive mistrust. Similar to R’s ability to benefit from a

decrease in exogenous credibility, R can also benefit from an increase in S’s credibility

costs. Recall our introductory example, and suppose the cost function is given by

c(k) = λ
2
k2 for some λ > 0. For any λ ∈ [2, 3), one can verify S has a unique optimal

investment choice, leading to equilibrium distribution of posteriors[
1−

(
6

λ
− 2

)](
1

3
δ0 +

2

3
δ 3

4

)
+

[
6

λ
− 2

](
1

2
δ 1

4
+

1

2
δ 3

4

)
.

It is straightforward that this equilibrium information structure is Blackwell-monotone

in λ — higher λ leads to a mean-preserving spread in posterior beliefs. Consequently,

R’s equilibrium payoff (1
4
− 1

4λ
) is increasing in λ.

Whereas reducing χ in our main model often leads to a discontinuous drop in S’s

payoff (Proposition 2), a uniformly small increase in c cannot. The reason is that the

set of feasible (β, γ, k) in Theorem 1’s program is independent of the cost, and the cost

enters S’s objective separably. Therefore,

|v∗∗c (µ0)− v∗∗c̃ (µ0)| ≤ ||c− c̃||∞.

Thus, in the endogenous-credibility model, small cost changes have small effects on S’s

value.

In our public-persuasion application (Section 5), we saw that optimal communica-

tion takes an upper-censorship form and S especially benefits from credibility in low

states. These observations, together with the observation that S never invests in ex-

traneous credibility, lead us to simple institutions when credibility is endogenous. In

particular, S’s optimal institution is fully immune to influence below a cutoff state,

fully susceptible above, and fully informative in its official report. See Appendix B.6

for the formal result.
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7 Conclusion

This paper studies a sender who uses a weak institution to disseminate information

with the aim of persuading a receiver. An institution is weaker if it succumbs to

external pressures with higher probability. Specifically, the weaker the institution is,

the higher is the probability that its report reflects the sender’s agenda rather than

the truth. We analyze the value that the sender derives from communication through

such an institution, as well as the information that it provides to the receiver.

Our analysis shows an institution’s weakness reduces the sender’s value through

two channels: Restricting the kind of information the institution can disseminate, and

reducing the value that the sender can extract from said information. Together, these

channels lead to collapses of trust, whereby a slight decrease in an institution’s strength

yields a large drop in the sender’s value. Moreover, these channels often result in

productive mistrust, whereby the receiver benefits from the sender employing a weaker

institution. Intuitively, to credibly communicate the information the sender wishes

to convey, a weaker institution must reveal information the sender would otherwise

hide. Through these effects, our model highlights the role that weak institutions play

in persuasion.

Our model also allows us to analyze the value of an institution’s strength in different

states. As a demonstration, we study a public-persuasion setting where a single sender

attempts to persuade a population of receivers to take a favorable action. In this

setting, the sender commissions her institution to reveal bad states, but hides those

states when influencing the report. Accordingly, the sender prefers institutions that are

immune to pressure in bad states, where the conflict between her ex-post and ex-ante

incentives is largest.

References
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A Online Appendix: Proof Exposition

This appendix provides exposition for the paper’s proofs. The exposition is not formally

necessary, and so a reader interested solely in our formal arguments may proceed

directly to Appendix B.

We begin by explaining how to visualize Theorem 1’s program. Using this visualiza-

tion, we provide intuitions for Proposition 1, Proposition 2 and Proposition 3. Finally,

we elaborate on the main text’s exposition for Claim 1.

A.1 Visualizing Theorem 1

We now explain how to use Theorem 1 to graphically solve for S’s optimal equilibrium

value when Θ is binary, Θ = {θ1, θ2}. Consider Figure 3, which visualizes constraints

(R-BP) and (χ-BP) for the binary-state case. In this figure, the horizontal axis is the

mass on θ1, and the vertical axis is the mass on θ2. Because µ0, β, and γ assign a

total probability of 1 to both states, each of them can be represented as a point on

the line connecting the two atomistic beliefs δθ1 and δθ2 . Every point underneath this

line represents the product (1− k)γ for some k and γ. The drawn box represents the

constraints in Theorem 1’s program. By (χ-BP), (1 − k)γ must be pointwise larger

than [1 − χ(·)]µ0, which is the box’s bottom-left corner. The box’s top-right corner,

which corresponds to the prior, must be pointwise larger than (1 − k)γ by (R-BP).20

In other words, (1− k)γ must lie within the drawn box. Once (1− k)γ is chosen, one

can recover γ and β by finding the unique points on the line [δθ1 , δθ2 ] that lie in the

same direction as (1− k)γ and µ0 − (1− k)γ, respectively.

Figure 4 shows how to simultaneously visualize the constraint illustrated in Figure

3 and S’s value for the introduction’s example, where χ is a constant x1. Such a

visualization enables us to solve for S’s optimal equilibrium value. To do so, we start by

drawing v̄, the quasiconcave envelope of S’s value function. For each feasible candidate

(1− k)γ, we find the corresponding β, as in Figure 3. To calculate S’s value from the

resulting (β, γ, k), we simply find the value above µ0 of the line connecting the points

(β, v̂∧γ(β)) and (γ, v̄(γ)).

20To see this requirement, rearrange (R-BP) to obtain that µ0 − (1− k)γ = kβ ≥ 0.

25

 Electronic copy available at: https://ssrn.com/abstract=3168103 



(a) Construction of γ and β for a given (1−k)γ

0 1

δθ1

1
δθ2

µ0

γ

β

(1− χ)µ0 (1− k)γ

(b) γ′ is infeasible

0 1

δθ1

1
δθ2

µ0

(1− χ)µ0 γ′

Figure 3: Constraints (R-BP) and (χ-BP) and construction of γ and β for a given
(1− k)γ.

A.2 Exposition for Proposition 1

This section sketches the argument behind Proposition 1. The proposition builds on

the binary-state case. In this case, genericity implies v̄ has a non-degenerate interval

of maximizers, and S not being an SOB implies v̂ has a kink somewhere outside of

this interval. Fixing a prior near this interval, but toward the nearest kink, we then

find the lowest constant x ∈ [0, 1] such that S still obtains her full credibility value

at χ(·) = x1. At this χ(·), S’s favorite equilibrium information policy is unique and

is supported on the beliefs (γ, β) that solve Theorem 1’s program. These beliefs are

interior, and v̂ has a kink at β. Although γ remains optimal in Theorem 1’s program for

any additional small reduction in credibility, (χ-BP) forces the optimal β to move away

from the prior. Relying on the set of beliefs being one-dimensional, we show the only

incentive-compatible way of attaining S’s new optimal value is to spread the original

β between γ and a further posterior that gives S an even lower continuation value

than under β. Hence, S provides R with more information. The reduction in S’s value

indicates a change in R’s optimal behavior. In other words, the additional information

is instrumental, strictly increasing R’s utility. Figure 5 illustrates the argument using

our introductory example.
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P(θ = 1)

V

v̂∧γ(β)

v̄(γ)

v∗χ(µ0)

γµ0 γβ

(1− k)γ

Figure 4: An illustration of the solution to Theorem 1’s program for the example from
the introduction, with a constant credibility level between 2

3
and 3

4
.

A.3 Exposition for Proposition 2

This section describes the proof of Proposition 2. Notice that two of the proposition’s

three implications are immediate. First, whenever no conflict occurs, S can reveal

the state in an incentive-compatible way while obtaining her first-best payoff (given

R’s incentives), meaning commitment is of no value; that is, (iii) implies (ii). Second,

because S’s highest equilibrium value increases with her credibility, commitment having

no value means S’s best equilibrium value is constant (and, a fortiori, continuous) in

the credibility level; that is, (ii) implies (i).

To show that (i) implies (iii), we show that any failure of (iii) implies the failure of

(i). To do so, we fix a full-support prior µ0 at which v̄ is minimized. Because conflict

occurs, v̄ is nonconstant and thus takes values strictly greater than v̄(µ0). By Theorem

1, one has that v∗χ(µ0) > v̄(µ0) if and only if some feasible triplet (β, γ, k), with k < 1

exists such that v̄(γ) > v̄(µ0). Using upper semicontinuity of v̄, we show such a triplet

is feasible for a constant credibility χ(·) = x1 if and only if x is weakly greater than

some strictly positive x∗. We thus have that for all x < x∗,

v∗x∗1(µ0) ≥ kv̄(µ0) + (1− k)v̄(γ) > v̄(µ0) = v∗x1(µ0),
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P(θ = 1)

V

v∗χ′(µ0)

v∗χ(µ0)

γµ0 γβ′ β

Figure 5: An illustration of Proposition 1’s proof for two states. The argument begins
by identifying a µ0 as above. Given µ0, we find two constant χ(·) > χ′(·) as above,
yielding the constraints depicted by the light and dark boxes, respectively. Whereas
γ is optimal under both credibility levels, β is optimal under χ, whereas β′ is optimal
under χ′. One can then deduce R is strictly better off under χ′ than under χ.

where the first inequality follows from µ0 minimizing v̄; that is, a collapse of trust

occurs. Figure 6 below illustrates the argument in the context of our leading example.

The figure depicts a prior that minimizes S’s payoff under no credibility. The depicted

constraint set is drawn for χ∗ = x∗1, the lowest constant credibility for which a (β, γ, k)

satisfying both k < 1 and v̄(γ) > v̄(µ0) is feasible. In other words, χ∗(·) is the lowest

constant credibility at which S’s value is strictly above v̄(µ0). Therefore, v∗x∗1(µ0) >

v∗x1(µ0) for any x strictly below x∗.

A.4 Exposition for Proposition 3

This section discusses the proof of Proposition 3 that is based on establishing a four-

way equivalence between (a) S getting the benefit of the doubt, (b) v̄ being maximized

by a full-support prior γ, (c) a full-support γ existing such that v̂∧γ and v̂ agree over

all full-support prior(s), (d) robustness to limited credibility. That (a) is equivalent to

(b) follows from the arguments of Lipnowski and Ravid (2019). For the equivalence of
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P(θ = 1)

V

v∗χ∗(µ0)

v∗χ∗−ε(µ0)
µ0 γ

β

Figure 6: An illustration of the Proposition 2’s proof in the context of the introduction’s
example. The proof starts with choosing a prior minimizing the payoff S obtains
under no credibility. We then identify x∗, the lowest credibility level for which a
(β, γ, k) attaining a value strictly above v̄(µ0) is feasible at χ∗ = x∗1. By choice of x∗,
v∗x∗1(µ0) > v∗x1(µ0) must hold for any x = x∗ − ε < x∗; that is, S’s value collapses.

(b) and (c), note that in finite models v̂ and v̂∧γ are both continuous. Therefore, the

two functions agree over all full-support priors if and only if they are equal, which is

equivalent to the cap on v∧γ being non-binding; that is, γ maximizes v̄. To see why

(c) is equivalent to (d), fix some full-support µ0, and consider two questions about

Theorem 1’s program. First, which beliefs can serve as γ for χ(·)� 1 large enough?21

Second, how do the optimal (k, β) for a given γ change as χ(·) goes to 1? Figure 7

illustrates the answer to both questions for the two-state case. For the first question,

the answer is that γ is feasible for some χ(·)� 1 if and only if γ has full support. For

the second question, one can show it is always optimal to choose (k, β) so as to make

(χ-BP) bind while still satisfying (R-BP).22 Direct computation reveals that, as χ(·)
goes to 1, every such (k, β) must converge to (1, µ0). Combined, one obtains that, as

21By χ(·)� 1, we mean χ(θ) < 1 for all θ ∈ Θ.
22To see why, for any feasible (k, β, γ), a (k′, β′) exists such that (k′, β′, γ) is feasible, (χ-BP) binds,

and k′ ≥ k. By (R-BP), β′ = k
k′ β +

(
1− k

k′

)
γ. Because v̂∧γ is concave and v̂∧γ(γ) = v̄(γ),

k′v̂∧γ (β′) + (1− k′)v̄(γ) = k′v̂∧γ
(
k
k′ β +

(
1− k

k′

)
γ
)

+ (1− k′) v̄(γ)

≥ kv̂∧γ (β) + (k′ − k) v̂∧γ (γ) + (1− k′) v̄(γ) = kv̂∧γ (β) + (1− k) v̄(γ).
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χ(·) increases, S’s optimal value converges to maxγ∈int(∆Θ) v̂∧γ(µ0). Thus, S’s value is

robust to limited credibility if and only if some full-support γ exists for which v̂∧γ = v̂

for all full-support priors; that is, (c) is equivalent to (d). The proposition follows.

(a) The set of feasible (1− k)γ as χ(·)→ 1

0 1

δθ1

1
δθ2

µ0

(b) (k, β) converges to (1, µ0)

0 1

δθ1

1
δθ2

µ0

γ

β1

β2

β3. . .

Figure 7: Robustness to limited credibility

A.5 Exposition for Claim 1

This section provides some intuition for Claim 1. Let us first explain why v∗χ(µ0) ≥
v̂(µ̄χ). As explained in the main text, v̂(µ̄χ) =

∫
H dµχ,θ∗ , where µχ,θ∗ is a θ∗ upper

censorship of µ̄χ for some θ∗ ∈ [0, 1]. Because µ̄χ’s support is in [0, θ̄χ], any θ upper

censorship of µ̄χ for a θ above θ̄χ is just µ̄χ itself. Thus, assuming θ∗ is in [0, θ̄χ] is

without loss. Given such a θ∗, one can induce the posterior mean distribution µχ,θ∗ in

a χ-equilibrium (with the original prior µ0) using a θ∗-upper-censorship pair. As such,

S’s maximal χ-equilibrium value is at least as high as the value generated by µχ,θ∗ ;

that is, v∗χ(µ0) ≥
∫
H dµχ,θ∗ = v̂(µ̄χ).

We now sketch the reasoning behind v∗χ(µ0) ≤ v̂(µ̄χ). Suppose (β, γ, k) solves

Theorem 1’s program. Because cheap talk is equivalent to no information (as explained

earlier in this section), one can attain v̄(γ) with a single message that induces a posterior
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mean of Eγ. Therefore, v∧γ(µ) = H(Eγ) ∧H(Eµ), meaning v̂∧γ(β) is given by

v̂∧γ(β) = max
β̃�β

∫
H(Eγ) ∧H(·) dβ̃.

Using optimality of (β, γ, k), one can show the above program is solved by a β̃ whose

support lies in [0, Eγ]. As such, H’s expected value according to µ̃ := kβ̃ + (1− k)δEγ

equals S’s maximal χ-equilibrium value; that is, v∗χ(µ0) =
∫
H dµ̃. Hence, a sufficient

condition for v∗χ(µ0) ≤ v̂(µ̄χ) is that µ̃ � µ̄χ. In other words, it suffices to establish

that (MPS) holds for µ̄χ and µ̃ for all θ̂. To establish (MPS) for θ̂ ≥ Eγ, we use two

facts. First, µ̃[0, θ] = 1 ≥ µ̄χ[0, θ] holds for all θ ≥ Eγ. And, second, both µ̄χ and µ̃

admit µ0 as a mean-preserving spread. As such,
∫ θ̃

0
(µ̃[0, θ] − µ̄χ[0, θ]) dθ decreases in

θ̂ over [Eγ, 1] and reaches a value of zero at θ̃ = 1. It follows that (MPS) holds for µ̄χ

and µ̃ for all θ̃ ≥ Eγ. To establish (MPS) for θ̂ < Eγ, notice that µ̃[0, θ] = kβ̃[0, θ]

whenever θ < Eγ. Therefore, if θ̂ < Eγ,

∫ θ̂

0

µ̃[0, θ] dθ = k

∫ θ̂

0

β̃[0, θ] dθ ≤ k

∫ θ̂

0

β[0, θ] dθ

=

∫ θ̂

0

(µ0 − (1− k)γ)[0, θ] dθ ≤
∫ θ̂

0

χµ0[0, θ] dθ ≤
∫ θ̂

0

µ̄χ[0, θ] dθ,

where the first inequality follows from β � β̃, the second equality from (R-BP), and

the second inequality from (χ-BP).
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B Online Appendix: Proofs

We first introduce some convenient notation that we will use below. For a compact

metrizable space, Y , and f : Y → R bounded and measurable, let f(γ) :=
∫
Y
f dγ.

B.1 Toward the Proof of the Main Theorem

To present unified proofs, we adopt the notational convention that 0
0

= 1 wherever it

appears.

B.1.1 Characterization of All Equilibrium Outcomes

En route to our characterization of the sender-preferred equilibrium outcomes, we

characterize the full range of equilibrium outcomes.

Definition 1. (p, so, si) ∈ ∆∆Θ × R × R is a χ-equilibrium outcome if there

exists a χ-equilibrium (ξ, σ, α, π) such that, letting Po := 1
χ(µ0)

∫
Θ
χξ dµ0 and Pi :=

1
1−χ(µ0)

∫
Θ

(1 − χ)σ dµ0 be the equilibrium distributions over M conditional on official

and influenced reporting, respectively, we have: p = [χ(µ0)Po + [1 − χ(µ0)]Pi] ◦ π−1,

so = uS
(∫

M
α dPo

)
, and si = uS

(∫
M
α dPi

)
.

The following lemma adopts a belief-based approach, directly characterizing χ-

equilibrium outcomes of our game.

Lemma 1. Fix (p, so, si) ∈ ∆∆Θ×R×R. Then (p, so, si) is a χ-equilibrium outcome

if and only if there exists k ∈ [0, 1], b, g ∈ ∆∆Θ such that

(i) kb+ (1− k)g = p ∈ R(µ0);

(ii) (1− k)
∫

∆Θ
µ dg(µ) ≥ (1− χ)µ0;

(iii) g{µ ∈ ∆Θ : si ∈ V (µ)} = b{µ ∈ ∆Θ : minV (µ) ≤ si} = 1;

(iv) [1− χ(µ0)] si + χ(µ0)so ∈ (1− k) si + k
∫

supp(b)
si ∧ V db.23

23Here, si ∧ V : ∆Θ ⇒ R is the correspondence with si ∧ V (µ) = (−∞, si] ∩ V (µ); it is a Kakutani
correspondence (because V is) on the restricted domain supp(b). The integral is the (Aumann) integral
of a correspondence:∫

supp(b)

si ∧ V db =

{∫
supp(b)

φ db : φ is a measurable selector of si ∧ V |supp(b)

}
.
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Proof. As M is an uncountable Polish space, Kuratowski’s theorem says M is isomor-

phic (as a measurable space) to {0, 1} × ∆Θ. We can therefore assume without loss

that M = {0, 1} ×∆Θ.

First, suppose k ∈ [0, 1], g, b ∈ ∆∆Θ satisfy the four listed conditions. Let φ be a

measurable selector of si ∧ V |supp(b) with so =
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

φ db.

Define D := supp(p), β :=
∫

∆Θ
µ db(µ), and γ :=

∫
∆Θ

µ dg(µ). Let measurable

ηg, ηb : Θ → ∆∆Θ be signals that induce belief distribution g for prior γ and belief

distribution b for prior β, respectively.24 That is, for every Borel Θ̂ ⊆ Θ and D̂ ⊆ ∆Θ,∫
Θ̂

ηb(D̂|·) dβ =

∫
D̂

µ(Θ̂) db(µ) and

∫
Θ̂

ηg(D̂|·) dγ =

∫
D̂

µ(Θ̂) dg(µ).

Take some Radon-Nikodym derivative dβ
dµ0

: Θ → R+; changing it on a µ0-null set, we

may assume that 0 ≤ k
χ

dβ
dµ0
≤ 1 since (1− k)γ ≥ (1− χ)µ0.

Next, define the sender’s influenced strategy and reporting protocol σ, ξ : Θ→ ∆M

by letting, for every Borel M̂ ⊆M ,

σ(M̂ |·) := ηg

({
µ ∈ D : (0, µ) ∈ M̂

} ∣∣∣∣ ·) ,
ξ(M̂ |·) :=

[
1− k

χ
dβ
dµ0

]
ηg

({
µ ∈ D : (0, µ) ∈ M̂

} ∣∣∣∣ ·)
+ k

χ
dβ
dµ0
ηb

({
µ ∈ D : (1, µ) ∈ M̂

} ∣∣∣∣ ·) .
Now, fix some µ̂ ∈ D and â ∈ argmaxa∈AuR(a, µ̂) with uS(â) ≤ si; we can then define

a receiver belief map as

π : M → ∆Θ

m 7→

µ : m ∈ {0, 1} × {µ} for µ ∈ D

µ̂ : m /∈ {0, 1} ×D.

Finally, by Lipnowski and Ravid (2019, Lemma 2), there are some measurable

αb, αg : supp(p)→ ∆A such that:25

24These are the partially informative signals about θ ∈ Θ such that it is Bayes-consistent for the
listener’s posterior belief to equal the message.

25The cited lemma will exactly deliver αb|supp(b), αg|supp(g). Then, as supp(p) ⊆ supp(b) ∪ supp(g),
we can extend both functions to the rest of their domains by making them agree on supp(p)\[supp(b)∩
supp(g)].
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� αb(µ), αg(µ) ∈ argmaxα̃∈∆AuR(α̃, µ) ∀µ ∈ supp(p);

� uS(αb(µ)) = φ(µ) ∀µ ∈ supp(b), and uS(αg(µ)) = si ∀µ ∈ supp(g).

From these, we can define a receiver strategy as

α : M → ∆A

m 7→


αb(µ) : m = (1, µ) for µ ∈ D

αg(µ) : m = (0, µ) for µ ∈ D

δâ : m /∈ {0, 1} ×D.

We want to show that the tuple (ξ, σ, α, π) is a χ-equilibrium resulting in outcome

(p, so, si). It is immediate from the construction of (σ, α, π) that sender incentive

compatibility and receiver incentive compatibility hold, and that the expected sender

payoff is si given influenced reporting.

Recall χξ : Θ→ ∆M is defined as the pointwise product, i.e. for every θ ∈ Θ and

Borel M̂ ⊆ M , we have (χξ)(M̂ |θ) = χ(θ)ξ(M̂ |θ); and similarly for (1 − χ)σ. To see

that the Bayesian property holds, observe that every Borel D̂ ⊆ D satisfies

[(1− χ)σ + χξ]({1} × D̂|·) = k dβ
dµ0
ηb(D̂|·)

[(1− χ)σ + χξ]({0} × D̂|·) =
[
(1− χ) + χ

(
1− k

χ
dβ
dµ0

)]
ηg(D̂|·)

=
(
1− k dβ

dµ0

)
ηg(D̂|·).

Now, take any Borel M̂ ⊆ M and Θ̂ ⊆ Θ, and let Dz :=
{
µ ∈ D : (z, µ) ∈ M̂

}
for

z ∈ {0, 1}. Observe that∫
Θ

∫
M̂

π(Θ̂|·) d[(1− χ(θ))σ + χ(θ)ξ](·|θ) dµ0(θ)

=

∫
Θ

∫
M̂∩[{0,1}×D]

π(Θ̂|·) d[(1− χ(θ))σ + χ(θ)ξ](·|θ) dµ0(θ)

=

∫
Θ

(∫
{1}×D1

+

∫
{0}×D0

)
π(Θ̂|·) d[(1− χ(θ))σ + χ(θ)ξ](·|θ) dµ0(θ)

=

∫
Θ

[
k dβ

dµ0
(θ)

∫
D1

µ(Θ̂) dηb(µ) +
(

1− k dβ
dµ0

(θ)
)∫

D0

µ(Θ̂) dηg(µ)

]
dµ0(θ)

= k

∫
Θ

∫
D1

µ(Θ̂) dηb(µ) dβ +

∫
Θ

∫
D0

µ(Θ̂) dηg(µ) d[µ0 − kβ]
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= k

∫
Θ

∫
D1

µ(Θ̂) dηb(µ) dβ(θ) + (1− k)

∫
Θ

∫
D0

µ(Θ̂) dηg(µ) dγ(θ)

= k

∫
D1

∫
Θ

µ(Θ̂) dµ(θ) db+ (1− k)

∫
D0

∫
Θ

µ(Θ̂) dµ(θ) db(µ)

= k

∫
D1

µ(Θ̂) db(µ) + (1− k)

∫
D0

µ(Θ̂) dg(µ)

= k

∫
Θ̂

ηb(D1|·) dβ + (1− k)

∫
Θ̂

ηg(D0|·) dγ

=

∫
Θ̂

ηb(D1|·) d[kβ] +

∫
Θ̂

ηg(D0|·) d[µ0 − kβ]

=

∫
Θ̂

k dβ
dµ0
ηb(D1|·) dµ0 +

∫
Θ̂

(
1− k dβ

dµ0

)
ηg(D0|·) dµ0

=

∫
Θ̂

[(1− χ)σ + χξ]

(
M̂ ∩ [{0, 1} ×D]

∣∣∣∣ ·) dµ0

=

∫
Θ̂

[(1− χ)σ + χξ](M̂ |·) dµ0,

verifying the Bayesian property. So (ξ, σ, α, π) is a χ-equilibrium. Moreover, for any

Borel D̂ ⊆ ∆Θ, the equilibrium probability of the receiver posterior belief belonging

to D̂ is exactly (specializing the above algebra to D1 = D0 = D̂ and Θ̂ = Θ)∫
Θ

[(1− χ)σ + χξ]({0, 1} × D̂|·) dµ0 = k

∫
D̂

1 db+ (1− k)

∫
D̂

1 dg = p(D̂).

Finally, the expected sender payoff conditional on reporting not being influenced—

note the conditional distribution χ
χ(µ0)

µ0 ∈ ∆Θ—is given by:∫
Θ

∫
M

uS (α(m)) dξ(m|·) d
[

χ
χ(µ0)

µ0

]
=

∫
Θ

[(
1− k

χ
dβ
dµ0

)∫
∆Θ

uS (α(0, µ)) dηg(µ|·) + k
χ

dβ
dµ0

∫
∆Θ

uS (α(1, µ)) dηb(µ|·)
]

d
[

χ
χ(µ0)

µ0

]
=

∫
Θ

[(
1− k

χ
dβ
dµ0

)∫
∆Θ

si dηg(µ|·) + k
χ

dβ
dµ0

∫
supp(b)

φ(µ) dηb(µ|·)
]

d
[

χ
χ(µ0)

µ0

]
= si + k

χ(µ0)

∫
Θ

[
−si +

∫
supp(b)

φ(µ) dηb(µ|θ)
]

dβ(θ)

=
[
1− k

χ(µ0)

]
si + k

χ(µ0)

∫
∆Θ

∫
Θ

φ(µ) dµ(θ) db(µ)

= (1−k)−[1−χ(µ0)]
χ(µ0)

si + k
χ(µ0)

∫
supp(b)

φ db

= so,
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as required.

Conversely, suppose (ξ, σ, α, π) is a χ-equilibrium resulting in outcome (p, so, si).

Let

G̃ :=

∫
Θ

σ dµ0 and P :=

∫
Θ

[χξ + (1− χ)σ] dµ0 ∈ ∆M

denote the probability measures over messages induced by non-committed behavior

and by average sender behavior, respectively.

Let M∗ := {m ∈M : uS(α(m)) = si} and k := 1 − P (M∗). Sender incentive

compatibility (which implies that σ(M∗|·) = 1) tells us that k ∈ [0, χ(µ0)]. Let G :=
1

1−kP (· ∩M∗) if k < 1; and let G := G̃ otherwise. Let B := 1
k
[P − (1− k)G] if k > 0;

and let B :=
∫

Θ
ξ dµ0 otherwise. Both G and B are in ∆M because (1 − k)G ≤ P .

Let g := G ◦ π−1 and b := B ◦ π−1, both in ∆∆Θ. By construction, kb + (1 − k)g =

P ◦ π−1 = p ∈ R(µ0). Moreover,

(1− k)

∫
∆Θ

µ dg(µ) =

∫
M

π d[(1− k)G] =

∫
M∗

π dP ≥ (1− χ)µ0,

where the last inequality follows from the Bayesian property of π, together with the

fact that σ almost surely sends a message from M∗ on the path of play.

Next, for any m ∈ M sender incentive compatibility tells us that uS(α(m)) ≤ si,

and receiver incentive compatibility tells us that α(m) ∈ V (π(m)). If follows directly

that g{V 3 si} = b{minV ≤ si} = 1.

Now viewing π, α as random variables on the probability space 〈M,P 〉, define the

conditional expectation φ0 := EB[uS(α)|π] : M → R. By Doob-Dynkin, there is a

measurable function φ : ∆Θ→ R such that φ ◦π =B−a.e. φ0. As uS(α(m)) ∈ si∧V (m)

for every m ∈ M , and the correspondence si ∧ V is compact- and convex-valued, it

must be that φ0 ∈B−a.e. si ∧ V (π). Therefore, φ ∈b−a.e. si ∧ V . Modifying φ on a b-null

set, we may assume without loss that φ is a measurable selector of si ∧ V .

Observe now that G̃(M∗) = G(M∗) = 1 and∫
supp(b)

φ db =

∫
M

φ0 dB =

∫
M

EB[uS(α)|π] dB =

∫
M

uS ◦ α dB.
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Therefore,

so =

∫
M

uS ◦ π dP−[1−χ(µ0)]G̃
χ

=

∫
M

uS ◦ π dP−[1−χ(µ0)]G
χ(µ0)

=

∫
M

uS ◦ π dkB+(1−k)G−[1−χ(µ0)]G
χ(µ0)

=

∫
M

uS ◦ π d
[(

1− k
χ(µ0)

)
G+ k

χ(µ0)
B
]

=
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

φ db,

as required.

B.1.2 Proof of Theorem 1

Proof. By Lemma 1, the supremum sender value over all χ-equilibrium outcomes is

v∗χ(µ0) := sup
b,g∈∆∆Θ, k∈[0,1], so,si∈R

{
χ(µ0)so + [1− χ(µ0)]si

}
s.t. kb+ (1− k)g ∈ R(µ0), (1− k)

∫
∆Θ

µ dg(µ) ≥ (1− χ)µ0,

g{V 3 si} = b{minV ≤ si} = 1,

so ∈
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

si ∧ V db.

Given any feasible (b, g, k, so, si) in the above program, replacing the associated

measurable selector of si ∧ V |supp(b) with the weakly higher function si ∧ v|supp(b), and

raising so to
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

si ∧ v db, will weakly raise the objectives and

preserve all constraints. Therefore,

v∗χ(µ0) = sup
b,g∈∆∆Θ, k∈[0,1], si∈R

{
χ(µ0)

[(
1− k

χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

si ∧ v db

]
+ [1− χ(1− µ0)]si

}
s.t. kb+ (1− k)g ∈ R(µ0), (1− k)

∫
∆Θ

µ dg(µ) ≥ (1− χ)µ0,

g{V 3 si} = b{minV ≤ si} = 1,

= sup
b,g∈∆∆Θ, k∈[0,1], si∈R

{
(1− k)si + k

∫
supp(b)

si ∧ v db

}
s.t. kb+ (1− k)g ∈ R(µ0), (1− k)

∫
∆Θ

µ dg(µ) ≥ (1− χ)µ0,

g{V 3 si} = b{minV ≤ si} = 1.

Given any feasible (b, g, k, si) in the latter program, replacing (g, si) with any (g∗, s∗i )

such that
∫

∆Θ
µ dg∗(µ) =

∫
∆Θ

µ dg(µ), g∗{V 3 s∗i } = 1, and s∗i ≥ si will preserve all
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constraints and weakly raise the objective. Moreover, Lipnowski and Ravid (2019,

Lemma 1 and Theorem 2) tell us that any γ ∈ ∆Θ has

max
g∈R(γ),si∈R: g{V 3si}=1

si = v̄(γ),

where v̄ is the quasiconcave envelope of v.26 Therefore,

v∗χ(µ0) = sup
b∈∆∆Θ, γ∈∆Θ, k∈[0,1]

{
(1− k)v̄(γ) + k

∫
∆Θ

v̄(γ) ∧ v db

}
s.t. k

∫
∆Θ

µ db(µ) + (1− k)γ = µ0, (1− k)γ ≥ (1− χ)µ0,

b{minV ≤ v̄(γ)} = 1.

Claim: If b ∈ ∆∆Θ, γ ∈ ∆Θ, and k ∈ [0, 1] satisfy k
∫

∆Θ
µ db(µ) + (1− k)γ = µ0 and

(1−k)γ ≥ (1−χ)µ0, then there exists (b∗, γ∗, k∗) feasible in the above program27 such

that (1− k∗)v̄(γ∗) + k∗
∫

∆Θ
v̄(γ∗) ∧ v db∗ ≥ (1− k)v̄(γ) + k

∫
∆Θ

v̄(γ) ∧ v db.

To prove the claim, let β :=
∫

∆Θ
µ db(µ), and consider three exhaustive cases.

Case 1: v̄(γ) ≤ v(µ0).

In this case, (b∗, γ∗, k∗) := (δµ0 , µ0, 0) will work.

Case 2: v(µ0) < v̄(γ) ≤ v(β).

In this case, Lipnowski and Ravid (2019, Lemma 3) delivers some β∗ ∈ co{β, µ0}
such that V (β∗) 3 v̄(γ). But then µ0 ∈ co{β∗, γ}. As v̄ is quasiconcave, v̄(µ0) ≥
min{v̄(β∗), v̄(γ)} ≥ min{v(β∗), v̄(γ)} = v̄(γ).

Therefore, (b∗, γ∗, k∗) := (δµ0 , µ0, 0) will again work.

Case 3: v(β) < v̄(γ).

In this case, our aim is to show that there exists a b∗ ∈ ∆∆Θ such that:

� b∗ ∈ R(β) and b{minV ≤ v̄(γ)} = 1;

�

∫
∆Θ

v̄(γ) ∧ v db∗ ≥
∫

∆Θ
v̄(γ) ∧ v db.

Given such a measure, (b∗, γ, k) will be as required. We explicitly construct such a b∗.

26Note that, g{V 3 si} = 1 implies si ∈
⋂
µ∈supp(g) V (µ) because V is upper hemicontinuous.

27That is, (b∗, γ∗, k∗) satisfy the same constraints, and further have b∗{minV ≤ v̄(γ)} = 1.
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Let D := supp(b), and define the measurable function,

λ : D → [0, 1]

µ 7→

1 : v(µ) ≤ v̄(γ)

inf
{
λ̂ ∈ [0, 1] : v

(
(1− λ̂)γ + λ̂µ

)
≥ v̄(γ)

}
: otherwise.

Lipnowski and Ravid (2019, Lemma 3) tells us that v̄(γ) ∈ V ([1− λ(µ)]γ + λ(µ)µ) for

every µ ∈ D for which v(µ) > v̄(γ). This implies that minV ([1−λ(µ)]γ+λ(µ)µ) ≤ v̄(γ)

for every µ ∈ D.

There must some number ε > 0 such that λ ≥ ε uniformly, because v is upper

semicontinuous and v̄(γ) > v(β); and so 1
λ

: D → [1,∞) is bounded. Moreover, by

construction, λ(µ) < 1 only for µ ∈ D with v(µ) > v(γ).

Now, define b∗ ∈ ∆∆Θ via

b∗(D̂) :=

(∫
∆Θ

1
λ

db

)−1

·
∫

∆Θ

1

λ(µ)
1[1−λ(µ)]µ0+λ(µ)µ∈D̂ db(µ), ∀ Borel D̂ ⊆ ∆Θ.

Direct computation shows that
∫

∆Θ
µ db∗(µ) =

∫
∆Θ

µ db(µ), i.e. b∗ ∈ R(β). More-

over, by construction, minV ([1 − λ(µ)]γ + λ(µ)µ) ≤ v̄(γ) ∀µ ∈ D. All that remains,

then, is the value comparison.(∫
∆Θ

1
λ

db

)∫
∆Θ

v̄(γ) ∧ v d[b∗ − b]

=

∫
∆Θ

[
1

λ(µ)
v̄(γ) ∧ v

(
[1− λ(µ)]µ0 + λ(µ)µ

)
−
(∫

∆Θ

1
λ

db

)
v̄(γ) ∧ v(µ)

]
db(µ)

=

∫
∆Θ

(
1

λ(µ)
−
∫

∆Θ

1
λ

db

)[
v(µ)1v(µ)≤v̄(γ) + v̄(γ)1v(µ)>v̄(γ)

]
db(µ)

=

∫
∆Θ

(
1

λ(µ)
−
∫

∆Θ

1
λ

db

){
v̄(γ)− [v̄(γ)− v(µ)]1v(µ)≤v̄(γ)

}
db(µ)

= 0 +

∫
∆Θ

(∫
∆Θ

1
λ

db− 1
λ(µ)

)
[v̄(γ)− v(µ)]1v(µ)≤v̄(γ) db(µ)

=

∫
{µ∈∆Θ: v(µ)≤v̄(γ)}

(∫
∆Θ

1
λ

db− 1

)
[v̄(γ)− v(µ)] db(µ)

=

(∫
∆Θ

1−λ
λ

db

)∫
{µ∈∆Θ: v(µ)≤v̄(γ)}

[v̄(γ)− v] db

≥ 0,
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proving the claim.

In light of the claim, the optimal value is

v∗χ(µ0) = sup
b∈∆∆Θ, γ∈∆Θ, k∈[0,1]

{
(1− k)v̄(γ) + k

∫
∆Θ

v̄(γ) ∧ v db

}
s.t. k

∫
∆Θ

µ db(µ) + (1− k)γ = µ0, (1− k)γ ≥ (1− χ)µ0,

= sup
β,γ∈∆Θ, k∈[0,1]

{
(1− k)v̄(γ) + k sup

b∈R(β)

∫
∆Θ

v̄(γ) ∧ v db

}
s.t. kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− χ)µ0,

= sup
β,γ∈∆Θ, k∈[0,1]

{
(1− k)v̄(γ) + kv̂∧γ(β)

}
s.t. kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− χ)µ0.

Finally, observe that the supremum is in fact a maximum because the constraint set is

a compact subset of (∆Θ)2 × [0, 1] and the objective upper semicontinuous.

B.1.3 Consequences of Lemma 1 and Theorem 1

Corollary 1. As x ranges over [0, 1], the set of x1-equilibrium outcomes (p, so, si) at

prior µ0 is a compact-valued, upper hemicontinuous correspondence of (µ0, x).

Proof. Let YG be the graph of V and YB be the graph of [minV,maxuS(A)], both

compact because V is a Kakutani correspondence.

Let X be the set of all (µ0, p, g, b, x, k, so, si) ∈ (∆Θ)×(∆∆Θ)3×[0, 1]2×[co uS(A)]2

such that:

� kb+ (1− k)g = p;

� (1− x)
∫

∆Θ
µ dg(µ) + x

∫
∆Θ

µ db(µ) = µ0;

� (1− k)
∫

∆Θ
µ dg(µ) ≥ (1− x)µ0;

� g ⊗ δsi ∈ ∆(YG) and b⊗ δsi ∈ ∆(YB);

� k
∫

∆Θ
minV db ≤ (k − x) si + xso ≤ k

∫
∆Θ

si ∧ v db.

As an intersection of compact sets, X is itself compact. By Lemma 1, the equilibrium

outcome correspondence has a graph which is a projection ofX, and so is itself compact.

Therefore, it is compact-valued and upper hemicontinuous.
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Corollary 2. For any µ0 ∈ ∆Θ, the map

[0, 1]→ R
x 7→ v∗x1(µ0)

is weakly increasing and right-continuous.

Proof. That it is weakly increasing is immediate from Theorem 1, given that increasing

credibility expands the constraint set. That it is upper semicontinuous (and so, since

nondecreasing, it is right-continuous) follows directly from Corollary 1.

Corollary 3. For any x ∈ [0, 1], the map v∗x1 : ∆Θ→ R is upper semicontinuous.

Proof. This is immediate from Corollary 1.

B.2 Productive Mistrust: Proofs

Toward verifying our sufficient conditions for productive mistrust to occur, we first

study in some depth the possibility of productive mistrust in the binary-state world.

We then leverage that analysis to study the same in many-state environments.

To this end, it useful to introduce a more detailed language for our key SOB condi-

tion. Given a prior µ ∈ ∆Θ, say S is an SOB at µ if every p ∈ R(µ) is outperformed

by an SOB policy p′ ∈ R(µ).

B.2.1 Productive Mistrust with Binary States

Given binary states, finitely many actions, and a full-support prior µ0, we know that

the quasiconcave envelope function v̄ : ∆Θ → R is upper semicontinuous, weakly

quasiconcave, and piecewise constant. Therefore, if µ0 /∈ argmaxµ∈∆Θv̄(µ), there is

then a unique µ+ = µ+(µ0) closest to µ0 with the property that v̄(µ+) > v̄(µ0), and

a unique θ = θ(µ0) ∈ Θ with µ0 ∈ co{µ+(µ0), δθ}. In this case, for the rest of the

subsection, we identify ∆Θ u [0, 1] by identifying ν ∈ ∆Θ with 1− ν(θ(µ0)).28

Lemma 2. Given finite A, binary Θ, and a full-support prior µ0 ∈ ∆Θ, the following

are equivalent:

28So, under this normalization, 0 = θ < µ0 < µ+.
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1. There exist credibility levels χ′ < χ such that, for every S-optimal χ-equilibrium

outcome (p, s) and S-optimal χ′-equilibrium outcome (p′, s′), the policy p′ is strictly

more Blackwell-informative than p.

2. µ0 /∈ argmaxµ∈∆Θ: µ full-supportv̄(µ), and there exists µ− ∈ [0, µ0] such that v(µ−) >

v(0) + µ−
µ+

[v(µ+)− v(0)].

Moreover, in this case, every S-optimal χ′-equilibrium outcome gives the receiver a

strictly higher payoff than any S-optimal χ-equilibrium.

Proof. First, suppose (2) fails. There are three ways it could fail:

(a) With µ0 ∈ argmaxµ∈∆Θv̄(µ);

(b) With µ0 ∈ argmaxµ∈∆Θ: µ full-supportv̄(µ) \ argmaxµ∈∆Θv̄(µ);

(c) With µ0 /∈ argmaxµ∈∆Θ: µ full-supportv̄(µ);

In case (a) or (b), pick some S-optimal 0-equilibrium information policy p0. For

any x̂ ∈ [0, 1), we know (p0, v̄(µ0)) is a S-optimal 0-equilibrium outcome; and in case

(a) it is also a S-optimal 1-equilibrium outcome.

For case (a), there is nothing left to show.

For case (b), we need only consider the case of χ = 1. In case (b), that v̄ is

weakly quasiconcave implies it is monotonic. So µ+ = 1, and v̄ : [0, 1] → R is non-

decreasing with v̄|[µ0,1) = v̄(µ0) < v̄(1). As v∗1 is the concave envelope of v̄, it must

be that the support of any S-optimal 1-equilibrium information policy is contained in

[0, min{µ ∈ [0, 1] : v(µ) = v(µ0))}] ∪ {1}, so that (1) fails as well.

In case (c), failure of (2) tells us v(µ) ≤ v(0) + µ
µ+

[v(µ+)− v(0)] , ∀µ ∈ [0, µ0]. As

v̄|[0,µ+) ≤ v̄(µ0), it follows that

v∗x̂1(µ0) = max
β,γ,k∈[0,1]

{
kv̂∧γ(β) + (1− k)v̄(γ)

}
s.t. kβ + (1− k)γ = µ0, (1− k)(γ, 1− γ) ≥ (1− x̂)(µ0, 1− µ0)

= max
γ∈[µ0,1],k∈[0,1]

{
kv(0) + (1− k)v̄(γ)

}
s.t. k0 + (1− k)γ = µ0, (1− k)(γ, 1− γ) ≥ (1− x̂)(µ0, 1− µ0)

= max
γ∈[µ0,1]

{(
1− µ0

γ

)
v(0) + µ0

γ
v̄(γ)

}
s.t. µ0

γ
(1− γ) ≥ (1− x̂)(1− µ0).
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In particular, defining γ(x̂) to be the largest argmax in the above optimization problem,

it follows that

px̂ =
(

1− µ0

γ(x̂)

)
δ0 + µ0

γ
δγ(x̂)

is a S-optimal x̂1-equilibrium information policy for any x̂ ∈ [0, 1], so that (1) does not

hold.

Conversely, suppose (2) holds.

The function v : [0, 1]→ R is upper semicontinuous and piecewise constant, which

implies that its concave envelope v∗1 is piecewise affine. We may then define

µ∗− := min{µ ∈ [0, µ0] : v∗1 is affine over [µ, µ0]}.

That (2) holds tells us that µ∗− ∈ (0, µ0). It is then without loss to take µ− = µ∗−.

There are thus beliefs µ−, µ+ ∈ [0, 1] such that: 0 < µ− < µ0 < µ+; v∗1 is affine on

[µ−, µ+] and on no larger interval; and v∗1 is strictly increasing on [0, µ+]. It follows

that v̂∧µ+ = v∗1 on [0, µ+]. By definition of µ+ = µ+(µ0), we know that v̄ is constant

on [µ0, µ+). That is, (appealing to Lipnowski and Ravid (2019, Theorem 2)) v∗0 is

constant on [µ0, µ+). Then, since v∗1 strictly decreases there, it must be that v∗1 > v∗0

on (µ0, µ+).

Let x ∈ [0, 1] be the smallest credibility level such that v∗x1(µ0) = v∗1(µ0), which

exists by Corollary 2. That v∗0(µ0) < v∗1(µ0) implies χ > 0. That µ+ has full support,

which follows from (2), implies that x < 1.29

Consider now the following claim.

Claim: Given x′ ∈ [0, x], suppose that

(β′, γ′, k′) ∈ argmax(β,γ,k)∈[0,1]3

{
kv̂∧γ(β) + (1− k)v̄(γ)

}
s.t. kβ + (1− k)γ = µ0, (1− k)(γ, 1− γ) ≥ (1− x′)(µ0, 1− µ0),

for a value strictly higher than v̄(µ0). Then:

� γ′ = µ+ and β′ ≤ µ−.

� If h′ ∈ R(β′) and `′ ∈ R(γ′) are such that p′ = k′h′+(1−k′)`′ is the information

29In particular, this follows from the hypothesis that there exists some full-support belief at which
v̄ takes a strictly higher value than v(µ0). This implies x < 1 by the same argument employed to
prove Proposition 3.
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policy of a S-optimal x′1-equilibrium, then h′[0, µ−] = `′{µ+} = 1.

We now prove the claim.

If γ′ > µ+, then let k′′ ∈ (0, k′) be the unique solution to k′′β′ + (1 − k′′)µ+ = µ0.

As (1− k′′)(µ+, 1− µ+) ≥ (1− x′)(µ0, 1− µ0) and

k′′v̂∧µ+(β′) + (1− k′′)v̄(µ+) ≥ k′′v̂∧γ′(β
′) + (1− k′′)v̄(γ′) > k′v̂∧γ′(β

′) + (1− k′)v̄(γ′),

the feasible solution (β′, µ+, k
′′) would strictly outperform (β′, γ′, k′). So optimality

implies γ′ ≤ µ+.

Notice that v̄—as a weakly quasiconcave function which is nondecreasing and

nonconstant over [µ0, µ+]—is nondecreasing over [0, µ+]. Moreover, limµ↗µ+ v̄(µ) =

v̄(µ0) < v̄(µ+). Therefore, if γ′ < µ+, it would follow that k′v̂∧γ′(β
′) + (1− k′)v̄(γ′) ≤

v̄(γ′) ≤ v̄(µ0). Given the hypothesis that (β′, γ′, k′) strictly outperforms v̄(µ0), it

follows that γ′ = µ+. One direct implication is that

(β′, k′) ∈ argmax(β,k)∈[0,1]2

{
kv̂∧µ+(β) + (1− k) max v[0, µ+]

}
s.t. kβ + (1− k)µ+ = µ0, (1− k)(1− µ+) ≥ (1− x′)(1− µ0).

Let us now see why we cannot have β′ ∈ (µ−, µ0). As v̂∧µ+ is affine on [µ+, µ−],

replacing such (k′, β′) with (k, µ−) which satisfies kµ− + (1 − k)µ+ = µ0 necessarily

has (1− k)(µ+, 1− µ+)� (1− x′)(µ0, 1− µ0). This would contradict minimality of x.

Therefore, β′ ≤ µ−.

We now prove the second bullet. First, every µ < µ+ satisfies v(µ) ≤ v∗1(µ) <

v∗1(µ+) = v(µ+). This implies that δµ+ is the unique ` ∈ R(µ+) with inf v(supp`) ≥
v(µ+). Therefore, `′ = δµ+ .

Second, the measure h′ ∈ R(β′) can be expressed as h′ = (1 − γ)hL + γhR for

hL ∈ ∆[0, µ−], hR ∈ ∆(µ−, 1], and γ ∈ [0, 1). Notice that (µ−, v(µ−)) is an extreme

point of the subgraph of v∗1, and therefore an extreme point of the subgraph of v̂∧µ+ .

Taking the unique γ̂ ∈ [0, γ] such that ĥ := (1 − γ̂)hL + γ̂δµ− ∈ R(β′), it follows that∫
[0,1]

v̂∧µ+ dĥ ≥
∫

[0,1]
v̂∧µ+ dh′, strictly so if γ̂ < γ. But γ̂ < γ necessarily if γ > 0, since∫

[0,1]
µ dhR(µ) > µ−. Optimality of h′ then implies that γ = 0, i.e. h′[0, µ−] = 1. This

completes the proof of the claim.

With the claim in hand, we can now prove the proposition. Letting k∗ ∈ (0, 1)

be the solution to k∗µ− + (1 − k∗)µ+ = µ0, the claim implies that (µ−, µ+, k
∗) is the
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unique solution to

max
(β,γ,k)∈[0,1]3

{
kv̂∧γ(β) + (1− k)v̄(γ)

}
s.t. kβ + (1− k)γ = µ0, (1− k)(γ, 1− γ) ≥ (1− x)(µ0, 1− µ0),

and that p∗ = k∗δµ−+(1−k∗)δµ+ is the uniquely S-optimal x1-equilibrium information

policy. Moreover, the minimality property defining x implies that (1− k∗)(1− µ+) =

(1− x)(1− µ0).

Given x′ < x sufficiently close to x, one can verify directly that (β′, µ+, k
′) is feasible,

where

k′ := 1− 1−x′
1−x (1− k∗) and β′ := 1

k′
[µ0 − (1− k′)µ+] .

As v̂∧µ+ is a continuous function, it follows that v∗x′1(µ0) ↗ v∗x1(µ0) as x′ ↗ x. In

particular, v∗x′1(µ0) > v∗0(µ0) for x′ < x sufficiently close to x. Fix such a x′.

Let p′ be any S-optimal x′1-equilibrium information policy. Appealing to the claim,

it must be that there exists some h′ ∈ R(β′) ∩ ∆[0, µ−] such that p′ ∈ co{h′, δµ+}.
Therefore, p′ is weakly more Blackwell-informative than p∗. Finally, as (1 − k∗)(1 −
µ+) = (1− x)(1− µ0) and x′ < x, feasibility of p′ tells us that p′ 6= p∗. Therefore (the

Blackwell order being antisymmetric), p′ is strictly more informative than p∗, proving

(1).

Having shown that (2) implies (1), all that remains is to show that the receiver’s

optimal payoff is strictly higher given p′ than given p∗. To that end, fix sender-preferred

receiver best responses a− and a+ to µ− and µ+, respectively. As the receiver’s optimal

value given p∗ is attainable using only actions {a−, a+}, and the same value is feasible

given only information p′ and using only actions {a−, a+}, it suffices to show that there

are beliefs in the support of p′ to which neither of {a−, a+} is a receiver best response.

But, at every µ ∈ [0, µ−) satisfies

v(µ) ≤ v̄(µ) < v̄(µ−) = min{v̄(µ−), v̄(µ+)};

that is, maxuS (argmaxa∈AuR(a, µ)) < min{uS(a−), uS(a+)}. The result follows.

The following Lemma is the specialization of Proposition 1 to the binary-state

world. In addition to being a special case of the proposition, it will also be an important

lemma for proving the more general result.
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Lemma 3. Suppose |Θ| = 2, the model is finite and generic, a full-support belief

µ ∈ ∆Θ exists such that the sender is not an SOB at µ. Then there exists a full-

support prior µ0 and credibility levels χ′ < χ such that every S-optimal χ′-equilibrium

is both strictly better for R and more Blackwell-informative than every S-optimal χ-

equilibrium.

Proof. First, notice that the genericity assumption delivers full-support µ′, such that

V (µ′) = {max v (∆Θ)}.
Name our binary-state space {0, 1} and identify ∆Θ = [0, 1] in the obvious way.

The function v : [0, 1] → R is piecewise constant, which implies that its concave

envelope v∗1 is piecewise affine. That is, there exist n ∈ N and {µi}ni=0 such that

0 = µ0 ≤ · · · ≤ µn = 1 and v∗1|[µi−1,µi] is affine for every i ∈ {1, . . . , n}. Taking n to

be minimal, we can assume that µ0 < · · · < µn and the slope of v∗1|[µi−1,µi] is strictly

decreasing in i. Therefore, there exist i0, i1 ∈ {0, . . . , n} such that i1 ∈ {i0, i0 + 1}
and argmaxµ∈[0,1]v(µ) = [µi0 , µi1 ]. That the sender is not an SOB at µ implies that

i0 > 1 or i1 < n − 1. Without loss of generality, say i0 > 1. Now let µ− := µi0−1 and

µ+ := µi0 .

Finally, that V (µ′) = {max v (∆Θ)}, and V is (by Berge’s theorem) upper hemi-

continuous implies argmaxµ∈∆Θ: µ full-supportv̄(µ) = argmaxµ∈∆Θv̄(µ). Therefore, con-

sidering any prior of the form µ0 = µ+ − ε for sufficiently small ε > 0, Lemma 2

applies.

B.2.2 Productive Mistrust with Many States: Proof of Proposition 1

Given Lemma 3, we need only prove the proposition for the case of |Θ| > 2, which we

do below. The proof intuition is as follows. Using the binary-state logic, one can always

obtain a binary-support prior µ∞0 and constant credibility levels χ′ < χ such that R

strictly prefers every S-optimal χ′-equilibrium to every S-optimal χ-equilibrium. We

then find an interior direction through which to approach µ∞0 , while keeping S’s optimal

equilibrium value under both credibility levels continuous. Genericity ensures that such

a direction exists despite v̄ being discontinuous. The continuity in S’s value from the

identified direction then ensures upper hemicontinuity of S’s optimal equilibrium policy

set; that is, the limit of every sequence of S-optimal equilibrium policies from said

direction must also be optimal under µ∞0 . Now, if the proposition were false, one could

construct a convergent sequence of S-optimal equilibrium policies from said direction

for each credibility level, {pχn, pχ
′
n }n≥0, such that R would weakly prefer pχn to pχ

′
n . As
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R’s payoffs are continuous, R being weakly better off under χ than under χ′ along the

sequences would imply the same at the sequences’ limits. Notice, though, that such

limits must be S-optimal for the prior µ∞0 by the choice of direction, meaning that

productive mistrust fails at µ∞0 ; that is, we have a contradiction. Below, we proceed

with the formal proof.

Proof. Let Θ2 := {θ1, θ2} and u := max v (∆Θ2), and define the receiver value function

vR : ∆∆Θ→ R via vR(p) :=
∫

∆Θ
maxa∈A uR(a, µ) dp(µ).

Appealing to Lemma 3, there is some µ∞0 ∈ ∆Θ with support Θ2 and credibility

levels χ′′ < χ′ such that every S-optimal χ′′-equilibrium is strictly better for R than

every S-optimal χ′-equilibrium.

Consider the following claim.

Claim: There exists a sequence {µn0} of full-support priors converging to µ∞0 such that

lim inf
n→∞

v∗χ(µn0 ) ≥ v∗χ(µ∞0 ) for χ ∈ {χ′, χ′′}.

Before proving the claim, let us argue that it implies the proposition. Given the

claim, assume for contradiction that: for every n ∈ N, prior µn0 admits some S-optimal

χ′-equilibrium and χ′′-equilibrium, Ψ′n = (p′n, s
′
in, s

′
on) and Ψ′′n = (p′′n, s

′′
i n, s

′′
on), respec-

tively, such that vR(p′n) ≥ vR(p′′n). Dropping to a subsequence if necessary, we may

assume by compactness that (Ψ′n)n and (Ψ′′n)n converge (in ∆∆Θ × R × R) to some

Ψ′ = (p′, s′i, s
′
o) and Ψ′′ = (p′′, s′′i , s

′′
o) respectively. By Corollary 1, for every credibility

level χ, the set of χ-equilibria is an upper hemicontinuous correspondence of the prior.

Therefore, Ψ′ and Ψ′′ are χ′- and χ′′-equilibria, respectively, at prior µ∞0 . Continuity

of vR (by Berge’s theorem) then implies that vR(p′) ≥ vR(p′′). Finally, by the claim, it

must be that Ψ′ and Ψ′′ are S-optimal χ′- and χ′′-equilibria, respectively, contradicting

the definition of µ∞0 . Therefore, there is some n ∈ N for which the full-support prior

µn0 is as required for the proposition.

So all that remains is to prove the claim. To do this, we construct the desired

sequence.

First, the proof of Lemma 3 delivers some γ∞ ∈ ∆Θ such that v̄(γ∞) = u and, for

both χ ∈ {χ′, χ′′}, some (β, γ, k) ∈ ∆Θ×{γ∞}× [0, 1] solves the program in Theorem

1 at prior µ∞0 .

Let us now show that there exists a closed convex set D ⊆ ∆Θ which contains γ∞,

has nonempty interior, and satisfies v̄|D = u. Indeed, for any n ∈ N, let Bn ⊆ ∆Θ
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be the closed ball (say with respect to the Euclidean metric) of radius 1
n

around µ′,

and let Dn := co [{γ∞} ∪Bn]. As v|∆Θ2 ≤ u and constant functions are quasiconcave,

Lipnowski and Ravid (2019, Theorem 2) tells us v̄|∆Θ2 ≤ u as well. As V is upper

hemicontinuous, the hypothesis on µ′ ensures that v̄|Bn ≥ v|Bn = u for sufficiently

large n ∈ N; quasiconcavity then tells us v̄|Dn ≥ u. Assume now, for a contradiction,

that every n ∈ N has v̄|Dn � u. That is, there is some λn ∈ [0, 1] and µ′n ∈ Bn

such that v̄ ((1− λn)µ+ λnµ
′
n) > u. Dropping to a subsequence, we get a strictly

increasing sequence (n`)
∞
` of natural numbers such that (since [0, 1] is compact and

v̄(∆Θ) is finite) λn`
`→∞−−−→ λ ∈ [0, 1] and v̄

(
(1− λn`)µ+ λnkµ

′
nk

)
= û for some number

û ∈ (u,∞) and every ` ∈ N. As v̄ is upper semicontinuous, this would imply that

v̄ ((1− λ)µ+ λµ′) ≥ û > u, contradicting the definition of u. Therefore, some D ∈
{Dn`}∞`=1 is as desired. In what follows, let γ1 ∈ D be some interior element with full

support.

Now, for each n ∈ N, define µn0 := n−1
n
µ∞0 + 1

n
γ1. We will show that the sequence

(µn0 )∞n=1—a sequence of full-support priors converging to µ∞0 —is as desired. To that

end, fix χ ∈ {χ′, χ′′} and some (β, k) ∈ ∆Θ × [0, 1] such that (β, γ∞, k) solves the

program in Theorem 1 at prior µ∞0 . Then, for any n ∈ N, let:

εn := 1
n−(n−1)k

∈ (0, 1],

γn := (1− εn)γ∞ + εnγ1 ∈ D,
kn := n−1

n
k ∈ [0, k).

Given these definitions,

(1− kn)γn = 1
n

[n− (n− 1)k] γn

= 1
n
{[n− (n− 1)k − 1] γ∞ + γ1}

= n−1
n

(1− k)γ∞ + 1
n
γ1

≥ n−1
n

(1− χ)µ∞0 + 1
n
γ1 ≥ (1− χ)µn0 , and

knβ + (1− kn)γn = n−1
n
kβ + n−1

n
(1− k)γ∞ + 1

n
γ1

= n−1
n
µ∞0 + 1

n
γ1 = µn0 .
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Therefore, (β, γn, kn) is χ-feasible at prior µn0 . As a result,

v∗χ(µn0 ) ≥ knv̂∧γn(β) + (1− kn)v̄(γn)

= knv̂∧γ(β) + (1− kn)v̄(γ) (since v̄(γn) = u)
n→∞−−−→ kv̂∧γ(β) + (1− k)v̄(γ) = v∗χ(µ∞0 ).

This proves the claim, and so too the proposition.

B.3 Collapse of Trust: Proof of Proposition 2

Proof. Two of three implications are easy given Corollary 2. First, if there is no conflict,

then Lipnowski and Ravid (2019, Lemma 1) tells us that there is a 0-equilibrium with

full information that generates sender value max v(∆Θ) ≥ v∗1; in particular, v∗0 = v∗1.

Second, if v∗0 = v∗1, then v∗χ is constant in χ, ruling out a collapse of trust. Below we

show that any conflict whatsoever implies a collapse of trust.

Suppose there is conflict; that is, minθ∈Θ v(δθ) < max v(∆Θ). Taking a positive

affine transformation of uS, we may assume without loss that min v(∆Θ) = 0 and (since

v(∆Θ) ⊆ uS(A) is finite) min[v(∆Θ) \ {0}] = 1. The set D := arg minµ∈∆Θ v(µ) =

v−1(−∞, 1) is then open and nonempty. We can then consider some full-support prior

µ0 ∈ D. For any scalar x̂ ∈ [0, 1], let

Γ(x̂) := {(β, γ, k) ∈ ∆Θ× (∆Θ \D)× [0, 1] : kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− x̂)µ0} ,

and K(x̂) be its projection onto its last coordinate. As the correspondence Γ is upper

hemicontinuous and decreasing (with respect to set containment), K inherits the same

properties. Next, notice that K(1) 3 1 (as v is nonconstant by hypothesis, so that

∆Θ 6= D) and K(0) = ∅ (as µ0 ∈ D). Therefore, x := min{x̂ ∈ [0, 1] : K(x̂) 6= ∅}
exists and belongs to (0, 1].

Given any scalar x′ ∈ [0, x), it must be that K(x′) = ∅. That is, if β, γ ∈ ∆Θ and

k ∈ [0, 1] with kβ + (1− k)γ = µ0 and (1− k)γ ≥ (1− x̂)µ0, then γ ∈ D. By Theorem

1, then, v∗x′1(µ0) = v(µ0) = 0.

There is, however, some k ∈ K(x). By Theorem 1 and the definition of Γ, there is

therefore a x1-equilibrium generating ex-ante sender payoff of at least k ·0+(1−k)·1 =

(1− k) ≥ (1− x). If x < 1, a collapse of trust occurs at credibility level x.

The only remaining case is the case that x = 1. In this case, there is some ε ∈ (0, 1)
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and µ ∈ ∆Θ \D such that εµ ≤ µ0. Then

v∗x1(µ0) ≥ εv(µ) + (1− ε)v
(
µ0−εµ

1−ε

)
≥ ε.

So again, a collapse of trust occurs at credibility level x.

B.4 Robustness: Proof of Proposition 3

Proof. By Lipnowski and Ravid (2019, Lemma 1 and Theorem 2), S gets the benefit

of the doubt (i.e. every θ ∈ Θ is in the support of some member of argmaxµ∈∆Θv(µ))

if and only if there is some full-support γ ∈ ∆Θ such that v̄(γ) = max v(∆Θ).

First, given a full-support prior µ0, suppose γ ∈ ∆Θ is full-support with v̄(γ) =

max v(∆Θ). It follows immediately that v̂∧γ = v̂ = v∗1.

Let r0 := minθ∈Θ
µ0{θ}
γ{θ} ∈ (0,∞) and r1 := maxθ∈Θ

µ0{θ}
γ{θ} ∈ [r0,∞). Then Theorem

1 tells us that, for χ ∈
[
r1−r0
r1

, 1
)Θ

, letting x := minθ∈Θ χ(θ) ∈
[
r1−r0
r1

, 1
)

:

v∗χ(µ0) ≥ sup
β∈∆Θ, k∈[0,1]

{
kv∗1(β) + (1− k)v(γ)

}
s.t. kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− x)µ0

= sup
k∈[0,1]

{
kv∗1

(
µ0−(1−k)γ

k

)
+ (1− k)v(γ)

}
s.t. (1− x)µ0 ≤ (1− k)γ ≤ µ0

≥ sup
k∈[0,1]

{
kv∗1

(
µ0−(1−k)γ

k

)
+ (1− k)v(γ)

}
s.t. (1− x)r1 ≤ (1− k) ≤ r0

≥ sup
k∈[0,1]

{
kv∗1

(
µ0−(1−k)γ

k

)
+ (1− k)v(γ)

}
s.t. (1− x)r1 = (1− k)

= [1− (1− x)r1] v∗1

(
µ0−(1−x)r1γ

1−(1−x)r1

)
+ (1− x)r1v(γ).

But notice that v∗1, being a concave function on a finite-dimensional space, is contin-

uous on the interior of its domain. Therefore, v∗1

(
µ0−(1−x)r1γ

1−(1−x)r1

)
→ v∗1(µ0) as χ → 1,30

implying lim infχ↗1 v
∗
χ(µ0) ≥ v∗1(µ0). Finally, monotonicity of χ 7→ v∗χ(µ0) implies

30Note that Θ is finite, so that χ(·)→ 1 is equivalent to x→ 1.
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v∗χ(µ0)→ v∗1(µ0) as χ→ 1. That is, persuasion is robust to limited commitment.

Conversely, suppose that S does not get the benefit of the doubt (which of course

implies v is non-constant). Taking an affine transformation of uS, we may assume

without loss that max v(∆Θ) = 1 and (since v(∆Θ) ⊆ uS(A) is finite) max[v̄(∆Θ) \
{1}] = 0.

Consider any full-support prior µ0. We will now prove a slightly stronger robustness

result, that v∗χ(µ0) 6→ v∗1(µ0) as χ → 1 even if we restrict attention to imperfect

credibility which is independent of the state. To that end, take any constant χ ∈ [0, 1).

For any β, γ ∈ ∆Θ, k ∈ [0, 1] with kβ + (1− k)γ = µ0 and (1− k)γ ≥ (1− χ)µ0, that

S does not get the benefit of the doubt implies (say by Lipnowski and Ravid (2019,

Theorem 1)) that v̄(γ) ≤ 0, and therefore that kv̂∧γ(β) + (1− k)v(γ) ≤ 0. Theorem 1

then implies that v∗χ(µ0) ≤ 0.

Fix some full-support µ1 ∈ ∆Θ and some γ ∈ ∆Θ with v(γ) = 1. For any ε ∈ (0, 1),

the prior µε := (1− ε)γ + εµ1 has full support and satisfies

v∗1(µε) ≥ (1− ε)v(γ) + εv(µ1) ≥ (1− ε) + ε ·min v(∆Θ).

For sufficiently small ε, then, v∗1(µε) > 0. Persuasion is therefore not robust to limited

commitment at prior µε.
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B.5 Persuading the Public: Proofs from Section 5

B.5.1 Mathematical preliminaries

In this subsection, we document some notations and basic properties that are useful

for the present case of Θ = [0, 1], with the sender’s value depending only on the

receiver’s posterior expectation of the state. This environment is studied by Gentzkow

and Kamenica (2016) and others. Throughout the subsection, let θ0 := Eµ0 be the

prior mean; let

I := {I : R+ → R+ : I convex, I(0) = 0, I|[1,∞) affine};

let I ′ denote the right-hand-side derivative of I for any I ∈ I; and let

I(I) := {Î ∈ I : I ′(1) = Î ′(1), I(1) = Î(1), Î ≤ I}

for any I ∈ I.

Fact 1. Let M be the set of finite, positive, countably additive Borel measures on Θ.

1. For any η ∈ M, the function Iη : R+ → R+ given by θ̄ 7→
∫ θ̄

0
η[0, θ] dθ is a

member of I.

2. For any I ∈ I, the function I ′ is the CDF of some η ∈M such that Iη = I.

3. Any η ∈M has total mass I ′η(1) and, if η ∈ ∆Θ, has barycenter 1− Iη(1).

The proof of the above fact is immediate, invoking the fundamental theorem of

calculus for the second point and integration by parts for the third.

Fact 2. Given µ, µ̂ ∈ ∆Θ, the following are equivalent:

1. µ̂ = p ◦ E−1 for some p ∈ R(µ).

2. µ is a mean-preserving spread of µ̂.

3. Iµ̂ ∈ I(Iµ).

That the last two points are equivalent is immediate from the definition of a mean-

preserving spread. Equivalence between these conditions and the first is as described

in Gentzkow and Kamenica (2016). To apply their results, given µ ∈ ∆Θ, notice that:

52

 Electronic copy available at: https://ssrn.com/abstract=3168103 



� A convex function I : [0, 1] → R with I(θ) ≤ Iµ(θ) and I(θ) ≥ (θ − Eµ)+ for

every θ ∈ [0, 1] extends (by letting it take slope 1 on [1,∞)) to a member of

I(Iµ).

� Every element I ∈ I(Iµ) has, for each θ ∈ [0, 1],

I(θ)− (θ − Eµ) =

∫ 1

θ

[1− I ′(θ̃)] dθ̃ ≥ 0,

so that I(θ) ≥ (θ − Eµ)+ = max{Iµ(1)− I ′µ(1)(1− θ), 0}.

B.5.2 Characterizing S-optimal equilibrium

Lemma 4. Suppose Ī ∈ I, I ∈ I(Ī), and ω ∈ [0, 1]. Then there exist θ∗ ∈ [0, ω],

θ∗∗ ∈ [ω, 1] and I∗ ∈ I(Ī) such that:

� I∗ = Ī on [0, θ∗], I is affine on [θ∗, θ∗∗], and I∗
′
(θ) = 1 on [θ∗∗, 1];

� I∗ − I is nonnegative on [0, ω] and nonpositive on [ω, 1].

The proof of the lemma is constructive. While tedious to formally verify that the

construction is as desired, it is intuitive to picture. We illustrate in Figure 8. Given

the curves I and Ī, we wish to construct the curve I∗ ∈ I(Ī). In order to ensure

that I∗ has the required level and slope at θ = 1, we will construct it to lie above

the tangent line θ 7→ θ − θ0 of Ī at 1. Now, consider positively sloped lines through

the point (ω, I(ω)). Convexity of Ī ensures that some such line lies everywhere below

the graph of Ī, whence continuity delivers such a line of shallowest slope. This line

is necessarily tangent to Ī somewhere to the left of ω: this point will be our θ∗. The

same line intersects the tangent line θ 7→ θ − θ0 to the right of ω: this will be our θ∗∗.

Finally, we construct I∗ to coincide with upper bound function Ī to the left of θ∗, the

θ∗ tangent line on [θ∗, θ∗∗], and the 1 tangent line θ 7→ θ − θ0 to the right of θ∗∗.

Proof. Let Λ := {λ ∈ [0, I ′(ω)] : I(ω)− λ(ω − θ) ≤ Ī(θ) for all θ ∈ [0, ω]}. The set Λ

is closed because Ī is continuous, and it contains I ′(ω) because I is convex and below

Ī. So let λ := min Λ.

Let us now show that there is some θ∗ ∈ [0, ω] such that I(ω)− λ(ω − θ∗) = Ī(θ∗).

First, if λ = 0, then 0 ≤ I(ω) ≤ Ī(0) = 0; and so θ∗ = 0 is as desired. Focus now on

the case that λ > 0. The compact subset {Ī(θ)− [I(ω)−λ(ω− θ)] : 0 ≤ θ ≤ ω} of R+

53

 Electronic copy available at: https://ssrn.com/abstract=3168103 



10 ωθ0

Ī
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Figure 8: Construction of (θ∗, θ∗∗, I∗) in Lemma 4

attains a minimum, which we wish to show is zero. If the minimum were ε > 0, then

max{λ− ε, 0} ∈ Λ too, a contradiction to λ = min Λ. So 0 is in the set as desired.

Construct now the function

I∗ : R+ → R+

θ 7→


Ī(θ) : 0 ≤ θ ≤ θ∗

I(ω)− λ(ω − θ) : θ∗ ≤ θ ≤ ω

max{I(ω) + λ(θ − ω), I(1)− I ′(1)(1− θ)} : ω ≤ θ.

The definition of θ∗ ensures I∗(θ∗) is well-defined. That I is convex implies I(ω) +
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λ(ω − ω) ≥ I(1) − (1 − ω)I ′(1), which in particular ensures that I(ω) is well-defined.

That I is convex and λ ≤ I ′(ω) implies max{I(ω) + λ(1 − ω) ≤ I(1) − I ′(1)(1 − 1).

So there is some θ∗∗ ∈ [ω, 1] such that I∗(θ) is equal to I(ω) + λ(θ− ω) for θ ∈ [ω, θ∗∗]

and equal to I(1)− I ′(1)(1− θ) for θ ∈ [θ∗∗,∞). This verifies the first bullet.

It remains to verify that I∗ − I is nonpositive on [ω, 1] and nonnegative on [0, ω],

and that I∗ ∈ I(Ī).

To see that I∗− I is nonpositive above ω, consider any θ ∈ [ω, 1] and use convexity

of I. Specifically, first observe that I(θ) ≥ I(1) − I ′(1)(1 − θ) = Ī(1) − (1 − θ)Ī ′(1).

Next, that λ ≤ I ′(ω) implies I(θ) ≥ I(ω) + λ(θ − ω). So I(θ) ≥ I∗(θ). Moreover,

I∗
′
= 1 = I ′ on [1,∞), so the ranking holds everywhere above ω.

It is immediate that I∗ − I is nonnegative on [0, θ∗], so we turn to showing it is

nonnegative on (θ∗, ω] too; focus on the nontrivial case with θ∗ < ω. That I∗ ≤ Ī on

(θ∗, ω] by definition of λ implies λ = Ī ′(θ∗). Assume then, for a contradiction, that

some θ ∈ (θ∗, ω] has I(θ) > I∗(θ). Then

I(θ)−I(θ∗)
θ−θ∗ > I∗(θ)−Ī(θ∗)

θ−θ∗ = λ.

But then, I being convex, I(ω) > I(θ) + λ(ω − θ) > I∗(θ) + λ(ω − θ) = I(ω), a

contradiction. Thus I∗ − I is nonnegative on [0, θ∗] as desired.

All that remains is to show that I∗ ∈ I(Ī). Letting I : R+ → R+ be given by

I(θ) := max{Ī(1)− Ī ′(1)(1− θ), 0}, we need to check that I ≤ I∗ ≤ Ī and I is convex.

On [0, θ∗], we have I∗ = Ī ≥ I. On [θ∗, ω], we have shown that I∗ ≥ I ≥ I, and we

know I∗ ≤ Ī by the definition of λ. On [ω,∞), we have shown that I∗ ≤ I ≤ Ī, and

we have I∗ ≥ I by definition. So I ≤ I∗ ≤ Ī globally.

Finally, we verify convexity. Because the two affine functions coincide at θ∗∗ ≥ θ∗,

we know that I∗(θ) = max{I(ω) + λ(θ − ω), I(1) − (1 − θ)I ′(1)} for θ ∈ [θ∗,∞).

A maximum of two affine functions, I∗|[θ∗,∞) is convex. Moreover, I∗|[0,θ∗] is convex.

Globally convexity then follows if I∗ is subdifferentiable at θ∗. But λ is a subdifferential

of Ī ≥ I∗ at θ∗, and the two functions coincide at θ∗. It is therefore a subdifferential

for I∗ at the same, as required.

Lemma 5. Suppose H̃ : Θ→ R has H̃(·) = H̃(0) +
∫ (·)

0
h̃(θ) dθ for some h̃ of bounded

variation. Then, for any I, Î ∈ I such that I(1)− Î(1) = I ′(1)− Î ′(1) = 0, we have[
H̃(0)Î ′(0) +

∫ 1

0

H̃ dÎ ′
]
−
[
H̃(0)I ′(0) +

∫ 1

0

H̃ dI ′
]

=

∫ 1

0

(Î − I) dh̃.
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Proof. [
H̃(0)Î ′(0) +

∫ 1

0

H̃ dÎ ′
]
−
[
H̃(0)I ′(0) +

∫ 1

0

H̃ dI ′
]

= H̃(0)(Î − I)′(0) +

∫ 1

0

H̃ d(Î − I)′

= H̃(0)(Î − I)′(0) +
[
(Î − I)′H̃

]1

0
−
∫ 1

0

(Î − I)′ dH̃

= −
∫ 1

0

(Î − I)′(θ)h̃(θ) dθ

= −
[
(Î − I)h̃

]1

0
+

∫ 1

0

(Î − I) dh̃

=

∫ 1

0

(Î − I) dh̃.

We now complete our elementary proof that upper censorship is an optimal persua-

sion rule for convex-concave objectives. Recall, for θ∗ ∈ [0, 1] and µ ∈ ∆Θ, a θ∗ upper

censorship of µ is

1[0,θ∗)µ+ µ[θ∗, 1]δ 1
µ[θ∗,1]

∫
[θ∗,1] θ dµ(θ)

∈ ∆Θ

if µ[θ∗, 1] > 0, and simply µ if µ[θ∗, 1] = 0.

Lemma 6. Suppose H̃ : Θ → R is continuous, and ω ∈ [0, 1] is such that H̃ is

(strictly) convex on [0, ω] and (strictly) concave on [ω, 1]. Then, if µ̄ ∈ ∆Θ has no

atoms < max supp(µ̄), some (every) solution to maxµ∈∆Θ: µ�µ̄
∫
H̃ dµ is a θ∗ upper

censorship of µ̄ for some θ∗ ∈ [0, ω]. Moreover, this θ∗ upper censorship puts probability

1 on [0, θ∗] ∪ [ω, 1].

Proof. Let µ be a solution to the given program. Taking Ī := Iµ̄ and I := Iµ, note

that the conditions of Lemma 4 are satisfied. Let I∗ ∈ I, θ∗ ∈ [0, ω], and θ∗∗ ∈ [ω, 1]

be as delivered by Lemma 4 and µ∗ ∈ ∆Θ be such that I∗ = Iµ∗ . Then, by Lemma 5

(letting h̃ := H̃ ′),∫ 1

0

H̃ dµ∗ −
∫ 1

0

H̃ dµ = H̃(0)(I∗ − I)′(0) +

∫ 1

0

H̃ d(I∗ − I)′

=

∫ ω

0

(I∗ − I) dh̃+

∫ 1

ω

(I − I∗) d(−h̃).
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As h̃ is (strictly) increasing on [0, ω) and (strictly) decreasing on [ω, 1], it follows from

the definition of I∗ that
∫ 1

0
H̃ dµ∗ ≥

∫ 1

0
H̃ dµ, (strictly so, given continuity of I∗ − I,

unless I = I∗). Optimality of µ then tells us that µ∗ is optimal (and equal to µ).

By construction, µ∗[0, θ] = µ̄[0, θ] for every θ ∈ [0, θ∗), and (since, by hypothesis,

µ̄{θ∗} = 0 if µ̄(θ∗, 1] > 0) we have |[θ∗, 1]∩ supp(µ∗)| = 1. But these properties—which

will clearly also be satisfied by a θ∗ upper censorship of µ̄—characterize a unique

distribution of any given mean. Therefore, µ∗ is a θ∗ upper censorship of µ̄.

Finally, the “moreover” point follows from θ∗∗ ≥ ω, as guaranteed by Lemma 4.

Lemma 7. There is a unique θ̄χ ∈ [0, 1] such that31
∫ θ̄

0
χµ0[0, θ] dθ is

> θ̄ − θ0 for θ̄ ∈ [0, θ̄χ)

= θ̄ − θ0 for θ̄ = θ̄χ

< θ̄ − θ0 for θ̄ ∈ (θ̄χ, 1].

Moreover, θ̄χ ≥ θ0 and, if credibility is imperfect, θ̄χ < 1.

Proof. Let ϕ(θ̄) := (θ̄ − θ0) −
∫ θ̄

0
χµ0[0, θ] dθ =

∫ θ̄
0

(1− χµ0[0, θ]) dθ − θ0 for θ̄ ∈
Θ. Clearly, ϕ is continuous and strictly increasing. Next, observe that ϕ(θ0) =

−
∫ θ0

0
χµ0[0, θ] dθ ≤ 0, and

ϕ(1) = (1− θ0)−
∫ 1

0

χµ0[0, θ] dθ = Iµ0(1)− Iχµ0(1) = I(1−χ)µ0(1) ≥ 0,

with the last inequality being strict if χµ0 6= µ0. The result then follows from the

intermediate value theorem.

In what follows, recall the mean distribution µ̄χ as defined in Section 5.

Lemma 8. For any θ ∈ [0, 1], we have

Iµ̄χ(θ) = max{Iχµ0(θ), θ − θ0} =

Iχµ0(θ) : θ ≤ θ̄χ

θ − θ0 : θ ≥ θ̄χ.

Moreover, Eµ̄χ = θ0.

31Integration by parts shows that this definition of θ̄χ is equivalent to that in Equation θ∗-IC.
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Proof. That Iµ̄χ coincides with Iχµ0 on [0, θ̄χ] and has derivative 1 on (θ̄χ, 1] follows

directly from the definition of µ̄χ. Noting that Iχµ0(θ̄χ) = θ̄χ − θ0 by Lemma 7, it

follows that Iµ̄χ(θ) = θ − θ0 for θ ∈ [θ̄χ, 1].

Next, recall that Iχµ0(θ) − (θ − θ0) is nonnegative for θ ∈ [0, θ̄χ] and nonpositive

for θ ∈ [θ̄χ, 1] by Lemma 7. Consequently, Iµ̄χ(θ) = max{Iχµ0(θ), θ − θ0} for every

θ ∈ [0, 1].

Finally, Eµ̄χ = 1− Iµ̄χ(1) = θ0.

We now prove Claim 1.

Proof. First, we show that v̂(µ̄χ) = maxθ∗∈[0,θ̄χ]

∫
H dµχ,θ∗ , and that the maximum

on the RHS is attained. By Lemma 6, there is some θ∗ ∈ [0, 1] such that v̂(µ̄χ) =∫
H dµχ,θ∗ . As µ̄χ[0, θ̄χ] = 1, we have µχ,θ = µχ,θ̄χ for every θ ∈ [θ̄χ, 1]; so we may

without loss take θ∗ ≤ θ̄χ. Furthermore, since∫
H dµχ,θ∗ = v̂(µ̄χ) = max

µ�µ̄χ

∫
H dµ ≥

∫
H dµχ,θ

for every θ ∈ [0, θ̄χ], the maximum is attained.

Next, given θ∗ ∈ [0, θ̄χ], we exhibit an equilibrium in which S communicates via a θ∗-

upper-censorship pair, and observe that this induces S value
∫
H dµχ,θ∗—in particular

showing
∫
H dµχ,θ∗ ≤ v∗χ(µ0). To that end, define the belief map π : M → ∆Θ via

π(m) =

δm : m ∈ [0, θ∗)

γ : otherwise,

where γ :=
[1−χ1[0,θ∗)]µ0

1−χµ0[0,θ∗)
(with γ := δ1 if χµ0[0, θ∗) = 1). Then let R behavior be given

by α := H ◦E ◦ π. The Bayesian property is now straightforward, and the R incentive

condition holds by construction. To verify that this is a χ-equilibrium, then, we need

only check that S behavior is optimal under influenced reporting. As the set of interim

own-payoffs S can induce with some message is {H(θ) : θ ∈ [0, θ∗) or θ = Eγ} , and H

is strictly increasing on [0, 1], it remains to show that Eγ ≥ θ∗. This holds vacuously
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if γ = δ1, so focus on the alternative case in which µ̄χ[θ∗, θ̄χ] > 0. In this case,

µ̄χ[θ∗, θ̄χ] (Eγ − θ∗) =

∫
[θ∗,θ̄χ]

(θ − θ∗) dµ̄χ(θ)

= −
∫

[θ∗,1]

(θ∗ − θ) dµ̄χ(θ)

=

∫
[0,θ∗)

(θ∗ − θ) dµ̄χ(θ)− (θ∗ − θ0) (by Lemma 8)

= [(θ∗ − θ)µ̄χ[0, θ]](θ
∗)−

0 −
∫

[0,θ∗)

(−1)µ̄χ[0, θ] dθ − (θ∗ − θ0)

= [0− 0] + Iχµ0(θ∗)− (θ∗ − θ0)

≥ 0 by Lemma 8.

S incentive-compatibility follows. To show this equilibrium generates the required

payoff, it suffices to show that the induced distribution µ of posterior means is equal

to µχ,θ∗ . For any θ ∈ [0, θ∗), notice that

µ[0, θ) =

∫ θ

0

χ dµ0 = µ̄χ[0, θ) = µχ,θ∗ [0, θ).

Moreover, |[θ∗, 1] ∩ supp(µ)| = 1 = |[θ∗, 1] ∩ supp(µχ,θ∗)|. Equality then follows from

equality of their means (Lemma 8).

Finally, we show that v∗χ(µ0) ≤ v̂(µ̄χ). To that end, let (β, γ, k) solve the program

of Theorem 1 – and, without loss, say β = µ0 if k = 0. Let ω := ω∗ ∧ Eγ, and see

that H(Eγ) ∧H is continuous, convex on [0, ω], and concave on [ω, 1]. Therefore, by

Lemma 6, there is some θ∗ ∈ [0, ω] such that the θ∗ upper censorship of β belongs

to argmaxβ̂�β
∫
H(Eγ) ∧ H dβ̂. Let λ := β[0, θ∗) ∈ [0, 1], η :=

1[θ∗,1]β

1−λ ∈ ∆Θ, γ̂ :=
(1−k)γ+(1−λ)kη

1−λk ∈ ∆Θ, and β̂ :=
1[0,θ∗)β

λ
∈ ∆Θ.32 Two observations will enable us to

bound S payoffs across all equilibria. First, as a monotone transformation of an affine

functional, v = H ◦ E is quasiconcave, implying v̄ = v. Second, Lemma 6 tells us

32In case any of the described objects is defined by an expression with a zero denominator, we define
it as follows: η := δ1 if λ = 1, γ̂ := δ1 if λk = 1, and β̂ := δ0 if λ = 0.
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Eη ≥ ω, so that H(Eγ) ∧H is concave on co{Eγ,Eη}. Now, observe that

v∗χ(µ0) = kv̂∧γ(β) + (1− k)v̄(γ)

= k

∫
H(Eγ) ∧H d

[
1[0,θ∗)β + (1− λ)δEη

]
+ (1− k)H(Eγ)

= k

[
λ

∫
H dβ̂ + (1− λ)H(Eγ) ∧H(Eη)

]
+ (1− k)H(Eγ) ∧H(Eγ)

≤ kλ

∫
H dβ̂ + (1− kλ)H(Eγ) ∧H(Eγ̂)

≤
∫
H d

[
kλβ̂ + (1− λk)δEγ̂

]
≤ v̂

(
kλβ̂ + (1− λk)δEγ̂

)
.

Letting µ̂ := kλβ̂+ (1−λk)δEγ̂, the payoff ranking (and so too the claim) will follow if

we show that µ̂ � µ̄χ. As (appealing to Lemma 8) Eµ̄χ = θ0 = Eµ̂, it suffices to show

that Iµ̂ ≤ Iµ̄χ .

For θ ∈ [0, Eγ̂), we have δEγ̂[0, θ] = 0. Therefore, over the interval [0, Eγ̂], we have

Iµ̂ = Iλkβ̂ + (1− λk)IδEγ̂ = Iλkβ̂ ≤ Ikβ = Iµ0 − I(1−k)γ ≤ Iµ0 − I(1−χ)µ0 = Iχµ0 .

Now, as Iµ̂(1) = 1 − θ0 and (since Eγ̂ ≥ θ0) we have I ′µ̂|(Eγ̂,1) = 1, we know Iµ̂(θ) =

θ − θ0 for θ ∈ [Eγ̂, 1]. In particular, we learn that Iµ̂(θ) ≤ max{Iχµ0(θ), θ − θ0} for

θ ∈ [0, Eγ̂] ∪ [Eγ̂, 1]. Lemma 8 then tells us that Iµ̂ ≤ Iµ̄χ .

B.5.3 Comparative Statics

Now, we prove Claim 2. In fact, because the proof applies without change, we prove a

slightly stronger result, providing comparative statics results in the credibility function

and the prior, holding the prior mean fixed. Specifically, given two pairs of parameters

〈µ0, χ〉 and 〈µ̃0, χ̃〉 such that Eµ0 = Eµ̃0 = θ0, we show that v∗χ(µ0) ≥ v∗χ̃(µ̃0) if and

only if µ̄χ � ¯̃µχ̃.
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Proof. Appealing to Claim 1 and Lemma 5,

v∗χ(µ0)− v∗χ̃(µ0) = v̂(µ̄χ)− v̂(¯̃µχ̃)

= max
I∈I(Iµ̄χ )

[
H(0)I ′(0) +

∫ 1

0

H dI ′
]
− max

Ĩ∈I(I ¯̃µχ̃
)

[
H(0)Ĩ ′(0) +

∫ 1

0

H dĨ ′
]

= max
I∈I(Iµ̄χ )

∫ 1

0

H dI ′ − max
Ĩ∈I(I ¯̃µχ̃

)

∫ 1

0

H dĨ ′

= max
I∈I(Iµ̄χ )

∫ 1

0

I dh− max
Ĩ∈I(I ¯̃µχ̃

)

∫ 1

0

Ĩ dh.

Let I∗ := Iµ̄χ and Ĩ∗ := I ¯̃µχ̃ . We now need to show that maxI∈I(I∗)

∫ 1

0
I dh ≥

maxĨ∈I(Ĩ∗)

∫ 1

0
Ĩ dh for every continuous, strictly quasiconcave h : [0, 1] → R if and

only if I∗ ≥ Ĩ∗.

First, if I∗ ≤ Ĩ∗ then I(I∗) ⊆ I(Ĩ∗), delivering the payoff ranking.

Conversely, suppose I∗ � Ĩ∗. Then, elements of I being continuous, there are some

θ1, θ2 ∈ Θ such that θ1 < θ2 and I∗ > Ĩ∗ on (θ1, θ2). If h is increasing, then

v∗χ(µ0)− v∗χ̃(µ0) =

∫ 1

0

I∗ dh−
∫
Ĩ∗ dh =

∫ 1

0

(I∗ − Ĩ∗) dh.

As (I∗− Ĩ∗) is strictly positive over (θ1, θ2), globally bounded, and globally continuous,

there is ε > 0 small enough that
(
ε
∫ θ1

0
+
∫ θ2
θ1

+ε
∫ 1

θ2

) [
I∗(θ)− Ĩ∗(θ)

]
dθ > 0. It is then

straightforward to construct a shock distribution whose continuous density h satisfies

h′|(0,θ1)∪(θ2,1) = εζ and h′|(θ1,θ2) = ζ for some ζ > 0. Such a shock distribution witnesses

a failure of v∗χ(µ0) ≥ v∗χ̃(µ̃0).

B.6 Proofs from Section 6: Investing in Credibility

In this section, we prove the following formal claim concerning the public persuasion

application with costly endogenous credibility.

Claim 3. There exists an optimal credibility choice. Moreover, any optimal choice

(along with S-optimal equilibrium) is a cutoff credibility choice, and entails full revela-

tion by the official reporting protocol.

Toward the proof, we first establish the following lemma.
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Lemma 9. For any non-cutoff credibility choice (i.e. any χ such that there is no

θ∗ ∈ [0, 1] with χ = 1[0,θ∗) µ0-a.s.), there is some cutoff credibility choice that yields S

a strictly higher best equilibrium payoff net of costs.

Proof. Consider any credibility choice χ not of the desired form. In particular, this

implies that χ is not µ0-a.s. equal to 1, so that χµ0(Θ) < 1.

As µ0 is atomless, there is some θ∗ ∈ [0, 1) such that µ0[0, θ∗) = χµ0(Θ). That

1[0,θ∗)µ0 6= χµ0 but the two have the same total measure implies that supp[(1−χ)µ0] in-

tersects [0, θ∗). For each θ∗ ∈ [0, θ∗], define the function ηθ∗ := I1[0,θ∗)µ0−Iχµ0 : R+ → R.

By construction, its right-hand-side derivative at any θ is given by η′θ∗(θ) =
∫ θ

0
(1[0,θ∗)−

χ) dµ0. In particular, this implies (since χµ0 strictly first-order stochastically dom-

inates 1[0,θ∗)) that η′θ∗ is globally nonnegative, weakly quasiconcave with peak at θ∗,

and not globally zero. In particular, ηθ∗(0) = 0 yields ηθ∗ ≥ 0 and ε := 1
2
ηθ∗(θ

∗) > 0.

Now, with the prior being atomless and ηθ∗ continuous, there is some θ∗ ∈ [0, θ∗) close

enough to θ∗ to ensure that ηθ∗(θ∗) ≥ ε and µ0(θ∗, θ
∗] ≤ ε. Let η := ηθ∗ .

As η′ is weakly quasiconcave on [0, 1] (with peak at θ∗), we have inf η′[0, 1] =

min{η′(0), η′(1)} = min{0, η′(1)}. But

η′(1) =

∫ θ∗

0

1 dµ0 −
∫ 1

0

χ dµ0 = µ0[0, θ∗]− µ0[0, θ∗] ≥ −ε,

so that η′|[0,1] ≥ −ε.
Let us now observe that η is nonnegative over [0, 1]. First, any θ ∈ [0, θ∗] has

η(θ) = ηθ∗(θ) ≥ 0. Next, any θ ∈ [θ∗, 1] has

η(θ) = η(θ∗) +

∫ θ

θ∗

η′(θ̃) dθ̃ ≥ ε+ (1− θ∗)(−ε) = θ∗ε > 0.

So I1[0,θ∗)µ0 ≥ Iχµ0 globally. Lemma 8 then implies that µ̄1[0,θ∗)
� µ̄χ. Finally, Claim

2 tells us that v∗1[0,θ∗)
(µ0) ≥ v∗χ(µ0). Meanwhile, the cost of credibility 1[0,θ∗), is strictly

below that of credibility χ.

Now, we prove Claim 3

Proof. Consider any credibility choice χ and accompanying χ-equilibrium. Lemma 9

shows that χ is a cutoff credibility choice with cutoff θ∗ ∈ [0, 1], or can be replaced

with one for a strict improvement to the objective. Our analysis of public persuasion

says that the χ-equilibrium entails influenced θ∗ upper censorship for some cutoff θ∗ ∈
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[0, 1], or can be replaced with it for a strict improvement to the objective. Our main-

text observation on the endogenous credibility problem (that no gratuitous credibility

should be purchased) tells us that θ∗ ≤ θ∗, or else θ∗ can be lowered to θ∗ for a strict

gain to the objective. But then, since χ|[θ∗,1] = 0, it is purely a normalization to set

θ∗ = θ∗.

The above observations tell us that we may as well restrict to the case that there

is some cutoff θ∗ ∈ [0, 1] such that S invests in cutoff credibility choice with cutoff θ∗,

official reporting always reveals the state, and influenced reporting reveals itself but

provides no further information.

Thus, S solves (where the argument for H on the right is taken to be 1 when θ∗ = 1)

max
θ∗∈[0,1]

∫ θ∗

0

H dµ0 − c (µ0[0, θ∗)) +H

(∫ 1

θ∗
θ dµ0(θ)

µ0[θ∗, 1]

)
.

This program is continuous with compact domain, so that an optimum exists.
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