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Abstract

I consider a moral hazard in teams model in which a principal knows that

the agents she compensates are identical and independent, but does not know

all of the actions they can take. I show that any worst-case optimal contract

exhibits joint performance evaluation and is nonlinear in team output. Hence,

when robustness is a concern, nonlinear team-based incentive schemes—such

as team bonuses and employee stock options—are justified, even if tasks are

completed individually and individual performances are uncorrelated. This

result contrasts with the classical theory of incentives, which finds indepen-

dent performance evaluation to be Bayesian optimal, and with the recent liter-

ature on robust contracting with unbounded uncertainty, which finds linear

incentive schemes to be worst-case optimal. Moreover, it reveals a new chan-

nel leading to the optimality of joint performance evaluation and formalizes

a longstanding idea that interdependent incentive schemes are advantageous

due to their flexibility.
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1 Introduction

Both team-based incentive pay and the use of teams are on the rise (Edward P.

Lazear and Kathryn L. Shaw (2007), Deloitte (2016)). This can be rationalized by

appealing to teamwork: if a worker’s success depends on the actions of others, then

team-based incentives have the positive effect of encouraging help (Hideshi Itoh

(1991)) and discouraging sabotage (Edward P. Lazear (1989)). But, such incentives

also arise in settings in which work is done independently and individual perfor-

mances are uncorrelated. For instance, each member of a sales force may make

sales calls alone and oversee a distinct market segment; members of a start-up

may contribute to the same “vision” of an entrepreneur, but perform independent

tasks. In these cases, team-based incentive pay is also common: salespeople receive

bonuses for their division’s performance and start-up members are compensated

using equity or stock options in addition to wages.

This paper shows that team-based incentive pay for independent agents is op-

timal when robustness is a concern. Specifically, if a principal knows that the

agents she compensates are identical and technologically independent, but does

not know all of the actions they can take, any worst-case optimal contract exhibits

joint performance evaluation. Furthermore, the optimal form of joint performance

evaluation is nonlinear in the value the team produces. This result departs from the

classical theory of incentives, which finds independent performance evaluation to be

Bayesian optimal (Bengt Holmström (1982)), and from the recent literature on ro-

bust contracting in settings with unrestricted productive interdependency, which

finds linear joint performance evaluation incentive schemes to be worst-case op-

timal (Tianjiao Dai and Juuso Toikka (2018), Daniel Walton and Gabriel Carroll

(2019)).

Formally, I study a model in which a principal writes a symmetric contract

for two agents who have access to a common set of actions. Actions are costly

and unobservable, and affect the probability with which each agent succeeds at

her task. There is no productive relationship between the agents and individual

success is statistically independent, across agents, conditional on the actions they

take. All parties are risk-neutral and the agents are protected by limited liability.
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In contrast to standard models, the principal knows only a subset of the com-

mon actions available to the agents, and there may be others she does not know.

For instance, a sales manager may know that her sales representatives can follow

the company’s script. But, there are a myriad of ways in which a sales represen-

tative might deviate from this script. Hence, the principal evaluates each contract

according to its worst-case performance across all action sets containing the ones

that she knows. An optimal contract with respect to this criterion is a worst-case

optimal contract.

My main result, Theorem 1, is that any worst-case optimal contract exhibits

joint performance evaluation—each agent’s wage increases in the other’s success–

and is nonlinear—agents are not paid a constant share of the total value of com-

pleted tasks. Moreover, a worst-case optimal contract exists.

The logic behind the suboptimality of linear contracts is as follows. Suppose,

towards contradiction, that there was a worst-case optimal contract that was linear,

i.e. a joint performance evaluation contract in which agents are paid a constant

share of team output. Then, each agent would be paid strictly positive wages for

the success of the other agent, even when she herself does not succeed. But, given

productive independence between the agents, one agent’s action cannot affect the

probability of the other’s success. So, the principal could simply reduce wages by

a constant and leave individual incentives unchanged. This adjustment strictly

decreases expected wage payments without affecting productivity, thereby strictly

increasing the principal’s expected payoff.

To understand the intuition behind the optimality of joint performance eval-

uation, it is instructive to consider the following benchmark contract: Each agent

receives w∗ > 0 if she succeeds and zero otherwise, unconditional on the other’s

success or failure. Moreover, w∗ targets a known action a0. This contract exhibits

independent performance evaluation since it does not link one agent’s compensa-

tion to the performance of the other.

I argue that the principal can improve her worst-case expected payoff by cali-

brating a joint performance evaluation contract to the pair (w∗, a0). Suppose, rela-

tive to w∗, the principal increases the wage of an agent when she succeeds and the

other does as well, but reduces her wage when she succeeds and the other fails.
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If this adjustment keeps her expected wage constant, conditional on the other agent

taking the targeted known action a0, then her incentive to take an unknown, less

productive action is exactly the same as if she were offered the unconditional wage

w∗. Crucially, however, if both agents take this unknown action, then the principal

reduces her expected wage payments; joint performance evaluation implies that

each is paid less when the other is less productive.

The key finding of my analysis is that the basic rent-extraction benefit described

in the preceding paragraph can be made to dominate any negative effects such

contracts have on efficiency, even though such costs can be considerable when

there are many unknown actions.1 Specifically, there always exists a calibrated

joint performance evaluation contract that strictly outperforms any independent

performance evaluation contract. Moreover, the best joint performance evaluation

contract strictly outperforms any other contract, including those exhibiting relative

performance evaluation.

The contribution of my paper to the literature is threefold. First, it establishes a

fundamentally new channel leading to the unique optimality of joint performance

evaluation. In the Bayesian contracting paradigm, the Informativeness Principle of

Bengt Holmström (1979) and Steven Shavell (1979) prescribes independent perfor-

mance evaluation whenever one agent’s performance is statistically uninformative

of another’s action. Hence, the literature has sought justification for interdepen-

dent incentive schemes, such as relative performance evaluation and joint perfor-

mance evaluation, by introducing productive or informational linkages between

agents.2 My model explicitly rules out these channels in order to isolate the effect

of robustness considerations. I thus rationalize empirical evidence documenting

1I exhibit a n-sequence of dominance solvable games with n unknown actions in which agents
“undercut” each other as dominated strategies are eliminated, taking progressively less costly and
less productive actions. Efficiency losses are maximized as n grows large (Lemma 6).

2In the absence of productive interaction, joint performance evaluation may be optimal if agents
are affected by a common, negatively correlated productivity shock (Pierre Fleckinger (2012)). In
the absence of a common shock, joint performance evaluation may be optimal if efforts are comple-
ments in production (Armen A. Alchian and Harold Demsetz (1972)), if it induces help between
agents (Itoh (1991)) or, alternatively, if it discourages sabotage (Lazear (1989)). Finally, joint per-
formance evaluation may be optimal if agents are engaged in repeated production and it allows for
more effective peer sanctioning (Yeon-Koo Che and Seung-Weon Yoo (2001)). See Fleckinger (2012)
for a comprehensive analysis of the Bayesian version of the model I study, and Pierre Fleckinger
and Nicolas Roux (2012) for an excellent survey of the above literature.
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firms’ preference for joint performance evaluation, such as team bonuses, in cases

in which the production and information technologies are independent (Daniel I.

Rees, Jeffrey S. Zax and Joshua Herries (2003)). I also offer an explanation for the

use of stock options to compensate members of start-ups.3

Second, my paper formalizes a longstanding idea that interdependent incen-
tives have an advantage over individual incentives because of their flexibility. As
Barry J. Nalebuff and Joseph E. Stiglitz (1983) write,

“The incentive compensation scheme that is “correct” in one situation will

not in general be correct in another. In principle, there could be a different

incentive structure for each set of environmental variables. Such a contract

would obviously be prohibitively expensive to set up; but more to the point,

many of the relevant environmental variables are not costlessly observable

to all parties to the contract. Thus, a single incentive structure must do in

a variety of circumstances. The lack of flexibility of the piece rate system is

widely viewed to be its critical shortcoming: the process of adapting the piece

rate is costly and contentious.”

In contrast to Nalebuff and Stiglitz (1983), who study a model in which interde-

pendent incentives outperform independent incentives due to their screening abil-

ity,4 I explicitly account for the principal’s desire for flexibility by assuming that

she uses a max-min criterion to evaluate contracts; a max-min optimal contract

performs well across all environments the principal deems feasible. That joint

performance evaluation emerges as optimal thus provides a formal justification

for the assertion that such schemes are more flexible than individual performance

evaluation.

Third, my paper contributes to the growing literature on robust contracting

by considering a principal agent model in which the principal has bounded, non-

3Understood through the Informativeness Principle, such schemes are puzzling given the
premise that all members exploit the same underlying technology. If anything, this seems to sug-
gest success should have positive conditional correlation, leading relative performance evaluation to
be optimal. Fleckinger (2012) develops this point further and offers another explanation based on
effort-controlled noise.

4For related contributions, see Edward P. Lazear and Sherwin Rosen (1981), who consider the
optimality of competitive incentives versus piece rates in a setting with a common shock and risk-
neutral agents, and Jerry R. Green and Nancy L. Stokey (1983), who consider the case of risk-averse
agents.
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quantifiable uncertainty about the production technology.5 Gabriel Carroll (2015)

considers a principal-single agent model in which the principal has non-quantifiable

uncertainty about the actions available to the agent. His main result is that there

exists a worst-case optimal contract that is linear in individual output. My model

and analysis enrich that of Carroll (2015) by introducing a seemingly irrelevant

agent and showing that multiple agents lead to the optimality of joint incentive

schemes.6 Dai and Toikka (2018) consider a principal-many agent model in which

the principal has non-quantifiable, unbounded uncertainty, i.e. she considers all

games that the agents might be playing. They find that linear contracts are ro-

bustly optimal. This result is driven by the finding that any contract that induces

competition between agents is non-robust to a game in which agents sabotage one

another, leading the principal to a worst-case payoff of zero. In contrast to Dai

and Toikka (2018), I consider a setting in which the principal knows that success

is independently distributed across agents. This has the immediate effect of ruling

out sabotage and ensuring that linear contracts are suboptimal. It also necessitates

new techniques to analyze the principal’s worst-case payoffs.7

The results of this paper complement Dai and Toikka (2018) in terms of their

management implications. Agents in Dai and Toikka (2018)’s model are a “real

team” in the sense that they work together to produce value for the principal,

while agents in my model are best thought of as “co-actors” given the assumption

of technological independence (J. Richard Hackman (2002)). Yet, in either case,

joint performance evaluation is optimal. What changes is the particular form of the

5Related work not discussed in this paragraph include the papers of Leonid Hurwicz and
Leonard Shapiro (1978), Daniel F. Garrett (2014), and Alexander Frankel (2014), who consider
contracting with unknown preferences; Maxwell Rosenthal (2020) who considers contracting with
unknown risk preferences; Keler Marku and Sergio Ocampo Diaz (2019), who consider a robust
common agency problem; and Sylvain Chassang (2013) who studies the robust performance guar-
antees of a different class of calibrated contracts in a dynamic agency problem.

6Building upon Carroll (2015)’s single-agent model, Nemanja Antic (2015) imposes bounds on
the principal’s uncertainty over unknown actions (see also Section 3.1 of Carroll (2015), which
studies lower bounds on costs). In particular, Antic (2015) posits a lower bound on the distribu-
tion over output given any unknown technology. In contrast, my model places no restrictions on
the technology available to each agent in isolation beyond those of Carroll (2015). Instead, the
restrictions I impose concern the relationship between the agents.

7For instance, the worst-case payoff of the principal at the optimal contract is achieved by a
sequence of games in which the number of actions grows to infinity, rather than one additional
action for each agent as in Dai and Toikka (2018).
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optimal joint performance evaluation contract—in the case of a real team, optimal

compensation is linear in the value the team generates for the principal, while

in the case of co-acting agents it involves nonlinear bonus payments that reward

agents when all succeed.

The rest of the paper is organized as follows: Section 2 illustrates the mecha-

nism behind the main result using a simple example; Section 3 presents the model;

Section 4 states and proves Theorem 1; Section 5 discusses extensions; and Section

6 concludes.

2 Simple Example

In this section, I study a simple example illustrating the rent-extraction benefit of

joint performance evaluation relative to independent performance evaluation.

2.1 Set Up

Consider a scenario in which a risk-neutral manager compensates two identical,

risk-neutral agents who perform independent tasks and are protected by limited

liability. Successful completion of a task yields the manager a utility value of one

and failure yields her a utility value of zero. The manager knows that each agent

can take an action, call it “work”, that results in the successful completion of her

task with probability one. However, the manager is concerned about another ac-

tion available to each agent, call it “shirk”, that results in the successful completion

of her task with probability p∗ ∈ [0,1), and failure with complementary probabil-

ity. The manager knows that work incurs a disutility cost of effort of 1
4 and shirk

incurs zero disutility. However, she does not know the value of p∗.

The manager contemplates using two types of contracts, both of which respect

the limited liability constraint that ex-post wage payments must be negative.

1. Independent Performance Evaluation: Pay each agent w ∈ (1
4 ,1) for success.

Pay each agent 0 for failure.

2. Joint Performance Evaluation: Pay each agent w for success when the other

agent also succeeds, and w − ε, with ε ∈ (0,w], when the other agent fails.
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Pay each agent 0 for failure. Any such contract is calibrated to (w,work) in

the following sense: If an agent succeeds at her task, then her expected wage

payment remains equal to w conditional on the other agent working.

The manager evaluates any contract according to the same criterion. First, for

each value of p∗, she computes her expected payoff in the worst Pareto Efficient

Nash equilibrium (from her perspective) in the game induced by the contract she

offers. Second, she computes the infimum value of her expected payoff over all

values of p∗ ∈ [0,1). The resulting payoff is called her worst-case payoff. Can joint

performance evaluation yield the manager a higher worst-case payoff than inde-

pendent performance evaluation?

2.2 Independent Performance Evaluation

An independent performance evaluation contract with wage w, together with an

actual value of p∗, induces the game between the agents depicted in Figure 1.

work shirk

work w − 1
4 , w − 1

4 w − 1
4 , p∗w

shirk p∗w , w − 1
4 p∗w , p∗w

Figure 1: Game induced by IPE w and p∗.

A naı̈ve intuition is that the worst-case scenario for the principal occurs when

p∗ = 0; if agents take a shirking action with this success probability, then the prin-

cipal obtains an expected payoff of zero. But, this logic ignores incentives. In

particular, each agent has a (weak) incentive to shirk if and only if she obtains a

higher expected utility from doing so, i.e.

p∗w ≥ w − 1
4
⇐⇒ p∗ ≥ 1− 1

4w
.

So, whenever p∗ is strictly smaller than 1 − 1
4w , (work,work) is the unique Nash

equilibrium, yielding the principal a payoff per agent of 1−w.
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Instead, the principal’s worst-case payoff from a contract w is attained when

p∗ = 1 − 1
4w , just high enough to make shirking attractive to each agent, as shown

by Carroll (2015). In this case, (shirk,shirk) is the manager’s least-preferred Pareto

Efficient Nash equilibrium. In it, the principal obtains a payoff per agent of

(1− 1
4w

)︸    ︷︷    ︸
Expected Task Value

− (1− 1
4w

)w︸      ︷︷      ︸
Expected Wages

> 0.

2.3 Joint Performance Evaluation

Can the manager obtain a higher worst-case payoff from a joint performance eval-

uation contract? Consider the joint performance evaluation contract calibrated to

(w,work) with wages (w,w − ε). The game between the agents for a given value of

p∗ is depicted in Figure 2.

work shirk

work w − 1
4 , w − 1

4 p∗w+ (1− p∗)(w − ε)− 1
4 , p∗w

shirk p∗w, p∗w+ (1− p∗)(w − ε)− 1
4

p∗(p∗w+ (1− p∗)(w − ε)),

p∗(p∗w+ (1− p∗)(w − ε))

Figure 2: Game induced by JPE (w,w − ε) and p∗.

The crucial property of calibration to (w,work) is that the incentive for each

agent to shirk, given that the other agent takes the targeted action work, is iden-

tical to the case in which each is offered an independent performance evaluation

contract with wage w. Put differently, as in the case of independent performance

evaluation, (work,work) is a Nash equilibrium whenever

p∗ ≤ 1− 1
4w

.

Moreover, whenever (work,work) is a Nash equilibrium it Pareto dominates any

other Nash equilibrium; one agent working generates a positive externality on the

8



other since that agent is more likely to receive w than w − ε. So, the principal

obtains a payoff per agent of 1−w, as before.

Given any joint performance evaluation contract (w,w−ε), the principal’s worst-

case payoff is instead obtained as p∗ approaches 1− 1
4w from above. Along this se-

quence, (shirk,shirk) is the unique Nash equilibrium. A simple calculation shows

that the principal’s payoff from each agent in the limit is strictly larger than her

worst-case payoff under independent performance evaluation:

(1− 1
4w

)︸    ︷︷    ︸
Expected Task Value

− (1− 1
4w

)(p∗w+ (1− p∗)(w − ε))︸                                 ︷︷                                 ︸
Expected Wages

> (1− 1
4w

)− (1− 1
4w

)w

because

p∗w+ (1− p∗)(w − ε) < w

whenever p∗ ∈ [0,1).

In a nutshell, calibration ensures that the worst-case expected task value is no

lower than in the worst-case scenario given the benchmark independent perfor-

mance evaluation contract. But, the principal is able to pay each agent less in

expectation when both shirk; joint performance evaluation means that one agent’s

wages are responsive to the other agent’s shirking.

3 Model

3.1 Environment

A risk-neutral principal writes a contract for two risk-neutral agents, indexed by

i = 1,2. Each agent i chooses an unobservable, costly action, ai , from a common,

finite set A ⊂ R+ × [0,1]. Each action ai is identified by its cost, c(ai) ∈ R+, and the

probability with which it results in success, p(ai) ∈ [0,1]. Let yi = 1 denote success

and yi = 0 denote failure. There are neither informational linkages across agents,

P r(yi , yj |ai , aj) = P r(yi |ai , aj)P r(yj |ai , aj),
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nor productive linkages across agents,

P r(yi |ai , aj) = P r(yi |ai) =

p(ai) if yi = 1

1− p(ai) if yi = 0.
.

A contract is a quadruple of non-negative wages,

w := (w11,w10,w01,w00) ∈R4
+,

where the first index of each wage indicates an agent’s own success or failure and

the second indicates the success or failure of the other agent. I impose the as-

sumption that contracts are symmetric throughout, postponing a discussion of

asymmetric contracts to Section 5.1.

It will be useful to classify the resulting contracts according to the typology of

Che and Yoo (2001).

Definition 1 (Performance Evaluations)

A contract w is

• an independent performance evaluation (IPE) if (w11,w01) = (w10,w00);

• a relative performance evaluation (RPE) if (w11,w01) < (w10,w00);

• and a joint performance evaluation (JPE) if (w11,w01) > (w10,w00),

where > and < indicate strict inequality in at least one component and weak in both.

While this typology is non-exhaustive (for instance, when w11 > w10 and w01 <

w00 there is JPE “at the top” and RPE “at the bottom”), I will show later that it is

without loss of generality to consider contracts for which w01 = w00 = 0 (Lemma

4). Within this class of contracts, it is exhaustive. I now distinguish between linear

and nonlinear JPE.

Definition 2 (Linear JPE)

A JPE is linear if

wyiyj = α(yi + yj) for some α ∈ [0,1]

and nonlinear otherwise.
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3.2 Principal’s Problem

Agent i’s ex post payoff given a contract w, action profile (ai , aj), and realization

(yi , yj) is

wyiyj − c(ai),

while her expected payoff is

Ui(ai , aj ;w) :=
∑
yi∈Y

∑
yj∈Y

P r(yi , yj |ai , aj)wyiyj − c(ai).

Let Γ (w,A) denote the normal form game induced by the contract w and E(w,A)

denote its (non-empty) set of mixed strategy Nash equilibria. As non-IPE contracts

tie the incentives of agents together, agents may have an incentive to discuss their

strategies with one another, even if they cannot make binding commitments. This

would deem equilibria that are strictly Pareto dominated implausible, i.e. equilib-

ria σ ∈ E(w,A) for which there exists another equilibrium σ ′ ∈ E(w,A) that makes

each agent strictly better off. I thus require that agents play a (weakly) Pareto

Efficient Nash equilibrium. Denote the set of such equilibria by EP (w,A).

The principal’s ex post payoff given a contract w and realization (y1, y2) is

y1 + y2 −wy1y2
−wy2y1

,

while her expected payoff is

V (w,A) := min
σ∈EP (w,A)

Eσ [y1 + y2 −wy1y2
−wy2y1

].

In the spirit of a worst-case analysis, I do not allow the principal to select her pre-

ferred Pareto Efficient Nash Equilibrium when there is multiplicity of equilibria,

i.e. when EP (w,A) is not a singleton.8

When the principal writes a contract for the agents, she has limited knowledge

8In the classical Bayesian contracting literature as well as in recent work on robust contracting
(e.g., Carroll (2015), Dai and Toikka (2018), and Walton and Carroll (2019)), the principal has the
power to select her preferred Nash equilibrium. The primary role of the assumption is technical
convenience; it ensures the existence of a worst-case optimal contract. I will not need such an
assumption to obtain existence–ruling out Pareto-dominated equilibria is enough.
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about the game the agents play. In particular, she knows only a non-empty subset

of actions available to them A0 ⊆ A. In the face of her uncertainty, the principal

evaluates each contract on the basis of its performance across all finite supersets

of her knowledge contained in R+× [0,1]. The worst-case payoff she receives from

a contract w is thus given by

V (w) := inf
A⊇A0

V (w,A).

The principal’s problem is to identify a contract w∗ for which

V (w∗) = sup
w
V (w).

Call such a contract a worst-case optimal contract.

To rule out trivial cases, I make the following assumptions about A0.

Assumption 1

The known action set A0 has the following properties:

1. (Non-Triviality) There exists an action a0 ∈ A0 such that p(a0)− c(a0) > 0.

2. (Known Productive Actions are Costly) If a0 ∈ A0 and p(a0) > 0, then c(a0) > 0.

The first assumption ensures that the principal can possibly obtain a strictly

positive worst-case payoff from contracting with the agents. The second ensures

that the principal’s supremum payoff is never approached by a sequence of con-

tracts converging to one always paying each agent zero.9

3.3 Interpretation

The principal’s problem can be re-phrased as follows: If the principal must use

the same contract, i.e. mapping from successes and failures into wages, given any

feasible set of actions the agents might have available, which one does the best in

the sense of yielding the highest payoff guarantee? The solution to the problem

9The assumption that known productive actions are costly is stronger than necessary for my
main result (for instance, if there is a zero-cost productive action that the principal does not op-
timally “target”, then the result goes through). Nonetheless, it has the advantage of being easy to
interpret.
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is a positive description of how a principal might write a contract in the face of

structured uncertainty about the agents’ environment.

Implicit in this formulation is that contracts can only depend on observable

successes and failures and not on the technology of the agents. This raises the

question: Can the principal simply ask the agents to report their action set and im-

plement the Bayesian-optimal contract for each action set? One notable feature of

my formulation relative to the literature is that I assume that the agents can discuss

their strategies with one another before taking an action (captured by the assump-

tion that they play a Pareto Efficient Nash equilibrium). If this interpretation is

extended to include the reporting stage, then implementing the Bayesian-optimal

contract technology-by-technology would not be incentive compatible; it is easy to

construct action sets for which the agents would always prefer to coordinate their

reports to exaggerate the cost of the principal’s targeted action.

More generally, however, one could ask if it is possible to implement other

social choice functions — through either direct or indirect mechanisms — and

study whether the principal obtains a better worst-case guarantee. Further study

of this important normative problem awaits.

4 Worst-Case Optimal Contracts

4.1 Main Result

My main result shows that the rent-extraction benefit of JPE described in Section

2 is powerful enough to ensure that there exists a contract of this form that is

worst-case optimal. Put differently, in spite of the efficiency losses such contracts

induce in any game the agents might be playing, no other contract can do better.

Moreover, I prove that any worst-case optimal contract must be a JPE and that it

must be nonlinear.

Theorem 1

Any worst-case optimal contract is a nonlinear JPE. There exists a worst-case optimal

contract.

The key intuition behind the result is that by judiciously calibrating a JPE to
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a benchmark IPE, any (worst-case) efficiency losses such contracts generate can

be made approximately the same as those of the benchmark contract. Thus, the

reduction in expected wage payments the principal obtains when agents take less

productive actions, due to the responsiveness property of JPE outlined in Section

2, causes JPE to outperform the benchmark contract. Of course, to show that only

nonlinear JPE can be worst-case optimal, I must also prove strict suboptimality of

contracts other than IPE, including those that exhibit RPE and those that reward

agents with positive expected wages when they fail.

The remainder of this section is devoted to proving Theorem 1. I first review

some preliminaries from the theory of supermodular games, then present the ar-

guments that rule out IPE and RPE contracts as worst-case optimal.

4.2 Preliminaries: Supermodular Games

Equip any action setAwith the total order �: ai � aj if either p(ai) > p(aj), or p(ai) =

p(aj) and c(ai) ≤ c(aj).10 In words, ai is higher than aj if ai results in success with

a higher probability or if it results in success with the same probability, but at a

lower cost. Then, (A,�) is a complete lattice; all subsets of A have both a maximum

and a minimum. A supermodular game may thus be defined as follows.11

Definition 3 (Supermodular Game)

The game Γ (w,A) is supermodular if Ui exhibits increasing differences: a′i � ai and

a′j � aj implies

Ui(a
′
i , a
′
j ;w)−Ui(ai , a′j ;w) ≥Ui(a′i , aj ;w)−Ui(ai , aj ;w).

If, in addition, Ui(ai , aj ;w) is strictly increasing in p(aj) when p(ai) > 0, then Γ (w,A)

is said to exhibit strictly positive spillovers. The game Γ (w,A) is submodular if Ui
10It is easy to verify that this relation is antisymmetric (if ai � aj and ai � aj , then ai = aj ),

transitive (if ai � aj and aj � ak , then ai � ak), and complete (ai � aj or aj � ai).
11As all games considered in this paper are finite, I need not introduce any continuity require-

ments in the definition. The definition of strictly positive spillovers is non-standard, but neverthe-
less useful. See Xavier Vives (1999) for a textbook treatment of supermodular games and Xavier
Vives (2005) for a survey.
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exhibits decreasing differences: a′i � ai and a′j � aj implies

Ui(a
′
i , a
′
j ;w)−Ui(ai , a′j ;w) ≤Ui(a′i , aj ;w)−Ui(ai , aj ;w).

The important property of supermodular games that I exploit is that best-

response dynamics converge to their maximal and minimal equilibria. Moreover,

any supermodular game with strictly positive spillovers has a unique Pareto Effi-

cient Nash equilibrium. In particular, let amax and amin denote the maximal and

minimal elements of A, and BR : A→ A and BR : A→ A denote the maximal and

minimal best-response functions for the agents.12 Then, the following properties

hold.

Lemma 1 (Xavier Vives (1990), Paul Milgrom and John Roberts (1990))

Suppose ā (a) is the limit found by iterating BR (BR) starting from amax (amin). If

Γ (w,A) is supermodular, then it has a maximal Nash equilibrium (ā, ā) and a minimal

Nash equilibrium (a,a); any other equilibrium (ai , aj) must satisfy ā � ai � a and ā �
aj � a. If, in addition, Γ (w,A) exhibits strictly positive spillovers, then (ā, ā) is the

unique Pareto Efficient Nash equilibrium.

A similar property holds for two-player submodular games. Define the map-

ping
B̃R : A×A→ A×A

(ai , aj) 7→ (BR(aj),BR(ai)).

Then, the following property holds.

Lemma 2 (Vives (1990), Milgrom and Roberts (1990))

Suppose (ā, a) is the limit found by iterating B̃R starting from the action profile (amax, amin).

If Γ (w,A) is submodular, then both (ā, a) and (a, ā) are Nash equilibria and any other

Nash equilibrium action must be smaller than ā and larger than a.
12Formally, if ai = BR(aj ), then ai is a best-response to aj and ai � a′i for any other best-response

a′i . Similarly, if ai = BR(aj ), then ai is a best-response to aj and ai � a′i for any other best-response
a′i . Both BR and BR are well-defined by Corollary 4.1 of Donald M. Topkis (1978).
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4.3 Proof of Main Result

Say that a contract w is eligible if V (w) > 0.13 It is without loss of generality to

restrict attention to eligible contracts; Carroll (2015) already identifies that

V ∗IP E := sup
w: w is an IPE

V (w) = 2 max
w∈[0,1],a0∈A0

[
(p(a0)− c(a0)

w
)(1−w)

]
> 0

by an argument that generalizes the one sketched in Section 2.14 Hence, any con-

tract w for which V (w) ≤ 0 cannot be worst-case optimal.

The proof has five steps. First, I show that linear contracts are strictly subop-

timal (Lemma 3) and that any contract can be (weakly) improved by a contract w

for which w01 = w00 = 0 or yields a worst-case payoff smaller than V ∗IP E (Lemma 4).

Second, I show that there does not exist an RPE that yields the principal a strictly

larger payoff than V ∗IP E (Lemma 5). Third, I compute the principal’s worst-case

payoff given any JPE (Lemma 6). Fourth, I show that there exists a (calibrated)

JPE that yields a strictly higher payoff than V ∗IP E (Lemma 7). Fifth, I establish exis-

tence of a worst-case optimal JPE with w01 = w10 = 0 and re-examine the proof of

Lemma 4 to show that no other class of contracts can be optimal.

4.3.1 Suboptimality of Linear and Related Contracts

I provide a simple proof that any eligible linear contract is strictly suboptimal.

Lemma 3 (Linear Contracts are Suboptimal)

For any eligible linear contract w, there exists a nonlinear contract w′ that yields the

principal a strictly higher worst-case payoff.

Proof. Let α ∈ [0,1] parameterize the eligible linear contract w. If α = 0, then

the assumption that known productive actions are costly ensures that w cannot

guarantee the principal more than zero in the game Γ (w,A0 ∪ {a∅}), where p(a∅) =

13This definition implies eligibility in the sense of Carroll (2015), who requires that, in addition,
V (w) yields a higher worst-case payoff than the contract paying zero wages for all pairs (yi , yj ). By
the assumption of costly known productive actions, such a contract yields the principal a worst-
case payoff of zero.

14Due to adversarial equilibrium selection, V ∗IP E may only be approached by a sequence of con-
tracts, in contrast to the setting of Carroll (2015).
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c(a∅) = 0, because in this game each agent has a strict incentive to choose a∅. So,

since w is eligible, it must be that α > 0. Under w, w00 = 0, w10 = w01 = α > 0,

and w11 = 2α > 0. Define a contract w′ with w′01 = 0 and w′11 = α that is otherwise

equal to w. Then, the incentives of the agents are unchanged; a constant shift in

an agent’s payoff given any action of the other does not affect her optimal choice of

action. Hence, for anyA ⊇ A0, an equilibrium underw is also an equilibrium under

w′. By eligibility of w, however, some agent must succeed at her task with strictly

positive probability in any equilibrium σ ∈ EP (w,A). But, conditional on this event,

the principal’s wage payments must decrease. Hence, her expected wage payments

strictly decrease in any equilibrium. It follows that V (w′) > V (w).

More generally, any eligible contract w with w00 > 0 or w01 > 0 can be improved

upon by another contract w′ with w′00 = w01 = 0 or, alternatively, cannot yield a

payoff higher than V ∗IP E . The following Lemma is proved in Appendix A.1.

Lemma 4 (Positive Wages for Failure is Suboptimal)

For any eligible contract w with w00 > 0 or w01 > 0, there either exists a contract w′

with w′01 = w′00 = 0 and V (w′) ≥ V (w), or V ∗IP E ≥ V (w).

While the “shifting” argument used in the proof of Lemma 3 rules out many

contracts, there are two cases that require different arguments. When w11 > 0 and

w00 > 0 (with w01 = w00 = 0), I exploit supermodularity of the payoff function and

a comparative statics result of Milgrom and Roberts (1990) to argue that the prob-

ability of success given any equilibrium action decreases in w00. When w10 > 0 and

w01 > 0 (with w01 = w00 = 0), I must elaborate upon the proof idea in Lemma 5 to

rule out asymmetric and mixed equilibria that might be beneficial for the princi-

pal. I therefore encourage the interested reader to review it only upon reading the

rest of Section 4.

An immediate corollary of Lemma 4 is that to find a worst-case optimal con-

tract it suffices to consider nonlinear JPE satisfying w11 > w10, IPE satisfying w11 =

w10, and RPE satisfying w11 < w10. When w11 > w10 (w11 < w10), so that w is a

JPE (RPE), it is easy to show that Ui(ai , aj ;w) exhibits increasing (decreasing) dif-
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ferences: If a′i � ai , and a′j � aj , so that p(a′i) ≥ p(ai) and p(a′j) ≥ p(aj), then

Ui(a
′
i , a
′
j ;w)−Ui(ai , a′j ;w) = (p(a′i)− p(ai))

[
p(a′j)w11 + (1− p(a′j))w10

]
− (c(a′i)− c(ai))

≥ (p(a′i)− p(ai))
[
p(aj)w11 + (1− p(aj))w10

]
− (c(a′i)− c(ai))

=Ui(a
′
i , aj ;w)−Ui(ai , aj ;w).

A similar calculation establishes that when w11 < w10 payoff functions exhibit de-

creasing differences. Intuitively, the marginal benefit of taking a higher action for

agent i is increasing (decreasing) in the action of agent j in the case of JPE (RPE).

Moreover, if w is a JPE, any game Γ (w,A) with A ⊇ A0 exhibits strictly positive

spillovers:

Ui(ai , aj ;w) = p(ai)
[
p(aj)w11 + (1− p(aj))w10

]
− c(ai)

is strictly increasing in p(aj) when p(ai) > 0. I thus make the following observation.

Observation 1

If w is an RPE for which w00 = w01 = 0 and A ⊇ A0, then Γ (w,A) is a submodular game.

If w is a JPE for which w00 = w01 = 0 and A ⊇ A0, then Γ (w,A) is a supermodular game

exhibiting strictly positive spillovers.

4.3.2 RPE Cannot Outperform IPE

I now establish that no RPE can yield a higher payoff than V ∗IP E .

Lemma 5 (IPE Outperforms RPE)

No RPE with w01 = w00 = 0 can yield the principal a higher worst-case payoff than

V ∗IP E .

The proof of the Lemma is in Appendix A.2. I sketch the proof for the case in

which there is a single known action, i.e. A0 := {a0}. Suppose each agent has avail-

able a single additional zero-cost action a∗ that results in success with probability

p(a∗) < p(a0). Then, a∗ is a strict best response to a∗ if and only if

p(a∗) (p(a∗)w11 + (1− p(a∗))w10)︸                                  ︷︷                                  ︸
Payoff a∗ against a∗

> p(a0) (p(a∗)w11 + (1− p(a∗))w10)− c0︸                                        ︷︷                                        ︸
Payoff a0 against a∗

⇐⇒
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p(a∗) > p(a0)− c(a0)
p(a∗)w11 + (1− p(a∗))w10

.

This condition also ensures that a∗ is a strictly dominant strategy. Intuitively, if

a∗ is a strict best response to a∗, which is less productive than a0, then it must

also be a strict best response to a0 since the marginal benefit of shirking against

a more productive action is higher (because w10 > w11); this property is a direct

consequence of the submodularity of the game induced by RPE. Hence, (a∗, a∗) is

the unique Nash equilibrium. The principal’s payoff as p∗ approaches the value at

which the incentive constraint binds is therefore

2(p(a0)− c(a0)
p(a∗)w11 + (1− p(a∗))w10

)︸                                      ︷︷                                      ︸
Probability Success

× [1− (p(a∗)w11 + (1− p(a∗))(1−w10))]︸                                         ︷︷                                         ︸
Conditional Expected Surplus

.

Letting ŵ := p(a∗)w11 + (1−p(a∗))(1−w10), it is immediate that she can do no better

than V ∗IP E :

2(p(a0)− c(a0)
ŵ

)(1− ŵ) ≤ 2 max
w∈[0,1]

[
(p(a0)− c(a0)

w
)(1−w)

]
= V ∗IP E .

The proof for general known action sets builds upon this idea. In particular,

I consider a worst-case action set with a zero-cost action a∗ that results in success

with a high enough probability that (a∗, a∗) is a strict Nash equilibrium. I then

argue that this equilibrium is unique and that, in it, the principal obtains a payoff

no higher than V ∗IP E .

4.3.3 JPE Worst-Case Payoffs

Within the class of contracts setting w00 = w01 = 0, the only contracts left to con-

sider are nonlinear JPE for which w11 > w10. Lemma 6 states the principal’s worst-

case payoff guarantee from any contract of this form. Its proof is in Appendix

A.3.15

15The characterization holds for any JPE if I replace w11 with w11 − w01 and w10 with w10 −
w00 in Equation 1 and change p̄ [p̄(1−w11) + (1− p̄)(1−w10)] to p̄ [p̄(1−w11) + (1− p̄)(1−w10)] + (1−
p̄) [p̄(−w01) + (1− p̄)(−w00)] .
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Lemma 6 (JPE Worst-Case Payoffs)

Suppose w is a JPE with w00 = w01 = 0 and, for each a0 ∈ A0, p̂(·|a0) : [0, t̂(a0)] →
[0,p(a0)] is the unique solution to the initial value problem

p̂′(t) =f (p̂(t)) :=
−1

p̂(t)w11 + (1− p̂(t))w10
with

p̂(0) =p(a0),
(1)

where [0, t̂(a0)] ⊆ [0, c(a0)] is the largest interval on which p̂(t) > 0 for all t ∈ [0, t̂(a0)).

Then,

V (w) = 2 min{1−w11, p̄ [p̄(1−w11) + (1− p̄)(1−w10)]}, (2)

where

p̄ := max
a0∈A0

p̂(t̂(a0)|a0).

The principal’s worst-case payoff, V (w), is two times the minimum of two terms.

The first term

1−w11

is the principal’s payoff from each agent when the worst-case action set induces a

game between the agents in which there is an equilibrium in which both succeed

with probability one. The second term

p̄ [p̄(1−w11) + (1− p̄)(1−w10)]

is the principal’s payoff when the worst-case action set induces a game between the

agents with a “shirking equilibrium” in which each succeeds with a probability p̄

as low as possible. (Both are required because, for high enough w11, the principal

may prefer the shirking equilibrium.) The solution to each differential equation,

p̂(·|a0), characterizes best-response dynamics in the limit of a sequence of discrete

games in which a0 is the only known action; p̂(t̂(a0)|a0) is the limit of the equilib-

rium probability of success in this sequence of games; and p̄ is the maximum of

these limits.

I discuss the proof of Lemma 6 in two parts. First, I describe the sequence of

games that leads to the worst-case probability p̄. Second, I describe why p̄ is, in
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fact, a lower bound.

The Worst-Case Sequence of Games For simplicity, suppose there is a single

known action a0 with success probability p(a0) = 1 and cost c(a0) = 1
4 . The opti-

mal IPE puts w∗ = w11 = w10 = 1
2 . Given w∗, the worst-case success probability

approaches

p(a0)− c(a0)
w∗

=
1
2
.

Now, suppose I reduce w10 to zero (corresponding to setting ε = 1
2 in the example

of Section 2), but keep all other wages the same. This contract is calibrated to w∗

and the known action a0:

p(a0)w11 + (1− p(a0))w10 = w∗.

So, according to the analysis of Section 2, there is ostensibly no efficiency loss

generated by this modification.

In particular, if I consider only the class of games with action sets of the form

A1 := A0 ∪ {a1
1}, for some action a1

1 with success probability p(a1
1) < p(a0), then the

worst-case for the principal occurs as p(a1
1) approaches the value at which the best-

response condition binds:

p(a1
1) [p(a0)w11 + (1− p(a0))w10]− c(a1

1) = p(a0) [p(a0)w11 + (1− p(a0))w10]− c(a0)

⇐⇒ p(a1
1) = p(a0)−

c(a0)− c(a1
1)

p(a0)w11 + (1− p(a0))w10
≥ 1

2
.

Figure 3 depicts the best-response response path starting from the known (max-

imal) action a0. The dashed line may be interpreted as an indifference curve with

slope m = −1/(p(a0)w11 + (1 − p(a0))w10) and intercept b = p(a0): each action on

the line, a, is identified by its cost relative to c(a0), x = c(a0) − c(a), and its success

probability, y = p(a). Since the slope of the indifference curve is negative, the max-

imal reduction in success probability occurs when the cost reduction is as large as

possible, i.e. when c(a1
1) = 0 so that x = 1

4 .

But what if there are two unknown actions? Consider the action set A2 := A0 ∪
{a2

1, a
2
2}, where a2

1 has a positive cost of c(a2
1) = c(a0)

2 = 1
8 and c(a2

2) = 0. A simple
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Figure 3: A1 best-response path.

calculation shows that for a2
1 to be a strict best-response to a0, it must be the case

that

p(a2
1) [p(a0)w11 + (1− p(a0))w10]− c(a2

1) > p(a0) [p(a0)w11 + (1− p(a0))w10]− c(a0)

⇐⇒ p(a2
1) > p(a0)−

c(a0)− c(a2
1)

p(a0)w11 + (1− p(a0))w10
=

3
4
.

Furthermore, for a2
2 to be a best-response to a2

1, it must be the case that

p(a2
2) > p(a2

1)−
c(a2

1)− c(a2
2)

p(a2
1)w11 + (1− p(a2

1))w10
= p(a2

1)− 1

4p(a2
1)
.

If p(a2
1) is close to 3

4 and p(a2
2) is close to p(a2

1) − 1/(4p(a2
1)), then, in addition, a2

1 is

the unique best-response to a0 and a2
2 is the unique best-response to a2

1. Hence,

best-response dynamics converge to (a2
1, a

2
1). Since Γ (w,A1) is supermodular (Ob-

servation 1), Lemma 1 thus implies that (a2
1, a

2
1) is the unique Nash (and therefore,

Pareto Efficient Nash) equilibrium. In it, each agent’s success probability can be

made arbitrarily close to
3
4
− 1

43
4

=
5

12
<

1
2
.

See Figure 4, which now depicts a second indifference curve, with a steeper slope,
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Figure 4: A2 best-response path.

corresponding to weak best-responses to a2
1.

I now generalize this construction to drive the equilibrium probabilities of suc-

cess even lower. Let An := A0 ∪ {an1, ..., ann} be an action set with c(ank ) = (n − k) c(a0)
n ,

so that costs are evenly distributed on a grid between zero and c(a0). For each

k = 1, ...,n, choose p(ak) so that ak is a best-response to ak−1, i.e. set

p(ak) = p(ak−1)− ε(n)
p(ak−1)w11 + (1− p(ak−1))w10

+ ρ(n), (E)

where ε(n) := c(a0)
n and ρ(n) > 0.16 For ρ(n) small, ak is a maximal best-response

to ak−1 for all k. It follows that the unique Nash equilibrium of Γ (w,An) is (ann, a
n
n),

found again by iterating best-responses. Hence, the equilibrium probability of

success for each agent is p(ann).

What is the limit of p(ann) as n→∞? The key observation is that Equation E is

an Euler approximation of Equation 1, where c(a0)
n is the step size of the approx-

imation and ρ(n) is a “rounding error”. Hence, as n grows large, if the rounding

error ρ(n) approaches zero at an appropriately fast rate relative to ε(n), agents’

best-response dynamics are well-described by the solution to Equation 1, p̂(·|a0),

under the interpretation that time t is “cost-reduction relative to a0”.17 In the

16To see why this is an equivalent condition, multiply both sides of the equation by p(ak−1)w11 +
(1− p(ak−1))w10.

17See, for instance, Theorem 6.3 of Kendall E. Atkinson (1989) and the proceeding discussion.
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Figure 5: p(ann) as n→∞.

example considered here, the limit is

p̄ = p̂(t̂(a0)|a0) = p̂(c(a0)|a0) = p̂(0.25|a0) = 0,

as depicted in Figure 5.

Why is p̄ a Lower Bound? Since the law of motion in Equation 1 is controlled

by the wages the principal offers, the principal can increase p̂(t̂(a0)|a0) above zero.

For instance, Figure 6 shows that if the principal increases w11 to 2
3 , while keeping

w10 at 0, then she increases p̄ = p̂(t̂(a0)|a0) back to 1
2 , the worst-case probability of

success given the optimal IPE. In this case, Lemma 6 then dictates that there does

not exist a game that drives the equilibrium probability of success below 1
2 .

I outline the proof that 1
2 is a lower bound. By Observation 1, for any action

set A ⊇ A0 = {a0}, the game Γ (w,A) is supermodular and exhibits strictly positive

spillovers. Hence, by Lemma 1, its unique Pareto Efficient Nash equilibrium can

be found by iterating the maximal best-response function BR starting from the

maximal element of A, amax. There are two possible cases: (i) a0 = amax and (ii)

amax � a0 and a0 � amax. I argue that the equilibrium probability of success cannot

be below p̄ in either case.

Suppose first that a0 = amax. It suffices to show that any best-response path

(a0, ..., an), beginning at a0 and ending at an, satisfies p(an) ≥ p̂(c(a0)|a0) = p̄. If
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Figure 6: Increasing w11.

a1 = BR(a0), then it must be the case that

p(a1) > p(a0)− c(a0)− c(a1)
p(a0)w11 + (1− p(a0))w10

= p̂(0|a0)− εp̂′(ε|a0)

≥ p̂(ε|a0),

where ε := c(a0)− c(a1) > 0 and the inequality follows from concavity of p̂(·|a0). By

induction, it can then be shown that

p(ak) ≥ p̂(
k∑
`=1

ε` |a0) for all k = 1, ...,n,

where εk := c(ak)− c(ak−1) > 0. As
∑n
`=1 ε` = c(a0), this means that p(an) ≥ p̂(c(a0)|a0)

as desired.

Suppose, instead, that amax � a0 and a0 � amax. Then, p(amax) = 1 and c(amax) <
1
4 = c(a0). Any best-response path starting at amax and ending at an must have

p(an) ≥ p̂(c(amax)|amax) by the argument just outlined. Plotting p̂(·|amax) and p̂(·|a0)
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Figure 7: p̂(t|amax) lies above p̂(t|a0).

on a cost-adjusted axis, however, it is clear that p̂(·|amax) lies above p̂(·|a0) (see Fig-

ure 7).18 Hence, p(an) ≥ p̂(c(amax)|amax) ≥ p̂(c(a0)|a0), establishing the result.

The full proof of Lemma 6 extends the previous arguments to the case of an

arbitrary known action set A0. This entails showing that the lowest probability of

success, p̄, is the maximum of p̂(t̂(a0)|a0) for all a0 ∈ A0 rather than, say, the min-

imum. It also involves ruling out best-response paths originating from unknown

actions that succeed with strictly higher probability than any known action. To

prove these claims, I show that any path of actions containing an action “beneath”

a differential equation associated with a known action cannot be a best-response

path.

4.3.4 Existence of a Calibrated JPE Outperforming IPE

While I demonstrated in the previous section that not every calibrated JPE out-

performs a benchmark (optimal) IPE, I prove that there must exist one that does.

Thus, I obtain the following Lemma, proved in Appendix A.4.

18More formally, since both are solutions to the same initial value problem with distinct initial
conditions, their paths can never cross. Since there is a time period t at which p̂(c(a0) − c(amax) +
t|amax) is above p̂(t|a0), the result follows.

26



Lemma 7 (JPE Outperforms IPE)

There exists a JPE with w00 = w10 = 0 yielding the principal a strictly higher worst-case

payoff than V ∗IP E .

I illustrate the argument using the running example with a single known action

a0 that results in success with probability p(a0) = 1 and has an effort cost of c(a0) =
1
4 . As previously pointed out, the optimal IPE given this action puts w∗ = w11 =

w10 = 1
2 . Consider the calibrated JPE setting w10 = w∗−ε = 1

2 −ε for small ε > 0 and

setting

p(a0)w11 + (1− p(a0))w10 = w∗ ⇐⇒ w11 =
1
2
.

I show that this contract strictly increases the principal’s worst-case payoff.

Elementary methods show that the solution to the differential equation defin-

ing p̄ in Lemma 6 is

p̄(ε) :=

√
1
2(1

2 − ε)− (1
2 − ε)

ε
.

A simple application of L’Hôpital’s rule confirms that as ε→ 0+, so that the wage

scheme I constructed approaches the optimal IPE, p̄(ε) approaches 1
2 , the worst-

case equilibrium probability of success given the optimal IPE. Differentiating p̄(ε)

and taking its limit as ε→ 0+, I identify a local calibration effect on the worst-case

probability of success:

lim
ε→0+

p̄′(ε) = −1
4
.

I now compute the local effect of calibration on the principal’s profit from each

agent in the shirking equilibrium.19 For any ε > 0, the principal’s payoff per agent

in the shirking equilibrium is

π(ε) := p̄(ε)︸︷︷︸
Expected Task Value

× [1− (p̄(ε)w11 + (1− p̄(ε))w10)]︸                                ︷︷                                ︸
Conditional Expected Surplus

.

19As the principal’s profit in the shirking equilibrium at the optimal IPE is strictly lower than in
the equilibrium in which both agents succeed probability one, it suffices to show that the principal
benefits from such a decrease to exhibit a strict increase in the principal’s payoff.
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Using the chain rule and taking limits,

lim
ε→0+

π′(ε) = lim
ε→0+

p̄′(ε) [1− (p̄(ε)w11 + (1− p̄(ε))w10)]︸                                       ︷︷                                       ︸
Efficiency Loss

+ p̄(ε)
d
dε

[1− (p̄(ε)w11 + (1− p̄(ε))w10)]︸                                           ︷︷                                           ︸
Gain in Rents

= ( lim
ε→0+

p̄′(ε))(1−w∗) + ( lim
ε→0+

p̄(ε))w∗

= −1
4
× 1

2
+

1
4
> 0.

This establishes the desired result.

4.3.5 Existence, Uniqueness, and Optimal Wages

I summarize the preceding arguments. Lemma 4 establishes that, for the purposes

of finding a weakly optimal contract, it suffices to consider those setting w00 =

w01 = 0. Any such contract is either an RPE, JPE, or IPE. Lemma 5 establishes that

no RPE with w00 = w01 = 0 can outperform V ∗IP E , the supremum payoff attainable

within the class of IPE. On the other hand, Lemma 7 establishes that there does

exist a JPE with w00 = w01 = 0 that yields the principal a strictly higher payoff than

V ∗IP E . Hence, if there exists a JPE with w00 = w01 = 0 that maximizes Equation

2, the principal’s worst-case payoff given an arbitrary JPE, then it is a worst-case

optimal contract.

To establish existence of a worst-case optimal contract, I simply observe that

the search for an optimal JPE with w00 = w01 = 0 can be recast as a maximization

problem of a continuous function over a compact set. To establish that any worst-

case optimal contract must be a nonlinear JPE with w00 = w01 = 0, I need only

strengthen the proof of Lemma 4 to show that any contractwwith eitherw00 > 0 or

w01 > 0 is either weakly outperformed by an IPE or RPE, or strictly outperformed

by a JPE. I leave these last details to Appendix A.5, thereby completing the proof

of Theorem 1.

To conclude the analysis, notice that the optimal values of w11 and w10 can be

found by solving the following maximization problem:

max
w11>w10≥0

min{1−w11, p̄ [p̄(1−w11) + (1− p̄)(1−w10)]},
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where p̄ is defined in the statement of Lemma 6. In the running example I have

considered, the optimal wages are w11 = 2
3 and w10 = w01 = w00 = 0; the principal

increases w11 above the optimal IPE wage, 1
2 , to mitigate the efficiency loss I illus-

trated when w11 = 1
2 and w10 = 0. As shown in Figure 6, by doing so, she increases

p̄ to 1
2 , the worst-case equilibrium probability of success given the optimal IPE.20

5 Discussion

I briefly sketch how the model might be enriched, describe how the analysis changes,

and draw attention to some open questions.

5.1 Asymmetric Contracts

Symmetric contracts are attractive from a normative perspective: Any asymmetric

contract is discriminatory in the sense of treating equals unequally. Hence, they

may be ruled out by either legal considerations or–if the principal randomizes–ex

post fairness considerations. However, it is natural to wonder whether the “anti”-

Informativeness Principle finding of my paper holds when asymmetric contracts

are permitted. In particular, is it in general optimal to link the incentives of iden-

tical, technologically independent agents? I provide an affirmative answer to this

question.21

Formally, an asymmetric contract is a quadruple wi = (wi11,w
i
10,w

i
01,w

i
00) ∈ R4

+

for each agent i = 1,2, where the first index of each wage indicates agent i’s success

or failure and the second indicates agent j’s success or failure. An asymmetric

contract is linear if there exist parameters αi ∈ [0,1] for each agent i = 1,2 such that

wiyiyj = αi(yi + yj) (and nonlinear, otherwise). It is an independent performance

20Incidentally, 1 − w11 = p̄ [p̄(1−w11) + (1− p̄)(1−w10)] at the optimal wage scheme, as well. I
remark that this is not a general property, nor it is a general property that the principal exactly
offsets the efficiency loss generated by JPE by increasing w11. It is, however, a general property
that at any worst-case optimal contract the principal’s payoff in the equilibrium in which agents
succeed with probability one is greater than in the shirking equilibrium.

21In a Bayesian environment in which a principal demands effort as a unique Nash equilibrium,
Eyal Winter (2004) shows that asymmetric contracts can be optimal even when agents are symmet-
ric. As Winter (2004) points out, however, if agents were restricted to play Pareto Efficient Nash
equilibria, then any optimal contract is symmetric. His argument therefore appears to have no
relevance to the model I study.
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evaluation (IPE) ifwiy1 = wiy0 for each agent i = 1,2 and success or failure y ∈ {0,1}.
It is a dependent performance evaluation (DPE), otherwise. A nearly immediate

corollary of the proof of Theorem 1 is the following.

Corollary 1

If there exists an asymmetric contract that outperforms the optimal symmetric nonlinear

JPE, then it must be nonlinear and it must be a DPE.

That any worst-case optimal asymmetric contract must be nonlinear is imme-

diate from the argument in Lemma 3. If, towards contradiction, some agent were

compensated linearly, then, outside of trivial cases, the principal can simply shift

their wages down by a constant and strictly increase her payoff given any action

set available to the agents.

That any worst-case optimal asymmetric contract must be a DPE is immedi-

ate upon observing that, within the class of all IPE, if there exists a worst-case

optimal IPE, then there exists a worst-case optimal symmetric IPE. Indeed, given

the absence of productive or informational linkages between agents, any optimal

contract for agent i, wi , is also an optimal contract for agent j; if not, then the

contract offered to agent i could not have been optimal in the first place. Since, by

Lemma 7, there exists a JPE that strictly outperforms the optimal symmetric IPE,

this implies that there exists a JPE that strictly outperforms any IPE–symmetric or

asymmetric.

Though I have not found an asymmetric contract that outperforms the optimal

symmetric nonlinear JPE, proving that no such contract exists is non-trivial.22 I

therefore leave as an unproven conjecture that the optimal symmetric contract I

22To understand the difficulties involved in constructing a proof, it is instructive to consider
how such a result is proved in standard Bayesian contracting models. In these models, if the prin-
cipal considers implementing each possible action profile and then chooses the implementation
that maximizes her profits. For symmetric action profiles, if there exists an incentive compatible
asymmetric contract that minimizes expected wage payments and if agents are symmetric, then a
“flipped” contract in which the agents labels are exchanged is also incentive compatible and mini-
mizes expected wage payments. As incentive constraints are linear in probabilities, it then follows
that randomizing over asymmetric contracts produces a symmetric contract that satisfies the in-
centive constraints and also minimizes the principal’s expected payments. Hence, asymmetry does
not pose a problem if the principal wants to implement symmetric profiles. In the robust contract-
ing setting, this argument does not work because the principal does not solve her problem by fixing
an action profile that she wants to implement and then maximizing over all implementations.
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have identified is also optimal when the principal is permitted to use asymmetric

contracts.

5.2 Multiple Levels of Success and Multiple Agents

Now, suppose there are finitely many agents i = 1,2, ...,n and individual output can

take on any value in a compact set Y ⊂ R+ with min(Y ) = 0. Each action is now

described by an effort cost and probability distribution over Y . A linear contract

in this model is a function
w : YN →R+

(y1, ..., yn) 7→ α
n∑
i=1

yi ,

for some value α ∈ [0,1]. Otherwise, it is nonlinear. The result that worst-case op-

timal compensation is nonlinear readily generalizes to this setting by again modi-

fying the argument establishing Lemma 3.

Corollary 2

If Y ⊂R+ is a compact set with min(Y ) = 0 and there are n agents, then any worst-case

optimal contract must be nonlinear.

Showing that dependent performance evaluation is optimal in the case of mul-

tiple agents when effort is binary is immediate from the main analysis, which

shows that the principal would stand to benefit from using JPE with any two agents

rather than offering each the optimal IPE. However, showing that JPE is optimal is

more challenging because RPE no longer induces a supermodular game between

the agents (it no longer suffices to “reverse” the order given to one agent’s action

set when there are more than two of them). Hence, Lemma 5 must be extended.

Proving that optimal compensation involves dependent performance evalua-

tion when there are multiple output levels is non-trivial. The key challenge is that

the order � defined on action sets is no longer total. Hence, upon perturbing an

optimal IPE in the direction of JPE, the characterization result of Lemma 6 must

be extended.

A complete analysis of this more general model awaits further research.
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6 Final Remarks

I study a moral hazard in teams model in which a principal compensates identical,

independent agents. In contrast to the classical model, however, I assume that the

principal has non-quantifiable uncertainty about the common actions available

to the agents. The worst-case optimal contracts that arise–nonlinear, joint per-

formance evaluation contracts–contrast strikingly with what arises if the principal

has either unbounded, non-quantifiable uncertainty–in which case linear contracts

are worst-case optimal–or if she is fully Bayesian–in which case independent per-

formance evaluation is optimal. I thereby provide a novel robustness foundation

for nonlinear joint performance evaluation contracts observed in practice, such as

team bonuses and employee stock options in start-ups.

I conclude by commenting on a broader theme in the literature. Over the

last decades, a growing number of papers have investigated the “robustness” of

classical game-theoretic predictions and mechanisms to various relaxations of the

agents’ environment. For instance, Dirk Bergemann and Stephen Morris (2005)

consider robust implementation across all type spaces; Yi-Chun Chen, Alfredo

Di Tillio, Eduardo Faingold and Siyang Xiong (2017) propose a metric on the Uni-

versal Type Space to capture the strategic impact of relaxing higher-order beliefs in

all possible games the agents might play; and, as discussed, Dai and Toikka (2018)

study moral hazard in teams in a robust contracting setting in which the principal

deems all possible unknown action profiles to be plausible.

While these papers make important methodological contributions, the uncer-

tainty faced by the designer (or modeler) in these settings appears to be too extreme

for many applications. My paper contributes to a small, but growing, research

agenda exploring the robustness of predictions and mechanisms in the “interme-

diate” cases between fully Bayesian and fully Knightian uncertainty. For recent

work in this spirit, see Antic (2015), who imposes bounds on the principal’s un-

certainty over unknown actions in a single-agent robust principal-agent model;

Mariann Ollar and Antonio Penta (2019), who consider robust implementation in

the case in which it is common knowledge that agents’ types are identically dis-

tributed; Fabien Gensbittel, Marcin Peski and Jerome Renault (2020), who consider
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robustness to higher-order beliefs within the class of zero-sum games; and Andrey

Malenko and Anton Tsoy (2020), who study optimal project financing when the

financier has bounded, non-quantifiable uncertainty about a project’s cash flows.
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A Proofs

A.1 Proof of Lemma 4

Given an eligible contract w, agent i’s expected payoff is

Ui(ai , aj ;w) = p(ai)
[
p(aj)w11 + (1− p(aj))w10

]
+ (1− p(ai))

[
p(aj)w01 + (1− p(aj))w00

]
− c(ai)

= p(ai)
[
p(aj)(w11 −w01) + (1− p(aj))(w10 −w00)

]
+
[
p(aj)w01 + (1− p(aj))w00

]
− c(ai).

Hence, ifw11 > w01 (w10 > w00), settingw′11 = w11−w01 andw′01 = 0 (w′10 = w10−w00

and w′00 = 0) shifts each agent’s payoff by a constant. Similarly, if w11 < w01 (w10 <

w00), setting w′01 = w01 − w11 and w′11 = 0 (w′00 = w00 − w10 and w′10 = 0) shifts

each agent’s payoff by a constant. It follows that any equilibrium under w is also

an equilibrium under w′. Since the principal’s ex post payment decreases, these

adjustments must (weakly) increase her worst-case payoff.

The argument in the previous paragraph immediately establishes that if w11 >

0 and w10 > 0, then there exists an improved contract w′ for which w′00 = w′01 = 0.

There are three other cases to consider: (i)w01 > 0 andw00 > 0 (withw11 = w10 = 0);

(ii) w11 > 0 and w00 > 0 (with w01 = w10 = 0); and (iii) w01 > 0 and w10 > 0 (with

w11 = w00 = 0). I discuss each case in turn.

w01 > 0 and w00 > 0

If w01 > 0 and w00 > 0, then w cannot be eligible. To wit, consider the action set

A := A0∪{a∅}where p(a∅) = 0 = c(a∅). Then, a∅ is a strictly dominant strategy and so

(a∅, a∅) is the unique Nash equilibrium. In this equilibrium, the principal obtains

a payoff −2w00 < 0.

w11 > 0 and w00 > 0

I first argue that if w is eligible, then it must have w11 ≥ w00. Suppose, towards

contradiction, that w00 > w11. Consider the action set A := A0 ∪ {a∅} where p(a∅) =
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0 = c(a∅). Then, (a∅, a∅) is the only Pareto Efficient Nash Equilibrium because each

agent obtains the maximum wage w00 at no effort cost and any other Nash Equi-

librium results in this wage with a probability strictly less than one. In the equi-

librium (a∅, a∅), however, the principal obtains a payoff −2w00 < 0.

If w11 ≥ w00 > 0, then agent i’s payoff is

Ui(ai , aj ;w) = p(ai)p(aj)w11 + (1− p(ai))(1− p(aj))w00 − c(ai),

and satisfies increasing differences in (ai , aj). Hence, any game this contract in-

duces is supermodular. Moreover, fixing aj , (ai ,w00) satisfies decreasing differ-

ences. Theorem 6 of Milgrom and Roberts (1990) then implies that the maximal

equilibrium of any game Γ (w,A), A ⊇ A0, is decreasing in w00.

Now, suppose agent i produces succeeds with probability pi . The principal’s

payoff given (pi ,pj) is

π(pi ,pj) := pipj(2− 2w11) + pi(1− pj) + pj(1− pi) + (1− pi)(1− pj)(0− 2w00).

Profits are therefore increasing in pi if and only if,

∂π
∂pi

= pj(2− 2w11) + (1− 2pj) + (1− pj)2w00 ≥ 0 ⇐⇒

pj ≤
1 + 2w00

2w11 + 2w00
.

If w11 ≤ 1
2 , then the right-hand side expression is greater than one and profits are

strictly increasing in pi and pj on their whole domain (for anyw00). The principal’s

worst-case payoff thus strictly increases when w00 decreases to zero. If 1 > w11 >
1
2 , then the principal’s payoff is increasing in pi and pj when both are less than

1+2w00
2w11+2w00

and decreasing above it. If A := A0 ∪ {a1}, where p(a1) = 1 > 0 = c(a1),

however, then (a1, a1) is the maximal equilibrium. Since the principal may only

obtain a strictly lower payoff than 2 − 2w11 if the maximal equilibrium of some

game is in the region in which profits are strictly increasing in both pi and pj , it

is once again in the principal’s interest to increase the maximal equilibrium by

setting w00 = 0. Last, I need not consider the case in which w11 ≥ 1 since no such
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contract is eligible.

w01 > 0 and w10 > 0

Notice, if w01 > 0 and w10 > 0 and all other wages are zero, agent i’s payoff from an

action profile (ai , aj) is

Ui(ai , aj ;w) = p(ai)(1− p(aj))w10 + (1− p(ai))p(aj)w01 − c(ai)

= p(ai)
[
w10 − p(aj)(w10 +w01)

]
+ p(aj)w01 − c(ai),

which satisfies decreasing differences. I show that the principal’s payoff under

such a contract cannot exceed V ∗IP E .

Let a∅ be the action satisfying c(a∅) = p(a∅) = 0. Let a∗ε be an action for which

c(a∗ε) = 0 and for which p(a∗ε) is a fixed point of

Tε(p) :=


max

a∈A0∪{a∅}

[
p(a)− c(a)

w10−p(w10+w01)

]
+ ε if w10 − p(w10 +w01) > 0

0 otherwise
,

where ε > 0 is small. To see that Tε has a fixed point, notice that, for any p ∈ [0,1],

Tε(p) is larger than zero (because a∅ ∈ A0 ∪ {a∅}) and less than one if ε is small

enough (because A0 does not contain a zero-cost action that results in success with

probability one by the assumption of costly known productive actions). Hence,

Tε is a continuous function mapping [0,1] into [0,1]. By Brouwer’s Fixed Point

Theorem, it thus has at least one fixed point.

By construction, (a∗ε, a
∗
ε) is a Nash equilibrium of Γ (w,Aε), where Aε := A0 ∪

{a∗ε, a∅}. Now, consider a sequence of strictly positive values ε1, ε2,... that con-

verges to zero and for which there is a convergent sequence of fixed points p(a∗ε1
),

p(a∗ε2
),... of the mappings Tε1

, Tε2
,... . Since [0,1] is a compact set, such a convergent

sequence must exist. Moreover, its limit is the distribution

p∗ := max
a∈A0∪{a∅}

[
p(a)− c(a)

w10 − p∗(w10 +w01)

]
.

I show that the principal’s worst-case payoff in the limit can be no larger than

38



what she obtains from the optimal IPE. If p∗ equals zero, then the principal attains

less than zero profits and so lower profits than under the optimal IPE. Otherwise,

let â0 denote a maximizer of p(a)− c(a)
w10−p∗(w10+w01) over A0∪{a∅}, let α̂ := (1−p∗)w10,

and notice that the principal attains a payoff of

2
[
(p∗)2 + p∗(1− p∗)(1−w01 −w10)

]
= 2

[
p(â0)− c(â0)

(1− p∗)(w10 +w01)

]
[1− (1− p∗)(w10 +w01)]

≤ 2
[
p(â0)− c(â0)

(1− p∗)w10

]
[1− (1− p∗)w10]

= 2
[
p(â0)− c(â0)

α̂

]
[1− α̂] .

But,

2
[
p(â0)− c(â0)

α̂

]
(1− α̂) ≤ 2 max

α∈[0,1],a0∈A0∪{a∅}

[
(1−α)(p(a0)− c(a0)

α
)
]

= 2 max
α∈[0,1],a0∈A0

[
(1−α)(p(a0)− c(a0)

α
)
]

= V ∗IP E ,

where the inequality follows because p(â0)− c(â0)
α̂ ≥ 0 for all α̂ ≥ 0 and the equality

follows because setting α = 1 yields the principal a payoff of zero given any action

in A0, the payoff attained from choosing a∅ and any α ∈ [0,1].

The previous argument establishes that if there exists a K such that, for all k ≥
K , (a∗εk , a

∗
εk ) is the unique Nash equilibrium of Γ (w,Aεk ), then the principal’s worst-

case payoff is no higher than V ∗IP E . But, other pure and mixed strategy equilibria

may exist, even as k grows large (so that ε grows small). I now address this issue.

First, consider the case in which the limit of (a∗εk ) is a∅ and multiplicity arises.

Then, there exists an action a0 ∈ A0 that results in success with strictly positive

probability and is a weak best response to any action that succeeds with zero prob-

ability; if not, then, by Lemma 1, there would exist a K such that for all k ≥ K ,

(a∗εk , a
∗
εk ) is the maximal Nash equilibrium of Γ (w,Aεk ) and hence the unique Nash

equilibrium. If this action is less than w10
w10+w01

, then the principal’s payoff in an
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equilibrium in which it is played is less than zero:

p(a0)(1−w10 −w01) ≤ w10

w10 +w01
−w10 < 0.

If this action is strictly larger than w10
w10+w01

, then I can add to each Aεk the action

a′0 for which c(a′0) = 0 and p(a′0) = p(a0) − c(a0)
w10

if p(a0) − c(a0)
w10

> w10
w10+w01

and p(a′0) =
w10

w10+w01
+ εk otherwise. In the first case, the principal attains a payoff of

[
p(a0)− c(a0)

w10

]
(1−w10 −w01) ≤ 2 max

α∈[0,1],a0∈A0

[
(1−α)(p(a0)− c(a0)

α
)
]

= V ∗IP E .

In the second case, there exists a K such that for all k ≥ K , the principal’s payoff

in the equilibrium (a′0, a
∗
εk ) is less than zero because the inequality in the previous

displayed equation is strict. Finally, no mixed equilibria can exist in any of the

cases considered since a∅ is a strict best response to any action larger than w10
w10+w01

(the marginal benefit of producing succeeding with higher probability is less than

zero).

Second, consider the case in which the limit of (a∗εk ) is p∗ > 0. Any other pure or

mixed Nash equilibrium of Γ (w,Aεk ) must involve one agent succeeding with prob-

ability p̂ ≥ w10
w10+w01

> p∗. If not, then p(a∗εk ) would be a best-response to the distribu-

tion p̂ and, if p(a∗εk ) is played, then any distribution p̂ could not be a best-response.

The first statement follows because p(a∗ε) has zero cost, profits would still be in-

creasing in the probability with which the agent succeeds, and there are strictly

decreasing differences. The second follows because p(a∗εk ) is a strict best-response

to p(a∗εk ) by construction. However, any equilibrium in which one agent generates

a distribution p̂ must have the other play either a∅ (if p(a0) > w10
w10+w01

), a∗εk (only

if p(a0) = w10
w10+w01

), or a mixture between the two (again, only if p(a0) = w10
w10+w01

);

known productive actions are costly and the marginal benefit of succeeding with

higher probability is less than zero (strictly so if p(a0) > w10
w10+w01

).

It suffices to show that the principal’s payoff in the equilibrium in which one

agent chooses a∅ is less than V ∗IP E ; none of the other equilibria can Pareto dominate

it as the mixing player is indifferent between a∅ and a∗εk and I have already argued

that the symmetric equilibrium I constructed yields the principal a worse payoff
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than V ∗IP E . To show this, it suffices to consider any action, a0 ∈ A0, satisfying p(a0) ≥
w10

w10+w01
in the support of the strategy succeeding with probability p̂. Mirroring the

argument in the previous case, I can then add to each Aεk the action a′0 for which

c(a′0) = 0 and p(a′0) = p(a0)− c(a0)
w10

+εk if p(a0)− c(a0)
w10

> w10
w10+w01

and p(a′0) = w10
w10+w01

+εk
otherwise. These adjustments ensure that a′0 is the unique best response to a∅ for

every k and so, mirroring the steps in the proof of the previous case, the principal

attains a payoff no larger than V ∗IP E .

A.2 Proof of Lemma 5

Let a∅ be the action satisfying c(a∅) = p(a∅) = 0. Let a∗ε be an action for which

c(a∗ε) = 0 and for which p(a∗ε) is a fixed point of

Tε(p) := max
a0∈A0∪{a∅}

[
p(a0)− c(a0)

pw11 + (1− p)w10

]
+ ε,

where ε > 0 is small.23 To see that Tε has a fixed point, notice that, for any p ∈ [0,1],

Tε(p) is larger than zero (because a∅ ∈ A0 ∪ {a∅}) and less than one if ε is small

enough (because A0 does not contain a zero-cost action that results in success with

probability one). Hence, Tε is a continuous function mapping [0,1] into [0,1]. By

Brouwer’s Fixed Point Theorem, it thus has at least one fixed point.

Now, define an action space Aε := A0 ∪ {a∗ε, a∅}. If A0 contains an action pro-

ducing yi = 1 with probability one, consider the least costly among all of them,

ā0, and add to Aε the action āε, where c(āε) = c(ā0) − γ(ε) and p(ān) = 1 − γ(ε)
2 for

γ(ε) := ε(p(a∗ε)w11+(1−p(a∗ε))w10
2 . Then, āε strictly dominates ā0 (and so any other action

producing yi = 1 with probability one is as well) and a∗ε is a strictly better reply to

a∗ε than āε.

I show that (a∗ε, a
∗
ε) is the unique Nash equilibrium of Γ (w,Aε). Notice, by con-

struction, (a∗ε, a
∗
ε) is a strict Nash equilibrium. Now, remove all actions producing

yi = 1 with probability one since they are strictly dominated by āε. Upon remov-

ing these actions, a∗ε strictly dominates any action smaller than it in the order �.

So, remove any actions in Γ (w,Aε) below a∗ε and denote the resulting action space

23Interpret − c(a0)
pw11+(1−p)w10

as zero if the denominator is zero and c(a0) = 0 and −∞ if the denomi-
nator is zero and c(a0) > 0.
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by Â. Now, consider the profile (ā, a∗ε), where ā is the largest element of Â. Since

a∗ε is the unique best response to a∗ε (because (a∗ε, a
∗
ε) is a strict Nash equilibrium),

the maximal best-response to a∗ε is a∗ε. This also implies that a∗ε is the minimal

best-response to ā; if not, there exists some â0 ∈ Â such that â0 � a∗ε and

Ui(â0, a0;w)−Ui(a∗ε, a0;w) ≥Ui(â0, ā;w)−Ui(a∗ε, ā;w) > 0 for any a0 ∈ Â,

where the first inequality follows from the property of decreasing differences and

the second from a0 being the smallest best-response to ā. Hence, â0 strictly dom-

inates a∗ε, contradicting the previous observation that a∗ε is a best response to a∗ε.

As (a∗ε, a
∗
ε) is a fixed point of B̃R, (a∗ε, a

∗
ε) is the limit found by iterating B̃R from

(ā, a∗ε) or (a∗ε, ā) in Γ (w,Â). By Lemma 2, it follows that (a∗ε, a
∗
ε) is the unique Nash

equilibrium of Γ (w,Â) and hence of Γ (w,Aε).

Now, consider a sequence of strictly positive values ε1, ε2,... that converges to

zero and for which there is a convergent sequence of fixed points p(a∗ε1
), p(a∗ε2

),... of

the mappings Tε1
, Tε2

,... . Since [0,1] is a compact set, such a convergent sequence

must exist. Moreover, its limit is the distribution

p(a∗) = max
a0∈A0∪{a∅}

[
p(a0)− c(a0)

p(a∗)w11 + (1− p(a∗))w10

]
.

Let â0 ∈ A0 ∪ {a∅} denote the maximizer on the right-hand side and define α̂ :=

p(a∗)w11 + (1− p(a∗))w10. The principal’s payoff in the unique equilibrium (a∗εk , a
∗
εk )

of Γ (w,Aεk ) as k grows large becomes arbitrarily close to

2[p(a∗)] [p(a∗)(1−w11) + (1− p(a∗))(1−w10)] =

2
[
p(â0)− c(â0)

α̂

]
(1− α̂) ≤ 2 max

α∈[0,1],a0∈A0∪{a∅}

[
(1−α)(p(a0)− c(a0)

α
)
]
,

where the inequality follows because p(â0) − c(â0)
α̂ ≥ 0 for all α̂ ≥ 0 and so I need

only consider values of α between zero and one to maximize (1 − α)(p(a0) − c(a0)
α )

for any a0 ∈ A0 ∪ {a∅}. But,

2 max
α∈[0,1],a0∈A0∪{a∅}

[
(1−α)(p(a0)− c(a0)

α
)
]

= 2 max
α∈[0,1],a0∈A0

[
(1−α)(p(a0)− c(a0)

α
)
]

= V ∗IP E

42



because setting α = 1 yields the principal a payoff of zero given any action in A0,

the same payoff attained from choosing a∅ and any α ∈ [0,1].

A.3 Proof of Lemma 6

Comparative Statics in Principal’s Payoff

Suppose agent i succeeds with probability pi . The principal’s payoff given (pi ,pj)

is

π(pi ,pj) := pipj(2− 2w11) +
[
pi(1− pj) + (1− pi)pj

]
(1−w10).

The principal’s payoff is therefore increasing in pi if and only if

∂π(p)
∂pi

= pj(2− 2w11) + (1− 2pj)(1−w10) ≥ 0 ⇐⇒

pj ≤
1
2

[
1−w10

w11 −w10

]
.

The shape ofπ(pi ,pj) on [0,1] thus depends onw: (i) ifw10 ≥ 1, thenπ is decreasing

on [0,1] in pi and pj ; (ii) if w10 < 1 and w11 ≤
1+w10

2 , then π(p) is increasing on [0,1]

in pi and pj ; and, (iii) if w10 < 1 and w11 >
1+w10

2 , then π(p) is increasing in pi if

pj ∈ [0, 1
2

[
1−w10
w11−w10

]
] and decreasing in pi if pj ∈ [1

2

[
1−w10
w11−w10

]
,1].

In case (i), π is minimized when pi = pj = 1, yielding the principal a payoff of

2− 2w11.

This payoff can be achieved exactly: Consider the action set A := A0 ∪ {â} ⊇ A0,

where p(â) = 1 and c(â) = 0. Then, because w11 > w10 ≥ 1, â is a strictly dominant

strategy and so the unique Nash equilibrium of Γ (w,A) is (â, â).

In case (ii), π is minimized when the probability with which the maximal equi-

librium action of Γ (w,A) succeeds with strictly positive probability, for any A ⊇ A0,

is as small as possible (by Observation 1 and Lemma 1 there always exists such an

action). Letting p̄ denote the greatest lower bound on such probabilities, the prin-

cipal’s payoff is,

p̄2(2− 2w11) + p̄(1− p̄)(2− 2w10).
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In case (iii), the principal’s payoff is the minimum of the payoff in case (i) and

case (ii),

V (w) = min{2− 2w11, p̄
2(2− 2w11) + p̄(1− p̄)(2− 2w10)}.

I identify p̄ to complete the proof of the Lemma.

Defining p̄

Consider an arbitrary action a ∈ A with cost c(a) and probability p(a). Let p̂(·|a) be

a solution to the initial value problem

p̂′(t|a) = f (p̂(t|a)) :=
−1

p̂(t|a)w11 + (1− p̂(t|a))w10
with

p̂(0|a) = p(a)

on D = [0, t̂(a)] × [0,p(a)], where [0, t̂(a)] ⊆ [0, c(a)] is the largest interval on which

p̂(t|a) > 0 for all t ∈ [0, t̂(a)). Notice, p̂′(t|a) exists on (0, t̂(a)), p̂′(t|a) < 0, and p̂′′(t|a) <
0. So, p̂(·|a) is strictly decreasing and strictly concave. Now, define

p̄ := max
a0∈A0

p̂(t̂(a0)|a0).

p̄ is a lower bound

I show that p̄ is a lower bound on the probability of the maximal equilibrium action

of any game Γ (w,A), where A ⊇ A0. I begin with the following claim.

Claim 1 (Lower Bound of a BR Path)

Fix some game Γ (w,A), where A ⊇ A0. Let (a1, a2, ..., an) be the path starting from the

maximal element of A, a1, to the maximal equilibrium action, an, obtained by iterating

BR. If a = a` for some ` = 1, ...,n, then

p(an) ≥ p̂(t̂(a)|a).

Proof. Consider the truncated path starting at a = a` and ending at an. Notice that
ak ∈ BR(ak−1) for k = ` + 1, ...,n only if p(ak−1) > p(ak) and,

p(ak) [p(ak−1)w11 + (1− p(ak−1))w10]− c(ak) > p(ak−1) [p(ak−1)w11 + (1− p(ak−1))w10]− c(ak−1)
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⇐⇒ p(ak) > p(ak−1)− c(ak−1)− c(ak)
p(ak−1)w11 + (1− p(ak−1))w10

.

Hence, εk := c(ak−1)− c(ak) > 0 for any k = ` + 1, ...,n. This implies that
∑n
k=`+1 εk ≤

c(a), since c(an) ≥ 0.

To show that p(an) ≥ p̂(t̂(a)|a), it suffices to consider the case in which f (t, p̂(t)|a)
exists for all t ∈ [0, c(a)] (it must always be the case that p(an) ≥ 0). To show this,

I need only show that p(an) ≥ p̂(
∑n
k=`+1 εk |a) because p̂(·|a) is decreasing and so

p̂(c(a)|a) ≤ p̂(
∑n
k=`+1 εk |a).

I prove the inequality by induction. For the base case, recall that p(a`+1) must

satisfy the best-response condition

p(a`+1) ≥ p(a`)−
ε1

p(a`)w11 + (1− p(a`))w10

= p̂(0|a) + p̂′(0|a)ε1

≥ p̂(ε`+1|a),

where the last inequality follows because p̂(·|a) is concave.

For the inductive step, suppose p̂(
∑m
k=`+1 εk |a) ≤ p(am) form = `+1, ...,K . I show

that p̂(
∑K
k=`+1 εk + εK+1|a) ≤ p(aK+1). Once again, aK+1 is a best-response to aK only

if,
p(aK+1) ≥ p(aK )− εK+1

p(aK )w11 + (1− p(aK ))w10

≥ p̂(
K∑

k=`+1

εk |a) + p̂′(
K∑

k=`+1

εk |a)εK+1

≥ p̂(
K∑

k=`+1

εk + εK+1|a),

where the second inequality follows from the induction hypothesis and the last

follows because p̂(·|a) is concave.

Consider any finite set A ⊇ A0. Let c̃ be the maximal cost of any action in A and

p̃ be the maximal probability. For any action a ∈ A, let p̃(·|a) be the solution to the
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initial value problem,

p̃′(t|a) = f (p̃(t|a)) =
−1

p̃(t|a)w11 + (1− p̃(t|a))w10

p̃(c̄ − c(a)|a) = p(a),

on D = [0, t̃(a)]× [0, p̃], where [0, t̃(a)] ⊆ [0, c̃] is the largest interval on which p̂(t|a) >
0 for all t ∈ [0, t̂(a)). Notice that p̃(c̄− c(a) + t|a) = p̂(t|a) for any t ∈ [0, t̂(a)], p̃′(·|a) < 0

for all t ∈ [0, t̃(a)), and p̃′′(·|a) < 0 for all t ∈ [0, t̃(a)). Moreover, the following “no

crossing” property holds; its proof is immediate upon observing that the solution

to the initial value problem is unique on any interval [0, t̄] for t̄ < c̃, since f ′(p̂(t|a))
is bounded and exists.24

Claim 2 (No Crossing)

If p̃(t|a) > p̃(t|a′) for some t ∈ [0, t̃(a)] ∩ [0, t̃(a′)], then p̃(t′ |a) ≥ p̃(t′ |a′) for any other

t′ ∈ [0, t̃(a)]∩ [0, t̃(a′)] and so p̂(t̂(a)|a) ≥ p̂(t̂(a′)|a′).

Suppose, towards contradiction, that there was a game with a maximal equi-

librium action distribution p satisfying p < p̄. Then, there must exist a finite

path of actions in A, (a1, ..., an), for which (i) a1 is the maximal element of A and

p(an) = p, (ii) p(a1) > ... > p(an), and (iii) ak ∈ BR(ak−1) (so that c(a1) > ... > c(an))

for k = 2, ...,n. It suffices to consider the case in which p̄ > 0, so that for any

ā0 ∈ argmax
a0

p̂(t̂(a0)|a0), p̃′(·|ā0) is defined on [0, c̃]. Otherwise, it could never be

that p < p̄.

Now, let ak be the first action in the path (a1, ..., an) at which c(ak) < c(ā0). Such

an action must exist. If not, then c(an) ≥ c(ā0). So, if p = p(an) < p̄ < p(ā0), then

(an, an) could not be a Nash equilibrium; ā0 would be a strict best-response to an.

Consider the case in which k = 1, so that c(a1) < c(ā0). Then,

p̃(c̄ − c(a1)|a1) = p(a1) ≥ p(ā0) = p̃(c̄ − c(ā0)|ā0) > p̃(c̄ − c(a1)|ā0),

where the first inequality follows because a1 is maximal in A and the second be-

cause p̃(·|ā0) is strictly decreasing. But then, p̂(t̂(a1)|a1) ≥ p̂(t̂(ā0)|ā0) by Claim 2.

24See, for instance, Theorem 2.2 of Earl A. Coddington and Norman Levinson (1955).
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Hence, by Claim 1,

p = p(an) ≥ p̂(t̂(a1)|a1) ≥ p̂(t̂(ā0)|ā0) = p̄.

Consider the case in which k > 1. Then, there exist two actions ak−1 and ak for

which c(ak−1) ≥ c(ā0) > c(ak). Notice, p(ak−1) ≥ p(ā0); if not and k = 2, then ak−1

could not have been a maximal element and, if k > 2, then ak−1 could not have

been a best response to ak−2 because ā0 would have yielded a strictly higher payoff.

Notice also that it must be the case that

p(ak) < p̃(c̄ − c(ak)|ā0) ≤ p̃(c̄ − c(ā0)|ā0) = p(ā0).

If the first inequality did not hold, then p̃(c̄ − c(ak)|ā0) ≤ p(ak) = p̃(c̄ − c(ak)|ak), in

which case Claim 2 implies that p̂(t̂(ak)|ak) ≥ p̂(t̂(ā0)|ā0). Hence, by Claim 1, it

must be that p = p(an) ≥ p̂(t̂(ak)|ak) ≥ p̂(t̂(ā0)|ā0) = p̄. The second inequality follows

because p̃(·|ā0) is decreasing.
I show that ā0 is a weakly better response to ak−1 than ak, contradicting the

claim that ak ∈ BR(ak−1) (since ā0 > ak). This is equivalent to showing that,

p(ā0) [p(ak−1)w11 + (1− p(ak−1))w10]− c(ā0) ≥ p(ak) [p(ak−1)w11 + (1− p(ak−1))w10]− c(ak),

⇐⇒ −
[
p(ā0)− p(ak)
c(ā0)− c(ak)

]
≤ −

[
1

p(ak−1)w11 + (1− p(ak−1))w10

]
.

Notice that,

−
[
p(ā0)− p(ak)
c(ā0)− c(ak)

]
≤
p̃(c̄ − c(ā0)|ā0)− p̃(c̄ − c(ak)|ā0)

(c̄ − c(ā0))− (c̄ − c(ak))
≤ p̃′(c̄ − c(ak)|ā0),

where the first inequality follows because p(ak) < p̃(c̄ − c(ak)|ā0) and the second
inequality follows because p̃(·|ā0) is concave. Further,

−
[

1
p(ak−1)w11 + (1− p(ak−1))w10

]
≥ −

[
1

p(ā0)w11 + (1− p(ā0))w10

]
= p̃′(c̄ − c(ā0)|ā0),

where the first inequality follows from p(ak−1) ≥ p(ā0). But, since c(ā0) ≥ c(ak),

p̃′(c̄ − c(ak)|ā0) ≤ p̃′(c̄ − c(ā0)|ā0),
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again by concavity of p̃(·|ā0).

p̄ is the greatest lower bound

I need only exhibit a sequence of action spaces (An) for which An ⊇ A0, ān is the

maximal Nash equilibrium action of Γ (w,An), and,

p(ān)→ p̄ as n→∞.

Let c̃ be the maximal cost of any action in A0 and p̃ be the maximal probability.

Then, define p̃(·|a) as before. Finally, let ā0 ∈ argmax
a0

p̂(t̂(a0)|a0) be chosen so that

t̃(ā0) ≥ t̃(a0) for all a0 ∈ A0.25

Suppose first that f (t, p̃(t|ā0)) exists for all t ∈ [0, c̃] so that p̃′(·|a) and p̃′′(·|a) are

bounded:

|p̃′(t|a)| ≤ |
p′(t|a)(w11 −w10)

(p̂(t̂|a)w11 + (1− p̂(t̂|a))w10)2
| := κ1 > 0,

and,

|p̂′′(t|a)| ≤ |κ1
(w11 −w10)

(p̂(t̂|a)w11 + (1− p̂(t̂|a))w10)2
| := κ2 > 0.

Now, consider a sequence of action spaces (An), with An := {an1, a
n
2, ..., a

n
n} ∪A0. Set

an1 = p̃(t|ā0), where t ∈ [0, c̃] is such that p̃(t|ā0) = 1, and ān := ann for each n. Set

c(ank−1)− c(ank ) = c̃
n := ε(n) for k = 2, ..,n, ρ(n) := 1

n2
c̃

w11+1 , and

p(ank ) = p(ank−1)− ε(n)
p(ank−1)w11 + (1− p(ank−1))w10

+ ρ(n) (E)

for k = 2, ...,n. Notice,

−1
n

c(a)
p(ank−1)w11 + (1− p(ank−1))w10

+
1
n2

c(a)
w11 + 1

< 0,

for k = 2, ...,n so that an1 > a
n
2 > ... > a

n
n. Equation E approximates p̃(t|ā0) on [t, c̄] ×

[0, p̄] using Euler’s method with rounding error term ρ(n). By the rounding error

analysis of Atkinson (1989) (see Theorem 6.3 and Equation 6.2.3), since p̃′(·|a) is

25Intuitively, p̃(t̂(a0)|a0) may equal zero for many a0 ∈ A0. The selection of ā0 ensures that p̃(·|ā0)
hits zero at the largest time and therefore, invoking Claim 2, is always above the differential equa-
tions associated with other known actions.
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bounded by κ1 > 0, and p̃′′(·|a) is bounded by κ2 > 0, it must be the case that

|p(ān)− p̃(c̄|ā0)| ≤
[
ec(a)κ1 − 1

κ1

][
ε(n)

2
κ2 +

ρ(n)
ε(n)

]
.

Since ε(n) → 0 as n → ∞ and ρ(n)
ε(n) = 1

n
1

w11+1 → 0 as n → ∞, the right-hand side

approaches zero. Hence, p(ān) becomes arbitrarily close to p̃(c̃|ā0) = p̄ as n→∞.

I need only argue that (ann, a
n
n) is the maximal Nash equilibrium of Γ (w,An). For

any a0 ∈ A0, p̂(t̂(ā0)|ā0) ≥ p̂(t̂(a0)|a0). Claim 2 thus ensures that p̃(t|ā0) ≥ p̃(t|a0)

for any t ∈ [t, c̃] for which both p̃(t|ā0) and p̃(t|a0) are defined. Hence, an1 = ā0 is

the maximal element of An; if there is another action in A0 that succeeds with

probability one, it must have a higher cost. Finally, as Euler’s method approxi-

mates p̃(·|ā0) from above and there does not exist an element a0 ∈ A0 for which

p̃(t|a0) > p̃(t|ā0) for any t ∈ [t, c̄], ank ∈ BR(ank−1) for each n and k = 2, ...n. This implies

that ann is the maximal Nash equilibrium action of Γ (w,An).

In the case in which f (t, p̃(t)|ā0) does not exist for all t ∈ [0, c̄], there exists some

t̄ ∈ [0, c̄] at which p̂(t̄|ā0) = 0, where p̃(t̄|ā0) is the solution to the differential equa-

tion on [0, t̄] × [0,p(a)]. For any interval [0, t̂] such that t̂ < t̄, I can mirror the ar-

gument in the case in which f (t, p̃(t)|ā0) is well-defined for all t ∈ [0, c̄] by setting

c(ank−1) − c(ank ) = t̂
n := ε(n) for all k = 1, ..,n and ρ(n) := 1

n2
t̂

w11+1 to show that p(ann)

approaches p̃(t̂|ā0) as n goes to infinity. But t̂ can be chosen arbitrarily close to t̄,

in which case p̃(t̂|ā0) becomes arbitrarily close to p̃(t̄|ā0) = 0. Hence, for any ε > 0,

there exists a sequence of games with a maximal equilibrium action distribution

p(ann) converging to a point in [0,ε) as n approaches infinity. This establishes that

p̄ = 0 is the greatest lower bound.

A.4 Proof of Lemma 7

Let

(w∗, a∗0) ∈ argmax
w∈[0,1],a0∈A0

(1−w)(p(a0)− c(a0)
w

),

p∗ := p(a∗0), and c∗ := c(a∗0). By the assumption of non-triviality, p∗ > c∗ since choos-

ing any action in A0 that does not satisfy this property results in at most zero

profit. By the assumption that productive known actions are costly, c∗ > 0 and so
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w∗ =
√
c∗
p∗ ∈ (0,1). Moreover,

V ∗IP E = (1−w∗)(p∗ − c
∗

w∗
) < 1−w∗.

Now, consider the JPE setting w10 = w∗ − ε, for ε > 0 small, and

p∗w11 + (1− p∗)w10 = w∗.

I show that the principal obtains a strictly higher profit than V ∗IP E . Since V ∗IP E =

(1−w∗)(p∗− c∗
w∗ ) < 1−w∗, I need only show that the principal obtains a higher payoff

in the worst-case shirking equilibrium.

Elementary methods show that the solution to the differential equation in Lemma

6 associated with a∗0 evaluated at c∗ is:

p̄(ε) : =

√
(p∗w11 + (1− p∗)w10)2 − 2c∗(w11 −w10)−w10

w11 −w10

=

√
(w∗)2 − 2 c

∗
p∗ε − (w∗ − ε)

ε/p∗
.

Moreover, it is easy to show that

lim
ε→0+

p̄(ε) = p∗ − c
∗

w∗
,

and

lim
ε→0+

p̄′(ε) = −1
2
p∗w∗.

Notice, if both agents choose an action that results in success with probability p(ε),

the principal’s payoff from each agent in the shirking equilibrium is

π(ε) := p̄(ε) [1− (p̄(ε)w11 + (1− p̄(ε))w10)]

and

lim
ε→0+

π(ε) = (p∗ − c
∗

w∗
)(1−w∗),

the least upper bound payoff the principal obtains from each agent within the class
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of IPE. Since p̄ (as defined in Lemma 6) is weakly larger than p̄(ε) for every ε > 0

and profits are strictly increasing in the probability with each worker succeeds

when ε > 0 is small, I need only show that π(ε) increases in ε at zero to demonstrate

the existence of an improvement in the principal’s payoff.26

It suffices to show that

∂+π(0) > 0,

where ∂+ is the right derivative of π(ε) at 0. For ε > 0, the derivative of π is well-

defined and equals

π′(ε) = p̄′(ε)(1− (p̄(ε)w11 + (1− p̄(ε))w10))− p̄(ε)
d
dε

[p̄(ε)w11 + (1− p̄(ε))w10]︸                              ︷︷                              ︸
= −c∗√

p∗(c∗−2c∗ε)

.

Hence,
∂+π(0) = lim

ε→0+
π′(ε) = ( lim

ε→0+
p̄′(ε))(1−w∗) + ( lim

ε→0+
p̄(ε))w∗

= (−1
2
p∗w∗)(1−w∗) + (p∗ − c

∗

w∗
)w∗

=
1
2

(p∗w∗ − c∗).

So,

∂+π(0) > 0 ⇐⇒ p∗w∗ > c∗,

which holds because w∗ > 0 and p∗ > c∗, establishing the desired result.

26Simply observe that, for ε > 0 small,

∂
∂p

[p(1−w∗) + p(1− p)ε] = (1−w∗) + (1− 2p)ε > 0,

since w∗ < 1.
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A.5 Proofs for Section 4.3.5

Existence

A worst-case optimal JPE with w10 = w00 = 0 is one that solves following maxi-

mization problem:

max
w11,w10

min{1−w11, p̄ [p̄(1−w11) + (1− p̄)(1−w10)]}

subject to

p̄ = max
a0∈A0

p̂(t̂(a0;w11,w10)|a0;w11,w10),

w11 > w10 ≥ 0.

where p̂(t̂(a0;w11,w10)|a0;w11,w10) is defined in the statement of Lemma 6 (I now

make explicit the terms that depend on the wage scheme).

I argue that the solution set of the latter problem coincides with that of the

following:
max
w11,w10

min{1−w11, p̄ [p̄(1−w11) + (1− p̄)(1−w10)]}

subject to

p̄ = max
a0∈A0

p̂(t̂(a0;w11,w10)|a0;w11,w10)

1 ≥ w11 ≥ w10 ≥ 0.

I may bound w11 above by 1 without altering the solution set because any larger

wage cannot be eligible (it yields the principal a profit of at most zero by the first

argument of the objective function). I may relax the strict inequality between w11

and w10 to be a weak relationship without altering the solution set since I have

already shown that for any wage scheme setting w11 = w10 there exist wages w11 >

w10 that yield the principal strictly higher profits.

As D := {(w11,w10) : 0 ≤ w10 ≤ w11 ≤ 1} is a closed and bounded subset of R2, it

is compact. Moreover, the function

f :D→R

(w11,w10) 7→min{1−w11, p̄ [p̄(1−w11) + (1− p̄)(1−w10)]},
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with,

p̄ = max
a0∈A0

p̂(t̂(a0;w11,w10)|a0;w11,w10)

is continuous.27 Hence, the Weierstrass Theorem (Theorem 3.1 of Rangarajan K.

Sundaram (1996)) ensures the existence of a solution.

Uniqueness

The proof of Lemma 4 shows that any contract that is not a JPE and does not set

w11 > 0, w00 > 0, and w10 = w01 = 0 is weakly improved upon by an IPE or RPE.

Lemma 5 and Lemma 7 then establish that such contracts are strictly suboptimal.

So, all that is left to show is that (i) any JPE with either w00 > 0 or w01 > 0 is strictly

suboptimal and (ii) any contract setting w11 > 0 and w00 > 0 (with w10 = w01 = 0)

is strictly suboptimal.

For case (i), notice that the characterization of the principal’s worst-case payoff

given a JPE identified in Lemma 6 holds when replacing w11 with w11 −w01 and

w10 with w10 −w00 in Equation 1 and setting

V (w) = 2min{1−w11, p̄ [p̄(1−w11) + (1− p̄)(1−w10)]+(1−p̄) [p̄(−w01) + (1− p̄)(−w00)]}.

If 1−w11 is strictly smaller than the principal’s payoff in the shirking equilibrium,

then the contract could not have been optimal; the principal could reduce w11 by a

small amount and strictly increase her payoffs (because p̄ is continuous in w11). If

the principal’s payoff in the shirking equilibrium is larger than 1−w11, then setting

w′01 = 0, w′11 = w11−w01, w′00 = 0, and w′10 = w10−w00 leaves p̄ unchanged, thereby

strictly increasing the principal’s profits in the shirking equilibrium in all cases

in which p̄ > 0. If w11 is affected by this adjustment, then this ensures that the

principal’s payoff strictly increases. If not, then decreasing w′11 by a small amount

strictly increases the principal’s payoff in the case that 1 −w11 is strictly smaller

than that in the shirking equilibrium.

27This follows from continuity of p̂(t̂(a0;w11,w10)|a0;w11,w10) (see Theorem 4.1 of Coddington
and Levinson (1955)), which in turn implies that p̄ is continuous (since the maximum of continuous
functions is continuous), which in turn implies that p̄ [p̄(1−w11) + (1− p̄)(1−w10)] is continuous.
As 1 −w11 is continuous and the minimum of two continuous functions is continuous, the result
follows.

53



For case (ii), the characterization of the principal’s worst-case payoff given a

JPE identified in Lemma 6 holds when replacing the law of motion in Equation 1

with

p̂′(t) = f (p̂(t)) :=
−1

p̂(t)w11 − (1− p̂(t))w00

and setting

V (w) = 2min{1−w11, p̄
2(1−w11) + (1− p̄)2(−w00)}.

The proof of Lemma 4 establishes that setting w00 = 0 yields a weak improvement

for the principal. It also establishes that this improvement is strict if, given this

adjustment, the principal’s payoff (from each agent) in the shirking equilibrium is

smaller than 1 −w11. So, I need only consider the case in which 1 −w11 is strictly

smaller than the principal’s payoff in the shirking equilibrium. In this case, the

resulting contract is strictly suboptimal; the principal could reduce w11 by a small

amount and strictly increase her payoff (because p̄ is continuous in w11). Hence,

the original contract with w00 > 0 is strictly suboptimal as well.
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