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1 Introduction

There are several open questions that are central in the literature on ambiguity aversion.

First, it is well known that updating ambiguous beliefs generally leads to violations of ei-

ther dynamic consistency or consequentialism, which has raised the concern by some that

ambiguity aversion may be a “mistake.” And if it is not, then which of these two intuitively

appealing properties should be violated? Second, a plethora of models of ambiguity aversion

have been proposed that differ in subtle ways in the behavior they predict. What crite-

rion should be used to select among those? Third, is there a connection between ambiguity

aversion (Ellsberg-type behavior) and violations of expected utility in the context of risk

(Allais-type behavior)?

This paper provides an evolutionary perspective on these issues. Evolution of preferences

refers to the notion that natural selection not only can influence physical traits, but can also

shape preferences. Using this approach, we develop a foundation for non-expected-utility

and ambiguity-averse preferences and study updating of such preferences in response to in-

formation. A key finding is that evolutionarily optimal preferences must be dynamically

consistent, but may violate consequentialism.1 Another important contribution of this pa-

per is to expand the scope of the evolutionary approach: Taking inspiration from recent

developments in evolutionary biology, we enrich the standard model of asexual reproduction

often used in evolutionary economics and introduce phenotypic flexibility, the rapid and re-

versible adaptation of mature organisms to different conditions. Our result on dynamically

consistent updating can then be applied to the resulting rich class of evolutionarily optimal

preferences, which we call adaptive preferences. We show that adaptive preferences include

rank-dependent expected utility in the context of risk, and variants of the smooth model,

variational preferences, and multiple prior preferences in the contexts of both risk and am-

biguity. Importantly, while ambiguity-averse preferences are typically assumed to reduce to

expected utility when facing risk, our model closely links different uncertainty attitudes to

violations of expected utility.

The basic idea behind the evolutionary approach is that a large population of individuals

is initially made up of subpopulations with different genotypes, where a genotype specifies the

physical traits as well as the behavior (preferences) of an organism. First, those preferences

guide the choice of an action that leads to a possibly uncertain outcome. Next, the outcome

together with the physical traits of the organism determine its evolutionary fitness, that is,

its number of offspring. Rather than modeling physical traits explicitly, we directly specify

the mapping that translates outcomes to offspring, which is referred to as a fitness function.

The offspring inherit the parent’s genotype and will face a choice of their own, and so on. In

this way, the number of individuals who share a particular genotype may shrink or grow over

time, relative to the whole population. A genotype is evolutionarily optimal among those

1As we discuss in detail later, consequentialism refers to the requirement that ex post preferences not be
influenced by outcomes that could have been obtained on some unrealized event.
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initially present if the relative size of its subpopulation does not vanish over time.

In economic applications involving evolution of preferences or evolutionary game theory,

the fitness function is usually taken as fixed. As noted, in this paper we instead allow pheno-

typic flexibility: A genotype may express different phenotypes, and the individual phenotype

can be rapidly and reversibly adapted. We model this rapid adaptation by describing a geno-

type as a set of possible fitness functions from which one is selected at the time of choosing

an action. Naturally, a genotype that takes into account this flexibility when choosing an

action has an evolutionary advantage.2

Before describing the contributions of this paper in greater detail, it is worth highlighting

three key insights that will be central in our analysis:

1. Evolutionary optimality generates a preference for idiosyncratic uncertainty over com-

mon uncertainty, and ambiguity is closely associated with common uncertainty in many

instances.

2. Phenotypic flexibility leads to non-expected-utility preferences over both idiosyncratic

and common uncertainty.

3. Even with all of these components present (idiosyncratic and common uncertainty, phe-

notypic flexibility), preferences following the arrival of information will be dynamically

consistent.

The starting point of our analysis is observation 1 above, which dates back to the seminal

paper by Robson1996:biological. The main innovations of our paper are the incorporation

of phenotypic flexibility and the study of preferences following the arrival of information,

which yield observations 2 and 3. Importantly, these two innovations are not independent

of each other, as the introduction of phenotypic flexibility greatly increases the scope of

the evolutionary model and allows it to nest versions of a number of prominent models of

ambiguity aversion and non-expected utility for risk. This, in turn, allows our observation

concerning dynamic consistency to be applied to a much wider class of models. In the

following paragraphs, we touch briefly on each of the three insights as we introduce the

elements of our model.

The intuition behind observation 1 is quite simple. To see how evolution can generate

aversion to common uncertainty, suppose there are two actions between which all individuals

must choose in every period. For both actions, individual growth (under the best available

fitness function) will be either 2 or 4, each with probability 1
2
. The only difference is that one

action bears common uncertainty, where realized per-period growth is perfectly correlated

across individuals, while the other bears idiosyncratic uncertainty, where realized growth is

2We discuss our modeling assumptions and how they are motivated by the evolutionary biology literature
in more detail in Section 1.1. Specifically, adopting the terminology from PD2003:phenotypic, pheno-
typic flexibility refers to rapid and reversible adaptation of a mature individual, which is different from
developmental plasticity (irreversible adaptation of an organism to its environment during development).
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independent across individuals. By the law of large numbers, the per-period growth of a

(large subpopulation with a common) genotype who consistently chooses the idiosyncratic

uncertainty will be approximately 1
2
(2 + 4) = 3. In contrast, a genotype who chooses the

common uncertainty will grow by either 2 or 4, each in approximately half of the periods.

Heuristically, this leads to a long-run average growth over two periods of 2× 4 = 8, which is

less than 3× 3 = 9. This example illustrates the detrimental effect of correlation on growth:

The genotype who chooses the idiosyncratic uncertainty will have higher long-run growth, as

previously observed by Robson1996:biological. This implies it will almost surely dominate

in the long run (Lemma 1).3

The second part of observation 1 regards the connection between ambiguity and com-

mon uncertainty. Note that in many applications of ambiguity, the unknown uncertainty

indeed concerns a common factor, which we will refer to as the environment, that affects all

individuals in the population. Examples include the value of a macroeconomic variable, the

efficacy of a medical treatment for a population of individuals, or even the composition of

an urn in a lab experiment. In addition, the literature on model misspecification suggests

that individuals typically do not know the correct model of the world and therefore treat the

“model” itself as a common unknown factor. We discuss and justify this close connection be-

tween ambiguity and correlated uncertainty in more detail in Section 1.2. However, strictly

speaking, our results will concern the differential treatment of common versus idiosyncratic

uncertainty, and we would not go so far as to claim that every instance of ambiguity cor-

responds to common uncertainty; nor would we suggest that every instance of common

uncertainty involves ambiguous beliefs. Nonetheless, the key insight to keep in mind is that

if ambiguity is frequently associated with common uncertainty—and we would argue that it

is—then the evolutionary optimality of correlation aversion provides one possible mechanism

through which ambiguity aversion may have originated. To simplify the exposition, we will

use the two notions interchangeably for the bulk of the paper.

Before discussing observations 2 and 3, we briefly sketch the key elements of our model

and describe our representation for adaptive preferences. Formally, a genotype determines

how to evaluate an act f that depends on both the common component of the state of the

world, ω ∈ Ω, and the idiosyncratic component, s ∈ S, which is distributed identically and

independently across individuals (conditional on ω). The joint distribution of ω and s is

given by µ. Phenotypic flexibility allows individuals to select a fitness function ψ from a

feasible set Ψ, prior to the realization of the state. Recall that the evolutionarily optimal

genotype evaluates the act f according to the long-run annualized growth its repeated choice

would generate for the population as a whole. Suppose for now that no signal has arrived

at the time of choice of f and ψ. We show that the logarithm of the long-run growth rate is

3The existence and exact form of this aversion to common uncertainty depends on both the fre-
quency of reproduction (RS2017:biological) and timing of reproduction within the life cycle of organisms
(RS2019:age-structured). We discuss these considerations further in Section 3.
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then given by

V (f) = max
ψ∈Ψ

∫
Ω

ln

(∫
S

ψ(f(ω, s)) dµ(s|ω)

)
dµ(ω). (1)

If the space of outcomes is ordered and each ψ is concave, then growth is affected negatively

by either type of uncertainty—the optimal genotype is uncertainty averse. In addition,

the concavity of the logarithm between the integrals means that aversion to idiosyncratic

uncertainty about s is less severe than aversion to common uncertainty about ω—the optimal

genotype is ambiguity averse. The formula obtained by Robson1996:biological is the

special case where there is a single fitness function, Ψ = {ψ} (no phenotypic flexibility).

To gain some sense of the effects of phenotypic flexibility as summarized in observation 2,

consider the genotype that has two fitness functions, with the first yielding peak reproduction

only for outcome a and the second yielding the same peak reproduction only for outcome b.

Suppose further that there are three acts, f , g, and h. Acts f and g give outcomes a and b

with certainty, respectively, while act h gives a or b, each with strictly positive probability.4

If this genotype has evolutionarily optimal preferences, then it is indifferent between choosing

acts f and g (with the corresponding simultaneous choice of fitness function), but it does not

like act h, because there is no phenotype that is equally well adapted to outcomes a and b at

the same time. This genotype therefore does not maximize an expected-utility preference.5

Turning to observation 3, it is well-known that except in special circumstances, non-

expected-utility preferences (in particular, ambiguity-averse preferences) cannot satisfy both

dynamic consistency and consequentialism. This tension, and the subsequent disagreement

in the literature over which property to prioritize, is an impediment to applying these prefer-

ences in dynamic contexts where information plays a central role, such as in macroeconomics

and finance. Observation 3 leverages the evolutionary perspective that we develop to provide

clear guidance on this issue. Our general representation extends the formula for evolutionar-

ily optimal preferences in Equation (1) to evaluate ex ante contingent plans for the choice of

act following the arrival of a private signal. We also consider evolutionarily optimal ex post

preferences after the actual arrival of the signal. Since evolutionary optimality of both ex

ante and ex post preferences requires maximization of the long-run growth rate of the geno-

type, it becomes almost tautological that preferences must be dynamically consistent. Of

course, maintaining dynamic consistency necessitates that consequentialism may be violated.

Understanding why evolution may dictate these violations is more subtle.

In the context of information and updating, consequentialism means that individuals

only consider the outcomes that acts can generate following the actual signal realization,

and not what their outcomes would have been following other possible signal realizations.

4Whether h depends on common or idiosyncratic uncertainty is unimportant for this example.
5In the context of pure risk, this type of violation of expected utility is explored axiomatically in

Sarver2018:mixture-averse. For us, an important question is how these violations of expected utility
for idiosyncratic uncertainty interact with attitudes toward common uncertainty, thereby generating a link
between risk and ambiguity attitudes.
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For a single individual acting in isolation, consequentialism seems like a normatively appeal-

ing property. However, when a genotype consists of many individuals acting simultaneously,

different individuals within this subpopulation may be receiving different signals at the same

time. Since correlation in fitness between members of the genotype plays an important role

in its evolutionary success, as already highlighted above, it is in fact quite natural that conse-

quentialism could be violated: For one individual with a given signal realization, considering

the outcomes that would be obtained following other signal realizations is not paying undue

attention to “what could have been,” but rather giving appropriate consideration to “what

others in the population are currently experiencing.”

The remainder of the paper is structured as follows. The next two subsections discuss

in more detail the biological evidence and economic interpretation of phenotypic flexibility,

and the relationship between correlated uncertainty and ambiguity, respectively.

Section 2 sets up our model. For ease of exposition, we then bring different elements of

the model into play gradually. In Section 3, we first establish some key intuitions for our

evolutionary model in the simplified benchmark setting without information. To illustrate

the model, we will highlight two canonical special cases of this no-information benchmark:

In Section 3.1, we consider the case of no phenotypic flexibility, Ψ = {ψ}, and we review

the Robson1996:biological characterization of evolutionarily optimal preferences for this

environment, which can be thought of as a special case of the smooth model of ambiguity

aversion. In Section 3.2, we explore an alternative special case of our model where phenotypic

flexibility is permitted but there is no common uncertainty, Ω = {ω}, and we show that

the evolutionarily optimal preferences in this case correspond to the optimal risk attitude

preferences studied by Sarver2018:mixture-averse. In particular, a dual version of this

representation nests rank-dependent expected utility as one special case. We return to the

model with signals in Section 4, where we proceed to formalize the evolutionarily optimal

response to information. This section also revisits the two canonical examples of the smooth

model and rank-dependent utility and illustrates the evolutionarily optimal updating rules

for these models.

In Section 5, we analyze other special cases of our general model when phenotypic flex-

ibility and common uncertainty are simultaneously permitted, including a special case that

merges our two leading examples. Via a number of duality results, we show that our adaptive

model nests a class of representations where: (1) Beliefs about common uncertainty are first

pessimistically distorted using either confidence or variational preferences with an entropic

confidence function; and (2) Beliefs about both common and idiosyncratic uncertainty are

then additionally distorted using, among other things, the well-established formulas for ei-

ther rank-dependent utility, divergence preferences, or multiple priors expected utility. Since

in all of these representations the second stage of pessimistic belief distortion is applied to

both types of uncertainty, each closely links Allais and Ellsberg type behaviors. Based on

the results in previous sections, it will be clear how to incorporate information and evolu-

tionarily optimal updating into these special cases, which for completeness we do formally
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Single Phenotype
(Ψ = {ψ})

No Common
Uncertainty (Ω = {ω})

General Model
(any Ψ and Ω)

No Signals
Section 3.1, Robson1996:biological

smooth model

Section 3.2

rank-dependent utility

Section 5

variants of confidence,
multiple priors, and

variational preferences

Signals and
Updating

Section 4.1

updating smooth model

Section 4.2

updating RDU

Appendix A

updating confidence,
MEU, and variational

Table 1: Organization of special cases by section

in Appendix A. Table 1 summarizes the organization of special cases within the paper.

The assumptions we make in modeling reproduction provide a benchmark that may need

to be modified to best fit a particular application. For instance, there might be competition

between genotypes over limited resources, the age of organisms may matter for their fitness

(RS2019:age-structured), or adaptation may not be sufficiently rapid to react to the

arrival of information. Changing these modeling assumptions would alter the specifics of

our model, but the main lessons about updating are robust. In the Online Appendix, we

explore one of these alternatives in greater detail: We examine the impact of assuming that

information arrives after the selection of phenotype. We also discuss extending the model

to formally analyze preferences for self-randomization and the different effects of common

versus private signals.

1.1 Phenotypic Flexibility

Evolutionary success appears to be greatly enhanced by the ability of organisms of a par-

ticular genotype to adapt their phenotype to the environment. Adopting the terminology

proposed by PD2003:phenotypic, we refer to phenotypic flexibility as the rapid and appar-

ently purposeful variation in phenotype expressed by single reproductively mature organisms

throughout their life. This is in contrast to developmental plasticity, the environmentally

induced variability during development within a single genotype.6

While developmental plasticity has long been a focus of evolutionary biologists, the role

of phenotypic flexibility in the evolutionary process has only recently attracted significant

attention. According to PD2003:phenotypic:

When environmental conditions change rapidly [...] individuals that can show contin-

uous but reversible transformations in behaviour, physiology and morphology might

6PD2003:phenotypic use phenotypic plasticity as an umbrella term that includes both phenotypic
flexibility and developmental plasticity.
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incur a selective advantage. There are now several studies documenting substantial

but reversible phenotypic changes within adult organisms.

Striking examples among vertebrates include various species of amphibious fish that ad-

just to life on land with reversible and rapid (sometimes within minutes) changes to their

muscle tissue, breathing organs, and skin properties (wright2016:amphibious provide a

survey), or marine iguanas on the Galapagos islands that can shrink their overall body

length by up to 20% (6.8 cm) in what appears to be a reversible, rapid and strategic re-

sponse to food scarcity during an El Niño weather pattern (WT2000:marine). A familiar

example that can be viewed as phenotypic flexibility in humans and other mammals is the

adjustment of the makeup of muscle tissue in response to changes in functional demands

(fluck2006:functional), for instance, from a more or less active lifestyle.

Of course, the evolutionary benefit of phenotypic flexibility is that different phenotypes

may perform better in different situations. For instance, each possible phenotype might be

tailored to a specific range of outcomes, such as the amount of available food for the iguanas

in the example above. Or one phenotype might be a specialist with high fitness for a small

range of outcomes, while the other is a generalist, with lower peak fitness that is more robust

to the outcome.

Biologists in the studies above directly observe variations in individual phenotypes over

time. In economic applications, in contrast, phenotypes, such as the determinants of risk

and ambiguity preferences in our model, are notoriously hard to observe—economists instead

rely on preferences that are revealed from observable choice data. Respecting this limitation,

our data only consists of observable choices between outcome-relevant actions (f), while the

phenotype (ψ) is not directly observable.

As a consequence, an economic analyst can typically not distinguish whether adaptation

is due to biological change or a strategic but hidden choice of action that affects the reproduc-

tive value of different outcomes. For instance, an economic agent who is observed choosing

between more or less uncertain investments might, unobserved by the analyst, be able to

buy additional insurance. Being insured comes at a cost, but naturally reduces the observed

aversion towards uncertainty—in the language of evolutionary biology, the individual be-

comes more of a generalist and less of a specialist.7 Since the analyst cannot distinguish

between adaptation via biological changes and via hidden actions, our model allows both

interpretations.

7Other examples of hidden actions that take the form of physical commitments (prior to the resolution
of uncertainty) include mortgage agreements or purchases of durable consumption goods. A large literature
details the impact of such commitments on risk preferences, for example, GL1990, GL2001, and CS2007;
CS2016. Unobservable commitments in particular are explored in KP1979, Machina1984, and ES2015.
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1.2 Ambiguity as Common Uncertainty

As noted earlier in the introduction, in many examples and applications of ambiguity, the

unknown probabilities concern common factors that affect all individuals in the population.

We will refer to these common factors as the environment. For example, in one of the earliest

applications of ambiguity to economics, DW1992 and EW1994 examined the implications

of ambiguity about asset returns.8 Returns to financial assets are obviously common to all

individuals who invest in them. Similarly, in applications to macroeconomics, ambiguity

typically concerns aggregate variables, such as factor productivity (IS2014:ambiguous,

bianchi2017uncertainty). Other examples of uncertainty about aggregate variables that

can affect individual outcomes and where probabilities are poorly understood could include

natural disasters such as earthquakes or tsunamis, or climate change and its implications.

One reason common uncertainty in the examples mentioned so far may be subject to

greater ambiguity than idiosyncratic uncertainty is that idiosyncratic random variables can

be studied using cross-sectional data, whereas aggregate variables by definition cannot.

Greater abundance of data may lead to a better understanding. Nonetheless, there could be

common uncertainty for which the probabilities are well understood by individuals, and our

results would be equally relevant in those settings.

In addition to ambiguity taking the form of common uncertainty about aggregate vari-

ables, there is also a fundamental and systematic link between common uncertainty and any

instance of ambiguity involving model uncertainty—ambiguity about the true data generat-

ing process. Even if the risks faced by each individual are well-understood and idiosyncratic

conditional on some common underlying model parameter, if that parameter is unknown and

ambiguous, then all individuals share in the resulting common uncertainty.9 For a simple

illustration, consider a medical treatment. If the efficacy (success rate) of the treatment for

a population with a given set of characteristics is known, then whether it is successful for

one individual is independent of whether it succeeds for another. However, if the treatment

has undergone limited testing, then its success rate may be unknown and would itself be a

source of common uncertainty for all individuals. In fact, most instances of ambiguity can

be cast as common uncertainty about idiosyncratic probabilities.

Of course, we should be careful to point out that the correlation mechanism at play

in this paper may not be the only driver of ambiguity aversion. The main thrust of the

preceding discussion is that there are indeed many situations in which ambiguity and risk

are tightly linked to common and idiosyncratic uncertainty, respectively, and our results

speak specifically to these instances of ambiguity. In other cases where ambiguity is not

8See epstein2010ambiguity for a survey of the large body of subsequent research in this area.
9This interpretation is closely connected to the macroeconomic literature on robustness to model un-

certainty (HS2001; hansen2008robustness). It is further discussed in the context of the evolutionary
model in Robson1996:biological, who noted that in many examples “aggregate uncertainty might be
reinterpreted as a lack of precision concerning the risk facing an individual.”
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connected to common uncertainty, we remain agnostic about whether ambiguity aversion is

driven by heuristics developed by genotypes from the case of common uncertainty or whether

some other source of ambiguity aversion is at play.

2 Evolution in Uncertain Environments

We now introduce all the ingredients of our model, which includes common uncertainty,

idiosyncratic uncertainty, and information. As noted, we will consider the simplified case

without signals in Section 3 and return to the general model with signals in Section 4.

2.1 Uncertainty

Common uncertainty about the environment is modeled via a state space Ω. The realization

of the environment ω is common to all individuals in the population. In addition, given the

environment, idiosyncratic uncertainty is captured via a state space S, where each individual

in the population receives an independent draw of the state s ∈ S. The entire payoff-relevant

state space is then Ω × S. We model information by allowing each individual to receive a

private signal σ from a space of signals Σ that is informative about (ω, s).10 The combined

space of signals and states is thus Ω × S × Σ. We assume that Ω and S are Polish spaces,

that is, complete and separable metrizable spaces. We assume that Σ is finite and endowed

with the discrete topology. We endow the spaces Ω, S, and Σ with their Borel σ-algebras

BΩ, BS, and BΣ, respectively, and we endow the product of these spaces with the product

σ-algebra E = BΩ ⊗ BS ⊗ BΣ.

Uncertainty is described by a measure µ in the set 4(Ω×S×Σ) of (countably additive)

probability measures on the measurable space (Ω × S × Σ, E). The marginal distribution

of µ on Ω assigns probability µ(E) to any measurable event E ∈ BΩ. When necessary to

avoid confusion, we will sometimes denote this marginal distribution more explicitly by µΩ.

As noted, there is a common draw of the ω dimension of the state for all individuals in

the population according to this marginal distribution. However, conditional on ω, both

the s dimension of the state and the signal σ are drawn independently for each individual

according to the conditional probability distribution µ(s, σ|ω) on S × Σ.11 Finally, the

informational content of a signal σ ∈ Σ is described by conditioning the distribution µ on σ.

10Since S describes idiosyncratic risk, it is natural to consider private signals.
samuelson2004information and noldeke2005information also incorporated private signals in an
evolutionary framework with common uncertainty. In Section S3 of the Online Appendix, we briefly
discuss how behavior differs between common and private signals when both are informative only about the
common component Ω.

11More precisely, since S may be an infinite set, the conditional probability distribution given ω assigns
probability µ(E|ω) to an event E ∈ BS ⊗ BΣ. Note that since S × Σ is a Polish space, the existence of a
regular conditional probability distribution is ensured by Proposition 10.2.8 in dudley2002real.
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This information structure is quite general and includes, among other things, the partitional

structures that are often used in the literature on ambiguity and updating.

2.2 Consumption and Fitness

Let Z denote the set of outcomes. We assume that Z is a convex subset of a vector space.

Both the ω and s dimensions of the state space are potentially relevant for the outcome of

an action, but the role of the signal σ is purely informational. Formally, let F denote the

set of simple acts, that is, the set of all measurable functions f : Ω × S → Z that take a

finite number of possible values. An evolutionary fitness function ψ : Z → R specifies the

(expected) individual growth rate associated with each outcome.12 Given an act f ∈ F ,

the individual growth rate in state (ω, s) is then ψ(f(ω, s)). For example, for a population

of individuals, aggregate fitness of zero indicates extinction, fitness of one indicates that

the birth rate is equal to the death rate and hence there is no change in the size of the

population, and fitness of 1.5 indicates a 50% growth in the population. Aggregate fitness

can obviously never be negative. Whether or not individual fitness functions take negative

values is not important for our results on the evolutionary optimality of adaptive preferences

and on the dynamic consistency of optimal updating. However, in order to derive exact

dual characterizations of special cases of our model, it will be useful to allow some outcomes

to generate negative individual fitness, which could be interpreted as an externality that

eliminates other individuals.

Individuals face the task of evaluating acts contingent on the observed signal σ ∈ Σ, but

before learning the realization of the state (ω, s). Each genotype determines a rule for this

evaluation, contingent on ψ, µ, and σ. We refer to a particular ψ (together with this rule)

as a phenotype. Building on insights from evolutionary biology, we assume that a genotype

does not necessarily fully determine the expression of a phenotype, but is constrained by a set

of fitness functions Ψ, within which the expressed phenotype may rapidly adapt to changes

in the environment. For instance, different phenotypes may attain their peak reproduction

for different outcomes, or some may be specialists with high peak reproduction, while others

are generalists with lower peak reproduction that is more robust to the outcome. Since the

rule for evaluating acts can condition on ψ, it is without loss to assume that phenotypic

flexibility amounts only to adapting ψ.

A central theme of our analysis will be the connection between the set Ψ of available

fitness functions and the corresponding preferences under uncertainty. The appropriate set

Ψ itself will depend on the choice context. For instance, it may reflect the range of biological

changes that are feasible for an organism, or it may reflect the set of hidden actions that

12Realized individual growth must, of course, amount to an integer number of offspring, but since repro-
duction may be uncertain given the outcome z ∈ Z, the expected individual growth rate may take non-integer
values. As the main results of Section 3 show, evolutionary fitness of a genotype with a large population
depends only on the expected individual growth rates ψ(z) its individuals attain for outcome z.
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are available to each individual.13 For now, we only impose the technical assumptions that

Ψ is a nonempty and convex set and that supψ∈Ψ ψ(z) is finite for every z ∈ Z.14 Further

restrictions on Ψ will select the exact model of choice under uncertainty.

2.3 Growth Rates

The choice of act f and fitness function ψ by a genotype will determine the overall growth

rate of its subpopulation in a given time period. We assume each decision problem is faced

repeatedly, leading to a stochastic sequence of growth rates for each genotype. Our analysis

of natural selection and evolutionary optimality will center around the comparison of long-

run growth rates of different genotypes (with different programmed preferences).

Definition 1. Suppose the aggregate growth rate of a genotype is given by (λt)t∈N, where

λt is the random variable that describes the aggregate growth rate in period t of the entire

subpopulation of individuals with that genotype. We say that α is the long-run growth rate

of the genotype if 1
T

∑T
t=1 ln(λt)→ α almost surely as T →∞.

For an arbitrary sequence (λt)t∈N of random variables, the long-run growth rate may not

exist, since the series above may not converge. However, we will see in the next section that

in our evolutionary model, the long-run growth rate exists for any act f and phenotype ψ.

To establish that the long-run growth rate is the appropriate statistic for comparison in

our evolutionary model, the next lemma demonstrates how it relates to long-run dominance

of a particular genotype over others. First, note that throughout the paper, we follow the

standard convention of assuming that the number of agents of each genotype is (infinitely)

large, which we formally model by treating the set of individuals of each genotype i as a

continuum with measure N i(t) at time period t.15 Thus, if the sequence of aggregate growth

rates of genotype i is (λit)t∈N and the initial measure of this genotype is N i(0), then the

measure of its subpopulation at time T ∈ N is

N i(T ) = N i(0)
T∏
t=1

λit.

Lemma 1. Consider two genotypes i = A,B, where each genotype i has a sequence of

stochastic aggregate growth rates (λit)t∈N that converges to a long-run growth rate αi. If

13In the former case, Ψ itself may be subject to evolutionary selection, and thus should be optimal for the
(possibly changing) choice setting, given the relevant physical constraints. Investigating the evolutionary
selection of Ψ and conditions for heterogeneity in steady state are topics for future research.

14In Section S1 of the Online Appendix, we discuss how when the set of phenotypes Ψ is not convex, it
may be optimal for the genotype to program the individuals in its subpopulation to engage in idiosyncratic
self-randomization in their choice of ψ. We show that such idiosyncratic randomization effectively convexifies
the set of phenotypes Ψ. In this sense, the assumption that the set Ψ is convex is without loss of generality.

15Using results from the theory of branching processes, it can be shown that our results involving continuum
populations are the correct limiting approximations for large but finite populations.
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αA > αB, then regardless of the initial measures NA(0) > 0 and NB(0) > 0 of their respective

subpopulations at time t = 0, we have NA(t)/NB(t)→∞ almost surely as t→∞.

Note that Lemma 1 does not imply that a higher long-run growth rate yields higher

expected population size as t grows large, as indeed it is possible to have the expected value

of NB(t) exceed that of NA(t) for all t. Nonetheless, the lemma implies that the event where

NB(t) exceeds NA(t) vanishes (has probability zero) in the limit as t→∞.

Evolutionary theory aims to explain which genotypes can be observed in the long run.

Lemma 1 clarifies why maximizing long-run growth, rather than the expected population size,

is evolutionarily optimal. If in the present moment, organisms have already been evolving for

t periods, then the relative population sizes of different genotypes that we observe today is a

snapshot of the evolutionary process in period t. Assuming this process has been underway

for some time (t is large), the probability is very high that the dominant genotype observed

today is precisely the one with the highest long-run growth rate.

3 Benchmark Setting without Signals

As noted above, we begin our analysis by first focusing on the benchmark setting of no

information. We assume throughout this section that there is a trivial signal structure Σ =

{σ}, which allows signals to be dropped from the model. Recall that we model a genotype

as a convex set of fitness functions Ψ together with preferences over acts conditional on the

fitness function ψ ∈ Ψ. Any particular ψ determines a phenotype for the genotype, and

phenotypic flexibility refers to reversible and strategic changes in the phenotype, which are

sufficiently rapid to allow the simultaneous choice of ψ and the act f prior to the realization

of the state (ω, s).

We begin by formalizing the evolutionarily optimal preferences over common and idiosyn-

cratic uncertainty in this no-information setting when individuals have phenotypic flexibility.

We adopt the convention that the domain of the natural logarithm includes nonpositive num-

bers and its range is the extended reals by setting ln(x) = −∞ for all x ≤ 0.

Theorem 1. Suppose Ψ and µ are fixed, and consider a genotype with an (infinitely) large

subpopulation of individuals. If the phenotype ψ is chosen optimally, then the long-run growth

rate of the genotype from choosing the act f in every period is

V (f) = sup
ψ∈Ψ

∫
Ω

ln

(∫
S

ψ(f(ω, s)) dµ(s|ω)

)
dµ(ω). (2)

We refer to the preferences represented by the value function V in Equation (2) as

adaptive preferences. The proof of Theorem 1 is based on the same logic that is behind the
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seminal result of Robson1996:biological, who considered the special case of no phenotypic

flexibility (Ψ = {ψ}) that we will discuss in greater detail in Section 3.1.

Proof. By the law of large numbers, conditional on the environment ωt at time t, the average

growth rate of a large population of individuals choosing a particular act f and phenotype ψ

is approximately λt(ωt) =
∫
S
ψ(f(ωt, s)) dµ(s|ωt). Since we consider infinite subpopulations

in our model, we can treat this approximation as exact.16 Taking the product over a sequence

of realized environments ω1, . . . ωT and raising to the power 1/T gives the realized annualized

growth rate over this sequence of periods:

T∏
t=1

(∫
S

ψ(f(ωt, s)) dµ(s|ωt)
)1/T

.

Taking the logarithm of this expression and then the limit as T →∞, we have

1

T

T∑
t=1

ln

(∫
S

ψ(f(ωt, s)) dµ(s|ωt)
)
→
∫

Ω

ln

(∫
S

ψ(f(ω, s)) dµ(s|ω)

)
dµ(ω) a.s., (3)

by the law of large numbers.17 Optimizing over ψ ∈ Ψ gives precisely Equation (2). �

Since the individual selects both the phenotype ψ and the act f , the long-run growth

rate of the population is optimized by choosing both to maximize Equation (3). However,

if only the choice of act is observed—and the choice of fitness function corresponds to an

unobservable selection of phenotype or some other hidden action—then the highest possible

long-run growth rate associated with each different choice of act f is given by Equation (2).

Note that since V expresses the long-run average growth rate in log terms, V (f) = −∞
corresponds to extinction and V (f) = 0 corresponds to constant population size. As we

argued in Section 2.3, the evolutionarily optimal genotype is the one that maximizes the

long-run growth rate, so the most successful genotype will be the one that chooses between

acts to maximize V (f).

There is one important consideration that we have thus far ignored: When choosing

between two acts f and g, a genotype may be able to attain a greater long-run growth rate

than either V (f) or V (g) by programming the individuals in its subpopulation to randomize

16Note that an approximate (limiting) version of this theorem also holds for finite populations,
provided the initial population size is sufficiently large. Using the theory of branching processes
(athreya1972branching), it can be shown that the average growth rate of a finite population converges
to V (f) conditional on non-extinction. Moreover, it can be shown that when V (f) > 0, the probability of
extinction converges to zero as the initial population becomes large.

17Note that the integral in Equation (3) may be either finite or −∞, but it cannot take the value +∞
since f is simple and supψ∈Ψ ψ(z) is assumed to be finite for every outcome z ∈ Z. It is a standard result
that the strong law of large numbers continues to hold for random variables that are bounded above, with
almost sure convergences to −∞ in the case where the expectation is −∞. See, for example, the corollary
to Theorem 22.1 in Billingsley1995.
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between the acts f and g. We will address the possibility of idiosyncratic self-randomization

as a form of hedging formally in Section S1 of the Online Appendix. For the moment, it is

worth observing that when the choice set of acts F is convex and each ψ ∈ Ψ is concave,

there is no evolutionary benefit from self-randomization in the choice of act.

Corollary 1. Suppose Ψ and µ are fixed and each ψ ∈ Ψ is a concave function. The genotype

that maximizes adaptive preferences is the unique one that achieves a weakly higher long-run

growth rate than all others for every infinitely repeated convex choice set F ⊂ F .

Before proceeding to discuss special cases of adaptive preferences, we wish to highlight

several assumptions that are implicit in our formulation of the evolutionary model. Corol-

lary 1 shows that the long-run growth rate is optimized by choosing the act f ∈ F that

maximizes V , assuming the choice set F is faced by the genotype repeatedly in every period.

In fact, this assumption is unnecessarily strong and is made solely for ease of exposition. As

can be seen in the proof of Theorem 1, aggregate fitness in each period affects the population

size multiplicatively, which provides a degree of separability for choice problems that appear

at different times. For example, if the genotype faces an infinite sequence of choice sets

(Ft)t∈N, then attaining the highest possible long-run growth rate requires that individuals

maximize adaptive preferences from any set F that repeats with fixed frequency within this

sequence.18

The second assumption in our model is that time is divided into discrete time periods.

RS2017:biological made the surprising observation that correlation aversion disappears

in the continuous-time limit of this basic model. Further extending this line of research,

RS2019:age-structured allowed fertility and mortality rates to vary with age in order to

separate the assumption of continuous time from the assumption that new organisms can

reproduce immediately after birth, and they found that correlation aversion can be recovered

even in continuous time. Investigating the implications of different timing and age structures

in our context of phenotypic flexibility and updating could be an interesting avenue for future

research. In this paper, we stick to discrete time with age-independent fertility and mortality

rates as is common in evolutionary models in economics.

In the next two subsections, we describe two canonical special cases that will help to

demonstrate the scope of our evolutionary model and further solidify the connection to am-

biguity and risk preferences: In Section 3.1, we consider the case of no phenotypic flexibility,

Ψ = {ψ}. This special case was first studied by Robson1996:biological, who found that

the evolutionarily optimal preferences in this environment are closely related to the smooth

model of ambiguity aversion. In Section 3.2, we consider the case where Ω = {ω}, that is,

18The assumption that all individuals of the genotype face the same choice set at the same time is also
implicit in our model, and this assumption can be relaxed as well. If, instead, there is a distribution of choice
sets within the population, then this uncertainty can be encoded into the state spaces in our model (similar
to the way we incorporate signals and contingent plans later in the paper).
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there is only idiosyncratic uncertainty, and we show that rank-dependent utility is nested by

this special case of our representation.

3.1 Smooth Model of Ambiguity Aversion

One important special case of our model is where there is a single fitness function, Ψ = {ψ},
and genotypes are therefore determined solely by their preferences over acts f . After stating

the immediate corollary of Theorem 1 that specifies the evolutionarily optimal value function

for this special case—a result originally due to Robson1996:biological—we illustrate how

to formally relate common and idiosyncratic uncertainty to ambiguity and risk, respectively.

Corollary 2 (Smooth Model, Robson1996:biological). Suppose Ψ = {ψ} and µ are fixed,

and consider a genotype with an (infinitely) large subpopulation of individuals. The long-run

growth rate of the genotype from choosing the act f in every period is

V (f) =

∫
Ω

ln

(∫
S

ψ(f(ω, s)) dµ(s|ω)

)
dµ(ω). (4)

The objective function in Corollary 2 underpins a number of recent results in the literature

on evolution of preferences, many of which are summarized in the survey by RS2011:evolutionary.

The objective function in Equation (4) specifies the optimal response to correlated and uncor-

related uncertainty, but does not concern ambiguity per se. However, as laid out in Section

1.2, in many examples and applications of ambiguity, the unknown probability concerns a

common factor that affects all individuals in the population, so the evolutionary mechanism

described in Corollary 2 (and Theorem 1 more generally) may capture one important source

of ambiguity aversion. In particular, the functional form in Equation (4) is a special case of

the issue-preference model studied by Nau2006:uncertainty and EG2009; when restricted

to acts f that depend only on s, it is a special case of the smooth model of KMM2005.

Consider the following example.

Example 1 (Ellsberg). Consider an Ellsberg urn with one black ball and two balls that could

each be either red or yellow. Each individual independently draws one ball from the urn,

which we model using the state space S = {b, r, y} for independent risk. The individual may

be offered the following bets on colors of the ball drawn:

b r y

B 1 0 0

R 0 1 0

BY 1 0 1

RY 0 1 1

In this table, B denotes a bet that pays $1 if the ball drawn is black, BY indicates a bet that

pays $1 if the ball is either black or yellow, and so on. Formally, B is the act defined by
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B(b) = 1, B(r) = 0, and B(y) = 0, and similarly for the other bets. The typical preference

pattern documented by Ellsberg1961 is B � R and BY ≺ RY , in violation of Savage’s

sure-thing principle.

To understand such preferences within the evolutionary model described above, note that

although the draw of the ball is independent across individuals, the composition of the urn

itself may be common for all individuals. In this case, we can model the possible urn com-

positions using the set of environments Ω = {ω1, ω2, ω3}, where ω1 = (b, r, r), ω2 = (b, r, y),

and ω3 = (b, y, y). Even if individuals form subjective probability assessments on the possible

environments, this correlated uncertainty is treated differently than uncorrelated uncertainty.

For ease of illustration, suppose µ assigns equal probability to each urn composition, and

assume for expositional simplicity that ψ(0) = 0 and ψ(1) = 1.19 Since Equation (4) is a

smooth model with a concave transformation function, these evolutionarily optimal prefer-

ences exhibit Ellsberg behavior:

V (B) = ln

[
1

3

]
>

1

3
ln

[
2

3

]
+

1

3
ln

[
1

3

]
+

1

3
ln[0] = V (R),

and

V (BY ) =
1

3
ln

[
1

3

]
+

1

3
ln

[
2

3

]
+

1

3
ln[1] < ln

[
2

3

]
= V (RY ).

In Example 1, the crucial assumption for generating ambiguity aversion is that the com-

position of the urn is common across all individuals. In contrast, if a different urn is composed

for each individual and if there is no correlation in how these urns are constructed, then cor-

relation aversion alone would not produce ambiguity aversion—a different mechanism would

be required to generate Ellsberg behavior. This example is therefore useful for illustrating

both the scope and the limitations of the evolutionary model: Adaptive preferences generate

ambiguity aversion anytime there is uncertainty about the model itself or some other factor

that is common to all individuals in the population, which we contend is the case in the

vast majority of examples and applications of ambiguity. If one is not convinced that the

Ellsberg urn is a perfect fit for this interpretation, the objects in the example can of course

be recast in terms of other examples discussed in the introduction. For instance, the acts

B,R, Y could represent different medical treatments for a condition and the idiosyncratic

states b, r, y could represent the events in which each treatment is successful, with B being

a better understood treatment than R.20

The observations in this section have been largely a recap of existing knowledge about

evolution, correlated risks, and ambiguity. One limitation of these results and connections is

19It should be clear that the example in no way depends on this assumption.
20Specifically, if the treatment B has been well-studied, then its success rate might be known to be 1/3.

If the treatments R and Y are typically administered together, their joint success rate might be known to
be 2/3, yet their individual success rates remain unknown. This is obviously stylized, since the events where
each treatment is successful are typically not disjoint and there may be interactions between treatments.
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that they provide foundations only for the very particular class of preferences represented by

Equation (4). We show throughout the remainder of the paper that the scope of our general

adaptive preferences with phenotypic flexibility from Equation (2) is much larger, yet these

preferences still impose significant structure.

3.2 Rank-Dependent Expected Utility

In this section, we consider another canonical special case of our model. We permit phe-

notypic flexibility, but specialize for now to the case of pure idiosyncratic risk (no common

uncertainty). In this simpler setting, we show that our model nests rank-dependent utility as

a special case. In other words, for some sets of fitness functions Ψ, the evolutionarily optimal

behavior is equivalent to maximizing expected utility with distorted probability weights.

Since we are restricting attention in this section to the special case of purely idiosyncratic

risk where Ω = {ω}, we can drop ω from the acts and objective function altogether and write

Equation (2) more simply as

V (f) = sup
ψ∈Ψ

ln

(∫
S

ψ(f(s)) dµ(s)

)
= ln

(
sup
ψ∈Ψ

∫
S

ψ(f(s)) dµ(s)

)
. (5)

Note that in this case the logarithm can also be dropped by taking a monotone transforma-

tion, but we will retain it for consistency of expressing growth rates in log terms and for ease

of comparing the formulas in this section to later results.

Although the connection is nontrivial, the following result shows that rank-dependent

utility with a pessimistic probability distortion function can be expressed as a special case

of Equation (5).21

Proposition 1 (Rank-Dependent Utility Duality). Suppose Ω = {ω} and Z ⊂ R. Fix

any bounded nondecreasing function u : Z → R and any function ϕ : [0, 1] → [0, 1] that

is continuous, nondecreasing, concave, and onto. Then there exists a set Ψ of bounded,

nondecreasing functions ψ : Z → R that is convex, pointwise bounded above,22 and closed in

the topology of pointwise convergence such that, for any f and µ,

sup
ψ∈Ψ

∫
S

ψ(f(s)) dµ(s) =

∫
Z

u(z) d(ϕ ◦ Ff,µ)(z),

21Proposition 1 can be found (with minor differences in assumptions) in CK2011 or in the supplementary
appendix of Sarver2018:mixture-averse. The key steps to this result also appear in several earlier papers,
including Machina1984 and Wakker1994.

22As discussed in Section 2, exact dual characterizations of some special cases of our model, such as this
one, require some ψ ∈ Ψ to take negative values for some outcomes. Here, each ψ is a bounded function,
but the set Ψ need not be pointwise bounded below and we may have infψ∈Ψ ψ(z) = −∞ for some z ∈ Z.
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where

Ff,µ(z) =

∫
S

1[f(s) ≤ z] dµ(s)

is the cumulative distribution function of f given µ. Moreover, if Z is an interval and the

function u is concave, then there exists a set Ψ satisfying the conditions above such that each

ψ ∈ Ψ is a concave function.

This proposition implies that rank-dependent utility preferences with concave ϕ are a

subset of the class of adaptive preferences. Formally, for Ψ as in Proposition 1, the value

function in Equation (5) can be written as a monotone transformation of the RDU functional:

V (f) = ln

(∫
Z

u(z) d(ϕ ◦ Ff,µ)(z)

)
.

Since µ only captures idiosyncratic uncertainty in this section, and since we identify id-

iosyncratic uncertainty with pure risk, Ff,µ amounts to the cumulative distribution of an

unambiguous risky prospect. The rank-dependent utility representation with concave ϕ thus

suggests that individuals violate expected utility when choosing over risk by overweighting

the probability assigned to worse outcomes. In Section 5, where we consider phenotypic flex-

ibility in the face of both idiosyncratic and common uncertainty, we derive a representation

that merges ambiguity-averse preferences with rank-dependent utility over risk.

4 Information and Updating

It is well-known that for preferences that violate Savage’s Sure Thing Principle—including

both ambiguity-averse preferences and probabilistically sophisticated non-expected-utility

preferences—there is a tension between consequentialism and dynamic consistency. Ex-

cept in very special circumstances, models of ambiguity aversion must violate at least one

of these properties (ghirardato2002revisiting, HK2007). As such, there is disagree-

ment in the literature as to how ambiguity preferences should respond to new information:

HK2007; HKl2009 proposed maintaining dynamic consistency but dropping consequen-

tialism; Siniscalchi2009:two; Siniscalchi2011 instead suggested keeping consequentialism

while abandoning dynamic consistency; ES2003 showed that both properties can be main-

tained for the multiple priors model if one imposes a strong joint restriction (“rectangular-

ity”) on the class of information structures and beliefs; AW2009:ambiguity took the rather

extreme position that the conflict between consequentialism and dynamic consistency is so

problematic that Ellsberg-type behavior should be recognized as irrational. In an earlier lit-

erature on non-expected-utility models of choice under risk, the incompatibility of these two

properties was discussed by hammond1988consequentialist; hammond1989consistent

and machina1989:dynamic.
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choose ψ and f

signal σ (ω, s) realizes

Figure 1: Timeline: after-signal adaptation

The tension between consequentialism and dynamic consistency in models of ambiguity

aversion or non-expected utility for risk, and the subsequent disagreement over which prop-

erty to give priority, is an impediment to applying these models in dynamic contexts such

as macroeconomics and finance where information plays a central role. In this section, we

analyze the general evolutionary model with signals in order to study updating of preferences

in response to information. We will show, in particular, that evolutionarily optimal behav-

ior will be dynamically consistent, even at the expense of consequentialism. Importantly,

the evolutionary approach will provide a novel rationale for violations of consequentialism,

showing that such violations should be neither surprising nor concerning. We will then ex-

amine these results more concretely using the two special cases introduced in the previous

section: We consider updating of the smooth model of ambiguity aversion in Section 4.1 and

updating of rank-dependent expected utility for risk in Section 4.2. Additional special cases

will be considered in Section 5.

Signals arrive before the choice of an act. To analyze dynamic choice in general, and

dynamic consistency in particular, it is necessary to compare ex post behavior after the

arrival of information to the ex ante plan that was formed prior to the realization of the

signal. In other words, we need to first analyze the plan that an individual would form if

she could commit ex ante to her signal-contingent choices, and then compare this plan to

her actual ex post choices to see if the individual deviates from her intended actions. We

therefore begin our analysis by describing the evolutionarily optimal ex ante plans of action,

after which we proceed to study the evolutionarily optimal ex post updating of preferences.

In this section, we focus on rapid adaptation, where the phenotype can be quickly ad-

justed following the realization of the signal σ. The timing of information and the choice

of phenotype and act are illustrated in Figure 1. In Section S2 of the Online Appendix, we

consider the alternative case where adaptation is a slower process and the phenotype must

be selected prior to learning the realization of the signal.

Since the signal resolves prior to the choice of act and phenotype, the individual can

select both of these conditional on the signal.

Definition 2. An action plan is a function f : Σ → F from the space of signals to the set

of acts. An adaptation plan is a function ψ : Σ→ Ψ from the space of signals to the set of

fitness functions.
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An action plan f specifies a path through a decision tree, where the act f = fσ is

selected following the signal σ ∈ Σ. Likewise, an adaptation plan ψ selects the phenotype

ψ = ψσ after the signal σ. Let FΣ and ΨΣ denote the set of all action and adaptation plans,

respectively. From the ex ante perspective, before the realization of a signal, the individual

forms a joint plan (f ,ψ) over acts and phenotypes, which achieves a fitness of ψσ(fσ(ω, s))

after the realization of (ω, s, σ).

Recall that, conditional on ω, the signal σ is independently distributed for each individual

in the population. Therefore, from the ex ante perspective, the signal simply adds another

dimension to the state space S of idiosyncratic uncertainty. Viewing a plan f as an act from

the enlarged state space with common component Ω and idiosyncratic component S × Σ,

the following characterization of evolutionarily optimal plans follows from identical logic to

our previous results. We therefore omit the proof.

Theorem 2. Suppose Ψ and µ are fixed. If the adaptation plan ψ ∈ ΨΣ is chosen optimally,

then the long-run growth rate of the genotype from choosing the action plan f ∈ FΣ in every

period is

V (f) = sup
ψ∈ΨΣ

∫
Ω

ln

(∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω). (6)

When choosing between plans, the evolutionarily optimal ex ante preferences are therefore

represented by Equation (6): f % f ′ ⇐⇒ V (f) ≥ V (f ′).23 Following the same terminology

introduced in the benchmark setting, we refer to the preferences over action plans represented

by this value function as adaptive preferences. In the absence of adaptation (i.e., Ψ = {ψ}), a

similar representation of ex ante preferences was considered by noldeke2005information.

Denote the ex post preferences after observing the signal σ by %σ,f . Note that we allow

for the possibility that ex post preferences depend on the ex ante action plan. In the case

where these preferences do not depend on the ex ante plan, we say that preferences are

consequentialist.

Definition 3. Preferences satisfy consequentialism if the ex post ranking of any acts f and

g is independent of the ex ante action plan: f %σ,f g ⇐⇒ f %σ,f ′ g.

A second important property of preferences is dynamic consistency. In what follows, we

write gσf to denote the action plan that selects the act g following the signal σ and selects

the act fσ′ following each signal σ′ 6= σ.

Definition 4. Preferences satisfy dynamic consistency if ex ante plans are not reversed ex

post: f � gσf =⇒ fσ �σ,f g and, in addition, f % gσf =⇒ fσ %σ,f g whenever µ(σ) > 0.

23As we discussed previously in Section 3, the genotype may obtain an even greater long-run growth rate
than is possible under either plan f or f ′ by programming the individuals in its subpopulation to engage in
idiosyncratic randomization between the two plans. We return to this possibility in the Online Appendix.
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Much of the literature on the updating of ambiguity preferences has focused on parti-

tional information structures. Note that partitional learning fits easily within our general

framework, and in this special case, our definition of dynamic consistency is similar to

the definitions proposed previously in the literature, for example, by machina1992more,

EL1993:dynamically, or HK2007.24

As noted above, ambiguity-averse preferences or non-expected-utility preferences for risk

cannot in general satisfy both consequentialism and dynamic consistency, as we will illustrate

in more detail in Section 4.1. Fortunately, the evolutionary approach gives clear guidance

about which property to favor: The evolutionarily optimal ex ante preferences are precisely

those that maximize the long-run growth rate of the genotype. The evolutionarily optimal ex

post preferences have the same objective. Thus, dynamic consistency is necessarily satisfied,

as the following results demonstrate.

Corollary 3. Suppose Ψ and µ are fixed, and suppose the genotype forms an action plan

f ∈ FΣ ex ante, which it follows after every signal σ′ 6= σ, but it deviates from this plan after

signal σ by instead selecting the act g. Then, its long-run growth rate is

V (g|σ, f) = sup
ψ∈ΨΣ

∫
Ω

ln

(
µ(σ|ω)

∫
S

ψσ(g(ω, s)) dµ(s|ω, σ)

+

∫
S×Σ\{σ}

ψσ′(fσ′(ω, s)) dµ(s, σ′|ω)

)
dµ(ω). (7)

Corollary 3 follows directly from Theorem 2. The growth rate formula in Equation (7)

simply evaluates g (following σ) in conjunction with the ex ante plan f (following other

signals) according to Equation (6), that is, V (g|σ, f) = V (gσf). From this it follows that

preferences are dynamically consistent.

Corollary 4. Suppose that ex ante preferences are represented by Equation (6) and ex post

preferences are represented by Equation (7), so f % f ′ ⇐⇒ V (f) ≥ V (f ′) and f %σ,f g ⇐⇒
V (f |σ, f) ≥ V (g|σ, f). Then, preferences satisfy dynamic consistency.

Given the tension between dynamic consistency and consequentialism, one implication of

Corollary 4 is that preferences may violate consequentialism. We provide a simple example

of such a violation in Section 4.1. Since consequentialism is generally considered to be an

appealing property, such violations may seem counterintuitive. However, the evolutionary

approach not only yields the prediction that dynamic consistency will be maintained at the

possible expense of consequentialism, it also provides some perspective on why consequen-

tialism might be violated: Consequentialism states that preferences between acts f and g

24Partitional learning corresponds to the special case where Σ is a partition of S, so each signal σ is a
subset of S and, conditional on the signal σ, the measure µ assigns probability zero to states outside of the
event σ. In this case, an action plan can be reduced to an act by defining f(s) = fσ(s) for s ∈ σ ∈ Σ. Our
definition of dynamic consistency then reads as f � gσf =⇒ f �σ,f g and f % gσf =⇒ f %σ,f g.
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following a signal σ do not depend on what act would have been consumed following other

signals σ′. This property could therefore be interpreted as preferences not depending on

“what might have been.” In our model, the genotype consists of a large subpopulation of

individuals. Even if one individual receives the signal σ, other members of this subpopula-

tion are simultaneously receiving different signals. From the individual perspective, choice

after updating can be thought of as the best response to other individuals who are all play-

ing the Pareto optimal equilibrium of the game that has long-run population growth as the

payoff. In other words, individuals may violate consequentialism because they care about

the outcomes others of their genotype are experiencing; in particular, they care about the

correlation between their own fitness and the fitness of others with the same genotype.

HK2007; HKl2009 similarly studied dynamically consistent (and hence non-consequentialist)

conditional preferences. In particular, they showed that for a variety of models of ambiguity

aversion, such conditional preferences between acts f and g can be represented using updated

beliefs within an otherwise unchanged value function. Crucially, since conditional preferences

may violate consequentialism, their updating rule for beliefs is typically not Bayesian and

depends nontrivially on the original choice set and the ex ante plan f . Therefore, their ap-

proach necessarily conflates beliefs and tastes, since the updated beliefs depend not just on

the information structure, but on the decision problem itself. In contrast, updated beliefs

in Equation (7) are derived using standard Bayesian updating and hence are independent

of the decision problem. The violation of consequentialism in this expression comes instead

from an externality—in the sense that each individual is programmed to care about the

correlation with other individuals—which requires the ex ante plan to be a part of the ex

post value function. In the context of our evolutionary model, this strikes us as the most

natural representation of conditional preferences, as it brings out the underlying reason for

the dependence of updated preferences on the plan.

In the next two subsections, we explore the implications of these results using the two

special cases introduced in Section 3. Later, in Section 5, we consider a broader class of

models that are special cases of adaptive preferences and that nest these two examples.

4.1 Updating the Smooth Model

In the special case of a single fitness function, Ψ = {ψ}, the ex ante and ex post formulas

for growth rates given above specialize as follows. The long-run growth rate of the genotype

from choosing the action plan f ∈ FΣ is

V (f) =

∫
Ω

ln

(∫
S×Σ

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω).
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The long-run growth rate from deviating from the plan f by instead selecting g following the

signal σ is

V (g|σ, f) =

∫
Ω

ln

(
µ(σ|ω)

∫
S

ψ(g(ω, s)) dµ(s|ω, σ)+

∫
S×Σ\{σ}

ψ(fσ′(ω, s)) dµ(s, σ′|ω)

)
dµ(ω).

In particular, since evolutionarily optimal ex ante preferences are represented by V (f) and

optimal ex post preferences are represented by V (g|σ, f), dynamic consistency is satisfied.

We now return to the special case of the smooth model in Example 1 (where acts f depend

only on s) to illustrate the tension between consequentialism and dynamic consistency.

Example 2 (Ellsberg with Signals). As in Example 1, let Ω = {ω1, ω2, ω3} denote the

possible urn compositions, so ω1 = (b, r, r), ω2 = (b, r, y), and ω3 = (b, y, y). Recall that

when µ assigns equal probability to each urn composition, ex ante preferences satisfy the

typical Ellsberg pattern:

B � R and BY ≺ RY.

Now, suppose that individuals each receive a private signal that tells them whether the ball

drawn for them is yellow (y) or not yellow (¬y).25 As is standard in models of partitional

learning, preferences over signal-contingent action plans for this information structure are

entirely pinned down by preferences over acts. For example, since B and R both pay zero

in state s = y, the action plan R¬yB that selects act R following the signal ¬y and selects

B following the signal y gives the same outcome in every state/signal combination (that

occurs with positive probability) as the act R. Similarly, the action plan R¬yY gives the

same outcome in every non-null state/signal combination as the act RY , and so on. Thus,

the Ellsberg preferences over acts described above imply the following preferences over action

plans:

B¬yB � R¬yB and B¬yY ≺ R¬yY.

Therefore, dynamic consistency requires that

B �¬y,B¬yB R and B ≺¬y,R¬yY R.

However, this pattern is incompatible with consequentialism, which would require that the

preferences between B and R following the signal ¬y be independent of ex ante action plan.

Note that the tension illustrated in this example depends neither on a particular choice

of updating rule nor on the specific model of ambiguity aversion.26 This example demon-

strates that Ellsberg behavior together with this specific information structure cannot satisfy

25Formally, for each ω ∈ Ω, we have µ(y|s, ω) = 1 if s = y and µ(¬y|s, ω) = 1 if s = b, r.
26The only assumptions needed for this example are that preferences exhibit Ellsberg behavior and that

B � R implies B¬yB � R¬yB and BY ≺ RY implies B¬yY ≺ R¬yY .
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both dynamic consistency and consequentialism.27 Our model and results imply that indi-

viduals with the ex ante preferences B � R and BY ≺ RY will exhibit the conditional

ex post preferences listed above. Thus, individuals will be dynamically consistent but will

violate consequentialism. The reason that consequentialism is violated is because evolution-

arily optimal preferences include an “externality” that incorporates the growth rate of other

individuals in the population who are simultaneously receiving different signals.

For example, the conditional preference between B and R following signal ¬y and the ex

ante action plan R¬yY is based on the following comparison:

V (R|¬y,R¬yY ) =
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω)︸ ︷︷ ︸

fraction
getting

signal ¬y

µ(r|ω,¬y)︸ ︷︷ ︸
average fitness
from R after

signal ¬y

+ µ(y|ω)︸ ︷︷ ︸
fraction
getting
signal y

1︸︷︷︸
fitness
from Y
after y

)

>
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω) µ(b|ω,¬y) + µ(y|ω) 1

)
= V (B|¬y,R¬yY ).

In particular, notice the complementarity between r and y: The probability of seeing

signal ¬y and then state r is higher in the environments ω in which the probability of signal

y (and hence state y) is lower, as the first two columns of the following table illustrate:

µ(¬y|ω)µ(r|ω,¬y) µ(y|ω) µ(¬y|ω)µ(b|ω,¬y)

ω1 = (b, r, r) 1 · 2
3

= 2
3

0 1 · 1
3

= 1
3

ω2 = (b, r, y) 2
3
· 1

2
= 1

3
1
3

2
3
· 1

2
= 1

3

ω3 = (b, y, y) 1
3
· 0 = 0 2

3
1
3
· 1 = 1

3

Choosing R following signal ¬y thus achieves higher expected individual growth in precisely

those instances when there are fewer individuals who contribute to aggregate growth by

receiving signal y and then choosing Y . In contrast, choosing B does not hedge against

this aggregate growth-rate risk, because the probability of state b is independent of the

environment, as shown in the last column of the table. When the ex ante plan is instead

B¬yB, the hedging motive for the choice of R following ¬y disappears, as now the growth

rate following signal y is zero. In this case, we have the opposite conditional preference:

V (B|¬y,B¬yB) =
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω)µ(b|ω,¬y)

)
>
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω)µ(r|ω,¬y)

)
= V (R|¬y,B¬yB).

27A similar example can be found in HK2007. Note, in particular, that Ellsberg preferences with this
information structure are therefore incompatible with the ES2003 model of multiple priors expected utility
with rectangular priors.
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4.2 Updating Rank-Dependent Utility

The tension between dynamic consistency and consequentialism is not exclusive to envi-

ronments with ambiguity, but can also arise when updating models of non-expected utility.

machina1989:dynamic prominently argued that those models should be updated in a way

that is dynamically consistent, even at the cost of consequentialism. The adaptive model

accommodates violations of expected utility, and since updating in the adaptive model is

dynamically consistent, our results support this general position for the models it nests as

special cases.

To focus on risk preferences, we now consider again the special case with non-degenerate

after-signal adaptation, ψ ∈ ΨΣ, but without common uncertainty, Ω = {ω}. In this case,

the expectation over Ω can be dropped from the ex ante value function in Equation (6),

which becomes

V (f) = sup
ψ∈ΨΣ

ln

(∫
S×Σ

ψσ(fσ(s)) dµ(s, σ)

)
= ln

[∫
Σ

sup
ψ∈Ψ

(∫
S

ψ(fσ(s)) dµ(s|σ)

)
dµ(σ)

]
. (8)

Recall that Proposition 1 established that our adaptive preferences nest rank-dependent

utility as a special case. Applying that result to the act fσ and the measure µ(·|σ) in

Equation (8) immediately delivers the following corollary.

Corollary 5 (Updating Rank-Dependent Utility). Suppose Ω = {ω} and Z ⊂ R. Fix µ,

and fix any bounded nondecreasing function u : Z → R and any function ϕ : [0, 1] → [0, 1]

that is continuous, nondecreasing, concave, and onto. Then there exists a set Ψ of functions

ψ : Z → R such that the ex ante adaptive preferences over action plans f are represented by

V̂ (f) =

∫
Σ

∫
Z

u(z) d(ϕ ◦ Ffσ ,µ(·|σ))(z) dµ(σ)

and ex post adaptive preferences are represented by

V̂ (g|σ, f) =

∫
Z

u(z) d(ϕ ◦ Fg,µ(·|σ))(z),

where

Fg,µ(·|σ)(z) =

∫
S

1[g(s) ≤ z] dµ(s|σ)

is the cumulative distribution function of g given µ and σ, and V (f) = ln V̂ (f) is the long-run

growth rate defined in Equation (8).

We denote the ex post value function in the corollary by V̂ (g|σ, f) rather than V (g|σ, f)

to indicate that it not only differs from the value function in Equation (7) because it is

expressed as a rank-dependent utility, but also because we drop the logarithm and the
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conditional fitness associated with other signals. This is possible since it is not necessary to

consider what happens after signals σ′ 6= σ in the case without common uncertainty.

In contrast to the examples considered in machina1989:dynamic, ex post preferences

in Corollary 5 are actually independent of the plan f , that is, consequentialism is not violated

by this dynamically consistent version of the rank-dependent utility model with information.

The evolutionary intuition behind this result is that σ realizes prior to adaptation, and in our

model, any idiosyncratic risk that resolves before the selection of the phenotype is evaluated

in accordance with expected utility. This is reflected by the ex ante value function, where

only the cdf Ffσ ,µ(·|σ) over outcomes given σ is distorted by ϕ, rather than the cdf that also

incorporates uncertainty about the realization of σ itself.

In Section S2 of the Online Appendix, we show that if adaptation is slower, so that ψ

has to be chosen before the realization of σ, then the distortion function ϕ applies to all

uncertainty, including the signal realization. In that case, the rank of an outcome depends

on the entire plan f , and by dynamic consistency the ex post value of act g must also depend

on f , violating consequentialism. This is the approach to modeling rank-dependent utility

with information suggested by machina1989:dynamic.

5 Duality and Other Equivalent Representations

Other well-known models of choice under uncertainty typically have behavioral rather than

evolutionary foundations. We already observed in Section 3 that our model of adaptive

preferences nests as special cases rank-dependent utility in the context of risk, as well as

a version of the smooth model in the context of ambiguity. In Section 4, we then brought

our results on the updating of adaptive preferences to bear on those models. Indirectly, our

approach thus provides evolutionary foundations for the behavior those models represent,

and determines how they should take into account information. In this section, we use

duality results to recast our representation in a form that permits direct comparisons with

other behaviorally founded utility representations. In order to streamline the exposition,

we return to the benchmark setting of Section 3 with a trivial signal structure Σ = {σ},
which allows signals to be dropped from the model. Appendix A contains the corresponding

representations and theorems for the general case with signals.

One impediment to the analysis of special cases of our general representation is that it

has a logarithm between the two layers of integration. For example, our results for rank-

dependent utility in previous sections assumed that there was no common uncertainty, and

it is not immediately obvious how those results might be extended to the general case of

both common and idiosyncratic uncertainty. Therefore, we begin our analysis in this section

with two theorems that reformulate our representation in a way that facilitates the analysis

of this and other special cases. These theorems follow as special cases of their counterparts
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with general signal structures in Appendix A. We then proceed to study several special cases

in detail in Sections 5.1 and 5.2.

Our results will involve the relative entropy (or Kullback–Leibler divergence) of one

probability measure with respect to another, defined as follows:

R(q ‖ p) =


∫

ln

(
dq

dp

)
dq if q � p,

∞ otherwise.

The notation q � p (or equivalently p � q) indicates that q is absolutely continuous with

respect to p, that is, for any measurable set A, p(A) = 0 implies q(A) = 0. The term dq
dp

denotes the Radon–Nikodym derivative (density) of q with respect to p, which exists if and

only if q is absolutely continuous with respect to p.28 It is a standard result that R(q ‖ p) ≥ 0,

with equality if and only if q = p.

In what follows, for any probability measure q ∈ 4(Ω), let

M(q) = {p ∈ 4(Ω) : p� q and R(q ‖ p) <∞}.

In particular, since R(q ‖ p) <∞ requires that q � p, if p ∈ M(q) then the measures p and

q are mutually absolutely continuous, that is, both p� q and q � p.29 Also, recall that we

take ln(x) = −∞ for all x ≤ 0, and we use µΩ to denote the marginal of µ on Ω. Finally, in

order to accommodate certain special cases, it will be technically convenient to permit the

fitness functions ψ to take the value −∞. That is, throughout this section we assume that

Ψ is a nonempty set of functions ψ : Z → [−∞,∞).

Theorem 3. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞), and fix µ. For

any act f ∈ F , the function V defined by Equation (2) can be equivalently expressed as

V (f) = sup
ψ∈Ψ

inf
p∈M(µΩ)

[
ln

(∫
Ω

∫
S

ψ(f(ω, s)) dµ(s|ω) dp(ω)

)
+R(µΩ ‖ p)

]
. (9)

Despite the resemblance, the functional in Equation (9) with a single phenotype Ψ = {ψ}
is not a variational representation (MMR2006), although we will see in Section 5.2 that

special cases of variational preferences can be accommodated by our general model. The

distinction is the logarithm around the integral in the first term. In fact, taking the expo-

nential transformation of this representation establishes it as a special case of the confidence

preferences studied by CF2009, where confidence in a prior p is measured by exp(R(µΩ ‖ p)).
Equation (9) with a single phenotype is also a special case of the general representation for

uncertainty-averse preferences proposed by CMMM2011.

28Formally, dq
dp is the integrable function that satisfies q(A) =

∫
A
dq
dp dp for any measurable set A.

29Note that it is possible to have R(q ‖ p) =∞ even if q � p, so M(q) may be a strict subset of the set of
all measures that are mutually absolutely continuous with respect to q.
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Turning to the specifics of our functional form, relative entropy has appeared in a number

of representations for ambiguity-averse preferences, perhaps most notably in the multiplier

preferences introduced by HS2001 and studied axiomatically by Strzalecki2011,30 and

also within a version of confidence preferences in chateauneuf2012confidence. However,

in these models, the entropy term used is R(p ‖µΩ) rather than R(µΩ ‖ p). While relative

entropy is often interpreted as a “distance” between the two distributions involved, it is not

a distance function in the metric sense, because it is not symmetric. To interpret the subtle

difference in the context of the representation in Equation (9), suppose the decision maker

takes as the reference measure µΩ the empirical frequencies in a large sample of independently

realized states ω ∈ Ω, but worries that the data is actually generated by the measure p on Ω.

Of course, the larger the sample, the closer to zero the probability that it would be generated

by p 6= µΩ. The theory of large deviations establishes that the rate at which this probability

vanishes increases in R(µΩ ‖ p).31 The representation suggests, therefore, that the decision

maker is less confident in a measure p the faster it becomes implausible with growing sample

size.

The limitation of Equation (9) is that we would like to reverse the order of the supre-

mum and infimum in order to further simplify it and connect with existing functional forms.

Fortunately, this is possible in some cases. Our next result builds on Theorem 3 together

with a version of the von Neumann–Sion minimax theorem (vonNeumann1928:minimax,

Sion1958:minimax) that is due to tuy2004minimax. Roughly speaking, the minimax

theorem permits the order of the supremum and infimum to be reversed, provided the ob-

jective function satisfies suitable continuity and quasiconcavity/quasiconvexity properties in

the respective variables. Most of these necessary conditions for the minimax theorem fol-

low directly from the functional form of our representation in Equation (9) together with

our previous assumptions that the set Ψ is convex and pointwise bounded above, that is,

supψ∈Ψ ψ(z) <∞ for every z ∈ Z. The only assumption we add in the next theorem is that

Ψ is closed in the topology of pointwise convergence on the extended reals.

Theorem 4. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is convex,

pointwise bounded above, and closed in the topology of pointwise convergence (on the extended

reals), and fix µ. For any act f ∈ F , the function V defined by Equation (2) can be

equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(
sup
ψ∈Ψ

∫
Ω

∫
S

ψ(f(ω, s)) dµ(s|ω) dp(ω)

)
+R(µΩ ‖ p)

]
. (10)

30HS2001 interpret their representation in terms of a concern about robustness to model misspecification.
Our approach can provide a different perspective on this type of robustness in contexts where uncertainty
about ω can be interpreted as model uncertainty.

31If µΩ is not rational, it cannot be an empirical frequency in any finite sample, but one can instead
consider a sequence of frequencies that converge to µΩ as the sample size increases. See, for example, the
treatment of Sanov’s theorem in CT2012:information or RS2015:large-deviations.
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Using this result, we show in the following subsections that adaptive preferences are quite

general by discussing a non-exclusive list of special cases they nest. The generality of our

model, which reflects that we did not impose any restrictions on the set Ψ of available fitness

functions, has two main benefits. First, our arguments for dynamically consistent updating

are broadly applicable. Second, adaptive preferences can be used to compare different models

of choice under uncertainty via the corresponding constraints on Ψ. Conversely, imposing

restrictions on Ψ turns our evolutionary approach into a tool for model selection. Since

different models that can be nested as special cases imply different connections between risk

and ambiguity attitudes, restrictions on Ψ also generate predictions about this connection.

Suppose, for instance, that all possible genotypes perform equally well when facing de-

terministic outcomes (no uncertainty). In terms of the model of adaptive preferences, this

means that the upper envelope of Ψ is the same for all those genotypes. For that case, one

can show that individual A with adaptive preferences for ΨA is more risk averse than an

individual B with ΨB, if and only if individual A is also more uncertainty averse than B.32

In order to describe the special cases of the next two subsections, it will be convenient to

define a measure µ ⊗ p on Ω × S with marginal p on Ω and conditional distribution µ(·|ω)

on S. That is, for any event E in the product σ-algebra BΩ ⊗ BS,

µ⊗ p(E) =

∫
Ω

∫
S

1[(ω, s) ∈ E] dµ(s|ω) dp(ω).

With this definition in hand, note that Equation (10) can be written as

V (f) = inf
p∈M(µΩ)

[
ln

(
sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ p)(ω, s)
)

+R(µΩ ‖ p)
]
. (11)

5.1 Special Cases with Confidence Preferences

Note that the argument of the logarithm in the representation of Equation (11) affects the

attitude towards uncertainty from S and Ω alike. We now apply another round of duality

to rewrite this term in more familiar forms. For now, we leave untouched the outer part of

the representation, which determines additional aversion to uncertainty from Ω via entropic

confidence preferences.

32We have taken the set Ψ as given throughout. In order to compare individuals with adaptive preferences
who have different sets of phenotypes, it is important to understand the determinants of Ψ. For instance,
suppose Ψ itself is subject to evolutionary selection. Heuristically, if the environment were such that evolu-
tionary pressure gave a severe disadvantage to genotypes who perform worse for deterministic outcomes, then
the restriction that surviving genotypes should all have the same upper envelope of Ψ would be plausible.
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5.1.1 Rank-Dependent Utility

Proposition 1 linked our adaptive model to RDU preferences in the special case of Ω = {ω},
in which case the state space was effectively S. The following corollary follows immediately

from that same duality result by replacing S with Ω×S and replacing the measure µ ∈ 4(S)

with µ⊗ p ∈ 4(Ω× S). Note that this application of Proposition 1 is only possible because

we first apply Theorem 4 to remove the logarithm from between the two layers of integration.

Corollary 6. Suppose Z ⊂ R. Fix µ, and fix any bounded nondecreasing function u : Z → R
and any function ϕ : [0, 1] → [0, 1] that is continuous, nondecreasing, concave, and onto.

Then there exists a set Ψ of functions ψ : Z → R such that, for any act f ∈ F and any

p ∈ 4(Ω),

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ p)(ω, s) =

∫
Z

u(z) d(ϕ ◦ Ff,µ⊗p)(z),

where

Ff,µ⊗p(z) =

∫
Ω×S

1[f(ω, s) ≤ z] d(µ⊗ p)(ω, s)

is the cumulative distribution function of f given µ ⊗ p. Therefore, for that set Ψ, the

function V defined by Equation (2) can be equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(∫
Z

u(z) d(ϕ ◦ Ff,µ⊗p)(z)

)
+R(µΩ ‖ p)

]
.

The RDU representation inside the logarithm generates aversion to any kind of uncer-

tainty, while ambiguity aversion (roughly speaking, the additional aversion to uncertainty

from Ω) is captured by the outer part of the representation—the confidence preferences that

the RDU representation is embedded in. The outer part is fixed across genotypes, even if

those differ in terms of Ψ, and hence in terms of their attitude towards risk.33 It is easy to

see that the upper envelope of Ψ is u. Thus, if the upper envelope of Ψ is fixed, the only free

parameter in the representation is the distortion function ϕ, and it follows easily that more

risk aversion (aversion to uncertainty from S) implies more uncertainty aversion (aversion

to any type of uncertainty, including both risk and ambiguity).

33There is some empirical evidence that risk aversion and additional aversion to ambiguity indeed have
little correlation in the population (CDOSC2019:econographics).
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5.1.2 Divergence Preferences

Definition 5. Fix a continuous convex function φ : R+ → R+ such that φ(1) = 0. The

φ–divergence of p with respect to q is given by

Dφ(q ‖ p) =


∫
φ

(
dq

dp

)
dp if q � p,

∞ otherwise.

Kullback–Leibler relative entropy corresponds to the special case of φ–divergence where

φ(t) = t ln(t) − t + 1. MMR2006 observed that variational preferences with a divergence

cost function are probabilistically sophisticated. ben1987penalty; BT2007 provided an

explicit dual characterization of these variational divergence preferences as the supremum of

a set of expected utilities under the reference measure, where the supremum is taken over

a set of possible Bernoulli utility indices. The following proposition extends their result to

permit a nondecreasing transformation k of the divergence term.

Proposition 2 (Divergence Duality). Fix any φ–divergence Dφ(· ‖ ·) and any function u :

Z → R. Also, fix any nondecreasing, convex, and lower semicontinuous function k : R →
(−∞,∞] such that k(0) = 0 and k is finite on some interval (−ε, ε). Then there exists a set

Ψ satisfying the assumptions of Theorem 4 such that, for any f ∈ F and any r ∈ 4(Ω×S),34

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) dr(ω, s) = inf
q∈4(Ω×S)

[ ∫
Ω×S

u(f(ω, s)) dq(ω, s) + k(Dφ(q ‖ r))
]
.

The following corollaries apply Proposition 2 to our representation for adaptive prefer-

ences from Theorem 4 by taking r = µ⊗ p. The first corollary considers the special case of

k(x) = θx for some scalar θ > 0.

Corollary 7. Fix any φ–divergence Dφ(· ‖ ·), any scalar θ > 0, and any function u : Z → R.

Then there exists a set Ψ of functions ψ : Z → [−∞,∞) such that, for any f ∈ F , the

function V defined by Equation (2) can be equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(
inf

q∈4(Ω×S)

[ ∫
Ω×S

u(f(ω, s)) dq(ω, s) + θDφ(q ‖µ⊗ p)
])

+R(µΩ ‖ p)
]
.

This value function embeds a general divergence representation inside confidence prefer-

ences. To see how it captures ambiguity aversion, note that the measure q ultimately used

to evaluate an act may be more pessimistic than µ⊗ p on Ω×S, which in turn may be more

pessimistic than µ only on Ω. Hence, compared to µ, there is more “opportunity” for q to

be pessimistic about Ω than about S.

34We adopt the convention that k(∞) =∞. Thus, for any function k as in the statement of the proposition,
if Dφ(q ‖ r) =∞ then k(Dφ(q ‖ r)) =∞.
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The next corollary considers the special case of Proposition 2 where we fix a scalar κ > 0

and take k(x) = 0 if x ≤ κ, and k(x) = +∞ if x > κ.

Corollary 8. Fix any φ–divergence Dφ(· ‖ ·) and any function u : Z → R. Fix a scalar

κ > 0, and for any r ∈ 4(Ω× S) define

D(r, κ) = {q ∈ 4(Ω× S) : Dφ(q ‖ r) ≤ κ}.

Then there exists a set Ψ of functions ψ : Z → [−∞,∞) such that, for any f ∈ F , the

function V defined by Equation (2) can be equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(
inf

q∈D(µ⊗p,κ)

∫
Ω×S

u(f(ω, s)) dq(ω, s)

)
+R(µΩ ‖ p)

]
.

In this value function, the multiple prior representation (GS1989) inside the logarithm

generates aversion to any kind of uncertainty, while ambiguity aversion is again captured by

the confidence preferences that this representation is embedded within. As in the represen-

tation of Corollary 6, in both Corollaries 7 and 8 the upper envelope of Ψ is u, and hence

holding fixed u, individuals with any of these three types of preferences who can be ranked in

terms of risk aversion will be ranked the same way in terms of overall uncertainty aversion.

5.2 Special Cases with Variational Preferences

In the previous subsection we provided special cases of the representation in Equation (10)

that modify the argument of the logarithm, but kept the representation of confidence pref-

erences surrounding it untouched. We now show how to drop the logarithm from the value

function by transforming the set Ψ, so that ambiguity aversion is captured by a variational

representation with entropy costs.

Proposition 3. Fix any function u : Z → [−∞,∞). For each γ ≥ 0, define uγ : Z →
[−∞,∞) as follows:

uγ(z) =

{
γu(z)− γ ln(γ) + γ if γ > 0

0 if γ = 0.

Then, for any f ∈ F and any q ∈ 4(Ω× S),

max
γ≥0

∫
Ω×S

uγ(f(ω, s)) dq(ω, s) = exp

(∫
Ω×S

u(f(ω, s)) dq(ω, s)

)
.

The following corollary applies Proposition 3 to our representation for adaptive prefer-

ences from Theorem 4 by letting q = µ⊗ p and taking Ψ to be the closed convex hull of the

set of functions {uγ : γ ≥ 0}.
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Corollary 9. Fix µ, and fix any function u : Z → R. Let Ψ be the closed convex hull

of {uγ : γ ≥ 0}. Then, for any f ∈ F , the function V defined by Equation (2) can be

equivalently expressed as

V (f) = inf
p∈M(µΩ)

[ ∫
Ω×S

u(f(ω, s)) d(µ⊗ p)(ω, s) +R(µΩ ‖ p)
]
.

The value function in Corollary 9 is a special case of the representation for variational

preferences developed by MMR2006. Note that Proposition 3 can also be used to drop the

logarithm in the other special cases considered in the previous subsections, which allows us

to nest RDU or divergence preferences in the inner layer within a variational (rather than

confidence) preference in the outer layer. Specifically, given any set Ψ, expand the set to

Ψ̃ = {ψγ : ψ ∈ Ψ, γ ≥ 0}. Then, Equation (10) becomes

V (f) = inf
p∈M(µΩ)

[
ln

(
sup
ψ̃∈Ψ̃

∫
Ω×S

ψ̃(f(ω, s)) d(µ⊗ p)(ω, s)
)

+R(µΩ ‖ p)
]

= inf
p∈M(µΩ)

[
ln

(
sup
ψ∈Ψ

max
γ≥0

∫
Ω×S

ψγ(f(ω, s)) d(µ⊗ p)(ω, s)
)

+R(µΩ ‖ p)
]

= inf
p∈M(µΩ)

[
sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ p)(ω, s) +R(µΩ ‖ p)
]
.

This equality can be used in conjunction with the duality result for rank-dependent utility

from Proposition 1 to obtain a version of the RDU preferences from Corollary 6 without

the logarithm around the inner term. Similarly, it can be used with Proposition 2 to obtain

versions of the divergence preferences from Corollaries 7 and 8 that drop the logarithm.

In this section we considered the case without signals, Σ = {σ}. It is straightforward

to generalize the value functions derived here to capture the ex ante value of any action

plan f ∈ FΣ when there are signals (see Appendix A). We note that the corresponding ex

post value functions would typically not look as clean as in the special cases of Section 4,

because they depend on f indirectly through the minimizing p ∈ M(µΩ). It should now be

clear, however, that ex post preferences follow immediately from ex ante preferences over

plans (and hence ex ante value functions), based on the central insight that they must be

dynamically consistent.
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A Equivalent Representations: With Signals

The following theorems generalize Theorems 3 and 4 from Section 5 to allow for a nondegenerate

signal structure. Proofs of Theorems 5 and 6 are contained in Section S5 of the Online Appendix.

Theorem 5. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞), and fix µ. For any

action plan f ∈ FΣ, the function V defined by Equation (6) can be equivalently expressed as

V (f) = sup
ψ∈ΨΣ

inf
p∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p)

]
. (12)

Theorem 6. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is convex, pointwise

bounded above, and closed in the topology of pointwise convergence (on the extended reals), and

fix µ. For any action plan f ∈ FΣ, the function V defined by Equation (6) can be equivalently

expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(
sup
ψ∈ΨΣ

∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p)

]
. (13)

Define the measure µ ⊗ p on Ω × S × Σ to have marginal p on Ω and conditional distribution

µ(·|ω) on S × Σ. That is, for any event E in the product σ-algebra BΩ ⊗ BS ⊗ BΣ,

µ⊗ p(E) =

∫
Ω

∫
S×Σ

1[(ω, s, σ) ∈ E] dµ(s, σ|ω) dp(ω).

With this definition in hand, note that Equation (13) can be written as

V (f) = inf
p∈M(µΩ)

[
ln

(∫
Σ

sup
ψ∈Ψ

(∫
Ω×S

ψ(fσ(ω, s)) d(µ⊗ p)(ω, s|σ)

)
d(µ⊗ p)(σ)

)
+R(µΩ ‖ p)

]
.

A.1 Rank-Dependent Utility

The next corollary follows directly from Proposition 1 and Theorem 6.

Corollary 10. Suppose Z ⊂ R. Fix µ, and fix any bounded nondecreasing function u : Z → R and

any function ϕ : [0, 1] → [0, 1] that is continuous, nondecreasing, concave, and onto. Then there

exists a set Ψ of functions ψ : Z → R such that, for any action plan f ∈ FΣ, the function V defined

by Equation (6) can be equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(∫
Σ

∫
Z
u(z) d(ϕ ◦ Ffσ ,µ⊗p(·|σ))(z) d(µ⊗ p)(σ)

)
+R(µΩ ‖ p)

]
,

where

Ffσ ,µ⊗p(·|σ)(z) =

∫
Ω×S

1[fσ(ω, s) ≤ z] d(µ⊗ p)(ω, s|σ)

is the cumulative distribution function of fσ given µ⊗ p and σ.
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A.2 Divergence Preferences

The following corollaries apply Proposition 2 to our representation for adaptive preferences from

Theorem 6 by taking r = (µ ⊗ p)(·|σ). The first corollary considers the special case of k(x) = θx

for some scalar θ > 0. The second corollary considers the special case where we fix a scalar κ > 0

and take k(x) = 0 if x ≤ κ, and k(x) = +∞ if x > κ.

Corollary 11. Fix any φ–divergence Dφ(· ‖ ·), any scalar θ > 0, and any function u : Z → R.

Then there exists a set Ψ of functions ψ : Z → [−∞,∞) such that, for any f ∈ FΣ, the function

V defined by Equation (6) can be equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(∫
Σ

inf
q∈4(Ω×S)

[ ∫
Ω×S

u(fσ(ω, s)) dq(ω, s)

+ θDφ(q ‖ (µ⊗ p)(·|σ))

]
d(µ⊗ p)(σ)

)
+R(µΩ ‖ p)

]
.

Corollary 12. Fix any φ–divergence Dφ(· ‖ ·) and any function u : Z → R. Fix a scalar κ > 0,

and for any r ∈ 4(Ω× S) define

D(r, κ) = {q ∈ 4(Ω× S) : Dφ(q ‖ r) ≤ κ}.

Then there exists a set Ψ of functions ψ : Z → [−∞,∞) such that, for any f ∈ FΣ, the function

V defined by Equation (6) can be equivalently expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(∫
Σ

inf
q∈D((µ⊗p)(·|σ),κ)

[ ∫
Ω×S

u(fσ(ω, s)) dq(ω, s)

]
d(µ⊗ p)(σ)

)
+R(µΩ ‖ p)

]
.

A.3 Pseudo-Variational Preferences

The following corollary applies Proposition 3 to our representation for adaptive preferences from

Theorem 6 by letting q = (µ ⊗ p)(·|σ) and taking Ψ to be the closed convex hull of the set

{uγ : γ ≥ 0}. Note that the logarithm is not eliminated in the case of a nondegenerate signal

structure, but the ln and exp operations cancel each other in the special case of Σ = {σ}, as we

observed in Section 5.2.

Corollary 13. Fix µ, and fix any function u : Z → R. Then there exists a set Ψ of functions

ψ : Z → R such that, for any f ∈ FΣ, the function V defined by Equation (6) can be equivalently

expressed as

V (f) = inf
p∈M(µΩ)

[
ln

(∫
Σ

exp

(∫
Ω×S

u(fσ(ω, s)) d(µ⊗ p)(ω, s|σ)

)
d(µ⊗ p)(σ)

)
+R(µΩ ‖ p)

]
.
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B Proofs

B.1 Proof of Lemma 1

Note that

ln(N i(T )) = ln(N i(0)) +

T∑
t=1

ln(λit),

and therefore

ln

(
NA(T )

NB(T )

)
= ln

(
NA(0)

NB(0)

)
+

T∑
t=1

ln(λAt )−
T∑
t=1

ln(λBt ).

Since αA and αB are the long-run growth rates of these two genotypes, we have

1

T

[ T∑
t=1

ln(λAt )−
T∑
t=1

ln(λBt )
]
→ αA − αB a.s.

Since αA − αB > 0, this implies

ln

(
NA(T )

NB(T )

)
→∞ a.s.

Therefore, NA(T )/NB(T )→∞ almost surely as T →∞. This completes the proof.

B.2 Proof of Proposition 1

Since u is bounded, there exists a, b ∈ R such that u(Z) ⊂ [a, b]. The following result provides a

key step in our construction.

Lemma 2. Suppose ϕ : [0, 1] → [0, 1] is continuous, nondecreasing, concave, and onto. Define a

function W : 4([a, b])→ R by

W (η) =

∫ b

a
x d(ϕ ◦ Fη)(x),

where Fη(x) = η([a, x]) is the cumulative distribution function for the measure η. Then, there exists

a set Φ of nondecreasing and concave continuous functions φ : [a, b]→ R such that

W (η) = sup
φ∈Φ

∫
Z
φ(z) dη(z).

Proof. It can be shown that W is convex using similar arguments to those in Section S.2.1 of

the Supplementary Material of Sarver2018:mixture-averse (alternatively, see Wakker1994 or

CK2011). It is also not difficult to show that W is continuous in the topology of weak conver-

gence. Finally, since ϕ is concave, the function W respects second-order stochastic dominance

by Theorem 2 in Yaari1987.35 In light of these conditions, we can apply Proposition 1 from

Sarver2018:mixture-averse to obtain a set Φ with the claimed properties. �

35This was also proved by CKS1987 in the special case where ϕ is Lipschitz continuous.
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Fix any f ∈ F and µ ∈ 4(S), and let η be the distribution of utility values induced by µ, f ,

and u. Formally,

η = µ ◦ f−1 ◦ u−1 ∈ 4([a, b]).

Take Φ as in Lemma 2 for the function ϕ, and let Ψ = {φ ◦ u : φ ∈ Φ}. Then we have

sup
ψ∈Ψ

∫
S
ψ(f(s)) dµ(s) = sup

φ∈Φ

∫
S
φ(u(f(s))) dµ(s)

= sup
φ∈Φ

∫ b

a
φ(x) dη(x) (change of variables)

=

∫ b

a
x d(ϕ ◦ Fη)(x) (Lemma 2)

=

∫
Z
u(z) d(ϕ ◦ Ff,µ)(z).

The last equality is essentially another application of the change of variables formula, but there are

a few subtleties. One needs to show that if νu is the probability measure over utility values with

cumulative distribution function ϕ ◦ Fη and if νz is the probability measure over outcomes in Z

with cumulative distribution function ϕ ◦ Ff,µ, then νu = νz ◦ u−1. This is not true for arbitrary

u, but it can be shown to hold whenever u is nondecreasing.

Note that since W (η) = x when η({x}) = 1, we must have φ(x) ≤ x for all x ∈ [a, b] and φ ∈ Φ.

Thus, ψ(z) = φ(u(z)) ≤ b for all z ∈ Z and ψ ∈ Ψ, so the set Ψ is bounded above. Moreover, taking

the closed convex hull (in the topology of pointwise convergence) of Ψ does not alter the values in

the equality above, so we can assume that Ψ is closed and convex without loss of generality.

It remains only to prove the last claim in the proposition. Suppose Z is an interval. If u is

concave, then since each function in ψ ∈ Ψ takes the form ψ = φ ◦ u for some φ ∈ Φ, and since

the functions in Φ are all nondecreasing and concave, each function in Ψ is also concave. Since

concavity is preserved under convex combinations and pointwise limits, the conclusion still holds

for the the closed convex hull of Ψ.

B.3 Proof of Proposition 2

Some basic definitions and results from functional analysis will be used frequently in this proof. If

X is a Banach space, we use X∗ to denote the space of all continuous linear functionals on X (the

norm dual of X). For x ∈ X and x∗ ∈ X∗, we use 〈x∗, x〉 to denote the duality pairing x∗(x).

Given a function F : X → (−∞,∞], the effective domain of F is the set

dom(F ) = {x ∈ X : F (x) <∞}.

The function F is proper if dom(F ) 6= ∅, that is, if it is not identically equal to ∞. The (Fenchel)

conjugate of F is the function F ∗ : X∗ → [−∞,∞] defined by

F ∗(x∗) = sup
x∈X

[
〈x∗, x〉 − F (x)

]
.
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Note that if F is proper, then F ∗(x∗) > −∞ for all x∗ ∈ X∗. Finally, given a set C ⊂ X, we define

δC by δC(x) = 0 if x ∈ C and δC(x) = ∞ if x /∈ C. This is the indicator function commonly used

in functional analysis. Note that

(δC)∗(x∗) = sup
x∈C
〈x∗, x〉.

In this proof, we will work with the L1 and L∞ spaces of functions. That is, given a probability

space (Ω,BΩ, p), the space L1(Ω,BΩ, p) is the set of all (equivalence classes of) integrable functions,

and the space L∞(Ω,BΩ, p) is the set of all (equivalence classes of) essentially bounded functions.

When the reference probability space is understood, we will sometimes denote these spaces simply

as L1 and L∞, respectively. It is a standard result that these are Banach spaces (when endowed

with the L1 and L∞ norms, respectively) and that (L1)∗ = L∞, with the duality pairing

〈X,Y 〉 =

∫
Ω
X(ω)Y (ω) dp(ω)

for Y ∈ L1, X ∈ L∞.

Proposition 4. Fix any probability space (Ω,BΩ, p). Let Dφ(· ‖ ·) be a φ–divergence, and fix any

nondecreasing, convex, and lower semicontinuous function k : R → (−∞,∞] such that k(0) = 0

and k is finite on some interval (−ε, ε). Then, for any random variable X ∈ L∞(Ω,BΩ, p),

inf
q∈4(Ω)

[ ∫
Ω
X(ω) dq(ω) + k(Dφ(q ‖ p))

]
= max

γ∈R
max
α≥0

∫
Ω
ψγ,α(X(ω)) dp(ω),

where

ψγ,α(x) =

{
γ − αφ∗

(γ−x
α

)
− k∗(α) if α > 0

γ − δR−(γ − x)− k∗(0) if α = 0.

Recall that δR− denotes the indicator function for R−, so δR−(t) = 0 if t ≤ 0 and δR−(t) =∞ if

t > 0. Also, note that our definition of a divergence requires φ to be a continuous convex function

mapping from R+ to R+. However, we can treat φ as lower semicontinuous convex function defined

on all of R by taking φ(y) =∞ for y < 0, and hence

φ∗(x) = sup
y∈R+

[
xy − φ(y)

]
.

Proposition 2 follows as a special case of this result where the state space is Ω̂ = Ω × S, the

probability measure is r ∈ 4(Ω× S), and X : Ω× S → R is defined by

X(ω, s) = u(f(ω, s)).

Note that since f is a simple act and u is real-valued, X is bounded. Thus, by Proposition 4,

inf
q∈4(Ω×S)

[ ∫
Ω×S

u(f(ω, s)) dq(ω, s) + k(Dφ(q ‖ r))
]

= max
γ∈R

max
α≥0

∫
Ω×S

ψγ,α(u(f(ω, s))) dr(ω, s).
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Take Ψ to be the closed convex hull of the set

{ψγ,α ◦ u : γ ∈ R, α ≥ 0},

where the closure is taken with respect to the topology of pointwise convergence on the extended

reals. Then, Ψ satisfies all of the properties asserted in the statement of Proposition 2.

Therefore, all that remains is to prove Proposition 4. Our proof will be based on the following

three lemmas. The first two lemmas closely parallel the proof strategy used by ben1987penalty

who provide a similar result for the case when k(x) = x, that is, when there is no transformation

of the divergence term.

Lemma 3. Fix any probability space (Ω,BΩ, p). Let H : L1 → (−∞,∞] be a convex and lower

semicontinuous function, and suppose there exist α < 1 < β such that Y ∈ L1 and α ≤ Y (ω) ≤ β

for all ω ∈ Ω implies H(Y ) <∞. Then for any X ∈ L∞,

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y )

]
= max

γ∈R

[
γ −H∗(γ −X)

]

Proof. The proof of this result replicates the first steps in the proof of Theorem 4.2 in BT2007,

but we include it for completeness. Denote by v the value of the left side of the equation in the

statement of the lemma:

v ≡ inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y )

]
.

The Lagrangian dual of this convex minimization problem is given by

w ≡ sup
γ∈R

inf
Y ∈L1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y ) + γ

(
1−

∫
Ω
Y (ω) dp(ω)

)]
= sup

γ∈R

[
γ + inf

Y ∈L1

(
H(Y ) +

∫
Ω

(X(ω)− γ)Y (ω) dp(ω)

)]
= sup

γ∈R

[
γ − sup

Y ∈L1

(∫
Ω

(γ −X(ω))Y (ω) dp(ω)−H(Y )

)]
= sup

γ∈R

[
γ −H∗(γ −X)

]
.

It remains only to show that v = w, that is, there is no duality gap. The convex duality result in

Corollary 4.8 of borwein1992partially shows that there is no duality gap and there is attainment

of a solution in the dual problem if the following constraint qualification condition is satisfied:36

36borwein1992partially define the quasi relative interior of a set C to be the set of all points x ∈ C such
that the closure of the cone generated by C − x is a subspace. In the context of our minimization problem,
their constraint qualification condition requires that there is a function Y in the quasi relative interior of the
set dom(H) ≡ {Y ∈ L1 : H(Y ) <∞} that satisfies the constraint

∫
Ω
Y (ω) dp(ω) = 1. It can be shown that

if {Y ∈ L1 : α ≤ Y ≤ β} ⊂ dom(H) then any Y ∈ L1 with α < Y (ω) < β is in the quasi relative interior of
dom(H) (see Example 3.11(i) in borwein1992partially).

39



(CQ) There exist α < β such that α ≤ Y (ω) ≤ β implies H(Y ) < ∞, and there exists some

Y ∈ L1 with α < Y (ω) < β that satisfies the constraint
∫

Ω Y (ω) dp(ω) = 1.

Given the assumptions in the statement of the lemma, this condition is satisfied by taking Y

identically equal to 1. This completes the proof. �

Lemma 4. Fix any probability space (Ω,BΩ, p), and fix any proper convex and lower semicontinuous

function φ : R→ (−∞,∞]. Define a functional J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
φ(Y (ω)) dp(ω).

Then J is a proper convex and lower semicontinuous functional, and the Fenchel conjugate J∗ :

L∞ → (−∞,∞] of J is given by

J∗(X) =

∫
Ω
φ∗(X(ω)) dp(ω).

Proof. See the corollary to Theorem 2 in rockafellar1968integrals. �

Fix any proper convex and lower semicontinuous function φ : R→ (−∞,∞] that is finite on an

open interval containing 1. Then, defining J as in Lemma 4 and setting H = J in Lemma 3, we

obtain the following dual formula:

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + J(Y )

]
= max

γ∈R

∫
Ω

[
γ − φ∗(γ −X(ω))

]
dp(ω).

This is precisely Theorem 4.2 in BT2007. To extend their result to H = k ◦ J , we need the

following lemma.

Lemma 5. Fix any probability space (Ω,BΩ, p), and fix any continuous convex function φ : R+ →
R+ that satisfies φ(1) = 0. Also, fix any nondecreasing, convex, and lower semicontinuous function

k : R→ (−∞,∞] such that k is finite on some interval (−ε, ε). Define J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
φ(Y (ω)) dp(ω),

and define H : L1 → (∞,∞] by H = k ◦ J . Then, for any X ∈ L∞,

H∗(X) = min
α≥0

[
(αJ)∗(X) + k∗(α)

]
, (14)

where

(αJ)∗(X) =


∫

Ω αφ
∗
(
X(ω)
α

)
dp(ω) if α > 0∫

Ω δR−(X(ω)) dp(ω) if α = 0.

Proof. To obtain the formula for the conjugate of the composition of two functions, we appeal
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to Theorem 2 of hiriart2006note:37 Since k and J are both lower semicontinuous and convex,

k is nondecreasing, and there exists a function Y ∈ L1 such that J(Y ) ∈ int(dom(k)) (namely,

Y identically equal to 1), his theorem implies that the Fenchel conjugate of k ◦ J is given by

Equation (14), when one sets (0J) = δdom(J).
38 For α > 0, we therefore have

(αJ)∗(X) =

∫
Ω

(αφ)∗(X(ω)) dp(ω) =

∫
Ω
αφ∗

(
X(ω)

α

)
dp(ω),

where the first equality follows from Lemma 4 and the second equality follows directly from the

definition of the conjugate.

It remains only to establish the formula for (0J)∗. By the definition of the conjugate,

(0J)∗(X) = sup
Y ∈L1

[
〈X,Y 〉 − δdom(J)(Y )

]
= sup

Y ∈dom(J)

∫
Ω
X(ω)Y (ω) dp(ω).

Now, fix any X ∈ L∞ and let E = {ω ∈ Ω : X(ω) > 0}. We will show that if p(E) = 0 then

(0J)∗(X) = 0, and if p(E) > 0 then (0J)∗(X) = ∞. Consider first the case of p(E) = 0. Recall

that since φ is defined on R+, we can treat it as a lower semicontinuous function on all of R such

that φ(y) =∞ for y < 0. Therefore, if the set of all ω such that Y (ω) < 0 has positive probability

under p, then J(Y ) = ∞. Thus, dom(J) includes only functions Y that are nonnegative almost

surely, so for any Y ∈ dom(J) and X ≤ 0, 〈X,Y 〉 ≤ 0. Therefore, when p(E) = 0, the supremum

of 〈X,Y 〉 over Y ∈ dom(J) is attained by Y = 0, and (0J)∗(X) = 0. Next, consider the case of

p(E) > 0. Define Yn by Yn(ω) = n for ω ∈ E and Yn(ω) = 0 for ω /∈ E. Since φ is finite and

continuous on R+, we have Yn ∈ dom(J) for all n. Note that∫
E
X(ω) dp(ω) > 0,

and therefore

〈X,Yn〉 = n

∫
E
X(ω) dp(ω)→∞

as n→∞. Thus, (OJ)∗(X) =∞.

We have shown that (0J)∗(X) = 0 if X ≤ 0 a.s., and (0J)∗(X) =∞ otherwise. Recall that the

indicator function δR− satisfies δR−(x) = 0 if x ≤ 0 and δR−(x) =∞ if x > 0. Therefore, we have

(0J)∗(X) =

∫
Ω
δR−(X(ω)) dp(ω).

This completes the proof. �

Proof of Proposition 4. Note that Dφ(q ‖ p) = ∞ whenever q is not absolutely continuous with

respect to p. Thus, we can restrict attention to q � p, and we can therefore express the divergence

37hiriart2006note provides a concise treatment of this problem, but earlier, more general results about
conjugates of compositions of convex functions exist, e.g., kutateladze1979convex or combari1996note.

38This definition reflects the convention that 0J(Y ) =∞ if J(Y ) =∞ and 0J(Y ) = 0 otherwise.
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using Radon–Nikodym derivatives Y = dq
dp ∈ L

1(Ω,BΩ, p):

inf
q∈4(Ω)

[ ∫
Ω
X(ω) dq(ω) + k(Dφ(q ‖ p))

]
= inf

q�p

[ ∫
Ω
X(ω)

dq

dp
(ω) dp(ω) + k

(∫
Ω
φ

(
dq

dp
(ω)

)
dp(ω)

)]
= inf

Y ∈L1:∫
Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + k

(∫
Ω
φ(Y (ω)) dp(ω)

)]
.

Note that for Y ∈ L1 to be a Radon-Nikodym derivative, we must have
∫

Ω Y (ω) dp(ω) = 1 and

Y ≥ 0 a.s. The first constraint is stated explicitly in the equation above, and since φ(y) = ∞ for

y < 0, the second constraint becomes superfluous.

As before, define J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
φ(Y (ω)) dp(ω),

and define H : L1 → (∞,∞] by H = k ◦ J . Note that J is convex and lower semicontinuous by

Lemma 4, and therefore H is convex and lower semicontinuous given our assumptions on k. We

also assumed that there is an interval (−ε, ε) on which k is finite. Since φ : R+ → R+ is continuous

and satisfies φ(1) = 0, there exists α < 1 < β such that α ≤ y ≤ β implies 0 ≤ φ(y) < ε. Thus,

α ≤ Y (ω) ≤ β for all ω ∈ Ω implies 0 ≤ J(Y ) < ε and hence H(Y ) <∞. Therefore,

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + k

(∫
Ω
φ(Y (ω)) dp(ω)

)]
= max

γ∈R

[
γ −H∗(γ −X)

]
= max

γ∈R
max
α≥0

[
γ − (αJ)∗(γ −X)− k∗(α)

]
,

where the first equality follows from Lemma 3 and the second equality follows from Lemma 5.

Then, using the formula for (αJ)∗ from Lemma 5, we have that for any X ∈ L∞, γ ∈ R, and α ≥ 0,

γ − (αJ)∗(γ −X)− k∗(α) =

γ −
∫

Ω αφ
∗
(
γ−X(ω)

α

)
dp(ω)− k∗(α) if α > 0

γ −
∫

Ω δR−(γ −X(ω)) dp(ω)− k∗(0) if α = 0

=

∫
Ω
ψγ,α(X(ω)) dp(ω),

where ψγ,α(x) is defined as in the statement of the proposition. This completes the proof. �
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B.4 Proof of Proposition 3

We begin with a useful preliminary observation. Define H : [−∞,∞)× R+ → [−∞,∞) by

H(x, γ) =

{
γx− γ ln(γ) + γ if γ > 0

0 if γ = 0.

We will show that for any x ∈ [−∞,∞),

max
γ≥0

H(x, γ) = exp(x). (15)

Consider first the case of x = −∞. Then H(x, γ) = −∞ for all γ > 0 and H(x, γ) = 0 for γ = 0.

Thus,

max
γ≥0

H(x, γ) = 0 = exp(x).

(Recall that we adopt the convention that exp(−∞) = 0.) Next, consider the case of x ∈ R. Taking

γ̄ = exp(x) > 0, it follows directly from the definition of H that H(x, γ̄) = exp(x). We will argue

that γ̄ is the maximizing value of γ. First, observe that H(x, 0) = 0 < H(x, γ̄). Second, observe

that for any γ > 0,

∂

∂γ
H(x, γ) = x− ln(γ) and

∂2

∂γ2
H(x, γ) = −1

γ
.

Thus, H is strictly concave and the unique solution to the first-order condition for optimality is

γ = γ̄. This proves Equation (15).

Now, fix any u : Z → [−∞,∞), f ∈ F , and q ∈ 4(Ω × S), and define uγ as in the statement

of the proposition. Note that

∫
Ω×S

uγ(f(ω, s)) dq(ω, s) =

{
γ
∫

Ω×S u(f(ω, s)) dq(ω, s)− γ ln(γ) + γ if γ > 0

0 if γ = 0

= H

(∫
Ω×S

u(f(ω, s)) dq(ω, s), γ

)
.

Thus, by Equation (15), we have

max
γ≥0

∫
Ω×S

uγ(f(ω, s)) dq(ω, s) = max
γ≥0

H

(∫
Ω×S

u(f(ω, s)) dq(ω, s), γ

)
= exp

(∫
Ω×S

u(f(ω, s)) dq(ω, s)

)
.

This completes the proof.

43



For Online Publication

Supplementary Appendix

In this online appendix, we explore several alternative assumptions and extensions of

the analysis in the main text. Section S1 considers the possibility of idiosyncratic self-

randomization by members of the population of a genotype. Section S2 shows how the

specifics of our representation change when adaptation is slower and must be undertaken

before the realization of the signal, yet evolutionarily optimal preferences remain dynam-

ically consistent. Section S3 examines how the optimal responses of a genotype to public

and private signals are different. Proofs of results in this online appendix are contained in

Section S4, and proofs of Theorems 5 and 6 from the main paper are contained in Section S5.

S1 Self-Randomization

One observation about the Ellsberg examples dating back as early as Raiffa1961:risk is

that individuals may be able to hedge against ambiguity by self-randomizing when choosing

an act f ∈ F . In our model with phenotypic flexibility, it is important to recognize that if

different parts of the overall population select different acts, they may also select different

corresponding fitness functions ψ ∈ Ψ.39

To illustrate the potential benefit of randomizing when choosing an act, suppose for a

moment that there is no phenotypic flexibility, Ψ = {ψ}, and consider a slight variation of

Example 1, where now individuals have the option to bet on any single color of their choos-

ing: black, red, or yellow. As argued previously, the value function described in Equation (4)

will strictly prefer betting on black to betting on either red or yellow (and will be indifferent

between the latter two bets). However, consider an independent 50–50 randomization be-

tween betting on red or yellow. This randomization will yield a 1/3 probability of winning

for each of the three possible urn compositions; more importantly, the outcomes for each

individual taking this randomization will be independently distributed. Thus, evolutionarily

optimal preferences will be indifferent between betting on black and making this randomized

bet on red and yellow.40

39Even for a degenerate choice set F = {f}, randomization over fitness functions might be beneficial.
40Raiffa1961:risk took this logic a step further and used a similar thought experiment as the basis for a

normative argument that individuals should satisfy the Savage axioms. While our model can generate strict
benefits from randomization, it should be clear that it does not support Raiffa’s normative argument against
ambiguity aversion. In particular, in the original version of Example 1, where it was not possible to bet on
yellow, the optimal genotype strictly preferred betting on black over betting on red, and the same would
have been true when replacing red with yellow.
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In the literature on evolutionary biology, the benefits of independent randomization were

first observed by CK1982:adaptive. In the economics and decision theory literature, ran-

domization as a type of hedging mechanism was explored by Machina1985:stochastic in

the context of non-expected-utility preferences for risk,41 and by Saito2015:randomization

in the case of ambiguity-averse preferences.

To incorporate self-randomization into our model, suppose each individual in the pop-

ulation has access to an independently distributed random variable θ that is drawn from

the uniform distribution on Θ = [0, 1]. The choice of act from a set F and of a fitness

function from the set Ψ can depend on this independently drawn θ. Incorporating ran-

domization into the value function in Equation (6) is straightforward, as one can think of

θ as an uninformative private signal. Formally, expand the signal space to be Σ × Θ, and

let EΘ = BΩ ⊗ BS ⊗ BΣ ⊗ BΘ, where BΘ is the Borel σ-algebra on Θ. Uncertainty is now

captured by a measure µ in ∆(Ω× S × Σ×Θ) with the feature that µ(·|ω, s, σ) is uniform

on Θ for all (ω, s, σ) ∈ Ω× S × Σ.

For a finite set of acts F , let R(F ) denote the set of all measurable functions f : Σ×Θ→
F , which we refer to as randomized action plans from F . Let R(F) denote the set of all

measurable simple functions f : Σ × Θ → F , that is, R(F) is the union of R(F ) over all

finite sets F ⊂ F . For f ∈ R(F), we denote the act f ∈ F selected by f for a given (σ, θ)

using fσ,θ rather than f(σ, θ), and we write fσ,θ(ω, s) to denote the outcome generated by

this act in state (ω, s). Correspondingly, let R(Ψ) denote the set of all measurable functions

ψ : Σ × Θ → Ψ, which we will refer to as randomized adaptation plans. We write ψσ,θ to

denote the fitness function ψ ∈ Ψ selected by ψ for a given (σ, θ).

The objective function that maximizes evolutionary fitness in Equation (6) then extends

to randomized plans in R(F) by simply replacing Σ with Σ×Θ:

V (f) = sup
ψ∈R(Ψ)

∫
Ω

ln

(∫
S×Σ×Θ

ψσ,θ(fσ,θ(ω, s)) dµ(s, σ, θ|ω)

)
dµ(ω). (S1)

Note that the variable θ is not observable by an analyst. Indeed, we introduced θ merely as a

convenient and canonical means of modeling idiosyncratic self-randomization by individuals.

Therefore, for a finite set of acts F , if the optimal f ∈ R(F ) depends nontrivially on θ,

then from the perspective of the analyst who does not observe θ, choices of each individual

are stochastic and there will be cross-sectional variation in the choices in the population at

the aggregate level. Specifically, the probability of choosing act f from F following signal

realization σ is given by

ρ(f |F, σ) = µ({θ ∈ Θ : fσ,θ = f}).

Moreover, if the signal σ is also not observable to the analyst, then the (unconditional) choice

41See also AO2017:stochastic and CDOR2017:deliberately for more recent research on non-expected-
utility preferences and random choice.
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probabilities observed by the analyst would be

ρ(f |F ) = µ({(σ, θ) ∈ Σ×Θ : fσ,θ = f}).

Note that in the value function in Equation (S1), self-randomization in the choice of phe-

notype effectively convexifies the set of fitness functions Ψ. In the main text of the paper, we

explicitly assumed that the set Ψ was convex. We see now that this assumption was without

loss of generality, provided the genotype can program the members of its subpopulation to

engage in idiosyncratic self-randomization in the choice of phenotype.

As was also mentioned in the main text, there is no strict benefit from randomization

when the choice set F ⊂ F and the set of phenotypes Ψ are convex, and when each ψ ∈ Ψ

is concave. In some parts of the main text, we assumed directly that this was the case,

which allowed us to focus on the value function in Equation (6) and its special cases, thereby

simplifying the exposition of ideas. Without those assumptions, there could be a strict

benefit to the genotype from self-randomization in the choice of act or phenotype, or both.

That said, even when F and Ψ are not convex, conditioning choice on informative private

signals not only improves the expected outcomes for individuals, but it has the additional

benefit of reducing the correlation of outcomes across individuals, thereby reducing the

aggregate risk faced by the population. We now illustrate the role of signals themselves as a

means of randomization within a simplified choice environment.

Application: Signal Response in lieu of Self-Randomization

Consider a simple discrete choice setting where Ω is finite, S = {s}, and Ψ = {ψ}. Suppose

that individuals have to bet on any one state ω ∈ Ω and can randomize over the possible

bets. When there is no information (Σ = {σ}), then for any prior with support Ω, optimal

choice involves randomization that places positive probability on all available bets. However,

as soon as there are even minimally informative signals, there is at least one signal for which

this is no longer the case.

Let fσ,θ(ω) ∈ {0, 1} be the action plan that describes whether an individual bets on state

ω after observing (σ, θ). Since each individual must ultimately place a bet on a single state,

the action plans are constrained in that fσ,θ(ω) = 1 implies that fσ,θ(ω
′) = 0 for all ω′ 6= ω.42

Thus,

ρ(ω|σ) = µ({θ ∈ Θ : fσ,θ(ω) = 1})

is the probability of betting on state ω following signal σ. Assume that ψ(1) > ψ(0) ≥ 0.

42If ψ is strictly concave, then the genotype would clearly benefit if individuals could diversify by averaging
these bets to obtain an act that pays a smaller but strictly positive amount in every state, so that fσ,θ(ω) > 0
for all ω. Such diversification is prohibited here, but individuals may nonetheless prefer to randomize over
bets on different states in order to replace aggregate uncertainty with idiosyncratic.
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The long-run growth rate is now given by

V (f) =

∫
Ω

ln

(∫
Σ×Θ

ψ(fσ,θ(ω)) dµ(σ, θ|ω)

)
dµ(ω)

=

∫
Ω

ln

(∫
Σ

(
ρ(ω|σ)ψ(1) + (1− ρ(ω|σ))ψ(0)

)
dµ(σ|ω)

)
dµ(ω).

(S2)

The following proposition shows that if the likelihood ratio between states ω and ω′ is

higher after signal σ than σ′, then individuals will either not bet on state ω′ with positive

probability following signal σ, or they will not bet on state ω with positive probability follow-

ing signal σ′. Note that this result includes the possibility that the conditional probability

of one of these states is much higher than that of the other following either of these signals,

in which case individuals might never bet on the other state with positive probability.

Proposition S1. Fix two states ω, ω′ ∈ Ω and two signals σ, σ′ ∈ Σ. If

µ(ω, σ)µ(ω′, σ′) > µ(ω, σ′)µ(ω′, σ),

then ρ(ω′|σ) = 0 or ρ(ω|σ′) = 0, or both.

The proof of Proposition S1 is in Section S4.1. In the case where the probabilities in the

proposition are strictly positive, the inequality in the proposition can be written as

µ(ω|σ)

µ(ω′|σ)
>
µ(ω|σ′)
µ(ω′|σ′)

.

This extreme individual reaction to information reflects not only “updating”, but also

the need to reduce the correlation between individual outcomes. The following example

illustrates.

Example S1. There is an ambiguous urn in which all balls are either red or yellow, which

we model by taking the common component of the state space to be Ω = {r, y}. Suppose

µ(r) = µ(y) = 1/2 and ψ(1) = 1 > ψ(0) = 0. As in Example 1, R and Y are the bets

on a ball drawn from the urn being red or yellow, respectively, so that choice between R

and Y amounts to betting on ω ∈ Ω. Signals in Σ = {σ, σ′} are informative, as µ(y, σ) =

5/10, µ(r, σ) = 4/10, µ(y, σ′) = 0, and hence µ(r, σ′) = 1/10, which yields the conditional

probabilities

µ(σ|r) =
4

5
and µ(σ|y) = 1.

Let ρ(R|σ) denote the probability of choosing R following signal σ, and define ρ(Y |σ),

ρ(R|σ′), and ρ(Y |σ′) similarly. Then

V (ρ) =
1

2
ln

(
4

5
ρ(R|σ) +

1

5
ρ(R|σ′)

)
+

1

2
ln(ρ(Y |σ)),
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which is maximized by taking

ρ(R|σ) =
3

8
ρ(R|σ′) = 1

ρ(Y |σ) =
5

8
ρ(Y |σ′) = 0.

Thus, there is no randomization contingent on signal σ′. There is, however, randomization

contingent on σ. Intuitively, since σ′ is much less likely, exclusively conditioning on the two

informative signals by taking ρ(Y |σ) = 1 would lead to excess correlation in outcomes across

individuals.43

S2 Adaptation Before Information

We assume throughout that signals resolve prior to the choice of act. So far, we further

assumed after-signal adaptation, where the choice of phenotype also happens after the real-

ization of a signal, reflecting the rapid nature of this adaptation. We now consider the al-

ternative of before-signal adaptation, where adaptation of the phenotype is still fast enough

to take into account the action plan, but too slow to react to the realization of a signal and

the subsequent final choice of action.

Formally, signal σ arrives after the choice of phenotype ψ, as illustrated in Figure S1.

From the ex ante perspective, the individual thus selects (f , ψ), a signal-contingent action

plan together with a fixed phenotype, which achieves a fitness of ψ(fσ(ω, s)) after the real-

ization of (ω, s, σ). Clearly, the growth rate will be lower than under after-signal adaptation,

since the phenotype can no longer be optimized based on the signal realization. There will

also be subtle but important differences in the representation of evolutionarily optimal pref-

erences over action plans. The following characterization follows as a direct corollary of

Theorem 1.

Corollary S1. Suppose Ψ and µ are fixed, and individuals can engage in slow (before-signal)

adaptation. If the fitness function ψ ∈ Ψ is chosen optimally, then the long-run growth rate

of a genotype from choosing the action plan f ∈ FΣ in every period is

V (f) = sup
ψ∈Ψ

∫
Ω

ln

(∫
S×Σ

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω) (S3)

43In some cases, conditioning on informative signals may completely eliminate randomization based on
uninformative signals. In the example, if instead µ(y, σ) = 5/10, µ(r, σ) = 2/10, µ(y, σ′) = 0, and µ(r, σ′) =
3/10, then ρ(R|σ) = 0 and ρ(Y |σ′) = 0, so that there is no randomization following either signal. In this
case, removing residual correlation through randomization is not worth the cost of worsening the expected
individual outcomes.
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choose ψ choose f

signal σ (ω, s) realizes

Figure S1: Timeline: before-signal adaptation

The optimal fitness function ψf for plan f satisfies44

ψf ∈ arg max
ψ∈Ψ

∫
Ω

ln

(∫
S×Σ

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω), (S4)

and if plan f is followed for all signals σ′ 6= σ and the ex ante choice of fitness function is

ψf , then long-run growth from choosing g following σ is

V (g|σ, f , ψf ) =

∫
Ω

ln

(
µ(σ|ω)

∫
S

ψf (g(ω, s)) dµ(s|ω, σ)

+

∫
S×Σ\{σ}

ψf (fσ′(ω, s)) dµ(s, σ′|ω)

)
dµ(ω). (S5)

The preferences that maximize these ex ante and ex post long-run growth functions are dy-

namically consistent.

Ex-post adaptive preferences after learning signal σ now have to take into account not

only the plan f , but also the fitness function ψ = ψf , which is given at the time of choosing

an act, as it was chosen optimally in conjunction with f prior to the realization of σ. When

Equation (S4) uniquely pins down ψf , ex post preferences are fully determined by σ and f

alone, and so can be derived from ex ante preferences.

Since ex ante adaptive preferences are based on the optimal choice of ψ while ex post

preferences take ψf as given, it is possible to have gσf � hσf and g ≺σ,f h. This is not a

violation of our notion of dynamic consistency, which only applies when g = fσ, but it does

violate stronger notions commonly found in the literature, for instance the definitions found

in machina1992more and EL1993:dynamically.45 The following example illustrates that

44We directly assume for this result that the optimal fitness function ψf exists for each plan f . Alternatively,
one could impose additional assumptions directly on the set Ψ to ensure that this is the case; for example,
requiring that Ψ be compact in the topology of pointwise convergence would guarantee the existence of an
optimal fitness function.

45Preferences in the case of after-signal adaptation that we considered in the main text will satisfy this
stronger notion of dynamic consistency: gσf � hσf =⇒ g �σ,f h (and gσf % hσf =⇒ g %σ,f h whenever
µ(σ) > 0). This is because for after-signal adaptation, the conditional preference %σ,f does not depend on fσ,
only on fσ′ for σ′ 6= σ. Note that in terms of observable behavior, the two notions are typically equivalent,
as choice can only reveal whether or not an individual prefers deviating from the optimal plan.
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those violations do not depend on the arrival of actual information, but only on the fact that

ex ante preferences are elicited before the commitment to a particular ψ, while ex post

preferences apply after ψ is chosen.

Example S2. Let S = {s, s′}, Ω = {ω}, Σ = {σ}, µ(s) = µ(s′) = 1/2, and Ψ = {ψ1, ψ2}
where ψ1(x) = x and ψ2(x) = x1/2. That is, there is no common uncertainty and only one

uninformative signal. Consider the acts f = (4, 4), g = (1/25, 1/25), and h = (0, 1/9). The

following table lists these acts and displays their values under ψ1 and ψ2, respectively:

s s′ V (·|ψ1) V (·|ψ2)

f 4 4 4 2

g 1
25

1
25

1
25

1
5

h 0 1
9

1
18

1
6

Ex-ante, each act is evaluated under the optimal ψ, so that V (f) = 4 > V (g) = 1/5 >

V (h) = 1/6, or f � gσf = g � h = hσf . However, V (h|ψ1) = 1/18 > 1/25 = V (g|ψ1). For

the optimal plan f = f with optimal fitness function ψ1, this means h �σ,f g.

The special case of rank-dependent expected utility serves well to demonstrate the im-

portance of the timing of adaptation.

Corollary S2 (RDU with Before-Signal Adaptation). Suppose Ω = {ω} and Z ⊂ R. Fix µ,

and fix any bounded nondecreasing function u : Z → R and any function ϕ : [0, 1] → [0, 1]

that is continuous, nondecreasing, concave, and onto. Then there exists a set Ψ of functions

ψ : Z → R such that the ex ante adaptive preferences over action plans f are represented by

V̂ (f) =

∫
Z

u(z) d(ϕ ◦ Ff ,µ)(z)

where

Ff ,µ(z) =

∫
S×Σ

1[fσ(s) ≤ z] dµ(s, σ).

is the cumulative distribution function of f given µ, and V (f) = ln V̂ (f) is the long-run

growth rate defined in Equation (S3).

According to the corollary, for before-signal adaptation, the transformation function ϕ

affects all uncertainty, including the realization of σ. This is the model considered in the

literature following machina1989:dynamic and is in contrast to the case of after-signal

adaptation. Of course, ex post preferences will still satisfy our notion of dynamic consistency,

but will now in general violate consequentialism.46

46As noted above, ex post preferences may also violate the slightly stronger notion of dynamic consis-
tency considered by machina1992more, EL1993:dynamically, and much of the subsequent literature.
HK2007 proposed a weaker definition that is similar to ours in the context of partitional learning.
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S3 Public versus Private Signals

When signals are informative only about the common component, Ω, then they can either be

public (so that all individuals receive the same signal) or private as in the analysis thus far (so

signals are independent across individuals contingent on ω). This distinction does not arise

when updating beliefs in most preference-based models of individual decision making, but it

may matter for behavior in our evolutionary model. To streamline exposition, consider acts

that depend only on Ω and suppress S for the remainder of this section, and let Ψ = {ψ}.

Not surprisingly, private signals are preferred over public signals because public signals

introduce correlation which is harmful to long-run growth. Formally, given a signal space Σ

and a measure µ on Ω×Σ, let V Pr(f) denote the now familiar long-run growth rate for plan

f under private signals

V Pr(f) =

∫
Ω

ln

(∫
Σ

ψ(fσ(ω)) dµ(σ|ω)

)
dµ(ω).

Let V Pu(f) denote the growth rate for f under public signals,

V Pu(f) =

∫
Ω×Σ

ln
(
ψ(fσ(ω))

)
dµ(ω, σ).

For a given menu of acts F , let fPr,F ∈ argmaxf∈FV
Pr(f) be an optimal plan under private

signals, and fPu,F ∈ argmaxf∈FV
Pu(f) under public signals. When the menu F is fixed, we

will write fPr and fPu without risk of confusion. Then,

V Pr
(
fPr
)
≥ V Pr

(
fPu
)
≥ V Pu

(
fPu
)
,

where the second inequality is strict whenever ψ
(
fPu
σ (ω)

)
is not constant on Σ for some

ω ∈ Ω.

A more subtle question is how fPu and fPr differ. We already saw in Section S1 that

the reaction to private signals may be extreme, because they may serve as a randomization

device. To gain some intuition, note that when ω ∈ Ω becomes more likely upon learning a

signal σ ∈ Σ, then there must also be some signal σ′ where it becomes less likely. Intuitively,

when signals are private it may be possible to bet on ω under σ and against ω under σ′

without creating much correlation, because both signals will be present in the population

at the same time. In contrast, if the same signals are public, then the entire population

receives σ or σ′ at the same time, and reacting to information will lead to additional cor-

relation in outcomes across individuals. Based on this rough intuition, we would expect

there to be a stronger reaction to private information than to public information, which may

provide a different perspective on the often-discussed overconfidence that agents appear to

have in their private information, for instance when investing in financial markets, as in
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DHS1998:overreactions. We now briefly discuss an illustrative example.

Application: Portfolio Choice

Let µ be a positive prior on a finite space of states and signals Ω × Σ. Consider a simple

portfolio-choice problem consisting of a risk-free asset with deterministic return c and a single

risky asset with return f(ω) in state ω, where f is nonconstant and
∑

ω∈Ω µ(ω)f(ω) > c.

Suppose that each individual has unit wealth, and let the plan α specify for each signal

σ ∈ Σ the proportion ασ ∈ [0, 1] of the risky asset in the portfolio, so that an individual

holds act fσ = ασf + (1 − ασ)c upon learning σ. Holding fixed µ ∈ 4(Ω × Σ), let αPu

and αPr denote the optimal portfolio plans for the case where the signals in Σ are public

and private, respectively. Finally, assume that the fitness function ψ is increasing, strictly

concave, differentiable, and positive on some interval that contains the range of f and c.

Proposition S2. Let σ∗ and σ∗ be private signals with the lowest and highest investment in

the risky asset, respectively, that is, αPr
σ∗ ≤ α

Pr
σ ≤ αPr

σ∗ for all σ ∈ Σ. If αPr
σ∗ 6= αPr

σ∗, then the

following must be true:

1. αPr
σ∗ < α

Pu
σ∗ or αPr

σ∗ = αPu
σ∗ = 0.

2. αPu
σ∗ < α

Pr
σ∗ or αPu

σ∗ = αPr
σ∗ = 1.

In particular, when there are only two signals, reaction to private signals is unambiguously

stronger than to public signals in the sense that asset holdings react more to the signal

realization. The proof of Proposition S2 is contained in Section S4.2.

S4 Proofs of Results in the Online Appendix

S4.1 Proof of Proposition S1

Note that the value function in Equation (S2) can be expressed directly in terms of the

probabilities ρ(ω|σ) of betting on state ω following signal σ—the exact dependence of fσ,θ on

the private randomization device θ is not important, so long as the same conditional choice

probabilities are generated. We will therefore denote the value function in Equation (S2) as

V (ρ). Also, let ρ(ω) denote the probability of betting on state ω when the actual state is ω,

given ρ(ω|σ) and µ(σ|ω). That is,

ρ(ω) =
∑
σ∈Σ

ρ(ω|σ)µ(σ|ω).
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Simple direct computation yields the partial derivative of V with respect to ρ(ω|σ):47

∂V (ρ)

∂ρ(ω|σ)
=

(ψ(1)− ψ(0))µ(ω, σ)

ρ(ω)ψ(1) + (1− ρ(ω))ψ(0)
.

The proof proceeds by contrapositive. We will show that if ρ(ω′|σ) > 0 and ρ(ω|σ′) > 0,

then the inequality in the statement of the proposition cannot be satisfied. First, note that

if ρ(ω′|σ) > 0, then it must be the case that

∂V (ρ)

∂ρ(ω′|σ)
≥ ∂V (ρ)

∂ρ(ω|σ)
,

for otherwise it would be a strict improvement to reduce ρ(ω′|σ) by some ε > 0 and increase

ρ(ω|σ) by ε. Similarly, ρ(ω|σ′) > 0 implies that

∂V (ρ)

∂ρ(ω|σ′)
≥ ∂V (ρ)

∂ρ(ω′|σ′)
.

Multiplying these two expressions, we obtain

∂V (ρ)

∂ρ(ω|σ′)
∂V (ρ)

∂ρ(ω′|σ)
≥ ∂V (ρ)

∂ρ(ω|σ)

∂V (ρ)

∂ρ(ω′|σ′)
.

Using the formula for the partial derivative and rearranging terms, this implies that

µ(ω, σ′)µ(ω′, σ) ≥ µ(ω, σ)µ(ω′, σ′).

Thus, the inequality in the statement of the proposition can only be satisfied if either

ρ(ω′|σ) = 0 or ρ(ω|σ′) = 0, or both. This completes the proof.

S4.2 Proof of Proposition S2

Since f and c are fixed, we will slightly abuse notation and denote V Pu(f) for fσ = ασf +

(1−ασ)c simply by V Pu(α), and similarly denote V Pr(f) by V Pr(α). Observe first that for

any α and any σ ∈ Σ,

∂V Pu(α)

∂ασ
=
∑
ω∈Ω

µ(ω, σ)
ψ′(ασf(ω)− (1−ασ)c)

ψ(ασf(ω)− (1−ασ)c)
(f(ω)− c)

47The choice of ρ by individuals is clearly subject to the constraint that
∑
ω∈Ω ρ(ω|σ) = 1 for all σ ∈

Σ. This partial derivative treats ρ(ω|σ) as any real number to consider marginal utility independently of
feasibility.
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and
∂V Pr(α)

∂ασ
=
∑
ω∈Ω

µ(ω, σ)
ψ′(ασf(ω)− (1−ασ)c)∑

σ′∈Σ µ(σ′|ω)ψ(ασ′f(ω)− (1−ασ′)c)
(f(ω)− c).

Since ψ is positive, increasing, and strictly concave, we can make two straightforward obser-

vations that will be useful in the remainder of the proof:

1. The term
ψ′(αf(ω)− (1− α)c)

ψ(αf(ω)− (1− α)c)
(f(ω)− c)

is nonincreasing in α ∈ [0, 1].

2. If f(ω) 6= c and α ≤ ασ for all σ ∈ Σ, with strict inequality for at least one σ, then

ψ′(αf(ω)− (1− α)c)

ψ(αf(ω)− (1− α)c)
(f(ω)− c) > ψ′(αf(ω)− (1− α)c)∑

σ∈Σ µ(σ|ω)ψ(ασf(ω)− (1−ασ)c)
(f(ω)− c).

The opposite inequality holds if ασ ≤ α for all σ ∈ Σ, with strict inequality for at least

one σ.

Now suppose, contrary to the first part of the proposition, that αPr
σ∗ ≥ α

Pu
σ∗ and αPr

σ∗ > 0.

Then, we have
∂V Pu(αPu)

∂ασ∗
≥ ∂V Pu(αPr)

∂ασ∗
>
∂V Pr(αPr)

∂ασ∗
,

where the first inequality follows from observation 1 since αPr
σ∗ ≥ αPu

σ∗ , and the second

inequality follows from observation 2 with α = αPr
σ∗ since αPr

σ∗ ≤ α
Pr
σ for all σ ∈ Σ (with

strict inequality for at least one σ). Since, by assumption, αPu
σ∗ ≤ αPr

σ∗ < αPr
σ∗ ≤ 1, the

optimality of αPu requires that
∂V Pu(αPu)

∂ασ∗
≤ 0,

and hence
∂V Pr(αPr)

∂ασ∗
< 0.

Since αPr is optimal, this requires that αPr
σ∗ = 0, a contradiction. This establishes the first

claim in the proposition.

Finally suppose, contrary to the second part of the proposition, that αPr
σ∗ ≤ αPu

σ∗ and

αPr
σ∗ < 1. Then, we have

∂V Pu(αPu)

∂ασ∗
≤ ∂V Pu(αPr)

∂ασ∗
<
∂V Pr(αPr)

∂ασ∗
,

where the first inequality follows from observation 1 since αPr
σ∗ ≤ αPu

σ∗ , and the second

inequality follows from observation 2 with α = αPr
σ∗ since αPr

σ ≤ αPr
σ∗ for all σ ∈ Σ (with
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strict inequality for at least one σ). Since, by assumption, 0 ≤ αPr
σ∗ < αPr

σ∗ ≤ αPu
σ∗ , the

optimality of αPu requires that
∂V Pu(αPu)

∂ασ∗
≥ 0,

and hence
∂V Pr(αPr)

∂ασ∗
> 0.

Since αPr is optimal, this requires that αPr
σ∗ = 1, a contradiction. This establishes the second

claim in the proposition.

S5 Omitted Proofs from the Main Paper

S5.1 Proof of Theorem 5

We begin with a useful proposition. As in the main text, let (Ω,BΩ) be any measurable space,

and let 4(Ω) be the set of all countably additive probability measures on this space. Recall

that M(q) = {p ∈ 4(Ω) : p � q and R(q ‖ p) < ∞}. In particular, since R(q ‖ p) < ∞
requires that q � p, the measures p and q are mutually absolutely continuous whenever

p ∈M(q).

Proposition S3. Suppose X : Ω → [−∞,∞) is measurable and bounded above, and let

q ∈ 4(Ω). Then,∫
Ω

ln(X(ω)) dq(ω) = inf
p∈M(q)

[
ln

(∫
Ω

X(ω) dp(ω)

)
+R(q ‖ p)

]
. (S6)

In addition, if X is bounded away from zero, that is, if X(ω) ≥ ε > 0 for all ω ∈ Ω, then

the infimum in Equation (S6) is uniquely attained by the measure p0 with Radon–Nikodym

derivative
dp0

dq
(ω) =

1

X(ω)

∫
Ω

1

X(ω̂)
dq(ω̂)

. (S7)

Proposition S3 restricts to p ∈M(q), thereby ensuring that we do not encounter terms of

the form −∞+∞. That is, while the first term inside the infimum in Equation (S6) could

take the value −∞, the second term R(q ‖ p) will necessarily be finite.

Proof. The proof proceeds in three steps. We first prove Equation (S6) for random variables

X that are bounded above and satisfy X(ω) ≥ ε > 0 for all ω ∈ Ω. We then extend the

result to all bounded X ≥ 0. Finally, we extend to any X that is bounded above.
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Step 1: Suppose that X that is bounded above and satisfies X(ω) ≥ ε > 0 for all

ω ∈ Ω.48 Then ln(X) is a bounded function, and it is therefore integrable. Fix any measures

p, q ∈ 4(Ω) with p� q and define a measure q0 by its Radon–Nikodym derivative

dq0

dp
(ω) =

X(ω)∫
Ω

X(ω̂) dp(ω̂)
. (S8)

Since X is strictly positive, q0 and p are mutually absolutely continuous. In particular, since

p� q, this implies q0 � q. Thus, dq
dq0

exists and dq
dp

= dq
dq0
· dq0
dp

. Note that∫
Ω

ln(X) dq −R(q ‖ p)

=

∫
Ω

ln(X) dq −
∫

Ω

ln

(
dq

dp

)
dq

=

∫
Ω

ln(X) dq −
∫

Ω

ln

(
dq

dq0

)
dq −

∫
Ω

ln

(
dq0

dp

)
dq

=

∫
Ω

ln(X) dq −
∫

Ω

ln

(
dq

dq0

)
dq −

∫
Ω

ln(X) dq + ln

(∫
Ω

X dp

)
= −R(q ‖ q0) + ln

(∫
Ω

X dp

)
.

By Lemma 1.4.1 in DE2011weak, R(q ‖ q0) ≥ 0, with equality if and only if q = q0.

Therefore, ∫
Ω

ln(X) dq ≤ ln

(∫
Ω

X dp

)
+R(q ‖ p),

with equality if and only if q = q0. It is not difficult to show that Equations (S7) and (S8)

are dual in the sense that q = q0 if and only if p = p0. Therefore, given q, if we set p = p0

then the above holds with equality. Moreover, since X is bounded and 1/X ≤ 1/ε,

R(q ‖ p0) =

∫
Ω

ln

(
dq

dp0

)
dq =

∫
Ω

ln(X) dq + ln

(∫
Ω

1

X
dq

)
<∞,

which implies p0 ∈M(q). Hence the infimum in Equation (S6) is attained at p0.

Step 2: Consider now any bounded X ≥ 0. Define a sequence of random variables

(Xn)n∈N by Xn(ω) = max{X(ω), 1/n}. By step 1, we know that Equation (S6) holds for

48Our proof of this step employs similar techniques to the proof of Proposition 1.4.2 in DE2011weak,
although the details are quite different.

S13



each Xn and for any q. Using this, together with the fact that Xn ≥ X for all n, we have∫
Ω

ln(Xn) dq = inf
p∈M(q)

[
ln

(∫
Ω

Xn dp

)
+R(q ‖ p)

]
≥ inf

p∈M(q)

[
ln

(∫
Ω

X dp

)
+R(q ‖ p)

]
.

Since
∫

ln(X1)dq <∞ and ln(Xn) ↓ ln(X), the monotone convergence theorem for extended

real-valued functions (e.g., Theorem 4.3.2 of dudley2002real) implies∫
Ω

ln(X) dq = lim
n→∞

∫
Ω

ln(Xn) dq

≥ inf
p∈M(q)

[
ln

(∫
Ω

X dp

)
+R(q ‖ p)

]
.

Note that these terms could take the value −∞.

To prove the opposite inequality, note that for any n and any p ∈ M(q), Equation (S6)

applied to the function Xn implies∫
Ω

ln(Xn) dq ≤ ln

(∫
Ω

Xn dp

)
+R(q ‖ p).

Since both sides of this inequality are finite for all n, we can again take the limit as n→∞
and apply the monotone convergence theorem to obtain∫

Ω

ln(X) dq ≤ ln

(∫
Ω

X dp

)
+R(q ‖ p).

Since this is true for all p ∈M(q), we have∫
Ω

ln(X) dq ≤ inf
p∈M(q)

[
ln

(∫
Ω

X dp

)
+R(q ‖ p)

]
.

Thus, Equation (S6) holds for any bounded X ≥ 0.

Step 3: Finally, consider any X that is bounded above. Let X+(ω) = max{X(ω), 0}.
Since we have adopted the standard convention that ln(x) = −∞ for any x ≤ 0, we have

ln(X+(ω)) = ln(X(ω)) for all ω. Therefore, since Equation (S6) holds for X+ by step 2,∫
Ω

ln(X) dq =

∫
Ω

ln(X+) dq

= inf
p∈M(q)

[
ln

(∫
Ω

X+ dp

)
+R(q ‖ p)

]
≥ inf

p∈M(q)

[
ln

(∫
Ω

X dp

)
+R(q ‖ p)

]
.
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To establish the opposite inequality, we consider two cases. Let A = {ω ∈ Ω : X(ω) ≤ 0}.
The first case is when q(A) > 0. Then,

∫
Ω

ln(X)dq = −∞, so the above must hold with

equality. The second case is when q(A) = 0. Then, p(A) = 0 for all p ∈ M(q), since any

p ∈ M(p) must be absolutely continuous with respect to q. Therefore,
∫

Ω
X dp =

∫
Ω
X+dp

for all p ∈M(q) and hence

inf
p∈M(q)

[
ln

(∫
Ω

X dp

)
+R(q ‖ p)

]
= inf

p∈M(q)

[
ln

(∫
Ω

X+ dp

)
+R(q ‖ p)

]
.

Thus, the equality is established for both cases, which completes the proof. �

We now proceed with the proof of Theorem 5. For a given f ∈ FΣ and ψ ∈ ΨΣ, define

Xψ : Ω→ [−∞,∞) by

Xψ(ω) =

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω).

To verify that Xψ is bounded above, recall that for each σ, fσ ∈ F is a simple act, that is,

it takes finitely many possible values. Since, in addition, Σ is finite, this implies that there

exists κ ∈ R such that ψσ(fσ(ω, s)) ≤ κ for all ω, s, σ. Therefore, Xψ(ω) ≤ κ <∞ for all ω.

Applying Proposition S3 to this function, we obtain∫
Ω

ln

[∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω)

]
dµ(ω)

=

∫
Ω

ln(Xψ(ω)) dµΩ(ω)

= inf
p∈M(µΩ)

[
ln

(∫
Ω

Xψ(ω) dp(ω)

)
+R(µΩ ‖ p)

]
= inf

p∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p)

]
.

Thus, when V is defined by Equation (6), we have

V (f) = sup
ψ∈ΨΣ

∫
Ω

ln

[∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω)

]
dµ(ω)

= sup
ψ∈ΨΣ

inf
p∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p)

]
.

This completes the proof.
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S5.2 Proof of Theorem 6

Our proof will rely on a version of the von Neumann–Sion Minimax Theorem. vonNeumann1928:minimax

proved that when F : C ×D → R is a bilinear function and C and D are finite-dimensional

simplexes,

sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).

Perhaps the most important and well-known extension of von Neumann’s result is due to

Sion1958:minimax, who showed that the same conclusion can be derived under the weaker

assumptions that C and D are convex subsets of topological vector spaces, one of these sets

is compact, F is quasiconcave and upper semicontinuous in x, and F is quasiconvex and

lower semicontinuous in y. Sion’s result is not quite strong enough for our purposes, since

in our application it may be that neither C nor D is compact and since F may not be

lower semicontinuous in y. We will therefore rely on the following generalization of the von

Neumann–Sion Theorem, which is due to tuy2004minimax.

Theorem S1 (von Neumann–Sion–Tuy Minimax Theorem). Let C be a closed and convex

subset of a topological vector space, and let D be a convex subset of a topological vector space.

Suppose F : C ×D → R satisfies the following conditions:

1. For every y ∈ D, the function x 7→ F (x, y) is quasiconcave and upper semicontinuous

on C.

2. For every x ∈ C, the function y 7→ F (x, y) is quasiconvex on D.

3. For every x ∈ C and y, y′ ∈ D, the function λ 7→ F (x, λy + (1 − λ)y′) is lower

semicontinuous on [0, 1].

4. There exists some η < infy∈D supx∈C F (x, y) and a nonempty finite set L ⊂ D such

that the set CL
η = {x ∈ C : miny∈L F (x, y) ≥ η} is compact.

Then,

sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).

Proof. This result is a special case of Theorem 2 in tuy2004minimax. His result requires

that F be what he calls α-connected. This condition is implied by our assumptions that C

is closed and convex, D is convex, F is quasiconcave and upper semicontinuous in x, and

F is quasiconvex in y. His result also requires the lower semicontinuity property that we

assumed in condition 3. The final assumption needed for his result is condition 4.49 �

49Strictly speaking, Theorem 2 in tuy2004minimax assumes that CLη is compact for η =
supx∈C infy∈D F (x, y) and shows that η < infy∈D supx∈C F (x, y) leads to a contradiction. As is evident
from his proof, our condition 4 is sufficient to obtain the same result.
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Note that the theorem of Sion1958:minimax follows as a corollary to this result: If F is

lower semicontinuous in y then condition 3 is implied, and if D is compact then condition 4

is implied (given that F is upper semicontinuous in x).

We now proceed with the proof of Theorem 6. Take Ψ, µ, and f as in the statement of

the theorem. By Theorem 5, if V is defined by Equation (6), then it satisfies

V (f) = sup
ψ∈ΨΣ

inf
p∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p)

]
.

Fix f , and define H : ΨΣ ×M(µΩ)→ [−∞,∞) by

H(ψ, p) = ln

(∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p).

Define J : ΨΣ ×M(µΩ)→ R+ by

J(ψ, p) = max

{
0,

∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

}
exp(R(µΩ ‖ p)).

Thus, we have H(ψ, p) = ln(J(ψ, p)). Therefore,

V (f) = sup
ψ∈ΨΣ

inf
p∈M(µΩ)

H(ψ, p) = ln

[
sup
ψ∈ΨΣ

inf
p∈M(µΩ)

J(ψ, p)

]
and

ln

[
inf

p∈M(µΩ)
sup
ψ∈ΨΣ

J(ψ, p)

]
= inf

p∈M(µΩ)
sup
ψ∈ΨΣ

H(ψ, p)

= inf
p∈M(µΩ)

[
ln

(
sup
ψ∈ΨΣ

∫
Ω

∫
S×Σ

ψσ(fσ(ω, s)) dµ(s, σ|ω) dp(ω)

)
+R(µΩ ‖ p)

]
.

Given these observations, it suffices to prove that

sup
ψ∈ΨΣ

inf
p∈M(µΩ)

J(ψ, p) = inf
p∈M(µΩ)

sup
ψ∈ΨΣ

J(ψ, p). (S9)

We will prove Equation (S9) in several steps. First, since Σ is a finite set and each fσ is

a simple act, the action plan f can take only finitely many values. That is, for each σ ∈ Σ,

there exists a finite set Zσ ⊂ Z such that

{fσ(ω, s) : ω ∈ Ω, s ∈ S} = Zσ.
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For each σ ∈ Σ and z ∈ Zσ, let

Ez
σ = {(ω, s) ∈ Ω× S : fσ(ω, s) = z}.

We can then express J as follows:

J(ψ, p) = max

{
0,

∫
Ω×S×Σ

ψσ(fσ(ω, s)) d(µ⊗ p)(ω, s, σ)

}
exp(R(µΩ ‖ p))

= max

{
0,
∑
σ∈Σ

∑
z∈Zσ

µ⊗ p(Ez
σ × {σ})ψσ(z)

}
exp(R(µΩ ‖ p)).

(S10)

Note that for any p ∈M(µΩ), since p and µΩ are mutually absolutely continuous, it follows

that µ⊗ p and µ are mutually absolutely continuous. This means that µ⊗ p(Ez
σ ×{σ}) = 0

if and only if µ(Ez
σ × {σ}) = 0. We can therefore assume without loss of generality that

µ(Ez
σ × {σ}) > 0 for all σ ∈ Σ and z ∈ Zσ. For otherwise, we can change the outcome that

the action plan f takes on this event without altering the value of J(ψ, p) for any ψ ∈ ΨΣ

or p ∈ M(µΩ). In particular, if µ(σ) = 0, then we can drop σ from Σ without altering the

function J . If µ(σ) > 0 but µ(Ez
σ × {σ}) = 0, then we can alter the action plan f on this

event by assigning any other outcome z′ ∈ Zσ such that µ(Ez′
σ × {σ}) > 0.

Recall that the functions in Ψ can possibly take the value −∞. This prevents us from

applying Theorem S1 since the set of functions mapping into [−∞,∞] does not form a

topological vector space.50 We now argue that we can reduce the set ΨΣ to include only

functions that take real values for σ ∈ Σ and z ∈ Zσ. As we just observed, we can assume

without loss of generality that µ(Ez
σ × {σ}) > 0 for all σ ∈ Σ and z ∈ Zσ. Therefore, if

ψσ(z) = −∞ for some σ ∈ Σ and z ∈ Zσ, then for any p ∈M(µΩ),∑
σ∈Σ

∑
z∈Zσ

µ⊗ p(Ez
σ × {σ})ψσ(z) = −∞,

and hence J(ψ, p) = 0. Let

C =
{
ψ ∈ ΨΣ : ψσ(z) > −∞ for all σ ∈ Σ, z ∈ Zσ

}
.

If C = ∅, then J(ψ, p) = 0 for all ψ ∈ ΨΣ and p ∈ M(µΩ), so Equation (S9) holds trivially.

If instead C 6= ∅, then Equation (S9) holds if and only if

sup
ψ∈C

inf
p∈M(µΩ)

J(ψ, p) = inf
p∈M(µΩ)

sup
ψ∈C

J(ψ, p). (S11)

To establish Equation (S11), first observe that while the functions (adaptation plans) in

50To illustrate, if a = −∞ and b ∈ R, then αa + (1 − α)b = −∞ for all α ∈ (0, 1], but αa + (1 − α)b = b
for α = 0. Therefore, the mixture operation for functions taking values in [−∞,∞] is not continuous.
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C are defined on all of Σ×Z, by Equation (S10) only the values that this function takes on

the finite set

A ≡ {(σ, z) : σ ∈ Σ, z ∈ Zσ} ⊂ Σ× Z

are relevant for the determining the value of J . That is, ψ|A = ψ′|A (meaning ψσ(z) = ψ′σ(z)

for all (σ, z) ∈ A) implies J(ψ, p) = J(ψ′, p). Moreover, by the definition of C, any function

ψ ∈ C must take values in the reals for any (σ, z) ∈ A. Let

C̃ =
{
ψ̃ : A→ R : ψ̃ = ψ|A for some ψ ∈ C

}
.

With slight abuse of notation, we can therefore treat J as function from C̃ ×M(µΩ) into R.

Thus, Equation (S11) is equivalent to

sup
ψ̃∈C̃

inf
p∈M(µΩ)

J(ψ̃, p) = inf
p∈M(µΩ)

sup
ψ̃∈C̃

J(ψ̃, p).

The proof is completed by demonstrating that the assumptions of Theorem S1 are satis-

fied for this set C̃, for the set D = M(µΩ), and for the function F = J . Since Ψ is convex,

it is easy to show that C̃ is convex. It is also straightforward to show that the set M(µΩ) is

convex. Next, since Ψ was assumed to be a closed subset of [−∞,∞]Z (in the product topol-

ogy on the extended reals), ΨΣ is a closed subset of [−∞,∞]Σ×Z (in the product topology

on the extended reals). From this, it follows that C̃ is a closed subset of RA (in the standard

Euclidean topology).

To see that condition 1 in Theorem S1 is satisfied, note first that for any p ∈M(µΩ), the

mapping

ψ̃ 7→
∑
σ∈Σ

∑
z∈Zσ

µ⊗ p(Ez
σ × {σ}) ψ̃σ(z)

is linear and continuous on C̃. Therefore, by Equation (S10), the mapping ψ̃ 7→ J(ψ̃, p)

is quasiconcave and continuous on C̃. The following lemma will be used to show that

conditions 2 and 3 are satisfied.

Lemma S1. Suppose X : Ω→ R is measurable and bounded, and fix any q ∈ 4(Ω). Then,

for any p, p′ ∈M(q), the mapping

λ 7→ max

{
0,

∫
Ω

X d(λp+ (1− λ)p′)

}
exp(R(q ‖λp+ (1− λ)p′))

is quasiconvex and lower semicontinuous on the interval [0, 1].

Proof. Our proof will make use of the Donsker–Varadhan variational formula (see, for ex-
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ample, Lemma 1.4.3 in DE2011weak), which states that for any q, r ∈ 4(Ω),

R(q ‖ r) = sup
Y ∈Bb(Ω)

[∫
Ω

Y dq − ln

(∫
Ω

exp(Y ) dr

)]
,

where Bb(Ω) denotes the space of all bounded Borel measurable real functions on Ω. There-

fore,

exp(R(q ‖ r)) = sup
Y ∈Bb(Ω)

exp
(∫

Ω
Y dq

)∫
Ω

exp(Y ) dr
,

and hence

max

{
0,

∫
Ω

X dr

}
exp(R(q ‖ r)) = max

{
0, sup

Y ∈Bb(Ω)

exp
(∫

Ω
Y dq

) ∫
Ω
X dr∫

Ω
exp(Y ) dr

}
.

We will show for any X, Y ∈ Bb(Ω), q ∈ 4(Ω), and p, p′ ∈M(q), the function h : [0, 1]→ R
defined by

h(λ) =

exp

(∫
Ω

Y dq

)∫
Ω

X d(λp+ (1− λ)p′)∫
Ω

exp(Y ) d(λp+ (1− λ)p′)

is quasiconvex and lower semicontinuous. This will establish the claim in the statement of

the lemma, since the supremum of a set of quasiconvex and lower semicontinuous functions

retains these properties.

Continuity of the function h in λ is immediate. To see that h is quasiconvex, fix any

κ ∈ R and fix any λ1, λ2 ∈ [0, 1] such that h(λ1) ≤ κ and h(λ2) ≤ κ. Suppose without loss

of generality that λ1 ≤ λ2. We need to show that h(λ) ≤ κ for any λ ∈ (λ1, λ2). Note that

h(λi) ≤ κ is equivalent to

exp

(∫
Ω

Y dq

)∫
Ω

X d(λip+ (1− λi)p′) ≤ κ

∫
Ω

exp(Y ) d(λip+ (1− λi)p′).

Any λ ∈ (λ1, λ2) can be written as αλ1 + (1 − α)λ2 for α = (λ2 − λ)/(λ2 − λ1). Therefore,

we have

exp

(∫
Ω

Y dq

)∫
Ω

X d(λp+ (1− λ)p′)

= α exp

(∫
Ω

Y dq

)∫
Ω

X d(λ1p+ (1− λ1)p′) + (1− α) exp

(∫
Ω

Y dq

)∫
Ω

X d(λ2p+ (1− λ2)p′)

≤ ακ

∫
Ω

exp(Y ) d(λ1p+ (1− λ1)p′) + (1− α)κ

∫
Ω

exp(Y ) d(λ2p+ (1− λ2)p′)

= κ

∫
Ω

exp(Y ) d(λp+ (1− λ)p′),
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which implies h(λ) ≤ κ. This establishes that h is quasiconvex, which completes the proof.

�

Fix any ψ̃ ∈ C̃ and define X : Ω→ R by

X(ω) =

∫
S×Σ

ψ̃σ(fσ(ω, s)) dµ(s, σ|ω).

Applying Lemma S1 to this random variable X and to q = µΩ implies that for any p, p′ ∈
M(µΩ), the mapping λ 7→ J(ψ̃, λp+ (1− λ)p′) is quasiconvex and lower semicontinuous on

[0, 1]. This implies that both conditions 2 and 3 in Theorem S1 are satisfied.

Finally, we show that either condition 4 holds for L = {µΩ} and some η > 0, or Equa-

tion (S11) holds trivially with both sides of the equality equal to zero. Thus, there are two

cases to consider. The first case is when

inf
p∈M(µΩ)

sup
ψ̃∈C̃

J(ψ̃, p) > 0.

In this case, take any η > 0 that is strictly less than this value, and take L = {µΩ}. The set

C̃µΩ
η ≡

{
ψ̃ ∈ C̃ : J(ψ̃, µΩ) ≥ η

}
is closed since J is continuous in ψ̃ and C̃ is closed. Given this, and since C̃ is a subset of the

finite-dimensional Euclidean space RA, the set C̃µΩ
η is compact if and only if it is bounded.

Now, recall that we assumed that supψ∈Ψ ψ(z) < ∞ for all z ∈ Z. Since A is finite, this

implies that

κ ≡ max
(σ,z)∈A

sup
ψ̃∈C̃

ψ̃σ(z) <∞.

In addition,

β ≡ min
(σ,z)∈A

µ(Ez
σ × {σ}) > 0.

For any ψ̃ ∈ C̃, σ̄ ∈ Σ, and z̄ ∈ Zσ,∑
σ∈Σ

∑
z∈Zσ

µ(Ez
σ × {σ}) ψ̃σ(z) ≤ µ(E z̄

σ̄ × {σ̄}) ψ̃σ̄(z̄) + (1− µ(E z̄
σ̄ × {σ̄}))κ

≤ β ψ̃σ̄(z̄) + (1− β)κ.

Thus, since η > 0, ψ̃ ∈ C̃µΩ
η implies that

0 < η ≤ J(ψ̃, µΩ) ≤ β ψ̃σ̄(z̄) + (1− β)κ =⇒ ψ̃σ̄(z̄) ≥ −(1− β)κ

β
.

Therefore, the functions in C̃µΩ
η are bounded above by κ and bounded below by −(1−β)κ/β.
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This implies that C̃µΩ
η is a bounded, and hence compact, subset of RA. Thus, all of the

assumptions of Theorem S1 are satisfied and we can therefore conclude that Equation (S11)

holds. The second case is when

inf
p∈M(µΩ)

sup
ψ̃∈C̃

J(ψ̃, p) = 0.

In this case, it is immediate that the left side of Equation (S11) must also equal zero. Thus,

in either case Equation (S11) holds. This completes the proof.
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