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Abstract

We propose a novel class of multivariate Realized GARCH models that utilize realized mea-

sures of volatility and correlations. The key property of the model is a convenient parametrization

of the correlation matrix that requires no additional structure to ensure positive definiteness.

The correlation matrix is characterized by a vector, that can vary freely in the real vector space.

A more parsimonious structure is often desired in practice, in particularly in high dimensional

systems, and the framework facilitates simple and intuitive dimension reductions. We apply the

model to returns of nine assets and illustrate a dimension reduction that arises from a natu-

ral block equicorrelation structure. Interestingly, we find that the empirical distribution of the

transformed realized correlations is approximately Gaussian.
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1 Introduction

Univariate GARCH models have had much empirical success since the ARCH model was introduced

by Engle (1982). A large number of univariate GARCH-type models have been proposed in the

literature, whereas the literature on multivariate GARCH models is less voluminous. It is not

entirely obvious how the univariate GARCH structure is naturally generalized to higher dimensions.

In a multivariate setting, the main object of interest is the conditional covariance matrix, Ht =

var(rt|Ft−1), and there are two main challenges to modeling Ht. First, a model must produce a

positive (semi) definite matrix, and this entails nonlinear cross restrictions on the elements of Ht.

Second, the number of covariance terms for a vector of dimension p is proportional to p2, and

this can become computationally difficult, unless p is relatively small. Many multivariate GARCH

models impose a structure on Ht that serves to address these two issues. Such a structure is

imposed to ensure that Ht is positive semidefinite and to make the model more parsimonious, see

e.g. Bollerslev (1990) and Engle and Kelly (2011). A convenient way to model Ht, which we adopt

in this paper, is to separately model variances and correlations. This is the underlying structure

of Dynamic Conditional Correlation (DCC) model by Engle (2002a), see also Engle and Sheppard

(2001), Shephard et al. (2008), Aielli (2013), and Engle et al. (2019).

The main contributions in this paper are threefold. First, we develop a new class of multivariate

GARCH models that facilitates a flexible modeling of the correlation structure, while positive

definiteness is assured without further constraints. Second, we develop a framework for dimension

reduction for large correlation matrices. This dimension reduction is demonstrated for the case

with block equicorrelation matrices. Specifically, we show that a block equicorrelation structure

is equivalent to a particular factor structure. A block equicorrelation structure may be motivated

by sector classifications, or some other appropriate categorization, of the assets being modeled.

Third, we demonstrate the usefulness of the framework in an empirical application. Specifically,

we apply the block equicorrelation structure to nine asset returns from three different sectors. The

new framework improves the empirical fit of the vector of returns both in-sample and out-of-sample.

Moreover, the predicted covariance matrices can be used for optimal portfolio construction, and we

find that portfolio variance is reduced by a factor of two relative to a naive equal weights portfolio.

Another contribution of our empirical analysis is evidence that the transformed realized cor-

relations, %̂ (defined below), are approximately Gaussian distributed. This result is analogous to

existing results for the logarithmically transformed realized variances, see Andersen et al. (2001a).

Combined, these results provide justification for the Gaussian specification used to define the like-

2



lihood function for the multivariate Realized GARCH model.

The new class of multivariate GARCH models is based on a convenient parametrization of the

conditional correlation matrix, Ct, that corresponds to Ht. The parametrization is given by the

vector %t = g(Ct), where the mapping % = g(C) is defined by taking the matrix logarithm to the

correlation matrix, C, and stacking the off-diagonal elements of logC into the vector % ∈ Rd, where

d = p(p−1)/2. This parametrization was recently introduced by Archakov and Hansen (2018), who

showed that it has many interesting properties. For instance, this mapping is one-to-one between

the set of non-singular correlation matrices and Rd, so regardless of how the vector %t is modeled

or regulated, it will always map back to a unique positive definite correlation matrix. In other

words, this parametrization guarantees positive definiteness, but need not impose any additional

restrictions on Ht. It is, however, straight forward to impose additional structure on the correlation

matrix if required. A more parsimonious structure on Ht will typically be needed unless p is small,

and this can be achieved with a factor structure for %t, as we will show in Section 2.3. A situation

where a factor structure for %t emerges naturally, is when the correlation matrix has a block structure

with identical correlations within blocks.

Early multivariate GARCH models solely relied on daily returns in the dynamic of volatility,

we will make use of realized measures of volatilities and correlations. This is beneficial, because

the realized measures provide accurate signals about volatility, which is valuable in the dynamic

modeling of conditional variances and correlations. The use of realized measures was popularized

by results in Andersen and Bollerslev (1998), and key theoretical results were subsequently estab-

lished in Andersen et al. (2001b), Barndorff-Nielsen and Shephard (2002a), Andersen et al. (2003),

Barndorff-Nielsen and Shephard (2004a), see also Hansen and Lunde (2011) and references therein.

Realized measures were initially used to evaluate and compare the performance of GARCH models,

see Andersen and Bollerslev (1998). A natural next step was to incorporate realized measures in

GARCH models and Engle (2002b) was one of the first to include realized measures as an exogenous

variable in GARCH models. Complete models, that also specify a model for the realized measures,

soon followed, including the MEM by Engle and Gallo (2006), the HEAVY model by Shephard and

Sheppard (2010), and the Realized GARCH model by Hansen et al. (2012). Multivariate exten-

sions of these models were proposed in Noureldin et al. (2012), Hansen et al. (2014), Dumitrescu

and Hansen (2017), and Gorgi et al. (2019). Another way to incorporated realized measures in

multivariate GARCH models is explored in Bauwens et al. (2012), who build on the Conditional

Autoregressive Wishart model of Golosnoy et al. (2012).
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Our approach to modeling the correlation structure could, with some adaptation, be imple-

mented in a conventional manner, using daily returns only. However, it is advantageous to include

realized measures in the modeling. Realized measures are computed from high frequency data, and

these provide accurate signals about the key quantities of the model. Therefore, including real-

ized measures in GARCH models make them more responsive to sudden changes in volatility and

correlations, which improve the empirical fit and model predictions, see e.g. Hansen and Huang

(2016). The proposed framework makes it easy to incorporate realized measures of volatility in

the modeling. This part of the model builds on the Realized GARCH framework of Hansen et al.

(2012), and the proposed model is the first multivariate generalization of Realized GARCH frame-

work that does need not impose any restrictions on the covariance structure. Moreover, the realized

GARCH framework admits a dependence between volatility shocks and returns shocks, that is well-

documented in the empirical literature. This dependence is commonly referred to as the leverage

effect.

The parametrization of the correlation matrix, Ct, involves the matrix logarithm of Ct. The

matrix logarithm has previously been used in the modeling of covariance matrices in Chiu et al.

(1996). In the context of the multivariate GARCH it was used in Kawakatsu (2006) and Asai and So

(2015) applied it to the DCC model. The transformation has also been used in stochastic volatility

models, see Ishihara et al. (2016), and in reduced-form models of realized covariance matrices, see

e.g. Bauer and Vorkink (2011) and Weigand (2014).1 Here we apply the matrix logarithm to

the correlation matrix, which differs from applying it to the covariance matrix in important ways,

see Archakov and Hansen (2018). In the present context, it enables us to model the conditional

variances separately from the conditional correlations using a familiar GARCH structure for each of

the univariate conditional variances. Moreover, this model structure enables us to explicitly model

the empirically important leverage effect.

We proceed as follows. In Section 2 we introduce notation, present the modeling framework,

and discuss how a factor structure can be imposed on the correlation matrix. We also derive results

that are specific to block equicorrelation matrices. Section 3 details the estimation of the model and

how the model can be used for forecasting. An extensive empirical analysis of nine asset returns

from three sectors is presented in Section 4. We conclude in Section 5 and complete the paper with

three appendices with proofs, step-by-step estimation instructions, and additional empirical results,

respectively.
1Additional related literature include the work by Liu (2009), Chiriac and Voev (2011), Golosnoy et al. (2012),

and Bauwens et al. (2012).
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2 The Multivariate Realized GARCH Model

In this section we present the multivariate GARCH model that can utilize realized measures of

variances and correlations. The key novelty in this model is the way in which the correlation

structure is modeled. We apply a convenient vector parametrization of the correlation matrix,

%t = g(Ct) that does not impose any structure beyond positive definiteness of Ct. The formulation

allows for additional structure to be imposed, for instance by modeling the vector %t with a factor

structure. We explore, in details, one particular way to impose a factor structure on Ct, which is

motivated by a block equicorrelation structure.

2.1 Notation and Preliminaries

We let rt denote a p-dimensional vector of returns in period t, where t represents a generic unit

of time – typically a trading day. The conditional mean is denoted by µt = E(rt|Ft−1) and the

conditional variance by

Ht = var(rt|Ft−1),

where {Ft} is the natural filtration for (rt,RMt). Here RMt denotes an ex-post empirical measure

of Ht, such as the (multivariate) realized variance, see Barndorff-Nielsen and Shephard (2004b), or

the multivariate realized kernel, see Barndorff-Nielsen et al. (2011).

Following Engle (2002a) we decompose the conditional covariance matrix into variances and

correlations,

Ht = Λ1/2
ht
CtΛ1/2

ht
, (1)

where Λht = diag(h1,t, . . . , hp,t) with hi,t = [Ht]ii, i = 1, . . . , p. Thus hi,t is the conditional variance

of ri,t (the i-th element of rt) and Ct = corr(rt|Ft−1) is the conditional correlation matrix of rt. The

structure in (1) is the basis for the Dynamic Conditional Correlation framework, see Engle (2002a)

and Engle and Sheppard (2001). This formulation enables us to disentangle the dynamic properties

of the conditional variances from that of the conditional correlation. In contrast to the conventional

DCC model, we will incorporate realized measures of variances and correlations into the modeling,

and we employ a different parametrization of Ct, which we detail below.

The central element in GARCH model is the equation that specifies the dynamic properties of

Ht and how these are influenced by lagged returns. This equation can be enhanced to make use

of realized measures of volatility. The Realized GARCH models are characterized by a measure-

ment equation that specifies how the contemporaneous realized measures related to the conditional
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moments, such as Ht.

In this paper, we will split the modeling of Ht in two parts: The modeling of the conditional

variances and the modeling of the conditional correlations. This leads to two sets of GARCH and

measurement equations, that both utilize appropriate realized measures. From the p× p empirical

measure of the covariance matrix in period t, RMt, we extract the diagonal elements xt = diag(RMt)

and the corresponding correlation matrix denoted by

Yt = Λ−1/2
xt

RMtΛ−1/2
xt

.

Here Λxt = diag(x1,t, . . . , xp,t) denotes the diagonal matrix with the elements of xt on the diagonal.

The realized measure of the covariance matrix, RMt, will be assumed to be positive definite so

that Yt is a correlation matrix with detYt > 0. In summary, xt and Yt are the observed empirical

measures of the latent variables, ht and Ct, respectively. The realized measure, RMt, will typically

be consistent for the quadratic variation. The quadratic variation is not identical to the conditional

variance, Ht, so we will need to entertain non-trivial measurement errors in how xt and Yt relate to

ht and Ct, respectively.

2.1.1 Parametrizing the Correlation Matrix

An invertible matrix, Ct, needs to satisfy two properties in order to be a proper correlation matrix:

It must be positive definite and each of its diagonal elements must be equal to one. In some models

these two requirements are satisfied by imposing a structure that implies even stronger conditions.

For instance, an equicorrelation structure with the common correlation confined to the interval

(− 1
p−1 , 1).

In this paper we adopt a vector representation of the correlation matrix that was proposed by

Archakov and Hansen (2018). This parametrization is based on the following mapping:

% = g(C) = vecl(logC),

where logC =
∑∞
k=1(−1)k(C − I)k/k is the matrix logarithmically transformed correlation matrix,

and vecl(·) extracts and vectorizes the elements below the diagonal. To illustrate this parametriza-
tion, consider the following example,

g(


1.0 • •

0.8 1.0 •

0.0 0.2 1.0

) = vecl(log


1.0 • •

0.8 1.0 •

0.0 0.2 1.0

) = vecl(


−0.53 • •

1.14 −0.57 •

−0.13 0.28 −0.03

) =


1.14

−0.13

0.28

 .
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In Archakov and Hansen (2018), it is shown that g(C) is a one-to-one mapping between Cp×p and

Rd, where Cp×p is the space of positive definite p× p correlation matrices and d = p(p− 1)/2. Thus,

a non-singular p × p correlation matrix can be represented and modeled as a vector in Rp(p−1)/2.

In the bivariate case, p = 2, where C11 = C22 = 1 and C12 = C21 = ρ, it can be shown that

g(C) = 1
2 log 1−ρ

1+ρ , which is the Fisher transformation of the correlation coefficient, ρ. In this case,

it is straight forward to invert the transformation, because ρ = (e2% − 1)/(e2% + 1). An algorithm

for the inverse mapping, C = g−1(%), for an arbitrary vector, % ∈ Rp(p−1)/2 is given in Archakov

and Hansen (2018).

Having introduced the transformed conditional correlations, %t = g(Ct), we denote the corre-

sponding transformed realized correlations by,

yt = g(Yt).

Both %t and yt are p(p− 1)/2-dimensional vectors. Instead of modeling the conditional correlation

matrix, Ct, that is subject to positive (semi-) definite constraints, we will model the vector %t

that varies freely in Rp(p−1)/2. The corresponding empirical measures are subjected to the same

transformation, and yt is the empirical measure that we use to model the dynamic properties of %t.

Much like the way that squared returns are used to model the dynamic of the conditional variance

in a standard GARCH model.

The model presented above, can be viewed as a natural generalization of the bivariate structure

in Hansen et al. (2014), because the two models coincide when p = 2, in which case %t emerges

as the Fisher transformed correlation. The approach in Hansen et al. (2014) was to construct

a multivariate model (for dimensions higher than 2) by fusing bivariate models to form a larger

system. The fusing of bivariate models implies a restricted single-factor structure on Ct, that is not

imposed in this paper.

2.2 The Model

With the required notation in place, we are now ready to introduce the multivariate realized GARCH

model which consists of return equations, GARCH equations, and measurement equations. The

return equation for the i-th asset at times t takes the form

ri,t = µi + h
1/2
i,t zi,t, i = 1, . . . , p, t = 1, . . . , T,
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where we have assumed that E(ri,t|Ft−1) is constant, as is often the case in GARCH models.

It follows that the standardized return zi,t = h
−1/2
i,t (ri,t − µi) is such that E(zi,t|Ft−1) = 0 and

var(zi,t|Ft−1) = 1. However, the standardized returns, zt = Λ−1/2
ht

(rt − µ), are not uncorrelated

since var(zt|Ft−1) = Ct. In our likelihood analysis, we will specify the distributional properties of

zt, t = 1, . . . , T , to be distributed as i.i.d.N(0, Ct).

Next, we specify the GARCH equations state how Ht depends on past observable variables, and

we make use of lagged values of both returns and realized measures. The dynamics for the vector

of conditional variances and the vector representation of the conditional correlations are as follows:

log ht = ω + β log ht−1 + τ(zt−1) + γ log xt−1,

%t = ω̃ + β̃%t−1 + γ̃yt−1,
(2)

where ω is an p×1 vector, β and γ are p×p matrices, τ(·) is an leverage function that we elaborate

on below. Similarly ω̃ is an d× 1 vector and β̃ and γ̃ are d× d matrices with d = p(p− 1)/2.

Realized GARCHmodels are characterized by measurement equations that relate latent variables

to their corresponding empirical quantities. In the present context, where we have realized measures

of the variances and the (transformed) correlations, we adopt the following measurement equations:

log xt = ξ + Φ log ht + δ(zt) + vt,

yt = ξ̃ + Φ̃%t + ṽt,
(3)

where ξ is an p×1 vector, Φ is an p×p matrix, ξ̃ is an d×1 vector, Φ̃ is an d×d matrix, and δ(·) is

(like τ(·)) a leverage function that captures dependencies between return and volatility innovations.

This dependency is known to be empirically important, and is often referred to as the leverage effect,

see Black (1976), Christie (1982), Engle and Ng (1993).2 In our empirical analysis we simplify the

structure further by specifying the matrices β, β̃, γ, γ̃, Φ, and Φ̃ to be diagonal matrices.

The measurement equations involves the “error” terms vt and ṽt, which we stack into the vector

ut = (v′t, ṽ′t)′. In our likelihood analysis we specify ut to be iidN(0,Σ) and independent of zt. The

Gaussian specification is less likely to be at odds with data because the measurement equations are

formulated with the logarithmically transformed variances, log xt and the transformed correlations,

yt = g(Yt). For instance, Andersen et al. (2001a) and Barndorff-Nielsen and Shephard (2002b) found

that the logarithm of the realized variance can be well approximated by a Gaussian distribution,
2The leverage effect is sometimes used to refer to a linear dependence, i.e. the (usually negative) correlation

between the return volatility and the actual returns.
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and the transformation, g, can be interpreted as a generalization of the Fisher transformation of

a single correlation, see Archakov and Hansen (2018). The implication is that yt is approximately

Gaussian distributed, as is the case for log xt, and this is desirable in the present context where

we adopt a Gaussian specification. Empirical justification for the Gaussian specification will be

presented in Section 4.3.

The measurement errors are likely to be correlated in practice, so that the covariance matrix Σ is

expected to be a non-diagonal matrix. The assumption that ut and zt are independent is obviously

restrictive, however the inclusion of the leverage function, δ(·), served to eliminate some forms of

dependencies, because it is sought to capture the conditional mean, δ(zt) = E[log xt−ξ−Φ log ht|zt],

which would imply mean-independence, E[ut|zt] = 0. Following Hansen et al. (2012), we introduce

a parametric leverage function given by,

δ(zt) = δ1zt + δ2(zt ◦ zt − ιp)

where ιp denotes the p × 1 vector of ones, δ1 and δ2 are p × p coefficient matrices. This leverage

function defines a multivariate version of the leverage function introduced in Hansen et al. (2012).

We parametrize τ similarly, τ(z) = τ1z + τ2(z ◦ z − ιp), where τ1 and τ2 are p × p matrices. This

structure is motivated by results in Hansen et al. (2012) and Hansen and Huang (2016) who found

that a parsimonious leverage function written as a second-order Hermite polynomial is sufficient for

capturing the asymmetry dependence between return shocks and volatility shocks. In our empirical

analysis we also impose a diagonal matrix structure on the four p× p matrices δ1, δ2, τ1, and τ2, to

reduce the number of free parameters in the model.

In the next Section we discuss way to further simplify the model by reducing the number of

latent variables that drive the variation in the correlation matrix.

2.3 Dimension Reduction of the Correlation Structure

The formulation above permits a flexible modeling of the correlation matrix. Any non-singular

correlation matrix, Ct, maps to a unique vector %t = g(Ct) and any vector %t (of proper dimension)

maps to a unique correlation matrix, Ct = g−1(%t).

This can be useful for systems of modest dimensions. The number of latent variables embedded

in the correlation matrix, Ct, is the dimension of %t which equals d(p) = p(p− 1)/2 . Thus d(p) =

1, 3, 6, 10, 15, 21, 28, 36, for p = 2, . . . , 9. So the number of latent variables becomes unmanageable

unless p is relatively small, and this necessitates some additional structure in the model.
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We can impose structure on Ct by modeling %t with a smaller number of latent variables,

specifically by letting %t = %(ζt) be a function of a lower dimensional vector ζt ∈ Rk, where k < d.

In this section, we consider the case were %t is a linear function of ζt:

%t = Aζt,

for some d × k matrix A. The implication is that the variation in Ct is driven by k factors, where

the factors are the elements in ζt. This enables us to reduce the dimensions of the GARCH and

measurement equations. The linear restriction befits the lower dimensional GARCH equation,

ζt = ω̌ + β̌ζt−1 + γ̌y̌t−1, (4)

where y̌t = (A′A)−1A′yt ∈ Rk. The reason that y̌t is the natural signal about ζt follows from well

known projection arguments. If A has full column rank, k, then there exists an d× (d− k) matrix,

A⊥ so that (A,A⊥) is a full rank matrix, and A′A⊥ = 0. Thus %t = Aζt implies A′⊥%t = 0 and

the identity I = A(A′A)−1A′ + A⊥(A′⊥A⊥)−1A′⊥ establishes that the factor structure %t = Aζt

implies %t = A(A′A)−1A′%t. Recall that the vector of transformed realized correlations, yt, is the

our empirical “signal” about %t. The identity,

yt = [A(A′A)−1A′ +A⊥(A′⊥A⊥)−1A′⊥]yt = Ay̌t +A⊥(A′⊥A⊥)−1A′⊥yt,

shows that y̌t is the the natural signal about ζt when %t = Aζt. This motivates the GARCH equation

(4) and the corresponding measurement equation is given by

y̌t = ξ̌ + Φ̌ζt + v̌t. (5)

So the linear restrictions enable us to reduce the dimension of both the GARCH and measurement

equation to k from d.

The dimension reduction (outlined here) requires a d×k matrix, A. This matrix may be chosen

ex-ante, but it can also be a matrix that is determined empirically. An empirically estimated A (or

rather the subspace spanned by its columns) including the number of columns in A (the number

of factors), would require proper inference methods to be derived for this purpose. In this paper,

we will focus on the case where A is known, and leave the case with an empirically determined A

for future research. We also leave more general factor structures, %t = %(ζt), for future research.
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The linear structure, %t = Aζt, considered in this paper is the structure that emerges from a block

equicorrelation matrix.

Specific choices for A can be motivated by assuming specific structures apply to Ct, and we will

in our empirical analysis adopt an equicorrelation structure and a block equicorrelation structure

that define the matrix A. Imposing the block equicorrelation structure on Ct can be achieved with

a particular matrix, A, as we will show in the next subsection.

2.4 Dynamic Block Equicorrelation

The transformation, %t = g(Ct), has interesting properties, and preserves certain structures in
Ct, see Archakov and Hansen (2018). In this paper, we present a rigorous proof that the block
equicorrelation structure is preserved in the transformed matrix logCt. The result can be illustrated
with the following example:



1.0 0.4 0.4 0.2 0.2 0.2

0.4 1.0 0.4 0.2 0.2 0.2

0.4 0.4 1.0 0.2 0.2 0.2

0.2 0.2 0.2 1.0 0.6 0.6

0.2 0.2 0.2 0.6 1.0 0.6

0.2 0.2 0.2 0.6 0.6 1.0


︸ ︷︷ ︸

=C



−.16 .349 .349 .104 .104 .104

.349 −.16 .349 .104 .104 .104

.349 .349 −.16 .104 .104 .104

.104 .104 .104 −.36 .553 .553

.104 .104 .104 .553 −.36 .553

.104 .104 .104 .553 .553 −.36


︸ ︷︷ ︸

=log C

. (6)

The property that the block structure in C is carried over to logC holds in general, regardless of

the number of blocks and block sizes.

Next we introduce the notion of a quasi-block matrix that is similar to a block matrix except

for its diagonal.

Definition 1. A matrix, B, is said to be a quasi-block matrix, with partition p1, p2, . . . , pK , if

B =



BI1,I1 BI1,I2 · · · BI1,IK

BI2,I1 BI2,I2 BI2,IK

... . . . ...

BIK ,I1 BIK ,I2 · · · BIK ,IK


,

where BIi,Ij is a pi×pj matrix where all elements are identical if i 6= j, and (if i = j) the off-diagonal

elements of BIi,Ii have an identical common value, whereas the diagonal elements of BIi,Ii may have

a different common value.
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A p × p correlation matrix, C, with a quasi-block structure, is known as block equicorrelation

matrices, see Engle and Kelly (2011). The underlying structure is a classification of variables into

groups where the correlation between two variables is defined by their group membership. By sorting

the variables according to their group membership, the block equicorrelation structure emerges, as

exemplified in (6) for the case with two groups. If all variables belong to the same group, then all

correlation coefficients in C are identical, and this case corresponds to the equicorrelation matrix.

For block equicorrelation matrices we have an interesting result that the matrix-logarithmically

transformed correlation matrix preserves the same block structure, see e.g. (6). This facilitates a

parsimonious modeling of correlation matrices with a quasi-block structure, because the elements of

the transformed matrix can be modeled in an unrestricted way, without compromising the required

structure for a correlation matrix. The formal result that justifies this approach to modeling is the

following.

Theorem 1. Suppose that C is a non-singular correlation matrix with a quasi-block structure. Then

logC has the same quasi-block structure.

The block equicorrelation structure is an intuitive way to impose structure on a correlation

matrix, which reduces the number of free parameters. A p × p correlation matrix has p(p − 1)/2

correlations, whereas a block equicorrelation matrix with b groups has at most b(b−1)/2+b distinct

correlations.3 In our empirical analysis, we model returns for nine assets - three assets from three

distinct sectors - so we employ a 3 × 3 block structure, which has 6 distinct correlations, whereas

the unrestricted correlation matrix has 9× 8/2 = 36 correlations.

The correlations in a block equicorrelation matrix are subject to non-linear cross restrictions,

steaming from the positive definiteness requirement. The result in Theorem 1 facilitates modeling

of a block equicorrelation matrix using an unrestricted vector (the distinct off-diagonal elements

of the transformed correlation matrix, logC). These elements can vary freely, and will always

map back to a unique positive definite correlation matrix. Bypassing the need to verify positive

definiteness, makes the result in Theorem 1 very useful for the empirical implementation of the

block equicorrelation model by Engle and Kelly (2011).

The block structure offers a useful dimension reduction, but in order to make use of it, one has

to specify the block structure. The block structure could be selected based on prior knowledge,

where subsets of variables are naturally bundled together, such as assets from distinct economic

sectors. Alternatively, one could use a data-driven approach to form the blocks. For instance, by
3The exact number of distinct correlation is b(b − 1)/2 + b̃, where b̃ is the number of groups that contain two or

more elements. The obvious reason being that a 1 × 1 diagonal block will not have a correlation coefficient.
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using empirical measures of correlations to group assets with similar correlations together. In our

empirical analysis, we study nine assets, where the block structure is defined by the sectors to which

the assets belong.

2.5 Measurement Equation under Dimension Reduction

The original measurement equation (3) can be replaced with the condensed equation (5) under

the factor structure, %t = %(ζt), but one could also maintain the original equation. In many

applications the primary objective is to obtain a good model for returns, whereas the model for the

realized measures are of secondary interest. The main purpose of the measurement equations for

the transformed variances and correlations is to facilitate a way to incorporate the realized measures

into the modeling. When a factor structure is used, %t = %(ζt), the lower dimensional measurement

equation for ζt is sufficient to achieve this, and using a lower dimensional system of equations can

be numerically advantageous.

It should be pointing out that there are situations where the original measurement equation

(3) should be used. For instance, if multiple model specifications are to be compared in terms of

their total log-likelihood, then it requires that all models employ the same measurement equations.

Different factor structures could, in principle, be condensed to different measurement equations.

But a comparison of the total likelihood for models based on different measurement equations is

a comparison of models that model different (dimensions of) variables. So this would amount to

a comparison of apples and oranges. Therefore, if multiple models are to be compared in terms

of their total likelihood, then one should adopt a common set of measurement equations, such

as (3). An alternative way to proceed, is to evaluate the model specifications in terms of their

partial log-likelihood for returns, and ignore the part of the likelihood that relate to the realized

measures. Since the primary objective of multivariate GARCH models is to model the conditional

distribution of returns, this may be the preferred way to compare models. The relevant terms of

the log-likelihood for this comparisons are detailed in the next section. In our empirical analysis we

demonstrate how different model specifications can be compared in terms of their ability to model

the conditional distribution of returns, using the return log-likelihood.

3 Estimation

The estimation problem is relatively simple because the model is an observation-driven model. The

dynamics of all latent variables (conditional variances and correlations) are driven by observable
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variables (returns and realized measures). Moreover, the model has a structure that permits some

simplifications in the expression for the likelihood function.

We can factorize the joint density of (rt, xt, yt), conditional on the past, into the marginal density

for returns and the density for realized variables, conditional on contemporaneous returns. Thus, the

joint density is expressed as the product, ft−1(rt, xt, yt) = ft−1(rt)ft−1(xt, yt|rt). The log-likelihood

function can therefore be deduced from

T∑
t=1

log ft−1(rt, xt, yt) =
T∑
t=1

log ft−1(rt) +
T∑
t=1

log ft−1(xt, yt|rt). (7)

We estimate parameters by quasi maximum likelihood estimation, where the likelihood function

is obtained assuming Gaussian distributions for zt and ut. Specifically, that {zt} is a sequence of

independent vectors distributed as zt ∼ Np(0, Ct), while {ut} is independent of {zt} and distributed

as ut ∼ i.i.d.N(0,Σ).

Let θ represents all unknown parameters in the model. The Gaussian specification and the

structure (7) imply that the log-likelihood function is given by

`(θ) =
T∑
t=1

`r,t(θ) +
T∑
t=1

`x,y|r,t(θ),

where

−2`r,t(θ) = cp +
p∑

k=1
log hk,t + log |Ct|+ ztC

−1
t zt,

−2`x,y|r,t(θ) = cp(p+1)
2

+ log |Σ|+ u′tΣ−1ut,

with cn = n log 2π and

zt = Λ−1
ht

(rt − µ), and

ut =

 vt

ṽt

 =

 log xt − ξ − Φ log ht − δ(zt)

yt − ξ̃ − Φ̃%t

 .
Here |Ct| and |Σ| denote the determinants of Ct and Σ, respectively.

For a particular value of θ it is straight forward to evaluate the log-likelihood function, using

a recursive scheme. The values for ht and Ct are computed with the GARCH equations, then the

innovations, zt and ut, are computed from the measurement equations, and then one can proceed

to compute the quantities for period t + 1. Finally, the likelihood function can be evaluated.
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Maximization methods undertake this computation repeatedly to obtain the maximum likelihood

estimates. This computation does require starting values for the latent variables, h1 and C1. We

recommend simply treating them as unknown parameters (as part of θ), which is a common approach

in GARCH models. Another approach is to simply fix them to have a particular value, defined by

appropriate empirical quantities.

The structure of the log-likelihood function permits an important simplification for the maxi-

mization problem. Given residuals, ût, t = 1, . . . , T it can be shown that the maximum likelihood

estimator of Σ is Σ̂ = T−1∑T
t=1 ûtû

′
t. This, in turns, simplifies a term in the log-likelihood function,

T∑
t=1

û′tΣ̂−1ût = tr{Σ̂−1
T∑
t=1

ûtû
′
t} = tr{TIp+k} = T (p+ k),

where Ip+k is the (p+ k)× (p+ k) identity matrix. So the objective to be maximized is (apart from

a constant) given by

−1
2

T∑
t=1

{ p∑
i=1

log hi,t + log |Ct|+ ztC
−1
t zt

}
− T

2 log
∣∣∣∣∣ 1
T

T∑
t=1

utu
′
t

∣∣∣∣∣ , (8)

where the omitted constant is −T
2 (cp+cd+p+k) = −p(p+1)

4 T log 2π−T p+k
2 . More extensive details

of the estimation method are described in greater detail in Appendix B.

3.1 Estimation with Structure Imposed on the Correlation Matrix

In this section, we add a few details about estimation in the situation where %t = Aζt is used

to impose structure on the correlation matrix. The GARCH and measurement equations for the

correlation parameters, must be revised to embody the structure %t = Aζt, see Section 2.3. The

appropriate GARCH equation is (4) and if the lower dimensional measurement equation (5) is

adopted, y̌t = ξ̌ + Φ̌ζt + v̌t with y̌t = (A′A)−1A′yt, then the vector of (all) measurement errors is

redefined with ut = (v′t, v̌′t)′.
To illustrate the features arising with five assets, with a block structure consisting of two blocks,

two assets in the first block and three assets in the second block. In this case Ct has just 3 distinct
correlations, at, bt, and ct, say. In this scenario we have by Theorem 1 the following structure of

Ct =



1

at 1

bt bt 1

bt bt ct 1

bt bt ct ct 1


logCt=



∗

ãt ∗

b̃t b̃t ∗

b̃t b̃t c̃t ∗

b̃t b̃t c̃t c̃t ∗


,
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Thus %t = (ãt, b̃t, b̃t, b̃t, b̃t, b̃t, b̃t, c̃t, c̃t, c̃t)′ and

%t = Aζt where A′ =


1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1

 , ζt =


ãt

b̃t

c̃t

 .

In this case, the dimension reduction is from d = 10 to k = 3. In our empirical analysis we consider

a case with 9 assets, and a correlation matrix Ct with a 3 × 3 block structure. In this case the

dimension reduction is from d = 36 correlations in Ct, to k = 6 distinct correlations with the block

structure, and the dimension of A is therefore 36 × 6 in our empirical example. This defines a

scalable model. Adding additional assets from sectors that are already being modeled, does not

increase the dimension of the latent variable used to model the correlation structure, ζt. The block

equicorrelation structure is therefore a promising starting point for scaling the model to dimensions

higher than the nine dimensional system analyzed in the empirical section.

3.2 Forecasting

The one-step ahead forecasting of the return distributions from the model is straight forward because

all dynamic variables are specified in the observation driven manner, and are simple functions of

lagged variables. So from the observed variables in period t, all the conditional variances and

correlations for period t+ 1 can be computed from the GARCH equations. The elements of Ht+h,

are not predetermined beyond horizon h = 1, because they also depend on future realizations of

zt and ut. It is nevertheless straight forward to compute a distributional forecasts for Ht+h using

simulation methods or a bootstrap method. So multi-step ahead forecasts can be inferred from the

estimated model, at any forecasting horizon. Forecasting schemes for the Realized GARCH models

of this kind are detailed in Lunde and Olesen (2014) and Hansen et al. (2014). In this context, a

bootstrap method is typically preferred because it does not rely on the distributional assumptions

for zt and ut.

4 Empirical Analysis

4.1 Data Description

The data set for our empirical analysis spans the period from January 3, 2002 to December 29,

2017. After removing holidays and trading days with reduced trading hours, our sample includes
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3975 trading days. The data consist of daily close-to-close returns and high-frequency data. The

latter are used to compute the realized measures of volatility.

We include the nine stocks in our analysis. Three stocks from the energy sector, CVX, MRO,

and OXY, three stocks from the Health Care sector, JNJ, LLY, and MRK, and three stocks from

the Information Technology sector, AAPL, MU, and ORCL.

Energy Health Care Information Tech.

CVX MRO OXY JNJ LLY MRK AAPL MU ORCL

Daily returns (×100)

Mean 0.055 0.058 0.078 0.037 0.022 0.027 0.136 0.052 0.053
Std. 1.598 2.486 2.065 1.099 1.499 1.676 2.206 3.381 2.016
Skewness 0.393 0.177 0.126 -0.226 0.046 -1.057 0.065 0.038 0.200
Kurtosis 17.503 11.329 13.040 22.055 10.397 27.775 8.096 7.405 8.279

Min -12.489 -19.564 -18.493 -15.846 -12.348 -26.781 -17.920 -23.042 -14.509
Q-05% -2.371 -3.731 -3.117 -1.582 -2.250 -2.281 -3.298 -5.101 -2.999
Q-25% -0.758 -1.135 -0.931 -0.464 -0.713 -0.715 -0.956 -1.661 -0.885
Q-50% 0.086 0.088 0.053 0.016 0.039 0.028 0.090 0.000 0.024
Q-75% 0.877 1.315 1.107 0.564 0.749 0.818 1.235 1.780 1.001
Q-95% 2.270 3.633 3.033 1.669 2.230 2.347 3.707 5.302 3.089
Max 20.854 23.357 18.108 12.229 14.349 13.033 13.905 23.443 13.070

Realized volatilities (in annual units)

Mean 0.212 0.317 0.262 0.160 0.203 0.220 0.306 0.455 0.279
Std. 0.129 0.194 0.157 0.091 0.112 0.136 0.188 0.245 0.169
Skewness 6.058 3.646 4.595 4.058 4.065 4.123 3.602 3.037 2.463
Kurtosis 82.641 27.811 41.080 34.169 35.317 33.503 28.461 19.593 13.001

Min 0.072 0.095 0.073 0.051 0.063 0.064 0.054 0.115 0.066
Q-05% 0.106 0.146 0.130 0.083 0.106 0.107 0.124 0.230 0.114
Q-25% 0.140 0.203 0.173 0.109 0.139 0.144 0.187 0.307 0.173
Q-50% 0.181 0.265 0.225 0.134 0.174 0.181 0.265 0.393 0.235
Q-75% 0.244 0.360 0.301 0.179 0.231 0.250 0.367 0.520 0.324
Q-95% 0.411 0.645 0.499 0.317 0.401 0.456 0.622 0.900 0.627
Max 2.807 3.007 2.503 1.402 1.830 2.145 2.548 3.511 1.981

Table 1: Summary statistics of the daily returns and the realized volatilities (in annual units)
computed from the realized kernel estimator. Statistics are based on the sample period from January
2nd, 2002 to December 29th, 2017 (3975 trading days in total).

We construct close-to-close daily returns for the individual stocks using close prices from the

CRSP US Stock Database. These prices are adjusted for the stock splits and dividends. Intraday

transaction data were obtained from the TAQ database and these were cleaned in accordance with

the methodology suggested in Barndorff-Nielsen et al. (2009). From the high-frequency data we

compute the 9× 9 multivariate realized kernel estimator for each of the trading days in our sample,

RMt. The diagonal of RMt defines the vector xt, and the corresponding realized correlation matrix,

Yt, and the latter is transformed by yt = g(Yt). Hence, Yt is subjected to the same transformation

as Ct, so that yt can be interpreted as an empirical measurement of %t.
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4.2 Summary Statistics

We present summary statistics for the nine return series and their corresponding realized variance

measures in Table 1. The summary statistics are in line with figures that are typical in this context.

We do observe that Health Care stocks (middle three columns) had the lowest volatility whereas IT

stocks (the last three columns) had the largest average volatility in this sample period. This can be

seen from the standard deviations in the second row, and the means and medians (Q-50%) of the

Realized volatilities in the lower part of Table 1.

Energy Health Care Information Tech.

CVX MRO OXY JNJ LLY MRK AAPL MU ORCL

E
ne

rg
y

CVX 0.490 0.511 0.155 0.116 0.129 0.161 0.107 0.158
(0.167) (0.169) (0.122) (0.123) (0.121) (0.119) (0.107) (0.120)

MRO 0.554 0.483 0.069 0.077 0.085 0.123 0.119 0.118
(0.145) (0.173) (0.119) (0.115) (0.113) (0.112) (0.119) (0.117)

OXY 0.566 0.543 0.087 0.078 0.088 0.122 0.094 0.118
(0.143) (0.148) (0.115) (0.113) (0.112) (0.116) (0.113) (0.115)

H
ea
lth

C
ar
e

JNJ 0.260 0.191 0.204 0.291 0.302 0.139 0.087 0.164
(0.173) (0.171) (0.168) (0.145) (0.157) (0.118) (0.112) (0.120)

LLY 0.232 0.186 0.190 0.368 0.333 0.121 0.092 0.144
(0.176) (0.169) (0.167) (0.158) (0.160) (0.109) (0.105) (0.113)

MRK 0.245 0.197 0.202 0.375 0.392 0.127 0.093 0.147
(0.174) (0.166) (0.166) (0.168) (0.164) (0.112) (0.105) (0.117)

In
fo
rm

at
io
n
Te

ch
. AAPL 0.282 0.243 0.244 0.244 0.228 0.234 0.208 0.279

(0.166) (0.159) (0.163) (0.152) (0.147) (0.150) (0.120) (0.140)

MU 0.218 0.211 0.196 0.180 0.179 0.182 0.280 0.189
(0.148) (0.150) (0.151) (0.140) (0.133) (0.137) (0.133) (0.121)

ORCL 0.281 0.238 0.240 0.267 0.250 0.255 0.350 0.267
(0.174) (0.169) (0.168) (0.157) (0.154) (0.158) (0.157) (0.140)

Table 2: Summary statistics for the realized correlations where the sector-based block structure is
illustrated with the shaded regions. The average realized correlations and corresponding standard
deviations (in parentheses) are shown in lower-left triangle. The corresponding statistics for the
transformed elements, %t are shown in the upper-right triangle. Statistics are based on the sample
period from January 2nd, 2002 to December 29th, 2017 (3975 trading days).

Summary statistics for the realized correlations are presented in Table 2. The block structure

we explore for the correlation matrix is illustrated with the shaded regions in Table 2. The numbers

below the diagonal are average correlations (the lower-left triangle of Ȳ = T−1∑
t Yt), and the

numbers above the diagonal are corresponding averages for the transformed quantities (the upper-

right triangle of T−1∑
t log Yt). Note that the realized correlations within each of the blocks have

similar averages. The three assets from the energy sector are highly correlated, with correlations of
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about 55% on average. The average “within sector” correlations for Health Care and Information

Technology stocks are about 38% and 30%, respectively. The “between sector” correlations tend

to be smaller and range from 18% to 28%. A similar pattern is observed for the corresponding

elements of yt, that are presented above the diagonal of Table 2.

Figure 1: Daily realized correlations for the nine returns series over the full sample period. Left
subplots present intra-sector correlations (gray lines) and their average (red line) for each sector.
Right subplots present inter-sector correlations (gray lines) and their average (red line) for each pair
of sectors.

The time series of realized correlation series are displayed in Figure 1. The left subplots present

the within-sector correlations (gray lines) and their average daily correlation (red line) for each of

the three sectors. The right subplots present the between-sector correlations (gray lines) and their

daily averages (red line) for the three sector-pairs. The time series of 36 correlations are computed
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from the 9× 9 multivariate Realized Kernel estimator. The correlations within each blocks tend to

move closely together, and there are distinct differences between blocks, not only in terms of their

average level, but also in the variation over time. For instance the inter-sector correlation between

Health Care and Information Technology asset returns does not have a sharp decline in late 2008 as

is the case for the two other inter-sector correlations that both involve Energy sector stocks. Figure

1 provides additional motivation for adopting a block structure of the correlation matrix.

4.3 Transformed Realized Correlations are Approximately Gaussian

The logarithmic realized variance of stock returns is approximately Gaussian distributed, as demon-

strated in Andersen et al. (2001a). This help justify the Gaussian specification for the errors, vt, in

the measurement equation for the logarithm of realized variance measures, log xt. Interestingly, we

find that components of logarithmically transformed realized correlation matrices are also approx-

imately Gaussian distributed. This complementary result, help justify the Gaussian specification

adopted for the errors, ṽt and v̌t, in the measurement equations for yt and y̌t, respectively.

Figure 2 presents Q-Q plots for the empirical distribution of the transformed realized correlations

against the normal distribution. For each element of yt, the logarithmic transformed correlations,

we have 3975 daily observations. The quantiles of their empirical distribution are plotted against

the corresponding quantiles of the normal distribution. The left panels of Figure 2 are Q-Q plots

for the series in the three diagonal blocks of Yt, which have three series in each panel. Similarly, the

right panels are for the three off-diagonal blocks of Yt, which have six series in each panel. The red

dots within each panel represent the Q-Q plots that for the corresponding elements of y̌t, that are

the daily averages within each block. The elements of y̌t are the relevant series in the model where

we impose a block equicorrelation structure, see Section 2.4.

The Q-Q plots in Figure 2 show that the components of yt have an empirical distribution that is

well approximated by the Gaussian distribution, albeit with some deviations seen in the tail regions

and this discrepancy is most pronounced for the between-sector blocks, seen in the right panels of

Figure 2. The red dots that represent Q-Q plots for the block averages, which define the elements of

y̌t, show that their empirical distribution are very well approximated by the Gaussian distribution.

This is not entirely unexpected since the elements of y̌t are defined as averages over elements of yt.
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Figure 2: Q-Q plots for the components of parametrized realized correlarion matrices, yt. Within each panel, black
dots are related to the multiple components of the transformed realized correlation matrix, which positions correspond
to a given block. Within each panel, red dots are related to the single component of the transformed realized block
equicorrelation matrix (for which all realized correlations within each block are replaced by their average value),
which corresponds to a given block. The Q-Q plots for all considered components are constructed using daily realized
correlations for the period since January 2nd, 2002, until December 29th, 2017 (3975 trading days in total).

4.4 Empirical Analysis of the Multivariate Realized GARCH model

We estimate the model using six different specifications for the correlation matrix. The six specifica-

tions arise from the combinations of three structures for Ct: equicorrelation, block equicorrelation,

and a “free” correlation structure, and the two ways in which we model the correlations: static and

dynamic. The simplest model in our comparison is the static equicorrelation model which has a
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single correlation coefficient. This correlation coefficient is common for all correlations in Ct, and

is constant across time. The most general specification is the dynamic correlation matrix with 36

unrestricted correlations (aside from the requirement that Ct be positive definite). In this model %t

is a 36-dimensional vector, whereas %t is univariate in the dynamic equicorrelation model, and %t

has dimension six in the dynamic block equicorrelation model.

In terms of modeling of the nine univariate conditional variances, the six specifications have the

same structure. They all model each of the nine conditional variances, h1,t, . . . , h9,t with a Realized

GARCH structure using the same information set. The six specifications differ in terms of the way

the correlation structure is modeled. The dynamic equicorrelation model has one additional latent

variable to model the time variation in the correlation matrix, the dynamic block equicorrelation

model has six latent variables for this purpose, where as the dynamic “free” correlation model has

36 latent variables. Here d = 36 = 10× 9/2 is the number of distinct correlation coefficients in Ct

when the correlation matrix is not subject to any restrictions beyond being positive definite.4

Parameter estimates for each of the six different specifications are reported in Table 3. The

estimates are based on our full sample that spans the period from January 3, 2002 to December

29, 2017. Rather than reporting a very large number of point estimates, we report the range of

estimates for each type of parameter. If the model only has one parameter of a particular type, then

we report the point estimate. Each column in Table 3 corresponds to one of the six specifications.

The first three columns are the three static models, and the last three columns are the three dynamic

models.

In the upper panel, we present the point estimates for the part of the model that relates to

the conditional variances, and these point estimates are in line with point estimates reported in

the existing literature on GARCH models and Realized GARCH models. A simple measure of

persistence of the conditional variance is given by π = β + γ, and our estimates are close to unity,

which is to be expected since volatility is known to be highly persistent.

The lower panel of Table 3 presents the point estimates for the part of the specifications that

define the correlation structure. For all the dynamic specifications we also observe a high level of

persistence for the conditional correlations, as it is the case for the conditional variances.
4For the 9-dimensional vector of returns and 16 years of data, it took us about 30 minutes to estimate the dynamic

equicorrelation model, about 8.5 hours to estimate the dynamic block equicorrelation model, and 82 hours to estimate
the dynamic model with a free structure, using Matlab code on a standard desktop computer with an Intel Core
i7-6700 (3.40GHz) processor.
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Static correlation Dynamic correlation

Parameter Equi Block Free Equi Block Free

µ [0.026, 0.142] [0.023, 0.140] [0.022, 0.138] [0.023, 0.135] [0.014, 0.139] [0.012, 0.148]

Va
ria

nc
e

pa
ra

m
et

er
s

ω [-0.008, 0.229] [-0.011, 0.205] [-0.009, 0.201] [-0.006, 0.209] [-0.002, 0.188] [0.000, 0.174]

β [0.483, 0.728] [0.490, 0.728] [0.488, 0.728] [0.501, 0.723] [0.507, 0.737] [0.544, 0.763]

Γ [0.232, 0.428] [0.231, 0.426] [0.231, 0.426] [0.241, 0.430] [0.227, 0.418] [0.201, 0.382]

τ1 [-0.031, 0.000] [-0.031, 0.000] [-0.031, -0.000] [-0.032, 0.001] [-0.031, 0.003] [-0.029, 0.004]

τ2 [-0.007, 0.031] [-0.007, 0.029] [-0.007, 0.030] [-0.007, 0.030] [-0.007, 0.027] [-0.007, 0.025]

ξ [-0.417, -0.002] [-0.400, 0.009] [-0.391, 0.003] [-0.388, -0.004] [-0.391, -0.015] [-0.384, -0.028]

δ1 [-0.070, 0.005] [-0.068, 0.005] [-0.069, 0.005] [-0.066, 0.012] [-0.064, 0.012] [-0.067, 0.013]

δ2 [0.015, 0.090] [0.015, 0.088] [0.015, 0.088] [0.015, 0.091] [0.014, 0.091] [0.014, 0.084]

σ2
v [0.153, 0.298] [0.154, 0.298] [0.154, 0.298] [0.154, 0.297] [0.155, 0.297] [0.157, 0.299]

π [0.910, 0.975] [0.912, 0.973] [0.912, 0.973] [0.920, 0.978] [0.920, 0.977] [0.926, 0.976]

C
or

re
la

tio
n

pa
ra

m
et

er
s ρ̄ 0.322 [0.227, 0.705] [0.198, 0.710]

ω̃ -0.009 [-0.008, 0.048] [-0.016, 0.035]

β̃ 0.667 [0.713, 0.800] [0.828, 0.958]

Γ̃ 0.405 [0.140, 0.320] [0.021, 0.205]

ξ̃ 0.042 [-0.099, 0.076] [-0.112, 0.140]

Φ̃ 0.720 [0.640, 1.411] [0.384, 1.663]

σ2
ṽ 0.001 [0.002, 0.009] [0.010, 0.020]

π̃ 0.959 [0.927, 0.982] [0.966, 0.992]

L -63851.475 -61912.446 -61828.382 -63466.324 -61419.596 -61345.306

Table 3: Parameter estimates for the six specifications. The first three columns with estimates are
for the static correlation models, and the last three columns are for the dynamic correlation models.
Within each specification we report the range of estimates for each “type” of parameter, unless the
specification only as a single parameter of this type, in which case we report the point estimate.
Persistence of volatilities and correlations are summarized with π = β + γ and π̄ = β̄ + γ̄Φ̄,
respectively. The partial log-likelihood (for returns) is reported in the last row for each of the
specifications.

It is not meaningful to compare the total log-likelihood of the different specifications, because

they involve measurement equations with different dimensions. While all the specifications model

23



the vector of returns, they differ in terms of the realized measures that are being modeled. For

instance, the static specifications do not model any of the realized correlations. However, we can

compare the models in terms of their partial log-likelihood for returns, `r,t(θ), which we will refer to

as the return log-likelihood. The return log-likelihood is an interesting metric because the objective

is to obtain a good model for the conditional distribution of returns. We can compute likelihood

ratio statistics based on the the partial log-likelihoods alone, and these will reflect which of the

models has the best description of the conditional distribution of returns, in the Kullback-Leibler

sense. But we can not compare these likelihood-ratio statistics to standard χ2-based critical values,

because the return log-likelihood is only one of two parts of the total log-likelihood.5 The other

term is the log-likelihood for realized measures of volatilities and correlations, and the dimension of

the latter differ across specifications.

From the return log-likelihood it is evident that the equicorrelation structure is inferior to the

more flexible structures. The return log-likelihood is about 2000 larger with block and free structures

than the equicorrelation structure, which is a very substantial empirical improvement. Specifications

with a dynamic structure rather than static also have far larger values of the return log-likelihood.

For both the block equicorrelation and the free correlation structure, the dynamic specifications

have a return log-likelihood that are about 415 larger than those of the static specifications. The

dynamic model with a free correlation structure increases the partial likelihood ratio statistic by

about 74 over the dynamic block equicorrelation model.

To illustrate the correlation structure that one of estimated models produces, we present the

six conditional correlation series, produced by the estimated block equicorrelation model, in Figure

3. The figure also displays the average of the corresponding daily realized correlations. The left

panels present the model-based equicorrelation (black line) for each of the three sectors, and the

corresponding daily average of the realized correlation is represented with the red line. The right

panels present the corresponding equicorrelation for each pair of sectors. The corresponding Figure

for the models using the equicorrelation structure is presented in the appendix.

Based on the partial log-likelihood for the full sample, there are substantial gains from moving

beyond the equicorrelation model and adopting a dynamic model for the correlations. In the next

section, we evaluate the extent to which these improvements carry over to improved empirical fit in

an out-of-sample comparison.
5Moreover, likelihood ratio statistics are not asymptotically χ2-distributed under misspecified, see White (1994).

24



Figure 3: Intra-sectoral and inter-sectorial correlations. The left subplot present the model-based
correlations for each of the thee sectors (black lines) and the corresponding daily averages of realized
correlations (red lines). The estimates from the constant correlation model are indicated by white
dashed lines. The right panels present the correlations across sectors.

4.5 Out-of-Sample Model Comparisons

In this section, we compare the six different specifications in terms of an out-of-sample performance.

To this end, we split the sample period into an in-sample period and an out-of-sample period. The

in-sample period lasts from January 2nd, 2002 to December 31st, 2013 and includes 2993 trading
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days. The out-of-sample period spans the period from January 2nd, 2014, to December 29th, 2017

and has 982 trading days. We employ the so-called fixed scheme, where each model is estimated once

using the data from the in-sample period. Then the estimated models are evaluated and compared

out-of-sample using a range of criteria.

We first compare the models in terms of their partial log-likelihood for returns, then we turn to

the other criteria – a minimum variance portfolio selection.

4.5.1 Analysis of Log-Likelihood for Returns

Multivariate GARCH models seek to describe the conditional distribution of the vector of returns.

This objective is defined by the log-likelihood function for returns that is used in the estimation. A

natural starting point for comparing the different specification is therefore in terms of the return

log-likelihood which measures how well the estimated model can explain the distribution of the

vector of returns. So, in this subsection, we evaluate and compare the specifications in terms of

their average value of `r,t(θ̂) (both in-sample and out-of-sample), where the parameter vector θ̂ is

estimated with the in-sample data. This type of model evaluation is equivalent to one-day-ahead

density forecasting of the return vector with the mean predictive log-likelihood as a gain function,

see Amisano and Giacomini (2007), Geweke and Amisano (2010), and references therein.

We compute the average in-sample and average out-of-sample return log-likelihoods, for each of

the six specifications. Figure 4 is a bar chart with the relative return log-likelihood of each speci-

fication relative to the static equicorrelation structure. So a positive value (which is observed for

all other specifications) corresponds to better performance than the static equicorrelation model.

Both the in-sample and out-of-sample log-likelihood increases by adopting a more flexible correla-

tion structure. The in-sample log-likelihood increases with the complexity of the model, as it to

be expected. So the simplest model, the static equicorrelation model, has the smallest in-sample

log-likelihood, whereas the “free” dynamic model with 36 latent variables to describe the correlation

structure has the largest in-sample log-likelihood. Good in-sample fit need not translate into good

out-of-sample fit. Nevertheless, we do find that the two specifications with the lowest in-sample

fit (static and dynamic equicorrelation) also have the lowest out-of-sample fit. The two equicorre-

lation models have substantially lower performance than all of the the block and free-correlation

specifications. Among the block equicorrelation models and the free correlation models it is evident

that the dynamic models do better than the static models. This is not only true in-sample, but

also out-of-sample. Interestingly, it is the dynamic block equicorrelation model that has the highest
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out-of-sample fit. So the better in-sample fit of the dynamic-free specification indeed does not trans-

late into a better out-of-sample fit. In fact, it is barely better than the static block equicorrelation

model. This is an indication that the most flexible specification with 36 latent variables to describe

the correlation structure is overfitting the in-sample data.
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Figure 4: Average in-sample (black) and out-of-sample (red) return log-likelihoods, measured rel-
ative to the static equicorrelation specification. The horizontal white lines is the performance
achieved by competing specifications. The horizontal white lines depict the performance of compet-
ing models. The in-sample period is January 2nd, 2002 to December 31st, 2013 (2993 trading days)
and the out-of-sample period is January 2nd, 2014 to December 29th, 2017 (982 trading days).

Table 4 adds further information about the comparisons in terms of the return log-likelihood, and

the statistical significance of the relative performance. We report the average per-period improve-

ment of the return log-likelihood relative to the simplest specification with static equicorrelation.

We evaluate the statistical significance of the relative return log-likelihoods using the model con-

fidence set (MCS) by Hansen et al. (2011). We seek the specification with the largest expected

out-of-sample partial log-likelihood, and the MCS is the subset of models that contains the best

with a given level of confidence, after the original set of models has been trimmed by eliminating

significantly inferior models in a sequential testing procedure. The MCS p-values are reported in

parentheses and a small p-value is evidence that the model is significantly outperformed by other

models in the comparison. The specifications in the 95% MCS are identified with bold font.

The relative average return log-likelihoods are reported for the in-sample period as a point of

reference. Over the out-of-sample period, we find that dynamic block equicorrelation model has

the best overall out-of-sample performance, but the MCS also includes the dynamic-free and the
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static-block specifications. The latter is included in the MCS because it performed particularly

well in 2015. We also compare the specifications for each of calendar years in the out-of-sample

period. For three of the four years the dynamic block equicorrelation specification has the best

out-of-sample performance.

Static correlation Dynamic correlation

Period Equi Block Free Equi Block Free

In-sample 0.000 0.499 0.527 0.110 0.641 0.666
[2002-2013]

Out-of-sample 0.000 0.453 0.414 0.060 0.477 0.455
[2014-2017] (0.00) (0.51) (0.00) (0.00) (1.00) (0.45)

2014 0.000 0.369 0.360 0.029 0.440 0.420
(0.00) (0.09) (0.09) (0.01) (1.00) (0.52)

2015 0.000 0.663 0.570 -0.051 0.550 0.561
(0.00) (1.00) (0.00) (0.00) (0.00) (0.19)

2016 0.000 0.366 0.346 0.070 0.371 0.336
(0.01) (0.95) (0.63) (0.06) (1.00) (0.63)

2017 0.000 0.412 0.377 0.201 0.551 0.507
(0.00) (0.24) (0.09) (0.02) (1.00) (0.24)

Table 4: Average out-of-sample partial log-likelihood relative to the constant equicorrelation model.
Model confidence p-values are given in parentheses, and those significant at the 5% level are shaded
gray. The comparisons are done for the entire out-of-sample period, 2014-2017, and for each of the
years separately.

4.5.2 Global Minimum-Variance Portfolio

In this section, we evaluate and compare the ability of the estimated models to produce a low

variance portfolio out-of-sample. At time t−1, we seek portfolio weights that minimize the variance

of the portfolio return over the next period. Hence, for each of the specifications, we deduce the

implied global minimum-variance (GMV) portfolio. The optimal portfolio weights solve

minωt∈Rp ω′tH(j),tωt, s.t. ω′tι = 1,

where H(j),t is the model-based conditional variance of the return vector, rt ∈ Rp, j = 1, . . . , 6, and

ι = (1, . . . , 1)′ is a p-dimensional vector of ones. In the absence of leverage constraints (such as

no-shortening constraints) the well-know solution to this portfolio problem is:

ω∗(j),t =
H−1

(j),tι

ι′H−1
(j),tι

,
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and the resulting portfolio returns are given by

Rmv
(j),t = ω∗′(j),trt.

Because the different specifications produce different covariance matrices, H(j),t, j = 1, . . . ,6, the

resulting portfolio returns will differ, and may therefore have different variances and distributions.

For illustrative purposes, we add the simple equal-weighted portfolio to the comparison. The returns

of the equal-weighted portfolio are simply given by

Rew,t = 1
p
ι′rt,

so that each asset is weighted by 1/p, where p = 9 in this application.

We will compare the variance of the seven portfolios, to evaluate whether the different specifica-

tions produce substantially different portfolio variances. We report the in-sample and out-of-sample

variances of the seven portfolios in the upper panel of Table 5. The first observation we make is that

equal-weighted portfolio has a substantially larger variance than any of the model-based portfolios.

This is not unexpected because the equal-weighted portfolio does not use any information about the

covariance structure. On the other hand, the fact that the model-based portfolios can reduce the

variance by a factor of two is evidence that all of the multivariate realized GARCH specifications

produce sensible and valuable forecasts of the conditional covariance matrix, Ht.

Among the six model-based portfolios it is the most flexible specification (dynamic-free) that

has the smallest out-of-sample variance, in the (full) out-of sample period. The portfolio based

on the dynamic-block specification comes in as a close second, however all but the simplest static

equicorrelation specification are found in the model confidence set. We also present results for each

of the years in the out-of-sample period, and while there is some variation from year to year, the

dynamic-free portfolio end up in the MCS every year.

A variance comparison is based on squared returns, which is sensitive to outliers. We therefore

supplement the comparison with a comparison of absolute portfolio returns. These results are

presented in the lower panel of Table 5, where we present the mean of absolute daily returns,

measured in annualized units. These results, including the model confidence sets are almost identical

to the results based on squared returns.
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Equal Static correlation Dynamic correlation

Period weights Equi Block Free Equi Block Free
Sq

ua
re

d
re

tu
rn

s

In-sample 2.149 1.117 1.091 1.077 1.063 0.990 0.991
[2002-2013]

Out-of-sample 0.952 0.506 0.475 0.466 0.499 0.471 0.464
[2014-2017] (0.00) (0.01) (0.21) (0.93) (0.14) (0.66) (1.00)

2014 0.657 0.588 0.553 0.546 0.577 0.542 0.525
(0.02) (0.02) (0.25) (0.25) (0.10) (0.25) (1.00)

2015 1.393 0.695 0.580 0.596 0.712 0.606 0.629
(0.00) (0.01) (1.00) (0.27) (0.01) (0.27) (0.15)

2016 1.385 0.471 0.498 0.465 0.491 0.525 0.496
(0.00) (0.86) (0.02) (1.00) (0.83) (0.02) (0.86)

2017 0.324 0.251 0.254 0.240 0.194 0.191 0.188
(0.00) (0.00) (0.00) (0.01) (0.76) (0.76) (1.00)

A
bs

.
re

tu
rn

s
(a

nn
ua

l) In-sample 0.158 0.113 0.111 0.110 0.111 0.107 0.106
[2002-2013]

Out-of-sample 0.114 0.085 0.082 0.081 0.082 0.080 0.079
[2014-2017] (0.00) (0.00) (0.11) (0.15) (0.02) (0.54) (1.00)

2014 0.096 0.095 0.090 0.089 0.093 0.087 0.087
(0.01) (0.00) (0.18) (0.18) (0.01) (0.57) (1.00)

2015 0.145 0.099 0.092 0.094 0.100 0.094 0.097
(0.00) (0.00) (1.00) (0.12) (0.00) (0.35) (0.06)

2016 0.141 0.081 0.083 0.080 0.081 0.082 0.078
(0.00) (0.40) (0.01) (0.41) (0.40) (0.04) (1.00)

2017 0.071 0.061 0.062 0.060 0.054 0.053 0.053
(0.00) (0.00) (0.00) (0.00) (0.70) (0.80) (1.00)

Table 5: The average of squared returns (top panel) and absolute returns (bottom panel) for the
equal-weighted portfolio and the six global minimum portfolio. The in-sample period is January
2nd, 2002 to December 31st, 2013 (3021 trading days) and the out-of-sample period is January 2nd,
2014 to December 29th, 2017 (989 trading days). We also report results for each of the calendar
years in the out-of-sample period. Numbers in parentheses are MCS p-values and bold numbers
indicate specifications that are in the 95% MCS.

Based on this comparison, there is further evidence that a dynamic and flexible correlation

modeling lead to significant improvements out-of-sample. Relative to the simplest specification,

the static equicorrelation specification, we observe a variance reduction of about 50 basis points in

annual volatility. In practice, one would also want to factor in portfolio turnover, because transaction

costs may offset the the value of the variance reduction. This would entails a model comparison

based on a different criterion. We leave this for future research.
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5 Conclusion and Discussion

In this paper, we have introduced a novel framework for multivariate GARCH modeling. The

framework is based on a new parametrization of correlation matrices, where the p × p correlation

matrix, Ct is represented by the d = p(p−1)
2 dimensional vector, %t = g(Ct). We make use of realized

measures by adopting the structure of Realized GARCH models, where measurement equations are

used to link realized measures of volatility with the corresponding latent variables. In addition

to realized measures of variance, we also make use the realized correlation matrix in the dynamic

modeling. We label the model a Multivariate Realized GARCH model, and observe that it is a

natural extension of previous Realized GARCH models. In the special case where p = 2 (and hence

d = 1), the proposed model is identical to the bivariate model Hansen et al. (2014), and the case

with p = 1 (i.e. d = 0), we have a variant of the original univariate Realized GARCH model by

Hansen et al. (2012).

In its most general form, the parametrization, %t = g(Ct), does not impose any restrictions on

Ct, aside from positive definiteness. However, in many situations it will be desirable to impose

an additional structure on Ct in order to simplify the estimation problem and improve the out-

of-sample performance of the estimated model. We have shown how this can be achieved with a

simple linear structure. Specifically, the case %t = Aζt, where A is a matrix and ζt is a vector of

latent variables with a lower dimension than %t. This linear structure emerges naturally when Ct

has a block equicorrelation structure, as we have shown in Theorem 1. Because the block structure

of Ct carries over to logCt, the vector, %t, will have elements in common, which can be expressed

as Aζt, where A is a known matrix with zeros and ones. The proposed model is not specific to the

case with a block equicorrelation matrix, but is more general. The proposed framework paves the

way to explore a broad family of models for the correlation structure. For instance, other choices

for A could be entertained, and different A-matrices will induce different (parsimonious) structures

on Ct. It is also possible to explore data dependent choices for A, and it is also possible to explore

factor structures, %t = %(ζt), beyond the linear structure we have focused on in this paper. We leave

these generalizations for future research.

We applied the Multivariate Realized GARCH model to nine assets from three different eco-

nomic sectors, and compared static and dynamic correlation models using one of three structures

for Ct: equicorrelation, block equicorrelation, and “free”. The empirical results favors a dynamic

specifications Ct, and strongly prefer the block structure and the free structure over the equicorrela-

tion structure. It is encouraging that the dynamic block equicorrelation specification performs well
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empirically, in-sample as well as out-of-sample, because this model can be scaled to higher dimen-

sions. Scaling the dynamic free specification to high dimensions will be difficult, if not impossible,

because the dimension of the latent variable, %t, is of order p2.

If needed, there are many ways to speed up the estimation by tweaking the implementation or

adopting a two-stage estimation method. The results presented in this paper were all based on

maximum likelihood where all parameters are estimated jointly. A two-stage estimation method

could greatly speed up the estimation by first estimating the conditional variance series using

univariate realized GARCH models and then, in a second stage, estimate the parameters related to

dynamic correlation structure while the first-stage estimates, and hence h1,t, . . . , hd,t, t = 1, . . . , T ,

are taken as given.
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A Proofs

Lemma A.1. If A and B are p× p block matrices with identical block structures, then A+B and

AB are block matrices with the same block structure as A and B.

Proof. The result for A + B is obvious. The result for the product, AB, can be established as

follows. Let pi× pj denote the dimension of the (i, j)-th block, and note that the (i, j)-th block has

the following representation,

AIi,Ij =


aijιpiι

′
pj

i 6= j,

aiiιpiι
′
pi

+ αiIpi i = j,

and BIi,Ij =


bijιpiι

′
pj

i 6= j,

biiιpiι
′
pi

+ βiIpi i = j,

for some real scalars aij , bij , αi, and βi, i, j = 1, . . . ,K. The (i, j)-th block of the matrix product,

AB, is given by

(AB)Ii,Ij =
K∑
k=1

AIi,Ik
BIk,Ij .

From the structure above it follows: for i 6= j we have

(AB)Ii,Ij =
K∑
k=1

aikιpiι
′
pk
bkjιpk

ι′pj
+ αiIpibijιpiι

′
pj

+ aijιpiι
′
pj
βjIpj

=
K∑
k=1

aikpkbkjιpiι
′
pj

+ αibijιpiι
′
pj

+ aijβjιpiι
′
pj

=
(

K∑
k=1

aikpkbkj + αibij + aijβj

)
ιpiι
′
pj
,

which shows that all entries of (AB)Ii,Ij are identical and equal to
∑K
k=1 aikpkbkj + αibij + aijβj .

Similarly, for i = j we have

(AB)Ii,Ii =
K∑
k=1

aikιpiι
′
pk
bkiιpk

ι′pi
+ αiIpibiiιpiι

′
pi

+ aiiιpiι
′
pi
βiIpi + αiIpiβiIpi

=
(

K∑
k=1

aikpkbki + αibii + aiiβi

)
ιpiι
′
pj

+ αiβiIpi ,

so the off-diagonal elements of (AB)Ii,Ii are identical and equal to
(∑K

k=1 aikpkbki + αibii + aiiβj
)
,

whereas the diagonal element are all equal to
∑K
k=1 aikpkbki + αibii + aiiβi + αiβi, and the result

follows.

Proof of Theorem 1. If C is a block matrix, then so is C − I, and it follows by Lemma A.1 that
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so is (C − I)(C − I). By induction, so is (C − I)k, where all powers of k result in a block matrix

with the same block structure as that of C. Since logC = −
∑
k≥1

1
k (I − C)k = (C − I) − 1

2(C −

I)2 + 1
3(C − I)3 − · · · , it follows that also logC is a block matrix with the same block structure as

C. �

B Estimation Procedure in Details

Here we provide a detailed description of the estimation procedure for the Multivariate Realized

GARCH model in the situation where %t = Aζt. In the unrestricted case (A = I), we have %t = ζt.

The data consists of the p-dimensional return vector, rt, for t = 1, ..., T and the corresponding

transformed realized measures. The realized measures consist of the p-dimensional vector of realized

variances, xt, and the k-dimensional vector of transformed correlations y̌t = (A′A)−1A′yt, where

the “free” specification (A = I) has y̌t = yt and k = d = p(p− 1)/2.

The log-likelihood is evaluated using the following steps:

1. Initialize all parameters except Σ, and let these be represented by θ. Also initialize values

for the conditional variances and the transformed conditional correlations, h1 and ζ1. We will

maximize the log-likelihood with respect to (θ, h1, ζ1). An alternative approach is to fix values

for h1 and ζ1, such as their unconditional mean.

2. Compute ht(θ) and ζt(θ) using the GARCH equations, and map the latter to %t = Aζt and

then to Ct(θ), for t = 1, ..., T . The mapping from %t to Ct can be done with the algorithm

provided in Archakov and Hansen (2018, corollary 1).

3. Compute the standardized returns, zt(θ), and the measurement errors ut(θ), for t = 1, ..., T .

4. Compute Σ̂(θ) = T−1∑
t ut(θ)ut(θ)′ and evaluate the log-likelihood using (8).

The model can now be estimated by maximizing (8) with respect to θ, h1, and ζ1, by repeating

steps 2, 3 and 4 every time (θ, h1, ζ1) has been updated.

C Additional Empirical Results

In Figure C.1, we plot the 36 realized correlation series (grey lines) as well as the average realized

correlation (red line). While it is not possible to identify the paths of the individual correlation

series in the Figure, it does reveals a great deal of dispersion across the individual correlations

relative to the average correlation series.
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Figure C.1: Daily realized correlations for the full sample period. The realized correlations for the
36 correlations series (grey lines) are computed from the multivariate Realized Kernel estimator.
The red line is the time series with the daily average correlation.

The estimated time series for equicorrelation matrix is presented in Figure C.2. The red line

is the average realized correlation, and the black line is the time series of ρt, as produced by the

estimated dynamic equicorrelation model. The estimate of the constant equicorrelation model is

illustrated with the dashed line.

Figure C.2: The common correlation coefficient deduced from the estimated equicorrelation model
(black line) and the daily average of the 36 realized correlations (red line). The white dashed line
represents the estimate of the common correlation coefficient produced by the constant equicorre-
lation structure.
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