Prelim Examination Friday, August 9, 2019. Time limit: 150 minutes

Instructions:

- (i) The total number of points is 75. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Question 1: Concepts (18 Points)

- (i) (3 Points) What is the Neyman-Pearson Lemma?
- (ii) (3 Points) What does it mean for an estimator to be not *admissible*?
- (iii) (3 Points) What is a *sufficient statistic*?
- (iv) (3 Points) What is the difference between *Ridge Regression* and *LASSO*?
- (v) (3 Points) What is a generalized method of moments (GMM) estimator?
- (vi) (3 Points) How would you formulate a regression model for a *binary* dependent variable?

Question 2: Asymptotics in a Location-Shift Model (20 Points).

Consider the following location-shift model

$$Y_i = \theta_0 + U_i, \quad U_i \sim (0, 1), \quad \mathbb{E}[|U_i|^4] < \infty, \quad i = 1, \dots, n.$$
 (1)

In addition, we impose the constraint

$$\theta_0 \ge 0. \tag{2}$$

- (i) (2 Points) Derive a quasi-maximum likelihood estimate (QMLE) of θ_0 under the assumption that the U_i 's are normally distributed. Denote the quasilikelihood function by $p(Y_{1:n}|\theta)$ (Note: It's called a "quasi" MLE because according to the DGP in (1) the U_i 's do not have to be normally distributed.)
- (ii) (2 Points) Derive the probability limit of the QMLE $\hat{\theta}$.
- (iii) (2 Points) Derive the asymptotic distribution of $\hat{\theta}$. Distinguish between the cases $\theta_0 = 0$ and $\theta_0 > 0$.
- (iv) (6 Points) Instead of deriving the asymptotic distribution under a fixed true parameter θ_0 , now derive it under a sequence of true parameters $\theta_{0,n} = c/\sqrt{n}$.
- (v) (3 Points) Now derive a posterior distribution $p(\theta|Y_{1:n})$ for θ under the assumption that the U_i 's are normally distributed. Use the prior $\theta \sim N(0,1)$, truncated at $\theta = 0$ so that the prior has support on $\theta \geq 0$.
- (vi) (5 Points) Show that the posterior distribution is consistent in the following sense: for any $\delta > 0$

$$\mathbb{P}\big[|\theta - \theta_0| > \delta \,\big| \, Y_{1:n}\big] \longrightarrow 0$$

as $n \to \infty$. Assume the true parameter is fixed. If necessary, distinguish between the cases $\theta_0 = 0$ and $\theta_0 > 0$. In plain English, what does this result imply?

Question 3: Inference for Variance Parameters (20 Points)

Consider the model $Y_i \sim iidN(0,\theta)$, i = 1, ..., n. The goal is to make inference about θ . We denote the "true" value by θ_0 .

- (i) (2 Points) Derive the maximum likelihood estimator (MLE) $\hat{\theta}$ for θ .
- (ii) (2 Points) Derive the score $s(\theta) = \partial \ln p(Y_{1:n}|\theta) / \partial \theta$.
- (iii) (4 Points) Assume that the "true" value is θ_0 and derive the limit distribution of the (properly normalized) score evaluated at $\theta = \theta_0$.
- (iv) (3 Points) Construct the Lagrange multiplier/score test for the hypothesis $H_0: \theta = \theta_0$ and state 5% critical value as well as the acceptance and rejection region.
- (v) (4 Points) Show that the power of the LM test against any fixed alternative $\theta_1 \neq \theta_0$ converges to one as $n \longrightarrow \infty$.
- (vi) (5 Points) Derive the Cramer-Rao lower bound for estimators of θ . Is the MLE unbiased? Does the MLE achieve this bound?

Question 4: (17 Points) Consider the following regression model:

$$y_i = x_i\beta + u_{1i}, \quad |\beta| < M$$

$$x_i = z'_i\gamma + u_{2i}, \qquad (3)$$

where x_i is an endogenous regressor, $z_i \ge k \times 1$ vector of instruments that is independent of u_{1i} and u_{2i} and

$$\left[\begin{array}{c} u_{1i} \\ u_{2i} \end{array}\right] \sim iidN \left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \underbrace{\left[\begin{array}{c} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array}\right]}_{\Sigma} \right).$$

We assume that the covariance matrix Σ of $u_i = [u_{1i}, u_{2i}]'$ is known. You can use matrix notation and define Y, X, and Z as the vectors/matrices that stack y_i , x_i , and z'_i , respectively.

(i) (5 Points) Derive the conditional distribution of $u_{1i}|u_{2i}$ and the marginal distribution of u_{2i} . Note that

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right].$$

(ii) (2 Points) Derive the likelihood function $p(Y, X|Z, \beta, \gamma, \Sigma)$. Use the factorization

 $p(Y, X|Z, \beta, \gamma, \Sigma) = p(Y|X, Z, \beta, \gamma, \Sigma)p(X|Z, \gamma, \Sigma).$

- (iii) (5 Points) Suppose that both γ and Σ are known and that β is unknown. Derive the maximum likelihood estimator for β , show that it is consistent, and derive its asymptotic distribution.
- (iv) (5 Points) Suppose that only Σ is known. Rather than estimating (β, γ) jointly, suppose we proceed in two steps:
 - 1. estimate γ by $\hat{\gamma} = \operatorname{argmax} \ln p(X|Z, \gamma, \Sigma);$
 - 2. estimate β by $\hat{\beta} = \operatorname{argmax} \ln p(Y|X, Z, \beta, \hat{\gamma}, \Sigma)$.

Show that $\hat{\beta}$ is consistent. Note that your proof should account for the fact that in the second step γ is replaced by $\hat{\gamma}$.