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Abstract

This paper proposes a framework for studying data policy, information security, and privacy
concerns in digital businesses. We offer a full characterization of the optimal design of data
storage and data protection policies for a digital company and also of how those policies affect
users’ activity, privacy, and welfare. Our framework features a taxonomy that distinguishes
between advertisement-driven companies (e.g., Facebook and Google) and transaction-driven
companies (e.g., Amazon and Uber). This distinction reveals that advertisement-driven businesses
store either all or none of the user-generated data whereas transaction-driven businesses exhibit
a smoother pattern that may include an intermediate data storage policy. Comparing the
amount of user information that these two types of companies store, we find that—contrary to
public opinion—advertisement-driven companies do not invariably retain more of their users’
data than do transaction-driven companies. Our study establishes that measuring the direct
damage inflicted by adversaries on consumers significantly underestimates not only the welfare
loss but also the loss of consumer surplus due to adversarial activity. Finally, we identify the
conditions under which advertisement-driven businesses generate more consumer surplus than
that generated by their transaction-driven counterparts.
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1 Introduction

An ever larger share of our social and economic activity is being conducted on and moderated by large

digital businesses such as Facebook, Google, Amazon, Uber, and other “sharing economy” platforms.

This activity—from the sharing of location data on Uber, to revealing personal information and

thoughts posted on Facebook, to searching for medications or diagnoses on Google, to purchasing

an array of goods on Amazon—generates extensive amounts of data on individual users. That

information is then used to improve services provided by digital businesses. For example, Uber uses

passengers’ and drivers’ location to find the best match, shorten wait times, and enhance safety;

Facebook uses personal data to curate posts presented to users based on their tastes and to refine its

targeting of users with advertisements; Amazon uses information to match users with the products

they are likely to want; and a variety of online dating platforms use information to propose desirable

matches between individuals. Digital businesses, in turn, extract some of the generated gains as

increased profits.

However, recent news about Facebook and other digital businesses has publicly highlighted some

undesirable consequences of the ubiquitous availability of massive data sets that include personal

information. Some of the more notorious examples are the consulting firm Cambridge Analytica

using Facebook data to sway election outcomes,1 health insurance companies seeking to predict

the health outcomes of potential insurers based on confidential private information,2 identity theft

from the databases of Equifax3 and Marriott,4 and criminal scammers seeking to extract money

from vulnerable populations. One can only conclude that sharing personal information on the Web

exposes individuals to a range of risks imposed by bad actors or adversaries.

A strong public reaction, which included movements such as #DeleteFacebook,5 led consumer

protection agencies and government authorities to seek regulation and also induced digital businesses

to re-evaluate their business models. Examples include the EU’s General Data Protection Regulation

(GDPR), introduced in 2018 to protect personal data of users in the European Union,6 as well as
1“How Trump Consultants Exploited the Facebook Data of Millions”, New York Times, 17 March 2018; see also

Papanastasiou [2018] and Candogan and Drakopoulos [2017].
2“Can a Facebook Post Make Your Insurance Cost More?”, Wall Street Journal, 18 March 2019.
3“ ‘We’ve Been Breached’: Inside the Equifax Hack”, Wall Street Journal, 18 September 2017.
4“Marriott CEO Reveals New Details About Mega Breach”, Forbes, 11 March 2019.
5“The #DeleteFacebook Movement Has Reached a Fever Pitch, as Former Facebook Insiders Turn on the

Company”, Business Insider, 21 March 2018.
6“The Birth of GDPR: What Is It and What You Need to Know”, Forbes, 25 May 2018; https://gdpr-info.eu
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this acknowledgment by Facebook’s Mark Zuckerberg: “We don’t have the strongest reputation

on privacy right now, to put it lightly. But I’m committed to doing this well and starting a new

chapter for our product.”7

In this paper we develop an analytical framework to study data policy, information security, and

privacy concerns in digital businesses. We focus on the following three research questions.

1. What are the incentives of a digital company to store and secure users’ information?

2. How do those incentives depend on the company’s revenue model? For instance, would an

advertising-driven business such as Google have a different data policy than a transaction-driven

business such as Uber?

3. What is the scope for policies to mitigate the exploitation of user information by adversaries?

Our model features agents of three strategic types: a digital business (we use the terms “digital

business” and “company” interchangeably); users; and adversaries. A digital business offers services

to users. Users have idiosyncratic valuations of the services offered, and they might benefit from

interactions with other users (positive network effects). Users’ activity (usage of the service) is

endogenous and conveys information about their characteristics. This information may be used by

the business to enhance its service and thus provide value to users. However, it could also be used

maliciously by other economic agents, referred to as adversaries. These agents are heterogeneous in

their ability to access the user information stored by the digital business.

The digital business benefits from user activity and also from its ownership of user information.

To maintain these benefits, the digital business defines a data policy consisting of two instruments.

The first is its data protection policy: How difficult is it for adversaries to access user information

stored on the company’s servers? A digital business can upgrade its firewall or antivirus protection,

making it more costly for adversaries to access information. The company can also create more

effective screening procedures and/or restrict access to user data through its application programming

interface (API) in order to prevent excessive user data procurement by affiliated companies.8 The

second instrument is the company’s data storage policy: How much of a user’s information is actually

stored in the company’s database? Examples include the decision by Whatsapp to encrypt users’
7“Facebook’s Zuckerberg Announces Privacy Overhaul: ‘We Don’t Have the Strongest Reputation’ ”, The Guardian,

30 April 2019.
8“Facebook Restricts APIs, Axes Old Instagram Platform Amidst Scandals”, TechCrunch, 4 April 2018.
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text messages (thus reducing the amount of information it stores)9 and Facebook’s practices (at

least until August 2019) of transcribing audio chats (thereby increasing the amount of accessible

information it stores)10 and of retaining information from deleted accounts.11

Our first set of results takes the design of the digital business as given and then characterizes

users’ and adversaries’ behaviors. Any improvement in the company’s data protection policy leads to

reduced adversarial activity and hence to increases in user activity and in the amount of information

stored by the digital business. If the company’s data storage policy becomes more stringent (i.e., if

a smaller fraction of data is stored), then user activity and the resulting amount of information

stored first increase and then decrease. The level of adversarial activity and consumer surplus follow

a similar pattern when the business changes its data storage policy. This non-monotonicity reflects a

natural tension between information’s benefits and costs to consumers. On the one hand, consumers

benefit from the better service that a business can provide when it retains more data. On the

other hand, increased data availability makes it easier and more attractable for adversaries to harm

users—a development that encourages bad agents to enter the market.

Our main result, which builds on the characterization of users’ and adversaries’ behavior,

determines the optimal design of a digital business. If the costs of data protection are low, then

a digital business will store and use all of the data generated by its users’ activities; it will also

provide enough protection that adversarial activity is sufficiently reduced that user activity is not

compromised. For intermediate data protection costs, the digital business will choose an intermediate

data storage policy and a less stringent data protection policy. Finally, if data protection costs are

high then a digital business will save no user data and thus will have no need for data protection.

We underscore the economic content of this characterization by fitting it to the empirically

relevant digital business models. One such model is adopted by digital companies, such as Facebook

and Google, whose main revenue source is targeted advertising; we refer to these businesses as

advertisement-driven (or simply ad-driven) companies. In adopting this business model, these

companies are essentially trading in the user information they store. The second model applies

to digital businesses whose main revenue source is user payments in the form of subscription fees

(e.g., Dropbox) or of some fraction of user purchases (e.g., Amazon and eBay); these businesses
9“WhatsApp Introduces End-to-End Encryption”, New York Times, 5 April 2016.

10“Facebook Paid Contractors to Transcribe Users’ Audio Chats”, Bloomberg, 13 August 2019.
11“OK, You’ve Deleted Facebook, but Is Your Data Still Out There?”, CBS News, 23 March 2018.
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are referred to as transaction-driven companies. Companies such as Amazon Marketplace and

eBay—as well as online dating services and ride-hailing platforms like Uber and Lyft—all exploit

user information in order to match users with services and products and to charge users either for

the match itself (eBay, Uber), for access to the service (online dating platforms), or both (Amazon).

In general: the more information these companies possess, the better the matches and thus the

greater the value for a user who transacts through their platforms.

Our characterization reveals that an ad-driven business chooses either to store all data generated

by user activity and provide sufficient data protection or to store no data and provide no protection—

in effect, going out of business. In other words, the optimal design is discrete: there is no intermediate

design in which the business provides some protection while adopting a selective data storage

policy. In contrast, transaction-driven businesses exhibit a more continuous pattern whereby such

an intermediate design may be optimal under certain conditions. Comparing the two types of

companies in terms of how much user information each stores, we find that ad-driven companies do

not always store more users’ data; this outcome is at odds with the prevailing narrative.12

Using our final set of results, we evaluate the welfare loss due to adversarial activity. We show that

measuring only the direct damage inflicted by adversaries on consumers significantly underestimates

the welfare loss as well as the loss of consumer surplus. We define the adversarial loss multiplier

calculated as a ratio: the consumer surplus loss due to adversaries divided by the direct damage to

users from adversarial activity. We establish that the lower bound for this loss multiplier is always

greater than 2. The lower bound increases with network strength, becoming unbounded from above

even for finite network effects. Since also profits decline when adversaries are present, it follows

that the total welfare loss is larger still. Finally, we compare advertisement- and transaction-driven

companies with respect to the consumer surplus derived by their respective users and find that the

relationship depends strongly on the cost of data protection.

This paper contributes to an active interdisciplinary area of research that studies the consequences

of the unprecedented ability of digital institutions to amass large data sets consisting of user

characteristics and behavior. The main issues discussed in the literature are consumer privacy, the

management of consumer information, implications for managerial strategies, and the role of policy

intervention.
12“The Facts About Facebook”, Wall Street Journal, 24 January 2019.
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With regard to privacy, the computer science literature has addressed the design of algorithmic

mechanisms for anonymizing individual-level data (for reviews of this research stream, see e.g. Dwork

and Roth 2014, Cummings et al. 2015, Ghosh and Roth 2015, Abowd and Schmutte 2019). Related

studies on economics and marketing focus on understanding how users’ information is revealed

through their purchase decisions (Conitzer et al. 2012), their formation of social links (Acemoglu

et al. 2017), and voluntary information disclosure; this literature explores how these mechanisms

for extracting user information affect the design of targeted pricing (e.g., Candogan et al. 2012,

Bloch and Quérou 2013, Fainmesser and Galeotti 2015, Montes et al. 2018, Fainmesser and Galeotti

2019, Ichihashi 2019b) and social image visibility (Ali and Bénabou 2016) as well as advertising

strategies (Galeotti and Goyal 2009, Shen and Miguel Villas-Boas 2017), the extent of competition

(Casadesus-Masanell and Hervas-Drane 2015), and overall consumer behavior (Goldfarb and Tucker

2011, Koh et al. 2015, Jann and Schottmüller 2016, Gradwohl 2017). Excellent surveys of this work

are provided by Acquisti et al. [2016], Mayzlin [2016], and Bergemann and Bonatti [2019].

Our study complements the extant literature by focusing on the drivers and welfare implications

of a digital company’s data policy. For that purpose, we abstract from the specific mechanisms

through which data can be collected and instead develop a full-fledged strategic model in which the

activities of users and adversaries are endogenous to a company’s data policy design. This model

offers a clear framework within which to study the optimal data policy design of a digital business

and to compare it across different domains—in particular, ad-driven and transaction-driven digital

businesses.

The rest of our paper proceeds as follows. Section 2 presents the model and describes how it

maps to different types of digital businesses. In Section 3 we characterize the behavior of users and

adversaries, given the digital company’s design, and then derive our main result: a characterization

of the optimal business design in terms of its policies for data protection and data storage. Section 4

introduces the adversarial activity loss multiplier and presents a comprehensive welfare analysis.

We conclude in Section 5 with summary remarks and a discussion of how the model can be used

to answer recurring questions about privacy and the business models typically adopted by digital

companies. Proofs for all results are given in Appendix B.
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2 Model

A digital business (a company) chooses a data policy consisting of two components: a data protection

policy and a data storage policy. Consumers decide how much to use the services provided by

the digital business and those decisions, together with the company’s data policy, determine how

much consumer information is stored in the latter’s database. Malicious agents or adversaries can,

at a cost that depends on the data protection policy in place, attempt to access the database; if

successful, they harm consumers. In this section we develop a parsimonious model that links all

these elements before giving a few contemporary examples that showcase the model’s applicability.

2.1 Users

A unit mass of users choose their respective levels of activity with a digital business, levels that

define their usage of a service. Thus each user i chooses a costly action ai, which represents i’s

usage level of the business’s service. Let ā =
∫
j aj dj denote average user activity. Usage of the

service generates information about the user. The information that a digital business stores about

its users—and that can be retrieved (either by the business itself or by third parties with access

to the database)—is ξai. Here ξ ∈ [0, 1] is the company’s data storage policy, which ranges from

storing none to all of the focal data. Suppose user i chooses ai when she expects average activity to

be ā;13 then her utility is

Ui(ai, ā) = aibi − 1
2a

2
i + βaiā+ aiξρ− aiξω. (1)

The first term is user i’s stand-alone benefit bi from the service; users are heterogeneous with respect

to bi, and b̄ =
∫
j bj dj. The second term is the private cost that user i pays for activity ai—for

example, the cost of time spent on a social platform like Facebook or the cost of purchases made

on an e-commerce platform like Amazon. The third term, a classical expression for the positive

network effect, depends on users’ average activity and it is parameterized by β ≥ 0.

The fourth and fifth terms in Eq. 1 determine (respectively) the user’s benefits and costs that

result from the company’s storing her information aiξ in its database. Those benefits, which are

captured by the parameter ρ ∈ [0, 1), reflect the digital company’s services that are targeted to
13To ease the exposition, we use feminine and masculine pronouns for (respectively) the user and adversary.
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particular users based on stored information about them. The user’s cost, captured by ωaiξ, depends

on how often she expects her information to be misused by adversaries. In equilibrium, ω will be

equal to the mass of active adversaries; in fact, it will become clear that ω can be interpreted as

the mean number of adversaries’ attacks per user. Hence we refer to ω as the attack rate or, more

generally, as adversarial activity.

2.2 Adversaries

There is a large mass K of potential adversaries.14 Adversaries are heterogeneous in their ability to

access the information stored by a digital business. This heterogeneity is captured by the parameter γ,

which we assume (for the sake of simplicity) to be uniformly distributed over [0,K]. An adversary

knows his own γ and chooses to be active (action 1) or not (action 0). The gain to an inactive

adversary is his outside offer, which we normalize to zero (π(0) = 0). If an adversary with ability γ

is active, then he pays a fixed cost γC to access the stored information and attacks one user chosen

uniformly at random. An adversary who attacks user i receives payoff aiξ, so his expected benefit

is āξ. The parameter C is chosen by the digital business and reflects its data protection policy.

Formally, the payoff expected by an active adversary of ability γ is15

π(1|γ) = āξ − γC.

2.3 Digital business

The digital business chooses the data protection and data storage policies, or (C, ξ), that will

maximize its strategic objectives. In particular, the company seeks to maximize users’ average

activity and the amount of user information that it can use. These objectives can be expressed as

Π(C, ξ, ā) = αā+ α̂āξ − ψC, (2)
14We present results for the case in which K is large—strictly speaking, for K →∞. Doing so ensures the existence

of at least some nonactive adversaries. The only role played by this restriction is in facilitating our presentation of the
results, and there are no economic insights to be gained from the case of small and finite K.

15Another interpretation of this model of the adversary is that there is a single criminal who, upon gaining access
to the digital company’s data, attacks all users. Then γC represents the attack’s cost; alternatively, C can denote this
cost and 1/γ the likelihood of that attack being successful.
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where ψ signifies the cost of protecting the database’s stored information.16 The parameters α and α̂

represent the extent to which the digital company’s revenue depends on, respectively, average activity

and stored information. The relation between α and α̂ depends primarily on the company’s adopted

business model. Drawing from our observations of existing companies and from our discussion in

the Introduction, we classify digital businesses into the two broad categories described next.

Advertisement-driven companies: digital companies whose main source of revenue is offering

targeted advertising (e.g., Facebook and Google). In selling targeted ad services, such a business

capitalizes directly on the user information it stores. For these companies, then, α = 0 and α̂ > 0.

Transaction-driven companies: digital businesses whose main source of revenue is the payments

made by users in the form of subscription fees or commissions. Leading examples of transaction-

driven digital businesses are such companies as Amazon Marketplace and eBay, ride-hailing platforms

like Uber and Lyft, and online dating services. Recall from the Introduction that such a business

matches user information with services and products and then charges users either for the match

itself (e.g., eBay) or for access to service (online dating platforms) or for both (Amazon). A digital

business that collects more information can make better matches, in which case users gain more

utility from its platform. For transaction-driven companies we have α > 0 and α̂ = 0.

2.4 Timing and equilibrium concept

We consider the following two-stage game. In the first stage, a digital business chooses its data policy

design (C, ξ)—that is, its data protection policy and data storage policy. This choice is observed

by users and adversaries. In the second stage, users choose their activity and adversaries choose

whether or not to attack the digital business. Users and adversaries act simultaneously.17

In our context, the strategy of a digital business corresponds to a data policy choice (C, ξ) ∈

R+ × [0, 1]. The user’s strategy is a function ai : R+ × R+ × [0, 1] → R+ that specifies user i’s

activity for every possible bi and (C, ξ). Finally, the strategy of an adversary is a function

vj : [0,K]× R+ × [0, 1] → {0, 1} that specifies, for every possible γ ∈ [0,K], whether adversary j

will attack the company. We use a and v to denote the strategy profile of (respectively) a user and
16If we put α̂ = α1 − µ, then µ is an explicit direct cost to the company for storing information and α1 is that

information’s direct benefit to the company.
17Because there is a continuum of users and adversaries, no agent’s action affects the best reply of others. Hence

the analysis does not change if moves are sequential rather than simultaneous.
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an adversary.

We shall characterize perfect Bayesian equilibria of the game. Here, an equilibrium is a design

choice (C∗, ξ∗) and a strategy profile (a∗,v∗) such that: (a) the digital business maximizes its profit

given (a∗,v∗); and (b) for every (C, ξ), (a∗,v∗) is a Bayesian equilibrium in the ensuing subgame.

As is typical in the literature featuring models with positive network externalities, we assume

that β < 1. This assumption guarantees that, for every design choice (C, ξ), there is a unique

equilibrium in the game’s second stage.

2.5 Examples

The heterogeneity of digital businesses reflects several factors: differences in their objectives, the

various channels through which they create value for users, their interpretation of adversaries, and

the instruments available for storing and protecting information. We provide several examples to

show that our model can be mapped to real-world digital businesses. Our focus in this discussion is

on the proposed taxonomy of advertisement- and transaction-driven companies.

Facebook (or any social networking platform). For Facebook, ai measures the content that

user i creates and shares. Users exert effort and benefit from interactions with others (the network

effect parameter β > 0), whereas stand-alone benefits are virtually zero (b→ 0). Facebook stores

the information it collects from users and offers them a variety of targeted services, such as recalling

past experiences (“remember X years ago”) and promoting new apps and targeted offers that match

the user’s tastes. Therefore, ρ is positive even prior to our accounting for the potential benefit to

users of targeted versus nontargeted advertising.

Companies affiliated with Facebook are granted access to its database (e.g., through Facebook’s

API). Many of these companies offer benefits to users and complement Facebook’s service; thus their

presence is reflected by a positive ρ. However, users view some affiliated companies as malicious

because they misrepresent the value of their service and/or use the information from Facebook for

other purposes. A recent example is Cambridge Analytica. We refer to such malicious companies as

adversaries. Note that Cambridge Analytica did not directly hack Facebook. Instead, it obtained

rightful access to the information by agreeing to follow Facebook’s terms of service—which it later

violated. Facebook has since changed its terms of service to reduce the amount and types of

information that third parties can collect, a tacit admission that its prior terms were insufficient.
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Our model represents such a change by an increase in data protection C.

Facebook is an ad-driven company and its revenue—via targeted advertising and charging

affiliated companies for data access—is directly tied to the amount of data it stores. The platform

acts as if α = 0 and α̂ is large. Yet Facebook is typical of social networking platforms in having

a different business model during its initial phase. In particular, it did not sell ads and focused

instead on leveraging network effects while effectively subsidizing users. In this phase, the company’s

objective was to increase average users’ activity. That metric was the key performance indicator; it

was used to price the company’s value and to raise capital, which had the benefit of accelerating

growth. So during its initial phase, Facebook acted as if α > 0 and α̂ = 0.18

Amazon Marketplace. One of the main reasons for users to be active on Amazon Marketplace

is finding suitable products. Whether this objective is achievable requires, inter alia, the presence of

other users on the platform (i.e, peer buyers or sellers). It follows that network effects are positive.19

Amazon uses sophisticated algorithms to recommend products to users as a function of such user

characteristics as previous purchases. This process includes Amazon’s use of user information to

expand consumers’ “consideration sets” by proposing products they may be unaware of but whose

characteristics are correlated with the those of their respective previous purchases. Hence users may

benefit from the information that is stored about them, so ρ > 0 in this case.

Amazon Marketplace is a transaction-driven company that earns commissions from successful

matches between the platform’s buyers and sellers. Transaction-driven companies attract adversaries

like hackers who try to penetrate the platform’s security and to gather, for example, credit card

information.

This description of Amazon applies to most matching platforms, such as e-commerce platforms,

dating platforms, and “sharing economy” platforms; it applies also to companies that rely on

commissions or subscription fees. All of these businesses share the characteristics we have just
18This description can also be adapted to describe search engines like Google. Google began by offering free search

services to users, and no paid advertising was allowed. In this initial phase, Google’s main objective was to grow as
rapidly as possible. Information stored about users was the main input used to improve the matches to user searches,
but that information was not monetized by Google. Thus, during Google’s initial phase, α > 0 and α̂ = 0. It was not
until Google acquired a substantial share of the market for search engines that the company adopted an ad-driven
revenue model.

19That users of Amazon Marketplace are of different types (i.e., buyers and sellers) leads to the possibility of
distinguishing between across-side and within-side network effects. Such diversity allows also for richer modeling
choices (e.g., multi-sided platform models). Although these considerations help explain, for example, how the business
can “price” different users, they are not the focus of our study. Our aim is rather to understand the design and effects
of a digital company’s data policy.
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described.

3 Analysis

We solve the game as follows. In Section 3.1, we characterize the equilibrium—between adversaries’

and users’ actions—for every data policy design. Then, in Section 3.2, we present the optimal data

policy design.

3.1 Equilibrium between users and adversaries

Proposition 1. Fix the data policy design of the digital business characterized by data protection

policy C and data storage policy ξ. Then the ensuing subgame has a unique equilibrium in which

average users’ activity is

ā∗(C, ξ) = C(b̄+ ρξ)
C(1− β) + ξ2 , (3)

and the equilibrium attack rate by adversaries is

ω∗(C, ξ) = ξā∗(C, ξ)
C

. (4)

Many of the market’s outcomes are determined by the average activity, ā∗(C, ξ), and the

amount of information stored, ξā∗(C, ξ). These two factors play leading roles in determining a

company’s incentives when deciding on their design of a data policy. Note that the equilibrium

attack rate ω∗(C, ξ) depends on the amount of information stored in the digital company’s database,

consumer surplus (CS), on the other hand, can be derived using average users’ activity: CS =
1
2
∫
i a
∗
i (C, ξ, bi) di = 1

2 [σ2
b + ā∗(C, ξ)], where σ2

b is the variance in the stand-alone benefits {bi}. Given

the importance of average activity and of how much information is stored, it is critical to understand

the comparative statics of these quantities with respect to the choice of data policy described by C

and ξ.

Proposition 2. Average user activity (ā∗(C, ξ)) and amount of information stored (ξā∗(C, ξ)) each

increase with a stronger data protection policy C; however, both of these metrics first increase and

then decrease with increasing fraction of stored data—that is, with the company’s storage policy ξ.
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Formally, there exist ξ̂(b̄, C, ρ, β) ≤ ξ̃(b̄, C, ρ, β) that are decreasing in C and such that:20

(i) ā∗(C, ξ) increases with ξ for ξ ∈ [0,min{1, ξ̂(b̄, C, ρ, β)}] and decreases otherwise;

(ii) ξā∗(C, ξ) increases with ξ for ξ ∈ [0,min{1, ξ̃(b̄, C, ρ, β)}] and decreases otherwise.
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Figure 1: Users’ average activity ā∗(C, ξ) (panel a) and average stored information ξā∗(C, ξ) (panel b)
as a function of data storage policy ξ see text).

It is straightforward to intuit the comparative statics with respect to a data protection policy C.

Yet the effect of data storage policy (ξ) is more subtle, as illustrated in Figure 1. When no information

is stored (i.e., ξ = 0), the equilibrium attack rate is zero and user activity is determined solely by

the interaction between a user’s stand-alone benefit and positive network effects. By storing ever

greater proportions of user data (increasing ξ), the digital business creates new benefits for users

since it can then offer tailored services based on users’ information (as reflected in the term aiρξ in

Eq. 1). At the same time, increasing ξ also boosts the attack rate. However, adversaries are unlikely

to misuse information when ξ is still. So in this case, any increase in the amount of information

stored will increase the extent of user activity.

With increasing ξ, adversaries have more to gain from every attack; this dynamic leads to a

further increase not only in the attack rate but also in the loss that users suffer from any single

attack. At some point, these negative effects outweigh the benefit to users from their information

being used, which in turn reduces users’ average activity. We remark that, even though users’

average activity declines for every ξ > ξ̂(b̄, C, ρ, β), total information stored declines only for

ξ > ξ̃(b̄, C, ρ, β) ≥ ξ̂(b̄, C, ρ, β). Yet for a sufficiently large ξ, any additional increase in ξ leads to a

decline in user activity that is steep enough to reduce total information in ξ.

20In particular, ξ̂(b̄, C, ρ, β) = − b̄
ρ

+
√(

b̄
ρ

)2 + C(1− β) and ξ̃(b̄, C, ρ, β) = ρC(1−β)
b̄

+
√
C(1− β) +

(
ρC(1−β)

b̄

)2.
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It is interesting that this increase in user activity with increased ξ (for sufficiently small ξ) is

driven by the benefits that users obtain from tailored services (captured by aiξρ in Eq. 1’s utility

function). In fact, if users do not benefit from their information being accessible (ρ = 0) then user

activity decreases with increasing ξ for any data storage policy. Yet regardless of the value of ρ,

accessible information ā∗(C, ξ)ξ first increases and then decreases with ξ.

As suggested in our discussion preceding Proposition 2, the comparative statics for consumer

surplus is identical to the comparative statics for average user activity. Similarly, the comparative

statics for the attack rate (as a function of ξ) is identical to the corresponding comparative statics

for the amount of information stored.

3.2 Optimal design

Having accounted for the reactions of users and adversaries, we can now express the digital company’s

data policy design problem in the following form:

max
(C,ξ)∈R+×[0,1]

Π(ξ, C) = αā∗(C, ξ) + α̂ξā∗(C, ξ)− ψC

s.t. ā∗(C, ξ) as given by Eq. (3).

Let

ξ(α, α̂, ρ, b̄, ψ) = 1
2α̂ρ

(
−αρ− b̄α̂+ |b̄α̂− αρ|

√
ψ

ψ − α̂ρ

)
; (5)

C(ξ, α, α̂, ρ, b̄, ψ) = 1
1− β

(
−ξ2 + ξ

√
1
ψ

(b̄+ ρξ)(α+ α̂ξ)
)
. (6)

Theorem 1 (Optimal Design). There exist cost-of-protection thresholds 0 < ψL < ψH such that

the following statements hold.

(i) For ψ ≤ ψL, the digital business stores all user information, ξ∗ = 1, and sets a protection

level C∗ = C(1, . . .).

(ii) For ψ ∈ (ψL, ψH), the digital business stores only some user information, ξ∗ = ξ(· · · ) ∈ (0, 1),

and sets a protection level C∗ = C(ξ∗, . . .).

(iii) For ψ ≥ ψH , the digital business stores no information, ξ∗ = 0, and sets a protection level

14
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Figure 2: Typical behavior of optimal data protection level C∗(ξ) for a given data storage level ξ in
the case of low protection costs (panel a) and high protection costs (panel b).

C∗ = 0.

Moreover, the optimal amount of data storage (ξ∗) and the optimal extent of data protection (C∗)

are strategic complements in equilibrium.

To develop intuition, it is helpful to consider the optimal choice of protection for an arbitrary

data storage policy ξ (see Lemma 1 in Appendix A). Figure 2 plots the digital company’s optimal

level of C∗(ξ) for a given ξ. The figure’s left-hand side (panel a) corresponds to the case where

protection costs ψ are low; in this case, investing in protection increases with ξ. So for low values

of ψ, our two instruments—the extent of protection and the amount of stored information—are

complements.

The right-hand side of Figure 2 (panel b) corresponds to the case of intermediate/high protection

costs. Much as in the low-cost case, if ξ is small then the optimal protection level C∗(ξ) increases

with ξ. Yet when ξ becomes large (i.e., a higher fraction of data is stored), the protection level

actually declines with an increase in ξ. For large enough ξ, the digital company’s best policy may

even be to refrain from investing in any protection. In that case, the business’s two instruments are

substitutes. Two effects underlie this outcome. First, it is clear from Eq. 4 that a unit increase in

the protection level C has the least influence on adversarial activity when there is little information

stored. This fact, when coupled with the observation from Proposition 2 that the least information

is stored when ξ is either low or high, implies that increasing the level of data protection is least

effective when ξ is either low or high. Second, it follows from the user’s utility (Eq. 1) that the direct

damage from adversarial activity increases quadratically with ξ (to see this, plug the expression

for ω∗(C, ξ) into the damage expression ωaiξ to obtain ai[ξ2ā∗(C, ξ)/C]). In other words: if the
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business seeks to keep its data on user activity intact, then higher levels of information storage (ξ)

require quadratically higher data protection, which is costly. That cost, when combined with the

ineffectiveness of data protection at high levels of ξ, may lead the digital business to forgo protection

altogether in this region of very high ξ.

Thus we have shown that, for an exogenous information storage level ξ, the design parameters

C and ξ might be complements or substitutes. However, in an optimal design, the data protection

policy C and data storage policy ξ are always complements. It is intuitive that, if increasing ξ

results in the platform finding it too costly to protect information and thus deciding to lower the

protection level, then ξ is not optimal. To see why, first note that C and ξ are substitutes when ξ is

large. But in that case, both the total quantity of stored information and average user activity are

decreasing in ξ (see Proposition 2 and Figure 1); the implication is that the company will benefit

from reducing ξ even while holding the protection level fixed.

Theorem 1 is in line with this intuition. When the cost of adequate protection is too high, the

digital business does not find it profitable to protect information and therefore sets C∗ = 0. Because

C and ξ are complements at the optimum, the business also chooses not to store any data (ξ∗ = 0);

hence it resorts to maintaining user activity at the level b̄/(1− β) and relying solely on transactions

for revenue. It is easy to see that, in the absence of revenues from user activity (α = 0), the

threshold ψH approaches infinity and so a business will never move to the regime of no information

storage and no data protection.21

Yet when the cost of protection is intermediate, the business finds a middle ground: some level

of information storage and sufficient protection to generate returns from the information stored.

Finally, if the cost of protection is low then a digital business can store all information and effectively

cap adversarial activity by increasing data protection. Figure 3 plots the company’s optimal design

choice as a function of ψ.

To gain further intuition, we apply Theorem 1 to the two simple cases of advertisement- and

transaction-driven companies—which, it may be recalled, exemplify the two most commonly observed

business models. For ease of presentation, we examine the limiting case of b̄ → 0, or the case

in which users’ stand-alone benefits are negligible. This approach should not affect comparisons
21This statement holds unless, simultaneously with α = 0, also α̂ = 0 (in which case the business makes zero profits)

or b̄→ 0 (in which case users receive no stand-alone benefits; see Corollary 2 to follow). In either of these cases, the
business may prefer to set ξ∗ = 0 and C∗ = 0.
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Figure 3: Optimal data storage policy ξ∗ (panel a) and optimal data protection policy C∗ (panel b)
as a function of the cost ψ of protection; the points ψL and ψH are defined in Theorem 1.

between these two types of businesses because we have no reason to believe that they are inherently

different in terms of stand-alone benefits.

Corollary 1 (Transaction-Driven Companies, α > 0 and α̂ = 0). If b̄→ 0 then the optimal data

policy design of a transaction-driven digital business, and the subsequent equilibrium, take one of

the following forms.

(i) If ψ ≤ αρ/4 then the business stores all information, ξ∗ = 1, and chooses protection level

C∗ = (1− β)−1[√ρα/ψ − 1
]
; user activity is then ā∗(C∗, ξ∗) = C∗

√
ρψ/α and the attack rate

is ω∗(C∗, ξ∗) =
√
ρψ/α.

(ii) If ψ > αρ/4 then the business stores some user information, ξ∗ = αρ/4ψ and chooses

protection level C∗ = (1− β)−1(ξ∗)2; user activity is then ā∗(C∗, ξ∗) = (ρ/2(1− β))ξ∗ and the

attack rate is ω∗(C∗, ξ∗) = ρ/2.

A transaction-driven digital business has incentives to store information because the platform

can use it to offer services that create value for users, which in turn stimulates user activity. The

level of information stored is a weakly increasing function of ρ and a weakly decreasing function

of ψ. For example, if ρ increases—reflecting perhaps a new algorithm that allows for more efficient

matches—then the digital business will relax its storage policy (i.e., increase ξ∗) and also increase

the level of protection C∗. As a result, average users’ activity increases, the attack rate declines,

and the amount of stored information increases. The company does not change its storage policy

when the strength of network effects changes (e.g., when β increases) but it does then increase its

level of protection, which (as before) leads to increased average user activity.
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Corollary 2 (Advertisement-Driven Companies, α = 0 and α̂ > 0). If b̄ → 0 then the optimal

data policy design of an ad-driven digital business, and the subsequent equilibrium, take one of the

following forms.

(i) If ψ < α̂ρ then the company stores all information, ξ∗ = 1, and chooses protection level

C∗ = (1− β)−1[√ρα̂/ψ − 1
]
; user activity is then ā∗(C∗, ξ∗) = C∗

√
ρψ/α̂ and the attack rate

is ω∗(C∗, ξ∗) =
√
ρψ/α̂.

(ii) If ψ ≥ α̂ρ then the company is inactive; hence it stores no information (ξ∗ = 0) and chooses a

zero level of protection (C∗ = 0), which leads to a zero user activity (ā∗(C∗, ξ∗) = 0).

The policy design choice of an advertisement-driven digital business is extreme: as long as the

company is active, it stores all users’ information.22 Therefore, the company will need to secure that

information and so invests a positive amount in protecting it. We posit that the company is more

incentivized to invest in protection when users benefit more from the information stored (higher ρ)

and/or when network effects are stronger (higher β). So for companies with large ρ and β, we

predict larger investments in data protection, lower attack rates, and higher average activity levels.

As a final observation, we consider the implication of these two corollaries for the evolution

of the data policy of an ad-driven digital business over its life cycle. The initial phase of most

such companies is delicate because their survival depends on building a solid and active customer

base. For that reason, the initial focus of an ad-driven company is on increasing user activity. As

mentioned in Section 2.5, this performance indicator is used to determine the company’s valuation,

to raise capital, and thus to accelerate growth. So a digital business in its initial phase acts as if

α is large and α̂ = 0. After establishing a user base and consolidating users’ network effects, the

company enters a more mature phase and its business model changes to monetizing the information

it stores from users’ activity. For an advertisement-driven company, this means offering targeted ad

services. The company then acts as if α = 0 and α̂ is large.

The foregoing characterization suggests that a move from the initial phase to the mature phase

comes with a discrete change in the company’s data policy. In the case of an intermediate value of ψ,

for instance, a digital business will move from partial information storage to complete information

storage—accompanied by a discrete increase in the data protection level C.
22Note that an ad-driven company stores a nonzero (but strictly smaller than 1) fraction of its users’ information if

ψ ≥ α̂ρ and users’ stand-alone benefits are nonzero (i.e., if b̄ > 0.
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4 Welfare

Although digital businesses account for a significant share of all transactions, the impact of digital

privacy issues on consumers is not yet fully understood. One way of measuring such effects is by

evaluating the direct loss due to adversarial uses of digitally stored data; in our model, that loss

is expressed as D =
∫
ω∗a∗i ξ di = ω∗ā∗ξ. A January 2019 BBC report states that UK victims of

cybercrime lose £190,000 per day.23 Since the UK population is about 66 million, each individual

suffers (on average) a daily loss of about £0.003, or 3.5 US pennies.

However, these numbers may underestimate the welfare loss induced by the adversaries. The

reason is that an adversary, apart from inflicting direct losses on users, also induces them to change

their sharing behaviors and forces digital businesses to alter the design of their data policy. Note

that, for a fixed data policy design (C, ξ), an absence of adversaries will lead users to increase their

activity levels. Moreover, if the risk of adversaries is removed then the digital company’s optimal

design becomes (C, ξ) = (0, 1), which allows for full data utilization with no adverse effects and also

saves on data protection costs.

In order to evaluate the full effect of adversarial activity on consumers, we define the adversarial

loss multiplier M as the ratio of total adversary-caused consumer surplus loss to the direct loss

that adversaries inflict:

M = CSno adversaries − CS∗

D
, (7)

where CSno adversaries is the equilibrium consumer surplus in a game that excludes adversaries. Our

next proposition characterizes the loss multiplier and establishes its significance.24

Proposition 3 (Adversarial Loss Multiplier). The total decrease in consumer surplus due to the

presence of adversaries is equal toM ·D, whereM is the adversarial loss multiplier:

M = C∗

ξ∗

((
b̄+ ρ

1− β

)2 1
(ā∗)2 − 1

)
≥ 2

1− β .

Thus the total loss to users from the presence of adversaries is more than double users’ equilibrium
23“UK Cyber-crime Victims Lose £190,000 a Day”, BBC News, 27 January 2019.
24We remark that CSno adversaries is equal to the consumer surplus when a digital business sets C →∞, which fully

protects users’ data from adversaries and maximizes CS. However, that approach can never be a part of a digital
company’s optimal design when ψ > 0.
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direct loss due to adversarial use of stored data. Furthermore, the loss multiplier increases with

the strength of network effects and is unbounded even when those effects are finite. In fact, total

welfare loss is greater even than the loss of consumer surplus. The additional loss is due to the effect

of adversaries on the digital company’s profit by altering users’ activity and increasing its protection

costs.

Proposition 3 shows that the direct damage D from adversarial activity severely underestimates

the effects that adversaries have on consumer surplus and total welfare. We next turn to evaluating the

overall consumer surplus and profits attainable by advertisement- and transaction-driven companies.

As discussed in Section 5, this examination sheds light on an ongoing public debate about which

revenue model is more aligned with consumer preferences.

Proposition 4. Consider an advertisement-driven company (Π = α̂āξ − ψC) and a transaction-

driven company (Π = αā− psiC), and assume that α = α̂. Then the following statements hold.

(i) Profit is always weakly lower for the ad-driven company and is strictly lower when data storage

costs are sufficiently high.

(ii) Consumer surplus is lower (resp. higher) for the ad-driven company when data protection

costs are high (resp. intermediate), and it is equal across business models when data protection

costs are low.

It is clear that digital businesses differ in terms of more than their revenue model. Therefore,

Proposition 4(i) should not be interpreted as a claim that digital businesses will always do better

if they choose a transaction-based revenue model. Instead, it reflects that advertisement-driven

companies are more vulnerable to adversarial activities than are transaction-driven companies. One

can see this by observing that, in the environment of Proposition 4, the values of Πno adversaries and

CSno adversaries are the same for ad-driven and transaction-driven companies. It follows that the

difference in profits and in consumer surplus can be fully attributed to the presence of adversaries.

In Section 5 we argue that a successful digital business’s data protection costs are likely to be

in the intermediate range. Part (ii) of Proposition 4 suggests that, in a world with adversaries,

an advertisement-driven business model may be more aligned with consumer needs than is a

transaction-driven model.
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The logic underlying Proposition 4 is as follows. When data protection costs are low, advertisement-

and transaction-driven companies can each afford to store all of the available data (ξ = 1). At that

point, their respective data storage policies are such that both choose their data protection level to

maximize αā− ψC; hence both types of businesses choose the same data protection level C, have

identical profits, and provide the same utilities to users. For intermediate data protection costs,

both types of companies must scale down their data protection because it is now more expensive.

To discourage increased adversarial activity—a natural consequence of reduced protection—both

companies also choose to reduce the fraction of data they store. Yet this reduction in ξ is more

damaging to an ad-driven company’s profits, which are directly affected by the reduced average user

activity and also by the reduced fraction of data stored. Hence the ad-driven company chooses to

store more data and is willing to spend more on protecting it. This strategy mitigates the ad-driven

company’s relatively greater loss in consumer surplus. The effect that reducing ξ has on profits

carries over to the case of higher data protection costs.

When data protection costs become sufficiently high, the advertisement-driven company essen-

tially “gives up” and sets (C, ξ) = (0, 0). At that point the ad-driven company makes zero profits,

and its users are affected because they no longer receive any of the benefits associated with their

data being used.25 Figure 4 (panel a) illustrates how consumer surplus differs between the two types

of firms.
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Figure 4: Typical behavior of consumer surplus CS (panel a) and total amount of information stored
ā∗(C∗, ξ∗)ξ∗ (panel b)—as a function of the cost ψ of protection—for advertisement-driven (dashed
curves) and transaction-driven (solid curves) companies.

25The results for high data protection costs become even more pronounced if we assume, as seems reasonable, that
a company making no profits goes out of business.
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5 Discussion and Conclusions

In this paper we develop a framework to capture the major factors that determine a digital company’s

data policies. This framework provides a useful perspective and terminology for discussing questions

and issues faced by users, digital businesses, and regulatory authorities. Many of these questions

have been raised by the media, public officials, firms, and users of digital businesses in the public

domain. In a recent Wall Street Journal op-ed, for example, Facebook CEO Mark Zuckerberg

acknowledges and responds to several such questions.26 We begin this section by demonstrating how

our model facilitates expressing and analyzing these questions (see Appendix B.8 for our formal

analysis). In particular,

“there’s the important question of whether the advertising model encourages companies

like ours [Facebook] to use and store more information than we otherwise would.”

After comparing Corollaries 1 and 2 while assuming α = α̂, we conclude that—when the cost of

data protection is intermediate—advertisement-driven companies design less stringent data storage

policies (i.e., they set a higher ξ) than do their transaction-driven counterparts. Figure 4 (panel b)

illustrates that this design choice shapes users’ and adversaries’ incentives in such a way that the

amount of available information stored on the company’s servers (āξ) is greater for the ad-driven

company in this intermediate range of protection costs. When data protection costs are high, however,

this relationship is reversed. In that case, the ad-driven company’s cost of keeping adversaries at

bay outweighs the profits derivable from users’ stored data; hence the digital business may simply

abandon the market.

“Some worry that ads create a misalignment of interests between us [Facebook] and people

who use our services.”

Because advertisement-driven companies have more permissive data storage policies, it is tempting

to conclude that such business models lead to the company’s and its users’ interests not being

aligned. However, users also extract benefits from the digital business’s use of the data: they

may well enjoy better matches with content, products, and peers as well as more relevant ads.

The merit of Proposition 4 is to point out that, in the case of intermediate data protection costs,
26“The Facts About Facebook”, Wall Street Journal, 24 January 2019.
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consumer surplus is higher for users of an advertisement-driven firm than for users of a comparable

transaction-driven firm.

However, our results do show that, regardless of the specific revenue model, there is some

basic misalignment of interest between businesses and users. For example, holding all else equal,

users always prefer a stronger data protection policy. Governments around the world responded

with added regulation, with the most notable being the EU General Data Protection Regulation

(GDPR).27 While regulation in different countries take different forms, a common component is

the requirement that digital businesses improve the ways they protect users’ data. Our analysis

shows that when businesses are strategic, data protection and data collection are complements.

Therefore, in equilibrium, increasing the data protection requirements (i.e., requiring C to be above

some binding threshold) may lead businesses to collect and store more data. Whether users benefit

from this change or not depends on how much added value users have for the business’ use of their

data and how effective data protection is in deterring adversaries, as well as on the revenue model

of the digital business. Either way, as our front matter quote of Eduard Snowden suggests, data

protection and data collection/storage policies cannot be treated as independent when designing

regulations to enhance consumer surplus and aggregate welfare.

Interestingly, the basic idea that users extract benefits from a digital company’s use of their

data has been the focus of increased recent attention. Turow et al. (2015, 2018), as well as the New

York Times,28 reference a large-scale survey when making two claims. First, user decisions about

sharing their data are not entirely rational. Many users do not understand privacy policies and data

practices, sharing their data merely because it’s seemingly too difficult to “opt out”. Second, nearly

six in ten users would prefer not to see targeted ads, news, and/or discounts—and that proportion

increases when users learn just how they are tracked by websites. Turow et al. [2018] respond to the

claim, frequently made by marketers and tech C-suite executives, that users prefer relevant ads to

random ads.29

Our framework allows us to explore further the meaning of Turow et al. (2018) results and

to pose new questions for empirical work. A possible interpretation is that users find no benefit
27https://eugdpr.org/
28See “Sharing Data for Deals? More Like Watching It Go with a Sigh”, New York Times, 28 December 2018; and

“Mark Zuckerbeg’s Delusion of Consumer Consent”, New York Times, 31 January 2019.
29For example, Zuckerberg argues (in his Wall Street Journal op-ed cited previously) that “[p]eople consistently tell

us that if they’re going to see ads, they want them to be relevant.”
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from their information being stored; in the language of our model, this amounts to ρ = 0 or

even ρ < 0. Alternatively, users may wrongly suppose that data storage is for the purposes of

targeted advertising only; that misconception is suggested by the difficulty (alluded to previously) of

understanding privacy practices and also by the observation that targeted ads are rejected at higher

rates when users are fully informed of the data storage practices that enable such targeting. In that

case, it is possible that the fraction of ρ attributed to targeted advertising is, in itself, too small

to justify the digital company’s “surveillance” of users’ Web activity. Another possibility is that

users dislike ad targeting under any circumstances: in particular, regardless of whether eliminating

it would affect the data storage policies of digital businesses such as Facebook. Finally, consumers

may be sophisticated enough to prefer the equilibrium that would result from a ban on targeted

advertising—given that, as emphasized by Corollaries 1 and 2 and by the foregoing discussion, such

a ban would likely result in a lower fraction of data being stored. Analyzing equilibria that include

naïve or irrational users is beyond the scope of this paper; even so, our framework is flexible enough

that it could be modified to incorporate different types of users, including some forms of naïveté.

Another interesting question that transcends our analysis pertains to property rights over

individual-level data. Arrieta-Ibarra et al. [2018] make the case that users should be paid for

their data as if that data were labor, and Ichihashi [2019a] explores a scenario in which competing

data brokers compensate users for their data. Emerging work in the marketing literature seeks to

evaluate users’ valuation of privacy via empirical and experimental approaches (see Lin 2019 and the

references therein). We defer to future work those extensions of our framework that accommodate

payment for data usage.
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Appendix

A Additional Results

Lemma 1 (Optimal Data Protection Policy C∗(ξ) as a Function of Data Storage Policy ξ). Given

company’s data storage policy ξ, the company sets C∗(ξ) = max{Ch(ξ), 0}. Optimal protection

policy is non-zero if either protection is cheap (ψ < α̂ρ) or company doesn’t store much information:

ξ < min{1, α̂b̄+ρα+
√

(α̂b̄−αρ)2+4αb̄ψ
2(ψ−α̂ρ) }. Here Ch(ξ) = 1

1−β

(
−ξ2 + ξ

√
1
ψ (b̄+ ρξ)(α+ α̂ξ)

)
.

Lemma 2 (Optimal Data Storage Policy ξ∗(C) as a Function of Data Protection Policy C). Given

company’s data protection policy C, the company stores:

- part of the information ξ∗(C) = −κ(C) +
√
κ(C)2 + C(1− β) < 1 (increasing in C) if data

protection policy level is low C < Cl;

- all the information (ξ∗(C) = 1) if data protection policy level is high C > Cl.

Here κ(C) = b̄α−α̂ρC(1−β)
α̂b̄+αρ and Cl = 1

1−β
2αb̄+αρ+α̂b̄
2α̂ρ+αρ+α̂b̄ .

Lemma 3. Digital business’s data storage policy (ξ) and data protection policy (C) are complements

for sufficiently high data protection levels C and substitutes otherwise. Mathematically, ∂2Π(C,ξ)
∂ξ∂C > 0

if C(1− β) > 2αb̄+α̂b̄ξ+αρξ
α(2b̄+3ρξ)+α̂ξ(3b̄+4ρξ)ξ

2 (an increasing convex function of ξ).

B Proofs

B.1 Proof of Proposition 1 (Page 12).

Given users’ expectation of the attack rate ω, there exists a unique response of the users. Existense

(sufficient condition) follows from Glaeser and Scheinkman [2000]: ∃ã≥0∀a≤ã
∂Ui(ai,ā)

∂ai

∣∣∣
ai=ã

< 0 or

∃ã≥0∀a≤ã bi + βā+ ξ[ρ−ω]− ã < 0. Because ρ, ω, ξ ∈ [0, 1] this is satisfied whenever ∃ã≥0 bi + βã+

1− ã < 0 or ∃ã≥0 bi + 1 < ã (1− β), which can only be satisfied if β < 1.

Condition for the uniqueness of the users’ response also follows from Glaeser and Scheinkman

[2000]: ∀i
∣∣∣∣ ∂2Ui
∂ai∂ā

/∂
2Ui
∂a2
i

∣∣∣∣ < 1 which is satisfied if β < 1.

Next, we derive our characterization of the unique response. Denote a−i the activity choice

that i conjecture about the other users. Then user i’s best reply is ai = bi + βā− ωξ + ρξ where

ā =
∫
j ajdj. In equilibrium users’ expectation are correct and so

∫
i aidi = b̄+ βā− ωξ + ρξ = ā or
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ā(ω) = b̄+ρξ−ωξ
1−β . Such response induces adversaries with ā(ω)ξ ≥ γC to be active. Therefore, the

induced attack rate is ā(ω)ξ/C which should be consistent with the initial belief ω. The expressions

for ā(C, ξ) and ω∗(C, ξ) then follow.

B.2 Proof of Proposition 2 (Page 12).

Derivative of ā∗(C, ξ) wrt C is ξ2(b̄+ρξ)
(C(1−β)+ξ2)2 ≥ 0; wrt ξ it is C(ρC(1−β)−2b̄ξ−ρξ2)

(C(1−β)+ξ2)2 the sign of which

is defined by the sign of ρC(1 − β) − 2b̄ξ − ρξ2. At ξ = 0 the latter expression is positive and

has negative derivative. It changes sign to negative only once for ξ > 0 at ξ̂(b̄, C, ρ, β) which can

be found as the largest solution to the corresponding quadratic equation. Similarly, derivative

of ā∗(C, ξ)ξ wrt ξ is C(b̄(C(1−β)−ξ2)+2C(1−β)ρξ)
(C(1−β)+ξ2)2 which has sign of −b̄ξ2 + 2ρξC(1− β) + b̄C(1− β).

The latter expression is positive and has positive derivative at ξ = 0, it changes sign only once

at ξ̃(b̄, C, ρ, β) which is the largest solution to the corresponding quadratic equation. Finally,

ξ̃(. . .) > ξ̂(. . .) holds trivially when b̄/ρ < ρC(1 − β)/b̄, otherwise, rewrite it as ρC(1−β)
b̄

+ b̄
ρ >√(

b̄
ρ

)2
+ C(1− β) −

√(
ρC(1−β)

b̄

)2
+ C(1− β), RHS is positive when b̄/ρ ≥ ρC(1 − β)/b̄, taking

square of the both sides and rearranging, we can show that this inequality holds.

B.3 Proof of Lemma 1 (Page 28).

Plug expression for ā∗(C, ξ) into Eq. 2. It is easy to verify that profit function is concave in C.

Function Ch(ξ) = 1
1−β

(
−ξ2 + ξ

√
1
ψ (b̄+ ρξ)(α+ α̂ξ)

)
solves the FOC. Differentiating Ch(ξ) wrt ξ,

we get:

(1− β)dCh(ξ)
dξ

= −2ξ +
√

1
ψ

(b̄+ ρξ)(α+ α̂ξ) + ξ

2ψ
ρ(α+ α̂ξ) + α̂(b̄+ ρξ)√

1
ψ (b̄+ ρξ)(α+ α̂ξ)

It is positive at ξ = 0. Developing equality dCh(ξ)
dξ = 0, we get that it is equivalent to:

ξ416α̂ρ(α̂ρ− ψ) + 8ξ3(α̂b̄+ αρ)(3α̂ρ− 2ψ)+

ξ2(9α̂2b̄2 + 34αα̂b̄ρ+ 9α2ρ2 − 16αb̄ψ) + 12ξαb̄(α̂b̄+ αρ) + 4α2b̄2 = 0

Consider two cases. First, let α̂ρ > ψ then also 3α̂ρ > 2ψ. Note also that 34αα̂b̄ρ − 16αb̄ψ > 0.

Then coefficients of the polynomial don’t change sign, hence there are no positive roots and hence
dCh(ξ)
dξ > 0, ∀ξ ≥ 0. Since, Ch(0) = 0, then Ch(ξ) > 0,∀ξ > 0 in this case.
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Now let ψ > α̂ρ. In case 3α̂ρ < 2ψ, irrespective of the sign of the coefficient in front of ξ2,

coefficients of the polynomial change sign only once, hence there is one positive root and thus dCh(ξ)
dξ

changes sign only once for ξ > 0. If 3α̂ρ > 2ψ then 34αα̂b̄ρ > 16αb̄ψ even in the worst case of

ψ = 3
2 α̂ρ, hence coefficient in front of ξ2 is positive. Thus, there is only one change of sign and

hence also one root in this case. Thus, we conclude that when ψ > α̂ρ, derivative dCh(ξ)
dξ changes

sign only once for ξ > 0.

It is easy to see that Ch(0) = 0. Also, solving Ch(ξ) = 0 for ξ > 0 we obtain: ξ =
α̂b̄+ρα+

√
(α̂b̄−αρ)2+4αb̄ψ

2(ψ−α̂ρ) > 0 when ψ > α̂ρ. Knowing that C ′h(ξ) changes sign only once if ψ > α̂ρ

and that it increases at ξ = 0, we conclude that Ch(ξ) > 0 for low enough ξ if ψ > α̂ρ. The result

of lemma now follows.

B.4 Proof of Lemma 2 (Page 28).

Plug expression for ā∗(C, ξ) into Eq. 2. FOC is: −ξ2(α̂b̄ + αρ) − 2ξ(αb̄ − α̂ρC(1 − β)) + C(1 −

β)(α̂b̄ + αρ) = 0. It has one positive root. Divide FOC by α̂b̄ + αρ, then we get the positive

root −κ(C) +
√
κ(C)2 + C(1− β) with the notation for κ(C) from Lemma’s formulation. −κ(C) +√

κ(C)2 + C(1− β) is increasing and concave in C. Indeed, it’s derivative is wrt C:

α̂(1− β)ρ
α̂b̄+ αρ

+ (1− β)(α2ρ2 + α̂2(b̄2 + 2ρ2C(1− β)))
2(α̂b̄+ αρ)2

√
C(1− β) + κ(C)2 > 0

Second derivative is negative. Solving inequality −κ(C) +
√
κ(C)2 + C(1− β) < 1 we derive Cl.

Finally, second-derivative of the profit function has the sign of ξ3+3ξ2κ(C)−3ξC(1−β)−C(1−β)κ(C).

Plugging −κ(C)+
√
κ(C)2 + C(1− β) into this expression, we obtain −2(C(1−β)+κ(C)2)(−κ(C)+√

κ(C)2 + C(1− β)) < 0.

B.5 Proof of Lemma 3 (Page 28).

Cross-partial derivative of the profit function with activity level ā∗(C, ξ) has the following form:

∂2Π(C, ξ)
∂ξ∂C

= − ξ

(ξ2 + C ′)3

(
2αb̄(ξ2 − C ′) + ραξ(ξ2 − 3C ′) + α̂b̄ξ(ξ2 − 3C ′)− 4α̂ξ2ρC ′

)
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Where C ′ = C(1 − β). The expression in the brackets is a decreasing linear function of C ′. It is

positive when C = 0. Cross-partial derivative is positive when C ′ > 2αb̄+α̂b̄ξ+αρξ
α(2b̄+3ρξ)+α̂ξ(3b̄+4ρξ)ξ

2. The

RHS is 0 at ξ = 0 and it is easy to verify that it is increasing and convex in ξ.

B.6 Proof of Theorem 1 (Page 14).

Figure 5: Functions C∗(ξ) and ξ∗(C) depending on ψ: (a) ψ < α̂ρ; (b) ψ ∈ [α̂ρ, ψL]; (c) ψ > ψH ;
(d) ψ ∈ [ψL, ψH ]. Points ψL, ψH are defined in the proof of Theorem 1.

Lemmas 1 and 2 give us optimal data protection and data storage policies as a response to when

one policy is being fixed. We know that −κ(C) +
√
κ(C)2 + C(1− β) is increasing and concave

in C. Denote Cinv(ξ) solution to −κ(C) +
√
κ(C)2 + C(1− β) = ξ wrt C (here κ(C) is defined in

Lemma 2):

Cinv(ξ) = 1
1− β

ξ[(α̂b̄+ αρ)ξ + 2b̄α]
α̂b̄+ αρ+ 2ξα̂ρ

Case ψ < α̂ρ: We will show that Cinv(ξ) < Ch(ξ) (where Ch(ξ) is defined in Lemma 1) and they

only intersect at ξ = 0 under this condition. We need to show:

ξ + (α̂b̄+ αρ)ξ + 2b̄α
α̂b̄+ αρ+ 2ξα̂ρ

<

√
1
ψ

(b̄+ ρξ)(α+ α̂ξ)

Notice that LHS is 2(b̄+ρξ)(α+α̂ξ)
α̂b̄+αρ+2ξα̂ρ . Developing, we need to show that 4ψ(b̄+ρξ)(α+ α̂ξ) < (α̂b̄+αρ+

2ξα̂ρ)2. LHS is the highest under ψ = α̂ρ. It is easy to check that inequality holds in this case and

hence Cinv(ξ) < Ch(ξ), ∀ξ > 0. Thus, the only two points of intersection of best-responses C∗(ξ) and

ξ∗(C) are ξ = 0, C = 0 and ξ = 1, C = Ch(1). We evaluate company’s profit at both points. The first

point gives π0 = αb̄
1−β , while the second gives π1(ψ) = 1

1−β ((α+ α̂)(b̄+ ρ) + ψ − 2
√
ψ(α+ α̂)(b̄+ ρ))

- decreasing in ψ on the interval ψ < α̂ρ (derivative wrt ψ is 1−
√

(α+ α̂)(b̄+ ρ)/ψ). π1(0) > π0,
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also it is easy to verify that π1(α̂ρ) > π0, hence platform is choosing ξ∗ = 1, C∗ = Ch(1). Figure 5

(a) illustrates this case.

Case ψ > α̂ρ: Solve −κ(Ch(ξ))+
√
κ(Ch(ξ))2 + Ch(ξ)(1− β) = ξ for ξ. We get two non-negative

roots: ξ = 0 and ξi = ξ(α, α̂, ρ, b̄, ψ) defined in Theorem 1. We will establish first conditions when

ξi ∈ [0, 1]. We will consider case of b̄α̂ > αρ (case b̄α̂ < αρ is considered similarly and leads to

the same result). ξi > 0 when ψ ∈ [α̂ρ, ψH ], where ψH = (α̂b̄+αρ)2

4αb̄ is a solution to ξi = 0 wrt ψ.

Similarly, ξi < 1 when ψ > ψL, where ψL = (α̂b̄+αρ+2α̂ρ)2

4(α+α̂)(b̄+ρ) is a solution to ξi = 1 wrt ψ. Both

ψL > α̂ρ and ψH > α̂ρ, also ψH > ψL (ξi decreases with ψ).

On the interval ψ ∈ [α̂ρ, ψL], ξi > 1, hence on ξ ∈ [0, 1] we have Cinv(ξ) < Ch(ξ). Thus, the two

points of intersection of the best-response functions are ξ = 0, C = 0 and ξ = 1, C = Ch(1). π1(ψ)

decreases with ψ on [α̂ρ, ψL] (derivative π′1(ψ) changes sign only once and at ψL it is negative).

Plugging ψL into π1(ψ) defined above, we get π1(ψl) > π0. We thus conclude that π1(ψ) > π0 on

[α̂ρ, ψL] and thus ξ∗ = 1, C∗ = Ch(1). Figure 5 (b) illustrates this case.

On the interval ψ > ψH , Cinv(ξ) > Ch(ξ), ∀ξ ∈ [0, 1]. Hence, the only point of intersection of

the best-responses is ξ∗ = 0, C∗ = 0. Figure 5 (c) illustrates this case.

Finally, on the interval ψ ∈ [ψL, ψH ], there are two points of intersection of the best-responses:

ξ = 0, C = 0 (delivering profit π0) and ξ = ξi ∈ [0, 1], C = Ch(ξi) with profit:

πξi(ψ) = ψ

4α̂2ρ2

[
α̂b̄+ αρ+ α̂ρ(α̂b̄− αρ)z(ψ)

ψ
− α̂b̄z(ψ) + αρz(ψ)

]2

Where z(ψ) =
√

ψ
ψ−α̂ρ - decreasing function of ψ. Taking derivative π′ξi(ψ) we obtain:

π′ξi(ψ) = 1
4ψα̂2ρ2

α̂ρz(ψ)
z(ψ)2 − 1

[
α2ρ2(z(ψ) + 1)2 − α̂2b̄2(z(ψ)− 1)2

]

Where we substituted ψ = z(ψ)2α̂ρ
z(ψ)2−1 and also z(ψ) > 1 on ψ > α̂ρ. Notice that ξi = 1

2α̂ρ [b̄α̂(z(ψ)−

1)− αρ(z(ψ) + 1)] and ξi > 0 on ψ < ψH . Developing π′ξi(ψ) and comparing to ξi we obtain:

π′ξi(ψ) = 1
4ψα̂2ρ2

α̂ρz(ψ)
z(ψ)2 − 1

[
αρ(z(ψ) + 1)− α̂b̄(z(ψ)− 1)

]
·
[
αρ(z(ψ) + 1) + α̂b̄(z(ψ)− 1)

]
< 0

To check that πξi(ψ) > π0 on ψ ∈ [ψL, ψH ] we thus need to check this inequality at ψH . It is

easy to verify that πξi(ψH) = αb̄
1−β = π0. Thus, on ψ ∈ [ψL, ψH ] digital business optimally chooses
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ξ∗ = ξi ∈ [0, 1] and C∗ = Ch(ξi). Figure 5 (d) illustrates this case.

In order to check that ξ, C are complements, we need to evaluate cross-partial derivative at

ξ∗, C∗. The sign of the derivative is defined by (see proof of Lemma 3):

2αb̄(C ′ − ξ2) + ραξ(3C ′ − ξ2) + α̂b̄ξ(3C ′ − ξ2) + 4α̂ξ2ρC ′ (8)

Where C ′ = C(1−β). First, consider ψ < ψL, then ξ∗ = 1 and C∗ = Ch(1) = −1+
√

1
ψ (b̄+ ρ)(α+ α̂).

Evaluating expression 8 at ξ∗, C∗ we get: −4(b̄+ ρ)(α+ α̂) +
√

(α+α̂)(b̄+ρ)
ψ

(
2αb̄+ 3α̂b̄+ 3αρ+ 4α̂ρ

)
.

It is easy to verify that this expression is positive even at ψ = ψL. Hence, ξ, C are complements on

ψ < ψL.

Consider now region of ψ ∈ [ψL, ψH ]. Recall z =
√

ψ
ψ−α̂ρ (decreasing with ψ and trivially z > 1).

ψ = z2α̂ρ
z2−1 and the range of z is: z ∈

[
zL = α̂b̄+αρ

|α̂b̄−αρ| , zH = α̂b̄+αρ+2α̂ρ
|α̂b̄−αρ|

]
. We will consider case b̄α̂ > αρ,

the opposite case is considered similarly. Evaluating expressions 8 in this region we get that its sign

is defined by the following expression: α̂b̄2(z − 1)2 − α2
0ρ

2(1 + z)2, which is increasing in z and is

positive on the entire interval z ∈ [zL, zH ]. Hence, ξ, C are complements at the optimum.

Finally, notice that when α̂b̄ = αρ we have ψL = ψH , thus the moderate cost of protection region

doesn’t exist.

B.7 Proof of Proposition 3 (Page 19).

We first note that when there are no adversaries ω = 0 and the digital business sets (C, ξ) = (0, 1).

As a result, user i’s maximization becomes Ui(ai, ā) = aibi − 1
2a

2
i + βaiā+ aiρ, and average users’

activity level is ā = b̄+ρ
1−β . Substituting this into the expression for CSno−criminals and substituting

the expression for CS∗ and D and reorganizing we get M = C∗

ξ∗

((
b̄+ρ
1−β

)2 1
(ā∗)2 − 1

)
as required.

To see that M ≥ 2
(1−β) we first note that holding C and ξ fixed, the restricted multiplier M̃ is

ξ2+2C(1−β)
C(1−β)2 which is greater than 2

(1−β) because ξ2+2C(1−β)
C(1−β)2 = ξ2

C(1−β)2 + 2C(1−β)
C(1−β)2 = ξ2

C(1−β)2 + 2
(1−β) .

We next argue thatM≥ M̃. That is, allowing the business to adjust C and ξ when there are no

adversaries enhances CS. To show that, it is sufficient to show that when there are no adversaries,

CS is maximized at (C, ξ) = (0, 1), which we show next. When there are no adversaries user i’s

maximization becomes Ui(ai, ā) = aibi − 1
2a

2
i + βaiā + aiξρ, and average users’ activity level is

ā = b̄+ξρ
1−β . That is, average users’ activity is independent of C and increases in ξ. Recalling that, in
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equilibrium, CS = ā2 + σ2
b we get that when there are no adversaries, CS is independent of C and

maximized at ξ = 1 as required.

B.8 Proof of Proposition 4 (Page 20) and Claims in Section 5

Let α = α̂. Using Corollary 1, when ψ < αρ/4: Π = ψ
1−β

(√
ρα
ψ − 1

)2
, CS ∼ 1

1−β

√
ρψ
α

(√
ρα
ψ − 1

)
and stored information ā∗ξ∗ = 1

1−β

√
ρψ
α

(√
ρα
ψ − 1

)
. When ψ > αρ/4: Π = α2ρ2

16ψ(1−β) , CS ∼
αρ2

8ψ(1−β) , ā
∗ξ∗ = α2ρ3

32ψ2(1−β) . Similarly, for advertisement-driven company, using Corollary 2, we

obtain, when ψ < αρ: Π = ψ
1−β

(√
ρα
ψ − 1

)2
, CS ∼ 1

1−β

√
ρψ
α

(√
ρα
ψ − 1

)
and stored information

ā∗ξ∗ = 1
1−β

√
ρψ
α

(√
ρα
ψ − 1

)
, o/w all zeros. Clearly, when ψ < αρ/4, all measures are equal; when

ψ > αρ, transaction-driven company has non-zero profit, CS, and stores non-zero amount of

information as compared to advertisement-driven company, for which these quantities are zero.

Consider now ψ ∈ [αρ/4, αρ]. Difference in profits Πt−Πa ∼ α2ρ2

16ψ −ψ
(√

ρα
ψ − 1

)2
which is positive

when αρ+ 4ψ > 4
√
ραψ which is always true except for ψ = αρ/4 when it is equality. Difference

in CS: CSa − CSt ∼ ρ −
√

ρψ
α −

αρ2

8ψ , substituting φ =
√

ψ
αρ −

1
2 , we get that CSa > CSt when

2φ2+φ− 1
2 < 0 which is true on φ ∈ [0, φ1], where φ1 is the positive solution to the quadratic equation

and it is easy to check that φ1 is such that corresponding ψ < αρ. Finally, for stored information

(ā∗ξ∗)a − (ā∗ξ∗)t ∼ 1−
√

ψ
αρ −

α2ρ2

32ψ2 , again substituting φ =
√

ψ
αρ −

1
2 , we get that the difference is

positive when 32(φ+1/2)4(1/2−φ) > 1, which is equivalent to−32φ4−48φ3−16φ2+8φ+6 > 0,∀z > 0.

The latter expression has only one positive root (coefficients of the polynomial change sign once). It

is easy to verify that this root is s.t. corresponding ψ < αρ.
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