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Abstract

I use administrative data that link workers, firms, and robots in Denmark to study the

distributional impact of industrial robots. I structurally estimate a dynamic model

of the firm that rationalizes how firms select into and reorganize production around

robot adoption. Using event studies, I find that firms expand output, lay off produc-

tion workers, and hire tech workers when they adopt industrial robots. I embed the

firm model into a dynamic general equilibrium framework that takes into account

the ability of workers to reallocate across occupations in response to robots. To this

end, I develop a fixed-point algorithm for solving the general equilibrium that fea-

tures two-sided (firm and worker) heterogeneity and dynamics. I find that industrial

robots have increased average real wages by 0.8 percent but have lowered real wages

of production workers employed in manufacturing by 6 percent. Welfare losses from

robots are concentrated on old production workers, as younger workers benefit from

the option value of switching into tech and other occupations whose premiums rise

as robots diffuse in the economy. Industrial robots can account for a quarter of the

fall in the employment share of production workers and 8 percent of the rise in the

employment share of tech workers since 1990. I use the estimated general equilibrium

model to evaluate the dynamic incidence of a robot tax.
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1 Introduction

The arrival of industrial robots in modern manufacturing is one of the most salient technolog-

ical changes in recent decades. Defined as “automatically controlled, reprogrammable, mul-

tipurpose manipulators programmable in three or more axes” (ISO 8373), industrial robots

were developed for car assembly in the 1990s but have since diffused widely in manufactur-

ing. Today, robot adopters account for half of manufacturing sales, and adoption rates are

accelerating. The potential labor displacing effects of industrial robots have received much

public attention, culminating when the European Parliament voted in 2017 on a proposal to

tax the use of robotics (Delvaux, 2016).

This paper asks who gains and who loses when industrial robots are adopted. To answer

this question, I use administrative data that link workers, firms, and robots in Denmark. My

first contribution is to combine event studies with a structural model that rationalizes how

firms select into and reorganize production around robot adoption. I find that firms expand

output by 20 percent but shrink their wage bill on production workers, such as assemblers

and welders, by 20 percent when they adopt industrial robots. Firms’ total wage bill in-

creases 8 percent as labor demand shifts toward tech workers, such as skilled technicians,

engineers, and researchers. I structurally estimate a dynamic model of the firm that matches

these reduced-form responses to robot adoption, the observed size premium in the selection

of firms into robot adoption, as well as the S-shape in robot diffusion over time.

To understand the macroeconomic implications of robot adoption, I embed the firm model

into a general equilibrium framework that endogenizes the dynamic option for workers to

reallocate across occupations. The estimated general equilibrium model captures several indi-

rect effects of industrial robots that are not identified in micro-level diff-in-diff designs. These

indirect effects include the extent to which the expansion of robot adopters crowds out non-

adopter firms in product and labor markets, as well as the ability of workers to reallocate

across occupations in response to equilibrium wage pressures from robot diffusion.

Using the general equilibrium model, I estimate that industrial robots have increased av-

erage real wages by 0.8 percent, but with substantial distributional consequences. At the op-

posite ends of the spectrum, I find that production workers employed in manufacturing have

lost 6 percent in real wages, while tech workers have gained 2.3 percent. I find that welfare
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losses from robots are concentrated on old production workers. Younger workers, with less

specific skills and a long career ahead of them, benefit from the option value of switching into

tech and other occupations whose premiums rise as robots diffuse in the economy.

Occupational reallocation in response to industrial robots can account for 25 percent of

the fall in the employment share of production workers and 8 percent of the rise in the em-

ployment share of tech workers in Denmark since 1990. The adoption of industrial robots

have thus been a driver of employment polarization (Autor and Dorn, 2013; Goos et al., 2014).

Without these labor supply responses, I find that the real wage loss of production workers

from robots would have been five times larger.

My findings highlight the importance of allowing for labor supply responses when eval-

uating the distributional impact of industrial robots. I use a dynamic occupational choice

model that represents the state of the art for studying labor market dynamics in response to

trade liberalizations (Dix-Carneiro, 2014; Traiberman, 2019), and I estimate the barriers to oc-

cupational switching using observed worker transitions together with a conditional choice

probability (CCP) estimator that controls for the unobserved continuation values of workers.

As a final counterfactual exercise, I evaluate the dynamic incidence of a robot tax. The

undistorted equilibrium of the model is efficient (except for markups in product markets),

but I use the estimated model to quantify the distributional implications of a robot tax and to

evaluate its impact on aggregate economic activity. I find that a temporary robot tax can be an

effective way to slow the diffusion of industrial robots. However, compared to a permanent

tax of similar magnitude, a temporary tax creates larger welfare losses per dollar of revenue

collected and a larger fraction of its deadweight burden falls on workers. These larger adop-

tion elasticities and relative efficiency losses reflect the forward-looking nature of adoption

whereby firms foresee that the temporary tax will expire and postpone adoption until then.

Based on the estimated responses, I conclude that a robot tax is an ineffective and costly way

to redistribute income to production workers in manufacturing.

Evaluating the counterfactuals above requires solving the firm and worker problems jointly,

and I develop a fixed-point algorithm for solving the dynamic general equilibrium of this class

of models. A key property of the general equilibrium model is that the firm and worker prob-

lems are separable conditional on the path of wages. This separable structure is highly useful

in estimation and in simulation. First, it allows me to estimate the firm (worker) model with-
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out specifying the problem of the worker (firm) by simply conditioning on the observed path

of wages. Second, it breaks the curse of dimensionality wherein firm variables become states

for the worker, and worker variables become states for the firm. The separable structure en-

ables me to incorporate the rich firm and worker heterogeneity estimated in the micro data,

and still be able to compute the general equilibrium featuring joint firm and worker dynamics.

To measure robot adoption at the firm level, I leverage the fact that almost all industrial

robots used in Denmark are not actually produced in the country. In particular, once an im-

ported robot crosses the country border, it is recorded by the customs authorities under the

6-digit product code 847950 Industrial Robots. The customs records, which contain informa-

tion on the timing and value of firm robot imports, offer a unique opportunity to study what

happens when firms adopt industrial robots. I supplement the customs records with a rep-

resentative robot adoption survey conducted by Statistics Denmark, and I validate that these

micro data sources on robot adoption align with industry-level measures used in the prior lit-

erature (Acemoglu and Restrepo, 2019b). By merging the firm robot adoptions to the Danish

matched employer-employee data, I obtain a dataset with unusually rich information on both

firms and workers that is ideally suited to studying the distributional impacts of industrial

robots.

This paper is related to and builds on several literatures. The most immediately related

work is a recent series of papers that have collected reduced-form evidence on how industrial

robots affect firm performance and labor market outcomes (Acemoglu and Restrepo, 2019b;

Bessen et al., 2019; Graetz and Michaels, 2018; Koch et al., 2019). I complement this work with

two key structural contributions. First, I estimate a model of firm robot adoption that allows

me to interpret the new reduced-form evidence in terms of structural primitives. Second, I

embed the model into a general equilibrium framework, enabling me to extend the identified

micro-level effects to quantify the macroeconomic impacts of industrial robots. The two-sided

nature of the general equilibrium model allows me to connect evidence on firm (e.g., Koch

et al. (2019)) and worker outcomes (e.g., Dauth et al. (2018)) of robotization.

The methodology developed in this paper builds heavily on the literature of dynamic dis-

crete choice models. The robot adoption model draws on the Rust (1987) optimal stopping

model, and the labor supply module follows closely a series of structural labor papers, in-

cluding Dix-Carneiro (2014) and Traiberman (2019). In the structural estimation, I build on
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the work by Doraszelski and Jaumandreu (2018) on estimating production functions with

endogenous technical change, and I apply the methods of Arcidiacono and Miller (2011) on

conditional choice probability (CCP) estimation of dynamic discrete choice models.

The remainder of the paper is structured as follows. Section 2 describes the Danish data

and collects stylized facts on firm robot adoption. Sections 3 and 4 develop and estimate a

partial equilibrium model of firm robot adoption. Section 5 estimates the labor supply mod-

ule. Section 6 unites the firm and worker blocks, and then uses the general equilibrium model

to estimate the distributional impact of industrial robots and to evaluate the incidence of a

robot tax. Section 7 concludes.

2 Data

I use register data that link workers, firms, and robots in the Danish economy from 1995 to

2015. The dataset is the product of merging the Danish matched employer-employee data

with two new micro data sources on firm robot adoption. This linked dataset contains un-

usually rich information on both firms and workers, making it ideally suited to studying the

distributional impacts of industrial robots. The matched worker-firm-robot panel data offer

a unique opportunity to study what happens, at the micro level, when industrial robots are

adopted. The data contain detailed occupational codes of workers, allowing me to study how

firms substitute between labor tasks in production. The universal coverage of the Danish data

is essential for estimating the general equilibrium environment that robot adopters operate in.

The firm data come from the Firm Statistics (FirmStat) Register, which covers the universe

of private-sector firms from 1995 to 2016. FirmStat associates each firm with a unique iden-

tifier, and provides annual data on many of the firm’s activities, such as sales, number of

full-time employees, and industry affiliation. The data on workers and establishments come

from the Integrated Database for Labor Market Research (IDA), which covers the entire Dan-

ish population. IDA associates each person with her unique identifier, and provides annual

data on many individual characteristics such as income, hours, hourly wage, detailed occu-

pation, education, and other sociodemographics. To match the firm and worker data, I draw

on the Firm-Integrated Database for Labor Market Research (FIDA), which links every firm

in FirmStat with every worker in IDA who is employed by that firm in week 48 of each year.
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To study worker tasks, I build on the occupational classification developed by Bernard et al.

(2017); see Appendix A.6 for details.

I use two new and complementary micro data sources to measure robot adoption at the

firm level. I first use a robot adoption firm survey conducted by Statistics Denmark in 2018.

The survey asked a representative sample of Danish firms if they use industrial robots in

production. Appendix A.1 provides details on the survey which had a response rate of 97

percent. Second, I leverage the fact that industrial robots are highly tradable goods to measure

robot adoption from firm customs records. Almost all robots in the world are manufactured

in Japan, South Korea, or Germany, and once such an imported robot crosses the country

border, it is recorded by the customs authorities according to a 6-digit product code where

one of the codes identifies “847950 Industrial Robots”. Acemoglu and Restrepo (2018a) show

that a country’s imports of industrial robots correlate strongly with its total robot installments

reported by the International Federation of Robotics (IFR). Appendix A.4 calculates that the

share of imports in total robot investments in Denmark averaged 95 percent between 1993

and 2015. The Danish customs records are organized in the Foreign Trade Statistics Register

(UHDI).

The main challenge in using the customs records is that a substantial share of machinery is

imported through domestic distributors. In the case of industrial robots, there is an industry

of robot integrators that specialize in importing robots and installing them at local production

facilities. Appendix A.2 describes the robot supply chain and develops a procedure for identi-

fying robot imports done by final adopters. I validate the sample selection procedure against

the firm robot adoption survey in 2018 as well as a complete list of robot integrators and

producers in Denmark. In total, I identify 454 robot adoption events through direct imports.

The existing literature on industrial robots has mostly relied on an industry-level dataset

compiled by the International Federation of Robotics (IFR) (Acemoglu and Restrepo, 2019b;

Dauth et al., 2018; Graetz and Michaels, 2018). Appendix A.3 shows that the micro data used

in this paper align well with the IFR statistics both across industries and over time.

The customs records allow me to directly study what happens when firms adopt robots.

However, when quantifying the aggregate effects of robots and for parts of the structural es-

timation, I also want to include the adoptions done through domestic distributors. Appendix

A.5 describes how I supplement the customs records with the robot adoption survey (VITA)
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and the IFR statistics to measure robot adoptions that are sourced domestically.

The customs records (UHDI) and the robot adoption survey (VITA) use the same firm

identifier as FirmStat and FIDA, allowing me to construct a matched employee-employer-

robot dataset covering the Danish economy.

2.1 Stylized Facts on Firm Robot Adoption

In this section, I present two stylized facts that will inform the modeling choices in Section 3.

The first fact concerns the observed lumpiness of firm robot expenditures, which motivates

modeling robot adoption as a one-off decision. The second fact documents the non-random

selection of firms into robot adoption, which informs the specification of a selection model for

firm robot adoption.

Fact 1. Robot Adoption Is Lumpy

Table 1 reports summary statistics for the robot adoptions identified from firm customs records

in Appendix A.2. The take-away from the table is that robot adoption is lumpy. Out of the

sample adopters, 70.6 percent invest in a single year only, and the peak year of investment ac-

counts on average for 90.7 percent of total firm robot expenditures. Adopting firms purchase

robot machinery for an average of $311,000. This discrete nature of robot adoption motivates

the choice in Section 3 to model robot adoption as a discrete choice problem.

Table 1: Firm Robot Investments

Adoptions (count) 454
Share of adopters with investments in one year only (percent) 70.6
Share of robot expenditures in max year (percent) 90.7
Robot machinery expenditures ($1,000) 311

Fact 2. Larger Firms Select into Robot Adoption

Table 2 shows firm outcomes for the robot adopters in the year prior to adoption. Column 2

(“Industry”) reports average outcomes for non-adopters within the same two-digit industry-

year cells as the robot adopters. Robot adopters are different from non-adopters along several

dimensions, but the key feature that sets robot adopters apart is that they are substantially
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larger. The model in Section 3 rationalizes the selection into robot adoption by combining firm

heterogeneity with fixed costs of adoption, such that it is the firms with the largest expected

efficiency gains from industrial robots that will choose to adopt the technology.

Table 2: Firm Outcomes in the Year Before Robot Adoption

Adopters Industry Matches
P-value

A-M

log Sales
18.28
(0.07)

16.35
(0.07)

18.19
(0.07)

0.37

log Wage Bill
16.93
(0.07)

15.15
(0.07)

16.89
(0.07)

0.66

log Employment
4.06

(0.06)
2.4

(0.06)
4.02

(0.06)
0.66

Wage bill shares (percent)

– Managers
12.5
(0.5)

9.1
(0.7)

11.0
(0.4)

0.02

– Tech
16.0
(0.9)

6.9
(0.6)

14.3
(0.8)

0.14

– Sales
12.2
(0.4)

10.5
(0.6)

12.5
(0.5)

0.64

– Support
7.5

(0.4)
4.9

(0.5)
7.8

(0.5)
0.69

– Transportation/warehousing
5.9

(0.5)
3.6

(0.5)
6.8

(0.5)
0.23

– Line workers (mostly production)
39.9
(1.1)

47
(1.4)

40.7
(1.0)

0.61

Joint orthogonality (F test) 0.25

Observations 454 454 454 908

Note: “Joint orthogonality” represents a test of the joint hypothesis that all coefficients equal zero when the adopter indicator is regressed on
the nine outcome variables in Table 2. Column 1 (Adopters) shows mean outcomes for robot adopters in the year before adoption. Column
2 (Industry) shows averages for randomly chosen non-adopters within the same industry-year cell as the adopters (one-to-one). Column 3
(Matches) shows averages for match firms within the same industry-year cell. These matches each have the minimum distance to an adopter
with respect to log sales and production wage bill share (levels and two-year changes); see Appendix A.7.1 for details. Column 4 (P-value
A-M) shows p-values for the null hypotheses that Adopters (column 1) and Matches (column 3) have the same population mean.

Once I match on firm sales and line worker wage bill shares in column 3 (“Matches”),

the adopters look similar to the match firms on employment, wages, and wage bill shares

across occupations. An F test of the joint hypothesis that none of the covariates in Table 2

predict robot adoption has a p-value of 0.25. Put differently, I cannot reject that robot adopters

and matches indeed are observationally identical before adoption. The fact that adopters and

match firms are balanced on these non-targeted outcomes provides supportive evidence for a

model assumption in Section 3 that robot adoption is driven by an adoption cost shock once

selection based on observable firm heterogeneity is taken into account.
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3 A Model of Firm Robot Adoption

In this section, I develop a partial-equilibrium model of a manufacturing firm’s decision to

adopt industrial robots. A firm in the model faces a dynamic choice of whether to adopt

the robot technology and a sequence of static decisions to hire workers and use intermediate

inputs for production. The optimal adoption decision trades off a sunk cost of robot adoption

with gains in future profits from being able to operate the robot technology.

In Sections 3.1 and 3.2, I characterize the firm’s static production problem taking the robot

technology choice as given. In Section 3.3, I then characterize the firm’s dynamic problem of

adopting robot technology. The firm problem is linked to the worker’s problem in general

equilibrium but only through the path of wages. This separable structure allows me to study

and estimate the firm model in isolation by conditioning on the observed path of wages, and

postpone the specification of the worker’s problem to Section 5.

3.1 Production Technology

A manufacturing firm j uses workers of different occupations L ∈ R
|O|
+ and intermediate

inputs M ∈ R+ according to the CES production function

Yjt = F(Mjt, Ljt|Rjt, ϕjt) = zHjt

{
M

σ−1
σ

jt + ∑
o∈O

z
1
σ
ojtL

σ−1
σ

ojt

} σ
σ−1

with (1)

zHjt = exp(ϕHjt + γHRjt) (2)

zojt = exp(ϕojt + γoRjt) (3)

Firms are heterogeneous with respect to a vector of exogenous baseline productivities ϕ ∈

RO+1 and an endogenous robot technology state R ∈ {0, 1}. The parameter γH captures

the effect of robot technology on firm Hicks-neutral productivity zH, and the parameters γo

govern how robot technology changes the relative productivities of worker occupations in

production zo (measured relative to intermediate inputs M).1

1Intermediate inputs M include all non-labor inputs including materials and conventional capital equipment.
I measure payments to these intermediate inputs as the part of firm sales that are not paid to labor or profits.
As Section 3.3 will make clear, industrial robots are different from other non-labor inputs in that their adoption
involves a change of production technology that is subject to a sunk robot adoption cost.
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In modeling robot adoption as a technology choice, I follow a growing literature arguing

for task-based models to study automation (Acemoglu and Autor, 2011; Acemoglu and Re-

strepo, 2018b). Appendix B.1 derives the specification in Equation (1) from a micro-founded

model in which robots substitute for production tasks performed by workers. I model robot

technology as a binary state R ∈ {0, 1} to reflect the fact that most robot users invest in robots

in a single year only (Fact 1 from Section 2.1).

3.2 Demand and Flow Profits

The firm faces an iso-elastic demand curve

Yjt = YMt × (Pjt/PMt)
−ε, (4)

where YMt is the aggregate manufacturing demand and PMt is the manufacturing price index.

The firms takes the vector of factor prices wt as given, such that the flow profit function reads

πt(R, ϕ) = max
X

{
PMtY

1
ε
MtF(X|R, ϕ)1−1/ε − wT

t X
}

= ΩtCt(R, ϕ)1−ε, (5)

where Ct denotes the unit cost function, Ωt is a common profit shifter, and the static inputs are

stacked into the vector X = (M, L).2 By lowering production costs Ct, the robot technology

allows firms to scale up output and increase flow profits.

The key assumption in Equation (1) is that the production function admits a static factor

demand system (satisfying Equation (5)) that is invertible in firm productivities. Invertibil-

ity allows me to control for unobserved firm productivities by matching on observed factor

choices, similar to the proxy variable approach to production function estimation (Ackerberg

et al., 2015; Levinsohn and Petrin, 2003; Olley and Pakes, 1996). Berry et al. (2013) show that a

demand system is invertible if and only if it satisfies a “connected substitutes” condition. The

set of such production functions includes CES as in Equation (1), non-homothetic CES, nested

2The unit cost function and profit shifter are given by the CES expressions

Ct(R, ϕ) =
1

zH(R, ϕ)

{
∑

x∈X
(wxt/zx(R, ϕ))1−σ

} 1
1−σ

, Ωjt = Pε
MtYMt(ε− 1)(ε−1)ε−ε. (6)
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CES, mixed CES, and translog. Appendix C.2.2 relaxes the robot technology effects in Equa-

tion (2)-(3) to a distributed lag model to account for any adjustment dynamics in the transition

of firms to robot production. The demand curve in Equation (4) can be relaxed to an arbitrary

downward-sloping function as considered in Doraszelski and Jaumandreu (2018). Appendix

E derives an extension of the model where firms face upward-sloping labor supply curves

and thus do not take wages as given in Equation (5).

3.3 Adoption of Robot Technology

The firm faces a dynamic decision about whether and when to adopt the robot technology R.

The optimal adoption decision trades off a sunk cost of robot adoption with gains in future

profits from being able to operate robot technology. The sunk adoption cost includes a com-

mon time-varying component cR
t and an idiosyncratic component εR

jt. The adoption decision is

essentially an optimal stopping problem that is reminiscent of the seminal work on bus engine

replacement by Rust (1987). The value of a firm is represented by the Bellman equation

Vt(0, ϕ) = max
R∈{0,1}

πt(0, ϕ)− (cR
t + εR

jt)× R + βEtVt+1(R, ϕ′) (7)

Vt(1, ϕ) =
∞

∑
τ=0

βτπt+τ(1, ϕt+τ). (8)

Robot technology does not depreciate in the baseline specification of the model.3

Firm baseline productivities evolve according to the Markov process

ϕjt+1 = gt(ϕjt, ..., ϕjt−k) + ξ jt+1, ξ jt+1 ⊥⊥ (ϕjt, ..., ϕjt−k), (ε
R
jt, ..., εR

jt−l). (9)

The idiosyncratic adoption cost shocks εR
jt are drawn i.i.d. from a cumulative distribution

function F such that the probability that a firm adopts robot technology is

Pt(∆Rjt+1 = 1) = F
(

β
(
EtVt+1(1, ϕjt+1)−EtVt+1(0, ϕjt+1)

)
− cR

t

)
(10)

The multiplicative productivity effects of robots in Equations (2) and (3) imply that firms that

operate on a larger scale will be better able to reap the benefits of robot technology. Combined

3Appendix C.5 specifies and estimates a model extension in which robots deteriorate at a fixed rate.
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with the fixed component of robot adoption costs cR
t , this allows the model to rationalize the

observed size premium in robot adoption (Fact 2 from Section 2.1). It is, however, worth not-

ing that the model also allows for variable costs of robot adoption through the γo parameters.

Robot production will, for example, be more intensive in intermediate inputs if γo is negative

or require more tech workers if γT is positive. The adoption model also implies that larger

firms will spend more on robots when they adopt because these firms will be willing to pay a

higher idiosyncratic adoption cost εR
jt.

The robot adoption model features two key simplifying assumptions about robot invest-

ment behavior. First, robot adoption is treated as a one-off decision. This assumption is mo-

tivated by the observed lumpiness (Fact 1 in Section 2.1) whereby most robot users invest

entirely in a single year. Appendix C.5 estimates a model extension in which robots deterio-

rate at a fixed rate, thereby leaving scope for replacement investments. Second, firms cannot

receive larger relative robot production effects γ by spending more on robots. The structural

estimation in Section 4 will provide empirical evidence in support of this homogeneity as-

sumption on the treatment effects of robot adoption.

Equation (7) entails a key timing assumption that robot adoption is decided one year in

advance. Combined with the Markovian structure on the productivity process in Equation

(9), this timing assumption will be key to separating out the causal impact of robot adoption

on firm productivities in Section 4.4

4 Structural Estimation of Firm Robot Adoption

In this section, I estimate the robot adoption model presented in Section 3. The structure of

the model allows me to estimate its parameters in sequence. In Sections 4.1 to 4.3, I estimate

the parameters of firm production technologies without having to specify other parameters

of the adoption model, including robot adoption costs. In Section 4.4, I then estimate the cost

parameters of robot adoption. I set the elasticity of demand and the time discount factor to

conventional values from the literature (ε = 4, β = 0.96).5

4The timing assumption on investment decisions (a one-year time-to-build) combined with a Markov process
for firm productivities is a common assumption in the production function estimation literature, including Olley
and Pakes (1996) and Doraszelski and Jaumandreu (2013).

5I follow Bloom (2009) and Asker et al. (2014), who calibrate the elasticity of demand ε to 4 to reflect a markup
on output prices of 1/3 and calibrate the annual discount rate β to the data reported in King and Rebelo (1999).
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4.1 Elasticity of Substitution between Production Tasks

In this section, I estimate the elasticity of substitution between production tasks, σ. I dis-

tinguish between labor tasks of production workers, tech workers, and other workers.6 To

preview, I use the model structure to derive an instrumental variables strategy, and I estimate

that tasks are complements in firm production.

The first-order conditions for cost minimization in Equation (5) imply that firm factor de-

mands satisfy the following relationship

log(Lo′ jt)− log(Lojt) = −σ(log(wo′ jt)− log(wojt)) + log(zo′ jt)− log(zojt) (11)

The challenge in using Equation (11) to estimate σ is the classic simultaneity problem (Marschak

and Andrews, 1944) that wages wjt may be correlated with firm productivities zjt, which con-

stitute the regression error term in Equation (11). Appendix E derives a model in which firms

face upward-sloping labor supply curves, thus creating an explicit link between firm produc-

tivities and wages.

I use the structure of the model in Section 3 to derive a rational expectations generalized

method of moments (GMM) estimator that explicitly solves this simultaneity problem. The

identification strategy builds on the insight of Doraszelski and Jaumandreu (2018) that the

Markovian structure on firm productivities implies that past factor choices Xjt−1 and prices

wjt−1 must be uncorrelated with the current productivity innovations ξ jt. This restriction

allows me to estimate σ from the moment condition

E
[

Aoo′(Qjt−1)(ξojt − ξo′ jt)
]
= 0, (12)

where Aoo′ is a vector function of the instruments Qjt−1, including log(Xjt−1) and log(wjt−1).

The derivation of this moment condition closely follows Doraszelski and Jaumandreu (2018),

and I therefore relegate the derivations to Appendix C.1. The key idea is to, first, break the

productivity error term zjt in Equation (11) into the predictable component gjt and the inno-

vation ξ jt. Since firms behave with rational expectations, the unforeseeable innovations ξ jt

6The classification of worker tasks builds on the occupational grouping of Bernard et al. (2017); see Appendix
A.6 for details.
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must be uncorrelated with past decisions and prices of firms. To the extent that lagged fac-

tor prices and decisions correlate with current factor prices, they thus constitute valid and

relevant instruments for estimating the substitution elasiticity σ.

I estimate Equation (12) on the sample of non-adopters, which allows me to identify σ

without specifying how robot technology affects firm productivities in Equations (2)-(3), which

I separately estimate in Section 4.2. I estimate the moment conditions using a two-step GMM

procedure with Appendix C.1 providing additional details on the estimation problem. The

GMM estimate of the elasticity of task substitution σ is 0.49, which implies that tasks are

complements in firm production. This estimate is based on the Danish matched employer-

employee data from 1995 to 2015.

Table 3: Estimating the Elasticity of Substitution between Tasks in Production

GMM

Elasticity of task substitution, σ
0.493
(0.092)

To place this estimate in the literature, Doraszelski and Jaumandreu (2018) estimate that

the elasticity of substitution between labor and materials lies between 0.4 and 0.8, while Raval

(2019) estimates that the elasticity of capital-labor substitution to falls between 0.3 and 0.5.

There is, to my knowledge, no estimate in the existing literature of the micro elasticity of

substitution between worker tasks, and one contribution of this section is to provide such an

estimate.7

4.2 Robot Technology

In this section, I estimate the parameters of robot technology γ, a key input for evaluating

the distributional impact of industrial robots. In Section 4.2.1, I first use the model in Section

3 to derive an identification strategy that is based on event studies of firm robot adoption.

In Section 4.2.2, I then present the estimation results, which show that industrial robots in-

crease production efficiency but cause a substantial bias in technology away from production

workers and toward tech workers and intermediate inputs.

7An important reason for the absence of such an estimate is the lack of micro data on the labor tasks employed
in firms. The detailed occupational codes in the Danish data are unusually rich in this regard.
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4.2.1 Identification of Robot Technology

This section describes my strategy for identifying the parameters of robot technology, γ. I

first discuss the identification challenges that arise from the fact that firms endogenously se-

lect into robot adoption. I then use the adoption model developed in Section 3 to derive an

identification strategy that deals with this selection problem.

First, from the invertibility of the factor demand system, I can recover firm productivities

from the first-order conditions to Equation (5)

zojt = lojt −mjt + σ(log(wojt)− log(wMjt)) (13)

zHjt =
1

ε− 1
mjt +

σ

ε− 1
wMjt +

(σ− ε)

(σ− 1)(ε− 1)
log

{
w1−σ

Mjt + ∑
o

zojtw1−σ
ojt

}
(14)

where lower-case factor choices denote log transforms. With these productivities recovered,

it is now tempting to use Equations (2)-(3) to run the regression

log(zjt) = γRjt + ϕjt (15)

The issue with using Equation (15) as an estimating equation is that firms adopt robots Rjt

based on their expected baseline productivities ϕjt (see Equation (22)), which exactly is the er-

ror term in Equation (15), thus creating selection bias. For example, simply comparing robot

adopters to non-adopters in the cross-section will create bias because high baseline produc-

tivity firms are better able to overcome the fixed cost of robot adoption. Similarly, simply

comparing a firm before and after robot adoption will be biased because firms tend to adopt

robots when their baseline productivity is high or when they expect to face high demand for

their products. Indeed, Fact 2 of Section 2.1 showed that robot adopters tend to be larger.

As I will show formally below, the dynamic adoption model of Section 3 gives me a way

to confront this selection problem. The key idea is to match on observed firm factor choices

leading up to adoption to control for selection into robot adoption based on heterogeneity in

firm productivities. The reason why observably similar firms make different decisions about

robot adoption is then due to heterogeneity in the sunk costs of robot adoption εR
jt, which sat-

isfies the exclusion restriction for identification in the model. The key identifying assumption
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is that observed factor choices are sufficient to control for firm productivities, and that there is

no selection on unobservables that directly affect firm outcomes. The matching-based event

study identification strategy reads as follows.

Identification Strategy (Parameters of Robot Technology γ).

1. Take two firms with similar output and occupational wage bills in some initial k years.

2. In the following year, one of the firms adopts robots.

3. The differential paths of firm output and occupational wage bills identify the parameters

of robot technology, γ .

The firm model in Section 3 falls into a general class of potential outcomes models for robot

adoption. In these potential outcomes models, the assumptions for non-parametric identifica-

tion of average treatment effects are well-understood (Imbens and Wooldridge, 2007). I first

remind the reader of these general requirements for identification, and then show that they are

satisfied in my adoption model. Finally, I show that the average treatment effects estimated

by the event studies identify the robot technology model parameters of interest.

Note first that, since payments to intermediate inputs M are defined as the part of firm

sales that is not paid to labor or profits (a constant markup on firm sales), matching on firm

sales and occupational wage bills is equivalent in the model to matching on the full vector of

firm factor bills, X = (M, L).

In the model, a firm’s factor demands xjt = (mjt, ljt) can take two potential values, (xjt(0), xjt(1)),

according to whether or not the firm has adopted robot technology. In the language of Rubin

(1990), the two identifying assumptions are unconfoundedness

{
∆Rjt+1 ⊥⊥

(
xjt+1(1), xjt+1(0)

)}
|
(
xjt−1(0), .., xjt−k(0)

)
(A1)

and overlap in robot adoption

0 < P
(
∆Rjt+1 = 1 | xjt−1(0), .., xjt−k(0)

)
< 1 (A2)

Assumption (A1) requires that, once I condition on the path of factor choices that lead a firm to

adopt robots in year t, the act of adoption must be independent of the firm’s potential factor
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choice outcomes going forward. On top of this, Assumption (A2) requires that I can find

another firm that experienced the same initial sequence of factor choices but did not adopt

robots in year t. Under Assumptions (A1) and (A2), the difference in sample means between

adopter and match firms identifies the average treatment effect of robot adoption (see Imbens

and Wooldridge (2007))

x̄T
t+1 − x̄C

t+1
p→ E

[
xjt+1(1)− xjt+1(0) | j ∈ T

]
, (16)

where x̄T and x̄C denote the sample means for adopter and match firms, respectively.

Let us now see how the general identifying assumptions (A1) and (A2) derive from the

adoption model in Section 3. First, by the invertibility of the factor demand system, I am im-

plicitly conditioning on (ϕjt−1, ..., ϕjt−k) when I match on firm factor choices in the k years that

lead up to robot adoption (see Equations (13) and (14)).8 Once I condition on (ϕjt−1, ..., ϕjt−k),

firm future factor outcomes (xjt+1(0), xjt+1(1)) are driven solely by the productivity innova-

tions ξt+1 in Equation (9). Since these future productivity innovations are unforeseeable when

firms choose to adopt robots in year t, the adoption model satisfies the unconfoundedness con-

dition (A1).

Second, the probability of robot adoption in the model is given by

Pt(∆Rjt = 1|ϕjt−1, ..., ϕjt−k) = F
(

β
(
EtVt+1(1, ϕjt+1)−EtVt+1(0, ϕjt+1)

)
− cR

t

)
(17)

which lies strictly within the unit interval as long as the distribution of idiosyncratic adoption

costs F has full support. The adoption model thus also satisfies the overlap condition (A2). Put

into words, the identification strategy relies here on firm heterogeneity in the costs of robot

adoption εR
jt driving otherwise similar firms to make different decisions about robot adoption.

Finally, from the model equations (2), (3), (13) and (14), we see that the treatment effects in

8If wages are firm-specific, the identification strategy also requires me to match on wages. In the analysis
below, I match on factor choices, and then show that the firms also match on wages. The non-targeted match on
wages is as an overidentification check of the model assumption that robot adopters do not pay wage premiums.
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Equation (16) identify the parameters of the robot technology

γo = zojt(1)− zojt(0) =
(
lojt(1)− lojt(0)

)
−
(
mjt(1)−mjt(0)

)
(18)

γH = zojt(1)− zojt(0) (19)

=
1

ε− 1
(
mjt(1)−mjt(0)

)
+

(σ− ε)

(σ− 1)(ε− 1)
log

{
w1−σ

Mjt + ∑o zojt(1)w1−σ
ojt

w1−σ
Mjt + ∑o zojt(0)w1−σ

ojt

}
(20)

The identification of γH requires the values of the factor augmenting productivities zojt which

at this point can be readily recovered from Equation (13).

4.2.2 Estimation Results

The identification strategy presented above suggests matching robot adopters to comparison

firms with a similar path of factor choices leading up to the adoption event. The match firms

found in column 3 of Table 2 in Section 2.1 satisfy exactly these criteria. To recap, I found

these firms by matching each robot adopter to a non-adopter firm that operated in the same

two-digit industry and had a similar trajectory of firm sales and line worker wage bill shares

in the three years that led up to adoption.9 I then showed that these firms were similar to the

robot adopters on the full vector of factor choices as required by the identification strategy

above.10

Once I have matched firms based on their factor choices leading up to robot adoption, the

model in Section 3 implies that the act of adoption is driven by the idiosyncratic cost shock εR
jt

that is independent of all other drivers of firm outcomes. The fact that the adopter and match

firms are similar on several non-targeted outcomes in Table 2 provides evidence in support of

this identifying assumption. The fact that the firms pay similar wages, in particular, provides

an overidentification check of the model assumption that robot adopters do not pay wage

premiums.

To ease the exposition, I presented the adoption model in Section 3 assuming that the pro-

ductivity effects of robotization γ manifest fully within the first year of adoption; see Equa-

9I use an Exact-Mahalabonis matching procedure described in Appendix A.7.1. The three-year match window
allows for firm productivities in Equation (9) to follow an arbitrary Markov chain of length three.

10A test of the joint hypothesis that none of the covariates in Table 2 (firm sales, employment, and occupational
wage bills) predict robot adoption has a p-value of 0.25 (reported in the second-to-last row of the table).
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tions (2)-(3). When taking the model to the data, I allow for the possibility that firms take

a longer time to fully adjust to robot production. In practice, I track firm outcomes for four

years after robot adoption. This, however, opens the possibility that some of the control firms

may have also adopted robots in the post-event time window. Appendix Figure C.1 shows

that around 10 percent of control firms adopted robots four years after the event year, which

works against finding an effect of robot adoption in the reduced form of the event studies. I

take this change in treatment status into account when estimating the model parameters.11

Figures 1 and 2 show the main results from the estimation of robot technology. The figures

display the differential paths of firm size and factor choices around robot adoption as pre-

scribed by the identification strategy above. The blue lines represent raw data and the dashed

orange lines show the model fit.12 As I showed in Section 4.2.1, these reduced-form effects

exactly identify the parameters of robot technology γ.

I estimate the parameters of robot technology to match the reduced-form moments four

years after robot adoption. I choose the four-year horizon to account for the smoother tran-

sition path to robot production found in the data. This transition path likely reflects comple-

mentary investments that occur post adoption but that the model assumes are incurred imme-

diately upon adoption. Appendix C.2.2 generalizes the model in Section 3 to account for these

dynamic adjustments to robot production by allowing the productivity effects of robot adop-

tion in Equations (2)-(3) to follow a distributed lag model. The appendix section estimates the

full dynamic path of robot productivity effects. This generalization adds to the computational

complexity of the model by requiring me to keep track of the years since robot adoption when

solving the firm’s dynamic programming problem. With the aim of keeping the firm’s state

space tractable when solving the general equilibrium model in Section 6, I abstract from these

dynamic adjustment processes and instead match directly on the reduced-form effects four

years after robot adoption.

The figures show that the model-simulated diff-in-diffs tend to drift back toward zero in

the years following adoption. This post-event drift toward zero reflects the control firms that

adopt robots in the post-event time window (orange line in Appendix Figure C.1).

11The model-implied correction is the Wald estimator used in the treatment effects literature to convert
intention-to-treat (ITT) effects into treatment-on-the-treated (TOT) estimates; see Angrist and Pischke (2008).

12Appendix C.2.1 describes the econometric specification that generates the point estimates and confidence
intervals plotted in Figures 1 and 2.
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Figure 1(a) shows that the average firm’s sales increase 20 percent around robot adoption.

Through the lens of the structural model, this sales effect implies that robot technology in-

creases firm production efficiency by around 7 percent, given the calibrated elasticity of firm

demand ε. Figure 1(b) shows that the wage bill increases by 8 percent around robot adoption.

The wage bill increase is less than the 20 percent sales effect in Panel (a), and implies that the

substitution effects of robot adoption on labor γo on average are negative.

Figure 1: Firm Outcomes Around Robot Adoption (Matching Diff-in-Diff)

(a) Sales
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(b) Wage Bill
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Figure 2 decomposes the wage bill effects in Figure 1(b) by occupations. Production work-

ers include tasks from welding to assembly, while tech workers include engineers, researchers,

and skilled technicians. Panel (a) of Figure 2 shows that the demand for production workers

falls by around 20 percent around robot adoption, while Panel (b) shows that the demand for

tech workers simultaneously increases by around 30 percent. This shift of labor demand away

from the production line and toward the tech department implies that robot adoption lowers

the relative productivity of production workers (γ̂P = −0.461) but increases the relative pro-

ductivity of tech workers (γ̂T = 0.043).
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Figure 2: Firm Wage Bills Around Robot Adoption (Matching Diff-in-Diff)

(a) Production Workers
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(b) Tech Workers
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Table 4 summarizes the estimated parameters of robot technology.

Table 4: Estimated Parameters of Robot Technology

Parameter Description Estimated Value

γP Production worker augmenting robot productivity −0.461
γT Tech worker augmenting robot productivity 0.043
γO Other worker augmenting robot productivity −0.115
γH Hicks-neutral robot productivity (normalized) 0.066

Note: The relative productivity effects γo are measured relative to intermediate inputs. The parameter γH is normalized such that a zero
sales effect of robot adoption would imply a value γH of zero.

The reduced-form effects in Figure 1 align well with Koch et al. (2019), who find that robot

adoption increases output 20-25 percent and lowers labor costs per unit produced among

Spanish manufacturing firms. It is worth keeping in mind that the reduced-form effects in

Figures 1 and 2 only identify the partial effects of one firm adopting industrial robots, and

that any general equilibrium effects of robotization are differenced out in the figures. The

general equilibrium model in Section 6 will fit these partial effects but also take into account

general equilibrium interactions in product and labor markets to be able to quantify what

happens when many firms in the economy adopt industrial robots.
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4.3 Baseline Technology

Baseline productivities ϕjt are structural residuals that capture changes in firm production

technology that are not due to robot adoption. I can now recover these baseline productivities

by inverting the model equations. To be precise, with the robot technology parameters γ

estimated in Section 4.2.2 and firm productivities zjt recovered from Equations (13) and (14), I

can use Equations (2) and (3) to retrieve baseline productivities ϕjt.

To solve their forward-looking problem of robot adoption, firms must form expectations

about their future productivities. To estimate this robot adoption problem, I specify that firm

productivities (Equation (9)) follow a first-order vector autoregression VAR(1) with Gaussian

innovations.

ϕjt = µt + Πϕjt−1 + ξ jt, with ξ jt
iid∼ N (0, Σ). (21)

The unknown parameters (µt, Π, Σ) in Equation (21) can readily be estimated using either

maximum likelihood or three-stage least squares.

The general equilibrium model in Section 6 restricts the labor-augmenting part of baseline

productivities to a common time-varying parameter vector ϕot. This simplification is done

to keep the firm’s state space tractable and to home in on the key size dimension that sets

robot adopters apart from non-adopters (Fact 2 of Section 2.1).13 Appendix C.3.1 calibrates

the path of common labor-augmenting productivities to match the path of manufacturing fac-

tor shares taking into account the diffusion of industrial robots. Appendix C.3.2 reports the

results from estimating the productivity process in Equation (21). When solving the dynamic

programming problem of robot adoption, I discretize the estimated baseline productivity pro-

cess using the Tauchen (1986) method.

13The size premium in robot adoption is rationalized by the Hicks-neutral component of firm heterogeneity
ϕHjt which is left unrestricted. To be clear, the homogeneity restriction on firm baseline labor-augmenting pro-
ductivities ϕot is imposed solely for computational tractability: it does not alter the preceding analysis and can
be relaxed without causing any conceptual or data complications.
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4.4 Robot Adoption Costs

In this section, I estimate the costs of robot adoption. I first parameterize the path of com-

mon costs cR
t and the distribution of idiosyncratic costs F, and then estimate their parameters

to match the empirical robot diffusion curve and the observed firm size premium in robot

adoption. To preview, I find that the model is able to generate the empirical S-shape in robot

diffusion over time as well as the observed size premium of robot adopters, and that the esti-

mated adoption costs align well with external cost measures.

I specify the idiosyncratic adoption cost shocks εR
jt to be drawn from a logistic distribution

F ∼ Logistic(0, ν) such that the probability that a firm adopts robot technology (Equation (10))

takes the form

Pt(∆Rjt+1 = 1) =
exp( 1

ν (−cR
t + βEtVt+1(1, ϕjt+1)))

exp( 1
ν (−cR

t + βEtVt+1(1, ϕjt+1))) + exp( 1
ν βEtVt+1(0, ϕjt+1))

. (22)

To develop intuition for the estimation strategy that I adopt here, note that Equation (22)

implies a linear relationship between the log odds ratio of robot adoption and the expected

gain in future profits from operating industrial robots.

log

(
Pt(∆Rjt+1 = 1)

1− Pt(∆Rjt+1 = 1)

)
= − cR

t
ν

+
1
ν
×
(

βEVt+1(1, ϕjt+1)− βEtVt+1(0, ϕjt+1)
)

(23)

Equation (23) shows that the common cost cR
t governs the rate of robot diffusion, while

the sensitivity of robot adoption to future profit gains is inversely linked to the dispersion

parameter ν.14 Since larger firms are the ones that can better scale up production to reap

the benefits of robot technology, and thus enjoy larger profit gains when adopting robots, it

follows that the size premium in robot adoption is also inversely tied to ν. Following on this

intuition, I develop a simulation-based estimator that entails searching for the adoption cost

parameters, cR
t and ν, that bring the model as close as possible to the observed robot diffusion

14By inverting continuation values from choice probabilities as in Arcidiacono and Miller (2011), I can rewrite
Equation (23) as follows

β log Pt+1 − log
Pt

1− Pt
=

1
ν
(βcR

t+1 − cR
t )−

1
ν

β(πt+1(1, ϕ′)− πt+1(0, ϕ′)) (24)

Equation (24) clarifies that the acceleration in robot diffusion pins down the change in robot adoption costs cR
t

over time, while 1
ν measures the sensitivity of adoption to future profit flows.
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curve and size premium in robot adoption.

I structure the exposition in two steps. In Section 4.4.1, I estimate the path of common

adoption costs cR
t to match the empirical robot diffusion curve, conditional on an estimate

of ν. In Section 4.4.2, I then estimate the dispersion parameter ν to match the observed size

premium in robot adoption. The final estimation procedure stacks the moments and estimates

the parameters simultaneously using the method of simulated moments (MSM). Appendix

C.4 provides details on the MSM estimation procedure.

4.4.1 Common Adoption Costs over Time

I estimate the path of common adoption costs {cR
t }T

t=0 to bring the model as close as possible

to the observed robot diffusion curve. In particular, I parameterize the adoption cost schedule

to be log-linear in time,

cR
t = exp(cR

0 + cR
1 × t), (25)

and then search over a grid of intercepts cR
0 and slopes cR

1 to minimize the distance between the

simulated and empirical diffusion curve. That is, for each pair of intercept and slope (cR
0 , cR

1 ), I

solve the dynamic programming problem of the firm, simulate the economy, and calculate the

in-sample deviation to the empirical diffusion curve. The MSM estimator is the intercept-slope

pair that brings the simulated diffusion curve the closest to the data. Appendix F.1 describes

formally how to solve the dynamic programming problem of the firm. Put briefly, I first set

a time horizon T sufficiently far in the future, such that robots are fully diffused by then. I

then start at T, and solve the stationary, infinite horizon dynamic programming problem by

iterating on the Bellman equation. I then solve for continuation values in T− 1, T− 2, ..., back

to the first period using backward induction. With the continuation values in hand, I can

simulate firms forward using the adoption policy functions, and verify that industrial robots

have actually diffused fully by time T.

Figure 3(a) compares the fit of the estimated adoption curve, and Figure 3(b) plots the

MSM estimate for the path of adoption costs. The common component of robot adoption

costs amounts to 0.9 times the adopter firms’ sales in 2019. This is, however, not the average

sunk cost cR
t + εR

jt borne by adopters because firms select into robot adoption based on their
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idiosyncratic adoption cost εR
jt. Conditional on adoption, the total adoption cost amounts to

around 10 percent of adopter sales.15 These are the costs needed to rationalize the fact that,

despite enjoying substantial sales gains upon robotization, only 31 percent of manufacturing

firms have adopted industrial robots almost 30 years after their arrival.

Figure 3: Estimating Adoption Costs on the Robot Diffusion Curve
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(b) MSM Estimate of Adoption Costs
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Note: Firm sales (the units in Panel (b)) are an average of adopter sales measured over the full simulation period.

One notable feature of Figure 3 is that, despite the log-linear schedule for adoption costs,

the model (blue line in Panel (a)) is able to generate the S-shaped diffusion curve commonly

found in the literature on technology adoption (Griliches, 1957). This can be seen as an overi-

dentification check of the estimated adoption model. The model-simulated S-shape reflects

the combination of a Bell-shaped distribution for firm productivity and a model where robot

adoption is driven by threshold crossing in firm productivity. The Gaussian cumulative dis-

tribution function for baseline Hicks-neutral productivity ϕH naturally gives rise to a tail of

technology leaders, a bigger mass of followers, and a tail of laggards, as implied by an S-

shaped diffusion curve.

The MSM adoption cost estimate is an inferred cost that not only includes the monetary

15Following Dubin and McFadden (1984), the expected cost borne by adopting firms may be calculated as

E(cR
t + εR

jt|∆Rjt+1 = 1) = cR
t + ν

(
log Pt(∆Rt+1 = 1) +

Pt(∆Rt+1 = 1)
1− Pt(∆Rt+1 = 1)

log Pt(∆Rt+1 = 1)
)
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price of the robot machine but also expenditures for installation, the hassle of robot adoption

and production reorganization, as well as changing accessibility of industrial robots. Still, we

may ask how the inferred adoption cost from my estimation procedure compares to external

measures of robot investment costs. Table 1 showed that robot adopters on average spend a

total of $311,000 on robot machinery. A rule of thumb is that machinery expenditures account

for a third of the total cost of a robotic system that also includes expenditures for installation

and integration (International Federation of Robotics, 2018). Taken together, this suggests that

the monetary cost of robot adoption falls around $1 million. This number is slightly smaller

than, but in the ballpark of, the inferred cost for adopters (cR
t + εR

jt) of around 10 percent of

firm sales. Appendix C.4.3 shows further that the estimated rate of change in adoption costs

cR
t aligns well with the robot machine expenditures reported on customs records of adopting

firms.

Importantly, the MSM estimation procedure also identifies the path of future adoption

costs that are consistent with the observed adoption behavior. This future path of adoption

costs will be key to evaluating the effects of imposing a robot tax in Section 6.3.

4.4.2 Variance of Idiosyncratic Adoption Costs

I estimate the dispersion in idiosyncratic adoption costs ν to match the observed size premium

in robot adoption. Robot adopters were on average 2.61 times larger than non-adopter firms in

2018. The MSM procedure estimates ν to be 0.384, which delivers a simulated size premium of

2.61 in 2018. Figure 4 shows how the adopter size premium moment pins down the parameter

ν by plotting the simulated size premium for varying values of ν.

To put this size premium into perspective, had selection into robot adoption been unrelated

to firm size (ν → ∞), the adopter premium would only have reflected the 20 percent sales

effect estimated in Section 4.2. At the other extreme, without heterogeneity in adoption costs

(ν → 0), robot adopters would have been around 6 times larger than non-adopters in 2018.16

These estimates suggest that, while there is clear selection into robot adoption based on firm

size (Fact 2 of Section 2.1), there is still ample heterogeneity in adoption costs εR
jt, leading

16The sales share of robot adopters in manufacturing was 53.9 percent in the data and in the model in 2018. In
comparison, if firms did not select into robot adoption based on their size (ν → ∞) then the sales share of robot
adopters would have been 34.5 percent. At the other extreme, without heterogeneity in adoption costs (ν → 0),
the sales share would have been 72.8 percent.
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observationally similar firms to make different decisions about robot adoption.

Figure 4: Size Premium of Robot Adopters for Varying Adoption Cost Dispersion ν
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5 The Labor Supply Block

This section presents the labor supply block of the general equilibrium model. I incorpo-

rate this labor supply module into the general equilibrium model in Section 6 to allow for

a labor supply response to industrial robots where workers move out of adversely affected

occupations. I use here a dynamic occupational choice model that represents state-of-the-art

for studying labor market dynamics in response to trade liberalizations (Dix-Carneiro, 2014;

McLaren, 2017; Traiberman, 2019).

A key property of the general equilibrium is that the worker and firm problems are sepa-

rable conditional on the path of wages. This block separable structure allows me to study and

estimate the labor supply model now without reconsidering the firm’s problem from Section

3 by conditioning on the observed path of wages.

The labor force consists of overlapping generations of heterogeneous workers as in Lee

and Wolpin (2006). Workers enter the labor market at age 25 with an educational skill level

s ∈ {Low, Mid, High} and retire at age 65. In each year before retirement, workers face

a choice of which occupation o to work in. This labor supply decision is dynamic in two
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ways. First, it is costly for workers to switch occupations. Second, workers may accumulate

occupation-specific human capital on the job that is not transferable to other occupations. I

allow labor markets to be segmented by occupation (production, tech, and other) and sector

of employment (manufacturing and services).

A worker i of age a in occupation o in year t earns the product of a competitive occupational

skill price, wot, and her human capital, Hoit. Her occupational human capital is given by

log(Hoit) = βo
ssit + βo

1ait + βo
2a2

it + βo
3tenoit + ςit (26)

where teno denotes tenure in occupation o, and ςit
iid∼ N (0, σ2

h) is an ex-post productivity

shock.

The worker’s choice of occupation is an investment decision that trades off a sunk cost of

switching occupations with future gains in wages and amenities of being employed in a new

occupation. The occupational choice problem is represented by the Bellman equation

vt(o, s, a, ten) = max
o′∈O

log(wotHo(s, a, ten)) + ηot − (coo′(s, a) + εo′) (27)

+ 1{a<65}βEtvt+1

(
o′, s, a + 1, 1{o′=o} (ten + 1)

)
(28)

where ηot is a non-monetary amenity of working in occupation o, and εo
iid∼ GEV1(ρ) is an

idiosyncratic occupational switching cost shock. Income is implicitly assumed to be fully

consumed in each period, and workers receive logarithmic flow utility of consumption. The

occupational switching cost depends on the bilateral pair of current and prospective occupa-

tions, as well as the worker’s age and skill

coo′(s, a) = coo′ exp
{

αss + α1 × a + α2 × a2
}

(29)

I stack the worker state variables into the vector ω = (s, a, ten, o)′.

5.1 Estimation of Labor Supply Parameters

I structurally estimate the labor supply model in Equations (26)-(28) using administrative data

on the career paths of Danish workers. My approach to measurement and estimation follows

27



closely Traiberman (2019). I describe the estimation procedures below, and relegate the data

description and estimation results to Appendices D.1 and D.2. To preview, the estimate show

that production workers face steep barriers to switching into tech occupations, that it is easier

for workers to switch sectors instead of occupations, that workers accumulate specific human

capital on the job that is not transferable to other occupations, and that older workers find it

more costly to reallocate in the labor market.

5.1.1 Human Capital Function

I estimate the human capital function in Equation (26) using a Mincer regression of log earn-

ings on worker skill, age, and occupational tenure.

log(Earningsit) = log(wot) + βo
ssit + βo

1ait + βo
2a2

it + βo
3tenoit + ςit, (30)

where Earningsit denotes labor earnings of worker i in year t, and wot is an occupation-time

fixed effect. The key model assumption that enables me to identify the human capital pa-

rameters β in this regression is that workers cannot select on the productivity shock ς when

choosing occupation or education. Appendix Table D.1 provides the OLS estimation results,

which align with estimates from the existing literature (Ashournia, 2017; Dix-Carneiro, 2014;

Traiberman, 2019).

5.1.2 Occupational Switching Costs

I estimate the occupational switching costs coo′ on observed worker transition and a condi-

tional choice probability (CCP) estimator adapted from Traiberman (2019). The estimator

exploits the finite dependence in the labor supply model to difference out unobserved con-

tinuation values by comparing workers who start and end in the same states (Arcidiacono

and Miller, 2011).

The occupational choice model in Equation (27) implies that the difference in the (dis-

counted) probabilities of observing a worker in occupation o first switching into occupation o′

and then transitioning into occupation o′′ compared to observing the worker first staying in
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occupation o and then transitioning into occupation o′′ is

log
πt(oo′|ω)

πt(oo|ω)
+ β log

πt+1(o′o′′|ω′)
πt+1(oo′′|ω′′) =− 1

ρ
coo′(ω)− β

ρ
(co′o′′(ω

′)− coo′′(ω
′′)) (31)

+
β

ρ

(
log(wo′t+1Ho′(ω

′))− log(wot+1Ho(ω
′′))
)

(32)

+
β

ρ
(ηo′ − ηo) + ζoo′o′′t (33)

where πt(oo′|ω) is the transition rate from occupation o to o′ of workers with characteristics ω,

Ho and wot are the human capital function and occupational skill prices estimated in Equation

(30), and ξ is a mean-zero expectational error that is uncorrelated with the remaining RHS

variables.

The occupational switching costs coo′ are identified off the excess likelihood of observing a

worker staying in his own occupation from one year to the other, once his expected earnings

differentials across occupations are controlled for. The occupational preference shock vari-

ance ρ is estimated as the inverse elasticity of occupational switching with respect to expected

earnings differentials.

The key model assumption in Equations (31)-(33) is that occupational switching is a re-

newal action that clears past choices from a worker’s state. Combining this assumption with

the Hotz-Miller inversion of continuation values from choice probabilities (Hotz and Miller,

1993) allows me to cancel out continuation values.17

Equations (31)-(33) constitute a system of non-linear regressions that identify the switching

cost function coo′ and the preference shock variance ρ. Appendix D.2.1 describes the computa-

tional implementation of the estimation procedure. Appendix Tables D.2 and D.3 present the

non-linear least squares (NLLS) estimation results. The estimates show that production work-

ers face steep barriers to switching into tech occupations, that workers find it easier to switch

sector within the same occupation, and that older workers find it more costly to reallocate in

the labor market. The estimated switching cost magnitudes are in the range of those found in

the existing literature.

The NLLS procedure tightly estimate all the occupational choice parameters, except for the

preference shock variance ρ. In the current setup, the estimate of ρ greatly exceeds estimates

17The derivation of Equations (31)-(33) closely follows Traiberman (2019), who estimates a richer model of
labor supply that also accounts for unobserved (to the econometrician) types of workers.
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in the existing literature. Since the labor supply responses to industrial robots are inversely

related to this dispersion parameter, I choose to instead use a central estimate in the literature

of ρ equal to 2. This value falls in between the estimates in Dix-Carneiro (2014), Ashournia

(2017), Artuç et al. (2010), Caliendo et al. (2019), and Traiberman (2019).

5.1.3 Occupational Amenities

I estimate the path of occupational amenities ηot to match the time series of employment shares

across occupations. Appendix D.2.2 provides details on this estimation step.

6 Counterfactual Experiments

This section conducts counterfactual experiments to assess the general equilibrium impacts of

industrial robots. I first present a general equilibrium model that unites the firm model from

Section 3 with the worker model from Section 5. Section 6.1 defines the general equilibrium

and develops a fixed-point algorithm for solving the equilibrium that features two-sided het-

erogeneity and dynamics. Section 6.2 uses the general equilibrium model to quantify how

the arrival of industrial robots has affected the distribution of worker welfare. Section 6.3

evaluates the dynamic incidence of a robot tax.

6.1 Closing the General Equilibrium Model

The economy consists of a manufacturing sector and a service sector. The manufacturing sec-

tor consists of a mass µF
t (R, ϕ) of firms that are monopolistically competitive in product mar-

kets, pricetakers in factor markets, and otherwise operate as specified in Section 3.18 Services

are produced with a Cobb-Douglas technology and supplied competitively,

Yst = zstM
αs

M
st ∏

o∈O
Lαs

o
ost (34)

18The baseline mass of firms µF
t (·, ϕ) is taken as given but its distribution over the robot technology state R

evolves endogenously according to the equilibrium robot adoption model.
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The economy is populated by a mass µW
t (ω) of workers who supply labor as specified in

Section 5, and consume the final output bundle

Yt = Yµ
MtY

1−µ
St with YMt =

[∫
Y(R, ϕ)

ε−1
ε dµF

t (R, ϕ)

] ε
ε−1

(35)

I model Denmark, a country of less than 6 million people located in the European free trade

zone, as a small open economy. Intermediate inputs M are imported at world price wMt,

which the Danish economy takes as given, and trade is balanced. The robot adoption cost

cR
t is determined on the world market for industrial robots and is thus exogenous to local

conditions in Denmark. The general equilibrium of the economy is defined as follows.

Definition 1 (Dynamic General Equilibrium). A dynamic general equilibrium of the economy

is a path of factor prices {wt}t, distributions of firm and worker states {µF
t (R, ϕ), µW

t (ω)}t,

and policy functions {Rt(0, ϕ)}t, {o′t(ω)}t, such that taking the schedule of adoption costs

{cR
t }t and the price of intermediate inputs {wMt}t as given

1. Firms adopt robots to maximize expected discounted profits (Equation (7)) and demand

static inputs to maximize profits period-by-period (Equation (5)).

2. Workers choose occupations to maximize expected present values (Equation (27)).

3. Labor markets clear (segmented by occupations and sectors)

∫
Lot(R, ϕ)dµF

t (R, ϕ) =
∫

ω
Ho(ω)dµW

t (ω|M) (36)

Lost =
∫

ω
Ho(ω)dµW

t (ω|S), (37)

where Lot(R, ϕ) is the static labor demand function satisfying Equation (5).

4. Firm output markets clear and trade is balanced.

Yt = Ct + wM Mt (38)

where Mt =
∫

Mt(R, ϕ)dµF
t (R, ϕ) + Mst and Ct = ∑o wotLS

ot + Πt. Equation (38) states

that expenditures on intermediate input imports equal revenues from final goods ex-

ports.
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5. The evolution of the distributions of firm and worker states {µF
t , µW

t }t is consistent with

the policy functions {Rt(0, ϕ), o′t(ω)}t.

A key property of the general equilibrium is that the firm and worker programs are sepa-

rable conditional on the path of wages. This block separability breaks the curse of dimension-

ality where firm variables become states for the worker, and worker variables become states

for the firm. The myriad of individual decisions taken by heterogeneous firms and workers is

instead summarized into one aggregate state vector – the path of wages – which agents have

perfect foresight about, up to unanticipated aggregate shocks to the economy. The block sep-

arable structure enables me to incorporate the rich firm and worker heterogeneity estimated

in Sections 4 and 5, and still be able to compute the dynamic general equilibrium. In particu-

lar, the estimated general equilibrium model will fit the partial effects of firm robot adoption

identified in Section 4 but also take into account how robotization affects non-adopter firms

through product and labor markets, as well as the ability of workers to switch out of adversely

impacted occupations.

I solve for the transitional dynamics of the economy where baseline productivities {ϕjt, zst},

amenities {ηot}, and robot adoption costs {cR
t } all have t-subscripts and are the time-varying

fundamentals driving the system over time. The baseline estimated model perfectly matches

the path of manufacturing factor bills (Appendix Figure C.3) and occupational employment

shares (Appendix Figure C.3) observed in Denmark over time. I calibrate µ to match the

manufacturing share in total output of the Danish economy and αs to match the evolution of

factor cost shares outside of manufacturing. Appendix Table G.1 provides a summary of the

parameters of the general equilibrium model, as well as the moments used to estimate their

values.

6.1.1 Solving the Dynamic General Equilibrium

The path of wages is the key endogenous variable that links the firm and worker decisions

in general equilibrium. I solve for the general equilibrium wage schedule using a shooting

algorithm adapted from Lee (2005). The procedure boils down to guessing a path of wages

and manufacturing price indices, solving the dynamic programs related to the robot adoption

decision of firms and the occupational choice problem of workers, simulating the economy
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forward using the firm and worker policy functions, and then using the firm’s static labor

demand functions to find the vector of wages that clear labor markets period-by-period. This

algorithm iterates until convergence in the path of wages and the distributions of firm and

worker states. Appendix F.3 details each step of the equilibrium solution algorithm.

6.2 The Distributional Impact of Industrial Robots

This section turns to the key question posed in this paper by asking how the distribution of

worker earnings would have looked if industrial robots had not arrived. To evaluate this

counterfactual, I solve the general equilibrium under a path of prohibitively high adoption

costs (cR
t = ∞). I then compare the results to the equilibrium under the baseline adoption cost

schedule estimated in Section 4. The simulations assume that the arrival of industrial robot

technology around 1990 came as a surprise to agents in the economy, but that firms and work-

ers from that point on perfectly foresee the path of robot adoption costs. The robot diffusion

curve in Figure 5 shows that if robot adoption had been infinitely costly (“No Robotization”),

then robot technology would not have diffused at all.

Figure 5: Robot Diffusion Curve
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The equilibrium effects of industrial robots depend not only on the direct impact of firm

robot adoption estimated in Figures 1 and 2 but also on several indirect effects that are not
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identified in micro-level diff-in-diff regressions. The indirect effects include the extent to

which the expansion of robot adopters crowds out non-adopter firms in product and labor

markets as well as the ability of workers to reallocate across occupations in response to equi-

librium wage pressures from robot diffusion. The general equilibrium model captures these

indirect effects by combining the structurally estimated behavior of firms and workers with

internal consistency constraints imposed by equilibrium conditions on product and labor mar-

kets.

Figure 6 shows the impact of industrial robots on real wages in different occupations. In-

dustrial robots have increased average real wages by 0.8 percent in Denmark but with sub-

stantial distributional consequences. Production workers employed in manufacturing are the

big losers from industrial robots, as their real wages are 6 percent lower today due to robots.

Tech workers employed in manufacturing earn 2.3 percent higher real wages today due to

industrial robots, while the remaining occupations have gained between 0.3 and 1.2 percent

from robots. While the real wage loss for production workers in manufacturing is substantial,

it is important to keep in mind that the occupation only constitutes around 3 percent of total

employment in Denmark.

Figure 6: Real Wage Effects of Industrial Robots

(Weighted Average in 2019: +0.76 percent)
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To understand the general equilibrium forces driving the real wage outcomes, Figure 7 de-
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composes the manufacturing production real wage effect into labor demand effects from robot

adoption, consumer price effects from pass through of lower robot production costs, and la-

bor supply effects from occupational reallocation of workers (changing the relative scarcity of

labor across occupations).

As the decomposition shows, the real wage loss of manufacturing production workers

would have been a half-order of magnitude larger than the estimated effect if workers could

not reallocate across occupations in response to robots. Appendix Figure G.2 confirms this

finding by evaluating the impact of industrial robots with exogenous labor supply, thus shut-

ting off the occupational choice block estimated in Section 5.1. Real wages of production

workers employed in manufacturing would in that world have been 30 percent lower today

due to industrial robots.

Figure 7: Decomposition of the Production Wage Effect
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Note: Labor demand effects are measured relative to the “Other Workers” occupation in the services sector.

Still, the labor supply and consumer price effects combined are not enough to overturn

the negative labor demand effects of robot adoption from depressing real wages of produc-

tion workers employed in manufacturing. The displacement effects identified in Figure 2(a)

are in general equilibrium reinforced by two additional labor demand forces. First, the ex-

pansion of robot adopters crowds out activity in non-adopter firms through the stealing of
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output markets. Second, the complementarity between occupations in manufacturing pro-

duction (estimated in Section 4.1) means that firms spend a smaller fraction of their wage bill

on production workers when they become less expensive.

Interestingly, among workers in the service sector, Figure 6 shows that production workers

have experienced the largest real wage gain from robot adoption. This differential wage gain

is a compensating differential for their excess risk of transitioning into production work in

the manufacturing sector. In terms of expected lifetime earnings, production workers are the

group of service workers with the lowest gain from industrial robots.

Finally, Figure 7 shows that more than half of the total consumer price gains from industrial

robots have been realized already, even though only 30 percent of manufacturing firms have

adopted robots. This finding reflects that the estimated model captures the fact that firms with

larger efficiency gains from robot adoption (that is, firms that can better scale up production

to take advantage of industrial robots) are the ones that adopt robots first.

Due to the possibility that workers can reallocate across occupations, the real wage effects

in Figure 6 do not necessarily convert one-to-one into welfare effects for individual workers.

The occupational reallocation margin opens an option value of being able to switch into oc-

cupations whose premiums rise as robots diffuse in the economy. As emphasized by Artuç

et al. (2010), this option value source of worker welfare is not identified from static wage com-

parisons but is only captured once we factor in the dynamic occupational switching behavior

observed over an individual’s working life.

Figure 8 shows the impact of industrial robots on the welfare of workers in 2019. Panel (a)

shows that 90 percent of workers have gained between 0.5 and 1 percent of lifetime earnings

from the arrival of industrial robots. Yet, Panel (b) shows that the – considerably smaller –

group of production workers employed in manufacturing have lost between 0 and 6 percent

of lifetime earnings from robots.
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Figure 8: Welfare Effects for Workers in 2019

(Average: +0.85 percent)
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(a) All Workers Excl. Manufacturing Production
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(b) Manufacturing Production Workers

Figure 9 shows that the welfare losses in Figure 8(b) are concentrated on older workers.

Younger production workers, with less specific skills and a long career ahead of them, are

less affected by the arrival of industrial robots, as wage losses in their current occupation

are offset by gains in the option value of switching into occupations whose premiums rise as

robots diffuse in the economy.

Figure 9: Welfare Effects for Manufacturing Production Workers in 2019
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The flip side of the labor supply responses found in Figure 7 is that industrial robots have

contributed to employment polarization as documented in Autor and Dorn (2013) and Goos

et al. (2014). Figure 10 shows that industrial robots can account for 25 percent of the fall in

the employment share of manufacturing production workers and 8 percent of the rise in the

employment share of tech workers in manufacturing since 1990.

Figure 10: The Effect of Industrial Robots on Employment Shares
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(a) Production Workers in Manufacturing
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(b) Tech Workers in Manufacturing

To recapitulate, the estimates presented in this section are based on a general equilibrium

model that has been validated on event studies of firm robot adoption, the observed diffusion

of industrial robots, and worker transitions across occupations. The quantitative importance

of the estimated general equilibrium responses to industrial robots warrants caution when

comparing estimates from this section to findings in the reduced-form literature. For exam-

ple, the conclusion from Figure 6 that industrial robots have increased average real wages

may at first sight seem at odds with the finding in Acemoglu and Restrepo (2019b) that robots

depress wages in local labor markets. Before drawing such a comparison, however, it is im-

portant to keep in mind that Figure 6 takes into account the general equilibrium consumer

price and input-output linkage effects of industrial robots. For example, insofar as consumer

price effects spill over across local labor markets, these contributions to real wages will be dif-

ferenced out in the empirical strategy adopted in Acemoglu and Restrepo (2019b). In fact, the

average real wage gain estimated in Figure 6 flips to a loss if I omit the consumer price effect

of industrial robots. Furthermore, to the extent that some of the positive contributions to the

service sector through input-output linkages extend beyond commuting zones, these effects
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will also be differenced out in a diff-in-diff analysis of local labor markets. In fact, my estimate

for the average wage effect in the manufacturing sector aligns well with the 0.4 percent loss

estimated in Acemoglu and Restrepo (2019b).

In summary, I take the estimates presented in this section as complementary to existing

reduced-form studies of industrial robots by highlighting the quantitative importance of gen-

eral equilibrium effects that are not easily identified by reduced-form empirical strategies. In

particular, I show the quantitative relevance of an occupational switching feedback mecha-

nism that has been emphasized in the literature on international trade and labor market dy-

namics (Dix-Carneiro, 2014; McLaren, 2017; Traiberman, 2019). Although the labor supply re-

sponses are not strong enough to overturn the negative labor demand effects from depressing

the real wages of manufacturing production workers, I find that the wage losses would have

been a half-order of magnitude larger if workers could not reallocate across occupations. A

speculative hypothesis is that the generous retraining subsidies offered in the Danish system

of active labor market policies could be an underlying driver of the quantitative importance

of the estimated occupational reallocation feedback response.

6.3 Policy Counterfactuals: The Dynamic Incidence of a Robot Tax

As a final counterfactual experiment, I now turn to evaluating the impact of a robot tax. The

European Parliament voted in 2017 on a proposal to tax the use of robotics. The robot tax was

motivated as a way to slow down the speed of robot adoption to give the economy more time

to adjust to the new technology.19

I tax the schedule of robot adoption costs cR
t to inform this policy counterfactual. To be

clear, the undistorted equilibrium of the model is efficient (except for markups in product

markets), but the robot tax could be motivated by distributional concerns.20 In particular,

Section 6.2 identified a group of production workers employed in manufacturing who have

clearly lost from the use of industrial robots. A key policy question is how costly (in terms

19The proposal was ultimately voted down by the European Parliament but the idea of taxing robots to miti-
gate labor market polarization remains popular among public figures from Bill Gates (Quartz, 2017) to congress-
woman Alexandria Ocasio-Cortez (Market Watch, 2019).

20The production efficiency result of Diamond and Mirrlees (1971) establishes that it is always optimal to main-
tain production efficiency insofar as linear commodity taxes are available. Costinot and Werning (2018) derive
sufficient-statistic formulas for optimal technology taxes when a non-linear income tax schedule is the only al-
ternative policy instrument.
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of lost economic efficiency) it is to insulate these production workers by taxing the further

adoption of industrial robots. The answer to this question depends on several behavioral

elasticities estimated from the micro data, including the sensitivity of firm robot adoption with

respect to adoption costs (Section 4.4.2) as well as the ability of workers to switch occupations

in response to robots (Section 5.1). I use the estimated general equilibrium model to quantify

the distributional implications of a robot tax and to evaluate its impact on aggregate economic

activity.

To map out the potential policies, I evaluate both a temporary and a permanent tax, each

of 30 percent. The policies are announced and implemented in 2019, and the temporary tax is

put in place for 10 years. Figure 11(a) shows the path of robot adoption costs under the tax

policies. I assume that a robot tax in Denmark does not alter the pre-tax price for robots which

is determined on world markets.

Panel (b) of Figure 11 shows the first key result from the robot tax counterfactuals: The

temporary tax is more effective in slowing down the diffusion of industrial robots while it is

put in place. With the temporary tax, only 43 percent of manufacturers will have adopted

robots by 2029, compared to 48 percent with the permanent tax and 56 percent in the baseline

scenario. The larger short-term effects of the temporary tax reflect the forward-looking nature

of adoption, where firms foresee that the robot tax will expire and postpone adoption until

then. The flip side of these delays is that the adoption of robots accelerates beyond its baseline

speed after the temporary tax expires in 2030.

Figure 11: Robot Tax Counterfactuals
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Figure 12 shows how the temporary robot tax affects the welfare of workers in 2019. The

temporary tax lowers average welfare by 0.05 percent of lifetime earnings but benefits a group

of older production workers employed in manufacturing by 0.2 to 0.3 percent.

Figure 12: The Impact of a Temporary Robot Tax on the Welfare of Workers in 2019
(Average: -0.054 percent)
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(a) All Workers Excl. Manufacturing Production
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(b) Manufacturing Production Workers

Table 5 shows how the burden of the robot taxes falls on workers and firms in the economy.

Measured in presented discounted terms, the robot taxes redistributes a total of 0.01 to 0.02

percent of GDP to production workers currently employed in manufacturing at the expense

of a total welfare loss for workers of around 1 percent of GDP. These welfare losses reflect fore-

gone efficiency gains from underinvestment in robot technology. Put differently, for the robot

taxes to enhance social welfare, one needs to value production workers in manufacturing 50

to 100 times higher than the average worker.

The temporary robot tax creates welfare losses per dollar of tax revenue collected that are

considerably larger than those of the permanent robot tax. These larger relative efficiency

losses of the temporary tax is a direct consequence of the investment delays observed in Panel

(b) of Figure 11: The intertemporal shifting of robot adoption out of the temporary policy

window creates misallocation without raising tax revenues. In particular, if firm adoption

behavior did not respond to the robot tax (“Mechanical Effect” in Table 5), the temporary

robot tax would generate 133 percent more revenues, while revenues from the permanent tax

would be only 17 percent higher.

The robot taxes do, however, generate substantial amounts of tax revenue, whose burdens
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are primarily borne by manufacturing firms. As Table 5 shows, the tax revenues are sufficient

to make all workers better off from the robot taxes, insofar as the revenues can be rebated

appropriately and the planner does not care about firm profits. One should be cautious about

drawing such a conclusions, however, as I do not model firms’ entry decisions. If the robot

taxes would cause some manufacturing firms to go out of business, these profit losses would

be passed on to lower worker welfare.

Table 5: Robot Tax Incidence
(Discounted Present Values in Percent of GDP in 2019)

Temporary Tax Permanent Tax

Workers -1.21 -1.00
Workers in 2019 -0.62 -0.47

– Manufacturing Production 0.02 0.01
Future Workers -0.59 -0.53

Tax Revenues 2.39 9.41
Mechanical Effect 5.57 11.02
Behavioral Effect -3.18 -1.61

Profits (excl. predatory externalities) -4.14 -10.58

Note: Workers represent compensating variations; see Appendix G.1.1 for details. Profits (excl. predatory externalities) represent the effect on
manufacturing firm values (Equations (7)-(8)) in 2019, holding constant pecuniary externalities of robot adoption in output markets; see
Appendix G.2.1 for details. Mechanical Effect is the tax revenues collected if robot adoption did not respond to the tax.

In calculating the effects on firm profits in Table 5, I exclude so-called predatory investment

externalities. Predatory investments refer to the pecuniary externality where robot adopters

do not internalize that parts of the profit gain from robots come from stealing markets shares

of competitor firms.21 By internalizing this predation effect, a robot tax has the possibility to

increase aggregate profits of firms. To focus on the key equity-efficiency trade-off for work-

ers, I hold the predatory externalities out of the baseline incidence calculations, and instead

relegate their analysis to Appendix G.2.1.

To sum up, even though the temporary tax achieves the goal of delaying the diffusion of

industrial robots, this analysis shows that the policy is an ineffective and relatively costly way

to redistribute income to production workers employed in manufacturing.

21The implications of predatory investments have been studied extensively in the theoretical industrial orga-
nization literature, including Dixit (1980) and Spence (1986).
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7 Conclusion

This paper makes two methodological contributions in order to study the distributional im-

pact of industrial robots. First, I develop a dynamic firm model that can rationalize the se-

lection into and reduced-form responses to robot adoption. Second, I model both firm and

worker dynamics in general equilibrium. I use administrative data that link workers, firms,

and robots in Denmark to structurally estimate a dynamic general equilibrium model that can

account for event studies of firm robot adoption, the observed diffusion of industrial robots,

and worker transitions in the labor market. The model fits the labor demand responses to

robot adoption but also takes into account how production efficiency gains from robots are

passed through to lower consumer prices as well as the ability of workers to reallocate be-

tween occupations in response to industrial robots.

Having validated the model using overidentification checks, I use it to estimate the dis-

tributional impacts of industrial robots. I find that industrial robots have increased average

real wages by 0.8 percent but with substantial distributional consequences. At the ends of the

spectrum, I find that production workers employed in manufacturing have lost 6 percent in

real wages while tech workers have gained 2.3 percent.

The model captures worker heterogeneity in exposure to robot diffusion across occupa-

tion, industry, tenure, skill, and age of workers but abstracts from the possibility that robot

adoption could differentially affect incumbent workers in the adopting firm. Using matched

worker-firm-robot datasets to collect evidence on how firm robot adoption affects incum-

bent workers, as in Bessen et al. (2019), represents a promising avenue of future empirical

research. Introducing such firm-specific wage or displacement effects into the general equilib-

rium framework developed in this paper without breaking the block separability that keeps

the model computationally tractable is an important avenue of future theoretical research. I

lay out one such model extension in the appendix of this paper.

I believe that the quantitative framework developed in this paper can be applied to study-

ing the labor market impacts of other pressing technologies. For example, what will be the

consequences when 1.3 million US truck drivers are expected to compete with self-driving

vehicle technology by 2026 (Council of Economic Advisers, 2016)? The quantitative experi-

ments conducted in this paper highlight that the ability of workers to switch occupations is
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crucial for how a new technology can affect the distribution of earnings. In Humlum (2019), I

find that retraining subsidies can be an effective tool to help workers transition across occupa-

tions in the labor market. These findings may help policymakers navigate in an era of rapid

technological change.
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A Data

A.1 Robot Adoption Firm Survey

Statistics Denmark conducts annually a technology adoption survey of firms in Denmark (IT

usage in Danish enterprises, VITA). The survey is prepared in collaboration with the Danish

Business Authority as a supplement to Eurostat’s technology survey. In 2018, the survey in-

cluded a question on the use of industrial robots. The survey sampled 3,954 firms from the

population of 16,465 private non-agricultural, non-financial firms with more than 10 employ-

ees. The response rate was 97 percent. Figure A.1 shows the questionnaire on industrial robot

usage. Out of the survey respondents, a total of 473 firms answered ’yes’ to using industrial

robots in production.

Figure A.1: Firm Questionnaire on Firm Robot Adoption

A.2 Firm Customs Records

The firm customs records are organized in the Foreign Trade Statistics Register (UHDI) at

Statistics Denmark. For each firm in each year 1993-2015, I have imports disaggregated by

origin and 6-digit Harmonized System product code. One of these codes identifies “847950

Industrial Robots”.22 Industrial robots are heavily imported goods in Denmark (import share

of 95 percent according to calculations in Section A.4), making customs records a valuable

source of information on the adoption of industrial robots. The main challenge in using the

customs records is that a substantial share of machinery is imported through domestic distrib-

22Fort et al. (2018) use this product code to collect descriptive evidence on robot importers in the United States.
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utors. Table A.3 develops a procedure for identifying robot imports done by final adopters.23

Starting from the population of robot imports, I

1. Pre-data coverage: Restrict the sample to firms who are active three years before the im-

port event. This condition is necessary for conducting the adoption event studies.

2. Exclude wholesalers: Exclude the one-digit industry code ”5 Commerce”.

3. Exclude integrators: Exclude 6-digit industry codes contained in a comprehensive list of

robot integrators in 2018.24

4. Survey-validated adoptions: Restrict the sample to 6-digit industries with a validation

share in the robot adoption survey (VITA) of minimum 50 percent. The validation share

is defined as the fraction of robot importers that in the robot adoption survey report that

they use industrial robots.25

5. Single production establishment: Restrict the sample to firms that only have a single estab-

lishment employing more than three workers in the year prior to robot adoption. This

condition avoids dilution of the robot adoption effect in multi-plant firms (robot adop-

tion happens at the plant level, but customs forms are filled out at the firm level).

The sample selection criteria exclude many of the robot import observations. For the sake

of sustaining power in the statistical analysis, I use the 4-digit product code that includes

industrial robots (HS 8479), as also done in Acemoglu and Restrepo (2018a).

23I thank several industry experts for helpful inputs into developing this sample selection procedure, including
Søren Peter Johansen (Technology Manager at the Danish Technological Institute, Robot Technology), Bo Hanf-
garn Eriksen (Region Syddanmark), Per Rasmussen (BILA Robotics), and Martin Jespersen (Odense Robotics).

24List of industry codes excluded: 51.60.00 Wholesale of machinery and equipment, 30.00.09 Manufacture of
computer equipment, electric motors, etc., 29.40.09 Manufacturing of industrial machinery, 29.00.00 Manufacture
of multi-purpose machines, 28.10.09 Manufacture of metal building materials. The list of robot integrators was
developed by RoboCluster and Odense Robotics for the report Region Syddanmark (2017). I thank Bo Hanfgarn
Eriksen at Region Syddanmark for providing the list.

25List of industry codes included: 33.00.00 Manufacture of medical equipment, 30.00.09 Manufacture of com-
puter equipment, electric motors, 29.30.00 Manufacture of agricultural machinery, 29.20.00 Manufacture of gen-
eral purpose machinery, 29.10.00 Manufacture of ship engines, compressors, etc., 28.60.09 Manufacture of hand
tools, metal packaging, etc., 28.10.09 Manufacture of metal building materials, 26.30.09 Brick, cement, and con-
crete industries, 25.00.00 Rubber and plastic industry, 24.40.00 Pharmaceutical Industry, 24.30.09 Manufacture of
paints, soaps, cosmetics, etc., 24.10.09 Manufacture of chemical raw materials, 20.00.00 Wood industry, 15.89.09
Other food industry.
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Table A.1: Identifying Robot Adoption in Customs Records

Sample at End of Step

Step
Imports

(million USD)
Import events

(firm-year)
Firms

Raw imports 3291.9 14355 4839
1. Pre-data coverage 1457.7 5936 2594
2. Exclude wholesalers 826.5 2016 1048
3. Exclude integrators 535.0 1375 754
4. Survey-validated industries 247.6 776 416
5. Single production establishment 91.1 454 293

A.3 Comparison of Data Sources on Robot Adoption

This section compares three data sources on robot adoption against each other: the robot adop-

tion firm survey (Section A.1), the firm customs records (Section A.2), and the International

Federation of Robotics (IFR) statistics. While the IFR statistics have been the main source of

data for the existing papers on robotization (Acemoglu and Restrepo, 2019b; Dauth et al., 2018;

Graetz and Michaels, 2018), the present paper is the first to use the adoption survey and the

Danish customs records to study robot adoption. Section A.3.1 compares the industry rep-

resentation across the three data sources, and Section A.3.2 examines how the time series of

robot adoption compare in the different datasets.

A.3.1 Cross-Sectional Comparisons

Table A.2 shows that the industry composition of robot adoption in the micro data used in

the present paper align well with the statistics compiled by the International Federation of

Robotics. The data sources agree that industrial robots are a manufacturing technology, and

that the metal, chemical, and plastic industries have been the main drivers of robot adoption.
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Table A.2: Robot Adoption Across Industries: Comparison of Data Sources

Data Sources
Robot Survey

(StatDK)
Robot Stock

(IFR)
Robot Imports

(Customs)

Share in Total Adoptions (%)
Manufacturing 79.1 85.9 83.5

Share in Manufacturing Adoptions (%)
Food and beverages 7.2 18.3 7.2
Textiles 1.1 2.8 0.0
Wood and furniture 6.4 4.7 3.5
Paper 2.2 1.4 0.0
Plastic and Chemicals 14.0 22.0 32.3
Glass, stone, minerals 5.0 3.7 1.9
Metal 51.1 34.1 31.7
Electrical and Electronics 10.9 8.4 23.5
Automotives and vehicles 1.9 4.7 0.0

Note: “Robot Survey” indicates the share in total firm robot adopters. “Robot Stock” specifies the share in total
robot stock. “Robot Imports” is the share in total firm robot import events (firm-year observations). Robot
Imports represents the 454 adoption events identified in Table A.1.

A.3.2 Time Series Comparisons

The IFR statistics and the customs records each contain a time series dimension allowing me

to compare how robot adoption has evolved according to the two data sources. Figure A.2

shows that total robot imports in Denmark (from custom records) have closely tracked the

total number of robot installments (IFR statistics) since the 1990s.26

26The time series are normalized to 1 in 2010. This normalization implies a robot unit price of $58,000, which
falls within the range of common list prices for industrial robots ($50,000 to $100,000 according to the Interna-
tional Federation of Robotics (2018)).
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Figure A.2: Robot Adoption Across Time: Comparison of Data Sources

A.4 Calculation of Robot Import Absorption Share

This section calculates the import share in robot adoption using micro data on re-exports and

domestic producers. The robot import share is defined as

Import Absorption Sharet =
Imports Absorbedt

Imports Absorbedt + Production for Domestic Absorptiont

I measure import absorption by summing over firms’ robot imports, netting out their robot

exports and transit trade. To measure the domestic supply (production for domestic absorp-

tion), I leverage the high export-orientation of robot producers to impute the domestic sales

of robots. In particular, I use the customs records for the exports of robot producers (list pro-

vided by industry experts) to calculate the share of robots in total sales of the firm. I then

multiply this robot share with the firm’s domestic sales to impute the firm’s domestic sales of

robot.27 Table A.3 shows that the robot import share has averaged 94.9 percent from 1993 to

2015.
27Measuring the domestic supply (production for domestic absorption) is complicated by the fact that product

code breakdowns of domestic sales in general do not exist.
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Table A.3: Import Share in Robot Investments, Denmark 1993-2015 (percent)

Average 1993-2004 2005-2015

94.9 98.5 90.9

A.5 Measuring Domestically Sourced Robot Adoptions

This section describes how I supplement the customs records to measure robot adoption done

through domestic distributors. I first use the representative robot adoption firm survey (VITA)

conducted by Statistics Denmark; see Appendix A.1 for details. The survey provides a snap-

shot of which firms use industrial robots in 2018, regardless of whether the firms have im-

ported their robots directly or have relied on a domestic distributor. From the adoption sur-

vey, I can directly calculate that 31 percent of manufacturing firms have adopted robots (last

data point in Figure 3(a)) and that these adopters represent 54 percent of manufacturing sales

(Figure 4).

For the time series of robot adoption, I use the International Federation of Robotics (IFR)

statistics on the stock of industrial robots in Danish manufacturing over time (the data source

of Acemoglu and Restrepo (2019b) and Graetz and Michaels (2018)). Assuming that the robot

stock per adopter firm is constant over time, I can use the IFR time series to extend the number

of robot adopters observed in 2018 back in time (Figure 3(a)). As a robustness check, I verify

that the robot imports data imply the same evolution in total robot adoption over time.

A.6 Occupational Classification

I build on the occupational classification developed by Bernard et al. (2017) to study worker

tasks. The classification groups detailed four-digit ISCO codes into six categories: managers,

tech workers, sales workers, support workers, transportation/warehousing, and line workers

(mostly production). The classification is used in Bernard et al. (2018).

Table 2 shows that the robot adopters and match firms are balanced on these occupational

categories prior to adoption. In the main analysis, I focus on the three occupations that are

most relevant to industrial robots: tech workers, production workers, and other workers. Tech

workers is the second category of the Bernard et al. (2017) classification, and includes skilled

technicians, engineers, and researchers. Production workers is the intersection of the sixth
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category of Bernard et al. (2017) (line workers, mostly production) and the 1-digit ISCO88

code “7 Craft and Related Trades Workers.” Production workers consist of manual production

tasks from welding to assembly.

A.7 Stylized Facts on Firm Robot Adoption

A.7.1 Matching Procedure

This section describes the matching algorithm used in column 3 of Table 2. The procedure is

structured as follows.

1. Pick a vector Xe to match exactly on, and a vector Xd ∈ RK to distance match on.

2. For each adopter firm f , find non-adopter match firm g that

(a) matches f exactly on Xe

(b) has minimal Mahalanobis distance to f in Xd

Match f = arg min
g∈{Xe( f )∩na}

(Xdg − Xd f )
′Σ(Xdg − Xd f ),

where Σ is the sample covariance matrix of Xd.

In my application, I match exactly (Xe) on industry (two-digit) and year t − 1. Within each

industry-year bin, I then distance match (Xd) on firm sales and production line wage bill

shares (levels at t− 1 and changes from t− 3).
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B A Model of Firm Robot Adoption

B.1 Task-Based Micro Foundation for the Production Function

This section provides a task-based micro foundation for the production function used in Sec-

tion 3.28 Consider a firm j operating the task-based production technology

Yjt =

(∫ Ijt

0
Yjt(i)

σ−1
σ di

) σ
σ−1

, Yjt(i) = zojt(i)Xojt(i)1{i∈Aojt}, (39)

where production tasks are indexed by i and factors (production workers, tech workers, in-

termediate inputs, etc.) are indexed by o. Let Ajt = {A1jt, ..,AO jt} denote an assignment of

tasks to factors (a partition of the interval [0, Ijt]). Conditional on such a task assignment, the

firm has to allocate the time of each factor across its assigned tasks. The first-order conditions

to this time allocation problem are

Xojt(i) =
zojt(i)σ−1∫

i∈Aojt
zojt(i)σ−1di

Xojt for i ∈ Aojt, (40)

where Xojt =
∫

i∈Aojt
Xojt(i)di is the total units of factor o employed at firm j in year t. By

inserting Equation (40) into Equation (39), I can now represent the firm’s technology with the

production function

Yjt = Y(Xjt | Ijt, zjt) =

(
∑

o∈O
(zojtLojt)

σ−1
σ di

) σ
σ−1

, with (41)

zojt =

∫
i∈Aojt

zojt(i)σ
ojt∫

i∈Aojt
zojt(i)σ−1

ojt

(42)

Following Acemoglu and Restrepo (2019a), suppose that firm robot adoption may

1. Affect each factor’s productivity in a given task (the productivity effect), zjt(i, Rjt)

2. Require tasks to be reassigned between factors (the substitution effect), Ajt(Rjt)

28The setup is inspired by Hawkins et al. (2015), who study the cost minimization problem of a plant operating
a Ricardian task-based production technology where the assignment of productive factors to tasks is subject to a
Calvo shock.
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3. Create new tasks to be carried out in production (the reinstatement effect), Ijt(Rjt).

I can then reformulate Equation (41) into a robot-contingent production function

Yjt = Y(Xjt | Rjt, ωjt) =

{
∑

o∈O
(zojtLojt)

σ−1
σ di

} σ
σ−1

, with (43)

zojt = exp(ϕojt + γojtRojt) (44)

ϕojt = log

∫
i∈Aojt(0)

zojt(i, 0)σ∫
i∈Aojt(0)

zojt(i, 0)σ−1 (45)

γojt = log

∫
i∈Aojt(1)

zojt(i, 1)σ∫
i∈Aojt(1)

zojt(i, 1)σ−1 − log

∫
i∈Aojt(1)

zojt(i, 0)σ∫
i∈Aojt(0)

zojt(i, 0)σ−1 (46)

Equations (43)-(46) provide a direct micro foundation of the production function used in Equa-

tion (1). The only parametric restrictions imposed in Equation (1) are that of homogeneous

robot productivity effects, γjt = γ.29

C Structural Estimation of Firm Robot Adoption

C.1 Elasticity of Substitution Between Production Tasks

This section uses the model presented in Section 3 to derive the moment condition that I

use to estimate the elasticity of substitution between production tasks σ in Section 4.1. The

derivations follow closely those in Doraszelski and Jaumandreu (2018).

To derive the moment conditions, first insert Equation (13) into Equation (9) to express

the deterministic component of firm productivities in terms of a non-parametric function of

observables

ϕojt = got(ϕojt−1, ..., ϕojt−k) + ξojt (47)

= got
(
lojt−1 −mjt−1 + σ(wojt−1 − wMjt−1), .., lojt−k −mjt−k + σ(wojt−k − wMjt−k)

)
+ ξojt (48)

= hot(lojt−1 −mjt−1, wojt−1 − wMjt−1, .., lojt−k −mjt−k, wojt−k − wMjt−k) + ξojt, (49)

29The micro foundation in Equations (43)-(46) provides insights into the task-based sources of treatment effect
heterogeneity in robot adoption. A promising avenue of further work is to use these expressions to empirically
evaluate the task-based model predictions for heterogeneity in robot adoption treatment effects.
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where lower-case letters denote log-transforms. Insert this function into Equation (11) to ob-

tain

lo′ jt − lojt = −σ(wo′ jt − wojt) + (ho′ jt − hojt) + (ξo′ jt − ξojt), (50)

Equation (50) holds for firms that have not yet adopted robots. The Markovian structure on

firm productivities implies that past factor choices ljt and prices wjt have to be uncorrelated

with the current productivity innovations ξ jt that constitute the error term in Equation (50). I

can thus form a population moment condition that identifies σ, my parameter of interest

Et

[
Aoo′(Qjt−1)

(
lo′ jt − lojt − σ(wo′ jt − wojt) + (ho′t − hot)

)]
= 0, (51)

where Aoo′ is a vector function of the instruments Qt−1 including ljt−1, wjt−1. The instrument

vector xt consists of quadratic functions of ljt−k − mjt−k and wt−k − wMt−k for k = 1, 2, 3, as

well as quadratic functions of wjt−1 and ljt−1 (the excluded instruments). I set “Production

Workers” and “Tech Workers” as o and o′, respectively, and I use “Other Workers” as the

benchmark factor in production (M in the derivations above). I estimate (51) using a two-step

GMM procedure (the gmm package in Stata).
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C.2 Robot Technology

Figure C.1: Firm Robot Adoption Around the Event Year
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Note: The figure shows separately the shares of firms in the treatment and control groups that have adopted robots around the event year.

C.2.1 Econometric Specification of the Event Studies

In this section, I describe the econometric specification that generates the matching-based

event study estimates plotted in Figures 1 and 2. The estimates are differences-in-differences

of outcomes yjt for robot adopters versus match firms measured relative to the year prior to

adoption.30 Figures 1 and 2 plot OLS estimates of δk from the following specification

yjt

ye
jpre

= α×Rje + ∑
k∈K

αk × 1{t=e+k} + ∑
k∈K\{−1}

δk × 1{t=e+k} ×Rje + ujt (52)

where e denotes event year, ye
jpre are pre-event median outcomes, Rje indicates that firm j

adopted robots in year e, and 1{t=e+k} is an indicator that switches on iff event year e occurred

k years ago. The event study window is denoted K = [−4, 4]. Standard errors are clustered

at the match level. I allow for zeros in occuptional wage bills by calculating this relative

difference as (yjt/wjpre)/(ypre/wpre), where wjt is the total wage bill of firm j in year t, and

ypre denotes mean pre-event outcomes.

30The match firms are found using an Exact-Mahalanobis matching procedure described in Appendix A.7.1.

60



C.2.2 Robot Technology Distributed Lag Model

This section generalizes the robot technology equations (2)-(3) to account for the dynamic

adjustments to robot production observed in Figures 1 and 2. I let robot technology follow a

distributed lag model

log(zjt) = ϕjt +
4

∑
τ=0

γτRjt−τ (53)

Following the identification argument in Section 4.2.1, the adoption event study moments

in Figures 1 and 2 exactly identify the dynamic robot technology parameters γτ. Figure C.2

shows the model fit for firm sales and wage bills.

Figure C.2: Distributed Lag Model for Robot Productivities
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(a) Sales
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(b) Wage Bill

C.3 Baseline Technology

C.3.1 Labor-Augmenting Baseline Productivities

The general equilibrium model restricts the labor-augmenting baseline productivities to a

common time-varying parameter vector. I calibrate this path of common productivities γot to

match the aggregate factor shares in manufacturing taking into account the diffusion of robot

technology. Figure C.3 shows data (dots) and model simulations (line) from 1990 to 2018 to-

gether with out-of-sample forecasts from 2019 to 2049. The data have been HP-filtered to focus
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on medium-run movements (smoothing parameter of 100 following Backus et al. (1992)). The

forecasts extrapolate the growth rate from 2011 to 2018, assuming a linear reduction in rates

of growth to zero by 2049.

Figure C.3: Aggregate Factor Shares in Manufacturing Production
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C.3.2 Hicks-Neutral Baseline Productivities

With the homogeneity restriction imposed on firm baseline labor-augmenting productivities,

the productivity process in Equation (21) boils down to an AR(1) process for the Hicks-neutral

term ϕHjt.

ϕHjt = µzt + ρz ϕHjt−1 + σzεjt, (54)

where ρz is the persistence parameter for baseline productivity, and ψt is a time fixed effect.

Table C.1: Baseline Productivity Parameters

Parameter Description Estimated Value

ρ̂z Persistence of firm productivity
0.901

(0.062)
σ̂z Standard deviation of firm productivity innovations 0.140

I discretize the estimated AR(1) process using the Tauchen (1986) method.

62



C.4 Robot Adoption Costs

C.4.1 Method of Simulated Moments (MSM) Estimator

In this section, I describe the method of simulated moments (MSM) estimation procedure

adopted in Section 4.4. Table C.2 reports the MSM parameter estimates.

1. Parameterize robot adoption costs to be log-linear in time: cR
t = exp(cR

0 + cR
1 × t).

2. Stack the robot adoption cost parameters into the parameter vector θ = (cR
0 , cR

1 , ν)′.

3. Stack the robot diffusion curve and the adopter size premium into the moment vector

π ∈ RN with N = 2018− 1990 + 2

4. Define a grid on the parameter space Θ. For each point on the grid θ(j) ∈ Θ,

(a) Solve for continuation values given cR
t = exp(c(j)

0 + c(j)
1 × t) and ν = ν(j). The

solution algorithm is specified in Section F.1.

(b) Simulate firms forward using policy functions.

(c) Calculate the in-sample squared deviations between the simulated and observed

moment vectors

(πS(θ
(j))− πD)

′W(πS(θ
(j))− πD) (55)

where W is the identity weighting matrix.

5. The MSM estimator, θ̂, attains the minimum in (55).

Table C.2: Robot Adoption Cost Parameters (MSM)

Parameter Description Estimate

cR
0 Intercept of the common adoption cost schedule over time 1.155

cR
1 Slope of the common adoption cost schedule over time −0.026
ν Dispersion in idiosyncratic adoption costs 0.384
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C.4.2 Variance-Covariance Matrix of the MSM Estimator

I calculate the variance-covariance matrix of the MSM estimator θ̂ using the formula on pages

88 and 89 of Adda and Cooper (2003). The MSM estimator has the asymptotic distribution

√
N(θ − θ0)

d→ N (0, V) with (56)

V =

[
E0

∂π′

∂θ
W−1 ∂π

∂θ′

]−1

E0
∂π′

∂θ
W−1Σ(θ0)W−1 ∂π

∂θ′
×
[

E0
∂π′

∂θ
W−1 ∂π

∂θ′

]−1

, (57)

I estimate E0
∂µ′

∂θ using numerical derivatives of the simulated moments around θ̂. The confi-

dence bands in Figure 3 are calculated using the delta method.

C.4.3 Comparison of Robot Adoption Cost Estimates

Table C.3 compares the MSM estimate for the rate of change in the common component of

robot adoption costs cR
1 to the robot machine expenditures reported on customs forms of

adopting firms. I report the time-slope estimates of log expenditures and log mean expen-

ditures. As the table shows, the MSM estimate of cR
1 falls within the confidence bands of both

specifications.

Table C.3: Rate of Change in Robot Adoption Costs: Model Estimates vs. External Measures

Lower Bound
(95% CI)

Point
Estimate

Upper Bound
(95% CI)

MSM Estimate (ĉR
1 ) −0.0264

Customs Expenditures 1 −0.1158 −0.0693 −0.0229
Customs Expenditures 2 −0.0661 0.0179 0.1019

Note: The first row is the MSM estimate of ĉR
1 . The second row (Customs Expenditures 1) is the OLS estimate of

β1 in log(Yjt) = β0 + β1t (reweighted to the yearly level). The third row (Customs Expenditures 2) is the OLS
estimate of β1 in log(Ȳt) = β0 + β1t. I deflate the customs expenditures with the consumer price index.

64



C.5 Depreciation of Robot Technology

This section derives a model extension in which robot technology deteriorates with a proba-

bility θ. The Bellman equation for robot adoption now reads

Vt(0, ϕ) = max
R∈{0,1}

πt(0, ϕ)− (cR
t + εR

jt)× R + βEtVt+1(R, ϕ′) (58)

Vt(1, ϕ) = πt(1, ϕ) + (1− θ)EtVt+1(1, ϕ′) + θEtVt+1(0, ϕ′) (59)

Equations (58)-(59) collapse to the current setup in Equations (7)-(8) if θ = 0. Figure C.4 shows

the simulated robot diffusion curve and real wage effects on industrial robots under a robot

depreciation rate θ of 10 percent (the depreciation rate used in Graetz and Michaels (2018)).

Compared to baseline Figures 3a and 6, the model extension to robot depreciation does not

affect the in-sample estimate of the real wage effects of industrial robots as the extended model

is estimated to match the same observed robot diffusion curve. The model extension does

alter the long-run predictions, however, as the robot diffusion curve asymptotes to a long-

run steady-state level below full adoption when robot technology deterioates (dashed line in

Figure C.4a).

Figure C.4: Effect of Industrial Robots with Depreciation of Robot Technology
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(b) Real Wage Effects
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D The Labor Supply Block

D.1 Data on Worker Transitions

This section describes how I measure the worker transitions used to estimate the labor supply

model. I follow Traiberman (2019) as closely as possible; please refer to his Appendices B.5

and D for additional details.

I use the Integrated Database for Labor Market Research (IDA), which links every worker

to her employer in the month of November. The data contain information about the occu-

pation, salary, and sociodemographics of workers. I follow the recommendation of Statistics

Denmark, and use only the high-quality occupational codes that come from administrative

registers or pension funds (DISCOTYP 1, 2, 4 and 10). If a worker is employed in the same

occupation in year t− 1 and t + 1 but has missing data at t, I impute the occupation as that at

t− 1. If a worker switches firms between year t and t + 1 and there are data on occupation in

t + 2, I impute any missing occupational codes at t + 1. As the measure of salary wotHoit, I use

the variable joblon together with a correction for labor market pension contributions from

Hummels et al. (2014). The fine level of disaggregation into worker types and occupations

implies that the observed transition matrix πt(s, a, ten, o, o′) has zero elements. To avoid bias

from dropping these zero elements, I follow Traiberman (2019) and perform the following

first-stage smoothing regression of the transition probabilities.

πt(s, a, ten, o, o′) = β0
soo′t + βa

soo′ta + βa2
soo′ta

2 + βa3
soo′ta

3 (60)

+ βten
soo′tten + βten2

soo′tten2 + βten3
soo′tten3 + βten,a

soo′t a× ten (61)

I then use the predicted transition rates π̂t (bounded by 10−6 and 1− 10−6) as input variable

into the estimating regression equations (31)-(33).
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D.2 Estimation of the Labor Supply Model

Table D.1: Human Capital Function

Tech
(services)

Tech
(manuf)

Production
(services)

Production
(manuf)

Other
(services)

Other
(manuf)

Age βo
1 0.0285 0.0265 0.0096 0.0055 0.0124 0.0139

(0.0010) (0.0005) (0.0006) (0.0006) (0.0007) (0.0010)
Age-Squared βo

2 -0.0590 -0.0543 -0.0236 -0.0171 -0.0266 -0.0301
(0.0016) (0.0013) (0.0011) (0.0014) (0.0014) (0.0023)

Tenure βo
3 0.0300 0.0153 0.0277 0.0234 0.0537 0.0307

(0.0018) (0.0010) (0.0012) (0.0016) (0.0030) (0.0012)
Mid Skill βo

M -0.0428 0.0028 0.1025 0.1168 0.0537 0.1165
(0.0015) (0.0028) (0.0015) (0.0025) (0.0012) (0.0018)

High Skill βo
H 0.1671 0.2958 0.0997 0.1629 0.2502 0.5108

(0.0016) (0.0022) (0.0103) (0.0061) (0.0037) (0.0053)
Observations 2147314 602741 1029836 681133 17176380 2780515

Note: SD of income shock: Tech (services): .118, Tech (manufacturing): .077, Production (services): .096, Production (manufacturing): .077
Others (services): .148, Others (services): .133. Standard errors are clustered at the occupation-year level. Coefficient on Age Squared is
presented ×102.

D.2.1 Occupational Switching Costs

The non-linear least squares objective function (NLLS) reads

min
{c,ρ}

∑
ω,o,o′ ,t

[
log

πt(oo′ |ω)

πt(oo|ω)
+ β log

πt+1(o′o′′ |ω′)
πt+1(oo′′ |ω′′) −

(
1
ρ

coo′ (ω)− β

ρ
(co′o′′ (ω

′)− coo′′ (ω
′′)) +

β

ρ
(wo′ t+1 Ho′ (ω

′)− wot+1 Ho(ω
′′)) +

β

ρ
(ηo′ − ηo)

)]2
(62)

I use the Matlab solver lsqnonlin to estimate c(ω) and ρ in Equation (62). Table D.2 presents

the estimated bilateral occupational switching costs, and Table D.3 presents the remaining

switching cost estimates.

Table D.2: Bilateral Switching Costs coo′/ρ

Tech
(serv)

Tech
(manuf)

Production
(serv)

Production
(manuf)

Other
(serv)

Other
(manuf)

Tech (services) 0 4.71 1.7 5.04 1.17 4.64
Tech (manufacturing) 0.76 0 3.49 0.58 2.51 0.01
Production (services) 5.9 11.12 0 2.73 3.78 6.6
Production (manufacturing) 9.24 8.79 2.75 0 6.35 4.28
Other (services) 3.8 8.44 1.87 3.9 0 2.97
Other (manufacturing) 6.6 5.94 3.68 1.27 2.19 0
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Table D.3: Switching Cost Parameters

Parameter Description Estimate

α1 Semi-elasticity of switching costs with respect to age (linear term)‡ 13.86
α2 Semi-elasticity of switching costs with respect to age (quadratic term)‡ −0.14
αM Semi-elasticity of switching cost with respect to mid skill 0.01
αH Semi-elasticity of switching cost with respect to high skill 0.00
ρ Occupational preference shock variance† 2.00

Note: ‡ Coefficients of age polynomial are presented ×103. †Parameter value of ρ used in Section 6.

D.2.2 Occupational Amenities

The employment shares across occupations are tightly connected to the vector of occupational

amenities, ηot. Conditional on the distribution of workers in t − 1, the relative change in

employment shares, ŝot =
s′ot
sot

from a different occupational amenity η′ot is given by

ŝo′t =
exp( 1

ρ η̂o′t)

∑o′′ so′′t × exp( 1
ρ η̂o′′t)

. (63)

Of course, when evaluating the total effect of ηot on sot, I cannot take the distribution of worker

states, µW
t−1, as given because workers also choose occupations before t − 1 in anticipation

of the amenities in year t. In practice, I estimate the path of occupational amenities ηot by

matching simulated occupational employment shares to the data. The estimation procedure

is a fixed-point shooting algorithm.

Figure D.1 shows data (dots) and model simulations (line) for the share of employment

across two example occupations from 1990 to 2018 together with out of sample forecasts from

2019 to 2049. The data have been HP-filtered to focus on medium-run movements (smoothing

parameter of 100 following Backus et al. (1992)). The forecasts extrapolate growth rates from

2011 to 2018 by assuming a linear reduction in rates of growth to zero by 2049.
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Figure D.1: Employment Shares Across Occupations (Manufacturing)

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

4

4.5

P
er

ce
nt

Model Data

(a) Production Workers

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

P
er

ce
nt

Model Data

(b) Tech Workers

E Model Extension to Firm-Specific Wages

This section proposes an extension of the model in Sections 3 and 5 that accommodates firm-

specific wages in equilibrium. On the worker side, I embed a random utility model for work-

place environments as in Card et al. (2018) into the dynamic discrete occupational choice

model of Section 5. The heterogeneity in worker preferences for employers implies that firms

face upward-sloping labor supply functions. I derive the cost, profit, and factor demand func-

tions of the firm, and I clarify how to implement these expressions into the remaining model

structure.

E.1 The Worker’s Problem

The worker first chooses which occupation o′ to work in next period. Upon arriving in the

chosen occupation next period, the worker then chooses which employer j ∈ Jo′ to work

for. This job choice model is a nested logit with occupations in the upper nest and firms

constituting the lower nest. The Bellman equation of the worker reads

vt(o,s, age, ten) = max
j∈Jo

{
log(wojtHo(s, age, ten)) + log(aojt) + εoijt

}
(64)

+ max
o′∈O

{
−(coo′ + εo′) + 1{age<65}βEtvt+1

(
o′, s, age + 1, 1{o′=o} (ten + 1)

)}
, (65)
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where aojt is a firm-specific amenity common to all workers, and εoijt
iid∼ GEV1(α) are id-

iosyncratic workplace preference shocks that are drawn from a Gumbel distribution and only

realized once a worker arrives in the occupational labor market. The parameter α measures

the dispersion in these idiosyncratic preference shocks. The probability that a worker in occu-

pation o with characteristics ω chooses to work for firm j is

P (jt(ω, o) = j|ω) =
(aojtwojtHo(ω))1/α

∑j′∈Jo(aoj′twoj′tHo(ω))1/α
(66)

E.2 The Firm’s Problem

The firm faces the labor supply curve

Lojt(wojt) =
∫ (aojtwojtHo(ω))1/α

∑j′∈Jo(aoj′twoj′tHo(ω))1/α
Ho(ω)dFW

t (ω) (67)

If individual firms each constitute a negligible share of the total occupational labor market,

the inverse labor supply curve to the firm becomes

wojt =
wot

aojt
× Lα

ojt (68)

with wot = {
∫ Ho(ω)1/α

∑j′∈Jo (aoj′twoj′t Ho(ω))1/α dFW
t (ω)}−α.31 To ease the exposition, stack the static in-

puts (including intermediate inputs) into the vector L, and reparameterize, without loss of

generality, the CES production function as follows

Yjt = F(Ljt|zjt) =

{
∑
o

z
1
σ
ojtL

σ−1
σ

ojt

} σ
σ−1

(69)

The firm’s profit maximization problem reads

πt(zjt) = max
Ljt

{
PMtY

1
ε
MtF(Ljt|zjt)

1−1/ε −∑
o

wot

aojt
L1+α

ojt

}
, (70)

31If firms are price takers in intermediate input (M) markets, then the specification should be amended to
allow for α 6= αM = 0.
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The first-order conditions for cost minimization imply that

log(Lo′ jt)− log(Lojt) =−
σ

1 + ασ
(log(wo′ jt)− log(wojt)) (71)

+
1

1 + ασ
{σ log(aojt/ao′ jt) + log(zo′ jt/zojt)}, (72)

which clarifies that σ in Equation (11) is estimated off the variation in firms’ relative amenities
aojt
ao′ jt

once I in Section 4.1 control for the evolution in firm productivities
zojt
zo′ jt

. Equation (71)

shows that the GMM estimate σ̂ is attenuated toward zero if workers have heterogeneous

preferences for workplaces (α > 0).

The cost function of the firm is (after some algebra)

Ct(Yjt, zjt) = min
Ljt

∑
o

wojt(Lojt)Lojt s/t F(Ljt|zjt) ≥ Yjt (73)

= Y1+α
jt

{
∑
o
(z1+α

ojt (
wot

aojt
)1−σ)

1
1+ασ

} 1
1−σ

= Y1+αΩjt, (74)

where I denote Ωjt = {∑o(z
1+α
ojt (wot

aojt
)1−σ)

1
1+ασ }

1
1−σ . The profit-maximizing output level is

Yjt =

{
YMtPε

Mt((1 + α)
ε

(ε− 1)
Ωjt)

−ε

} 1
1+αε

(75)

The firm’s factor demands are

Lojt =
{zojt(

wot
aojt

)−σ}
1

1+ασ

Ω−σ
jt

×Yjt (76)

The profit function is

πt(zjt) =

(
1− αε

ε− 1

){
Ω1−ε(1−α)

jt YMtPε
Mt

(
(1 + α)

ε

ε− 1

)−ε
} 1

1+αε

(77)

Equations (71)-(77) simplify to the usual CES expressions when worker preferences for work-

places vanish, α→ 0.

The flow profit function (77) can be directly plugged into the Bellman equation (7) of the
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adoption model in Section 3. The firm factor demands (76) can be readily aggregated up when

clearing labor markets in the general equilibrium model of Section 6.1.

F Solution Algorithms

This section provides details on the solution algorithms used in Sections 4, 5, and 6.

F.1 Solving the Firm’s Problem

This section details the algorithm for solving the firm’s dynamic programming problem of

robot adoption.

1. Set a time horizon, T, sufficiently far in the future such that robots are fully diffused and

robot adoption costs are stationary by then (I set T = 2050 in practice).

2. Start at T. Solve the stationary, infinite horizon dynamic programming problem by iter-
ating on the expected value functions until convergence.

EV(j+1)
T (1, ϕ) = πT(1, ϕ) + β ∑

z′
p(ϕ′|ϕ)EV(j)

T (1, ϕ′) (78)

EV(j+1)
T (0, ϕ) = πT(0, ϕ) + β ∑

z′
p(ϕ′|ϕ)ν log

{
exp(

1
ν
(−cR

T + βEV(j)
T (1, ϕ′))) + exp(

1
ν

βEV(j)
T (0, ϕ′)))

}
, (79)

where I used the log-sum expression for the expected maximum (EMAX) function.32

Convergence of Equation (79) in the unique fixed point EVT(R, ϕ) is ensured from Black-

well’s sufficient conditions for contraction mappings (Stokey and Lucas, 1989, Theorem

4.6).

3. Solve for {EVt(R, ϕ)}T−1
t=t0

using backward recursion from T − 1 to the initial period t0.

EVt(1, ϕ) = πt(1, ϕ) + β ∑
z′

p(ϕ′|ϕ)Vt+1(1, ϕ′) (80)

EVt(0, ϕ) = πt(0, ϕ) + β ∑
z′

p(ϕ′|ϕ)ν log
{

exp(
1
ν
(−cR

t + βEVt+1(1, ϕ′))) + exp(
1
ν

βEVt+1(0, ϕ′)))

}
(81)

4. From the initial year t0, use policy functions to simulate firms forward. Verify that the

robot adoption share is 1 at time T.

32Note that my setup with a logit shock for adoption (Equation (22)) is isomorphic to the setup in Rust (1987)
with Gumbel shocks for both adoption and non-adoption (up to a recentering for the mean of a Gumbel). This
is due to the well-known result that the difference between two Gumbels is logistically distributed.
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In solving steps 3 and 4, I assume that firms have perfect foresight with respect to the in-

sample path of wages, and use regressions to forecast these aggregate state variables out of

sample.

F.2 Solving the Worker’s Problem

This section details the algorithm for solving the worker’s dynamic occupational choice prob-

lem.

1. Set a time horizon, T, sufficiently far in the future such that robots are fully diffused by

then (I set T = 2050 in practice).

2. Start at T. Solve the stationary worker value functions

(a) Start at age of retirement. The value function is

Eε,ζVT(o, 65, ω) = log(woT HoT(65, ω)) + aoT. (82)

(b) Solve the value function for ages a = 64, .., 25 by backward recursion

Eε,ζ VT(o, a, ω) = log(woT HoT(a, ω)) + aoT + ρ

[
γ + log

{
∑
o′

exp(
1
ρ
(coo′ (ω) + βEε,ζ VT(o′, a + 1, ω′)))

}]
, (83)

where γ = 0.577 is Euler’s constant.

3. Calculate the worker value functions for t = T − 1, ..., t0 using backward recursion

Eε,ζ Vt(o, 65, ω, ζ) = log(wot Hot(65, ω)) + aot (84)

Eε,ζ Vt(o, a, ω, ζ) = log(wot Hot(a, ω)) + aot + ρ

[
γ + log

{
∑
o′

exp(
1
ρ
(coo′ (ω) + βEε,ζ Vt+1(o′, a + 1, ω′)))

}]
, (85)

In solving this dynamic program, I assume that workers have perfect foresight with respect

to the in-sample path of wages, and use regressions to forecast these aggregate state variables

out-of-sample.

F.3 Solving the Dynamic General Equilibrium

This section describes the algorithm for solving the general equilibrium featuring the two-

sided dynamics defined in Section 6.1. A key property of the general equilibrium model is
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that, despite the rich worker and firm heterogeneity, the only aggregate state variables that

agents need to keep track of to solve their dynamic programming problem is the path of

wages and the manufacturing price index.33 I use a fixed-point shooting algorithm that solves

for the wage path that clears labor markets given the optimal policy functions of workers and

firms.

1. Guess a path of wages w(0)
t and manufacturing price index P0

Mt.

2. Solve for firm and worker continuation values (see Appendices F.1 and F.2).

3. Simulate firm and worker states forward using the policy functions from Step 2.

4. Find wages, w(e)
t , that clear labor markets for each occupation period by period (us-

ing the firms’ static labor demand conditions from Equation (5)). Calculate the implied

manufacturing price index P(e)
Mt.

5. Update wages and manufacturing price index

w(j+1)
t = λw(j)

t + (1− λ)w(e)
t (86)

P(j+1)
Mt = λP(j)

Mt + (1− λ)P(e)
Mt (87)

where λ ∈ [0.8, 0.95] is the relaxation parameter in the Gauss-Seidel update.

6. Iterate until convergence in {wt, PMt}t.
33The path of wages are sufficient to solve the worker’s problem. Manufacturing firms also need to keep track

of the manufacturing output price index as it summarizes the competitive pressures from robot adoption.

74



G Counterfactual Experiments

Table G.1: Parameters of the General Equilibrium Model

Description Related Moments Time
varying

Manufacturing Firms
cR

t Common robot adoption costs Robot diffusion curve (Figure 3) X
ν Variance of idiosyncratic adoption costs Size premium in robot adoption (Figure 4)
γo Labor-augmenting robot productivity Robot adoption event studies (Figures 1-2)
γH Hicks-neutral robot productivity† Robot adoption event studies (Figures 1-2)
σ Elasticity of task substitution Rational expectations GMM (Table 3)
µH Mean of Hicks-neutral baseline productivity Real wage index X
ρH Persistence of Hicks-Neutral productivity Firm sales dynamics (Table C.1)
σH Standard deviation of Hicks-Neutral innovations Firm sales dynamics (Table C.1)
ϕot Baseline labor-augmenting producitivites Labor shares in manufacturing sales (Figure C.3) X
Workers
β Human capital parameters Mincer regression (Table D.1)
coo′ Occupational switching costs Occupational transition rates (Tables D.2-D.3)
ηot Occupational amenities Employment shares across occupations and sectors

(Figure D.1)
X

Services Production
αs Cobb Douglas shares in services production Wage bill shares in sales excl. manufacturing
zst Hicks-Neutral productivity in services Real wage index X
Common Parameters
β Discount factor Interest rate of 4%
µ Cobb-Douglas shares in final output Share of manufacturing in total output
ε Elasticity of manufacturing demand Markup of 1/3 (Bloom, 2009)

Notes: †I calibrate the path of γHt to hold the sales elasticity with respect to robot adoption (Figure 1(a)) constant over time, given the
estimated non-stationarity path of baseline labor-augmenting productivites γot.
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G.1 The Distributional Impacts of Industrial Robots

Figure G.1: The Effect of Industrial Robots on the Labor Share in Manufacturing Sales
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Figure G.2: Real Wage Effects of Industrial Robots with Exogenous Labor Supply
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G.1.1 Compensating Variations

To measure the effects on worker welfare, I follow Caliendo et al. (2019) and calculate the

percentage annual wage change δ needed to compensate a worker of characteristics ω and age

a for a given change in policy. Let v0 and v1 denote the worker value functions in two policy

scenarios whose welfare implications we would like to compare. Due to the logarithmic flow

utility of workers in Equation (27), the compensating variations δ are simply given by

v1
t (ω, a) = v0

t (ω, a) +
Ā−a

∑
τ=0

βτδt(ω, a) (88)

δt(ω, a) = (v1
t (ω, a)− v0

t (ω, a))
(1− β)

(1− βĀ−a+1)
(89)

G.2 Policy Counterfactual: The Dynamic Incidence of a Robot Tax

G.2.1 Predatory Investment Externalities

This section incorporates predatory investment effects into the robot tax incidence analysis.

Predatory investment effects refer to the pecuniary externality where parts of the profit gains

from robot adoption come from crowding out competitors in output markets. If demand is

sufficiently elastic, firms will be willing to undertake very costly fixed robot investments to

obtain just an infinitesimal variable cost advantage over its competitors.

To analyze the effects of such predations, realize first that firm values in Equations (7)-(8)

are driven by changes in flow profits πt and robot adoption costs cR
t . Flow profits depend in

turn on firm unit costs Ct, manufacturing demand YMt, and the manufacturing price PMt; see

Equations (5) and (6). The predatory investment externality works through the price index

PMt. When tabulating the effects on firm values in Table 5, I hold this externality fixed by

calculating

ṽT
t − vB

t = v({cRT
τ , CT

τ , YT
Mτ, PB

Mτ}∞
τ=t)− v({cRB

τ , CB
τ , YB

Mτ, PB
Mτ}∞

τ=t), (90)

where superscripts T and B denote the robot tax counterfactual and baseline equilibrium,

respectively.
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Table G.2 now incorporates the predatory investment externalities by calculating

vT
t − vR

t = v({cRT
τ , CT

τ , YT
Mτ, PT

Mτ}∞
τ=t)− v({cRB

τ , CB
τ , YB

Mτ, PB
Mτ}∞

τ=t) (91)

Table G.2 shows a stark finding: For baseline values of model parameters, the predatory ex-

ternalities are large enough to make total tax revenues exceed total profit losses from the robot

taxes. Put differently, if tax revenues can be rebated to firms appropriately, a robot tax has the

potential to increase firm values by internalizing the predatory externalities of robot adoption.

Table G.2: Robot Tax Incidence with Predatory Investment Externalities
(Discounted Present Values in Percent of GDP in 2019)

Temporary Tax Permanent Tax

Profits -1.65 -7.90
Predatory Investment Externalities 2.48 2.67

Tax Revenues 2.39 9.41

I hold these predatory externalities on firm profits out of the baseline analysis to focus on

the key equity-efficiency trade-off for workers. That said, the analysis in this section suggests

that studying predatory implications of recent automation technologies may be a fruitful av-

enue of future research.
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