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Abstract

This paper provides a theoretically founded empirical model to simultaneously investigate firm

competition and estimate markups. The model nests the standard oligopoly model, but also

allows for firm collusion. Different from conduct parameter models, our model is consistent with

a series of theoretical models. We show that a nonparametric marginal cost function can be

identified, which gives an estimate of markups. We then apply our model to measure competition

in the airline industry.
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1 Introduction

A central question of the empirical Industrial Organization literature is to understand the nature

of firm competition in a market and to measure firm markups. They have important implications

for consumer welfare, firm profits, and market efficiency.

One strand of the literature estimates markups based on a standard oligopoly model. The

key idea is that once demand is estimated from the data, markups can be inferred based on an

oligopoly model of supply. This approach dates backed to Rosse (1967), and is widely used in the

Industrial Organization literature. However, this approach relies on an oligopoly model assumed

by researchers, typically, a classic oligopoly model with Nash equilibrium. In other words, this

approach makes an assumption on the nature of firm competition and estimates firm markups.

Another strand of the literature proposes a model deviating from a standard oligopoly model

by including so-called conduct parameters and estimates these conduct parameters together with

markups. Examples date back to Bresnahan (1982), Lau (1982) and Porter (1983), and include

papers as recent as Ciliberto and Williams (2014) and Miller and Weinberg (2017). In such a

model, when the conduct parameters take a certain specific value, the model becomes a specific

standard form of firm competition (e.g., a classic differentiated Bertrand model or perfect collusion).

By nesting the standard oligopoly models, it is therefore more flexible than the above approach.

∗Department of Economics, University of Michigan, 611 Tappan Street, Ann Arbor, MI 48109; yingfan@umich.edu.
†Department of Economics, University of Wisconsin, Madison, WI 53706; cjsullivan@wisc.edu.

1

mailto:yingfan@umich.edu
mailto:cjsullivan@wisc.edu


However, unfortunately, when the conduct parameters are not of these specific values, it is unclear

what kind of firm competition such a model describes.1 It is, therefore, also unclear whether the

estimated markups reflect the true underlying markups. This is mainly because such an approach

lacks a theoretical foundation.

An alternative is, therefore, to write down an infinitely repeated game, so that collusion is

possible, and estimate the model directly. This approach faces several challenges, too. First,

it requires that researchers make assumptions on firm behavior and the nature of the market

environment’s evolution. For example, we need to assume the strategies taken by firms. Are

they using the grim trigger strategies or carrot-and-stick strategies? If the latter, how long is the

punishment period? We also need to make an assumption on how the state variables evolve. A

Markov process of one order or higher orders? Second, estimating such a dynamic game is typically

challenging computationally and imposes a high requirement on data.2

In this paper, we propose a theoretically founded empirical model that is easy to estimate

and can be used to simultaneously investigate firm competition and estimate markups. We have

three goals. First, we derive a model that nests the classic oligopoly models and also allows for

the possibility of collusion. Second, we show the identification of nonparametric cost functions.

Third, we compare the performance of our approach to that of the two aforementioned strands of

literature.

To achieve these goals, we set up an infinitely repeated game and derive its optimality conditions.

We show that these optimality conditions are the same as those of a static model where a firm’s

objective function depends on not only its own profit, but also its competitors’ profits and its

competitors’ deviating profits, which is the highest profit that a firm can achieve holding this firm’s

opponents’ decisions fixed. Considering rivals’ deviating profit, which is the difference between our

model and a conduct parameter model, is important because a firm needs to take into account

how its action affects its opponents’ incentive compatibility. We also try to reconcile the difference

between our model and the conduct parameter model. We provide an example in which the two

models are equivalent. However, this is the only example we can find. It requires homogeneous

products, symmetric firms and a linear demand. We show that when any of these assumptions is

violated, the two models are not equivalent.

Furthermore, we demonstrate that our model is consistent with a series of supergames, implying

that it is robust to a set of model specifications. The key parameters to be estimated include those

on each opponent’s profit and deviating profit, as well as a marginal cost function. It is immediately

obvious from our derivation of the model that the weights vary over time with changes in the market

1See Corts (1999) and Reiss and Wolak (2007) for discussions on this point.
2See Fershtman and Pakes (2000) for a discussion on how to compute such models. Igami and Sugaya (2017)

examine the vitamin cartels in the 90s through the lens of an infinitely repeated game with a grim trigger strategy.
This industry is characterized by homogenous goods and relatively good measures of marginal costs. Igami and
Sugaya (2017) directly rely on marginal cost data, and avoid the computational challenge by focusing on a Cournot
model.
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environment. Intuitively, these weights are closely related to the degree of collusion. To what

extent firms can collude depends on the market environment. Therefore, these parameters vary

by firm pairs and time. However, we show that under the assumption that firms pool incentives

across markets and interact as in Bernheim and Whinston (1990)’s seminal paper on multi-market

contact, these weight parameters are invariant across markets. Cross-sectional variation, therefore,

can be used for identifying these parameters together with the marginal cost function. Based on

this intuition, we formally show that the weight parameters and a nonparametric marginal cost

function can be identified.

We conduct Monte Carlo simulations to evaluate the performance of our model. Specifically,

we set up a supergame and simulate data by solving for its equilibrium. Using these simulated

data, we estimate the marginal cost parameters based on our model, the standard oligopoly model

and the conduct parameter model. We compare the performance of these models by comparing

the estimated marginal cost parameters based on each model to the true marginal cost parameters.

We also compare markups and welfare measures.

This paper is related to the literature of estimating markups, documenting their changes and

their relationship with market environment. As mentioned, a large number of papers estimate

demand and infer markups based on an oligopoly model of supply. An incomplete list of examples

include Berry et al. (1995), Goldberg (1995), Nevo (2001), Villas-Boas (2007), Berry and Jia (2010),

Fan (2013) and Eizenberg (2014).3 Compared to this group of papers, our model is more flexible

in firm conduct. Another group of papers infer markups based on the production function estima-

tion (instead of demand function estimation) and the assumption of cost minimization (instead of

equilibrium conditions implied by a specific competition model). Examples include De Loecker and

Warzynski (2012), De Loecker et al. (2016) and Loecker and Eeckhoutz (2017).4 The latter ap-

proach does not impose a specific form of firm conduct. It, however, requires that researchers have

a precise measure of inputs for estimating the production function and data on the expenditure

share of one variable input. When such data are not available, our paper provides an alternative

approach that is also flexible with respect to the assumption of firm conduct, though it does rule

out certain supply models such as Green and Porter (1984).

By allowing the possibility of collusion in our model, this paper is also related to a literature

studying collusion. Examples include Porter (1983), Slade (1987), Sudhir (2001), Ciliberto and

Williams (2014), Miller and Weinberg (2017) and Khwaja and Shim (2017). Many of these papers

are based on a conduct parameter model, which lacks a theoretical foundation. Other papers

estimate a set of models assuming different forms of firm conduct and use non-nested hypotheses

test to select among the competing models, for example, Bresnahan (1987), Gasmi et al. (1992)

and Nevo (1998). Different from these papers, we estimate one model that nests different forms of

3See also Berry and Haile (2014) for the identification of nonparametric cost functions using this approach when
demand is described by the widely used discrete-choice model.

4See also Loecker and Scott (2016) for a comparison of the demand approach and the production approach.
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firm conduct. Moreover, our framework allows us to go beyond testing firm conduct to estimate

markups and welfare.

We proceed with the rest of the paper as follows. We briefly discuss the standard oligopoly

model and the conduct parameter model in Section 2. In Section 3, we set up an infinitely repeat

game and derive its static representation. We also compare and highlight the similarity and the

difference between our model and the conduct parameter model. We discuss the identification in

Section 4 and present the simulation results in Section 5. Finally, we conclude in Section 7.

2 The Standard Oligopoly Model and the Conduct Parameter

Model

For expositional simplicity, consider a market with only two firms. Each firm i (i = 1, 2) chooses

its action ximt in market m in period t. The profit functions are given by π1 (x1mt, x2mt, zmt) and

π2 (x1mt, x2mt, zmt), where zmt are profit shiftors, for example, demand shiftors that shift or rotate

demand. In a standard static oligopoly model, the first-order conditions are

∂πi (x1mt, x2mt, zmt)

∂ximt
= 0. (1)

The conduct parameter models “extend” the standard oligopoly model by allowing the first-

order condition to deviate from (1) as follows:

∂πi (x1mt, x2mt, zmt)

∂ximt
+ λij

∂πj (x1mt, x2mt, zmt)

∂ximt
= 0, (2)

where λij is the conduct parameter. When λij = 0, the model becomes a standard oligopoly

model. When λij = 1, the model implies perfect collusion. In general, these conduct parameters

are interpreted as how much one firm internalizes the effect of its action on its competitors. In other

words, the model is equivalent to a non-cooperative oligopoly model where the objective function

of firm i is

π̃i (x1mt, x2mt, zmt) = πi (x1mt, x2mt, zmt) + λijπj (x1mt, x2mt, zmt) , (3)

where λij is the weight that firm i assigns to firm j’s profit. These parameters are typically

assumed to be constant over time and across markets, and are identified exploiting cross-sectional

or temporal variations in the profit shiftors zmt.

While these profit weight parameters are intuitively related to firm conduct, such models do not

have a theoretical foundation. Note that firms in the model are still assumed to be independent

rather than formally integrated. It is unclear why they include their competitors’ profits into their

own objective functions. Because the conduct parameters are the profit weight parameters, we refer

to this type of conduct parameter model as a profit-weight conduct parameter model.
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Another type of conduct parameter model is motivated by the troubled conjecture variations

literature. Since the problems with such models are well recognized, we render the discussion of

such models and the comparison of them to the profit-weight conduct parameter model in (3) to

Supplemental Appendix SA.

Because there is no theoretical foundation, for a value of λij between 0 and 1, it is unclear

how to interpret these parameters.5 For the same reason, when λij ∈ (0, 1), it is unclear whether

the profit-weight conduct parameter model is consistent with any form of firm competition. Such

models, therefore, cannot be used to estimate the underlying marginal costs. In the next section,

we provide a model that can be used to simultaneously test whether firms collude and estimate

marginal cost functions.

3 Our Model

Our proposed model, in a two-firm economy, is

π̃i (x1mt, x2mt, zmt) = πi (x1mt, x2mt, zmt) + λijtπj (x1mt, x2mt, zmt)− ρjtλijtπdj (ximt, zmt) (4)

where πdj is firm j’s profit evaluated at its best-response to its opponent’s action ximt, which is

known as the deviating profit in infinitely repeated game models. This model differs from the

profit-weight conduct parameter model in the last term. The necessity of including this term will

be clear as we derive the model below. Intuitively, firm i needs to take into account how its

action affects its opponent j’s incentive compatibility, which depends on the comparison of j’s on

equilibrium payoff and its deviating payoff.

A supergame consistent with the model

We first present a supergame that is consisten with the model in (4). We later discuss what

other supergames are consistent with the model. Consider an infinitely repeated game with two

firms and grim trigger strategies. Let πim (x1mt, x2mt, zmt) be the stage profit for firm i in market

m, and δ be the discount factor. Suppose zmt follows a stationary first-order Markov process.

Consider a Pareto optimal supergame equilibrium where any deviation in any market is punished

by reversing to one-shot Nash equilibrium strategies forever in all markets, which is the harshest

punishment. A supergame equilibrium is Pareto optimal if the payoff of one firm cannot be increased

without decreasing the payoff of the other firm. Therefore, a Pareto optimal supergame equilibrium

5Focusing on the conjecture variation type of conduct models, Corts (1999) points out that the conduct parameter
is not a good measure for the degree of collusion. In a simulation, Corts (1999) sets up a supergame and allow
the discount factor to vary from 0 to 1 (i.e., the outcome varies from Nash equilibrium with no collusion to perfect
collusion). He finds that estimated conduct parameter do not move monotonically, making it difficult to interpret
the conduct parameter as a measure for the degree of collusion. A similar point is also mentioned in Reiss and Wolak
(2007): “Currently there is no satisfactory economic interpretation of this parameter as a measure of firm behavior.”
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(x∗1 (zmt) , x
∗
2 (zmt)) satisfies

(x∗1 (zmt) , x
∗
2 (zmt)) (5)

= arg max
{(x1mt,x2mt),m=1,...,M}

∑
m

[ω1π1 (x1mt, x2mt, zmt) + ω2π2 (x1mt, x2mt, zmt)]

s.t.
∑

m [πi (x1mt, x2mt, zmt) +
∑∞

τ=1 δ
τE {πi (x∗1 (zmt+τ ) , x∗2 (zmt+τ ) , zmt+τ ) |zmt}]

≥
∑

m

[
πdi (x−imt, zmt) +

∑∞
τ=1 δ

τE
{
πi
(
xNE1 (zmt+τ ) , xNE2 (zmt+τ ) , zmt+τ

)
|zmt

}]
for i = 1, 2,

where ω1 is normalized to be 1, ω2 > 0, and πdi (x−it, zt) and xNEi (zt+τ ) represent, respectively, the

highest deviating profit and the Nash equilibrium strategy. The constraints in (5) are the incentive

compatibility constraints for each firm. They define the set of outcomes that can be sustained

as a collusive outcome. In this supergame, firms pool incentives across markets. These incentive

compatibility constraints are the same as those in Bernheim and Whinston (1990)’s multi-market

contact paper. Denote these incentive compatibility constraints as ICi (x1t,x2t, zt) ≥ 0.

The optimality conditions of (5) are

ω1
∂π1mt
∂x1mt

+ ω2
∂π2mt
∂x1mt

+ γ1t
∂π1mt
∂x1mt

+ γ2t

(
∂π2mt
∂x1mt

− ∂πd2mt
∂x1mt

)
= 0 (6)

ω1
∂π1mt
∂x2mt

+ ω2
∂π2mt
∂x2mt

+ γ1t

(
∂π1mt
∂x2mt

− ∂πd1mt
∂x2mt

)
+ γ2t

∂π2mt
∂x2mt

= 0,

where γ1t and γ2t are the Karush–Kuhn–Tucker multipliers (KKT multipliers, henceforth) corre-

sponding to the two incentive compatibility constraints in (5). They satisfy γit ≥ 0 and γitICi (x1t,x2t, zt) =

0 for i = 1, 2. These KKT multipliers are indexed by t because the constraints ICi (x1t,x2t, zt)

vary over time. Since the incentives are pooled across markets (similar to Bernheim and Whinston

(1990)), they do not, however, vary across markets. Rearranging (6) yields

∂π1mt
∂x1mt

+
ω2 + γ2t
ω1 + γ1t

∂π2mt
∂x1mt

− γ2t
ω1 + γ1t

∂πd2mt
∂x1mt

= 0 (7)

∂π2mt
∂x2mt

+
ω1 + γ1t
ω2 + γ2t

∂π1mt
∂x2mt

− γ1t
ω2 + γ2t

∂πd1mt
∂x2mt

= 0.

Let λijt =
ωj+γjt
ωi+γit

and ρjt =
γjt

ωj+γjt
. Then, (7) can be further simplified to

∂πimt
∂ximt

+ λijt
∂πjmt
∂ximt

− ρjtλijt
∂πdjmt
∂ximt

= 0. (8)

The optimality condition in (8) is equivalent to that of a static non-cooperative model where

firm i’s objective function is given in (4). In other words, our model in (4) can be considered

the static representation of the supergame. Since the optimality conditions (8) will be used for
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estimation, with a slight abuse of terminology, we also refer to the optimality conditions in (8),

instead of model (4), as our model.

As an internal consistency check, we check whether the model (8) becomes ∂πimt
∂ximt

= 0 (i.e., a

one-shot Nash equilibrium condition) when δ → 0, and ωi
∂πimt
∂ximt

+ ωj
∂πjmt
∂ximt

= 0 (i.e., the perfect

collusion condition) when δ → 1. Note that when δ → 0, the KKT multipliers γit →∞.6 Therefore,

ρjt =
γjt

ωj+γjt
→ 1. At the same time,

∂πjmt
∂ximt

− ∂πdjmt
∂ximt

→ 0. Therefore, ∂πimt
∂ximt

= 0. When δ → 1,

however, the incentive compatibility constraints become non-binding, implying that γit → 0. As a

result, λijt → ωj
ωi

, ρjt → 0, and (8) becomes ∂πimt
∂ximt

+
ωj
ωi

∂πjmt
∂ximt

= 0.

The model can be easily extended to N firms. The corresponding optimality condition is

∂πimt
∂ximt

+
∑

j 6=i,j∈Jmt

(
λijt

∂πjmt
∂ximt

− ρjtλijt
∂πdjmt
∂ximt

)
= 0, (9)

where Jmt is the set of firms in market m at time t.

Other supergames consistent with the model

The model (8) is also consistent with a supergame where the Nash reversion punishment of a

finite T periods is used (instead of infinite periods as in the grim trigger strategy). In this case,

the incentive compatibility constraints become

∑
m

[
πi (x1mt, x2mt, zmt) +

T∑
τ=1

δτE
{
πi
(
xNE1m (zmt+τ ) , xNE2m (zmt+τ ) , zmt+τ

)
|zmt

}]
(10)

≤
∑
m

[
πdi (x−imt, zmt) +

T∑
τ=1

δτE
{
πi
(
xNE1m (zmt+τ ) , xNE2m (zmt+τ ) , zmt+τ

)
|zmt

}]
.

The optimality conditions remain the same as (8).7

Moreover, the process of zmt can be different in different markets and can be a higher-order

Markov process. In such a case, the expectation operator E {·|zmt} in (5) becomes a market/time

specific operator Em {·|zmt, zmt−1, ...}. But the optimality conditions again remain the same.

The model does not impose ωi = 1 for all i. It is thus silent about whether there are transfers

among firms. When transfers are allowed, the outcome should be such that the joint profit is

maximized and thus ωi = 1 for all i. The model allows this possibility, but does not impose it. We

can also relax the assumption of Pareto optimality, permitting firms to collude at equilibria that

lie in the interior of the set of feasible actions defined by the incentive constraints.8

6When δ = 0,
∂πjmt

∂ximt
=

∂πd
jmt

∂ximt
. Therefore, (6) implies that γ1t = −

(
ω1

∂π1mt
∂x1mt

+ ω2
∂π2mt
∂x1mt

)
/ ∂π1mt
∂x1mt

. Given that
∂π1mt
∂x1mt

= 0 at Nash equilibrium, γ1t =∞. Similarly, γ2t =∞, too.
7This is not to say that even the parameters such as λijt remain the same. In fact, as the incentive compatibility

constrains change, these parameters most likely change too.
8We will formally show this in future versions of the paper.
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The fact that the model is consistent with a series of supergames is an advantage: researchers

do not need to specify certain details of the underlying supergame. In a similar vein, one does not

need to impose or estimate the discount factor δ. As a result, the model is more robust to possible

model mis-specifications.

This model, however, does rule out some supergames. Or, put it differently, some underlying

supergames are inconsistent with this static representation. For example, the process of zmt cannot

be influenced by firms’ actions ximt. Otherwise, the optimality condition would have to include how

ximt affects the continuation value. Similarly, the model requires perfect monitoring. Otherwise,

the optimality condition would have to include how ximt affects the probability of regime shifting,

from cooperation to punishment and vice versa (see, for example, Green and Porter (1984)). It also

requires that the process zmt is stationary. Otherwise, we cannot define a Pareto optimal supergame

equilibrium as a fixed point to (5). Finally, it requires the equilibrium strategies to be such that

firms revert to the one-shot Nash equilibrium during the punishment phase. This ensures that

firms will not deviate from punishment, allowing us to drop the incentive compatibility constraints

during the punishment period from (5).

Just as being consistent with a set of supergames is an advantage of the model, being inconsistent

with another set is a disadvantage. However, by nesting a standard oligopoly model, our model is

more flexible than the latter. It allows us to estimate markups in industries and during time periods

where we are not sure if a standard oligopoly model captures firm competition well. One can also

say that our model is more flexible than a conduct parameter model because it nests the latter

by setting ρj to be zero. More importantly, our model is derived from a well-specified theoretical

model.

Comparison to the profit-weight conduct parameter model

Our model differs from the profit-weight conduct parameter model in the last term: in our

model, firm i considers not only the effect of its action on its competitor’s profit
(

i.e.,
∂πjmt
∂ximt

)
,

but also how its action affects its opponent’s deviating profit (i.e.,
∂πdjmt
∂ximt

). Intuitively, both effects

impact the constraint set and thus the outcome.

One could further rewrite our model (8) as ∂πimt
∂ximt

+

(
λijt − ρjtλijt

∂πdjmt
∂ximt

/
∂πjmt
∂ximt

)
∂πjmt
∂ximt

= 0 so

that it resembles the profit-weight conduct parameter model (2). However,
∂πdjmt
∂ximt

/
∂πjmt
∂ximt

is i, j,m, t-

specific, which means the term

(
λijt − ρjtλijt

∂πdjmt
∂ximt

/
∂πjmt
∂ximt

)
varies at the level of the data variation,

and thus cannot be considered a parameter. Therefore, the two equations (2) and (8) are equivalent

if and only if
∂πdjmt
∂ximt

/
∂πjmt
∂ximt

is invariant in m. This is in general not true. In Appendix A, we show

that when the two firms produce homogenous products, face a linear market demand and have

the same marginal cost, the ratio
∂πdjmt
∂ximt

/
∂πjmt
∂ximt

is indeed invariant across markets. This is the only

example we can find. In a Bertrand setting, when demand is not linear, or when the two firms are
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asymmetric, the ratio becomes market specific.

Interpretation of the parameters λijt and ρjt

In a profit-weight conduct parameter model ∂πimt
∂ximt

+ λijt
∂πjmt
∂ximt

= 0, the conduct parameter λijt

is interpreted as how much firm i cares about firm j when making a decision, with a larger value

of λijt indicating a higher degree of collusion. Our model is ∂πimt
∂ximt

+ λijt
∂πjmt
∂ximt

− ρjtλijt
∂πdjmt
∂ximt

= 0.

As we will argue below, the parameter λijt actually does not capture the degree of collusion.

Note that λijt =
ωj+γjt
ωi+γit

, implying that λijt = 1/λjit. Therefore, λijt and λjit do not move in

the same direction. They cannot both capture the degree of collusion. But it is also conceptually

impossible that λijt captures the degree of collusion while λjit is negatively correlated with it.

What they really capture is some asymmetry between the two firms. These parameters depend on

(ωi, ωj) and (γit, γjt). One could consider the profit weights ωi and ωj in the objective function of

(5) to be determined by the bargaining power between the two firms. Therefore, λijt captures the

asymmetry in the bargaining power. Similarly, since the KKT multipliers γit and γjt are related to

the slackness of each firm’s incentive compatibility constraint, λijt also captures the asymmetry in

the slackness. In sum, λijt = 1/λjit captures the asymmetry between the two firms in terms of the

slackness of their incentive compatibility constraints and their bargaining power. It has nothing to

do with the degree of collusion, or firm conduct.

What is closely related to the degree of collusion is ρjt. As explained, ρjt → 1 when δ → 0. At

the other extreme, when the discount factor δ = 1, the constraints in (5) are non-binding, implying

γit = 0 and ρjt =
γjt

ωj+γjt
= 0. In sum, ρjt = 1 when the outcome approaches a Nash equilibrium

without collusion (when δ = 0) and ρjt = 0 when the outcome is perfect collusion (when δ = 1).

What about δ ∈ (0, 1)? Is ρjt decreasing in δ? Appendix shows that this is the case. Note that as

δ increases, the solution to (5) yields a higher joint profit for the firms (ω1π1 + ω2π2), indicating

a higher degree of collusion. Therefore, a monotonic relationship between ρjt and δ implies a

monotonic relationship between ρjt and the degree of collusion increases, at least as the discount

factor varies.

That said, we do not think one should label ρjt as a measure of firm conduct, or use the

comparison of its the value across industries to suggest one industry is more competitive than the

other. This is because the parameter ρjt is intrinsically industry-specific, depending on the market

environment in an industry, such as demand, the number of firms, firms’ efficiency levels, etc. A

comparison of this parameter across industries does not necessarily inform us about the underlying

form of firm competition. As mentioned, instead of providing a measure of the degree of collusion,

the focus of this paper is to provide a model for estimating marginal costs and hence markups

allowing the possibility of collusion. Given that focus, we now turn to the identification and the

estimation.
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4 Identification and Estimation

The objective is to estimate marginal costs. We now make marginal costs explicit in the profit

function. Specifically, let cimt = f (wimt)+ωimt be the marginal cost function. With a slight abuse

of notation, let the profit function πi (xmt, zmt) in the previous section be πi (xmt,ymt, cimt) =

πi (xmt,ymt, f (wimt) + ωimt), where xmt is the vector of all firms’ actions, ymt is the demand

shiftor, wimt is the observable cost shiftor and ωimt is the unobservable cost shiftor . We assume

that the function πi is known based on the demand estimation. In the demand estimation, there

might be unobservable demand shocks. These shocks become known after the demand estimation.

We therefore consider them part of the demand shiftors ymt. For example, in a Cournot setting,

the profit function is πi (xmt,ymt, cimt) = [p (
∑

i ximt,ymt)− cimt]ximt. In a Bertrand setting,

πi (xmt,ymt, cimt) = (ximt − cimt)Mmtsi (xmt,ymt), where Mmt is the market size and si is the

market share function.

With this notation, our model is therefore

∂πi
∂ximt

(xmt,ymt, cimt) (11)

+
∑

j 6=i,j∈Jmt

(
λijt

∂πjm
∂ximt

(xmt,ymt, cjmt)− ρjtλijt
∂πdjm
∂ximt

(xmt\xjmt,ymt, cjmt)

)
= 0.

where λijt =
ωj+γjt
ωi+γit

and ρjt =
γjt

ωj+γjt
. Let τ jt = ωj + γjt. Then, λijt =

τ jt
τ it

. Since ωi > 0 and

γit ≥ 0, τ it > 0 and 0 ≤ ρit ≤ 1. Moreover, since ω1 is normalized to be 1, τ1 = 1
1−ρ1

. Therefore,

what we need to identify is τ2t, ..., τNt, ρ1t, ..., ρNt, and the marginal cost function f (·), where

τ it > 0 and 0 ≤ ρit ≤ 1.

In a Cournot setting with homogenous products, the action ximt is the quantity produced by a

firm, and (11) becomes

(pmt − cimt) + p
′
m (Xmt,ymt)ximt (12)

+
∑

j 6=i,j∈Jmt

τ jt
τ it
p
′
m (Xmt,ymt)xjmt

−
∑

j 6=i,j∈Jmt

ρjt
τ jt
τ it
p
′
m

(
X−j,mt + xBR (X−j,mt, cjmt,ymt)

)
xBR (X−j,mt, cjmt,ymt) = 0

where Xmt =
∑

i∈Jmt ximt is the total quantity, X−j,mt is firm j’s opponents’ total quantity and

xBR (X−j,mt, cjmt,ymt) is firm j’s best-response. The identification question is, therefore, whether

we can identify the parameters τ2t, ..., τNt, ρ1t, ..., ρNt, and the function f (·) with data (x, p,y,w).

In a Bertrand setting with differentiated products and single-product firms, the action ximt is

10



the price charged by a firm, and (11) becomes

(ximt − cimt)
∂si
∂ximt

(xmt,ymt) + simt (13)

+
∑

j 6=i,j∈Jmt

τ jt
τ it

(xjmt − cjmt)
∂sj
∂ximt

(xmt,ymt)

−
∑

j 6=i,j∈Jmt

ρjt
τ jt
τ it

(
xBRj (x−j,mt,ymt, cjmt)− cjmt

) ∂sj
∂ximt

(
x−j,mt, x

BR
j (x−j,mt,ymt, cjmt) ,ymt

)
= 0,

where x−j,mt = xmt\xjmt is the vector of all firms’ prices except firm j, xBRj (x−j,mt,ymt, cjmt)

is firm j’s best response. The identification question in this setting is whether the parameters

τ2t, ..., τNt, ρ1t, ..., ρNt, and the function f (·) with data (x, s,y,w).

First, we show that for any given τ2t, ..., τNt, ρ1t, ..., ρNt such that τ it > 0 and 0 ≤ ρit ≤ 1, and

for any given dataset, there is a unique vector of marginal costs (c1t, ..., cNt) that satisfies (12) or

(13). Different from a standard Cournot or a Bertrand model, where we only have the first line in

(12) or (13), marginal costs enters the effect of firm i’s action on firm j’s deviating profit nonlinearly

in the third line in (12) or (13). Therefore, the invertibility is not immediately obvious. Appendix

B gives the proof of the invertibility for any Cournot model and a Logit Bertrand model. While

we have not formally extended our proof to more complex demand systems, we have conducted

simulations which suggest that the model is invertible for nested logit and discrete consumer type

logit demand systems.

The invertibility result gives us the following estimation equation

cimt (xmt,vmt,ymt; τ t,ρt) = f (wimt) + ωimt,

where the variable vmt is the market price pmt in the Cournot setting and the vector of market shares

smt in the Bertrand setting. Both xmt (the actions) and vmt (some outcomes) are endogenous,

while the demand shiftors ymt and the cost shiftors wimt are assumed to be exogenous.

Since the parameters τ t and ρt vary over time, we cannot rely on cross-time variations to identify

them. However, they are stable across markets. This is because when firms pool incentives across

markets as in Bernheim and Whinston (1990), there is only one incentive compatibility constraint

per firm per period. As a result, cross-market variations can be used to identify these parameters.

5 Simulations

In this section, we perform Monte Carlo simulations to evaluate the performance of our model

relative to two benchmarks: the standard Nash Bertrand oligopoly model and the profit weight

conduct parameter model. To do so, we set up a repeated game and simulate data by solving for

the Pareto optimal equilibrium. Specifically, we consider two single-product firms (indexed by j)

11



which compete in 100 independent geographic markets (indexed by m) each period t. In order to

simplify the computation of the equilibrium, we assume that the demand and cost shocks faced by

the firms in each market are perfectly persistent over time. Because shocks are perfectly persistent,

we drop the subscript t in what follows. We define two primitives, consumer utility and marginal

cost. We impose logit demand, such that the utility that consumer i receives from purchasing the

product produced by firm j in geographic market m is given as:

Uijm = βxxjm + αpjm + βm + ξjm + εijm (14)

where xjm is a scalar observable product characteristic, βm is a market fixed effect, ξjm is an

unobserved market specific taste for product j, and εijm is a idiosyncratic demand shock. We

assign observable characteristics for firm 1 and 2 in market m according to (x1m, x2m) ∈ K ⊗K,

where K = {4, 5, 7, 8, 10}. This gives us 25 distinct combinations of product characteristics for

firms 1 and 2. As there are 100 geographic markets, we assume that each combination of product

characteristics appears in 4 geographic markets. For each geographic market, we draw a fixed effect

βm from N (−1, 1), and for each firm market pair we draw the unobservable characteristic ξjm from

N (0, 1). As is standard, εijm is distributed type 1 extreme value. Finally, we impose that βx = 1.5

and that α = −0.5.

Next, we define the constant marginal cost to firm j in market m as:

cjm = µ0 + µ1wjm + ηjm (15)

where the scalar observable cost covariate, wjm is drawn from N (3, 1) and the unobserved cost

shock, ηjm, is drawn from N (0, 1). We impose µ0 = 1.5 and µ1 = 1. To complete the set up, we

draw the market size from a lognormal (0, 1) distribution. With demand and cost specified, we

solve for prices pjm as the Pareto optimal stationary equilibrium to this game for a set of discount

factors δ. In particular, we solve the game 10 times, for each δ ∈ {0, 0.05, ..., 0.45}. We do not

consider higher values of δ because at δ = 0.45, the firms charge the monopoly prices.

Once we have solved the model for a given value of δ, we have data on prices and market

shares. Using this data, we estimate marginal costs cjm in each of the three models of interest.

While cost can be inverted analytically from the Nash Bertrand first order condition, the profit

weight model and our model require us to estimate parameters of the first order condition. As has

been discussed in Bresnahan (1982) and Berry and Haile (2014), in order to distinguish cost from

conduct, instruments are needed. In our setting, the market size, market fixed effect, unobserved

characteristic ξjm, and the rival’s observable cost shifter are all valid instruments which we use in

estimating both the profit weight model and our model.

Let cjm be true marginal cost of firm j in market m and let ĉjm be the estimated marginal

cost. Table 1 presents summary statistics for the squared error in the marginal cost estimates
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for the Bertrand model, profit weight model, and our model. The results reported in Table 1 for

the Bertrand model are not surprising. We are able to back out the true marginal cost using the

Bertrand first order conditions when the firms are not colluding and δ = 0. As we would suspect,

the squared error increases monotonically with the discount rate as the prices increase from the

Bertrand prices to the monopoly prices.

Table 1: Summary statistics of (ĉjm − cjm)2

Model δ = 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Bertrand mean 1.0e-24 0.86 3.62 8.98 18.45 34.47 55.83 91.79 101.81 103.26

sd 2.3e-24 0.86 3.46 8.47 18.48 39.26 63.88 112.11 126.00 128.02

Profit Weight mean 1.0e-24 1.62 1.84 3.16 8.64 24.20 28.39 6.63 0.30 0.04

sd 2.3e-24 3.72 4.58 6.83 17.68 51.06 52.65 11.48 0.48 0.06

Our Model mean - 0.65 0.86 1.53 2.01 0.20 0.16 0.17 0.19 0.02

sd - 0.62 1.06 1.84 2.93 0.38 0.25 0.22 0.34 0.03

We also see in Table 1 that the profit weight approach does well at obtaining accurate estimates

of the marginal cost when firms are either not colluding or perfectly colluding. In both cases, the

first order condition of the repeated game given by (8) is identical to the profit weight model with

weights of 0 in the case of no collusion and 1 in the case of perfect collusion. However, our model

outperforms the profit weight model for δ ∈ (0, 0.45). Ex ante, we would expect our model to

perform at least as well as the profit weight approach given that the first order conditions of our

model are identical to those derived from the Pareto equilibrium.

As was discussed in Section 3, our model and the profit weight model are equivalent only when
∂πdjmt/∂ximt
∂πjmt/∂ximt

is invariant across markets. In Figure 1, we plot
∂πdjmt/∂ximt
∂πjmt/∂ximt

when δ = 0.3 across the m

markets for each firm. Each point in the plots is a firm-market pair. The left panel presents the

observations for firm 1 and the right panel for firm 2. For visual purposes, we have arranged the

graphs such that, in each,
∂πdjmt/∂ximt
∂πjmt/∂ximt

is monotonically increasing. One can see that
∂πdjmt/∂ximt
∂πjmt/∂ximt

is

far from constant across markets for intermediate values of δ, and thus it is unsurprising that the

squared error of the cost estimates is large for the Profit Weight model in this case.

13



Figure 1: Figure 1:Plot of
∂πd

jmt/∂ximt

∂πjmt/∂ximt
Across Firm-Market Pairs, δ = 0.3

Note: This figure displays a scatter plot of
∂πd

jmt/∂ximt

∂πjmt/∂ximt
for each of the 200 firm-market pairs. The left panel

∂πd
jmt/∂ximt

∂πjmt/∂ximt
plots the observations for firm 1 and the right for firm 2. For visual purposes, the firm-market

pairs have been arranged such that, in each panel,
∂πd

jmt/∂ximt

∂πjmt/∂ximt
is monotonically increasing.

6 Empirical Section

[[To be added]]

7 Conclusion

[[To be added]]
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Appendices

A When Our Model and the Profit-weight Conduct Parameter

Model are Equivalent

In this appendix section, we provide one example where our model and the profit-weight conduct

parameter are equivalent. We show, however, that this equivalence result does not hold with any

deviation from this example. For expositional simplicity, we suppress the subscript t in this section.

Consider a Cournot model with two firms, linear demand pm = am − bm (x1m + x2m), and zero

marginal cost. Our model in the Cournot setting (12) becomes

am − bm (x1m + x2m)− bmx1m − bmλ12x2m + ρ2λ12bm
am − bmx1m

2bm
= 0 (A.1)

am − bm (x1m + x2m)− bmx2m − bmλ21x1m + ρ1λ21bm
am − bmx2m

2bm
= 0,

which can be simplified to be

am
bm
− (x1m + x2m)− x1m − λ12x2m + ρ2λ12

am
bm
− x1m
2

= 0 (A.2)

am
bm
− (x1m + x2m)− x2m − λ21x2m + ρ2λ21

am
bm
− x2m
2

= 0.

It turns out that the solution is of the following format

xim =
am
bm

gi (λ12, λ21, ρ1, ρ2) , (A.3)

where gi (·) is a function independent of am and bm. In other words, the solution xim is proportional

to am
bm

.

Therefore, the ratio of interest

∂πdjmt
∂ximt

/
∂πjmt
∂ximt

=
−bmam−bmxim

2bm

−bmxjm
=

1− gi (λ12, λ21, ρ1, ρ2)

2gj (λ12, λ21, ρ1, ρ2)
, (A.4)

which is independent of (am, bm) and thus invariant across markets. In this case, we can define

λ̃ijt = λijt − ρjtλijt
∂πdjmt
∂ximt

/
∂πjmt
∂ximt

and rewrite our model (8) ∂πimt
∂ximt

+ λijt
∂πjmt
∂ximt

− ρjtλijt
∂πdjmt
∂ximt

= 0 as
∂πimt
∂ximt

+ λ̃ijt
∂πjmt
∂ximt

= 0, which is the profit-weight conduct parameter model.

However, the result that
∂πdjmt
∂ximt

/
∂πjmt
∂ximt

is invariant across markets is specific to the assumptions

listed above. For example, the result does not hold when the demand function is nonlinear or when

firms are asymmetric in marginal costs. It does not hold when we switch to a Bertrand setting with

differentiated products either. In sum, our model and the profit-weight conduct parameter model
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are not equivalent in general.

B Proof of Invertibility

B.1 Cournot Setting

Throughout this section, we suppress the subscripts m and t and the demand shiftor ymt. In

the Cournot setting, πi (x, ci) = [p (
∑

i xi)− ci]xi. Our model becomes

(p− ci) + p
′
(X)xi +

∑
j 6=i

τ j
τ i
p
′
(X)xj (B.5)

−
∑
j 6=i

ρj
τ j
τ i
p
′ (
X−j + xBR (X−j , cj)

)
xBR (X−j , cj) = 0.

For any given data (x, p) and parameters (τ ,ρ), define a function F : [0, p]N → RN as

F (c)i = − (p− ci)− p
′
(X)xi −

∑
j 6=i

τ j
τ i
p
′
(X)xj (B.6)

+
∑
j 6=i

ρj
τ j
τ i
p
′ (
X−j + xBR (X−j , cj)

)
xBR (X−j , cj) .

We want to show that F (c) = 0 has a unique solution. By the Gale-Nikaido-Inada Theorem, it is

sufficient to show that the Jacobian matrix of F is a p-matrix.

Let J (c) denote the Jacobian matrix of F , where J (c)ii = 1 and J (c)ji = −ρj
τ j
τ i

∂xBRj
∂xi

. Note

that the best-response xBRj satisfies the following first-order condition

p
′ (
X−j + xBR (X−j , cj)

)
xBR (X−j , cj) + p

(
X−j + xBR (X−j , cj)

)
− cj = 0. (B.7)

Taking the total differentiation with respect to xi gives

p′′xBRj

(
1 +

∂xBRj
∂xi

)
+ p′

∂xBRj
∂xi

+ p′

(
1 +

∂xBRj
∂xi

)
= 0. (B.8)

Therefore,
∂xBRj
∂xi

= −
p′′xBRj + p′

p′′xBRj + 2p′
. (B.9)

The second-order condition implies that p′′xBRj + p′ ≤ 0, which in turn implies that p′′xBRj + 2p′ <

0. Under the assumption that p′′ ≥ 0,
∂xBRj
∂xi

∈
[
−1

2 , 0
)
. From (B.9), we can see that

∂xBRj
∂xi

is

independent of i. This is because xi affects xBRj only through shifting X−j =
∑

i 6=j xi. We can

therefore denote −ρj
∂xBRj
∂xi

by hj . Since 0 ≤ ρj ≤ 1, hj ∈
[
0, 12
]
.
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Therefore, a kthorder principal submatrix of J (c) is of the following format:
1

τ i2
τ i1
hi2 · · · τ ik

τ i1
hik

τ i1
τ i2
hi1 1

τ ik
τ i2
hik

...
. . .

τ i1
τ ik
hi1

τ i2
τ ik
hi2 1

 , (B.10)

where (i1, ..., ik) is a subset of (1, ..., N). Its determinant equals∣∣∣∣∣∣∣∣∣∣∣

1 hi2 · · · hik

hi1 1 hik
...

. . .

hi1 hi2 1

∣∣∣∣∣∣∣∣∣∣∣
= (hi1hi2 · · ·hik)

∣∣∣∣∣∣∣∣∣∣∣

1
hi1

1 · · · 1

1 1
hi2

1

...
. . . 1

1 1 1
hik

∣∣∣∣∣∣∣∣∣∣∣
= (hi1hi2 · · ·hik) detA. (B.11)

Since hj ≥ 0, we only need to show that detA is non-negative. In what follows, we show that A is

a positive definite.

Let a = (a1, ..., ak)
T 6= 0 be any nonzero vector. Then,

aTAa =
∑
l

a2l
hil

+ 2
∑∑
l 6=l′

alal′ (B.12)

≥ 2
∑
l

a2l + 2
∑∑
l 6=l′

alal′ because 0 ≤ hl ≤ 1/2

>
∑
l

a2l + 2
∑∑
l 6=l′

alal′

=

(∑
l

al

)2

> 0.

B.2 Bertrand Setting

We start with showing the invertibility of a Logit model. In a Bertrand setting, πi (x, ci) =

(xi − ci)Msi (x). Our model becomes

(xi − ci)
∂si
∂xi

(x) + si +
∑
j 6=i

τ j
τ i

(xj − cj)
∂sj
∂xi

(x) (B.13)

−
∑
j 6=i

ρj
τ j
τ i

(
xBRj (x−j,, cj)− cj

) ∂sj
∂xi

(
x−j , x

BR
j (x−j,, cj)

)
= 0.
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For any given data (x, s) and parameters (τ ,ρ), define a function F : [0, c̄1]× · · · [0, c̄N ]→ RN as

F (c)i = (xi − ci)
∂si
∂xi

(x) + si +
∑
j 6=i

τ j
τ i

(xj − cj)
∂sj
∂xi

(x) (B.14)

−
∑
j 6=i

ρj
τ j
τ i

(
xBRj (x−j,, cj)− cj

) ∂sj
∂xi

(
x−j , x

BR
j (x−j,, cj)

)
,

where c̄i is the marginal cost of firm i such that at its best-response to x−i in the data, its market

share equals to the market share in data. In other words, c̄i is the solution to si
(
x−i, x

BR
i (x−i,, ci)

)
=

si, where si on the right-hand side is the market share in data. In Supplemental Appendix, we that

at the solution of the supergame (5) in a Bertrand setting, xBRi ≤ xi. In other words, when one

firm deviates unilaterally, it must decrease its price. This is quite intuitive as we expect firms in

a collusion to raise prices to the extent that each firm has an incentive to undercut. This implies

that sBRi ≥ si. Note that sBRi is strictly decreasing in ci. Therefore, ci must be smaller than c̄i.

We again denote the Jacobian matrix by J (c), where the diagonal element J (c)ii = − ∂si
∂xi

(x).

In a Logit model, it is αsi (1− si), where α is the absolute value of the price coefficient. The

off-diagonal element is

J (c)ij = −τ j
τ i
α
∂sj
∂xi

+ ρj
τ j
τ i

∂s
BRj
j

∂xi
= −τ j

τ i
sisj + ρj

τ j
τ i

(
αs

BRj
i s

BRj
j − αsBRjj

(
1− sBRjj

) ∂xBRjj

∂xi

)
,

(B.15)

where we use the subscript BRj to indicate that a function is evaluated at firm j’s best response.

For example, s
BRj
i and sBRii are different. The best-response x

BRj
j satisfies the following first-order

condition

− α
(
x
BRj
j − cj

)
s
BRj
j

(
1− sBRjj

)
+ s

BRj
j = 0, (B.16)

which implies −α
(
xBRj − cj

)(
1− sBRj

)
+ 1 = 0. Taking the total differentiation with respect to

xi yields

∂x
BRj
j

∂xi

(
1− sBRjj

)
+ α

(
x
BRj
j − cj

)
s
BRj
j

[(
1− sBRjj

) ∂xBRjj

∂xi
− sBRji

]
= 0. (B.17)

Combing (B.16) and (B.17), we have
∂x
BRj
j

∂xi
=

s
BRj
i s

BRj
j

1−sBRj
. Moreover, since s

BRj
i /si =

(
1− sBRjj

)
/ (1− sj),

we have

J (c)ij = −τ j
τ i
αsisj + αρj

τ j
τ i

1

1− sj
sis

BRj
j

(
1− sBRjj

)2
. (B.18)
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A kth order principal submatrix of J (c) is of the following format
Ji1i1 Ji1i2 · · · Ji1ik

Ji2i1 Ji2i2 Ji2ik
...

. . .
...

Jiki1 Jiki2 · · · Jikik

 ,

where (i1, ..., ik) is a subset of (1, ..., N). Since the diagonal elements are all positive, the sign of

its determinant is the same as the sign of the determinant of the following matrix

Ak =


1

Ji1i2
Ji1i1

· · · Ji1ik
Ji1i1

Ji2i1
Ji2i2

1
Ji2ik
Ji2i2

...
. . .

...
Jiki1
Jikik

Jiki2
Jikik

· · · 1

 .

Note that

Jij
Jii

=
− τ j
τ i
αsisj + αρj

τ j
τ i

1
1−sj sis

BRj
j

(
1− sBRjj

)2
αsi (1− si)

(B.19)

=
τ j
τ i

−sj + ρj
1

1−sj s
BRj
j

(
1− sBRjj

)2
1− si

,
τ j
τ i

hj
gi

.

Therefore,

detAk =

∣∣∣∣∣∣∣∣∣∣∣∣

1
hi2
gi1

· · · hik
gi1

hi1
gi2

1
hik
gi2

...
. . .

...
hi1
gik

hi2
gik

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
l=1,...,k

hil
gil
·

∣∣∣∣∣∣∣∣∣∣∣∣

gi1
hi1

1 · · · 1

1
gi2
hi2

1

...
. . .

...

1 1 · · · gik
hik

∣∣∣∣∣∣∣∣∣∣∣∣
Define fi = hi

gi
= −si

1−si +
ρis

BRi
i

(
1−sBRii

)2
(1−si)2

. Since sBRii ≥ si, − si
1−si ≤ fi ≤ 1. We can rewrite
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detAk as

detAk =
∏

l=1,...,k

fil ·

∣∣∣∣∣∣∣∣∣∣∣∣

1
fi1

1 · · · 1

1 1
fi2

1

...
. . .

...

1 1 · · · 1
fik

∣∣∣∣∣∣∣∣∣∣∣∣
(B.20)

=
∏

l=1,...,k

fil ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
fi1

1 · · · 1 1

1 1
fi2

1 1

...
. . .

...
...

1 1 1
fik−1

1

0 0 · · · 1− 1
fik−1

1
fik
− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∏

l=1,...,k

fil


−
(

1− 1

fik−1

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
fi1

1 · · · 1 1

1 1
fi2

1 1

...
. . .

...
...

1 1 1
fik−2

1

1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

(
1

fik
− 1

)
detAk−1∏

l=1,...,k−1
fil



=
∏

l=1,...,k

fil

−
(

1− 1

fik−1

) ∏
l=1,...,k−2

(
1

fil
− 1

)
+

(
1

fik
− 1

)
detAk−1∏

l=1,...,k−1
fil


= (1− fi1) · · ·

(
1− fik−1

)
fik + (1− fik) detAk−1.

We now use induction to show that detAk > 0. First of all, detA2 = 1 − fi1fi2 . When fi1

and fi2 are of different signs, detA2 > 0. When both are positive, since both are smaller than 1,

detA2 > 0. When both are negative, detA2 is increasing in both fi1 and fi2 . Given that fi ≥ − si
1−si ,

detA2 ≥ 1− si1si2
(1−si1)(1−si2)

=
1−si1−si2

(1−si1)(1−si2)
> 0 because 0 < si1 , si2 < 1 and si1 +si2 < 1. Therefore,

detA2 > 0.

Then, we show that detAk−1 > 0 for any (k − 1)-element subset of (1, ..., N) implies detAk > 0

for any k-element subset. Since detAk = (1− fi1) · · ·
(
1− fik−1

)
fik+(1− fik) detAk−1 and fil < 1,

detAk > 0 if fik > 0. Note that (fi1 , · · · , fik) are exchangeable. Therefore, if there is any fil > 0,

detAk > 0. We now show that when all (fi1 , · · · , fik) are negative, detAk is also positive. This

proof is carried out in three steps.

In Step 1, we again use induction to show that detAk < (1− fi1) · · · (1− fik) when (fi1 , · · · , fik)

are all negative. When k = 2, detA2 = 1 − fi1fi2 < 1 < (1− fi1) (1− fi2). Suppose detAk−1 <

(1− fi1) · · ·
(
1− fik−1

)
. Then, detAk < (1− fik) detAk−1 < (1− fi1) · · ·

(
1− fik−1

)
(1− fik).

In Step 2, we show that detAk is increasing in fil when (fi1 , · · · , fik) are all negative. Note that
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∂ detAk
∂fik

= (1− fi1) · · ·
(
1− fik−1

)
− detAk−1 > 0 based on the result in Step 1. By exchangeability,

this means that ∂ detAk
∂fil

> 0 for any l = 1, ..., k. For example, when l = 1, by exchangeability,

detAk = (1− fi2) · · · (1− fik) fi1 + (1− fi1) detAk−1 (fi2 , ..., fik) where detAk−1 is now a function

of (fi2 , ..., fik). The result in Step 1 still holds, i.e., detAk−1 (fi2 , ..., fik) < (1− fi2) · · · (1− fik).

Therefore, ∂ detAk
∂fi1

> 0. From Step 2, we know that when (fi1 , · · · , fik) are all negative, the lower

bound of detAk is when fil = − sil
1−sil

.

In Step 3, we use induction to show that this lower bound of detAk is
1−
∑k
l=1 sil∏k

l=1
(1−sil)

. We have

shown in Step 1 that when fi1 = − si1
1−si1

and fi2 = − si2
1−si2

, detA2 =
1−si1−si2

(1−si1)(1−si2)
. Suppose when(

fi1 , ..., fik−1

)
are all at their respective lower bound, detAk−1 =

1−
∑k−1
l=1 sil∏k−1

l=1
(1−sil)

. Then, the lower

bound of detAk = −
(∏k−1

l=1

1
1−sik−1

)
sik

1−sik
+ 1

1−sik

1−
∑k−1
l=1 sil∏k

l=1
(1−sil)

=
1−
∑k
l=1 sil∏k

l=1
(1−sil)

. Since 0 < sil < 1

and
∑k

l=1 sil < 1, detAk > 0.
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Supplemental Appendix

SA Two Types of Conduct Parameter Models

The main body of the paper focuses on the comparison of our model to the profit-weight conduct

parameter models (as well as the classic oligopoly models). As mentioned, there is another type

of conduct parameter models, i.e., the conjecture variation models. In this appendix section, we

present both types of conduct parameter models and explain how they are related. For expositional

simplicity, we suppress the subscript m in this appendix.

In a standard static oligopoly model, the first-order conditions are

∂πi (x1t, x2t, zt)

∂xit
= 0. (SA.1)

Typically, a firm’s action has a direct effect and an indirect effect on its profit. For example,

consider a Cournot model where xit represents the quantity of firm i, the inverse market de-

mand is p (x1t + x2t, zt) and the marginal cost is constant cit. In such a model, πi (x1t, x2t, zt) =

p (x1t + x2t, zt)xit − citxit. The marginal profit of xi is ∂πi(x1t,x2t,zt)
∂xi

= [p (x1t + x2t, zt)− cit] +

p′ (x1t + x2t, zt)xit, where the first term is the direct effect of producing more quantity and the

second term the indirect effect on profit through driving down the market price. Similarly, in

a Bertrand model where xit represents the price of firm i and the demand for the firm is given

by qi (x1t, x2t, zt). The profit function is πi (x1t, x2t, zt) = (xit − cit) qi (x1t, x2t, zt); and the cor-

responding marginal profit is ∂πi(x1t,x2t,zt)
∂xit

= qit + (xit − cit) ∂qit
∂xit

, which is again the sum of the

direct effect of increasing the price on profit (i.e., qi) and the indirect effect on profit by decreasing

the quantity (i.e., (xi − ci) ∂qi
∂xi

). Let
(
∂πi(x1,x2)

∂xi

)
D

and
(
∂πi(x1,x2)

∂xi

)
ID

represent the direct and the

indirect effects, respectively. Therefore, in a standard oligopoly model, the first-order condition

(SA.1) can be rewritten as

∂πi (x1t, x2t, zt)

∂xit
=

(
∂πi (x1t, x2t, zt)

∂xit

)
D

+

(
∂πi (x1t, x2t, zt)

∂xit

)
ID

= 0. (SA.2)

A typical conduct parameter model assumes that(
∂πi (x1t, x2t, zt)

∂xit

)
D

+ λii

(
∂πi (x1t, x2t, zt)

∂xit

)
ID

+ λij
∂πj (x1t, x2t, zt)

∂xit
= 0, (SA.3)

where λii and λij are the conduct parameters.

For example, consider a market with homogeneous products where firms choose quantities.

Setting λij = 0, equation (SA.3) becomes

xit = cit − λiip′ (x1t + x2t, zt)xit, (SA.4)

the same as in Bresnahan (1982). In a market with heterogeneous products where single-product
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Supplemental Appendix

firms choose prices, equation (SA.3) becomes

(
x1t

x2t

)
=

(
c1t

c2t

)
+

(
λ11

∂q1t
∂x1t

λ21
∂q1t
∂x2t

λ12
∂q2t
∂x1t

λ22
∂q2t
∂x2t

)−1(
q1t

q2t

)
, (SA.5)

the same as the framework in Nevo (1998).

The first set of conduct parameters λii are motivated by the troubled conjecture variations

literature. For example, in the Cournot setting, λii−1 is interpreted as a firm’s expectations about

how its rivals react to an increase in its quantity. Such a model with conduct parameters λii is a

conjecture variations conduct parameter model. However, Daughety (1985) and Lindh (1992) show

that the Cournot conjectures where λii = 1 are the only consistent equilibrium conjectures.

Papers in the recent literature (e.g., Sudhir (2001), Black et al. (2004), Ciliberto and Williams

(2014), Miller and Weinberg (2017) and Khwaja and Shim (2017)) do not rely on the concept of

conjecture variations, and set λii = 1 as it should be, and focus instead on λij . The model is

therefore
∂πi (x1t, x2t, zt)

∂xit
+ λij

∂πj (x1t, x2t, zt)

∂xit
= 0, (SA.6)

where λij are the conduct parameters to be estimated. This is the profit-weight conduct parameter

model where these conduct parameters λij capture how much firm i internalizes the effect of its

action on its competitor j in its decision making. However, as mentioned in Section 2, both the

conjecture variations type of conduct parameter models in (SA.4) and the profit-weight type of

conduct parameter models in (SA.6) lack of theoretical foundation.
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