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Abstract

This paper develops a threshold regression model, where the threshold is de-

termined by an unknown relation between two variables. The threshold func-

tion is estimated fully nonparametrically. The observations are allowed to be

cross-sectionally dependent and the model can be applied to determine an un-

known spatial border for sample splitting over a random field. The uniform rate

of convergence and the nonstandard limiting distribution of the nonparametric

threshold estimator are derived. The root-n consistency and the asymptotic nor-

mality of the regression slope parameter estimator are also obtained. Empirical

relevance is illustrated by estimating an economic border induced by the hous-

ing price difference between Queens and Brooklyn in New York City, where the

economic border deviates substantially from the administrative one.
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1 Introduction

This paper develops a regression model whose coefficients can vary over different

regimes or subsamples (i.e., threshold regression model), where the subsample classes

are determined by some unknown relation between two variables. More precisely, we

consider a model given by

yi = x>i β0 + x>i δ01 [qi ≤ γ0 (si)] + ui

for i = 1, . . . , n, in which the marginal effect of xi to yi can be different as β0 or (β0+δ0)

depending on whether qi ≤ γ0 (si) or not. The threshold function γ0(·) is unknown

and the main parameters of interest are β0, δ0, and γ0(·). The novel feature of this

model is that the sample splitting is determined by an unknown relation between two

variables qi and si, and their relation is characterized by the nonparametric threshold

function γ0(·).
In contrast, the classical threshold regression or structural break models assume

γ0 (·) to be a constant and consider the sample splitting induced by whether a scalar

running variable exceeds a certain constant threshold. Examples include, among others,

Andrews (1993), Andrews and Ploberger (1994), Bai (1997), Bai and Perron (1998),

Bai, Lumsdaine, and Stock (1998), Qu and Perron (2007), Elliott and Müller (2007),

Chen and Hong (2012), Elliott and Müller (2014), Elliott, Müller, and Watson (2015),

and Eo and Morley (2015) for structural break models; and Hansen (2000), Caner and

Hansen (2004), Seo and Linton (2007), Lee, Seo, and Shin (2011), Li and Ling (2012),

Yu (2012), Lee, Liao, Seo, and Shin (2018), and Yu and Fan (2019) for threshold

regression models.1

This paper contributes to the literature in two folds. First, we formulate the thresh-

old by some unknown relation among variables. Existing literature on sample splitting

typically assumes γ0 (·) to be a fixed constant or a linear combination of variables. In

contrast, we leave the threshold function γ0 (·) to be fully nonparametric as long as it

is a smooth function. This specification can cover interesting cases that have not been

studied. For example, we can consider the case that the threshold is heterogeneous and

specific to each observation i if we see γ0 (si) = γ0i; or the case that the threshold is

1Seo and Linton (2007), Lee, Liao, Seo, and Shin (2018), and Yu and Fan (2019) allow multiple
variables to define the threshold. However, they consider the index form γ0 (si) = s>i γ0 for some
parameter vector γ0, where Lee, Liao, Seo, and Shin (2018) use principal components for si.
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determined by the direction of some moment conditions γ0(si) = E[qi|si]. Apparently,

when γ0(s) = γ0 or γ0(s) = γ0s for some parameter γ0 and s 6= 0, it reduces to the

standard threshold regression model, where the threshold is determined by the ratio

qi/si for the latter case.

Second, we let the variables be cross-sectionally dependent, which has not been con-

sidered in the threshold model literature. More precisely, we consider strong-mixing

random fields as Bolthausen (1982). This generalization allows us to study sample

splitting over a random field. For instance, if we let (qi, si) correspond to the the

geographical location (i.e., latitude and longitude on the map), then the threshold

1 [qi ≤ γ0 (si)] identifies the unknown border yielding a two-dimensional sample split-

ting. In more general contexts, the model can be applied to identify social or economic

segregation over interacting agents.

The main results of this paper can be summarized as follows. First, we develop a

two-step estimator of this semiparametric model, where we estimate γ0 (·) using local

constant estimation. Second, under the shrinking threshold setup (e.g., Bai (1997),

Bai and Perron (1998), and Hansen (2000)) with δ0 = c0n
−ε for some c0 6= 0 and

ε ∈ (0, 1/2), we show that the nonparametric estimator γ̂(·) is uniformly consistent

and (β̂
>
, δ̂
>

)> satisfies the root-n-consistency. The uniform rate of convergence and the

pointwise limiting distribution of γ̂(·) are also derived. In particular, we find that γ̂(·) is

asymptotically unbiased even if the optimal bandwidth is used. This feature is novel in

comparison with the existing literature on kernel estimation. Since the nonparametric

function γ0 (·) is in the indicator function, it causes additional technical challenges and

the proofs are nonstandard. We also develop a pointwise specification test of γ0(s) for

given s (i.e., a test for the null hypothesis H0 : γ0(s) = γ∗(s)). Simulation studies show

its good finite sample performance. Third, we extend the basic threshold regression

model to estimate threshold contours or sample splitting circles by combining estimates

of γ0(·) over the artificially rotated coordinates. Fourth, as an empirical illustration,

we consider (qi, si) as geographic location indices (i.e., latitude and longitude) and

examine the border between Brooklyn and Queens boroughs in New York City. In

particular, we estimate an unknown economic border that splits these two boroughs

by different levels of elasticity to the housing price. The economic border turns out to

be substantially different from the current administrative one.

The rest of the paper is organized as follows. Section 2 summarizes the model and

our estimation procedure. Section 3 derives asymptotic properties of the estimators
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and develops a likelihood ratio test of the threshold function. Section 4 describes how to

extend the main model to estimate a threshold contour. Section 5 studies small sample

properties of the proposed statistics by Monte Carlo simulations. Section 6 applies the

results to the housing price data to identify unknown economic border. Section 7

concludes this paper with some remarks. The main proofs are in the Appendix and all

the omitted proofs are collected in the supplementary material.

We use the following notations. Let →p denote convergence in probability, →d

convergence in distribution, and ⇒ weak convergence of the underlying probability

measure as n→∞. Let brc denote the biggest integer smaller than or equal to r and

1[A] the indicator function of a generic event A. Let ‖B‖ denote the Euclidean norm

of a vector or matrix B, and C a generic constant that may vary over different lines.

2 Nonparametric Threshold Regression

We consider a threshold regression model given by

yi = x>i β0 + x>i δ01 [qi ≤ γ0 (si)] + ui (1)

for i = 1, . . . , n, where (yi, x
>
i , qi, si)

> ∈ R1+p+1+1 are observed but the threshold

function γ0 : R→ R as well as the structural parameters θ0 = (β>0 , δ
>
0 )> ∈ R2p are

unknown.2 The parameters of interest are θ0 and γ0(·).
We estimate this semiparametric model in two steps. First, for given s ∈ S, where

S is a compact subset of the support of si, we fix γ0(s) = γ and obtain β̂ (γ; s) and

δ̂ (γ; s) by local least squares conditional on γ:

(β̂ (γ; s) , δ̂ (γ; s)) = arg min
β,δ

Qn (β, δ, γ; s) , (2)

where

Qn (β, δ, γ; s) =
n∑
i=1

K

(
si − s
bn

)(
yi − x>i β − x>i δ1 [qi ≤ γ]

)2
(3)

for some kernel function K (·) and a bandwidth parameter bn. If we suppose that the

2The main results of this paper can be extended to consider multi-dimensional si using multivariate
kernels. However, we only consider the scalar case for the expositional simplicity. Furthermore, the
results are readily generalized to the case where only a subset of parameters differ between regimes.
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space of γ0 (s) for any s is a compact set Γ ⊂ R,3 then γ0(s) is estimated by

γ̂ (s) = arg min
γ∈Γ

Qn (γ; s)

for given s, where Qn (γ; s) is the concentrated sum of squares defined as

Qn (γ; s) = Qn

(
β̂ (γ; s) , δ̂ (γ; s) , γ; s

)
. (4)

Note that it is basically a constant threshold estimator in the neighborhood of the

given point s. Therefore, γ̂ (s) can be naturally seen as a local version of the standard

(constant) threshold regression estimator.

Second, to estimate the parametric components β0 and δ0, we estimate β0 and

δ∗0 = β0 + δ0 by

β̂ = arg min
β

n∑
i=1

(
yi − x>i β

)2
1
[
qi > γ̂−i (si) + ∆n

]
1[si ∈ S], (5)

δ̂
∗

= arg min
δ∗

n∑
i=1

(
yi − x>i δ∗

)2
1
[
qi < γ̂−i (si)−∆n

]
1[si ∈ S] (6)

for some constant ∆n > 0 satisfying ∆n → 0 as n→∞, which is defined later. We use

the leave-one-out estimator γ̂−i (s) as the first step estimation. The change size δ can

be estimated as δ̂ = δ̂
∗
− β̂.

We first assume the conditions for identification. Let Q be the support of qi.

Assumption ID

(i) E [uixi|qi, si] = 0.

(ii) E
[
xix
>
i

]
> E

[
xix
>
i 1 [qi ≤ γ]

]
> 0 for any γ ∈ Γ.

(iii) For any s ∈ S, there exists ε(s) > 0 such that ε(s) < P (qi ≤ γ0(si)|si = s) <

1− ε(s) and δ>0 E
[
xix
>
i |qi = q, si = s

]
δ0 > 0 for all (q, s) ∈ Q× S.

(iv) qi is continuously distributed and its conditional density f(q|s) is bounded away

from zero for all (q, s) ∈ Q× S.

3When γ0 (s) ∈ Γs ⊂ R for each s, we let Γ be a smallest compact set that includes ∪s∈SΓs.

4



Assumption ID-(i) excludes endogeneity. Assumption ID-(ii) is the rank condition

that yields the identification of the parameters β0 and δ0. Assumption ID-(iii) restricts

that the threshold γ0(s) lies in the interior of the support of qi for any s ∈ S and δ0 6= 0,

which yields that the nonparametric threshold function γ0(·) is identified pointwisely

under Assumption ID-(iv).4

Theorem 1 Under Assumption ID, the threshold function γ0 (·) and the parameters

(β>0 , δ
>
0 )> are uniquely identified.

We allow for cross-sectional dependence in
(
x>i , qi, si, ui

)>
in this paper so that we

can apply the main results to the spatial (or two-dimensional) sampling splitting. More

precisely, we suppose α-mixing over a random field similarly as Bolthausen (1982) and

Jenish and Prucha (2009). We consider the samples over a random expanding lattice

Nn ⊂ R2 endowed with a metric λ (i, j) = max1≤`≤2 |i` − j`| and the corresponding

norm max1≤`≤2 |i`|, where i` denotes the `th component of i. We denote |Nn| as the

cardinality of Nn and ∂Nn = {i ∈ Nn: there exists j 6∈ Nn with λ(i, j) = 1}. We let

|Nn| = n and then the summation in (3) can be written as
∑

i∈Nn . We also define a

mixing coefficient:

α(m) = sup {|P (Ai ∩ Aj)− P (Ai)P (Aj)| : Ai ∈ Fi and Aj ∈ Fj with λ (i, j) ≥ m} ,

(7)

where Fi is the σ-algebra generated by
(
x>i , qi, si, ui

)>
.

We suppose additional conditions for deriving asymptotic properties of the semi-

parametric estimators. Let f (q, s) be the joint density function of (qi, si) and

D (q, s) = E[xix
>
i | (qi, si) = (q, s)], (8)

V (q, s) = E[xix
>
i u

2
i | (qi, si) = (q, s)] (9)

for (q, s) ∈ Q× S ⊂ R2.

4Since the last condition in Assumption ID-(iii) does not require the strict positive definiteness of
E
[
xix
>
i |qi = q, si = s

]
, qi or si can be one of the elements of xi (e.g., threshold autoregressive model,

Tong (1983)) or a linear combination of xi, even when xi includes a constant term.
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Assumption A

(i) The lattice Nn ⊂ R2 is infinite countable; all the elements in Nn are located at

distances at least λ0 > 1 from each other, i.e., for any i, j ∈ Nn : λ (i, j) ≥ λ0;

and limn→∞ |∂Nn| /n = 0.

(ii) δ0 = c0n
−ε for some c0 6= 0 and ε ∈ (0, 1/2);

(
c>0 , β

>
0

)>
belongs to some compact

subset of R2p.

(iii)
(
x>i , qi, si, ui

)>
is stationary and α-mixing with bounded (2 + ϕ)th moments for

some ϕ > 0; the mixing coefficient α(m) defined in (7) satisfies
∑∞

m=1mα(m) <

∞ and
∑∞

m=1m
2α(m)ϕ/(2+ϕ) <∞ for some ϕ ∈ (0, 2).

(iv) 0 < E [u2
i |xi, qi, si] <∞ almost surely.

(v) Uniformly in (q, s), there exists some constant C <∞ such that E[||xi||8 |(qi, si) =

(q, s)] < C and E[||xiui||8 |(qi, si) = (q, s)] < C.

(vi) γ0 : S 7→ Γ is a twice continuously differentiable function with bounded deriva-

tives.

(vii) D (q, s), V (q, s), and f (q, s) are bounded, continuous in q, and twice continu-

ously differentiable in s with bounded derivatives.

(viii) c>0 D (γ0(s), s) c0 > 0, c>0 V (γ0(s), s) c0 > 0, and f (γ0(s), s) > 0 for all s ∈ S.

(ix) As n→∞, bn → 0 and n1−2εbn →∞.

(x) K (·) is uniformly bounded, continuous, symmetric around zero, and satisfies∫
K (v) dv = 0,

∫
v2K (v) dv ∈ (0,∞),

∫
K2(v)dv ∈ (0,∞), and limv→∞ |v|K(v) =

0.

Many of these conditions are similar to Assumption 1 of Hansen (2000). Note

that λ0 in Assumption A-(i) can be any strictly positive value, but we can impose

λ0 > 1 without loss of generality. It is well known that a constant change size leads

to a complicated asymptotic distribution of the threshold estimator, which depends on

nuisance parameters (e.g., Chan (1993)). In Assumption A-(ii), we adopt the widely

used shrinking change size setup as in Bai (1997), Bai and Perron (1998), and Hansen

(2000) to obtain a simpler limiting distribution. The conditions in Assumption A-

(iii) are required to establish the central limit theorem (CLT) for spatially dependent
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random field. The condition on the mixing coefficient is slightly stronger than that

of Bolthausen (1982). This is because we need to control for the dependence within

the local neighborhood in kernel estimation. When α(m) decays at an exponential

rate, these conditions are readily satisfied. When α(m) decays at a polynomial rate

(i.e., α(m) ≤ Cαm
−k for some k > 0), we need some restrictions on k and ϕ to satisfy

these conditions, such as k > 3(2 + ϕ)/ϕ. Note that f (γ0(s), s) and the marginal

density fs (s) are both strictly positive for all s ∈ S from Assumption A-(viii). In

practice, we choose S such that their estimates are bounded away from zero in finite

samples. Assumptions A-(ix) and (x) are standard in the kernel estimation literature,

except that the magnitude of the bandwidth bn depends on not only n but also ε. The

conditions in A-(x) holds for the most of the kernel functions including the Gaussian

kernel and the kernels with bounded supports.

It is important to note that we suppose γ0 as a function from S to Γ in Assumption

A-(vi), which is not necessarily one-to-one. For this reason, sample splitting based on

1 [qi ≤ γ0 (si)] can be different from that based on 1 [si ≥ γ̆0 (qi)] for some function γ̆0.

Instead of restricting γ0 be one-to-one in this paper, for the identification purpose, we

presume that we know which variables should be respectively assigned as qi and si from

the context. In Section 4, however, we discuss how to relax this point and to identify

a convex threshold contour as an extreme case.

3 Asymptotic Results

We first obtain the asymptotic properties of the nonparametric estimator γ̂ (s). The

following theorem derives the pointwise consistency and the pointwise rate of conver-

gence.

Theorem 2 For a given s ∈ S, under Assumptions ID and A, γ̂ (s) →p γ0 (s) as

n→∞. Furthermore,

γ̂ (s)− γ0 (s) = Op

(
1

n1−2εbn

)
provided that n1−2εb2

n does not diverge.

The pointwise rate of convergence of γ̂ (s) depends on two parameters, ε and bn.

It is decreasing in ε like the parametric (constant) threshold case: a larger ε reduces
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the threshold effect δ0 = c0n
−ε and hence decreases effective sampling information on

the threshold. Since we estimate γ0(·) using the kernel estimation method, the rate of

convergence depends on the bandwidth bn as well. As in the standard kernel estimator

case, a smaller bandwidth decreases the effective local sample size, which reduces the

precision of the estimator γ̂ (s). Therefore, in order to have a sufficient level of rate of

convergence, we need to choose bn large enough when the threshold effect δ0 is expected

to be small (i.e., when ε is close to 1/2).

Unlike the standard kernel estimator, there appears no bias-variance trade-off in

γ̂ (s) as we further discuss after Theorem 3. It thus seems like that we can improve the

rate of convergence by choosing a larger bandwidth bn. However, bn cannot be chosen

too large to result in n1−2εb2
n → ∞, because n1−2εbn(γ̂ (s) − γ0 (s)) is no longer Op(1)

in that case. Therefore, we can use the restriction n1−2εb2
n → % for some % ∈ (0,∞) to

obtain the optimal bandwidth.

Under the choice that n1−2εb2
n → % ∈ (0,∞), the optimal bandwidth can be chosen

such that b∗n = n−(1−2ε)/2c∗ for some constant 0 < c∗ < ∞. This b∗n provides the

fastest convergence rate. Using this optimal bandwidth, the optimal pointwise rate of

convergence of γ̂ (s) is then given as n−(1−2ε)/2. However, such a bandwidth choice is

not feasible in practice since the constant term c∗ is unknown, which also depends on

the nuisance parameter ε that is not estimable. In practice, we suggest cross-validation

as we implement in Section 6, although its statistical properties need to be studied

further.5

The next theorem derives the limiting distribution of γ̂ (s). We let W (·) be a

two-sided Brownian motion defined as in Hansen (2000):

W (r) = W1(−r)1 [r < 0] +W2(r)1 [r > 0] , (10)

where W1(·) and W2(·) are independent standard Brownian motions on [0,∞).

Theorem 3 Under Assumptions ID and A, for a given s ∈ S, if n1−2εb2
n → % ∈ (0,∞),

n1−2εbn (γ̂ (s)− γ0 (s))→d ξ (s) arg max
r∈R

(W (r) + µ (r, %; s)) (11)

5If ε is close to zero, the rate of convergence of γ̂ (s) is close to n−1/2. Such fast convergence rate
requires infinite order of smoothness in the standard kernel regressions. In contrast, we only require
the second-order differentiability in this nonparametric threshold model.
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as n→∞, where

µ (r, %; s) = − |r|ψ1 (r, %; s) + %ψ2 (r, %; s) ,

ψ1 (r, %; s) =

∫ ξ(s)|r|/(%|γ̇0(s)|)

0

K (t) dt,

ψ2 (r, %; s) = ξ(s) |γ̇0(s)|
∫ ξ(s)|r|/(%|γ̇0(s)|)

0

tK (t) dt,

and

ξ (s) =
κ2c
>
0 V (γ0 (s) , s) c0(

c>0 D (γ0 (s) , s) c0

)2
f (γ0 (s) , s)

with κ2 =
∫
K(v)2dv and γ̇0 (s) is the first derivative of γ0 at s. Furthermore,

E [arg maxr∈R (W (r) + µ (r, %; s))] = 0.

The drift term µ (r, %; s) in (11) depends on %, the limit of n1−2εb2
n = (n1−2εbn)bn,

and |γ̇0(s)|, the steepness of γ0(·) at s. Interestingly, it resembles the typical O(bn)

boundary bias of the standard local constant estimator even when s belongs to the

interior of the support of si, which is from the inequality restriction in the indicator

function of the threshold regression.

However, having this non-zero drift term in the limiting expression does not mean

that the limiting distribution of γ̂ (s) itself has a non-zero mean even when we use the

optimal bandwidth b∗n = O(n−(1−2ε)/2) satisfying n1−2εb∗2n → % ∈ (0,∞). This is mainly

because the drift function µ (r, %; s) is symmetric about zero and hence the limiting

random variable arg maxr∈R (W (r) + µ (r, %; s)) is mean zero. In particular, we can

show that the random variable arg maxr∈R (W (r) + µ (r, %; s)) always has zero mean

if µ (r, %; s) is a non-random function that is symmetric about zero and monotonically

decreasing fast enough. This result might be of independent research interest and

is summarized in Lemma A.9 in the Appendix. Figure 1 depicts the drift function

µ (r, %; s) for various kernels when |γ̇0(s)| = 1 and % = 1.

Since the limiting distribution in (11) depends on unknown components, like % and

γ̇0(s), it is hard to use this result for further inference. We instead suggest under-

smoothing for practical use. More precisely, if we suppose n1−2εb2
n → 0 as n → ∞,
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Figure 1: Drift Function

then the limiting distribution in (11) simplifies to6

n1−2εbn (γ̂ (s)− γ0 (s))→d ξ (s) arg max
r∈R

(
W (r)− |r|

2

)
(12)

as n→∞, which appears the same as in the parametric case in Hansen (2000) except

for the scaling factor n1−2εbn. The distribution of arg maxr∈R (W (r)− |r| /2) is known

(e.g., Bhattacharya and Brockwell (1976) and Bai (1997)), which is also described in

Hansen (2000, p.581). The term ξ (s) determines the scale of the distribution at given

s: it increases in the conditional variance E [u2
i |xi, qi, si]; and decreases in the size of

the threshold constant c0 and the density of (qi, si) near the threshold.

Even when n1−2εb2
n → 0 as n→∞, the asymptotic distribution in (12) still depends

on the unknown parameter ε (or equivalently c0) in ξ (s) that is not estimable. Thus,

this result cannot be directly used for inference of γ0 (s). Alternatively, given any

s ∈ S, we can consider a pointwise likelihood ratio test statistic for

H0 : γ0 (s) = γ∗ (s) against H1 : γ0 (s) 6= γ∗ (s) (13)

6We let ψ1 (r, 0; s) =
∫∞
0
K (t) dt = 1/2.
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for a fixed s ∈ S, which is given as

LRn(s) =
n∑
i=1

K

(
si − s
bn

)
Qn (γ∗ (s) , s)−Qn (γ̂ (s) , s)

Qn (γ̂ (s) , s)
. (14)

The following corollary obtains the limiting null distribution of this test statistic that

is free of nuisance parameters. Using the likelihood ratio statistic inversion approach,

we can form a pointwise asymptotic confidence interval of γ0 (s).

Corollary 1 Suppose n1−2εb2
n → 0 as n→∞. Under the same condition in Theorem

3, for any fixed s ∈ S, the test statistic in (14) satisfies

LRn(s)→d ξLR (s) max
r∈R

(2W (r)− |r|) (15)

as n→∞ under the hull hypothesis (13), where

ξLR (s) =
κ2c
>
0 V (γ0 (s) , s) c0

σ2(s)c>0 D (γ0 (s) , s) c0

with σ2(s) = E [u2
i |si = s] and κ2 =

∫
K(v)2dv.

When E [u2
i |xi, qi, si] = E [u2

i |si], which is the case of local conditional homoskedas-

ticity, the scale parameter ξLR (s) is simplified as κ2, and hence the limiting null dis-

tribution of LRn(s) becomes free of nuisance parameters and the same for all s ∈ S.

Though this limiting distribution is still nonstandard, the critical values in this case can

be obtained using the same method as Hansen (2000, p.582) with the scale adjusted

by κ2. More precisely, since the distribution function of ζ = maxr∈R (2W (r)− |r|)
is given as P(ζ ≤ z) = (1 − e−z/2)21 [z ≥ 0], the distribution function of ζ∗ = κ2ζ

is P(ζ∗ ≤ z) = (1 − e−z/2κ2)21 [z ≥ 0], where ζ∗ is the limiting random variable of

LRn(s) given in (15) under the local conditional homoskedasticity. By inverting it,

we can obtain the asymptotic critical values given a choice of K(·). For instance,

the asymptotic critical values for the Gaussian kernel is reported in Table 1, where

κ2 = (2
√
π)−1 ' 0.2821 in this case.
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Table 1: Simulated Critical Values of the LR Test (Gaussian Kernel)

P(ζ∗ > cv) 0.800 0.850 0.900 0.925 0.950 0.975 0.990

cv 1.268 1.439 1.675 1.842 2.074 2.469 2.988

Note: ζ∗ is the limiting distribution of LRn(s) under the local conditional homoskedasticity. The

Gaussian kernel is used.

In general, we can estimate ξLR (s) by

ξ̂LR (s) =
κ2δ̂

>
V̂ (γ̂ (s) , s) δ̂

σ̂2(s)δ̂
>
D̂ (γ̂ (s) , s) δ̂

where δ̂ is from (5) and (6), and σ̂2(s), D̂ (γ̂ (s) , s), and V̂ (γ̂ (s) , s) are the standard

Nadaraya-Watson estimators. In particular, we let σ̂2(s) =
∑n

i=1 ω1i(s)û
2
i with ûi =

yi − x>i β̂ − x>i δ̂1 [qi ≤ γ̂ (si)],

D̂ (γ̂ (s) , s) =
n∑
i=1

ω2i(s)xix
>
i , and V̂ (γ̂ (s) , s) =

n∑
i=1

ω2i(s)xix
>
i û

2
i ,

where

ω1i(s) =
K ((si − s)/bn)∑n
j=1K ((sj − s)/bn)

and ω2i(s) =
K ((qi − γ̂ (s))/b′n, (si − s)/b′′n)∑n
j=1 K ((qj − γ̂ (s))/b′n, (sj − s)/b′′n)

for some bivariate kernel function K(·, ·) and bandwidth parameters (b′n, b
′′
n).

Finally, we show the
√
n-consistency of the semiparametric estimators β̂ and δ̂

∗
in

(5) and (6). For this purpose, we first obtain the uniform rate of convergence of γ̂ (s).

Theorem 4 Under Assumptions ID and A,

sup
s∈S
|γ̂ (s)− γ0 (s)| = Op

(
log n

n1−2εbn

)

provided that n1−2εb2
n does not diverge.

Apparently, the uniform consistency of γ̂ (s) follows provided log n/(n1−2εbn) → 0.
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Based on this uniform convergence, the following theorem derives the joint limiting

distribution of β̂ and δ̂
∗
. We let θ̂

∗
= (β̂

>
, δ̂
∗>

)> and θ∗0 = (β>0 , δ
∗>
0 )>.

Theorem 5 Suppose the conditions in Theorem 4 hold and log n/(n1−2εbn) → 0 as

n → ∞. If we let ∆n > 0 such that ∆n → 0, {log n/(n1−2εbn)}/∆n → 0 as n → ∞,

we have
√
n
(
θ̂
∗
− θ∗0

)
→d N

(
0,Λ∗−1Ω∗Λ∗−1

)
(16)

as n→∞, where

Λ∗ =

 E
[
xix
>
i 1

+
i

]
0

0 E
[
xix
>
i 1
−
i

]
 and Ω∗ = lim

n→∞
n−1V ar

 ∑n

i=1
xiui1

+
i∑n

i=1
xiui1

−
i


with 1+

i = 1[qi > γ0(si)]1[si ∈ S] and 1−i = 1[qi < γ0(si)]1[si ∈ S].

Note that we do not use the conventional plug-in semiparametric least squares esti-

mators, arg minβ,δ
∑n

i=1

(
yi − x>i β − x>i δ1

[
qi ≤ γ̂−i (si)

])2
1[si ∈ S]. The reason why

we propose an alternative estimation approach here is that this conventional semipara-

metric least square estimators may not be asymptotically orthogonal to the first-step

nonparametric estimator when n1−2εb2
n → % ∈ (0,∞) as n → ∞, though they are

still consistent. This is because the first-step nonparametric estimator γ̂ (s) could have

very slow rate of convergence, and the estimation error will affect the limiting dis-

tribution of the second stage parametric estimators. The new estimation idea above,

however, only uses the observations that are not affected by the estimation error in

the first-step nonparametric estimator. This is done by choosing a large enough ∆n in

(5) and (6) such that the observations are outside the uniform convergence bound of

|γ̂ (s)− γ0 (s)|. Thanks to the threshold regression structure, we then can estimate the

parameters on each side of the threshold even using these subsamples. However, we

also want ∆n → 0 fast enough so that more observations are included in estimation.

The estimator (β̂
>
, δ̂
∗>

)> or equivalently (β̂
>
, δ̂
>

)> thus satisfies the Neyman or-

thogonality condition (e.g., Assumption N(c) in Andrews (1994)), that is, replacing γ̂

by the true γ0 in estimating the parametric component has an effect at most op(n
−1/2)

in their limiting distribution. Though we lose some efficiency in finite samples, we can

13



derive the asymptotic normality of (β̂
>
, δ̂
>

)> that has mean zero and achieves the same

asymptotic variance as if γ0(·) was known.

Using the delta method, we can readily obtain the limiting distribution of θ̂ =

(β̂
>
, δ̂
>

)> as
√
n
(
θ̂ − θ0

)
→d N

(
0,Λ−1ΩΛ−1

)
as n→∞, (17)

where θ0 = (β>0 , δ
>
0 )>, Λ = E

[
ziz
>
i 1 [si ∈ S]

]
, and Ω = limn→∞ n

−1V ar[
∑n

i=1 ziui1 [si ∈ S]]

with zi =
[
x>i , x

>
i 1 [qi ≤ γ0 (si)]

]>
. The asymptotic variance expressions in (16) and

(17) allow for cross-sectional dependence as they have the long-run variance forms Ω∗

and Ω. They can be consistently estimated by the spatial HAC estimator of Conley

and Molinari (2007) using ûi = {yi − x>i β̂ − x>i δ̂1
[
qi ≤ γ̂−i (si)

]
}1[si ∈ S]. The terms

Λ∗ and Λ can be estimated by their sample analogues.

4 Threshold Contour

When we consider sample splitting over a two-dimensional space (i.e., qi and si respec-

tively correspond to the latitude and longitude on the map), the threshold model (1)

can be generalized to estimate a nonparametric contour threshold model:

yi = x>i β0 + x>i δ01 [m0 (qi, si) ≤ 0] + ui, (18)

where the unknown function m0 : Q × S 7→ R determines the contour on a random

field. An interesting example includes identifying an unknown closed boundary over

the map, such as a city boundary relative to some city center, and an area of a disease

outbreak or airborne pollution. In social science, it can identify a group boundary

or a region in which the agents share common demographic, political, or economic

characteristics.

To relate this generalized form to the original threshold model (1), we suppose

there exists a known center at (q∗i , s
∗
i ) such that m0 (q∗i , s

∗
i ) < 0. Without loss of

generality, we can normalize (q∗i , s
∗
i ) to be (0, 0) and re-center all other observations

{qi, si}ni=1 accordingly. In addition, we define the radius distance li and angle a◦i of the

14



Figure 2: Illustration of Rotation

ith observation relative to the origin as

li =
√
q2
i + s2

i ,

a◦i = ā◦i Ii + (180◦ − ā◦i ) IIi + (180◦ + ā◦i ) IIIi + (360◦ − ā◦i ) IVi,

where ā◦i = arctan (|qi/si|), and each of (Ii, IIi, IIIi, IVi) respectively denotes the indi-

cator that the ith observation locates in the first, second, third, and forth quadrant.

We suppose that there is only one breakpoint at any angle and the threshold contour

is convex. For each fixed a◦ ∈ [0◦, 360◦), we rotate the original coordinate counterclock-

wise and implement the least squares estimation (4) only using the observations in the

first two quadrants after rotation. Note that using the observations in the first two

quadrants ensures that the threhold mapping after rotation is a well-defined function.

In particular, the angle relative to the origin is a◦i −a◦ after rotating the coordinate

by a◦ degrees counterclockwise, and the new location (after the rotation) is given as

(qi (a
◦) , si (a

◦)), where

(
qi (a

◦)

si (a
◦)

)
=

(
qi cos (a◦)− si sin (a◦)

si cos (a◦) + qi sin (a◦)

)
.

After this rotation, we estimate the following nonparametric threshold model:

yi = x>i β0 + x>i δ01 [qi (a
◦) ≤ γa◦ (si (a

◦))] + ui (19)

using only the observations satisfying qi (a
◦) ≥ 0, where γa◦ (·) serves as the un-

15



known threshold line as in the model (1) in the a◦-degree-rotated coordinate. Such

reparametrization guarantees that γa◦ (·) is always positive and we estimate its value

pointwisely at 0. Figure 2 illustrates the idea of such rotation and pointwise estimation

over a bounded support so that only the red cross points are included for estimation

at different angles. Thus, the estimation and inference procedure developed before is

directly applicable, though we expect efficiency loss as we only use a subsample in

estimation at each rotated coordinate.

This rotating coordinate idea can be a quick solution when we do not know which

variables should be assigned as qi versus si, in the original model (1). As an extreme

example, if γ0 is the vertical line, the original model does not work. In this case,

we can check if γ0 is (near) the vertical line by investigating the estimates among

different rotations; when γ0 is suspected as the vertical line or has a very steep slope,

we can switch qi and si in the original model (1) to improve the local constant fitting.

In addition, this idea can be also used as a robustness check of a threshold function

estimate. As we demonstrate in Section 6, if γ0 is a well-behaving function as in

Assumption A, we should have similar estimates even after rotations to some angles

when we use the entire sample for each rotation. In the robustness check, the rotation

angle has to be within±90◦ unless the mapping from si to qi is deemed to be one-to-one.

5 Monte Carlo Experiments

We examine the small sample performance of the semiparametric threshold regression

estimator by Monte Carlo simulations. We generate n draws from

yi = X>i β0 +X>i δ01 [qi ≤ γ0 (si)] + ui, (20)

where Xi = (1, xi)
> and xi ∈ R. We let β0 = (β01, β02)> = 0ι2 and consider three

different values of δ0 = (δ01, δ02)> = 1ι2, 2ι2, and 3ι2, where ι2 = (1, 1)>. For the

threshold function, we let γ0 (s) = sin(s)/2. We consider the cross-sectional dependence

structure in (xi, qi, si, ui)
> as follows:


(qi, si)

> ∼ iidN (0, I2) ;

xi| (qi, si) ∼ iidN (0, (1 + ρ (s2
i + q2

i ))
−1) ;

u|{(xi, qi, si)}ni=1 ∼ N (0,Σ) ,

(21)
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Table 2: Rej. Prob. of the LR Test with i.i.d. Data

s = 0.0 s = 0.5 s = 1.0
n δ02=1 2 3 4 1 2 3 4 1 2 3 4

100 0.14 0.06 0.05 0.05 0.16 0.07 0.05 0.05 0.25 0.18 0.14 0.13

200 0.08 0.03 0.02 0.02 0.08 0.04 0.02 0.02 0.15 0.10 0.06 0.06

500 0.05 0.01 0.02 0.02 0.05 0.02 0.02 0.02 0.09 0.05 0.03 0.01

Note: Entries are rejection probabilities of the LR test (14) when data are generated from (20) with

γ0 (s) = sin(s)/2. The dependence structure is given in (21) with ρ = 0. The significance level is 5%

and the results are based on 1000 simulations.

Table 3: Rej. Prob. of the LR Test with Cross-sectionally Correlated Data

s = 0.0 s = 0.5 s = 1.0
n δ02=1 2 3 4 1 2 3 4 1 2 3 4

100 0.19 0.10 0.07 0.03 0.20 0.10 0.08 0.07 0.28 0.19 0.17 0.11

200 0.10 0.04 0.03 0.03 0.12 0.07 0.04 0.04 0.21 0.11 0.08 0.04

500 0.05 0.02 0.02 0.02 0.06 0.03 0.02 0.02 0.14 0.05 0.03 0.03

Note: Entries are rejection probabilities of the LR test (14) when data are generated from (20) with

γ0 (s) = sin(s)/2. The dependence structure is given in (21) with ρ = 1 and m = 10. The significance

level is 5% and the results are based on 1000 simulations.

where u = (u1, . . . , un)>. The (i, j)-th element of Σ is Σij = ρb`ijnc1[`ij < m/n], where

`ij = {(si − sj)2+(qi − qj)2}1/2 is the L2-distance between the ith and jth observations.

The diagonal elements of Σ are normalized as Σii = 1. This m-dependent setup follows

from the Monte Carlo experiment in Conley and Molinari (2007) in the sense that

there are roughly at most 2m2 observations that are correlated with each observation.

Within the m distance, the dependence decays at a polynomial rate as indicated by

ρb`ijnc. The parameter ρ describes the strength of cross-sectional dependence in the way

that a larger ρ leads to stronger dependence relative to the unit standard deviation. In

particular, we consider the cases with ρ = 0 (i.e., i.i.d. observations), 0.5, and 1. We

consider the sample size n = 100, 200, and 500.

First, Tables 2 and 3 report the small sample rejection probabilities of the LR test

in (14) for H0 : γ0(s) = sin(s)/2 against H1 : γ0(s) 6= sin(s)/2 at 5% nominal level

at three different locations s = 0, 0.5, and 1. In particular, Table 2 examines the

case with no cross-sectional dependence (ρ = 0), while Table 3 examines the case with

cross-sectional dependence whose dependence decays slowly with ρ = 1 and m = 10.
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Table 4: Coverage Prob. of the Plug-in Confidence Interval

β20 β20 + δ20 δ20

n δ02=1 2 3 4 1 2 3 4 1 2 3 4

100 0.85 0.89 0.91 0.87 0.87 0.87 0.89 0.90 0.85 0.87 0.93 0.91

200 0.86 0.90 0.93 0.93 0.89 0.92 0.94 0.93 0.85 0.90 0.93 0.92

500 0.83 0.92 0.95 0.96 0.84 0.90 0.93 0.94 0.78 0.88 0.93 0.95

Note: Entries are coverage probabilities of 95% confidence intervals for β02 and δ02 based on

asymptotic normality and plugging in γ̂ (si) for γ0 (si). Data are generated from (20) with

γ0 (s) = sin(s)/2, where the dependence structure is given in (21) with ρ = 0.5 and m = 3. The

results are based on 1000 simulations.

Table 5: Coverage Prob. of the Plug-in Confidence Interval (w/ LRV adj.)

β20 β20 + δ20 δ20

n δ02=1 2 3 4 1 2 3 4 1 2 3 4

100 0.92 0.95 0.94 0.95 0.91 0.95 0.94 0.95 0.93 0.95 0.95 0.95

200 0.93 0.95 0.97 0.96 0.94 0.94 0.95 0.96 0.90 0.93 0.97 0.94

500 0.89 0.95 0.97 0.97 0.89 0.96 0.97 0.97 0.84 0.92 0.95 0.97

Note: Entries are coverage probabilities of 95% confidence intervals for β02 and δ02 based on

asymptotic normality, plugging in γ̂ (si) for γ0 (si), and a small sample adjustment of the LRV

estimator. Data are generated from (20) with γ0 (s) = sin(s)/2, where the dependence structure is

given in (21) with ρ = 0.5 and m = 3. The results are based on 1000 simulations.

For the bandwidth parameter, we normalize si and qi to have mean zero and unit

standard deviation and choose bn = 0.5n−1/2 in the main regression. This choice is for

undersmoothing as n1−2εb2
n = n−2ε → 0. To estimate D (γ0 (s) , s) and V (γ0 (s) , s),

we use the rule-of-thumb bandwidths from the standard kernel regression satisfying

b′n = O(n−1/5) and b′′n = O(n−1/6). All the results are based on 1000 simulations.

In general, the test for γ0 performs better as (i) the sample size gets larger; (ii) the

coefficient change gets more significant; (iii) the cross-sectional dependence gets weaker;

and (iv) the target gets closer to the mid-support of s. When δ0 and n are large, the

LR test is conservative, which is also found in the classic threshold regression case

(Hansen (2000)).

Second, Table 4 shows the finite sample coverage properties of the 95% confidence

intervals for the parametric components β02, δ∗02 = β02 + δ02, and δ02. The results are

based on the same simulation design as above with ρ = 0.5 and m = 3. Regarding
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the tuning parameters, we use the same bandwidth choice bn = 0.5n−1/2 as before

and set the truncation parameter ∆n = (nbn)−1/2. Unreported results suggest that

choice of the constant in the bandwidth matters particularly with small samples like

n = 100, but such effect quickly decays as the sample size gets larger. For the lag

number required for the HAC estimator, we use the spatial lag order of 5 following

Conley and Molinari (2007). Results with other lag choices are similar and hence

omitted. The result suggests that the asymptotic normality is better approximated

with larger samples and larger change sizes. Table 5 shows the same results with a

small sample adjustment of the LRV estimator for Ω∗ by dividing it by the sample

truncation fraction
∑n

i=1(1[qi > γ̂(si)] + 1[qi < γ̂(si)])1[si ∈ S]/
∑n

i=1 1[si ∈ S]. This

ratio enlarges the LRV estimator and hence the coverage probabilities, especially when

the change size is small. It only affects the finite sample performance as it approaches

one in probability as n→∞.

6 Empirical illustration

As an illustration of the nonparametric threshold, we study the economic border be-

tween the Queens and the Brooklyn boroughs in New York City. The current admin-

istrative border is determined in 1931 using coordinates suggested by multiple federal

agencies but ignores the rapid development in the city. Some part of it now even runs

through houses, causing troubles for policy maker and local residents.7 We collect the

single family house sales data in the year 2017 and examine an economic border in-

duced by a nonparametric threshold regression model.8 In particular, we consider the

model (1) with the following variables:9

7Pictures of the confusing border are available at https://urbanomnibus.net/2015/01/borderlands-
traveling-the-brooklyn-queens-divide/

8The data set (Rolling Sales Data) is available at http://www1.nyc.gov/site/finance/taxes/property-
rolling-sales-data.page.

9“Gross Square Footage” is the total area of all the floors of a building as measured from the exte-
rior surfaces of the outside walls of the building, including the land area and space within any building
or structure on the property. (Source: http://www1.nyc.gov/assets/finance/downloads/pdf/07pdf/
glossary rsf071607.pdf)
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Figure 3: Border Estimation in NYC

yi : log house price (in $)

xi : constant

log of Gross Square Footage (in ft2)

dummy for built before 1945, WWII

qi : (rotated) latitude

si : (rotated) longitude

For the pair (qi, si), we consider two cases: the original latitude–longitude on the map;

and the “rotated” latitude–longitude relative to the middle point of the administrative

border. The rotation method is described in Section 4, where we choose the rotation

angle as the slope of the linear regression line approximating the administrative border.

We focus on single family houses under property tax Class 1, accounting for 57.9% of

the original sample, and drop duplicate observations. The sample size is n = 8121,

including 5966 observations in Queens and 2155 observations in Brooklyn.

Figure 3 depicts the nonparametric threshold function estimates γ̂ based on the

rotated coordinate, which is the “unknown” economic border that splits the Queens

and the Brooklyn boroughs in New York City based on the threshold in housing price.

The estimated border (black solid line) is found to be substantively different from

the administrative border between these two boroughs (orange dot line). Somewhat
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surprisingly, the 95% pointwise confidence interval (blue dash lines) contains the Forest

Park and the Long Island Rail Road (LIRR) route to the east of Jamaica Center

Station. As a robustness check, we also estimate the model by setting (qi, si) as the

original (unrotated) latitude and longitude on the map. The estimated border is very

close to the depicted results.10

We choose the bandwidth bn in the main regression as cn−1/2 and we obtain

the constant c by the cross validation. In particular, we choose c that minimizes∑n
i=1 (yi − ŷi)2 1 [si ∈ S], where ŷi = x>i β̂−i+x

>
i δ̂−i1

[
qi ≤ γ̂−i (si)

]
and (β̂

>
−i, δ̂

>
−i, γ̂−i (·))>

are obtained using the leave-one-out observations as described in Section 2. Here, S
includes the observations between 15th and 85th percentiles of the sample {si}ni=1.

Table 6 summarizes the coefficient estimates for the parametric components, β̂ and

δ̂. The standard errors reported in the parentheses are computed using the spatial

HAC estimator with 5 spatial lags (e.g., Conley and Molinari (2007)). The average

housing price elasticity on the southern side of the economic border is lower than that

on the northern side. The (semi-)elasticity of the Gross Square Footage and the effect

of the house age are slightly larger on the southern side. These patterns are quite

robust to whether we use the rotated coordinate or not. As a comparison, we also run

the experiment using the current administrative border as γ0(·). In particular, the last

two columns in Table 6 suggest that there does not exist a significant coefficient change

if the sample splitting is based on the current existing administrative border.

7 Concluding Remarks

In this paper, we propose a general approach of sample splitting, where multiple vari-

ables can jointly determine the unknown separation boundary. We develop a semi-

parametric threshold regression model over a random field, in which the threshold is

determined by a nonparametric function between two variables. Our approach can be

easily generalized so that the sample splitting depends on more than two variables,

though such extension is subject to curse of dimensionality as usually observed in the

kernel regression literature. The main interest is in identifying the threshold function

resulting in sample splitting, and thus the model developed in this paper should be

10Since γ0(·) is inside of the indicator function, the local constant estimator γ̂ (s) is not smooth
in finite samples. It is also related with the well known phenomenon that the threshold estimate is
not unique in finite samples even in the standard constant threshold model. In particular, we use the
lower bound value of the estimated set as the local constant estimate γ̂ (s).
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Table 6: Estimation Results

Estimated Border Estimated Border Admin Border

(rotated coordinate) (original coordinate)

β̂ δ̂ β̂ δ̂ β̂ δ̂
constant 9.68 -3.24 9.91 -1.08 8.19 -2.95

(0.24)∗∗ (0.35)∗∗ (0.01)∗∗ (0.01)∗∗ (1.24)∗∗ (2.96)

log of Gross ft2 0.53 0.38 0.40 -0.01 0.71 0.39

(0.03)∗∗ (0.05)∗∗ (0.05)∗∗ (0.04) (0.17)∗∗ (0.40)

built before 1945 -0.06 0.10 -0.07 -0.06 -0.19 0.44

(0.02)∗∗ (0.03)∗∗ (0.01)∗∗ (0.01)∗∗ (0.09)∗ (0.26)

Note: Entries are estimates and standard errors of coefficients in the economic border example.

Columns of “Estimated Border” are based on the nonparametric threshold estimates; columns of

“Admin Border” are based on the current administrative border as the threshold function. ∗∗ and ∗

are significant at 1% and 5%, respectively.

distinguished from the smoothed threshold regression model or the random coefficient

regression model.

This new model has high applicability in broad areas studying sample splitting (e.g.,

segregations and group-formation) and heterogeneous effects over different subsamples.

The potential areas include economics, political science, sociology, and marketing sci-

ence, where the agent-specific heterogeneity and social segregation are important; and

regional science and urban economics, where the identification of unobserved/unknown

boundaries is of interest using satellite data.

In practice, we may need a testing procedure to check whether or not the classic

constant threshold model is sufficient to describe a sample splitting phenomenon. In a

companion project, the authors are developing a test for a constant threshold, based on

which the nonparametric threshold developed in this paper can be supported. Unlike

the existing studies that focus on testing no change (i.e., δ0 = 0 in (1)) against one

change, or testing on a fixed number of changes (e.g., Bai and Perron (1998)), we are

developing a test that works for a general null hypothesis of any number of changes

versus nonparametric alternatives.
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A Appendix

A.1 Proof of Theorem 1

Proof of Theorem 1 First, any given γ0(·) = γ ∈ Γ, the parameters β0 and δ0 are

well identified as the unique minimizer of

E
[(
yi − x>i β0 − x>i δ01 [qi ≤ γ]

)2
]

since E
[
zi(γ)zi(γ)>

]
is positive definite under Assumptions ID-(i) and (ii), where

zi(γ) = [x>i , x
>
i 1 [qi ≤ γ]]>. Second, the function γ0 (·) is pointwisely identified as

the minimizer of

E
[(
yi − x>i β0 − x>i δ01 [qi ≤ γ(si)]

)2
∣∣∣ si = s

]
for each s ∈ S. This is because for any γ(s) 6= γ0(s) at si = s and given (β>0 , δ

>
0 )>,

R(β0, δ0, γ(s); s)

= E
[(
yi − x>i β0 − x>i δ01 [qi ≤ γ(si)]

)2
∣∣∣ si = s

]
−E

[(
yi − x>i β0 − x>i δ01 [qi ≤ γ0(si)]

)2
∣∣∣ si = s

]
= δ>0 E

[
xix
>
i (1 [qi ≤ γ(si)]− 1 [qi ≤ γ0(si)])

2
∣∣ si = s

]
δ0

= δ>0 E
[
xix
>
i 1 [min{γ(si), γ0(si)} < qi ≤ max{γ(si), γ0(si)}]

∣∣ si = s
]
δ0

=

∫ max{γ(s),γ0(s)}

min{γ(s),γ0(s)}
δ>0 E

[
xix
>
i

∣∣ qi = q, si = s
]
δ0f(q|s)dq

≥ C(s)P (min{γ(si), γ0(si)} < qi ≤ max{γ(si), γ0(si)}| si = s)

> 0

from Assumptions ID-(i) and (iii), where C(s) = infq∈Q δ
>
0 E
[
xix
>
i

∣∣ qi = q, si = s
]
δ0 >

0. Note that the last probability is strictly positive because we assume f(q|s) > 0

for any (q, s) ∈ Q × S and γ0(s) is not located on the boundary of Q as ε(s) <

P (qi ≤ γ0(si)|si = s) < 1 − ε(s) for some ε(s) > 0. The identification follows since

R(β0, δ0, γ(s); s) is continuous at γ(s) = γ0(s) from Assumption ID-(iv). �

A.2 Proof of Theorem 2

Throughout the proof, we denote Ki (s) = K ((si − s)/bn) and 1i (γ) = 1 [qi ≤ γ]. We

let C ∈ (0,∞) stand for a generic constant term that may vary, which can depend

on the location s. We also let an = n1−2εbn. All the lemmas in the proof assume the

conditions in Assumptions ID and A hold. Omitted proofs for some lemmas are all

collected in the supplementary material.
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For a given s ∈ S, we define

Mn (γ; s) =
1

nbn

n∑
i=1

xix
>
i 1i (γ)Ki (s) ,

Jn (γ; s) =
1√
nbn

n∑
i=1

xiui1i (γ)Ki (s) .

Lemma A.1

sup
γ∈Γ
‖Mn (γ; s)−M (γ; s)‖ →p 0,

sup
γ∈Γ

∥∥n−1/2b−1/2
n Jn (γ; s)

∥∥→p 0

as n→∞, where

M (γ; s) =

∫ γ

−∞
D(q, s)f (q, s) dq

and

Jn (γ; s)⇒ J (γ; s)

a mean-zero Gaussian process indexed by γ.

Proof of Lemma A.1 For expositional simplicity, we only present the case of scalar

xi. We first prove the pointwise convergence of Mn (γ; s). By stationarity, Assumptions

A-(vii), (x), and Taylor expansion, we have

E [Mn (γ; s)] =
1

bn

∫∫
E[x2

i |q, v]1[q ≤ γ]K

(
v − s
bn

)
f (q, v) dqdv (A.1)

=

∫∫
D(q, s+ bnt)1[q ≤ γ]K (t) f (q, s+ bnt) dqdt

=

∫ γ

−∞
D(q, s)f (q, s) dq +O

(
b2
n

)
,

where D(q, s) is defined in (8). For the variance, we have

V ar [Mn (γ; s)] =
1

n2b2
n

E

( n∑
i=1

{
x2
i1i (γ)Ki (s)− E

[
x2
i1i (γ)Ki (s)

]})2
(A.2)

=
1

nb2
n

E
[{
x2
i1i (γ)Ki (s)− E

[
x2
i1i (γ)Ki (s)

]}2
]

+
2

n2b2
n

n∑
i<j

Cov
[
x2
i1i (γ)Ki (s) , x

2
j1j (γ)Kj (s)

]
= O

(
1

nbn

)
+O

(
1

n
+ b2

n

)
→ 0,
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where the order of the first term is from the standard kernel estimation result. For the

second term, we use Assumptions A-(v), (vii), (x), and Lemma 1 of Bolthausen (1982)

to obtain that∣∣∣∣∣ 1n
n∑
i<j

Cov
[
x2
i1i (γ)Ki (s) , x

2
j1j (γ)Kj (s)

]∣∣∣∣∣ (A.3)

≤ 1

n

n∑
i<j

∣∣∣∣Cov [x2
i1i (γ)K

(
si − s
bn

)
, x2

j1j (γ)K

(
sj − s
bn

)]∣∣∣∣
=

b2
n

n

n∑
i<j

∣∣Cov [x2
i1i (γ)K (ti) , x

2
j1j (γ)K (tj)

]
+O

(
b2
n

)∣∣
≤ Cb2

n

∞∑
m=1

mα (m)ϕ/(2+ϕ) (E [x4+2ϕ
i 1i (γ)K (ti)

2+ϕ])2/(2+ϕ)
+O

(
nb4

n

)
= O

(
b2
n + nb4

n

)
for some finite ϕ > 0, where α (m) is the mixing coefficient defined in (7) and the first

equality is by the change of variables ti = (si−s)/bn in the covariance operator. Hence,

the pointwise convergence is established. For given s, the uniform tightness of Mn (γ; s)

in γ follows similarly as (and even simpler than) that of Jn (γ; s) below, and the uniform

convergence follows from standard argument. For Jn (γ; s), since E [uixi|qi, si] = 0, the

proof for supγ∈Γ |(nbn)−1/2Jn (γ, s) | p→ 0 is identical as Mn (γ; s) and hence omitted.

Next, we derive the weak convergence of Jn (γ; s). For any fixed s and γ, the

Theorem of Bolthausen (1982) implies that Jn (γ; s) ⇒ J (γ; s) under Assumption A-

(iii). Because γ is in the indicator function, such pointwise convergence in γ can be

generalized into any finite collection of γ to yield the finite dimensional convergence in

distribution. By theorem 15.5 of Billingsley (1968), it remains to show that, for each

positive η(s) and ε(s) at given s, there exist $ > 0 such that if n is large enough,

P

(
sup

γ∈[γ1,γ1+$]

|Jn (γ; s)− Jn (γ1; s)| > η(s)

)
≤ ε(s)$

for any γ1. To this end, we consider a fine enough grid over [γ1, γ1 +$] such that γg =

γ1+(g−1)$/g for g = 1, . . . , g+1, where nbn$/2 ≤ g ≤ nbn$ and max1≤g≤g
(
γg − γg−1

)
≤

$/g. We define hig(s) = xiuiKi (s)1
[
γg < qi ≤ γg+1

]
andHng(s) = n−1b−1

n

∑n

i=1
|hig(s)|

for 1 ≤ g ≤ g. Then for any γ ∈
[
γg, γg+1

]
,∣∣Jn (γ; s)− Jn

(
γg; s

)∣∣ ≤ √
nbnHng(s)

≤
√
nbn |Hng(s)− E [Hng(s)]|+

√
nbnE [Hng(s)]
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and hence

sup
γ∈[γ1,γ1+$]

|Jn (γ; s)− Jn (γ1; s)|

≤ max
2≤g≤g+1

∣∣Jn (γg; s)− Jn (γ1; s)
∣∣

+ max
1≤g≤g

√
nbn |Hng(s)− E [Hng(s)]|+ max

1≤g≤g

√
nbnE [Hng(s)]

≡ Ψ1(s) + Ψ2(s) + Ψ3(s).

In what follows, we simply denote hi(s) = xiuiKi (s)1
[
γg < qi ≤ γk

]
for any given

1 ≤ g < k ≤ g and for fixed s. First, for Ψ1(s), we have

E
[∣∣Jn (γg; s)− Jn (γk; s)

∣∣4]
=

1

n2b2
n

n∑
i=1

E
[
h4
i (s)

]
+

1

n2b2
n

n∑
i 6=j

E
[
h2
i (s)h

2
j(s)

]
+

1

n2b2
n

n∑
i 6=j

E
[
h3
i (s)hj(s)

]
+

1

n2b2
n

n∑
i 6=j 6=k 6=l

E [hi(s)hj(s)hk(s)hl(s)] +
1

n2b2
n

n∑
i 6=j 6=k

E
[
h2
i (s)hj(s)hk(s)

]
≡ Ψ11(s) + Ψ12(s) + Ψ13(s) + Ψ14(s) + Ψ15(s),

where each term’s bound is obtained as follows. For Ψ11(s), a straightforward cal-

culation and Assumptions A-(v) and (x) yield Ψ11(s) ≤ C1(s)n−1b−1
n + O(bn/n) =

O(n−1b−1
n ) for some constant 0 < C1(s) <∞. For Ψ12(s), similarly as (A.3),

Ψ12(s) ≤ 2

n2b2
n

n∑
i<j

(
E
[
h2
i (s)

]
E
[
h2
j(s)

]
+
∣∣Cov [h2

i (s), h
2
j(s)

]∣∣) (A.4)

≤ 2
(
E
[
h̃2
i

])2

+
2

nb2
n

{
Cb2

n

∞∑
m=1

mα (m)ϕ/(2+ϕ)
(
E
[
h̃4+2ϕ
i

])2/(2+ϕ)

+O
(
nb4

n

)}

for some ϕ > 0 that depends on s, where we let h̃i = xiuiK (ti)1
[
γg < qi ≤ γk

]
from

the change of variables ti = (si − s)/bn. Then, by the stationarity, Cauchy-Schwarz

inequality, and Lemma 1 of Bolthausen (1982), we have

Ψ12(s) ≤ C ′
(
γk − γg

)2
+O(n−1) +O(b2

n).

for some constant 0 < C ′ <∞. Using the same argument as the second component in
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(A.4), we can also show that Ψ13(s) = O(n−1) +O(b2
n). For Ψ14(s), by stationarity,

Ψ14(s) ≤ 4!n

n2b2
n

n∑
1<i<j<k

|E [h1(s)hi(s)hj(s)hk(s)]|

≤ 4!

nb2
n

n∑
i=1

∑
j,k≤i

|Cov [h1(s), hi+1(s)hi+j+1(s)hi+j+k+1(s)]| (A.5)

+
4!

nb2
n

n∑
j=1

∑
i,k≤j

|Cov [h1(s)hi+1(s), hi+j+1(s)hi+j+k+1(s)]|

+
4!

nb2
n

n∑
k=1

∑
i,j≤k

|Cov [h1(s), hi+1(s)hi+j+1(s), hi+j+k+1(s)]|

similarly as Billingsley (1968), p.173. By Assumptions A-(v), (vii), (x), and Lemma 1

of Bolthausen (1982),

|Cov [h1(s), hi+1(s)hi+j+1(s)hi+j+k+1(s)]|
≤ Cα (i)ϕ/(2+ϕ)

×
(
E
[
h1(s)2+ϕ

])1/(2+ϕ) (E [(hi+1(s)hi+j+1(s)hi+j+k+1(s))2+ϕ])1/(2+ϕ)

= Cα (i)ϕ/(2+ϕ)

×
(
bn

{
E
[
h̃2+ϕ

1

]
+O

(
b2
n

)})1/(2+ϕ)
(
b3
n

{
E
[(
h̃i+1h̃i+j+1h̃i+j+k+1

)2+ϕ
]

+O
(
b2
n

)})1/(2+ϕ)

= Cb4/(2+ϕ)
n α (i)ϕ/(2+ϕ)

×

{(
E
[
h̃2+ϕ

1

])1/(2+ϕ)
(
E
[(
h̃i+1h̃i+j+1h̃i+j+k+1

)2+ϕ
])1/(2+ϕ)

+O
(
b2
n

)}
,

where the first equality is by the change of variables ti = (si − s)/bn. It follows that

the first term in (A.5) satisfies

4!

nb2
n

n∑
i=1

∑
j,k≤i

|Cov [h1(s), hi+1(s)hi+j+1(s)hi+j+k+1(s)]|

≤ C4!

nb
2−(4/(2+ϕ))
n

∞∑
i=1

i2α (i)ϕ/(2+ϕ)

×

{(
E
[
h̃2+ϕ

1

])1/(2+ϕ)
(
E
[(
h̃i+1h̃i+j+1h̃i+j+k+1

)2+ϕ
])1/(2+ϕ)

+O
(
b2
n

)}

= O

(
1

nb
2ϕ/(2+ϕ)
n

)
+O

(
b

4/(2+ϕ)
n

n

)
(A.6)
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by Assumption A-(iii). However, we select ϕ small enough such that

2ϕ

2 + ϕ
≤ 1

1− 2ε
, (A.7)

which holds for ϕ ∈ (0, 2) in Assumption A-(iii). Then (A.6) becomes o(1) because

nb
2ϕ/(2+ϕ)
n = (n1−2εb

(2ϕ/(2+ϕ))(1−2ε)
n )1/(1−2ε) →∞ by Assumption A-(ix). Using the same

argument, we can also verify that the rest of terms in (A.5) are all o(1) and hence

Ψ14(s) = o(1). For Ψ15(s), we can similarly show that it is o(1) as well because

Ψ15(s) ≤ 3!

nb2
n

n∑
i=1

∑
j≤i

∣∣Cov [h2
1(s), hi+1(s)hi+j+1(s)

]∣∣
+

3!

nb2
n

n∑
j=1

∑
i≤j

∣∣Cov [h2
1(s)hi+1(s), hi+j+1(s)

]∣∣ .
By combining these results for Ψ11(s) to Ψ15(s), we thus have

E
[∣∣Jn (γg; s)− Jn (γk; s)

∣∣4] ≤ C1(s)
(
γk − γg

)2

for some constant 0 < C1(s) < ∞ given s, and Theorem 12.2 of Billingsley (1968)

yields

P
(

max
1≤g≤g

∣∣Jn (γg; s)− Jn (γ1; s)
∣∣ > η(s)

)
≤ C1(s)$2

η4(s)bn
, (A.8)

which bounds Ψ1(s).

To bound Ψ2(s), the standard result of kernel estimation yields that E [h2
ik] ≤

C2(s)bn by Assumption A-(x) for some constant 0 < C2(s) < ∞ given s. Then by

Lemma 1 of Bolthausen (1982), we have

E
[(√

nbn |Hng(s)− E [Hng(s)]|
)2
]

=
1

nbn
V ar

[
n∑
i=1

|hig(s)|

]
≤ 1

bn
E
[
h2
ig(s)

]
+

2

nbn

∑
i<j

|Cov (|hig(s)| , |hjg(s)|)|

≤ C2(s)$/g

and hence by Markov’s inequality,

P
(

max
1≤g≤g

√
nbn |Hng(s)− E [Hng(s)]| > η(s)

)
≤ C2(s)$

η2(s)
. (A.9)

Finally, to bound Ψ3(s), note that√
nbnE [Hng(s)] =

√
nbnC3(s)$/g ≤ 2C3(s)/

√
nbn (A.10)

for some constant 0 < C3(s) <∞ given s, where $/g ≤ 2/nbn. So tightness is proved
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by combining (A.8), (A.9), and (A.10), and hence the weak convergence follows from

Theorem 15.5 of Billingsley (1968). �

Lemma A.2 Uniformly over s ∈ S,

∆Mn (s) ≡ 1

nbn

n∑
i=1

xix
>
i {1i (γ0 (si))− 1i (γ0 (s))}Ki (s) = Op (bn) . (A.11)

Lemma A.3 For a given s ∈ S, γ̂(s)→p γ0(s) as n→∞.

Proof of Lemma A.3 For given s ∈ S, we let ỹi(s) = Ki(s)
1/2yi, x̃i(s) = Ki(s)

1/2xi,

ũi(s) = Ki(s)
1/2ui, x̃i(γ; s) = Ki(s)

1/2xi1i (γ), and x̃i(γ0(si); s) = Ki(s)
1/2xi1i (γ0(si));

we denote ỹ(s), X̃(s), ũ(s), X̃(γ; s), and X̃(γ0(si); s) as their corresponding matrices

of n-stacks. Then θ̂(γ; s) = (β̂(γ; s)>, δ̂(γ; s)>)> in (2) is given as

θ̂(γ; s) = (Z̃(γ; s)>Z̃(γ; s))−1Z̃(γ; s)>ỹ(s), (A.12)

where Z̃(γ; s) = [X̃(s), X̃(γ; s)]. Therefore, since ỹ(s) = X̃(s)β0 +X̃(γ0(si); s)δ0 + ũ(s)

and X̃(s) lies in the space spanned by Z̃(γ; s), we have

Qn (γ; s)− ũ(s)>ũ(s) = ỹ(s)>
(
In − PZ̃(γ; s)

)
ỹ(s)− ũ(s)>ũ(s)

= −ũ(s)>PZ̃(γ; s)ũ(s) + 2δ>0 X̃(γ0(si); s)
> (In − PZ̃(γ; s)

)
ũ(s)

+δ>0 X̃(γ0(si); s)
> (In − PZ̃(γ; s)

)
X̃(γ0(si); s)δ0,

where PZ̃(γ; s) = Z̃(γ; s)(Z̃(γ; s)>Z̃(γ; s))−1Z̃(γ; s)> and In is the identity matrix of

rank n. Note that PZ̃(γ; s) is the same as the projection onto [X̃(s)− X̃(γ; s), X̃(γ; s)],

where X̃(γ; s)>(X̃(s)−X̃(γ; s)) = 0. Furthermore, for γ ≥ γ0(si), x̃i(γ0(si); s)
>(x̃i(s)−

x̃i(γ; s)) = 0 and hence X̃(γ0(si); s)
>X̃(γ; s) = X̃(γ0(si); s)

>X̃(γ0(si); s). Since

Mn(γ; s) =
1

nbn

n∑
i=1

x̃i(γ; s)x̃i(γ; s)> and

Jn(γ; s) =
1√
nbn

n∑
i=1

x̃i(γ; s)ũi(s),

Lemma A.1 yields that

Z̃(γ; s)>ũ(s) = [X̃(s)>ũ(s), X̃(γ; s)>ũ(s)] = Op

(
(nbn)1/2

)
Z̃(γ; s)>X̃(γ0(si); s) = [X̃(s)>X̃(γ0(si); s), X̃(γ; s)>X̃(γ0(si); s)]

= [X̃(s)>X̃(γ0(si); s), X̃(γ0(si); s)
>X̃(γ0(si); s)] = Op (nbn)
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for given s. It follows that

1

an

(
Qn (γ; s)− ũ(s)>ũ(s)

)
(A.13)

= Op

(
1

an

)
+Op

(
1

a
1/2
n

)
+

1

nbn
c>0 X̃(γ0(si); s)

> (In − PZ̃(γ; s)
)
X̃(γ0(si); s)c0

=
1

nbn
c>0 X̃(γ0(si); s)

> (I − PZ̃(γ; s)
)
X̃(γ0(si); s)c0 + op(1)

for an = n1−2εbn →∞ as n→∞. Moreover, we have

Mn (γ0(si); s) =
1

nbn

n∑
i=1

x̃i(γ0(si); s)x̃i(γ0(si); s)
> (A.14)

= Mn (γ0(s); s) + ∆Mn (s)

= Mn (γ0(s); s) +Op (bn)

from Lemma A.2, where ∆Mn (s) is defined in (A.11). It follows that

1

nbn
c>0 X̃(γ0(si); s)

> (In − PZ̃(γ; s)
)
X̃(γ0(si); s)c0 (A.15)

→p c
>
0 M(γ0(s); s)c0 − c>0 M(γ0(s); s)>M(γ; s)−1M(γ0(s); s)c0 ≡ Υ(γ; s) <∞

uniformly over γ ∈ Γ ∩ [γ0(s),∞), from Lemma A.1 and Assumptions ID-(ii) and

A-(viii), as bn → 0 as n→∞. However,

dΥ(γ; s)/dγ = c>0 M(γ0(s); s)>M(γ; s)−1D(γ, s)f(γ, s)M(γ; s)−1M(γ0(s); s)c0 ≥ 0

and

dΥ(γ0(s); s)/dγ = c>0 D(γ0(s), s)f(γ0(s), s)c0 > 0

from Assumption A-(viii), which implies that Υ(γ; s) is continuous, non-decreasing,

and uniquely minimized at γ0(s) given s ∈ S.

We can symmetrically show that the probability limit of (A.15) for γ ∈ Γ ∩
(−∞, γ0(s)] is continuous, non-increasing, and uniquely minimized at γ0(s) as well.

Therefore, given s ∈ S, uniformly over Γ, the probability limit of a−1
n

(
Qn (γ; s)− ũ(s)>ũ(s)

)
in (A.13) is continuous and uniquely minimized at γ0(s). Since γ̂(s) is the minimizer of

a−1
n

(
Qn (γ; s)− ũ(s)>ũ(s)

)
, the pointwise consistency follows as the proof of Lemma

A.5 of Hansen (2000). �

We let φ1n = a−1
n , where an = n1−2εbn and ε is given in Assumption A-(ii). For a
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given s ∈ S, we define

Tn (γ; s) =
1

nbn

n∑
i=1

(
c>0 xi

)2 |1i (γ (s))− 1i (γ0 (s))|Ki (s) ,

T n(γ, s) =
1

nbn

n∑
i=1

‖xi‖2 |1i (γ (s))− 1i (γ0 (s))|Ki (s) ,

Ln (γ; s) =
1√
nbn

n∑
i=1

c>0 xiui {1i (γ (s))− 1i (γ0 (s))}Ki (s)

Ln (γ; s) =
1√
nbn

n∑
i=1

‖xiui‖ {1i (γ (s))− 1i (γ0 (s))}Ki (s) .

Lemma A.4 For a given s ∈ S, for any η(s) > 0 and ε(s) > 0, there exist constants

0 < CT (s), CT (s), C(s), r(s) <∞ such that for all n,

P
(

inf
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)|
< CT (1− η(s))

)
≤ ε(s), (A.16)

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

T n (γ; s)

|γ (s)− γ0 (s)|
> CT (1 + η(s))

)
≤ ε(s), (A.17)

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Ln (γ; s)
√
an |γ (s)− γ0 (s)|

> η(s)

)
≤ ε(s), (A.18)

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Ln (γ; s)
√
an |γ (s)− γ0 (s)|

> η(s)

)
≤ ε(s), (A.19)

if n1−2εb2
n → % <∞.

For a given s ∈ S, we let θ̂(γ̂(s)) = (β̂(γ̂(s))>, δ̂(γ̂(s))>)> and θ0 = (β>0 , δ
>
0 )>.

Lemma A.5 For a given s ∈ S, nε(θ̂(γ̂(s))− θ0) = op(1).

Proof of Theorem 2 The consistency is proved in Lemma A.3 above. For given

s ∈ S, we let

Q∗n(γ(s); s) = Qn(β̂ (γ̂ (s)) , δ̂ (γ̂ (s)) , γ(s); s) (A.20)

=
n∑
i=1

{
yi − x>i β̂ (γ̂ (s))− x>i δ̂ (γ̂ (s))1i(γ(s))

}2

Ki (s)

for any γ(·), where Qn(β, δ, γ; s) is the sum of squared errors function in (3). Consider

γ(s) such that γ (s) ∈
[
γ0 (s) + r(s)φ1n, γ0 (s) + C(s)

]
for some 0 < r(s), C(s) < ∞
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that are chosen in Lemma A.4. We let ∆i(γ; s) = 1i (γ (s)) − 1i (γ0 (s)); ĉj(γ̂ (s))

and c0j be the jth element of ĉ(γ̂ (s)) ∈ Rp and c0 ∈ Rp, respectively. Then, since

yi = β>0 xi + δ>0 xi1i (γ0 (si)) + ui,

Q∗n(γ(s); s)−Q∗n(γ0(s); s)

=
n∑
i=1

(
δ̂ (γ̂ (s))> xi

)2

∆i(γ; s)Ki (s)

−2
n∑
i=1

(
yi − β̂ (γ̂ (s))> xi − δ̂ (γ̂ (s))> xi1i (γ0 (s))

)(
δ̂ (γ̂ (s))> xi

)
∆i(γ; s)Ki (s)

=
n∑
i=1

(
δ>0 xi

)2
∆i(γ; s)Ki (s) +

n∑
i=1

{(
δ̂ (γ̂ (s))> xi

)2

−
(
δ>0 xi

)2
}

∆i(γ; s)Ki (s)

−2
n∑
i=1

δ>0 xiui∆i(γ; s)Ki (s)− 2
n∑
i=1

(
δ̂ (γ̂ (s))− δ0

)>
xiui∆i(γ; s)Ki (s)

−2
n∑
i=1

(
β̂ (γ̂ (s))− β0

)>
xix
>
i δ̂ (γ̂ (s)) ∆i(γ; s)Ki (s)

−2
n∑
i=1

δ>0 xix
>
i δ0 {1i (γ0 (si))− 1i (γ0 (s))}∆i(γ; s)Ki (s) (A.21)

−2
n∑
i=1

δ>0 xix
>
i

(
δ̂ (γ̂ (s))− δ0

)
{1i (γ0 (si))− 1i (γ0 (s))}∆i(γ; s)Ki (s) (A.22)

−2
n∑
i=1

(
δ̂ (γ̂ (s))− δ0

)>
xix
>
i δ̂ (γ̂ (s))1i (γ0 (s)) ∆i(γ; s)Ki (s) , (A.23)

where the absolute values of the last two summations (A.22) and (A.23) are bounded

by

n∑
i=1

δ>0 xix
>
i

(
δ̂ (γ̂ (s))− δ0

)
|∆i(γ; s)|Ki (s) and

n∑
i=1

(
δ̂ (γ̂ (s))− δ0

)>
xix
>
i δ̂ (γ̂ (s)) |∆i(γ; s)|Ki (s) ,

respectively, since |1i (γ0 (s))| ≤ 1 and |1i (γ0 (si))− 1i (γ0 (s))| ≤ 1. Moreover, for the

term in (A.21), we have

1

an

n∑
i=1

δ>0 xix
>
i δ0 {1i (γ0 (si))− 1i (γ0 (s))}∆i(γ; s)Ki (s)

≤ 1

an

n∑
i=1

δ>0 xix
>
i δ0 |1i (γ0 (si))− 1i (γ0 (s))|Ki (s) = C∗(s)bn
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for some C∗(s) = Op(1) as in (A.14). It follows that

Q∗n(γ(s); s)−Q∗n(γ0(s); s)

an(γ(s)− γ0(s))
(A.24)

≥ Tn (γ; s)

γ(s)− γ0(s)
− ‖ĉ (γ̂ (s))− c0‖ ‖ĉ (γ̂ (s)) + c0‖

T n(γ, s)

γ(s)− γ0(s)

−2
Ln (γ; s)

√
an(γ(s)− γ0(s))

− 2 max
1≤j≤p

|ĉj(γ̂ (s))− c0j|
Ln (γ; s)

√
an (γ(s)− γ0(s))

−2
∥∥∥nε(β̂ (γ̂ (s))− β0)

∥∥∥ ‖ĉ(γ̂ (s))‖ T n(γ, s)

γ(s)− γ0(s)

−2
C∗(s)bn

γ(s)− γ0(s)

−2 ‖c0‖ ‖ĉ (γ̂ (s))− c0‖
T n(γ, s)

γ(s)− γ0(s)

−2
∥∥∥nε(δ̂ (γ̂ (s))− δ0)

∥∥∥ ‖ĉ(γ̂ (s))‖ T n(γ, s)

γ(s)− γ0(s)

=
Tn (γ; s)

γ(s)− γ0(s)
− 2Ln (γ; s)
√
an (γ(s)− γ0(s))

− 2C∗(s)bn
γ(s)− γ0(s)

+ op(1),

where the last line follows from Lemma A.5. Then given Lemma A.4 and the Markov’s

inequality, there exist 0 < C(s), C(s), r(s), η(s), ε(s) <∞ such that

P
(

inf
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)|
< (1− η(s))C(s)

)
≤ ε(s)

3
,

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

2Ln (γ; s)
√
an |γ (s)− γ0 (s)|

> η(s)

)
≤ ε(s)

3
.

In addition, for γ (s) ∈
[
γ0 (s) + r(s)φ1n, γ0 (s) + C(s)

]
, since

sup
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

C∗(s)bn
γ(s)− γ0(s)

<
C∗(s)bn
r(s)φ1n

= anbn
C∗(s)

r(s)
<∞

provided n1−2εb2
n → % <∞, we also have

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

2C∗(s)bn
|γ(s)− γ0(s)|

> η(s)

)
≤ ε(s)

3

by choosing r(s) large enough. Thus for any ε(s) > 0 and η(s) > 0, we have

P
(

inf
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

{Q∗n(γ(s); s)−Q∗n(γ0(s); s)} > η(s)

)
≥ 1− ε(s),
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which yields P (Q∗n(γ(s); s)−Q∗n(γ0(s); s) > 0) → 1 as n → ∞. We can similarly

show the same result when γ (s) ∈
[
γ0 (s)− C(s), γ0 (s)− r(s)φ1n

]
. Therefore, with

probability approaching to one, it should hold that |γ̂ (s) − γ0 (s) | ≤ r(s)φ1n since

Q∗n(γ̂(s); s)−Q∗n(γ0(s); s) ≤ 0 for any s ∈ S by construction. �

A.3 Proof of Theorem 3 and Corollary 1

For a given s ∈ S, we let γn (s) = γ0 (s) + r/an with some |r| <∞, where an = n1−2εbn
and ε is given in Assumption A-(ii). We define

A∗n (r, s) =
n∑
i=1

(
δ>0 xi

)2 |1i (γn (s))− 1i (γ0 (s))|Ki (s) ,

B∗n (r, s) =
n∑
i=1

δ>0 xiui {1i (γn (s))− 1i (γ0 (s))}Ki (s) .

Lemma A.6 If n1−2εb2
n → % <∞,

A∗n (r, s)→p |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

and

B∗n (r, s)⇒ W (r)
√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2

as n→∞, where κ2 =
∫
K(v)2dv and W (r) is the two-sided Brownian Motion defined

in (10).

Proof of Lemma A.6 Let ∆i(γn; s) = 1i (γn (s)) − 1i (γ0 (s)). First, for A∗n (r, s),

consider the case with r > 0. Note that δ0 = c0n
−ε = c0(an/ (nbn))1/2. By change of

variables and Taylor expansion, Assumptions A-(v), (viii), and (x) imply that

E [A∗n (r, s)] =
an
nbn

n∑
i=1

E
[(
c>0 xi

)2
∆i(γn; s)Ki (s)

]
(A.25)

= an

∫∫ γ0(s)+r/an

γ0(s)

E
[(
c>0 xi

)2 |q, s+ bnt
]
K (t) f (q, s+ bnt) dqdt

= rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) +O

(
1

an
+ b2

n

)
,
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where the third equality holds under Assumption A-(vi). Next, we have

V ar [A∗n (r, s)] =
a2
n

n2b2
n

V ar

[
n∑
i=1

(
c>0 xi

)2
∆i(γn; s)Ki (s)

]
(A.26)

=
a2
n

nb2
n

V ar
[(
c>0 xi

)2
∆i(γn; s)Ki (s)

]
+

2a2
n

n2b2
n

n∑
i<j

Cov
[(
c>0 xi

)2
∆i(γn; s)Ki (s) ,

(
c>0 xj

)2
∆j(γn; s)Kj (s)

]
≡ ΨA1(r, s) + ΨA2(r, s).

Similarly as (A.25), Taylor expansion and Assumptions A-(vii), (viii), and (x) lead to

ΨA1(r, s) =
an
nbn

(
an
bn

E
[(
c>0 xi

)4
∆i(γn; s)K2

i (s)
])

− 1

n

(
an
bn

E
[(
c>0 xi

)2
∆i(γn; s)Ki (s)

])2

= O

(
n−2ε +

1

n

)
since {∆i(γn; s)}2 = ∆i(γn; s) for r > 0. Furthermore, by change of variables ti =

(si − s)/bn in the covariance operator and Lemma 1 of Bolthausen (1982),

ΨA2(r, s) ≤ 2a2
n

n2

n∑
i<j

Cov
[(
c>0 xi

)2
∆i(γn; s)K (ti) ,

(
c>0 xj

)2
∆j(γn; s)K (tj)

]
≤ 2a2

n

n

∞∑
m=1

mα (m)ϕ/(2+ϕ)

(
E
[∣∣∣(c>0 xi)2

∆i(γn; s)K (ti)
∣∣∣2+ϕ

])2/(2+ϕ)

= O(a2−2/(2+ϕ)
n n−1) = O(n−2ε),

where the last line follows from the conditions that ϕ ∈ (0, 2) in Assumption A-(iii)

and n1−2εb2
n → % <∞. Hence, the pointwise convergence of A∗n (r, s) is obtained. Since

rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) is strictly increasing and continuous in r, the convergence

holds uniformly on any compact set. Symmetrically, we can show that E [A∗n (r, s)] =

−rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) + O (a−1
n + b2

n) when r < 0. The uniform convergence

also holds in this case using the same argument as above, which completes the proof

for A∗n (r, s).

For B∗n (r, s), Assumption ID-(i) leads to E [B∗n (r, s)] = 0. Then, similarly as for

A∗n (r, s), for any i 6= j, we have

Cov
[
c>0 xiui∆i(γn; s)Ki (s) , c

>
0 xjuj∆j(γn; s)Kj (s)

]
≤ Cb2

na
−1
n (A.27)

for some positive constant C <∞, by the change of variables in the covariance operator
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and Lemma 1 of Bolthausen (1982). It follows that, similarly as (A.25),

V ar[B∗n (r, s)] =
an
bn
V ar

[
c>0 xiui∆i(γn; s)Ki (s)

]
+O (bn)

= |r| c>0 V (γ0 (s) , s) c0f (γ0(s), s)κ2 + o (1) ,

where κ2 =
∫
K(v)2dv. Then by the CLT for stationary and mixing random field (e.g.

Bolthausen (1982); Jenish and Prucha (2009)), we have

B∗n (r, s)⇒ W (r)
√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2

as n → ∞, where W (r) is the two-sided Brownian Motion defined in (10). This

pointwise convergence in r can be extended to any finite-dimensional convergence in r

by the fact that for any r1 < r2, Cov [B∗n (r1, s) , B
∗
n (r2, s)] = V ar [B∗n (r1, s)] + o (1),

which is because (1i (γ0 + r2/an)− 1i (γ0 + r1/an))1i (γ0 + r1/an) = 0 and (A.27).

The tightness follows from a similar argument as Jn(γ; s) in Lemma A.1 and the desired

result follows by Theorem 15.5 in Billingsley (1968). �

For a given s ∈ S, we let θ̂ (γ0 (s)) = (β̂ (γ0 (s))> , δ̂ (γ0 (s))>)>. Recall that θ0 =

(β>0 , δ
>
0 )> and θ̂ (γ̂ (s)) = (β̂ (γ̂ (s))> , δ̂ (γ̂ (s))>)>.

Lemma A.7 For a given s ∈ S,
√
nbn(θ̂ (γ̂ (s))− θ0) = Op(1), if n1−2εb2

n → % <∞ as

n→∞.

Proof of Theorem 3 From Theorem 2, we define a random variable r∗(s) such that

r∗(s) = an(γ̂ (s)− γ0 (s)) = arg max
r∈R

{
Q∗n(γ0(s); s)−Q∗n

(
γ0(s) +

r

an
; s

)}
,

where Q∗n(γ(s); s) is defined in (A.20). We let ∆i(s) = 1i (γ0 (s) + (r/an))−1i (γ0 (s)).

We then have

∆Q∗n(r; s) (A.28)

= Q∗n(γ0(s); s)−Q∗n
(
γ0(s) +

r

an
; s

)
= −

n∑
i=1

(
δ̂ (γ̂ (s))> xi

)2

|∆i(s)|Ki (s)

+2
n∑
i=1

(
yi − β̂ (γ̂ (s))> xi − δ̂ (γ̂ (s))> xi1i (γ0 (s))

)(
δ̂ (γ̂ (s))> xi

)
∆i(s)Ki (s)

≡ −An(r; s) + 2Bn(r; s).
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For An(r; s), Lemmas A.6 and A.7 yield

An(r; s) (A.29)

=
n∑
i=1

((
δ0 + n−1/2b−1/2

n Cδ(s) + op(n
−1/2b−1/2

n )
)>
xi

)2

|∆i(s)|Ki (s)

= A∗n (r, s) +
1

n1−2εbn

n∑
i=1

(
n−εCδ(s)

)>
xix
>
i

(
n−εCδ(s)

)
|∆i(s)|Ki (s) + op

(
a−1
n

)
= A∗n (r, s) +Op(a

−1
n )

for some p× 1 vector Cδ(s) = Op(1), since
∑n

i=1
n−2εC>δ (s)xix

>
i Cδ(s) |∆i(s)|Ki (s) =

Op(1) from Lemma A.6 and an = n1−2εbn →∞. Note that δ̂ (γ̂ (s))−δ0 = Op((nbn)−1/2)

from Lemma A.7. Similarly, for Bn(r; s), since yi = β>0 xi + δ>0 xi1i (γ0(si)) + ui, we

have for some p× 1 vector Cβ(s) = Op(1),

Bn(r; s) (A.30)

=
n∑
i=1

(
ui + δ>0 xi {1i (γ0 (si))− 1i (γ0 (s))} −

(
β̂ (γ̂ (s))− β0

)>
xi

−
(
δ̂ (γ̂ (s))− δ0

)>
xi1i (γ0 (s))

)
δ̂ (γ0 (s))> xi∆i(s)Ki (s)

=
n∑
i=1

(
ui + δ>0 xi {1i (γ0 (si))− 1i (γ0 (s))} − n−1/2b−1/2

n C>β (s)xi

− n−1/2b−1/2
n C>δ (s)xi1i (γ0(s))

) (
δ0 + n−1/2b−1/2

n Cδ(s)
)>
xi∆i(s)Ki (s) + op(1)

= B∗n (r, s)

+
1√

n1−2εbn

n∑
i=1

uixi
(
n−εCδ(s)

)
∆i(s)Ki (s)

+
n∑
i=1

δ>0 xix
>
i δ0 (∆i(s) {1i (γ0 (si))− 1i (γ0 (s))})Ki (s) (A.31)

+
1√

n1−2εbn

n∑
i=1

δ>0 xix
>
i

(
n−εCδ(s)

)
(∆i(s) {1i (γ0 (si))− 1i (γ0 (s))})Ki (s)

+
1√

n1−2εbn

n∑
i=1

δ>0 xix
>
i

(
n−εCβ(s)

)
∆i(s)Ki (s)

+
1

n1−2εbn

n∑
i=1

(
n−εCβ(s)

)>
xix
>
i

(
n−εCδ(s)

)
∆i(s)Ki (s)

+
1√

n1−2εbn

n∑
i=1

δ>0 xix
>
i

(
n−εCδ(s)

)
{∆i(s)1i (γ0(s))}Ki (s)
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+
1

n1−2εbn

n∑
i=1

(
n−εCδ(s)

)>
xix
>
i

(
n−εCδ(s)

)
{∆i(s)1i (γ0(s))}Ki (s)

+op(
(
n1−2εbn

)−1/2
),

where all the terms are Op ((n1−2εbn)
−1/2

) = Op(a
−1/2
n ) except for the first term B∗n (r, s)

and the third term in the line of (A.31) that we denote B∗n3(r, s). In Lemma A.8 below,

we show that, if n1−2εb2
n → % ∈ (0,∞),

B∗n3(r, s)→p |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

{
1

2
−K0 (r, %; s)

}
+ %c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) |γ̇0(s)| K1 (r, %; s)

as n→∞, where γ̇0 (·) is the first derivatives of γ0(·) andKj (r, %; s) =
∫ |r|/(%|γ̇0(s)|)

0
tjK (t) dt

for j = 0, 1.

From Lemma A.6, it follows that

∆Q∗n(r; s) = −A∗n (r, s) + 2B∗n3(r, s) + 2B∗n (r, s)

= − |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

+ |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) {1− 2K0 (r, %; s)}
+2%c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) |γ̇0(s)| K1 (r, %; s)

+2W (r)
√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2 +Op(a

−1/2
n + bn),

= −2 |r| `D(s)ψ̃1 (r, %; s) + 2%`D(s)ψ̃2 (r, %; s)

+2W (r)
√
`V (s) +Op(a

−1/2
n + bn),

where

`D(s) = c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) ,

`V (s) = c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2,

ψ̃1 (r, %; s) = K0 (r, %; s) ,

ψ̃2 (r, %; s) = |γ̇0(s)| K1 (r, %; s) .

However, if we let ξ(s) = `V (s)/`2
D(s) and r = ξ(s)ν, we have

arg max
r∈R

(
2W (r)

√
`V (s)− 2 |r| `D(s)ψ̃1 (r, %; s) + 2%`D(s)ψ̃2 (r, %; s)

)
= ξ(s) arg max

ν∈R

(
W (ξ(s)ν)

√
`V (s)− |ξ(s)ν| `D(s)ψ̃1 (ξ(s)ν, %; s) + %`D(s)ψ̃2 (ν, %; s)

)
= ξ(s) arg max

ν∈R

(
W (ν)

`V (s)

`D(s)
− |ν| `V (s)

`D(s)
ψ̃1 (ξ(s)ν, %; s) + %

`V (s)

`D(s)
ξ(s)ψ̃2 (ξ(s)ν, %; s)

)
= ξ(s) arg max

ν∈R

(
W (ν)− |ν| ψ̃1 (ξ(s)ν, %; s) + %ξ(s)ψ̃2 (ξ(s)ν, %; s)

)
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similar to the proof of Theorem 1 in Hansen (2000). By Theorem 2.7 of Kim and

Pollard (1990), it follows that (rewriting ν as r)

n1−2εbn (γ̂ (s)− γ0 (s))→d ξ (s) arg max
r∈R

(W (r)− |r|ψ1 (r, %; s) + %ψ2 (r, %; s))

as n→∞, where

ψ1 (r, %; s) = ψ̃1 (ξ(s)r, %; s) =

∫ ξ(s)|r|/(%|γ̇0(s)|)

0

K (t) dt,

ψ2 (r, %; s) = ξ(s)ψ̃2 (ξ(s)r, %; s) = ξ(s) |γ̇0(s)|
∫ ξ(s)|r|/(%|γ̇0(s)|)

0

tK (t) dt.

Note that when % = 0, we let ψ1 (r, 0; s) =
∫∞

0
K (t) dt = 1/2. Finally, letting

µ (r, %; s) = − |r|ψ1 (r, %; s) + %ψ2 (r, %; s) , (A.32)

E [arg maxr∈R (W (r) + µ (r, %; s))] = 0 follows from Lemmas A.9 and A.10 below. �

Lemma A.8 For a given s ∈ S, let r be the same term used in Lemma A.6. If

n1−2εb2
n → % ∈ (0,∞),

B∗n3(r, s) ≡
n∑
i=1

(
δ>0 xi

)2 {1i (γ0 (s) + r/an)− 1i (γ0 (s))} {1i (γ0 (si))− 1i (γ0 (s))}Ki (s)

→p |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

{
1

2
−K0 (r, %; s)

}
+ %c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) |γ̇0(s)| K1 (r, %; s)

as n→∞, where γ̇0 (·) is the first derivatives of γ0(·) and

Kj (r, %; s) =

∫ |r|/(%|γ̇0(s)|)

0

tjK (t) dt

for j = 0, 1.

Lemma A.9 Let τ = arg maxr∈R (W (r) + µ(r)), where W (r) is a two-sided Brow-

nian motion in (10) and µ(r) is a continuous drift function satisfying: µ(0) = 0,

µ(−r) = µ(r), µ(r) is monotonically decreasing on R\[−r, r] for some r > 0, and

lim|r|→∞ |r|−((1/2)+ε)µ(r) = −∞ for some ε > 0. Then, E[τ ] = 0.

Lemma A.10 For given (%, s), µ (r, %; s) in (A.32) satisfies conditions in Lemma A.9

Proof of Corollary 1 From (A.13) and (A.15), we have

1

nbn
Qn (γ̂ (s) , s) =

1

nbn

n∑
i=1

u2
iKi (s) + op(1)→p E

[
u2
i |si = s

]
fs (s) ,
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where fs (s) is the marginal density of si. In addition, from Theorem 3 and the proof

of Lemma A.7, we have

Qn (γ0 (s) , s)−Qn (γ̂ (s) , s) = Q∗n (γ0 (s) , s)−Q∗n (γ̂ (s) , s) + op(1)

since θ̂ (γ̂ (s)) − θ̂ (γ0 (s)) = op((nbn)−1/2). Similar to Theorem 2 of Hansen (2000),

the rest of the proof follows from the change of variables and the continuous mapping

theorem because (nbn)−1
∑n

i=1
Ki (s) →p fs (s) by the standard result of the kernel

density estimator. �

A.4 Proof of Theorem 4

We let φ2n = log n/an, where an = n1−2εbn and ε is given in Assumption A-(ii).

Lemma A.11 For a given s ∈ S, let γ(s) = γ0(s) + r(s)φ2n for some continuously

differentiable r(s) satisfying 0 < r = infs∈S r(s) ≤ sups∈S r(s) = r < ∞. Then there

exist constants 0 < CT , CT <∞ such that for any η > 0,

P
(

sup
s∈S
|Tn (γ; s)− E [Tn (γ; s)]| > η

)
≤ CT

η

(
φ2n

log n

nbn

)1/2

,

P
(

sup
s∈S

∣∣T n (γ; s)− E
[
T n (γ; s)

]∣∣ > η

)
≤ CT

η

(
φ2n

log n

nbn

)1/2

if n is large enough.

Lemma A.12 For a given s ∈ S, let γ(s) = γ0(s) + r(s)φ2n, where r(s) is defined in

Lemma A.11. Then there exists a constant 0 < CL, CL <∞ such that for any η > 0,

P
(

sup
s∈S
‖Ln (γ; s)‖ > η

)
≤ CL

η
(φ2n log n)1/2 ,

P
(

sup
s∈S

∥∥Ln (γ; s)
∥∥ > η

)
≤ CL

η
(φ2n log n)1/2

if n is large enough.

Lemma A.13 For any η > 0 and ε > 0, there exist constants 0 < C, r, CT , CT < ∞
such that

P

(
inf

rφ2n<sups∈S |γ(s)−γ0(s)|<C

sups∈S Tn (γ; s)

sups∈S |γ (s)− γ0 (s)|
< CT (1− η)

)
≤ ε, (A.33)

P

(
sup

rφ2n<sups∈S |γ(s)−γ0(s)|<C

sups∈S T n (γ; s)

sups∈S |γ (s)− γ0 (s)|
> CT (1 + η)

)
≤ ε, (A.34)

P

(
sup

rφ2n<sups∈S |γ(s)−γ0(s)|<C

sups∈S ‖Ln (γ; s)‖
√
an sups∈S |γ (s)− γ0 (s)|

> η

)
≤ ε, (A.35)
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P

(
sup

rφ2n<sups∈S |γ(s)−γ0(s)|<C

sups∈S
∥∥Ln (γ; s)

∥∥
√
an sups∈S |γ (s)− γ0 (s)|

> η

)
≤ ε, (A.36)

if n1−2εb2
n → % <∞.

Lemma A.14 nε sups∈S

∥∥∥θ̂(γ̂(s))− θ0

∥∥∥ = op(1).

Proof of Theorem 4 Since sups∈S (Q∗n(γ̂(s); s)−Q∗n(γ0(s); s)) ≤ 0 by construction,

where Q∗n(γ(s); s) is defined in (A.20), it suffices to show that as n→∞,

P
(

sup
s∈S
{Q∗n(γ(s); s)−Q∗n(γ0(s); s)} > 0

)
→ 1

for any γ (s) such that sups∈S |γ (s)− γ0 (s)| > rφ2n where r is chosen in Lemma A.13.

To this end, consider γ such that rφ2n ≤ sups∈S |γ (s)− γ0 (s)| ≤ C for some

0 < r,C <∞. Then, using (A.24) and Lemma A.14, we have

Q∗n(γ(s); s)−Q∗n(γ0(s); s)

an sups∈S |γ(s)− γ0(s)|

≥ Tn (γ; s)

sups∈S |γ(s)− γ0(s)|
− 2

2Ln (γ; s)
√
an sups∈S |γ(s)− γ0(s)|

− 2C∗(s)bn
sups∈S |γ(s)− γ0(s)|

+ op(1)

for some C∗(s) = Op(1). Furthermore, Lemma A.2 gives that sups∈S C
∗(s) is also

Op(1), and hence

sup
rφ2n<|γ(s)−γ0(s)|<C

sups∈S C
∗(s)bn

sups∈S |γ(s)− γ0(s)|
<

sups∈S C
∗(s)bn

rφ2n

=
sups∈S C

∗(s)

r

(
anbn
log n

)
= Op(1)

given anbn → % <∞. Thus, we have

P

(
sup

rφ2n<|γ(s)−γ0(s)|<C

2 sups∈S C
∗(s)bn

sups∈S |γ (s)− γ0 (s)|
> η(s)

)
≤ ε

3

when n is sufficiently large. Therefore, Lemma A.13 yields that, for ε > 0 and η > 0,

P

(
inf

rφ2n<sups∈S |γ(s)−γ0(s)|<C
sup
s∈S
{Q∗n(γ(s); s)−Q∗n(γ0(s); s)} > η

)
≥ 1− ε,

which completes the proof by the same argument as Theorem 2. �
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A.5 Proof of Theorem 5

Proof of Theorem 5 We simply denote the leave-one-out estimator γ̂−i (si) as γ̂ (si)

in this proof. We let 1S = 1[si ∈ S] and consider a sequence ∆n > 0 such that ∆n → 0

as n→∞. Then,

√
n
(
β̂ − β0

)
=

(
1

n

n∑
i=1

xix
>
i 1 [qi > γ̂ (si) + ∆n]1S

)−1

×

{
1√
n

n∑
i=1

xiui1 [qi > γ0 (si) + ∆n]1S

+
1√
n

n∑
i=1

xiui {1 [qi > γ̂ (si) + ∆n]− 1 [qi > γ0 (si) + ∆n]}1S

}

+
1√
n

n∑
i=1

xix
>
i δ01 [qi ≤ γ0 (si)]1 [qi > γ̂ (si) + ∆n]1S

}
≡ Ξ−1

n00 {Ξn01 + Ξn02 + Ξn03} (A.37)

and

√
n
(
δ̂
∗
− δ∗0

)
=

(
1

n

n∑
i=1

xix
>
i 1 [qi < γ̂ (si)−∆n]1S

)−1

×

{
1√
n

n∑
i=1

xiui1 [qi < γ0 (si)−∆n]1S

+
1√
n

n∑
i=1

xiui {1 [qi < γ̂ (si)−∆n]− 1 [qi < γ0 (si)−∆n]}1S

}

+
1√
n

n∑
i=1

xix
>
i δ01 [qi ≤ γ0 (si)]1 [qi < γ̂ (si)−∆n]1S

}
≡ Ξ−1

n10 {Ξn11 + Ξn12 + Ξn13} , (A.38)

where Ξn02, Ξn03, Ξn12, and Ξn13 are all op(1) from Lemma A.15 below. Therefore,

√
n
(
θ̂
∗
− θ∗0

)
=

(
Ξ−1
n00Ξn01

Ξ−1
n10Ξn11

)
+ op (1) =

(
Ξn00 0

0 Ξn10

)−1(
Ξn01

Ξn11

)
+ op (1)

and the desired result follows since

Ξn00 →p E
[
xix
>
i 1 [qi > γ0 (si)]1S

]
, (A.39)

Ξn10 →p E
[
xix
>
i 1 [qi < γ0 (si)]1S

]
, (A.40)
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and (
Ξn01

Ξn11

)
→d N

(
0, lim

n→∞

1

n
V ar

[
n∑
i=1

(
xiui1 [qi > γ0 (si)]1S
xiui1 [qi < γ0 (si)]1S

)])
(A.41)

as n→∞.

First, by Assumptions A-(v) and (ix), (A.39) can be readily verified since we have

1

n

n∑
i=1

xix
>
i 1 [qi > γ̂ (si) + ∆n]1S

=
1

n

n∑
i=1

xix
>
i 1 [qi > γ0 (si) + ∆n]1S

+
1

n

n∑
i=1

xix
>
i {1 [qi > γ̂ (si) + ∆n]− 1 [qi > γ0 (si) + ∆n]}1S

=
1

n

n∑
i=1

xix
>
i 1 [qi > γ0 (si) + ∆n]1S +Op (φ2n)

with ∆n → 0 as n → ∞. More precisely, given Theorem 4, we consider γ̂ (s) in a

neighborhood of γ0 (s) with distance at most rφ2n for some large enough constant r. We

define a non-random function γ̃ (s) = γ0 (s) + rφ2n and ∆̃i (si) = 1 [qi > γ̃ (si) + ∆n]−
1 [qi > γ0 (si) + ∆n]. Then, on the event E∗n = {sups∈S |γ̂ (s)− γ0 (s)| ≤ rφ2n},

E
[
xix
>
i ∆̂i (si)1S

]
≤ E

[
xix
>
i ∆̃i (si)1S

]
(A.42)

=

∫
S

∫ γ̃(v)+∆n

γ0(v)+∆n

D (q, v) f (q, v) dqdv

=

∫
S
{D (γ0 (v) , v) f (γ0 (v) , v) (γ̃ (v)− γ0 (v)) + op (φ2n)} dv

≤ rφ2n

∫
D (γ0 (v) , v) f (γ0 (v) , v) dv

= Op (φ2n) = op (1)

from Theorem 4, Assumptions A-(v), (vii), and (ix). (A.40) can be verified symmetri-

cally. Using a similar argument, since E [xiui1 [qi > γ0 (si)]1S] = E [xiui1 [qi < γ0 (si)]1S] =

0 from Assumption ID-(i), asymptotic normality in (A.41) follows by the Theorem of

Bolthausen (1982) under Assumption A-(iii), which completes the proof. �

Lemma A.15 When φ2n → 0 as n → ∞, if we let ∆n > 0 such that ∆n → 0 and

φ2n/∆n → 0 as n → ∞, then it holds that Ξn02, Ξn03, Ξn12, and Ξn13 in (A.37) and

(A.38) are all op(1).
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Supplement to “Nonparametric Sample Splitting”

By Yoonseok Lee and Yulong Wang

This supplementary material contains omitted proofs of some lemmas.

Proof of Lemma A.2 We first show the pointwise convergence. For expositional

simplicity, we only present the case of scalar xi. Similarly as (A.1), we have

E [∆Mn (s)]

=

∫∫
D(q, s+ bnt)f(q, s+ bnt) {1 [q < γ0 (s+ bnt)]− 1 [q < γ0 (s)]}K(t)dqdt,

which is non-zero only when (i) γ0 (s) < q < γ0 (s+ bnt) if γ0 (s) < γ0 (s+ bnt); or (ii)

γ0 (s+ bnt) < q < γ0 (s) if γ0 (s) > γ0 (s+ bnt). We suppose γ0 (·) is increasing around

s. Then, for the case (i), since 0 < γ0 (s+ bnt)− γ0 (s), it restricts t > 0. For the case

(ii), however, it restricts t < 0. Therefore, if we let m(q, s) = D(q, s)f(q, s) < ∞, by

Taylor expansion,

E [∆Mn (s)]

=

∫ ∞
0

∫ γ0(s+bnt)

γ0(s)

m(q, s+ bnt)K(t)dqdt+

∫ 0

−∞

∫ γ0(s)

γ0(s+bnt)

m(q, s+ bnt)K(t)dqdt

= m(γ0 (s) , s)γ̇0 (s) bn

∫ ∞
0

tK(t)dt−m(γ0 (s) , s)γ̇0 (s) bn

∫ 0

−∞
tK(t)dt+O

(
b2
n

)
= m(γ0 (s) , s)γ̇0 (s) bn +O

(
b2
n

)
,

where
∫∞

0
tK(t)dt = −

∫ 0

−∞ tK(t)dt and γ̇0 (s) = dγ0 (s) /ds > 0 in this case.

Symmetrically, we can also derive E [∆Mn (s)] = −m(γ0 (s) , s)γ̇0 (s) bn + O (b2
n)

when γ0 (·) is decreasing around s. Therefore, E [∆Mn (s)] = m(γ0 (s) , s) |γ̇0 (s)| bn =

O (bn) because m(γ0 (s) , s) |γ̇0 (s)| < ∞ from Assumptions A-(vi) and (vii). The de-

sired result follows since V ar [∆Mn (s)] ≤ 2V ar [Mn (γ0 (si) ; s)]+2V ar [Mn (γ0 (s) ; s)] =

o (1) from (A.2).

Given the pointwise rate, it suffices to show ∆Mn (s) is uniformly tight. This is

implied by the tightness of Mn(s) in Lemma A.1 since γ0(·) is continuous. The proof

is complete. �

Proof of Lemma A.4 We first show (A.16). We consider the case with γ(s) > γ0(s),

and the other direction can be shown symmetrically. In this case, since Tn (γ; s) =

c>0 (Mn (γ(s); s)−Mn (γ0(s); s))c0 where ∂E [Tn (γ; s)] /∂γ(s) = c>0 D(γ(s), s)c0f (γ(s), s)

1



is continuous at γ0(s) and c>0 D(γ0(s), s)c0f (γ0(s), s) > 0 from Assumptions A-(vii) and

(viii), there exists a sufficiently small C(s) > 0 such that

`D(s) = inf
|γ(s)−γ0(s)|<C(s)

c>0 D(γ(s), s)c0f (γ(s), s) > 0.

By Taylor expansion, we have

E [Tn (γ; s)] =

∫ ∫ γ(s)

γ0(s)

E
[(
c>0 xi

)2 |q, s+ bnt
]
f(q, s+ bnt)K (t) dqdt

= {γ(s)− γ0(s)}
{
c>0 D(γ, s)c0f (γ, s) + C1(s)b2

n

}
for some C1 (s) <∞, which yields

E [Tn (γ; s)] ≥ {γ (s)− γ0 (s)} (`D(s) + C1(s)b2
n), (B.1)

since E [Tn (γ0; s)] = 0. Furthermore, if we let ∆i(γ; s) = 1i (γ (s)) − 1i (γ0 (s)) and

Zn,i(s) =
(
c>0 xi

)2
∆i(γ; s)Ki (s) − E[

(
c>0 xi

)2
∆i(γ; s)Ki (s)], using a similar argument

as (A.2), we have

E
[
(Tn (γ; s)− E [Tn (γ; s)])2] (B.2)

=
1

n2b2
n

n∑
i=1

E
[
Z2
n,i(s)

]
+

1

n2b2
n

∑
i 6=j

Cov[Zn,i(s), Zn,j(s)]

≤ C2(s)

nbn
{γ (s)− γ0 (s)}

for some C2(s) ∈ (0,∞) since ϕ ∈ (0, 2) in Assumption A-(iii).

We suppose n is large enough so that r(s)φ1n ≤ C(s). Similarly as Lemma A.7 in

Hansen (2000), we set γg for g = 1, 2, ..., g+1 such that, for any s ∈ S, γg (s) = γ0 (s)+

2g−1r(s)φ1n, where g is the integer satisfying γg (s)− γ0 (s) = 2g−1r(s)φ1n ≤ C(s) and

γg+1 (s) − γ0 (s) = 2gφ1n > C(s). Then Markov’s inequality and (B.2) yield that for

any fixed η(s) > 0,

P

(
max
1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣ > η(s)

)
(B.3)

≤ P

(
max
1≤g≤g

∣∣∣∣∣Tn
(
γg; s

)
− E

[
Tn
(
γg; s

)]
E
[
Tn
(
γg; s

)] ∣∣∣∣∣ > η(s)

)

≤ 1

η2(s)

g∑
g=1

E
[(
Tn
(
γg; s

)
− E

[
Tn
(
γg; s

)])2
]

∣∣E [Tn (γg; s)]∣∣2
≤ 1

η2(s)

g∑
g=1

C2(s)r(s)φ1n (nbn)−1

|r(s)φ1n(`D(s) + C1(s)b2
n)|2

2



≤ 1

η2(s)

g∑
g=1

C2(s) (nbn)−1

2g−1`2
D(s)r(s)φ1n

≤ C2(s)

η2(s)r(s)`2
D(s)

∞∑
g=1

1

2g−1
× 1

n2ε

≤ ε(s)

for any ε(s) > 0. From eq. (33) of Hansen (2000), for any γ (s) such that r(s)φ1n ≤
γ (s) − γ0 (s) ≤ C(s), there exists some g satisfying γg (s) − γ0 (s) < γ (s) − γ0 (s) <

γg+1 (s)− γ0 (s), and then

Tn (γ; s)

|γ (s)− γ0 (s)|
≥

Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] × E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣

≥

{
1− max

1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
}

E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣ .

Hence, we can find CT (s) <∞ such that

P
(

inf
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)|
< CT (s)(1− η(s))

)
≤ P

(
Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] × E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣ < CT (s)(1− η(s))

)

≤ P

({
1− max

1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
}

E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣ < CT (s)(1− η(s))

)
≤ ε(s),

where the last line follows from (B.1) and (B.3). The proof for (A.17) is similar to that

for (A.16) and hence omitted.

For (A.18), E [Ln (γ; s)] = 0 and we have

E
[
|Ln (γ; s)|2

]
≤ φ1nC3(s) (B.4)

for some C3(s) ∈ (0,∞) similarly as (B.2). By defining γg in the same way as above,

3



the Markov’s inequality and (B.4) get us that for any fixed η(s) > 0,

P

(
max
1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) > η(s)

)
(B.5)

≤ 1

η2(s)

∞∑
g=1

E
[
Ln
(
γg, s

)2
]

an
∣∣γg (s)− γ0 (s)

∣∣2
≤ 1

η2(s)

∞∑
g=1

φ1nC3(s)

an
∣∣γg (s)− γ0 (s)

∣∣2
≤ C3(s)

η2(s)r(s)

∞∑
g=1

1

2g−1
.

This probability is arbitrarily close to zero if r(s) is chosen large enough. It is worth

to note that (B.5) provides the maximal (or sharp) rate of φ1n as a−1
n because we

need φ1n/an
∣∣γg (s)− γ0 (s)

∣∣2 = O(φ1nan) = O(1) but φ1n → 0 as n → ∞. This

φ1nan = O(1) condition also satisfies (B.3).

Finally, for a given g, we define Γg(s) as the collection of γ (s) satisfying r(s)2g−1φ1n <

γ (s)− γ0 (s) < r(s)2gφ1n for each s ∈ S. Then,

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

|Ln (γ; s)|
√
an |γ (s)− γ0 (s)|

> η (s)

)
(B.6)

= P

(
max
1≤g≤g

sup
γ∈Γg(s)

|Ln (γ; s)|
√
an (γ (s)− γ0 (s))

> η (s)

)

≤ P

(
max
1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg+1 (s)− γ0 (s)

) > η (s)

)

≤ C4(s)

η2 (s) r(s)

for some C4(s) ∈ (0,∞). Combining (B.5) and (B.6), we thus have

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

∣∣Ln (γg; s)∣∣√
an (γ (s)− γ0 (s))

> η (s)

)

≤ 2P

(
max
1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) > η (s)

)

+2P

(
max
1≤g≤g

sup
γ∈Γg(s)

|Ln (γ; s)|
√
an (γ (s)− γ0 (s))

> η (s)

)
≤ ε(s)
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for any ε(s) > 0 if we pick r(s) sufficiently large. The proof for (A.19) is similar to

that for (A.18) and hence omitted. �

Proof of Lemma A.5 Using the same notations in Lemma A.3, (A.12) yields

nε
(
θ̂(γ̂(s))− θ0

)
(B.7)

=

{
1

nbn
Z̃(γ̂(s); s)>Z̃(γ̂(s); s)

}−1

×
{
nε

nbn
Z̃(γ̂(s); s)>ũ(s)− nε

nbn
Z̃(γ̂(s); s)>

(
Z̃(γ̂(s); s)− Z̃(γ0(si); s)

)
θ0

}
≡ Θ−1

A1(s) {ΘA2(s)−ΘA3(s)} .

For the denominator ΘA1(s), we have

ΘA1(s) =

(
(nbn)−1

∑n
i=1 xix

>
i Ki(s) Mn (γ̂(s); s)

Mn (γ̂(s); s) Mn (γ̂(s); s)

)
(B.8)

→p

(
M(s) M (γ0(s); s)

M (γ0(s); s) M (γ0(s); s)

)
,

where Mn (γ̂(s); s) →p M (γ0(s); s) < ∞ from Lemma A.1 and the pointwise con-

sistency of γ̂(s) in Lemma A.3. In addition, (nbn)−1
∑n

i=1
xix
>
i Ki (s) →p M(s) =∫∞

−∞D(q, s)f (q, s) dq < ∞ from the standard kernel estimation result. Note that the

probability limit is positive definite since both M(s) and M (γ0(s); s) are positive def-

inite and

M(s)−M (γ0(s); s) =

∫ ∞
γ0(s)

D(q, s)f (q, s) dq > 0

for any γ0(s) ∈ Γ from Assumption A-(viii).

For the numerator part ΘA2(s), we have ΘA2(s) = Op(a
−1/2
n ) = op(1) because

1√
nbn

Z̃(γ̂(s); s)>ũ(s) =

(
(nbn)−1/2

∑n
i=1 xiuiKi(s)

Jn (γ̂(s); s)

)
= Op (1) (B.9)

from from Lemma A.1 and the pointwise consistency of γ̂(s) in Lemma A.3. Note

that the standard kernel estimation result gives (nbn)−1/2
∑n

i=1
xiuiKi (s) = Op(1).

Moreover, we have

ΘA3(s) =

(
(nbn)−1

∑n

i=1
c>0 xix

>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

(nbn)−1
∑n

i=1
c>0 xix

>
i 1i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

)
(B.10)
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and

1

nbn

n∑
i=1

c>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s) (B.11)

≤ ‖c0‖ ‖Mn (γ̂(s); s)−Mn (γ0(si); s)‖
≤ ‖c0‖ {‖Mn (γ̂(s); s)−Mn (γ0(s); s)‖+Op(bn)}
= op(1),

where the second inequality is from (A.14) and the last equality is because Mn (γ; s)→p

M (γ; s) is continuous in γ and γ̂(s)→p γ0(s) in Lemma A.3. Since

1

nbn

n∑
i=1

c>0 xix
>
i 1i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s) (B.12)

≤ ‖c0‖ ‖Mn (γ̂(s); s)−Mn (γ0(si); s)‖ = op(1)

from (B.11), we have ΘA3(s) = op(1) as well, which completes the proof. �

Proof of Lemma A.7 Using the same notations in Lemma A.3, we write√
nbn

(
θ̂ (γ̂ (s))− θ0

)
=

{
1

nbn
Z̃(γ̂(s); s)>Z̃(γ̂(s); s)

}−1

×
{

1√
nbn

Z̃(γ̂(s); s)>ũ(s)− 1√
nbn

Z̃(γ̂(s); s)>
(
Z̃(γ̂(s); s)− Z̃(γ0(si); s)

)
θ0

}
≡ Θ−1

B1(s) {ΘB2(s)−ΘB3(s)}

similarly as (B.7). For the denominator, since ΘB1(s) = ΘA1(s) in (B.7), then Θ−1
B1(s) =

Op(1) from (B.8). For the numerator, we first have ΘB2(s) = Op(1) from (B.9). For

ΘB3(s), similarly as (B.10),

ΘB3(s) =

(
a
−1/2
n

∑n

i=1
n−εδ>0 xix

>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

a
−1/2
n

∑n

i=1
n−εδ>0 xix

>
i 1i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

)
.
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However, since γ̂(s) = γ0(s) + r(s)φ1n for some r(s) < ∞ from Theorem 2, similarly

as (A.25), we have

E

[
n∑
i=1

n−εδ>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

]

≤ an

∣∣∣∣∣
∫∫ γ0(s)+r(s)φ1n

γ0(s+bnt)

c>0 E
[
xix
>
i |q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
≤ an

∣∣∣∣∣
∫∫ γ0(s)+r(s)φ1n

γ0(s)

c>0 E
[
xix
>
i |q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
+an

∣∣∣∣∣
∫∫ γ0(s+bnt)

γ0(s)

c>0 E
[
xix
>
i |q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
= anφ1n |r(s)|

∣∣c>0 D (γ0 (s) , s)
∣∣ f (γ0 (s) , s) +O(anbn)

= O(1)

as anφ1n = 1 and anbn = n1−2εb2
n → % <∞. We also have

V ar

[
n∑
i=1

n−εδ>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

]
= O(n−2ε) = o(1),

similarly as (A.26). Therefore, from the same reason as (B.12), we have ΘB3(s) =

Op(a
−1/2
n ) = op(1), which completes the proof. �

Proof of Lemma A.8 First consider the case with r > 0. In this case, we have

{1[q ≤ γ0 (s) + r/an]− 1[q ≤ γ0 (s)]} {1[q ≤ γ0 (s+ bnt)]− 1[q ≤ γ0 (s)]}
= 1 [γ0 (s) < q ≤ γ0 (s+ bnt) < γ0 (s) + r/an]

+1 [γ0 (s) < q ≤ γ0 (s) + r/an < γ0 (s+ bnt)] .

Therefore, if we denote g(q, s) = c>0 D(q, s)c0f (q, s),

E [B∗n3(r, s)]

= an

∫∫
c>0 D(q, s+ bnt)c0 {1[q ≤ γ0 (s) + r/an]− 1[q ≤ γ0 (s)]}

×{1[q ≤ γ0 (s+ bnt)]− 1[q ≤ γ0 (s)]}K (t) f (q, s+ bnt) dqdt

= an

∫
T1(r;s)

∫ γ0(s+bnt)

γ0(s)

g(q, s+ bnt)K (t) dqdt

+an

∫
T2(r;s)

∫ γ0(s)+r/an

γ0(s)

g(q, s+ bnt)K (t) dqdt

≡ Bn31(r, s) +Bn32(r, s),
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where

T1(r; s) = {γ0 (s) < γ0 (s+ bnt)} ∩ {γ0 (s+ bnt) < γ0 (s) + r/an} ,

T2(r; s) = {γ0 (s) < γ0 (s+ bnt)} ∩ {γ0 (s) + r/an < γ0 (s+ bnt)} .

Note that γ0 (s) < γ0 (s) + r/an always holds for r > 0. However, similarly as in the

proof of Lemma A.2, when γ0(·) is increasing around s, γ0 (s) < γ0 (s+ bnt) restricts

that t > 0. Furthermore, γ0 (s+ bnt) < γ0 (s) + r/an implies that t < r/ (anbnγ̇0(s)),

where 0 < r/ (anbnγ̇0(s)) <∞. Therefore, T1(r; s) = {t : t > 0 and t < r/ (anbnγ̇0(s))}.
Similarly, since γ0 (s)+r/an < γ0 (s+ bnt) implies t > r/ (anbnγ̇0(s)), we have T2(r; s) =

{t : t > 0 and t > r/ (anbnγ̇0(s))}. It follows that, by Taylor expansion,

Bn31(r, s) = an

∫ r/(anbnγ̇0(s))

0

∫ γ0(s+bnt)

γ0(s)

g(q, s+ bnt)K (t) dqdt

= anbng(γ0(s), s)γ̇0(s)

∫ r/(anbnγ̇0(s))

0

tK (t) dt+ anbnO (bn)

= %g(γ0(s), s)γ̇0(s)K1 (r, %; s) +O (bn)

as anbn = n1−2εb2
n → % ∈ (0,∞), and

Bn32(r, s) = an

∫ ∞
r/anbnγ̇0(s)

∫ γ0(s)+r/an

γ0(s)

g(q, s+ bnt)K (t) dqdt

= rg(γ0(s), s)

∫ ∞
r/(anbnγ̇0(s))

K (t) dt+O (bn)

= rg(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+O (bn)

as |K0 (r, %; s)| ≤ 1/2 and |K1 (r, %; s)| ≤ 1/2.

When γ0(·) is decreasing around s, −∞ < r/ (anbnγ̇0(s)) < 0 and we can also derive

Bn31(r, s) = an

∫ 0

r/(anbnγ̇0(s))

∫ γ0(s+bnt)

γ0(s)

g(q, s+ bnt)K (t) dqdt

= −%g(γ0(s), s)γ̇0(s)K1 (r, %; s) +O (bn) ,

Bn32(r, s) = an

∫ r/(anbnγ̇0(s))

−∞

∫ γ0(s)+r/an

γ0(s)

g(q, s+ bnt)K (t) dqdt

= rg(γ0(s), s) {(1/2)−K0 (r, %; s)}+O (bn) ,

because, when γ̇0(s) < 0, we have
∫ 0

r/(anbnγ̇0(s))
tK (t) dt = −

∫ r/(anbn(−γ̇0(s)))

0
tK (t) dt

and
∫ r/(anbnγ̇0(s))

−∞ K (t) dt =
∫∞
r/(anbn(−γ̇0(s)))

K (t) dt with γ̇0(s) < 0. It follows that, by

8



combining these results, we have

E [B∗n3(r, s)] = |r| g(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+%g(γ0(s), s) |γ̇0(s)| K1 (r, %; s)+O (bn) .

Furthermore, since |B∗n3(r, s)| ≤
∑n

i=1
(δ>0 xi)

2 |1i (γ0 (s) + r/an)− 1i (γ0 (s))|Ki (s),

we have V ar [B∗n3(r, s)] = O(n−2ε) = o(1) from (A.26) in Lemma A.6, which completes

the proof. �

Proof of Lemma A.9 Define Wµ(r) = W (r) + µ(r), τ+ = arg maxr∈R+ Wµ(r), and

τ− = arg maxr∈R−Wµ(r). The process Wµ(·) is a Gaussian process, and hence Lemma

2.6 of Kim and Pollard (1990) implies that τ+ and τ− are unique almost surely. Recall

that we define W (r) = W1(−r)1[r < 0] + W2(r)1[r > 0], where W1(·) and W2(·) are

two independent standard Wiener processes defined on R+. We claim that

E[τ+] = −E[τ−] <∞, (B.13)

which gives the desired result.

The equality in (B.13) follows directly from the symmetry (i.e., P(Wµ(τ+) >

Wµ(τ−)) = 1/2) and the fact that W1 is independent of W2. Now, we focus on r > 0

and show that E[τ+] <∞. First, for any r > 0,

P (Wµ(r) ≥ 0) = P (W2(r) ≥ −µ(r)) = P
(
W2(r)√

r
≥ −µ(r)√

r

)
= 1− Φ

(
−µ(r)√

r

)
,

where Φ(·) denotes the standard normal distribution function. Since the sample path

of Wµ(·) is continuous, for some r > 0, we then have

E[τ+] =

∫ ∞
0

{
1− P

(
τ+ ≤ r

)}
dr

=

∫ r

0

P
(
τ+ > r

)
dr +

∫ ∞
r

P
(
τ+ > r

)
dr

≤ C1 +

∫ ∞
r

P
(
Wµ(τ+) ≥ 0 and τ+ > r

)
dr

≤ C1 +

∫ ∞
r

P (Wµ(r) ≥ 0) dr

= C1 +

∫ ∞
r

(
1− Φ

(
−µ(r)√

r

))
dr (B.14)

for some C1 <∞, where the first inequality is because Wµ(τ+) = maxr∈R+ Wµ(r) ≥ 0

given Wµ(0) = 0, and the second inequality is because P (Wµ(r) ≥ 0) is monotoni-

cally decreasing to zero on R+. The second term in (B.14) can be shown bounded as

follows. Using change of variables t = rε, integral by parts, and the condition that
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limr→∞ r
−((1/2)+ε)µ(r) = −∞ for some ε > 0 in turn, we have∫ ∞

r

(
1− Φ

(
−µ(r)√

r

))
dr ≤ C2

∫ ∞
r

(1− Φ (rε)) dr

= C2

∫ ∞
r1/ε

(1− Φ (t)) dt1/ε

= C2 + C3

∫ ∞
r1/ε

t1/εφ(t)dt <∞

for some C2, C3 <∞ if r is large enough, where φ(·) denotes the standard normal den-

sity function and we use limt→∞ t
1/ε (1− Φ (t)) = 0. The same result can be obtained

for r < 0 symmetrically, which completes the proof. �

Proof of Lemma A.10 For given (%, s), we simply let µ(r) = µ (r, %; s). Then, for

the kernel functions satisfying Assumption A-(x), it is readily verified that µ(0) = 0,

µ(r) is continuous in r, and µ(r) is symmetric about zero. To check other conditions,

for r > 0, we first write

µ(r) = −r
∫ rC1

0

K(t)dt+ C2

∫ rC1

0

tK(t)dt,

where C1 and C2 are some positive constants depending on (%, |γ̇0(s)| , ξ(s)). We con-

sider the two possible cases.

First, if K(·) has a bounded support, say [−r, r], then µ(r) = −rC3 + C4 for r > r

and some 0 < C3, C4 < ∞. Thus, µ(r) is monotonically decreasing on R\[−r, r] and

limr→∞ r
−((1/2)+ε)µ(r) = −∞ for any ε > 0.

Second, if K(·) has an unbounded support, we have

∂µ(r)

∂r
= −

∫ rC1

0

K(t)dt− rC1K(C1r) + rC2
1C2K(C1r)

by the Leibniz integral rule. However, for r > r for some large enough r, it is strictly

negative because
∫ rC1

0
K(t)dt > 0 and limr→∞ rK(r) = 0. This proves µ(r) is mono-

tonically decreasing on R\[−r, r]. In addition, limr→∞ r
−((1/2)+ε)µ(r) = −∞ for any

ε > 0 because
∫ rC1

0
K(t)dt <

∫∞
0
K(t)dt < ∞,

∫ rC1

0
tK(t)dt <

∫∞
0
tK(t)dt < ∞. The

r < 0 case follows symmetrically using the identical argument. �

Proof of Lemma A.11 We only present the argument for Tn (γ; s) as the proof for

T n (γ; s) is identical. Let τn be some large truncation parameter to be chosen later,

satisfying τn →∞ as n→∞. Define 1τn = 1[
(
c>0 xi

)2
< τn] and

T τn (γ, s) =
1

nbn

n∑
i=1

(
c>0 xi

)2 |∆i(γ; s)|Ki (s)1τn ,
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where ∆i(γ; s) = 1i (γ (s)) − 1i (γ0 (s)). The triangular inequality gives that, for any

η,

P
(

sup
s∈S
|Tn (γ; s)− E [Tn (γ; s)]| > η

)
(B.15)

≤ P
(

sup
s∈S
|T τn (γ; s)− Tn(γ; s)| > η/3

)
+P
(

sup
s∈S
|E [T τn (γ; s)]− E [Tn (γ; s)]| > η/3

)
+P
(

sup
s∈S
|T τn (γ; s)− E [T τn (γ; s)]| > η/3

)
≡ PT1n + PT2n + PT3n.

For the first one, since r(s) > 0 for all s, γ (s) > γ0 (s) and

E
[
sup
s∈S
|T τn (γ; s)− Tn(γ; s)|

]
≤ E

[∣∣∣∣∣ 1

nbn

n∑
i=1

(
c>0 xi

)2
1

[
inf
s∈S

γ0(s) ≤ qi ≤ sup
s∈S

γ0(s) + rφ2n

]
Ki (s) (1− 1τn)

∣∣∣∣∣
]

≤ 1

bn
E
[∣∣∣∣(c>0 xi)2

1

[
inf
s∈S

γ0(s) ≤ qi ≤ sup
s∈S

γ0(s) + rφ2n

]
Ki (s) (1− 1τn)

∣∣∣∣]
= τ−1

n

∫ ∫ sups∈S γ0(s)+rφ2n

infs∈S γ0(s)

E
[(
c>0 xi

)4 |q, s+ bnt
]
f(q, s+ bnt)K (t) dqdt

≤ C1φ2nτ
−1
n

for some C1 ∈ (0,∞), where we use the fact that∫
|a|>τn

|a| fA(a)da ≤ τ−1
n

∫
|a|>τn

|a|2 fA(a)da ≤ τ−1
n E[A2]

for a generic random variable A. Hence, Markov’s inequality yields that PT1n ≤
Cφ2n/(ητn).

Next, to bound PT2n, note that

E [T τn (γ; s)]− E [Tn (γ; s)]

= b−1
n E

[∣∣∣(c>0 xi)2
1 [γ0(s) ≤ qi ≤ γ(s)]Ki (s) (1− 1τn)

∣∣∣]
≤ τ−1

n

∫ ∫ γ(s)

γ0(s)

E
[(
c>0 xi

)4 |q, s+ bnt
]
f(q, s+ bnt)K (t) dqdt

≤ C2φ2nτ
−1
n

for some C2 ∈ (0,∞). By Assumptions A-(v), (vii), and (viii), the above bound is
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uniform in s. Hence Markov’s inequality yields that PT2n ≤ C2φ2n/(ητn) as well.

Now we bound PT3n and then specify the choice of τn. Since S is compact, we

can find mn intervals centered at s1, . . . , smn with length CS/mn that cover S for some

CS ∈ (0,∞). We denote these intervals as Ik for k = 1, . . . ,mn and choose mn later.

The triangular inequality yields

sup
s∈S
|T τn (γ; s)− E [T τn (γ; s)]| ≤ T ∗1n + T ∗2n + T ∗3n,

where

T ∗1n = max
1≤k≤mn

sup
s∈Ik
|T τn (γ; s)− T τn (γ; sk)|

T ∗2n = max
1≤k≤mn

sup
s∈Ik
|E [T τn (γ; s)]− E [T τn (γ; sk)]|

T ∗3n = max
1≤k≤mn

|T τn (γ; sk)− E [T τn (γ; sk)]| .

We first bound T ∗3n. Let

Zτ
n,i(s) = (nbn)−1 {(c>0 xi)

2∆i(γ; s)Ki (s)1τn − E[(c>0 xi)
2∆i(γ; s)Ki (s)1τn ]

}
and

Un(s) = T τn (γ; s)− E [T τn (γ; s)] =
n∑
i=1

Zτ
n,i(s).

Note that sups∈S |
(
c>0 xi

)2
∆i(γ; s)Ki (s)1τn| is bounded by C3τn for some constant

C3 ∈ (0,∞) and hence
∣∣Zτ

n,i(s)
∣∣ ≤ 2C3τn/(nbn) for all i = 1, . . . , n. Define λn =

(nbn log n)1/2/τn. Then λn
∣∣Zτ

n,i(s)
∣∣ ≤ 2C3(log n/(nbn))1/2 ≤ 1/2 for all i = 1, . . . , n

when n is sufficiently large. Using the inequality exp(v) ≤ 1 + v + v2 for |v| ≤ 1/2, we

have exp(λn
∣∣Zτ

n,i(s)
∣∣) ≤ 1 + λn

∣∣Zτ
n,i(s)

∣∣+ λ2
n

∣∣Zτ
n,i(s)

∣∣2. Hence

E[exp(λn
∣∣Zτ

n,i(s)
∣∣)] ≤ 1 + λ2

nE
[
(Zτ

n,i(s))
2
]
≤ exp

(
λ2
nE
[
(Zτ

n,i(s))
2
])

(B.16)

since E
[
Zτ
n,i(s)

]
= 0 and 1 + v ≤ exp(v) for v ≥ 0. Using the fact that P(X > c) ≤

E[exp(Xa)]/ exp(ac) for any random variable X and nonrandom constants a and c, we

12



have that

P
(
|Un(s)| > φ

1/2
2n ηn

)
= P

(
φ
−1/2
2n Un(s) > ηn

)
+ P

(
−φ−1/2

2n Un(s) > ηn

)
≤

E
[
exp

(
λnφ

−1/2
2n

∑n

i=1
Zτ
n,i(s)

)]
+ E

[
exp

(
−λnφ−1/2

2n

∑n

i=1
Zτ
n,i(s)

)]
exp(λnηn)

≤ 2 exp(−λnηn) exp

(
λ2
nφ
−1
2n

n∑
i=1

E
[
(Zτ

n,i(s))
2
])

(by (B.16))

≤ 2 exp(−λnηn) exp
(
λ2
nC4τ

2
n/ (nbn)

)
for some sequence ηn → 0 as n→∞, where the last inequality is from

E
[
(Zτ

n,i(s))
2
]
≤ (nbn)−2E

[(
c>0 xi

)4
∆i(γ; s)2K2

i (s)1τn

]
≤ C4τ

2
n(n2bn)−1φ2n(1 + o(1))

for some C4 ∈ (0,∞). However, this bound is independent of s given Assumptions

A-(v) and (x), and hence it is also the uniform bound, i.e.,

sup
s∈S

P
(
|Un(s)| > φ

1/2
2n ηn

)
≤ 2 exp

(
−λnηn + λ2

nC4τ
2
n/ (nbn)

)
. (B.17)

Now given τn, we need to choose ηn → 0 as fast as possible, and at the same

time we let λnηn → ∞ at a rate that ensures (B.17) is summable and λnηn >

λ2
nτ

2
n/ (nbn). This is done by choosing λn = (nbn log n)1/2/τn and ηn = C∗λ−1

n log n =

C∗τn((log n)/ (nbn))1/2 for some finite constant C∗. This choice yields

−λnηn + λ2
nC4τ

2
n/nbn = −C∗ log n+ C4 log n = −(C∗ − C4) log n.

Therefore, by substituting this into (B.17), we have

P
(
T ∗3n > φ

1/2
2n ηn

)
= P

(
max

1≤k≤mn
|Un(sk)| > φ

1/2
2n ηn

)
≤ mn sup

s∈S
P
(
|Un(s)| > φ

1/2
2n ηn

)
≤ 2

mn

nC∗−C4
.

Now, we can choose C∗ sufficiently large so that
∑∞

n=1
P
(
T ∗3n > φ

1/2
2n ηn

)
is summable,

from which we have

T ∗3n = Oa.s.(φ
1/2
2n ηn) = Oa.s.

((
φ2n

log n

nbn

)1/2
)

by the Borel-Cantelli lemma.

13



Next, we consider T ∗1n. Note that

T τn (γ; s)− T τn (γ; sk) =
1

nbn

n∑
i=1

(
c>0 xi

)2
∆i(γ; s) (Ki (s)−Ki (sk))1τn (B.18)

+
1

nbn

n∑
i=1

(
c>0 xi

)2
(∆i(γ; s)−∆i(γ; sk))Ki (sk)1τn .

For the first item in (B.18), using a similar derivation as Lemma A.6 yields that if n is

sufficiently large,

E

[∣∣∣∣∣ 1

nbn

n∑
i=1

(
c>0 xi

)2
∆i(γ; s) (Ki (s)−Ki (sk))1τn

∣∣∣∣∣
]

≤ b−1
n τnE [|∆i(γ; s) (Ki (s)−Ki (sk))|]

≤ C5CSτnφ2n/ (mnbn) .

for some constant C5 < ∞. For the second item in (B.18), without loss of generality,

consider that γ(s) < γ(sk) and γ0(s) < γ0(sk). Then by choosing the covering interval

length CS/mn smaller than φ2n, we have

E

[
sup
s∈Ik

∣∣∣∣∣ 1

nbn

n∑
i=1

(
c>0 xi

)2
(∆i(γ; s)−∆i(γ; sk))Ki (sk)1τn

∣∣∣∣∣
]

≤ 2C6τn

(
sup
s∈S

K(s)

)
E

[
sup
s∈Ik

∣∣∣∣∣ 1n
n∑
i=1

1 (γ0(s) < qi ≤ γ0(sk))

∣∣∣∣∣
+ sup

s∈Ik

∣∣∣∣∣ 1n
n∑
i=1

1 (γ(s) < qi ≤ γ(sk))

∣∣∣∣∣
]

≤ C6τnP
(

inf
s∈Ik

γ0(s) < qi ≤ sup
s∈Ik

γ0(s)

)
+ C6τnP

(
inf
s∈Ik

γ(s) < qi ≤ sup
s∈Ik

γ(s)

)
≤ C6CSτn/mn,

where the last line follows from Taylor expansion and Assumption A-(vi). This bound

does not depend on k and hence T ∗1n = Op(τn/mn). Similarly for T ∗2n, Taylor expansion

yields that

|E [T τn (γ; s)]− E [T τn (γ; sk)]| ≤ b−1
n τnE [∆i(γ; s)Ki (s)−∆i(γ, sk)Ki (sk)]

≤ b−1
n τnE [∆i(γ; s) (Ki (s)−Ki (sk))]

+b−1
n τnE

[(
c>0 xi

)2
(∆i(γ; s)−∆i(γ; sk))Ki (sk)

]
≤ C7τn/mn

for some C7 < ∞, where the last line follows by choosing the covering interval length
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CS/mn smaller than φ2n. This bound is also uniform in k and hence T ∗2n = O(τn/mn) as

well. Therefore, by choosing mn = [(φ2n(log n)/nbn)1/2/τn]−1, we have that T ∗1n and T ∗2n
are both the order of (φ2n(log n)/nbn)1/2. It follows that PT3n ≤ η−1C(φ2n(log n)/nbn)1/2

for some C ∈ (0,∞) by Markov’s inequality.

Finally, if we choose τn such that τn = O(φ
1/2
2n ((log n)/nbn)−1/2), we have both PT1n

and PT2n are also bounded by η−1C(φ2n(log n)/nbn)1/2. A possible choice of τn is nε

or larger. This completes the proof. �

Proof of Lemma A.12 Since the proof is similar as that in Lemma A.11, we only

highlight the different part. We only present the argument for Ln (γ; s) as the proof

for Ln (γ; s) is identical. We now define 1τn = 1[
∣∣c>0 xiui∣∣ < τn] for some truncation

parameter satisfying τn → ∞ as n → ∞, which can be different from the one chosen

in Lemma A.11 above. We let

Lτn (γ; s) =
1√
nbn

n∑
i=1

c>0 xiui∆i(γ; s)Ki (s)1τn ,

and write

P
(

sup
s∈S
|Ln (γ; s)| > η

)
≤ P

(
sup
s∈S
|Lτn (γ; s)− Ln(γ; s)| > η/2

)
+ P

(
sup
s∈S
|Lτn (γ; s)| > η/2

)
≡ PL1n + PL2n,

where E[Lτn(γ, s)] = 0.

To bound PL1n, similarly as PT1n in the proof of Lemma A.11, note that

E
[
sup
s∈S
|Lτn (γ; s)− Ln(γ; s)|

]
≤ E

[
1√
nbn

n∑
i=1

∣∣c>0 xiui∣∣1 [inf
s∈S

γ0(s) ≤ qi ≤ sup
s∈S

γ0(s) + rφ2n

]
Ki (s) (1− 1τn)

]

≤ (nbn)1/2 τ−1
n

∫ sups∈S γ0(s)+rφ2n

infs∈S γ0(s)

E
[(
c>0 xiui

)2 |q, s+ tbn

]
f(q, s+ tbn)K (t) dqdt

≤ C1φ2n (nbn)1/2 τ−1
n

for some C1 ∈ (0,∞) and hence PL1n ≤ η−1C1φ2n (nbn)1/2 τ−1
n by Markov’s inequality.

To bound PL2n, similarly as PT3n in the proof of Lemma A.11, we write

sup
s∈S
|Lτn (γ; s)| ≤ L∗1n + L∗2n,
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where

L∗1n = max
1≤k≤mn

sup
s∈Ik
|Lτn (γ; s)− Lτn (γ; sk)|

L∗2n = max
1≤k≤mn

|Lτn (γ; sk)|

and {Ik}mnk=1 denote mn intervals centered at s1, . . . , smn with length CS/mn that cover

S for some CS ∈ (0,∞). (The choices of mn and CS can be different from the ones

in Lemma A.11 above.) The bound of L∗1n can be obtained similarly as T ∗3n above

by letting Zτ
n,i(s) = (nbn)−1/2 c>0 xiui∆i(γ; s)Ki (s)1τn . In particular, with

∣∣Zτ
n,i(s)

∣∣ ≤
C2τn/(nbn)1/2 for all i = 1, . . . , n and Lτn (γ; s) =

∑n

i=1
Zτ
n,i(s), we have

sup
s∈S

P
(
|Lτn (γ; s)| > φ

1/2
2n ηn

)
≤ 2 exp(−λnηn + λ2

nτ
2
nC3) (B.19)

for some C3 ∈ (0,∞). By choosing λn = (log n)1/2/τn and ηn = C∗τn(log n)1/2 for

some finite constant C∗, we get

−λnηn + λ2
nτ

2
nC3 = −(C∗ − C3) log n.

Substituting this into (B.19) gives us

sup
s∈S

P
(
|Lτn (γ; s)| > φ

1/2
2n ηn

)
≤ 2

mn

nC∗−C3
,

and hence by choosing C∗ sufficiently large

L∗2n = Oa.s.(φ
1/2
2n ηn) = Oa.s.

(
(φ2n log n)1/2

)
by the Borel-Cantelli lemma. Regarding L∗1n, we choose mn = [(φ2n log n)1/2/τn]−1 and

use the same argument as bounding T ∗1n above to get

E [L∗1n] = O
(

(φ2n log n)1/2
)

.

Therefore, by combining L∗1n and L∗2n and using Markov’s inequality, we have PL2n ≤
η−1C(φ2n log n)1/2 for some C ∈ (0,∞).

Finally, if we choose τn such that τn = O(φ
1/2
2n ((log n)/ (nbn))−1/2), we have PL1n ≤

η−1C(φ2n log n)1/2 as well. A possible choice of τn is nε or larger. This completes the

proof. �

Proof of Lemma A.13 We first show (A.33). Consider the case with γ (s) −
γ0 (s) ∈ [r(s)φ2n, C(s)], where 0 < r = infs∈S r(s) ≤ sups∈S r(s) = r < ∞ and

C = sups∈S C(s) <∞; the other direction can be shown symmetrically. Let

`D(s) = inf
|γ(s)−γ0(s)|<C(s)

c>0 D(γ(s), s)c0f (γ(s), s) > 0 and ` = inf
s∈S

`D(s) > 0
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from Assumptions A-(vii) and (viii). Then, from (B.1), we get

sup
s∈S

E [Tn (γ; s)] ≥ sup
s∈S

(γ (s)− γ0 (s)) (`+ C1(s)b2
n) (B.20)

≥ ` sup
s∈S

(γ (s)− γ0 (s)) = `rφ2n

because 0 < C1(s) <∞ for all s ∈ S from Assumptions A-(vii) and (viii). Furthermore,

Lemma A.11 implies that

P
(

sup
s∈S
|Tn (γ; s)− E [Tn (γ; s)]| > η

)
≤ C2η

−1

(
φ2n

log n

nbn

)1/2

(B.21)

for some C2 ∈ (0,∞).

We now set γg for g = 1, . . . , g + 1 such that, for any s ∈ S, γg (s) = γ0 (s) +

2g−1r(s)φ2n where g is the integer satisfying γg (s) − γ0 (s) = 2g−1r(s)φ2n ≤ C and

γg+1 (s) − γ0 (s) = 2gr(s)φ2n > C. Then, (B.20) and (B.21) yield that for any fixed

η > 0,

P

(
max
1≤g≤g

∣∣∣∣∣ sups∈S Tn
(
γg; s

)
sups∈S E

[
Tn
(
γg; s

)] − 1

∣∣∣∣∣ > η

)
(B.22)

≤ P

(
max
1≤g≤g

∣∣sups∈S Tn
(
γg; s

)
− sups∈S E

[
Tn
(
γg; s

)]∣∣∣∣sups∈S E
[
Tn
(
γg; s

)]∣∣ > η

)

≤ P

(
max
1≤g≤g

sups∈S
∣∣Tn (γg; s)− E

[
Tn
(
γg; s

)]∣∣∣∣sups∈S E
[
Tn
(
γg; s

)]∣∣ > η

)

≤
g∑
g=1

P
(

sup
s∈S

∣∣Tn (γg; s)− E
[
Tn
(
γg; s

)]∣∣ > η

∣∣∣∣sup
s∈S

E
[
Tn
(
γg; s

)]∣∣∣∣)

≤
g∑
g=1

C1 (φ2n(log n)/nbn)1/2

2g−1η`rφ2n

≤ C1

η`r

∞∑
g=1

1

2g−1
× 1

nε

≤ ε

for any ε > 0. Then from eq. (33) of Hansen (2000), for any γ (s) such that rφ2n ≤
sups∈S (γ (s)− γ0 (s)) ≤ C, there exists some g such that γg (s) − γ0 (s) < γ (s) −

17



γ0 (s) < γg+1 (s)− γ0 (s). This implies that

sups∈S Tn (γ; s)

sups∈S |γ (s)− γ0 (s)|

≥
sups∈S Tn

(
γg; s

)
sups∈S E

[
Tn
(
γg; s

)] × sups∈S E
[
Tn
(
γg; s

)]
sups∈S

∣∣γg+1 (s)− γ0 (s)
∣∣

=

(
1 +

(
sups∈S Tn

(
γg; s

)
sups∈S E

[
Tn
(
γg; s

)] − 1

))
×

sups∈S E
[
Tn
(
γg; s

)]
sups∈S

∣∣γg+1 (s)− γ0 (s)
∣∣ ,

and for any η > 0,

P

(
inf

rφ2n<sups∈S |γ(s)−γ0(s)|<C

sups∈S Tn (γ; s)

sups∈S |γ (s)− γ0 (s)|
< C(1− η)

)

≤ P

((
1−

∣∣∣∣∣max
1≤g≤g

sups∈S Tn
(
γg; s

)
sups∈S E

[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
)

sups∈S E
[
Tn
(
γg; s

)]
sups∈S

∣∣γg+1 (s)− γ0 (s)
∣∣ < C(1− η)

)
≤ ε,

where the last line follow from (B.20) and (B.22). The proof for (A.34) is similar to

that for (A.33) and hence omitted.

For (A.18), Lemma A.12 yields that, for a large enough n,

P
(

sup
s∈S
|Ln (γ; s)| > η

)
≤ η−1C2φ

1/2
2n (log n)1/2 (B.23)

for some C2 ∈ (0,∞) similarly as above. Using a similar approach as (B.22), for any

fixed η > 0,

P

(
max
1≤g≤g

sups∈S
∣∣Ln (γg; s)∣∣√

an sups∈S
(
γg (s)− γ0 (s)

) > η

)
(B.24)

≤
∞∑
g=1

P

(
sups∈S

∣∣Ln (γg; s)∣∣√
an sups∈S

(
γg (s)− γ0 (s)

) > η

)

≤
∞∑
g=1

C2 (φ2n log n)1/2

η
√
an2g−1µrφ2n

≤ C2

ηµr

∞∑
g=1

1

2g−1
.

from (B.20) and (B.23). This probability is arbitrarily close to 0 if r is large enough.

Following a similar discussion after (B.5), this result also provides the maximal (or

sharp) rate of φ2n as log n/an because we need (log n/an)/φ2n = O(1) but φ2n → 0 as

log n/an → 0 with n→∞.
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Finally, for a given g, we define Γg as the collection of γ (s) satisfying r2g−1φ2n <

γ (s)− γ0 (s) < r2gφ2n for all s ∈ S. By a similar argument as (B.24), we have

P

(
max
1≤g≤g

sup
γ∈Γg

sups∈S |Ln (γ; s)|
√
an sups∈S (γ (s)− γ0 (s))

> η

)
≤ C3

ηr̄
(B.25)

for some constant C3 <∞. Combining (B.24) and (B.25), we thus have

P

(
sup

rφ2n<sups∈S |γ(s)−γ0(s)|<C

sups∈S
∣∣Ln (γg; s)∣∣√

an sups∈S (γ (s)− γ0 (s))
> η

)

≤ 2P

(
max
1≤g≤g

sups∈S
∣∣Ln (γg; s)∣∣√

an sups∈S
(
γg (s)− γ0 (s)

) > η

)

+2P

(
max
1≤g≤g

sup
γ∈Γg

sups∈S |Ln (γ; s)|
√
an sups∈S (γ (s)− γ0 (s))

> η

)
≤ ε

for any ε > 0 if r is sufficiently large. The proof for (A.36) is similar to that for (A.35)

and hence omitted. �

Proof of Lemma A.14 For a given γ, since all the convergence results in Lemma

A.5 hold uniformly by Lemma A.1, we only need to show sups∈S |γ̂(s)− γ0(s)| →p 0.

To this end, denote Γ and Γ as the upper and lower bounds of Γ, respectively, and let

dΓ = Γ− Γ. Since S is compact, it can be covered by the union of a finite number of

intervals {Ik}mk=1 with length dΓ/m and center points {sk}mk=1. On the event E∗n that

γ̂(s) is continuous with probability approaching to one, we can choose a large m such

that sups∈Ik |γ̂(s)− γ̂(sk)| ≤ η for any η and all k. Such a choice is also valid for

γ0(·) since it is also continuous by Assumption A-(vi). Then on the event E∗n, using

triangular inequality and Lemma A.3, for any η > 0 and any ε > 0, there is a large

enough m such that

P
(

sup
s∈S
|γ̂(s)− γ0(s)| > η

)
≤ P

(
max

1≤k≤m
sup
s∈Ik
|γ̂(s)− γ̂(sk)| > η/3

)
+ P

(
max

1≤k≤m
sup
s∈Ik
|γ0(s)− γ0(sk)| > η/3

)
+P
(

max
1≤k≤m

|γ̂(sk)− γ0(sk)| > η/3

)
≤ 2 (1− P(E∗n)) +

m∑
k=1

P (|γ̂(sk)− γ0(sk)| > η/3)

≤ ε,
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where the last line follows from that P(E∗n) > 1 − ε for any ε. This is because γ̂(·)
is a step function taking values in {qi}ni=1 ∩ Γ and hence is piecewise continuous with

countable jump points. �

Proof of Lemma A.15 We prove Ξn02 = op(1) and Ξn03 = op(1). The results for

Ξn12 and Ξn13 can be shown symmetrically. As in the proof of Theorem 5, we denote

the leave-one-out estimator γ̂−i (si) as γ̂ (si) in this proof. For expositional simplicity,

we only present the case of scalar xi.

First, for any continuous function γ (·) : S → Γ, we define

Gn(γ) =
1√
n

n∑
i=1

xiui1 [qi > γ(si) + ∆n]1S.

For any fixed γ(·), Gn(γ) converges to a Gaussian random variable by the random field

CLT, where E [xiui1 [qi > γ(si) + ∆n]1S] = 0 and E [x2
iu

2
i1 [qi > γ(si) + ∆n]1S] < ∞

from Assumptions ID-(i) and A-(v). Moreover, the convergence holds for any finite

collection of γ (·) and the process Gn(γ) is uniformly tight by a similar argument as

Lemma A.1. Therefore, we have Gn(γ)⇒ G(γ) as n→∞, where G(γ) is a Gaussian

process with almost surely continuous paths (cf. Lemma A.4 in Hansen (2000)). It

follows that, for any γ(s) such that sups∈S |γ(s)− γ0(s)| ≤ rφ2n for some r > 0, we

have

Gn(γ)−Gn(γ0)→p 0

as Gn(γ) − Gn(γ0) ⇒ G(γ) − G(γ0). We now denote Γn as the set of continuous

functions {γ(·) : sups∈S |γ(s)− γ0(s)| ≤ rφ2n}. If we choose r large enough so that

P(γ̂ 6∈ Γn) < ε/2, then for any ε > 0 and η > 0, we have

P (|Ξn02| > η)

= P (|Gn(γ̂)−Gn(γ0)| > η)

= P
(
|Gn(γ̂)−Gn(γ0)| > η and γ̂ ∈ Γn

)
+ P

(
|Gn(γ̂)−Gn(γ0)| > η and γ̂ ∈ Γ

c

n

)
≤ P

(
sup
γ∈Enγ

|Gn(γ)−Gn (γ0)| > η

)
+ P(γ̂ 6∈ Γn)

≤ ε,

which gives the desired result.

Second, we consider ∆n > 0. On the event E∗n that sups∈S |γ̂(s)− γ0(s)| ≤ φ2n, we
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have

E [|Ξn03|] =
1√
n

n∑
i=1

E
[∣∣x2

i δ0

∣∣1 [qi ≤ γ0(si)]1 [qi > γ̂(si) + ∆n]1S
]

≤ n1/2−εCE [1 [qi ≤ γ0(si)]1 [qi > γ̂(si) + ∆n]1S]

≤ n1/2−εCE [1 [qi ≤ γ0(si)]1 [qi > γ0(si)− φ2n + ∆n]1S]

= n1/2−εC

∫
S

∫
I(q;s)

f(q, s)dqds

for some constant 0 < C <∞, where I(q; s) = {q : q ≤ γ0(s) and q > γ0(s)−φ2n+∆n}.
However, since we set ∆n > 0 such that φ2n/∆n → 0, then ∆n − φ2n > 0 holds with

a sufficiently large n. Therefore, I(q; s) becomes empty for all s when n is sufficiently

large. The desired result follows from Markov’s inequality and the fact that P (E∗n) >

1− ε for any ε > 0. �
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