University of Pennsylvania

Prelim Examination Friday June 7, 2019. Time limit: 150 minutes

Instructions:

- (i) The total number of points is 60. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Question 1: (6 Points) Suppose that $X \sim N(0, 1)$. Define $Y = \exp(X)$.

- (i) (2 Points) Derive the pdf and the cdf for Y. Hint: you can use $\phi(x)$ and $\Phi(x)$ to denote the pdf and cdf, respectively, of a N(0, 1) random variable.
- (ii) (2 Points) Compute the mean of Y.
- (iii) (2 Points) Compute the variance of Y.

Question 2: (5 Points) Consider the following model:

$$Y_i = \theta_i + U_i, \quad U_i \sim N(0, 1), \quad i = 1, \dots, N.$$
 (1)

Define the $N \times 1$ vector of means $\theta^N = [\theta_1, \dots, \theta_N]'$ and the $N \times 1$ vector of observations $Y^N = [Y_1, \dots, Y_N]'$

- (i) (1 Point) Specify the likelihood function.
- (ii) (1 Point) Derive the maximum likelihood estimator (MLE) of the vector θ^N .
- (iii) (2 Points) Is the MLE of θ^N consistent as $N \longrightarrow \infty$?
- (iv) (1 Point) Define the compound loss function

$$L(\hat{\theta}^N, \theta^N) = \frac{1}{N} \sum_{i=1}^N (\hat{\theta}_i - \theta_i)^2.$$

Compute the expected (frequentist) compound loss of the MLE.

Question 3: (20 Points) Now suppose that we add the following prior distribution to the model in (1):

$$\theta_i \sim iidN(0, 1/\lambda), \quad i = 1, \dots, N.$$
 (2)

- (i) (5 Points) Derive the posterior distribution for the vector θ^N . Are the elements of the θ^N vector *a posteriori* independent?
- (ii) (3 Points) Derive the marginal likelihood

 $p(Y^N|\lambda)$

by integrating out θ^N .

(iii) (6 Points) Let the

$$\hat{\lambda} = \operatorname{argmax} p(Y^N | \lambda). \tag{3}$$

Is $\hat{\lambda}$ a consistent estimator of λ as $N \longrightarrow \infty$? Provide a formal proof and provide a discussion of the effect of the lower bound $\lambda \ge 0$.

(iv) (6 Points) Now consider the following posterior mean estimator (conditional on $\hat{\lambda}$) of θ^N :

$$\tilde{\theta}^N = \mathbb{E}[\theta^N | Y^N, \hat{\lambda}]. \tag{4}$$

Provide a formula for the compound loss (don't take expectations) of $\tilde{\theta}^N$, then let $N \longrightarrow \infty$ and evaluate the limit. Compare your result to Question 2(iv).

Question 4: (10 Points) Consider the following model

$$Y_i \sim N(0, \sigma_i^2), \quad \sigma_i^2 = \frac{2i}{N}, \quad i = 1, \dots, N.$$
 (5)

There are no unknown parameters here. The goal is to construct coverage intervals for Y_i (you can think of them as interval forecasts). We restrict ourselves to connected intervals of the form

$$C_i = [c_i, c_i + l_i],$$

where c_i is the lower bound of the interval and l_i is its length. Our goal is to minimize the average length of the coverage intervals:

$$\bar{l} = \frac{1}{N} \sum_{i=1}^{N} l_i.$$

(i) (5 Points) Suppose that we impose the coverage constraint

$$\mathbb{E}[Y_i \in C_i] = 0.95 \quad \text{for all} \quad i = 1, \dots, N.$$
(6)

Using first-order conditions to a constrained optimization problem, show that the collection of intervals

$$C_i^* = [-1.96\sigma_i, +1.96\sigma_i], \quad i = 1, \dots, N.$$

minimize the average length criterion.

(ii) (5 Points) Now consider the alternative coverage constraint which only restricts the average coverage probability for the vector of interval forecasts:

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[Y_i \in C_i] = 0.95.$$
(7)

Show that the collection C_i^* is no longer optimal. What are the key features of the optimal intervals?

Question 5: (19 Points) Consider the following regression model:

$$y_i = x_i\beta + u_{1i}, \quad |\beta| < M$$

$$x_i = z'_i\gamma + u_{2i}, \qquad (8)$$

where x_i is an endogenous regressor, z_i is a $k \times 1$ vector of instruments that is independent of u_{1i} and u_{2i} and

$$\begin{bmatrix} u_{1i} \\ u_{2i} \end{bmatrix} \sim iidN\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right).$$

We assume that the covariance matrix Σ of $u_i = [u_{1i}, u_{2i}]'$ is known. You can use matrix notation and define Y, X, and Z as the vectors/matrices that stack y_i , x_i , and z'_i , respectively.

- (i) (4 Points) Is the OLS estimator of β consistent? Explain.
- (ii) (6 Points) Propose a GMM estimator of β and denote it by $\hat{\beta}$. Show that $\hat{\beta}$ is consistent.
- (iii) (7 Points) Derive the limit distribution of $\hat{\beta}$. Express the asymptotic covariance matrix as functions of the primitives of the model: β , γ , Σ , and $\mathbb{E}[z_i z'_i]$.
- (iv) (2 Points) What is the optimal weight matrix for your estimator?