Health, Consumption, and Inequality

Jay H. Hong Josep Pijoan-Mas José Víctor Ríos-Rull

SNU CEMFI UPenn and UCL

PIER Conference Special Event, April 2019

Work in Progress (still)
Motivation

- Inequality is one of the themes of our time.
 - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
 Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014)
 Kuhn, Ríos-Rull (QR 2016); Khun et al (2017)

- We also know of large socio-economic gradients in health outcomes
 - In mortality
 Kitagawa, Hauser (1973); Pijoan-Mas, Rios-Rull (Demography 2014)
 De Nardi et al (ARE 2016); Chetty et al (JAMA 2016)
 - In many other health outcomes
 Marmot et al (L 1991); Smith (JEP 1999)
 Bohacek, Bueren, Crespo, Mira, Pijoan-Mas (2018)

- We want to compare and relate inequality in health outcomes to pure economic inequality.
The project

1. Write a model of consumption, saving and health choices featuring
 (a) Health-related preferences
 (b) Health technology

2. Use the FOC (only) to estimate (a) and (b)
 - Consumption growth data to estimate how health affects the marginal utility of consumption
 - Standard measures of VSL and HRQL to infer how much value individuals place on their life in different health states
 - Medical health spending, health transitions (and people’s valuation of life) to infer health technology

3. Use our estimates to
 - Welfare analysis: compare different groups given their allocations
 - Ask what different groups would do if their resources were different and how much does welfare change
 - Evaluate public policies?
Main empirical challenge

- **Theory:**
 - Out-of-pocket expenditures improve health

- **Data:**
 - Cross-section: higher spending leads to better health transitions across groups (education, wealth)
 - Panel: higher spending leads to worse outcomes
 - unobserved health shocks spur medical spending

- **Add explicitly into the model**
 - Unobserved shock to health between t and $t+1$ that shapes
 - probability of health outcomes
 - the returns to health spending
 - Higher expenditure signals higher likelihood of bad health shock
Model
Life-Cycle Model (mostly old-age)

1. Individuals state $\omega \in \Omega \equiv I \times E \times A \times H$ is
 - Age $i \in I \equiv \{50, \ldots, 89\}$
 - Education $e \in E \equiv \{\text{HSD, HSG, CG}\}$
 - Net wealth $a \in A \equiv [0, \infty)$
 - Overall health condition $h \in H \equiv \{h_g, h_b\}$

2. Choices:
 - Consumption $c \in \mathbb{R}^{++} \rightarrow$ gives utility
 - Medical spending $x \in \mathbb{R}_+ \rightarrow$ affects health transitions
 - Next period wealth $a' \in A$

3. Shocks:
 - Unobserved health outlook shock η
 - Implementation error ϵ in health spending

4. (Stochastic) Health technology:
 - Health transitions given by $\Gamma^{ei}[h' | h, \eta, x\epsilon]$
 - Survival given by $\gamma^i(h)$ (note no education or wealth)
Uncertainty and timing of decisions

1. At beginning of period t individual state is $\omega = (i, e, a, h)$

2. Consumption c choice is made

3. Health outlook shock $\eta \in \{\eta_1, \eta_2\}$ with probability π_η

4. Health spending decision $x(\omega, \eta)$ is made

5. Medical treatment implementation shock $\log \epsilon \sim N\left(-\frac{1}{2}\sigma^2_\epsilon, \sigma^2_\epsilon\right)$
 - Once health spending is made, the shock determines actual treatment obtained $\tilde{x} = x(\omega, \eta) \epsilon$
 - Allows for the implementation of the Bayesian updating of who gets the bad health outlook shock
The Bellman equation

The retiree version

- The household chooses $c, x(\eta), y(\eta)$ such that

$$ v^{ei}(h, a) = \max_{c, x(\eta), y(\eta)} \left\{ u'(c, h) + \beta^e \gamma^i(h) \sum_{h', \eta} \pi^h \int_{\epsilon} \Gamma^{ei}[h' | h, \eta, x(\eta)\epsilon] v^{e,i+1}[h', a'(\eta, \epsilon)] f(d\epsilon) \right\} $$

- s.t. the budget constraint and the law of motion for cash-in-hand

$$ c + x(\eta) + y(\eta) = a $$

$$ a'(\eta, \epsilon) = [y(\eta) - (\epsilon - 1)x(\eta)]R + w^e $$

- The FOC give:
 - One Euler equation for consumption c
 - One Euler equation for health investments at each state η
FOC for consumption

- Optimal choice of consumption for individuals of type ω
- Standard Euler equation for consumption w/ sophisticated expectation
 (Over survival, health tomorrow h', outlook shock η, and implementation shock ϵ)

\[
u^i_c[h, c(\omega)] = \beta^e \gamma^i(h) R \\
\sum_{h', \eta} \pi^i_{\eta} \int_{\epsilon} \Gamma^{e i}[h' \mid h, \eta, x(\omega, \eta)\epsilon] u^{i+1}_c[h', c(\omega, \eta, h', \epsilon)] f(\epsilon) \]

- Timing assumptions \Rightarrow consumption independent from shocks η, ϵ
- Then, it is easy to estimate w/o other parts of the model:
 - *expected transitions are the same for all individuals of same type ω*
FOC for health spending

- Individuals of type \(\omega \) make different health spending choices \(x(\omega, \eta) \) depending on their realized \(\eta \).

- The FOC for individual of type \(\omega \) is \(\eta \)-specific:

 \[
 \sum_{h'} \int_{\epsilon} \epsilon \Gamma_x^{e_i}[h' \mid h, \eta, x(\omega, \eta)\epsilon] \left\{ v^{e,i+1}[h', a' (\omega, \eta, \epsilon)] \right\} f(d\epsilon) = R \sum_{h'} \int_{\epsilon} \epsilon \Gamma_x^{e_i}[h' \mid h, \eta, x(\omega, \eta)\epsilon] u^{i+1}_c[h', c(\omega, \eta, h', \epsilon)] f(d\epsilon)
 \]

- Expected utility cost of forgone consumption

- In order to use this for estimation we need to
 - Allocate individuals to some realization for \(\eta \)
 - Compute the value function
Estimation
Preliminaries

- We group wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\Omega \equiv E \times I \times H \times P$

- Functional forms
 - Utility function
 \[u^i(h, c) = \alpha_h + \chi_h^i \frac{c^{1-\sigma_c}}{1-\sigma_c} \]
 - Health transitions
 \[\Gamma^{ie}(g|h, \eta, x) = \lambda^{ieh}_0 \eta + \lambda^{ieh}_1 \eta^* \frac{c^{1-\nu^h}}{1-\nu^h} \]

- Estimate several transitions in HRS data
 - Survival rates $\tilde{\gamma}^i_h$
 - Health transitions $\tilde{\Gamma}(h_g|\omega)$
 - Health transitions conditional on health spending $\tilde{\varphi}(h_g|\omega, x)$
 - Joint health and wealth transitions $\tilde{\Gamma}(h', p'|\omega)$
General strategy

• Estimate vector of parameters θ by GMM without solving the model
 → Use the restrictions imposed by the FOC
 → Need to compute value functions with observed choices and transitions

• Two types of parameters

1/ Preferences: $\theta_1 = \{ \beta^e, \sigma_c, \chi^i_h, \alpha_h \}$
 - Can be estimated independently from other parameters
 - Use consumption Euler equation to obtain $\beta^e, \sigma_c, \chi^i_h$
 - Use VSL and HRQL conditions to estimate α_h

2/ Health technology: $\theta_2 = \{ \lambda_{0\eta}^{ieh}, \lambda_{1\eta}^h, \nu^h, \pi_\eta, \sigma^2_\epsilon \}$
 - Requires θ_1 as input
 - Use medical spending Euler equations plus health transitions
 - Problem: we observe neither η_j nor ϵ_j
 - Need to recover posterior probability of η_j from observed health spending \tilde{x}_j
Data: various sources

1. **HRS**
 - White males aged 50-88
 - Health stock measured by self-rated health (2 states)
 - Obtain the objects $\tilde{\gamma}_h, \tilde{\Gamma}(h_g | \omega), \tilde{\varphi}(h_g | \omega, \tilde{x}), \tilde{\Gamma}(h', p' | \omega)$

2. **PSID (1999+) gives**
 - Households headed by white males aged 50-88
 - Non-durable consumption
 - Out of Pocket medical expenditures

3. **Standard data in clinical analysis**
 - Outside estimates of the value of a statistical life (VSL)
 - Health Related Quality of Life (HRQL) scoring data from HRS
Preliminary Estimates: Preferences
Marginal utility of consumption

Consumption Euler equation

- We use the sample average for all individuals j of the same type ω as a proxy for the expectation over η, h', and ϵ

$$
\beta^e R \frac{\gamma^i_h}{N_\omega} \sum_j I_{\omega j = \omega} \frac{\chi^i_{h j}}{\chi^i_h} \left(\frac{c'_j}{c_j} \right)^{\bar{\sigma}} = 1 \quad \forall \omega \in \tilde{\Omega}
$$

- Normalize $\chi^i_g = 1$ and parameterize $\chi^i_b = \chi^0_b (1 + \chi^1_b)^{(i-50)}$

- Use cons growth from PSID by educ, health, wealth quintiles

- We obtain

 1. Health and consumption are complements

 Finkelstein et al (JEEA 2012), Koijen et al (JF 2016)
 2. More so for older people
 3. Uneducated are NOT more impatient: they have worse health outlook
Marginal utility of consumption

Results

<table>
<thead>
<tr>
<th></th>
<th>β edu specific</th>
<th>β common</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>β^d (s.e.)</td>
<td>0.8861 (0.0175)</td>
<td>0.8720 (0.0064)</td>
</tr>
<tr>
<td>β^h (s.e.)</td>
<td>0.8755 (0.0092)</td>
<td>0.8720 (0.0064)</td>
</tr>
<tr>
<td>β^c (s.e.)</td>
<td>0.8634 (0.0100)</td>
<td>0.8720 (0.0064)</td>
</tr>
<tr>
<td>χ_b^0 (s.e.)</td>
<td>0.9211 (0.0575)</td>
<td>0.9176 (0.0570)</td>
</tr>
<tr>
<td>χ_b^1 (s.e.)</td>
<td>-0.0078 (0.0035)</td>
<td>-0.0073 (0.0035)</td>
</tr>
<tr>
<td>observations</td>
<td>15,432</td>
<td>15,432</td>
</tr>
<tr>
<td>moment conditions</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>parameters</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes: estimation with biennial data. Annual interest rate of 2%, annual β: 0.9413, 0.9357, 0.9292 in first column and 0.9338 in the second one.
Marginal utility of consumption

Results

\[
\frac{c_g}{c_b} = \left(\frac{\chi_g}{\chi_b}\right)^{1/\sigma} = \begin{cases}
1.057 & \text{at age 50} \\
1.268 & \text{at age 85}
\end{cases}
\]
Value of life in good and bad health

We use standard measures in clinical analysis to obtain α_g and α_b

1. Value of Statistical Life (VSL)
 - From wage compensation of risky jobs Viscusi, Aldy (2003)
 - Range of numbers: $4.0M–$7.5M to save one statistical life
 - This translates into $100,000 per year of life saved
 ▶ Calibrate the model to deliver same MRS between survival probability & cons flow Becker, Philipson, Soares (AER 2005); Jones, Klenow (AER 2016)

2. Quality Adjusted Life Years (QALY)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
 - Use HUI3 data from a subsample of 1,156 respondents in 2000 HRS
 - Average score for $h = h_g$ is 0.85 and for $h = h_b$ is 0.60
 ▶ Calibrate the model to deliver same relative valuation of period utilities in good and bad health
The value functions

- The value achieved by an individual of type ω is given by

$$v^{e_i}(h, a) = u^i(c(\omega), h) + \beta^e \gamma^i(h) \sum_{h', \eta} \pi^i_{h\eta} \int_\epsilon \Gamma^{e_i}[h'|h, \eta, x(\omega, \eta) \epsilon] v^{e_i+1}(h', a'(\omega, \eta, \epsilon)) f^x(d\epsilon)$$

with

$$a'(\omega, \eta, \epsilon) = (a - c(\omega) - \epsilon x(\omega, \eta))(1 + r) + w^e$$

- We can compute the value function from observed choices and transitions without solving for the whole model by rewriting the value function in terms of wealth percentiles $p \in P$:

$$v^{e_i}(h, p) = \frac{1}{N_\omega} \sum_j I_{\omega_j = \omega} u^i(c_j, h_j) + \beta^e \gamma^i_h \sum_{h', p'} \Gamma [h', p'|\omega] v^{e_i+1}(h', p')$$

where we have replaced the expectation over η and ϵ by the joint transition probability of assets and health, $\Gamma [h', p'|\omega]$
Preliminary Estimates: health technology
The moment conditions: Preview

• For each $\omega = (i, e, h, p)$, we have four distinct moment conditions.

 - (M1) Health spending EE for η_g
 - (M2) Health spending EE for η_b
 - (M3) Average Health transitions for $x > \text{median}(x_{\omega})$
 - (M4) Average Health transitions for $x < \text{median}(x_{\omega})$

• We have $210 \times 4 = 840$ moment conditions

 - e: 3 edu groups $=$ \{HSD, HSG, CG\}
 - i: 8 age groups $=$ \{50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89\}
 - h: 2 health groups $=$ \{h_g, h_b\}
 - p: 5 wealth groups

▷ This gives 240 cells in ω

 - But there are 30 cells that are empty (20 in age 85+, 5 in age 80-84)
The Problem

- Key problem: how to deal with unobserved health shock η
 - Needed to evaluate the moment conditions (M1) to (M4)

- We construct the posterior probability of η given observed health investment \tilde{x}_j and the individual state ω_j

$$Pr[\eta_g | \omega_j, \tilde{x}_j] = \frac{Pr[\tilde{x}_j | \omega_j, \eta_g] Pr[\eta_g | \omega_j]}{Pr[\tilde{x}_j | \omega_j]}$$

- where $Pr[\tilde{x}_j | \omega_j, \eta_g]$ is the density of $\epsilon_j = \tilde{x}_j / x(\omega_j, \eta_g)$
- where $Pr[\eta_g | \omega_j] = \pi_{\eta_g}$
- where $Pr[\tilde{x}_j | \omega_j] = \sum_\eta Pr[\tilde{x}_j | \omega_j, \eta] Pr[\eta | \omega_j]$

- We weight every individual observation by this probability
The Problem

- To obtain the posterior distributions we need to estimate
 - the contingent health spending rule, $x(\omega, \eta)$
 - the variance of the medical implementation error, σ^2_c
 - the probability distribution of health outlooks sock, $\pi_{\eta g}$

- We identify all these objects through the observed health transitions $	ilde{\varphi}(h_g | \omega, \tilde{x})$ as function of the state ω and health spending \tilde{x}

$$
Pr[h_g | \omega, \tilde{x}] = \Gamma[h_g | \omega, \eta_g, \tilde{x}] Pr[\eta_g | \omega, \tilde{x}] + \Gamma[h_g | \omega, \eta_b, \tilde{x}] (1 - Pr[\eta_g | \omega, \tilde{x}])
$$
The Problem

\[\Gamma(h' | h, x, \eta_g) \] and \[\Gamma(h' | h, x, \eta_b) \]

from data (HRS)

\[\phi(x) \] from data (HRS)
Moment conditions

Health Spending Euler Equation

- Moment conditions (M1) to (M2) identify the curvature ν^h and slope $\lambda^h_{1\eta}$ of the health technology

- $\forall \omega \in \tilde{\Omega}$ and $\forall \eta \in \{\eta_g, \eta_b\}$ we have

$$\frac{1}{M_{\omega \eta}} \sum_j 1_{\omega_j = \omega} \tilde{x}_j \Gamma^{e_j i_j}_{x} [h_g | h_j, \eta, \tilde{x}_j] \left[\nu^{e_j,i_j+1}(h_g, p'_j) - \nu^{e_j,i_j+1}(h_b, p'_j) \right] \Pr[\eta | \omega_j, \tilde{x}_j] =$$

$$R \frac{1}{M_{\omega \eta}} \sum_j 1_{\omega_j = \omega} \tilde{x}_j \left(\sum_{h'} \Gamma^{e_j i_j'}_{x} [h' | h_j, \eta, \tilde{x}_j] \chi^{i_j+1}(h') \left[c^{e_j,i_j+1}(h', p'_j) \right]^{-\sigma_c} \right) \Pr[\eta | \omega_j, \tilde{x}_j]$$

where $M_{\omega \eta} = \sum_j 1_{\omega_j = \omega} \Pr[\eta | \omega_j, \tilde{x}_j]$

- Note we use $c^{e,i}(h, p)$ (a group average consumption) and $\nu^{e,i}(h, p)$
Moment conditions

Average Health Transitions

- Moment conditions (M3) to (M4) identify the $\lambda_{ie}^{0\eta}$

- $\forall \omega$ and $X \in \{X_L(\omega), X_H(\omega)\}$ we have

\[
\tilde{\Gamma}(h_g|\omega, X) = \sum_{\eta} \frac{1}{M_{\omega \eta X}} \sum_j 1_{\omega_j=\omega, \tilde{x}_j \in X} \left[\lambda_{ieh}^{\eta} + \lambda_{ih}^{\eta} \frac{\tilde{x}_j^{1-\nu^h}}{1-\nu^h} - 1 \right] \Pr[\eta|\omega_j, \tilde{x}_j]
\]

where

- $M_{\omega \eta X} = \sum_j 1_{\omega_j=\omega, \tilde{x}_j \in X} \Pr[\eta|\omega_j, \tilde{x}_j]$
- $X_L(\omega) = \{x \leq \tilde{x}_{\text{med}}(\omega)\}$
- $X_H(\omega) = \{x > \tilde{x}_{\text{med}}(\omega)\}$
Estimates of ν and λ_1

- Less curvature in health production than in consumption

 \Rightarrow *ceteris paribus*, health expenditure shares increase with income

 (As in Hall, Jones (QJE 2007), but completely different identification)

 - But: in the cross-sectional data health expenditure shares unrelated to income

 - Poorer individuals have larger gains to leave bad health state

- Bad health outlook shock η_b increases return to money

 (especially so in good health state)

<table>
<thead>
<tr>
<th>parameter</th>
<th>with $\pi = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu(h_g)$</td>
<td>1.2325 (0.022)</td>
</tr>
<tr>
<td>$\nu(h_b)$</td>
<td>0.8204 (0.034)</td>
</tr>
<tr>
<td>$\lambda_1(h_g, \eta_g)$</td>
<td>0.0466 (0.0087)</td>
</tr>
<tr>
<td>$\lambda_1(h_g, \eta_b)$</td>
<td>0.0912 (0.0169)</td>
</tr>
<tr>
<td>$\lambda_1(h_b, \eta_g)$</td>
<td>0.0019 (0.0006)</td>
</tr>
<tr>
<td>$\lambda_1(h_b, \eta_b)$</td>
<td>0.0022 (0.0007)</td>
</tr>
</tbody>
</table>
Estimates of λ_0: Take 1

- Our estimates generate health transitions that are consistent with
 - More educated have better transitions
 - Older have worse transitions
 - Useful medical spending predicts worse transitions in the panel

▷ BUT: *not enough separation of health transitions by wealth*

- Given our estimates of λ_1 and ν, observed differences of OOP medical spending across wealth types are too small
Health transitions: Wealth Matters in Data not in Model

Data dashed and model dot each wealth quintile

- HSD, \(h_g \)
- HSG, \(h_g \)
- CG, \(h_g \)

- HSD, \(h_b \)
- HSG, \(h_b \)
- CG, \(h_b \)
Estimates of λ_0: Take 2

- Let’s allow the λ_0 to depend on wealth
- We parameterize the age and wealth dependence of $\lambda_{0\eta}^{iehp}$ as follows

$$
\lambda_{0\eta}^{iehp} = \frac{\exp(L_{\eta}^{iehp})}{1 + \exp(L_{\eta}^{iehp})}
$$

where $L_{\eta}^{iehp} = a_{\eta}^{eh} + a_{\eta}^{eh} \times (p - 3) + b_{\eta}^{eh} \times (i - 50)$

- We normalize $\pi_{\eta} = 1/2$ and estimate

$$
\theta_2 = \{a_{\eta}^{eh}, a_{\eta}^{eh}, b_{\eta}^{eh}, \lambda_{1\eta}^h, \nu^h, \sigma_{\epsilon}^2\}
$$

(This is $12 + 12 + 12 + 4 + 2 + 1 = 43$ parameters)

- Now: Wealthier experience better health transitions
Health transition with wealth dependent λ_0^p
$\lambda_0(\eta, i, e, h, p)$ \textbf{graphically}

\begin{align*}
\text{HSD, } h_g & \quad \text{HSG, } h_g & \quad \text{CG, } h_g \\
\text{HSD, } h_b & \quad \text{HSG, } h_b & \quad \text{CG, } h_b
\end{align*}
So what to do about wealth-dependent transitions?

Two strategies

1. Pose unobserved types: something that increases wealth AND health
 - Bad types dissave (cannot be done without fully solving the model).
 WHICH KILLS THE BEAUTY OF THE APPROACH!!!

2. Non-linear (concave) pricing: difference in total health spending by wealth types is larger than in OOP
 - In preliminary estimates w/ MEPS data, the price of medical spending:
 - Declines with medical spending ⇒ concave pricing
 (copyaments lower for more severe treatments)
 - Is lower for the less educated individuals
 (copyaments lower in the public system)
 - Is higher in good health
 (copyaments higher for preventive care)
 - But: MEPS lacks data on wealth
Conclusions
Conclusions

- We have identified preferences for health
 - Consumption is complement with health
 - Differential value of good health seems to be increasing with age.
 - Health is very valuable:
 - Back of the envelope calculation says that the better health of college educated than high school dropouts is worth 5 times the consumption of the latter group.

- Health technology
 - Health expenditures matter little
 - Wealth matters beyond health expenditures
 - Perhaps additional type differences
 - Perhaps concave pricing
 - Perhaps differential use of expenditures