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Abstract

We characterize revenue maximizing mechanisms in a common value environment
where the value of the object is equal to the highest of bidders’ independent signals.
The optimal mechanism exhibits either neutral selection, wherein the object is randomly
allocated at a price that all bidders are willing to pay, or advantageous selection, wherein
the object is allocated with higher probability to bidders with lower signals. If neutral
selection is optimal, then the object is sold with probability one by a deterministic
posted price. If advantageous selection is optimal, the object is sold with probability
less than one at a random price. By contrast, standard auctions that allocate to the
bidder with the highest signal (e.g., the first-price, second-price or English auctions)
deliver lower revenue because of the adverse selection generated by the allocation rule:
if a bidder wins the good, then he revises his expectation of its value downward.

We further show that the posted price mechanism is optimal among those mech-
anisms that always allocate the good. A sufficient condition for the posted price to
be optimal among all mechanisms is that there is at least one potential bidder who
is omitted from the auction. Our qualitative results extend to more general common
value environments where adverse selection is high.
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1 Introduction

Whenever there is interdependence in the values among the bidders, each bidder must care-
fully account for the interdependence in determining how he should bid. The classic motivat-
ing example concerns wildcatters competing for an oil tract in a first- or second-price auction.
Each bidder drills test wells and forms his bids on his sample findings. Richer samples sug-
gest more oil reserves, and therefore induce higher bids. A winning bidder therefore faces
adverse selection: since the high bidder wins the auction and richer samples mean higher
bids, winning means that the other bidders’ samples were relatively weak. The expected
value of the tract conditional on winning is therefore less than the unconditional expectation
of the winning bidder. This winner’s curse results in more bid shading relative to a naïve
model in which bidders do not account for selection and treat unconditional values as ex
post values.

This paper studies the design of revenue maximizing auctions in settings where there
is the potential for a winner’s curse. The prior literature on optimal auctions has largely
focused on the case where values are private, meaning that each bidder’s signal perfectly re-
veals his value and there is no interdependence. A notable exception is Bulow and Klemperer
(1996), who generalized the revenue equivalence theorem of Myerson (1981) to models with
interdependent values. When signals are independent, they gave a condition under which
revenue is maximized by an auction that allocates the good to the bidder with the highest
signal whenever the good is sold. We will subsequently interpret the Bulow-Klemperer condi-
tion as saying that the winner’s curse in a standard auction is not too strong, which roughly
corresponds to a limit on how informative high signals are about the value. Aside from this
work, the literature on optimal auctions with interdependent values and independent signals
appears to be quite limited.1,2

Our contribution is to study optimal auctions in the opposite case where the winner’s
curse is quite strong, while maintaining the hypothesis that signals are independent. For

1Myerson (1981) includes a case where the bidders have interdependent and additively separable values,
meaning that a bidder’s value is a function of their own signal plus some function of the others’ signals. In
addition, the gains from trade between the seller and a given bidder are assumed to only depend on that
bidder’s private type. In contrast, we study environments where the gains from trade depends on all signals.
Bulow and Klemperer (2002) study the additively separable case where the gains from trade depend on all
the signals. If the winner’s curse is strong, they conclude that an inclusive posted price is optimal among
mechanisms that always allocate the good.

2A great deal of work on auction design with interdependent values has focused on the case where signals
are correlated. For example, Milgrom and Weber (1982) show that when signals are affiliated, English
auctions generate more revenue than second-price auctions, which in turn generate more revenue than first-
price auctions. Importantly, this result follows from correlation in signals, and not interdependence per se.
Pursuing these ideas to their logical conclusion, McAfee, McMillan, and Reny (1989) and McAfee and Reny
(1992) show that such correlation will enable the seller to extract all of the surplus as revenue.
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our main results, we focus on a simple model where the bidders have a pure common value
for the good, the bidders receive independent signals, and the common value is equal to
the highest signal. We refer to this as the maximum signal model. For this environment,
the winner’s curse in a standard auction is quite severe. Indeed, there is a precise sense in
which this is the environment that has the largest winner’s curse: As shown by Bergemann,
Brooks, and Morris (2017, 2018), among all type spaces with the same distribution of a
common value, this is the one that minimizes expected revenue in the first-price auction.
It also minimizes revenue in second-price and English auctions if one restricts attention to
affiliated-values models as in Milgrom and Weber (1982). Collectively, we refer to these as
standard auctions. Beyond this theoretical interest, this maximum signal model captures the
idea that the most optimistic signal is a sufficient statistic for the value. This would be the
case if the bidders’ signals represented different ways of using the good, e.g., possible resale
opportunities if the bidders are intermediaries,3 or possible designs to fulfill a procurement
order, and the winner of the good will discover the best use ex post.

This model was first studied by Bulow and Klemperer (2002). They showed that it is an
equilibrium of the second-price auction to bid one’s signal, which is less than the expected
value for all types except the highest. The bid shading is so large that the seller can increase
revenue simply by making the highest take-it-or-leave-it offer that would be accepted by
all types. We refer to this mechanism as an inclusive posted price. In the equilibrium
of the inclusive posted price mechanism, all bidders want to purchase the good and are
equally likely to be allocated the good. Thus, rather than generating adverse selection, as
in a standard auction, the inclusive posted price exhibits neutral selection, i.e., a bidder
is equally likely to be allocated the good regardless of others’ signals. Thus, winning the
good conveys no information about the value of the good and hence the winner’s curse is
completely eliminated. Importantly, while Bulow and Klemperer showed that the posted
price generates more revenue than standard auctions, their analysis left open the possibility
that there were other mechanisms that generated even more revenue, even in the case when
the good is required to be always sold.4

3One could also assume that resale takes place between the bidders, the values will exogenously become
complete information, and the winner of the good can make a take-it-or-leave-it offer to one of the other
bidders. Such a model of resale has been used by Gupta and LeBrun (1999) and Haile (2003) to study
asymmetric first-price auctions. The recent work of Carroll and Segal (2018) also studies optimal auction
design in the presence of resale. They argue that a worst-case model of resale involves the values becoming
complete information among the bidders, with the high-value bidder having all bargaining power.

4In the same paper, Bulow and Klemperer do show optimality of the posted price among auctions that
always allocate the good when the bidders’ common value is equal to the sum of their signals, and the
distribution of signals exhibits a decreasing hazard rate.
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Indeed, revenue is generally higher if the seller exercises monopoly power and rations the
good when values are low. This is the case in the private value model as established by
Myerson (1981), and it continues to be the case here. A simple way to do so would be to set
an exclusive posted price, i.e., a posted price at which not all types would be willing to buy.
For similar reasons as given above, an exclusive posted price would generate less adverse
selection and therefore more revenue than would a standard auction with reserve. This
however turns out to be far from optimal: A high-signal bidder would face less competition
in a “tie break” if the others’ signals are low, thus again inducing a winner’s curse, and
depressing bidders’ willingness to pay.

A first key result presents a simple mechanism that improves on exclusive posted price.
In this mechanism, the good is allocated to all bidders with equal likelihood if and only if
some bidder’s signal exceeds a given threshold. This allocation can be implemented with the
following two-tier pricing protocol: The bidders express either high interest or low interest
in the good. If at least one bidder expresses high interest, the good is offered to a randomly
chosen bidder, and otherwise, the seller keeps the good. When a given bidder is offered the
good, it is offered is the low price if all other bidders expressed low interest, and it is offered
at a high price if at least one other bidder expresses high interest. In equilibrium, bidders
express high interest if and only if their signal exceeds a threshold, and prices are set such
that conditional on being offered the good, bidders want to accept. Curiously, rather than
inducing a winner’s curse, this mechanism induces a winner’s blessing : if a bidder has a
low signal, and hence expressed low interest, being allocated the good indicates that others’
signals must be relatively high, which leads to a higher posterior expectation of the value,
and hence greater willingness to pay even if one had expressed low interest.

While this neutrally selective mechanism does better than the exclusive posted price, it
is possible to go even further. The optimal mechanism, it turns out, induces a winner’s
blessing for every type. This is achieved by going beyond the neutrally selective allocation,
and implementing an allocation that exhibits advantageous selection, meaning that for any
realized profile of signals, bidders with lower signals are more likely to be allocated the good.
We discuss a number of ways to implement the optimal mechanism, but one method is to use
a generalization of two-tier posted-pricing, where there is an additional hurdle that the high
bidder’s signal must meet in order for the high bidder to be allocated the good. Specifically,
there is a random price which is weakly greater than the discounted price. The high bidder
is allocated the good only if his signal exceeds this random price, in which case he pays the
maximum of that price and the others’ signals. Otherwise, the good is allocated to one of
the other bidders at a fixed price. A concern is that this extra hurdle would induce bidders
to underreport so as to avoid being the high bidder. The optimal handicap is calibrated just
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so that bidders are indifferent to underreporting. Indeed, this temptation to underreport is
the key to deriving a tight bound on the seller’s revenue that proves that this mechanism is
optimal.

In the special case when the lowest possible value in the support of the signal distribution
is sufficiently high, the optimal mechanism reduces to an inclusive posted price. Moreover,
if the good must be sold with probability one, then the neutrally selective allocation max-
imizes revenue, and this revenue is attained with the highest inclusive posted price. We
thus strengthen the foundation for posted prices introduced in earlier work of Bulow and
Klemperer, by proving optimality in a new environment, the maximum signal model.

The proof that this mechanism is optimal utilizes a novel argument. Standard opti-
mal mechanism design in the additively separable case, as in Myerson (1981), relies on the
well-known result that an allocation is implementable if and only if each bidder’s interim
allocation probability is weakly increasing in his signal (where the signals have been ordered
so that a bidder’s value is increasing in his signal). Even when interim monotonicity fails to
characterize implementability, it is sometimes possible to show that the optimal allocation
when non-local constraints are dropped is also implementable. Such is the case in the model
of Bulow and Klemperer (1996) with low adverse selection. By contrast, in the maximum
signal model, interim monotonicity is neither necessary nor sufficient for implementability,
and the optimal allocation for the local relaxation is not implementable. Our novel argument
involves using global incentive constraints to establish a lower bound on bidder surplus. We
then construct a mechanism that hits those bounds.

Finally, we argue that our key qualitative results extend beyond the pure common-value
maximum signal model to a wide range of interdependent-value environments that exhibit
increasing information rents. In the case of common values, this condition captures the idea
that higher signals are significantly more informative about the value than lower signals.
In such environments, advantageously selective allocations will be desirable from a revenue
perspective for the same reasons as in the maximum signal model. We describe natural
neutrally selective mechanisms with exclusion that generate more revenue than either the
inclusive or exclusive posted price mechanism. We also describe advantageously selective and
implementable allocations that generate even more revenue under weak conditions. At the
same time, we do not believe that the mechanisms that are optimal in the maximum signal
model will continue to be optimal in this more general class of environments. For example, it
remains an open question whether the posted price continues to be optimal among efficient
mechanisms in the presence of increasing information rents. We suspect that the pattern
of binding global incentive constraints at the optimal mechanism could in general be quite
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complicated. This presents a major challenge for future research on optimal auctions in
general interdependent value settings.

Bulow and Klemperer (2002) argue it may be difficult to tell whether information rents are
increasing or decreasing, and that with interdependent values, the inclusive posted price may
not be as naïve as auction theorists are tempted to assume. We agree with this conclusion and
add the observation that we do not have to give up on using monopoly exclusionary power.
We can construct simple mechanisms with neutral selection and exclusion. They represent
a simple and safe option that can be implemented in a wide range of environments. They
mitigate the loss in revenue due to the winner’s curse while also avoiding the complications
of implementing advantageous selection.

The rest of this paper proceeds as follows. Section 2 describes the model. Section 3 shows
how to increase revenue by moving from adverse to neutral to advantageous selection and
constructs mechanisms that implement these allocations. Section 4 proves the optimality of
these mechanisms. Section 5 generalizes our analysis to the case of increasing information
rents. Section 6 concludes.

2 Model

2.1 Environment

There are N bidders for a single unit of a good, the bidders are indexed by i ∈ N =

{1, . . . , N}. Each bidder i receives a signal si ∈ S = [s, s] ⊆ R+ about the good’s value.
The bidders’ signals si are independent draws from an absolutely continuous cumulative
distribution F with strictly positive density f . We adopt the shorthand notation that
F−i (s−i) = ×j 6=iFj (sj) and F k (x) = (F (x))k for positive integers k. The bidders all assign
the same value to the good. The common value of the good is the maximum of the N
independent signals:

v (s1, . . . , sN) , max {s1, . . . , sN} = max s.

We frequently use the shorter expression max s which selects the maximal element from the
vector s = (s1, ..., sN). In Section 5, we discuss corresponding results for general common
value environments.

The distribution of signals, F, induces a distribution G(x) , FN (x) over the maximum
signal from N independent draws, and we denote the associated density by:

g (x) , N FN−1 (x) f (x) .
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The bidders are expected utility maximizers, with quasilinear preferences over the good
and transfers. Thus, the ordering over pairs (q, t) of probability q of receiving the good and
net transfers t to the seller is represented by the utility index:

u (s, q, t) = v (s) q − t.

2.2 Direct Mechanisms

The good is sold via an auction. For much of our analysis, and in particular for constructing
bounds on revenue and bidder surplus in Theorem 3, we will restrict attention to direct mech-
anisms, whereby each bidder simply reports his own signal, and the set of possible message
profiles is SN . This is without loss of generality, by the revelation-principle arguments as
in Myerson (1981). The probability that bidder i receives the good, given signals s ∈ SN ,
is qi (s) ≥ 0, with

∑N
i=1 qi (s) ≤ 1. Bidder i’s transfer is ti (s), and the interim expected

transfer is denoted by:

ti (si) =

∫
s−i∈SN−1

ti (si, s−i) f−i (s−i) ds−i.

Bidder i’s surplus from reporting a signal s′i when his true signal is si is

ui (si, s
′
i) =

∫
s−i∈SN−1

qi (s
′
i, s−i) v (si, s−i) f−i (s−i) ds−i − ti (s′i) ,

and ui (si) = ui (si, si) is the payoff from truthtelling. Ex-ante bidder surplus is

Ui =

∫ s

si=s

ui (si) f (si) dsi,

and total bidder surplus is

U =
N∑
i=1

Ui.

A direct mechanism {qi, ti}Ni=1 is incentive compatible (IC) if

ui (si) = max
s′i

ui (si, s
′
i) ,

for all i and si ∈ S. This is equivalent to requiring that reporting one’s true signal is a Bayes
Nash equilibrium. The mechanism is individually rational (IR) if ui (si) ≥ 0 for all i and
si ∈ S.
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2.3 The Seller’s Problem

The seller’s objective is to maximize expected revenue across all IC and IR mechanisms.
Under a mechanism {qi, ti}Ni=1, expected revenue is

R =
N∑
i=1

∫
si∈S

ti (si) f (si) dsi.

Since values are common, total surplus only depends on whether the good is allocated, not
the identity of the bidder that receives the good. Moreover, the surplus depends only on the
value v(s) = maxi {si}, and not the entire vector s of signals. Let us thus denote by qi (v)

the probability that the good is allocated to bidder i, conditional on the value being v, and
let

q (v) =
N∑
i=1

qi (v) (1)

be the corresponding total probability that some bidder receives the good. Total surplus is
simply

TS =

∫ s

v=s

v q (v) g (v) dv,

and revenue is obviously R = TS − U .
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3 Countering the Winner’s Curse

We start by reviewing the behavior of standard auctions, and then progressively improve the
mechanism and allocation to arrive at the optimal auction. Optimality is proven in the next
section.

3.1 Adverse Selection and the Winner’s Curse

First-price, second-price, and English auctions all admit monotonic pure-strategy equilibria,
which result in the highest-signal bidder being allocated the good. For ease of discussion, we
describe the outcome in terms of the second-price auction. A bidder with a signal si forms
an estimate of the common value E[v (si, s−i) |si ], his interim expectation, and then submits
a bid bi(si). Now, in the maximum signal model, the signal si is a sharp lower bound on the
ex post value of the object: given any signal si, bidder i knows that the true value of the
object is in the interval [si, s]. Consequently, the interim expectation of the bidder i satisfies

E[v (si, s−i) |si ] ≥ si,

with a strict inequality for all si < s. Despite the above interim expectation, the equilibrium
strategy auction of bidder i is to bid only

bi(si) = si.

Thus, even though the winning bidder only has to pay the second highest bid, the equilib-
rium bid is equal to the lowest possible realization of the common value given the interim
information si.

In the monotonic pure-strategy equilibrium given by bi(si), the bidder with the highest
signal submits the highest bid. Thus, conditional on winning, the signal si which provided a
sharp lower bound on the common value at the bidding stage, becomes a sharp upper bound
conditional on winning. In fact, it coincides with the true common value

E[v (si, s−i) |si, sj ≤ si∀j 6= i ] = si

as the expectation of the value conditional on knowing that si is the highest signal is simply
si.
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The resulting allocation is

qi (s) =

 1
|argmax sj | if si = max s;

0 otherwise.

The equilibrium of the second-price auction generates adverse selection. By this we mean
that given a realized profile of signals s, it is the bidder with the highest signal who is most
likely to receive the good. The winner therefore learns that his signal was more favorable
than all the other signals. In turn, each bidder lowers his equilibrium bid from the interim
estimate of the value E[v (si, s−i) |si ] all the way to the lowest possible value in the support
of this posterior probability distribution, namely si. In this sense, the winner’s curse is as
large as it can possibly be. In Bergemann, Brooks, and Morris (2018), we show that the
same behavior as in the second-price auction discussed here arises in the first-price or the
the English auction.

3.2 Neutral Selection and Inclusion

Given the strength of the winner’s curse and the extent of bid shading, it is natural to ask
whether other mechanisms can reduce the winner’s curse and thus increase revenue. Bulow
and Klemperer (2002) establish that a simple but very specific posted price mechanism can
attain higher revenue than the standard auctions with their monotonic equilibria.

In a posted price mechanism the seller posts a price p and the object is allocated with
uniform probability among those bidders who declared their willingness to pay p to receive
the object. The specific posted price suggested by Bulow and Klemperer (2002) is the
expectation of the highest of N − 1 independent draws from the signal distribution F :

pI ,
∫ s

x=s

x d
(
FN−1 (x)

)
. (2)

We refer to pI as the inclusive posted price. To wit, pI is exactly equal to the interim
expectation that a bidder i with the lowest possible signal realization si = s has about the
common value of the object. The price pI is the maximal price with the property that every
type is willing to buy the object, and thus all types are “included” in the allocation. Bulow
and Klemperer (2002), Section 9, establish the following result:

Proposition 1 (Inclusive Posted Price).
The inclusive posted price yields a higher revenue than in the monotonic pure strategy equi-
librium of any standard auction.

10



The reason is as follows. Revenue under the inclusive posted price is equal to the expec-
tation of the highest of N − 1 independent and identical signals from F . By contrast, the
revenue in the standard auctions is equal to the expectation of the second order statistic of N
signals. The former must be greater than the latter, since the inclusive posted price revenue
can be obtained by throwing out one of N draws at random and then taking the highest of the
remaining realizations, whereas the standard auction revenue is obtained by systematically
throwing out the highest of the N draws, and then taking the highest remaining.

Note that the allocation induced by the inclusive posted price assigns an equal probability
to every bidder i: qi (s) ≡ 1/N . As a result, the event of winning conveys no additional
information about the value of the object to any of the winning bidders. Thus, in sharp
contrast to the standard auctions, it induces no adverse selection. In fact, the inclusive
posted price generates entirely neutral selection: conditional on any realized signal profile s,
all bidders are equally likely to be allocated the good. In consequence, a bidder’s expected
value conditional on receiving the object is the same as the unconditional expectation, i.e.,
there is no winner’s curse.

Proposition 1 establishes that the neutral selection induced by the inclusive posted price
generates higher revenue than the adverse selection induced by the standard auction. An-
other way to see this result is by using the revenue equivalence theorem. Specifically, using
local incentive constraints, one can solve for the transfers in terms of the allocation to
conclude that expected revenue is equal to the expected virtual value of the buyer who is
allocated the good. Bulow and Klemperer (1996) derive the virtual value for a general inter-
dependent values model. When the bidders have a common value that is a monotonic and
differentiable function v (s) of all bidders’ signals, bidder i’s virtual value is:

πi (si, s−i) = v(si, s−i)−
1− F (si)

f(si)

∂v(si, s−i)

∂si
. (3)

The first term on the right-hand side is simply the common value of the object. The second
term is the inverse hazard rate, which is a measure of the relative number of higher types who
gain an information rent by being able to mimic type si. The final term is the sensitivity of
the value to bidder i’s signal. Clearly there must be some component of this form, for if the
value were independent of bidder i’s signal, then bidder i has no valuable private information
and should not obtain an information rent. We return to this general formula in Section 5
when we generalize our insights beyond the maximum signal model.
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In the maximum signal model, equation (3) simplifies to5

πi (si, s−i) =

 max s, if si < max s;

max s− 1−F (si)
f(si)

, if si = max s,
(4)

since all bidders have the same value and the derivative is simply an indicator for whether
bidder i has the highest signal. The virtual value as expressed by (4) then suggests that
holding fixed total surplus, revenue is higher when the high-signal bidder is less likely to be
allocated the good. We shall use this idea repeatedly in our analysis, and it is an instance
of the general principle presented in Theorem 4.

3.3 Neutral Selection and Exclusion

A notable feature of the inclusive posted price is that the object is awarded for every type
profile realization s. In particular, the object is even awarded if the average virtual value
across the bidders for a given signal profile s is negative.

A natural first attempt at raising revenue would be to post a price p that is strictly higher
than the inclusive posted price pI . By definition then, the price p would exceed the interim
expectation of any bidder who had received the lowest possible signal si = s. Any such price
p would then induce a threshold r ∈ (s, s], so that every bidder i with a signal si ≥ r would
accept the price p and all types below would reject the price p. The resulting assignment
probabilities would be:

qi (s) =

 1
|{j|sj≥r}| , if si ≥ r;

0, otherwise.

Consequently, we refer to the threshold r as the exclusion level. The posted price that
implements the exclusion level r is the expectation of the common value for the type si = r

conditional on receiving the good:

pE ,

∫
{s−i|max s−i≥r}max {r, s−i} qi (r, s−i) dF−i (s−i)∫

s−i
qi (r, s−i) dF−i (s−i)

.

By extension, we refer to a posted price pE > pI as an exclusive posted price. But in
contrast to the inclusive posted price, the resulting allocation is adversely selective, and not
neutrally selective. For example, if s = (r, 0, . . . , 0), then the high-signal bidder (with a

5Note that the value function in the maximum signal is not differentiable, so that the theorem of Bulow
and Klemperer (1996) does not apply. It is, however, straightforward to extend their theorem to cover the
maximum signal model.
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signal of r) is allocated the good with probability one, and the other bidders receive the
good with probability zero. Thus, while the exclusive posted price does ration the object, it
reintroduces a winner’s curse and a resulting depressed willingness to pay.

For the same reasons as with the inclusive posted price, revenue would be higher if we
reallocated the good to lower signal bidders and reduced adverse selection. For example,
revenue would be higher if we instead implement the neutrally selective allocation:

qi (s) =

 1
N

if max s ≥ r;

0 otherwise.
(5)

This mechanism achieves the same exclusion level r and hence maintains the same ex post
surplus, but it does so with a neutrally selective allocation.

One way to effect this allocation is with a two-tiered pricing system. Every bidder is
asked to express a high interest or a low interest in the good. If all bidders express low
interest, then the seller keeps the good. If at least one bidder expresses high interest, then
a single bidder is selected at random and is offered a chance to purchase. When bidder i is
offered the good, the proffered price is either a low price pL if all other bidders expressed low
interest, or a high price pH > pL if at least one other bidder expresses high interest. The
specific prices are

pL , r

and

pH ,

∫ s
r
x d
(
FN−1(x)

)
1− FN−1(r)

.

Thus, pH is the expected value of a bidder with signal si ≤ r conditional on knowing that
the highest signal among the remaining N − 1 bidders weakly exceeds r.

We claim that there is an equilibrium of this mechanism where bidders express high
interest if si ≥ r and express low interest otherwise. Bidders always agree to buy the good
at the preferred price, whatever that may be. In fact, this strategy is optimal even if a bidder
i knows whether max s−i is less than or greater than r, i.e., whether all of the other bidders
express low interest or at least one expresses high interest. If we condition on max s−i < r,
there is effectively a posted price of r, and the value is at least the price if and only if si ≥ r.
It is a best reply to express high interest and accept the low price when si ≥ r and to express
low interest otherwise. If we condition on max s−i ≥ r, then expressing high or low interest
result in the same outcome, which is a probability 1/N of being offered the good at the high
price. The expected value across all s−i is always at least pH , since the true value is the
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maximum of si and s−i. Thus, one best reply is to express high interest if si ≥ r and express
low interest otherwise, and agree to buy at the high price.

Note that this mechanism implements the same ex post total surplus as the exclusive
posted price, but low-signal bidders are more likely to receive the good. As a result, in-
formation rents are reduced relative to the exclusive posted price, and we have proven the
following.

Proposition 2 (Posted Price Pair).
The two-tier posted price pair yields a weakly higher revenue than the exclusive posted price
that implements the same exclusion level.

3.4 Advantageous Selection and the Winner’s Blessing

The neutral selection induced by the inclusive posted price or the two-tier posted price
depresses the probability of winning to 1/N for the bidder with the highest signal whereas he
would have won with probability 1 in the second-price auction. The natural next question is
whether there exist mechanisms that reduce the high-signal bidder’s probability of winning
of even further, below the uniform probability 1/N . This is indeed possible, as we now
explain.

To start, observe that there is another implementation of the neutral and exclusive allo-
cation (5): bidders report their signals, the good is allocated with uniform probabilities if the
highest report exceeds r, and a bidder who is allocated the good makes the Vickrey payment
max {r, s−i}. It is straightforward to verify that this mechanism is incentive compatible ex
post, i.e., even if the realized signals are complete information among the bidders.

Now consider the following modification of this revelation game. The object is allocated
if at least one of the bidders reports a signal exceeding a certain threshold r. We give the
bidder i with the highest reported signal the priority to purchase the object. But we ask
him to pay a posted price that is the maximum of the reported signals of the others, and
an additional random variable x, thus at a price of max {x, s−i}. The distribution of x is
denoted by H(x) and has support in [r,∞]. In particular, it is possible for this reserve price
to be infinite. Bidder i is allocated the good at the realized price if it is less than his reported
signal. Otherwise, one of the other bidders is offered the good at the highest reported signal.
Note that the allocation and transfer rules reduce to the neutral exclusive mechanism when
H puts probability 1/N on x = r and probability (N − 1) /N on x =∞. However, if we can
choose H to put less probability on x = r, then the allocation is effectively skewed towards
low-signal bidders.
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Note that a bidder has no incentive to overreport: This can only result in being allocated
the good at a price that exceeds the value. Also, reporting any signal less than r is equivalent
to reporting a signal of r. Thus, for incentive compatibility, it suffices to check that a bidder
i with signal si ≥ r does not want to misreport s′i ∈ [r, si]. To that end, consider the surplus
of such a bidder, assuming that all other bidders report truthfully. This is

ui (si, s
′
i) =

∫ s′i

x=r

(si − x) d
(
H (x)FN−1 (x)

)
+

∫ s

x=s′i

(max {si, x} − x)
1−H (x)

N − 1
d
(
FN−1 (x)

)
.

The derivative of this expression with respect to s′i is

(si − s′i)
[
d
(
H (s′i)F

N−1 (s′i)
)
− 1−H (s′i)

N − 1
d
(
FN−1 (s′i)

)]
.

So, a sufficient condition for deviations to not be attractive is that the term inside the
brackets is non-negative for all s′i, which reduces to

dH (x)

1−NH (x)
≥ 1

N − 1

d
(
FN−1 (x)

)
FN−1 (x)

.

If we solve this constraint as an equality, with the boundary condition H (r) = 0, we obtain

H(x) ,
1

N

(
1−

(
F (r)

F (x)

)N)
. (6)

With this particular distribution for the high-bidder’s handicap, we refer to this game form
as the random price mechanism. We have verified that this mechanism is incentive compat-
ible, and moreover that bidders are indifferent between truthful reporting and all downward
misreports.

Note that by construction H(r) = 0, so that a bidder with the highest signal close to
the exclusion threshold is unlikely to receive the object. Moreover, even the bidder with the
highest possible signal s receives the object with probability less than 1/N since

H(s) =
1

N
(1− FN(r)) <

1

N
.

We have therefore completed the proof of the following result:
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Proposition 3 (Random Price).
The random price mechanism yields a higher revenue than the two-tier posted price that
implements the same exclusion level.

Curiously, this mechanism has the feature that the resulting interim probability qi(si) of
receiving the object and interim transfer ti (si) are both constant in the signal si. Specifically,

qi(si) = FN−1(si)H(si) +

∫ s

x=si

(
1−H(x)

N − 1

)
d
(
FN−1(x)

)
=

1− FN(r)

N
.

This actually implies that the interim transfer is constant as well. The highest type s is
certain that the value is s and by construction is indifferent to all downward deviations, so
that the payoff sqi (si)− ti (si) must be independent of si. But since qi (si) is constant, ti (si)
must be constant as well.

The interim allocation probability is the product of the probability that the object is
allocated to some bidder and the probability that bidder i receives the object conditional
on it being allocated at all. The random price in fact favors bidders with lower signals. In
particular, the ex post probability qi(s) of receiving the object in the random price mechanism
can be computed to be:

qi (s) =


H (max s) if si > sj ∀j 6= i and si ≥ r;

1
N−1 (1−H (max s)) if si < max s and max s ≥ r;

0 otherwise.

The random price mechanism thus generates advantageous selection in equilibrium: condi-
tional on the realized signal profile, high-signal bidders are strictly less likely to receive the
good. Thus, conditioning on winning results in a higher expected value for all types. In effect,
the advantageous selection turns the winner’s curse into a winner’s blessing. This results in
an increased willingness-to-pay in equilibrium, and an increase in the revenue generated by
the auction.

Note that there is actually a one-dimensional family of random price mechanisms, indexed
by the exclusion threshold r. The revenue maximizing threshold can be understood as follows.
Expected revenue is the difference between total surplus and bidder surplus. The effect of
increasing the exclusion threshold on total surplus is immediate: surplus is lost from the
good not being allocated when the value is r. Next, since a bidder receives positive surplus
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only if he has the highest signal, bidder surplus in the random price mechanism is:

U =

∫ s

s=r

∫ s

x=r

(s− x) d
(
H (x)FN−1 (x)

)
dF (s)

=

∫ s

x=r

1

N

1− F (x)

F (x)

(
FN (x)− FN (r)

)
dx,

where we have simply plugged in the definition (6). Thus, the effect of an increase in r on
U is

dU

dr
= − 1

N

∫ s

x=r

1− F (x)

F (x)
dx
d
(
FN (r)

)
dr

.

The overall effect of increasing r on revenue is therefore

dR

dr
= −ψ (r)

d
(
FN (r)

)
dr

,

where

ψ (r) , r −
∫ s

x=r

1− F (x)

F (x)
dx. (7)

Note that ψ (r) is continuous and strictly increasing in r, and it is positive when r is suf-
ficiently large. As a result, revenue is single peaked in the reserve price, and the optimal
reserve price r∗ is the smallest r such that ψ (r) ≥ 0.

In fact, not only does the allocation induced by the random price generate more revenue
than the conditional price pair, but it also maximizes revenue among all incentive compatible
mechanisms:

Theorem 1 (Optimality of Random Price).
The random price mechanism with reserve price r∗ maximizes revenue across all IC and IR
direct mechanisms.

When the gains from the bias toward low-signal bidders is small relative to the cost of
restricting supply, the inclusive posted prices indeed emerges as the optimal mechanism.

Corollary 1 (Optimality of Inclusive Posted Price).
The inclusive posted price is the revenue maximizing mechanism if and only if ψ(s) ≥ 0.

Thus the inclusive posted price mechanism performs better than any standard auctions.
We will also show that it is the optimal mechanism if one restricts attention to mechanisms
where the object is always allocated. We refer to this class of mechanism as must-sell
mechanisms.
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Theorem 2 (Must-sell Optimality of Inclusive Posted Prices).
If the object is required to be allocated with probability one, then the inclusive posted price is
a revenue maximizing mechanism.

We prove these theorems in the next section. We emphasize that the arguments are
novel and require the explicit consideration of global incentive constraints. In particular,
the optimality of the posted price within must-sell mechanisms does not follow from the
arguments reported in Bulow and Klemperer (2002).6 Thus, our contribution is to prove
optimality of neutral selection among efficient allocations and also to prove optimality of
strictly advantageously selective mechanisms when the seller can ration the good.

4 Optimal Mechanisms

4.1 Local Versus Global Incentive Compatibility

The broad strategy in proving Theorems 1 and 2 is to show that the allocations described
above attain an upper bound on revenue, where that upper bound is derived using a subset
of the bidders’ incentive constraints. Before developing our argument, we briefly review
existing approaches and explain why they are inadequate for our purposes. The standard
approach in auction theory is to use local incentive constraints to solve for transfers in terms
of allocations, and rewrite the expected revenue in terms of the expected virtual value of the
bidder who is allocated the good. Note that this formula for the virtual value (4) tells us what
revenue must be as a function of the allocation if local incentive constraints are satisfied, but
it does not tell us which allocations can be implemented subject to all incentive constraints.

In the case studied by Bulow and Klemperer (1996) where the winner’s curse effect is
weak, the virtual value is pointwise maximized by allocating the good to the bidder with the
highest signal (that is, whenever allocating the good is better than withholding it). One can
then appeal to existing arguments on the equilibria of English auctions with interdependent
values à la Milgrom and Weber (1982) to show that such an allocation is implementable. This
proof strategy will not work in the maximum signal model. As we have argued, the bidder
with the highest signal always has the lowest virtual value, so pointwise maximization of πi (s)
would never allocate the object to the high-signal bidder. Moreover, it is straightforward
to argue that such an allocation cannot be implemented. If it were, then the highest type

6As we mentioned earlier in Footnote 1, Bulow and Klemperer (2002) establish the optimality of the
inclusive posted price mechanism among efficient mechanisms in a different environment (the “wallet game”)
where the value is the sum of independent signals. This case is “additively separable,” so that the usual
monotonicity condition on the interim allocation is necessary and sufficient for implementability. However,
the maximum signal model is not additively separable, and hence necessitates new arguments.
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bidder would receive the good with probability zero, and the lower types with probability
one. The high type must therefore be paid by the mechanism an amount equal to the positive
surplus that could be obtained by pretending to be the lowest type. But this surplus must
be strictly greater than that obtained by the lowest type, thus tempting the lowest type to
misreport as highest.

When the pointwise maximization approach fails, one needs to explicitly include global
incentive constraints in the optimization problem, in addition to the local incentive con-
straints that are implicit in the revenue equivalence formula. In the additively separable
case, e.g., where the value is the sum of the bidders’ signals, global incentive constraints
are equivalent to the interim allocation being non-decreasing. But in general interdepen-
dent value models, interim monotonicity is neither a necessary nor sufficient condition for
incentive compatibility, and we know of no general characterization of which allocations are
implementable in these environments.7

Thus, we must find a new way of incorporating global constraints into the seller’s opti-
mization problem. The key question is: which global constraints pin down optimal revenue?
The analysis of the preceding section suggests that the critical constraints might be those
corresponding to downward deviations: The bidders only accrue information rents when they
are allocated the good when they have the highest value, so that the seller wants to distort
the allocation to lower signal bidders as much as possible. But if the allocation is too skewed,
then bidders would want to deviate by reporting strictly lower types. Moreover, all of the
downward constraints are binding in the putative optimal allocations, thus suggesting that
they all must be used to obtain a tight upper bound on revenue.

7The following two allocation rules–within the maximum signal model–show that interim monotonicity of
the allocation is neither a necessary nor a sufficient condition for incentive compatibility. Consider the case of
two bidders, i = 1, 2 who have binary signals si ∈{0, 1}, which are equally likely. We consider two allocation
rules for bidder 1, q1, as given by one of the following tables. The allocation for bidder 2 is constant across
signal realizations and is simply q2 = 0.

q1 s2
0 1

s1 1 1 0
0 1 1

q1 s2
0 1

s1 1 0 1
0 1 0

The allocation on the left is not interim monotone in s1 but is easily implemented by charging a price of s2
whenever the good is allocated to bidder 1. The allocation on the right is interim monotone but cannot be
implemented: The low type must pay an interim transfer which is at least that of the high type in order to
prevent the high type from misreporting. But this implies the low type would prefer to misreport, to pay
weakly less and get the good when it is worth 1 rather than 0. These examples could be made efficient by
adding a third bidder, who receives the good when it would not be allocated to bidder 1, at zero cost. Note
that the third bidder’s allocation probability is independent of their signal. As a result, the example can be
made symmetric simply by randomly permuting the roles of the bidders.
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Note that this intuition is in some sense the opposite of what happens in the private
value auction model, in which the optimal auction typically discriminates in favor of higher
types. An important difference is that when values are private, it is not just whether but
also to whom the good is allocated that determines total surplus.

4.2 Proof of Theorems 1 and 2

We now begin our formal proof. Consider the following one-dimensional family of deviations
in the normal form: instead of reporting the true signal si, report a random s′i ∈ [s, si] that is
drawn from the truncated prior F (s′i) /F (si). We will refer to this deviation as misreporting
a redrawn lower signal. Obviously, for a direct mechanism to be incentive compatible, bidders
must not want to misreport in this manner.

Let us proceed by explicitly describing the incentive constraint associated with misre-
porting a redrawn lower signal. If a bidder with type si reports a randomly redrawn lower
signal, their surplus is

1

F (si)

∫ si

x=s

ui (si, x) f (x) dx

=
1

F (si)

(∫ si

x=s

ui (x) f (x) dx+

∫ si

x=s

(si − x) qi (x) g (x) dx

)
,

where we recall that qi (v) defined in (1) is the probability that the good is allocated to
bidder i conditional on the value being v. This formula requires explanation. When a bidder
of type si misreports a lower signal x, their surplus is higher than what the misreported
type receives in equilibrium, since whenever max {x, s−i} < si, the true value is higher than
if bidder i’s signal had truly been x. The second integral on the second line sums these
differences across all realizations of the highest value of bidders other than i. But because
the signal is redrawn from the prior, the expected difference in surplus across all misreports
is simply the expected difference of (max {si, x} − x), where x is the highest of N draws
from the prior F , and when bidder i is allocated the good.

Thus, a necessary condition for a mechanism to be incentive compatible is that, for all i,

ui (si) ≥
1

F (si)

(∫ si

x=s

ui (x) f (x) dx+

∫ si

x=s

(si − x) qi (x) g (x) dx

)
. (8)

Of course, if this constraint holds for each i, then it must hold on average across i, so that

u (s) ≥ 1

F (s)

(∫ s

x=s

u (x) f (x) dx+ λ (s)

)
, (9)
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where

u (s) =
N∑
i=1

ui (s)

and

λ (s) =

∫ s

x=s

(s− x) q (x) g (x) dx.

If we hold fixed q (v), we can derive a lower bound on bidder surplus (and hence an upper
bound on revenue) by minimizing ex-ante bidder surplus subject to (9). Our first main
result, Theorem 3, asserts that this minimum is attained by the function

u (s) =

∫ s

x=s

λ (x)
f (x)

(F (x))2
dx+

λ (s)

F (s)
,

which solves (9) as an equality when u (s) = 0. In fact, u is the pointwise smallest interim
utility function that is non-negative and satisfies (9). Indeed, if the constraint held as a strict
inequality at s, we could decrease u at that point without violating the constraint, which
lowers bidder surplus. But the right-hand side is monotonic in u, so that this modification
actually relaxes the constraint even further. As a result, the lower bound is attained by an
indirect utility function so that all of the redrawn lower signal constraints are binding.

Thus, if a direct mechanism implements q, total bidder surplus must be at least

U =

∫ s

s=s

u (v) f (s) ds =

∫ s

v=s

∫ s

x=v

1− F (x)

F (x)
dx q (v) d

(
FN (v)

)
dv, (10)

and revenue is therefore at most

R = TS − U =

∫ s

v=s

ψ (v) q (v) dFN (v) dv, (11)

where ψ (v) was defined in (7) as the virtual value from allocating the good when the value
is v. This result is stated formally as follows:

Theorem 3 (Revenue Upper Bound).
In any auction in which the probability of allocation is given by q, bidder surplus is bounded
below by U given by (10) and expected revenue is bounded above by R defined by (11).
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Proof of Theorem 3. It remains to prove formally that u is the lowest u that satisfies (9).
Define the function operator

Γ (u) (s) =
1

F (s)

(∫ s

x=s

u (x) f (x) dx+ λ (s)

)
on the space of non-negative integrable utility functions. From the argument in the text, it is
clear that any average indirect utility function u that is induced by an IC and IR mechanism
must satisfy (9), which is equivalent to u ≥ Γ (u). It is easily verified that u is a fixed point
of Γ. For then

Γ (u) (s) =
1

F (s)

(∫ s

x=s

(∫ x

y=s

λ (y)
f (y)

(F (y))2
dy +

λ (x)

F (x)

)
f (x) dx+ λ (s)

)
=

1

F (s)

(
F (s)

∫ s

x=s

λ (x)
f (x)

(F (x))2
dx+ λ (s)

)
= u (s) ,

where the second line comes from Fubini’s theorem.
We claim that u is the lowest non-negative indirect utility function that satisfies this

constraint. This is a consequence of the following observations: First, Γ is a monotonic
operator on non-negative increasing functions, so by the Knaster-Tarski fixed point theorem,
it must have a smallest fixed point. Second, if Γ has another fixed point û that is smaller
than u, then it must be that û (s) ≤ u (s) for all s, with a strict inequality for some positive
measure set of s. Moreover, it must be that u (x)−û (x) goes to zero as x goes to s (and hence,
cannot be constant for all x). Let ‖·‖ denote the sup norm, and suppose that ‖Γ (u)− Γ (û)‖
is attained at s. Then

‖Γ (u)− Γ (û)‖ =
1

F (s)

∣∣∣∣∫ s

x=s

(u (x)− û (x)) f (x) dx

∣∣∣∣
≤ 1

F (s)

∫ s

x=s

|u (x)− û (x)| f (x) dx

<
1

F (s)

∫ s

x=s

‖u− û‖ f (x) dx

= ‖u− û‖ .

This contradicts the hypothesis that both u and û are fixed points of Γ.
Finally, if û is any function that satisfies (9) but is not everywhere above u, then consider

the sequence
{
uk
}∞
k=0

where u0 = û and uk = Γ
(
uk−1

)
for k ≥ 1. Given the base hypothesis

that u0 ≥ Γ (u0) = u1 and that Γ is a continuous affine operator, and given that u ≥ 0
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implies that Γ (u) ≥ 0 as well, we conclude that
{
uk
}∞
k=0

is monotonically decreasing, and
therefore must converge pointwise to a limit that is a fixed point of Γ, which is not uniformly
above u. This implies that there exists a fixed point that is below u, again a contradiction.
Thus, u must be the lowest fixed point of Γ.

We can now complete the proofs of our main theorems.

Proof of Theorems 1 and 2. If the seller can withhold the good, then we can derive an upper
bound on optimal revenue by maximizing the bound (11) pointwise. Since ψ (v) is monotonic,
the pointwise maximum is attained by the allocation

q̄ (v) =

1 if v ≥ r∗;

0 if v < r∗,
(12)

where
r∗ = min {v|ψ (v) ≥ 0} .

Clearly, this is the allocation that is implemented by the randomized posted price. Moreover,
we have already verified that all downward incentive constraints bind, so that the revenue
upper bound is attained.

If the good must be allocated, then q̄ (v) = 1 for all v, which completely determines the
upper bound on revenue from misreporting a redrawn lower signal. The upper bound will be
attained by any mechanism that makes all of the downward incentive constraints bind. But
all types are treated the same way by the inclusive posted price, so that global downward
constraints bind, and the upper bound on revenue is attained.

The proof of Theorem 2 by appeal to Theorem 3 is surprisingly subtle. One might have
anticipated a more direct argument establishing that advantageous selection cannot arise in
the must-sell case, and therefore one cannot do better than the neutrally selective inclusive
posted price mechanism. However, we do not know of any more direct argument; as noted
in the previous section, we cannot appeal to monotonicity of implementable allocations in
this environment.

The function ψ (v) can be interpreted as the virtual value from allocating the good
conditional on the value being v, albeit a different virtual value than the one obtained from
only local incentive constraints: Both virtual values have a term equal to the value of the
good, which is simply the change in social surplus from allocating versus not allocating.
They differ in the second part, which is the total information rent from the allocation. The
local incentive constraints indicate that for every unit probability that a bidder of type si is
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allocated the good when they have the highest type, all higher types get a unit information
rent, so that the relative information rent is (1− F (si)) /f (si), the inverse hazard rate. In
contrast, the global incentive constraints (9) indicate that the rate of increase in ex-ante
bidder surplus per unit increase in q (v) is precisely∫ s

x=v

1− F (x)

F (x)
dx dFN (v) .

To see this, observe that increasing q (v) has two effects. There is a direct increase in u (s)

for all s ≥ v at a rate of (v − s) d
(
FN (v)

)
/F (s). But there is also an indirect effect, in

that the direct increase in u (s) is passed on to all types s′ > s at a rate of f (s) /F (s′), i.e.,
the likelihood that the higher type s′ misreports s under the given global deviation. Hence,
if we let ρ (s|v) denote the total rate of change in u (s), then for all s ≥ v, ρ must satisfy the
integral equation

ρ (s|v) =
1

F (s)

(∫ s

x=v

ρ (x|v) f (x) dx+ (s− v) d
(
FN (v)

))
,

and ρ (s|v) = 0 for s < v. By integrating this equation with the integrating factor f (s) /F (s),
we conclude that ∫ s

x=s

ρ (x|v) f (x) dx = d
(
FN (v)

) ∫ s

x=v

F (s)− F (x)

F (x)
dx,

which gives the desired result when s = s.

4.3 Uniqueness of the Optimal Allocation

Theorem 3 gives us a bound on revenue that is attained by the random price mechanism,
this proving its optimality. This mechanism induces a particular advantageously selective
allocation. A natural next question is whether there are other optimal allocations. The
answer is by-and-large no: any optimal allocation must share a number of key properties
with that induced by the random price mechanism.

First, the allocation we constructed has the property that all types have the same interim
allocation probability and interim transfer. This must also be true in any optimal mechanism.
The reason is as follows. In any optimal mechanism, we must have q be the optimal step
function given in (12). Moreover, the average downward deviation constraint (9) must hold
as an equality for all types in order for bidder surplus to be at its lower bound. It must
also be that (8) binds as well, and each bidder i is indifferent to downward deviations.
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Otherwise, if one of the individual constraints were slack, some other constraint must be
violated. Moreover, since each type si is indifferent to reporting a randomly redrawn lower
signal, it must be that si is also indifferent to misreporting any particular s′i ≤ si. For
if there were a positive measure of types for which ui (si) > ui (si, s

′
i), and if there were

indifference on average, then there would be some other type s′i such that ui (si, s′i) > ui (si).
Now consider the highest type s, who knows that the value is s. Then for all si and s′i,
ui (s, si) = ui (s, s

′
i) implies that

ti (si)− ti (s′i) = s (qi (si)− qi (s′i)) .

Notice that if this difference is strictly positive, then since the value conditional on a signal
of s′i is strictly less than s with probability 1, we have

u (s′i)− u (s′i, si) < s (qi (s
′
i)− qi (si))− (ti (s

′
i)− ti (s′i)) = 0,

which contradicts the indifference of type s′i to reporting si.
In addition, in any optimal mechanism, the bidders’ indirect utility function is precisely

that induced by the random price mechanism, which is

ui (si) =

∫ si

x=s

1

F (x)

∫ x

y=s

qi (y) g (y) dydx.

Now, the incentive constraint says that

ui (si) = max
s′i

∫
s−i

[max {si, s−i} qi (s′i, s−i)− ti (s′i, s−i)] dF−i (s−i) .

The envelope theorem says that
dui (si)

dsi
= q̂i (si) ,

where
q̂i (si) ,

∫
s−i

qi (si, s−i) Isi≥s−i
dF−i (s−i)

is the interim probability that bidder i is allocated the good and has the highest signal.
Putting these two together, we conclude that

q̂i (si) =
1

F (si)

∫ si

x=s

qi (x) g (x) dx.
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Thus, any optimal allocation must share some crucial features with that induced by the
random price mechanism: the interim probability of getting the good and the interim transfer
must be independent of type, and the interim probability of getting the good and having the
high signal must be the same in all optimal allocations. In a symmetric optimal mechanism,
qi = q/N , and these objects are pinned down even more tightly. However, there is still
some flexibility in how the good is allocated among low-signal bidders. In some sense, the
random price mechanism takes the simplest approach and by treating all low-signal bidders
symmetrically.

4.4 Alternative Implementations

While the random price mechanism nominally requires detailed knowledge of the environment
in order to calibrate the distribution H, there exist other implementations that “discover”
the optimal distribution in equilibrium. Consider the following mechanism, which we refer
to as the guaranteed demand auction (GDA): Each bidder first decides whether to pay an
entry fee φ to enter the auction. Upon entering, the bidder then makes demand δi ∈

[
0, δ
]

of a probability of receiving the good. The only parameters of the auction are φ ≥ 0 and
δ ∈ [0, 1/N ]. There are no payments beyond the entry fee. If bidder i decides not to enter,
then the auction proceeds without him, and the payment and assignment probability of
bidder i are both zero.

The allocation is determined as follows. Let i∗ denote the identity of the bidder with the
highest demand (chosen randomly if there are multiple high demanders). If δi∗ > 0, then
bidder i∗ is allocated the good with probability δi∗ and each bidder j 6= i∗ receives the good
with probability (1− δi∗) / (N − 1). Thus, a bidder is more likely to be allocated the good
when he does not have the highest demand as

δi∗ <
1− δi∗
N − 1

,

as long as δi∗ ≤ δ < 1/N . In consequence, a bidder is guaranteed to receive the good with
probability at least their demand.

We claim that there is an equilibrium in which each bidder simply demands a quantity
that mimics the earlier random price distribution H(x), see (6):

δ (si) =


1
N

(
1−

(
F (r)
F (si)

)N)
if si ≥ r;

0 if si < r,
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and where r solves
FN−1(r) = 1−Nδ.

It is easily verified that the induced interim allocation is exactly the same as that induced
by the random price mechanism that implements the exclusion threshold r. Since the in-
terim transfers are constant as well, we conclude that conditional on entering, the proposed
strategies are an equilibrium. Moreover, if δ is chosen so that the exclusion threshold is the
optimal r∗, and if φ is the highest entry fee such that all types are willing to enter, then the
induced allocation and bidder surplus will be precisely those of the random price mechanism.

4.5 Omitted Bidders and Optimality of the Inclusive Posted Price

In Corollary 1 we gave a necessary and sufficient condition for the inclusive posted price to
be the optimal mechanism. When this condition is not met, the seller can achieve greater
revenue using the random price mechanism to withhold the good when the value is low and to
induce advantageous selection. A tradeoff is that the random price auction with exclusion is
significantly more complicated than the inclusive posted price. A classic result of Bulow and
Klemperer (1996) demonstrates that the value of such exclusion may be quite limited. They
argue that difference between optimal revenue and optimal must-sell revenue is bounded
above by the additional revenue from the optimal must-sell mechanism when an additional
bidder is included in the auction. In their particular context, which excludes the maximum
signal model, the optimal must-sell mechanism is an English auction.

We now consider the implications of these ideas for the maximum signal model. Let
us suppose that there are N potential bidders. As before, they receive independent signals
drawn from F , and the common value of all bidders is the maximum of these signals. Only
the first N ′ ≤ N of the bidders participate in the auction. We say that there are omitted
bidders if N ′ < N . Following Bulow and Klemperer (1996), the expected value of a bidder
i ≤ N ′ conditional on (s1, . . . , sN ′) is the expectation of the maximum of all N signals,
integrated across (sN ′+1, . . . , sN). If we let

η (x) =

∫ s

y=s

max {x, y} d
(
FN ′−N (y)

)
,

then the expected value conditional on (s1, . . . , sN ′) is simply η (maxi≤N ′ si).
Our main result for this section is the following:

Proposition 4 (Omitted bidders).
If there are omitted bidders, then the inclusive posted price with price pI as in (2) is an
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optimal mechanism. In particular, optimal revenue is equal to pI for all N ′ < N , and
optimal must-sell revenue is equal to pI for all N ′ ≤ N .

Proof of 4. Suppose that there is an IC and IR mechanism that generates revenue R when
only bidders i ≤ N ′ < N participate. Then there is an IC and IR must-sell mechanism with
all N bidders in which the seller simply runs the same mechanism as with N ′, and gives the
good away for free to bidder N ′ + 1 whenever it would not have been allocated to a bidder
i ≤ N ′. Clearly this must-sell mechanism generates revenue of R, which must be less than
pI , which is maximum revenue across all must-sell mechanisms. As a result, any achievable
revenue with N ′ bidders must be less than pI . But revenue of pI can be obtained when there
are only N ′ bidders by, say, making a take-it-or-leave-it offer to bidder i = 1 at price pI ,
which would be accepted with probability one. We include that optimal revenue with N ′

bidders is pI .

An alternate proof of this result could be given using Corollary 1 and showing that
ψ (s) ≥ 0. To do so, it is necessary to change the units of messages so that the expected
value conditional on the highest of the first N ′ signals is exactly the highest of the first N ′

signals, i.e., a signal si must be relabeled η (si). Using the change of variables formula, and
the fact that dη (x) = FN−N ′ (x) dx, we conclude that

ψ (s) = η (s)−
∫ s

x=s

1− F (x)

F (x)
dη (x)

=

∫ s

x=s

x d
(
FN−N ′ (x)

)
−
∫ s

x=s

(1− F (x))FN−N ′−1 (x) dx

=

∫ s

x=s

x d
(
FN−N ′−1 (x)

)
,

which is positive.
Thus, when there are omitted bidders, the seller does not benefit at all from exclusion,

and posted prices are optimal. Bringing omitted bidders into the auction does not increase
optimal revenue unless all potential bidders are included. We regard this as a further ar-
gument in favor of the inclusive posted price is a simple, robust mechanism for revenue
extraction.

This finding may be contrasted with a more literal interpretation of the result of Bulow
and Klemperer (1996), which is that an English auction with N ′ + 1 bidders generates
more revenue than the optimal auction with N ′ bidders. This result crucially relies on the
hypothesis that bidders with higher signals have higher virtual values, which is violated in
the maximum signal model. Indeed, as long as there are N ′ ≥ 2 bidders, revenue from an
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English auction is actually decreasing in the number of bidders. The reason is that as long
as N ′ ≥ 2, competition between the bidders will make the participation constraints bind,
so that revenue is equal to the expected highest virtual value among the first N ′ bidders.
But when more bidders are included in the auction, it becomes more and more likely that
the bidder who is allocated the good has the highest signal among all N potential bidders,
which is the only case in which a bidder receives an information rent according to (4). This
comports with the results of Bulow and Klemperer (2002), Section 7, that when high signal
bidders have lower virtual values, excluding bidders in standard auctions will raise revenue.

5 General Common Values

We now broaden our view beyond the maximum signal model, and ask which of our results
will generalize to environments with common values and a strong winner’s curse. We shall
shortly define a class of environments in which the winner’s curse is quite strong. For these
environments, we show that making the allocation more advantageously selective will lead to
higher revenue. It is always possible to achieve an efficient and neutrally selective allocation
with a posted price. We will construct mechanisms that implement neutral allocations while
also withholding the good when the value is low. When extremely low values are possible,
this will lead to strictly higher revenue. We also give conditions under which it is possible
to implement strictly advantageous selection, thereby increasing revenue even further.

We stop short of characterizing optimal auctions for these environments. As we indicated
in the introduction, the pattern of binding global incentive constraints at the optimal mech-
anism could in general be quite complicated, and depend on fine details of the information
structure.

5.1 Increasing Information Rents

We continue to assume that the bidders receive independent signals, but the signal distribu-
tions Fi can now be asymmetric. We also allow for a general interim expected value function
v (s), which is assumed to be weakly increasing in each signal si. The virtual value of a
bidder is then given by the general formula (3).

We say that the common value model displays increasing information rents if for all
signal profiles s and for all i and j,

si > sj =⇒ 1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
≥ 1− Fj(sj)

fj(sj)

∂v (sj, s−j)

∂sj
. (13)
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Conversely, we say that there are decreasing information rents if for all signal profiles s and
for all i and j,

si > sj =⇒ 1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
≤ 1− Fj(sj)

fj(sj)

∂v (sj, s−j)

∂sj
.

The notion of increasing information rents compares information rents across bidders,
but it does not compare or impose an order on the behavior of the information rents across
signals of any given bidder i. For example, it does not require that each bidder i has an
increasing or decreasing virtual value in his own signal si.

In the maximum signal model, the increasing information rents condition is satisfied for
any distribution function F as the term ∂v (si, s−i) /∂si is positive only for the bidder with
the maximum signal, and zero for all other bidders.

A prominent example of a common value model is the wallet model where the common
value is the sum of the signals:

v(s1, ...., sN) =
N∑
i=1

si.

This model was the focus of the analysis of Bulow and Klemperer (2002). In this case, the
marginal value of signal i is constant, and the environment satisfies increasing information
rents if the inverse hazard rate is increasing, or equivalently if the hazard rate is decreasing.
Thus, in the wallet game, whether the information rent is increasing or decreasing with
respect to the signal is entirely a matter of the monotonicity of the hazard rate. With the
exponential distribution, the wallet model has a weakly increasing information rent. If the
value function is given by the sum of nonlinear elements, for example

v(s1, ..., sN) =
N∑
i=1

(si)
α

with α > 1, then the wallet game with exponential signals displays strictly increasing infor-
mation rents.

The increasing information rent condition retains the feature that the revenue maximiz-
ing allocation should be biased towards low-signal bidders. But the additional generality
complicates our earlier analysis in two respects. First, the common value of the object now
depends on the entire profile of signals rather than just the highest signal si. This compli-
cates our constructions from Section 3, as the bidders’ payments will now have to depend
on the entire signal profile, rather than just the highest of the others’ signals. Second, the
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virtual value of the bidders with lower signals may now differ across the bidders. Thus, while
the optimal mechanism in the maximum signal model could be described just in terms of
the allocation of the high-signal bidder and a representative low-signal bidder, the optimal
mechanism in general will be significantly more complicated and must explicitly specify the
allocations of all low-signal bidders.

The following analysis will show that we can generalize the constructions from Section 3.
Moreover, these mechanism retain their revenue improving properties as long as information
rents are increasing. However, we do not show, nor do we believe, that the generalized inclu-
sive posted price or random price mechanisms will be optimal, and the exact characterization
of revenue-maximizing mechanisms remains an open question.

5.2 More Advantageous Selection

Fix two allocations q, q′ : SN → [0, 1] such that

N∑
i=1

qi (s) =
N∑
i=1

q′i (s) .

In words, the allocations have the same total probability of allocating the good conditional
on the signal profile, and hence induce the same social surplus. We then say that q has more
advantageous selection than q′ if for all s and x,∑

{i|si≤x}

qi (s) ≥
∑
{i|si≤x}

q′i (s) .

Thus, the more advantageously selective allocation q places more probability on low-signal
bidders being allocated the good than does q′. In consequence, the expectation of the value
conditional on receiving the good is is higher under q than under q′.

Our first formal result for this section shows that if information rents are increasing, then
more advantageous selection increases revenue.

Theorem 4 (More Advantageous Selection).
Suppose that information rents are increasing and that q and q′ are implementable allo-
cations. If q has more advantageous selection than q′, then maximum revenue among IC
and IR mechanisms that implement q is greater than maximum revenue among IC and IR
mechanisms that implement q′.

Proof of Theorem 4. Since the two allocations have the same total probability of allocating
the good, for a given signal profile, they must induce the same social surplus. At the same
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time, by shifting the allocation to lower signal buyers, the bidders’ information rents are
reduced. Let

Z (x) =
∑

{
i

∣∣∣∣ 1−Fi(si)

fi(si)

∂v(si,s−i)
∂si

<x

} qi (si) ,

and define Z ′ analogously in terms of q′. Then increasing information rents implies that Z ′

first-order stochastically dominates Z, and hence

N∑
i=1

qi (s)
1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
=

∫ ∞
x=−∞

xdZ (x)

≤
∫ ∞
x=−∞

xdZ ′ (x)

=
N∑
i=1

q′i (s)
1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
.

Since total surplus is the same, and information rents are weakly lower with q, revenue must
be weakly larger.

Similarly, if the information rents are decreasing, and if q has more advantageous selection
than q′, then maximum revenue across mechanisms that implement q is lower than maximum
revenue across mechanisms that implement q′.

5.3 Revenue Improving Mechanisms

Thus, with increasing information rents, more advantageous selection increases revenue.
The question remains how much advantageous selection can be achieved subject to incentive
compatibility. While it is always possible to implement a maximally adversely selective
allocation, i.e., that of the second-price auction, there are generally non-trivial restrictions
on how much advantageous selection can be created, as in the maximum signal model. We
do not have a general characterization of exactly how much advantageous selection can be
attained. We can, however, describe some simple allocations that can always be implemented
and significantly reduce adverse selection.

First, it is always possible to implement a range of neutrally selective allocations. In
particular, the efficient neutrally selective allocation is always implementable via an inclusive
posted price, as previously defined in (2).

Proposition 5 (Inclusive Posted Price).
The inclusive posted price mechanism yields a higher revenue than the standard auctions in
every environment with increasing information rents.
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Similarly, it is always possible to implement the neutrally selective allocation that allo-
cates the good if and only if the value exceeds a threshold r. The ex post incentive compatible
Vickrey price for agent i now depends on the entire signal profile s−i of all the other agents.
For a given screening level r for the common value that the seller wishes to select, we can
define a personalized price for agent i as follows:

pi(s−i) , max {r, v(s, s−i)} . (14)

The revelation game now asks each bidder for his signal si and allocates the object uniformly
across the bidders if the reported signal profile s generates a value v (s) ≥ r. The payment
for the object is pi(s−i) for agent i and thus can vary across bidders. The payment pi(s−i)
represents the Vickrey payment of bidder i.

Proposition 6 (Personalized Price).
The vector of personalized prices {pi(s−i)} is incentive compatible. The optimal personal
posted price vector yields a (weakly) higher revenue than the inclusive posted price.

The personalized prices have the same advantage over the second-price or English auction
as the two-tier posted price did in the maximum signal model. The resulting allocation
induces neutral selection conditional on the common value of the object. It therefore allows
the seller to receive the average virtual value whereas the second-price auction would have
resulted in always selecting the bidder with the lowest virtual value.

In general, though, excluding at a given value threshold is not revenue maximizing, even
if we restrict to neutrally selective allocations, and the optimal neutrally selective allocation
could be quite complicated. There is a simple condition, however, under which we can say
what the optimal such allocation is. Let us say that the environment is mean-regular if the
average virtual value

π (s) ,
1

N

N∑
i=1

πi (s)

is monotonically increasing in the signal profile s. If the environment is regular, then it is
possible to implement the allocation

qi (s) =

 1
N
, if π (s) ≥ 0;

0, otherwise.
(15)

For under mean-regularity, the allocation defined by (15) is monotonic, so that it can be
implemented by an analogous pricing rule to (14). In particular, a bidder who is allocated
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the good must pay
pi (s−i) = min {v (s′i, s−i) |π (s′i, s−i) ≥ 0} .

But just as in the maximum signal model, under increasing information rents, there is
further scope to increase the revenue by moving from neutral to advantageous selection. So,
how do we generalize the random price? As in Proposition 3 the good is withheld if the high
type si is below the exclusion threshold r. If si ≥ r, we draw a threshold type x for the
highest type according to a distribution H, which has a density h. We shall shortly describe
a class of such distributions can be implemented. The high type si is allocated the good if
and only if si ≥ x, and otherwise we randomly allocate the good to one of the low bidders.

The complication relative to the maximum signal model is to determine transfers such
that the allocation is incentive compatible. They are now constructed on the basis of the
Vickrey prices which depend on the entire profile s rather than the high signal si only. Let
us define

v̂(x, y) = E[v(si, s−i)|si = x,max s−i = y],

ṽ(x, y) = E[v(si, s−i)|si = x,max s−i ≤ y].

We further denote by Γ (x) = FN−1 (x) the distribution of the highest of the others’ signals
and γ its density. The prices will be set according to three different cases. First, if the high-
bidder i is allocated the good, then the price is v̂(max s−i,max s−i) when si > max s−i > x,
and the high-bidder pays

p (x) = ṽ (x, x)− (v̂(x, x)− v̂ (0, x))
1

N − 1

1−H (x)

h (x)

γ (x)

Γ (x)

if si ≥ x > y. Finally, if one of the low-signal bidders is allocated the good, they pay
v̂ (0,max s).

The surplus from a report s′i when the type is si is∫ s′i

y=s

∫ s′i

x=r

(v̂ (si, y)− Ix>yp(x)− Iy>xv̂ (y, y))h(x)dx γ(y)dy

+

∫ s

y=s′i

(v̂(si, y)− v̂ (0, y))
1−H(y)

N − 1
γ(y)dy.
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The derivative with respect to s′i is

(ṽ (si, s
′
i)− p (s′i))h (s′i) Γ (s′i) + (v̂ (si, s

′
i)− v̂ (s′i, s

′
i))H (s′i) γ (s′i)

− (v̂ (si, s
′
i)− v̂ (0, s′i))

1−H (s′i)

N − 1
γ (s′i) .

Plugging in the formula for p, the derivative of the indirect utility reduces to

(ṽ (si, s
′
i)− ṽ (s′i, s

′
i))h (s′i) Γ (s′i)

− (v̂ (si, s
′
i)− v̂ (s′i, s

′
i))

(
1−NH (s′i)

N − 1

)
γ (s′i) .

Thus, as long as H satisfies

h (x)

1−NH (x)
≥ 1

N − 1
max
y

v̂ (y, x)− v̂ (x, x)

ṽ (y, x)− ṽ (x, x)

γ (x)

Γ (x)
, (16)

bidder surplus will be single-peaked at s′i = si, and truthful reporting will be incentive
compatible. If we assume that the right-hand side is a bounded for all x, then there exist H
functions that satisfy H (0) = 0 and asymptote to H (∞) ≤ 1/N , and satisfy the differential
inequality. Such is the case for the maximum signal model, where the right-hand side reduces
to f (x) /F (x). For such an H, the proposed mechanism is incentive compatible, and we
obtain the following.

Proposition 7 (Generalized Random Price ).
If the right-hand side of (16) is bounded, then the random price mechanism with H that
satisfies (16) as an equality is incentive compatible and yields a higher revenue than any
personalized price mechanism for the same exclusion level r.

With the above result, we have extended the revenue ranking result from the maximum
signal model to all common value environments with increasing information rents. We have
shown that in these settings advantageously selective mechanisms dominate adversely selec-
tive mechanisms. The exact form of the optimal auction remains an open question.

6 Conclusion

This paper contributes to the theory of revenue maximizing auctions when the bidders have
a common value for the good being sold. In the classic treatment of revenue maximization
due to Myerson (1981), the potential buyers of the good have independent signals about the
value. While the standard model does encompass some common value environments, the
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leading application is to the case of independent private values, wherein each bidder observes
his own value. In benchmark settings, the optimal auction is simply a first- or second-
price auction with a reserve price. More broadly, the optimal auction induces an allocation
that discriminates in favor of more optimistic bidders, i.e., bidders whose expectation of the
value is higher. By contrast, the class of common value models we have studied have the
qualitative feature that value is more sensitive to the private information of bidders with
more optimistic beliefs. This seems like a natural feature of many economic environments,
in which the most optimistic bidder has the most useful information for determining the
best-use value of the good, and therefore has a greater information rent. This case is not
covered by the characterizations of optimal revenue that exist in the literature, which depend
on information rents being smaller for bidders who are more optimistic about the value.

The qualitative impact is that while earlier results found that optimal auctions discrimi-
nate in favor of more optimistic bidders, we find that optimal auctions discriminate in favor
of less optimistic bidders, since they obtain lower information rents from being allocated the
good. In certain cases, the optimal auction reduces to a fully inclusive posted price, under
which the likelihood that a given bidder wins the good is independent of his private infor-
mation. In many cases, however, the optimal auction strictly favors bidders whose signals
are not the highest. This is necessarily the case when there is no gap between the seller’s
cost and the support of bidders’ values.

More broadly, we have extended the theory of optimal auctions to a new class of common
value models. The analysis yields substantially different insights than those obtained by the
earlier literature. We are hopeful that the methodologies we have developed can be used to
understand optimal auctions in other as-yet unexplored interdependent value environments.
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