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Abstract

We study the impact of manipulating the attention of a decision-maker who learns

sequentially about a number of items before making a choice. Under natural assump-

tions on the decision-maker’s strategy, directing attention toward one item increases

its likelihood of being chosen regardless of its value. This result applies when the

decision-maker can reject all items in favor of an outside option with known value; if

no outside option is available, the direction of the effect of manipulation depends on

the value of the item.
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1 Introduction

The struggle for attention is a pervasive phenomenon. Attention-seeking behavior plays

an important role in advertising, finance, industrial organization, psychology, and biology.1

∗We have benefited from comments of Ian Krajbich, Arina Nikandrova, Marco Ottaviani, and semi-
nar and conference participants at Bern, Caltech, Cergy-Pontoise, Northwestern, SFU, Vienna, Warwick,
Madrid. Pavel Ilinov, Jan Sedek, and Jiaqi Zou provided excellent research assistance. This work was fi-
nancially supported by the French National Research Agency (ANR), “Investissements d’Avenir” (ANR-11-
IDEX0003/LabEx Ecodec/ANR-11-LABX-0047) (Gossner), ERC grant 770652 (Steiner), and by the Social
Sciences and Humanities Research Council of Canada (Stewart).

1See, e.g., Fogg-Meade (1901) for advertising, Lou (2014) for finance, Eliaz and Spiegler (2011) for
industrial organization, Orquin and Loose (2013) for psychology, and Dukas (2002) for biology.
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The main message is consistent across fields: drawing attention toward an item increases its

demand.

The existing literature provides two main explanations for how grabbing attention can

increase demand.2 One is that they directly affect preferences. While difficult to disprove,

a theory of changing preferences offers limited predictive power and makes welfare analysis

challenging. The other major explanation is that attention-grabbing behavior itself conveys

information—either directly or through signaling—and thereby changes beliefs. But this

second channel alone does not suffice to explain the empirical evidence. In fact, there is

a sizable body of evidence showing that manipulating attention has a direct influence on

demand even when devoid of information.3

We identify a mechanism through which grabbing attention increases demand without

influencing preferences or changing the information available to the decision-maker. In our

model, a decision-maker learns sequentially about the quality of a number of items by allo-

cating her attention to one of the items in each period. Paying attention to an item generates

a noisy signal about its value. Due to cognitive limitations, the decision-maker can focus

only on one item at a time; while she pays attention to a given item, her belief about its

value evolves stochastically, while her beliefs about the other items remain the same. Once

she is sufficiently certain of an optimal choice, she stops learning and either chooses one of

the items or an outside option. Starting from a given strategy governing the decision-maker’s

attention, we introduce an attention-grabbing manipulation that induces the decision-maker

to focus on one “target” item for a fixed duration. We show that, under general conditions,

such a manipulation increases demand for the target item.

For the most part, we focus on a setting with binary values, in which each item is either

good or bad; we extend our results to allow for more than two values in Section 6.4 The

decision-maker can choose one of the items or an outside option of known value that she

prefers to a bad item but not to a good one. In the context of consumer marketing, we

think of the items as substitutable brands of a good, and the outside option as the choice

not to purchase any item. We impose a simple stopping rule: the decision-maker ceases to

learn about an item once she is sufficiently certain of its value. If she believes an item is

sufficiently likely to be good, she stops learning and chooses that item. If she believes an

item is sufficiently likely to be bad, she continues to learn about the other items until she

finds one that is likely to be good or determines that all items are likely to be bad (in which

case she chooses the outside option).

2See Bagwell (2007) for a survey in the context of advertising.
3See, e.g., Chandon et al. (2009), Krajbich and Rangel (2011), or, for a survey, Orquin and Loose (2013).
4Binary-value models are common in the literature on sequential sampling; see, e.g., Wald (1945) or, for

more recent work, Che and Mierendorff (2017) and Morris and Strack (2017).
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The decision-maker’s learning is governed by an attention strategy that maps beliefs in

any given time period to a (possibly random) item of focus. An attention strategy generates,

for each profile of values of the items, a stochastic process over beliefs and items of attention,

and a probability that each item is chosen. We refer to these probabilities as interim demands

for the items. The impact of attention manipulation is captured by the difference in interim

demands under the baseline and manipulated attention strategies, where the baseline strategy

is the one the decision-maker employs in the absence of manipulation, while the manipulated

strategy induces the decision-maker to focus on a target item for a fixed duration, after which

she returns to her baseline strategy.

We show that manipulation of attention increases demand and decreases the time to

decision in favor of the target item. Also, when the manipulated strategy leads to the choice

of an item other than the target, it takes longer to do so than does the baseline strategy.

These results hold for any realization of the items’ values. In particular, manipulating

attention increases demand even if the target item is bad.

The key to understanding the effect of manipulation is to consider the path of learning for

each possible realization of the sequence of signals for each item. Given such a realization, we

can view an attention strategy as selecting, in each period, an item for which to uncover one

more step along the sequence. The choice of item at the end of the process can be thought of

as resulting from a kind of approval contest: the decision-maker continues to learn until she

approves of one of the items, or until she finds all of them to be unworthy of approval. For a

given realization of signals, there may be multiple items the decision-maker would approve

of were she to pay enough attention to them. The choice then comes down to which of these

items she approves of first. Directing attention toward one of these items accelerates the

process of approval for this item while slowing it down for the other items. Consequently,

the likelihood that the target item is chosen increases.

This simple intuition ignores the significant complication that manipulating attention

generally affects future attention choice. It could happen, then, that manipulation toward a

target item leads to a path along which the decision-maker pays much less attention to the

target item afterwards, more than compensating for the direct effect of increased attention.

If there are only two items (not including the outside option), then this cannot happen:

our results hold regardless of the baseline attention strategy. With more than two items,

we require two additional assumptions. First, the attention strategy should be stationary:

focus in each period must depend only on the current belief, not on the current time. The

second assumption is a form of independence of irrelevant alternatives (IIA): conditional on

not focusing on an item i, the probability of focusing on each other item is independent of

the belief about the value of item i (though it may depend on the beliefs about items other
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than i). Together, these two assumptions allow us to consider learning about the target item

separately from learning among the remaining items, effectively reducing the problem to one

with two items.

To formalize these intuitions, we rely on a technique known in probability theory as

coupling. In short, we construct a joint probability space in which we fix, for each item,

the outcome of the learning process that would arise if the decision-maker focused only on

that item. We refer to a profile of realizations of these learning processes across items as a

draw. We show that, for every draw, manipulating attention toward an item both increases

demand for that item and decreases decision time if that item is chosen.

Both stationarity and IIA are needed for our results in the sense that their conclusions

do not hold if we dispense with either assumption; we provide counterexamples in Section

4. Both assumptions, though restrictive, are automatically satisfied if the attention strategy

is optimized given the stopping rules in our model: we prove that, for a general class of

learning costs, optimal strategies have a (stationary) Gittins index structure as in the theory

of multi-armed bandits. It follows that these strategies are stationary and satisfy IIA.

The presence of an outside option plays an important role in our analysis. Such an

outside option appears naturally in consumer choice as the option not to purchase any item,

and in finance as the option to invest in a risk-free asset. If there were no outside option, the

decision-maker could choose by a process of elimination rather than approval; that is, she

could seek to eliminate items that she believes to be bad and ultimately choose an item—the

last one remaining—with little knowledge of its value. In this case, manipulating attention

toward an item may increase the chance that it is eliminated before the other items, thereby

decreasing the demand for it. In the limit as learning becomes arbitrarily precise, we find

that, for any stationary attention strategy that satisfies IIA, manipulation increases demand

for the target item if its value is high, and decreases demand if its value is low.5

When each item can take on more than two values, the presence of an outside option is

no longer sufficient to generate our results. For example, with two items, it could be that

the decision-maker is confident both are better than the outside option, making the problem

effectively the same as one with no outside option. However, our results go through as long

as the decision-maker stops and chooses an item only when her belief about that item falls

within a given set. We think of this set as consisting of those beliefs at which the decision-

maker is sufficiently certain about the item’s value. Requiring a degree of certainty about

the chosen item is natural if its value affects subsequent decisions. In the binary values case,

then, the key role played by the outside option is that it makes the decision-maker choose

5This is reminiscent of the finding in Armel et al. (2008) that manipulating attention tends to increase
the choice probability for “appetitive” items and decrease the probability for “aversive” ones.
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an item only when she is confident that it is good.

Our result is robust to many aspects of the learning process. The information structure

for each item is general, allowing for any number of signal realizations and dependence on

the current belief about the item. The decision-maker need not be Bayesian; we can, for

instance, reinterpret her beliefs as intensities of accumulated neural stimuli in favor of each

item (as, e.g., in Platt and Glimcher, 1999), which can evolve according to an arbitrary

stationary Markov process (not necessarily corresponding to Bayesian updating). We also

allow for attention strategies that are not optimal, making our results robust with respect

to the structure of the attention costs if these strategies were chosen optimally.

Related literature Evidence that increased attention boosts demand comes from several

fields. In marketing, Chandon et al. (2009) show that drawing attention to products—

for instance, with large displays or placement at eye level—increases demand. In finance,

Seasholes and Wu (2007) show that attention-grabbing events about individual stocks in-

crease demand for them. In biology, Yorzinski et al. (2013) study the display strategies

through which peacocks grab and retain the attention of peahens during courtship. In each

of these contexts, the decision-maker has an outside option not to choose any available item;

our results suggest that this is an important feature driving the effect of attention-grabbing

behavior on demand.

Our assumptions on attention allocation are rooted in psychology. Though humans are

able to pay attention to multiple stimuli simultaneously, such division of attention is difficult,

especially when the stimuli are similar to each other (e.g., Spelke, Hirst, and Neisser, 1976).

Psychologists distinguish between exogenous and endogenous attention, where the first is

beyond the decision-maker’s control and is triggered by sudden movements, bright colors

and such, while endogenous attention shifts are controlled by the decision-maker (Mayer

et al., 2004). We can interpret attention allocation during our manipulation window as

being exogenous, whereas our baseline attention strategy fits the endogenous attention in-

terpretation.

Our model builds on a long tradition in statistics and economic theory originating in

Wald (1945), who proposed a theory of optimal sequential learning about a single binary

state. A growing literature studies optimal sequential learning about several options when

attention must focus on one item at a time (Mandelbaum, Shepp, and Vanderbei, 1990;

Ke, Shen, and Villas-Boas, 2016; Ke and Villas-Boas, 2019; Nikandrova and Pancs, 2018;

Austen-Smith and Martinelli, 2018). The structure of the optimal learning strategy varies

depending on the costs and information structure. Our results on the impact of attention

manipulation are independent of these considerations; however, relative to this literature,
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we make simplifying assumptions on the rules that govern termination of learning. In a

different vein, Che and Mierendorff (2017) study sequential allocation of attention between

two Poisson signals about a binary state. In contrast, in our model, the decision-maker

chooses among signals about multiple independent states.

In the drift-diffusion model of Ratcliff (1978), a decision-maker tracks the difference in

the strength of supporting evidence between two actions, making a choice when this differ-

ence becomes sufficiently large.6 Krajbich, Armel, and Rangel (2010) explicitly incorporate

attention choice in this model, and introduce an exogenous bias in the accumulated signal

toward the item on which the decision-maker is currently focusing. This extended drift-

diffusion model accommodates empirical findings showing that exogenous shifts in attention

tend to bias choice (see, e.g., Armel, Beaumel, and Rangel, 2008; Milosavljevic et al., 2012).

The closest DDM models to ours are the so-called “race models” in which evidence in sup-

port of distinct alternatives is integrated in separate accumulators, with the choice driven

by whichever accumulator reaches its stopping boundary first; see Bogacz et al. (2006) for

a review. Relative to this literature, whose primary modeling goal is to fit choice data, we

focus on foundations for the mechanism by which attention affects demand.

Optimal sequential learning about several items is related to the theory of multi-armed

bandits (Gittins and Jones, 1974). We exploit this connection to show that optimal attention

strategies satisfy IIA by using the Gittins index characterization.

2 Main result in a simple setting

In this section, we show in the simplest possible setting that temporarily manipulating

attention toward an item increases the probability that the decision-maker (DM) chooses it.

The DM chooses one among two items i ∈ {1, 2} of unknown values vi ∈ {0, 1} and an

outside option with known value z ∈ (0, 1). The two values vi are independent ex ante, and

each is equal to 1 with prior probability pi0. The DM learns sequentially about the value

of each item, and can vary the focus of her learning as specified below. When she stops

learning, she selects an item or the outside option based on whichever one has the highest

posterior expected value.

Let pit denote the DM’s belief about each item i at the beginning of the period t and

write pt for the pair of beliefs (p1
t , p

2
t ). At the beginning of each period t = 0, 1, . . ., the DM

chooses an item ιt on which to focus in period t. She receives a signal that is informative

about the value of item ιt and independent of the value of the other item. In this section,

the signal takes on values 0 and 1, and for each v, the realized signal is equal to v with

6Ratcliff’s model is essentially equivalent to a sequential sampling model in the style of Wald (1945).
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Figure 1: One possible strategy, together with three possible paths of beliefs. Each dot
depicts a belief (p1, p2) that can be reached following some sequence of signals. The horizontal
or vertical arrows at each point specify the direction of movement of the belief according to
whether the strategy focuses on item 1 or 2, respectively. The bold dot identifies the prior
belief. At each step of the learning process, the belief moves to one of the two adjacent
points in the direction of the arrows. The dashed path of beliefs terminates with the choice
of item 1, the solid path with the choice of item 2, and the dotted path with the choice of
the outside option.

probability λ, where λ > 1/2; that is, Pr(xt = 1 | vιt = 1) = λ = Pr(xt = 0 | vιt = 0).

Upon observing a signal realization, the DM updates her belief according to Bayes’ rule. In

particular, the DM’s belief about the item she is focusing on changes while her belief about

the other item remains fixed. Thus, letting

p[+] =
λp

λp+ (1− λ)(1− p)
(1)

and p[−] =
(1− λ)p

(1− λ)p+ λ(1− p)

for each p ∈ (0, 1), we have that the posterior belief pιtt+1 is either pιtt [+] or pιtt [−] according

to whether xt is 1 or 0, respectively, and pit+1 = pit for item i 6= ιt. Attention allocation is

governed by a (pure) attention strategy α : [0, 1]2 −→ {1, 2} that specifies the item of focus

ιt = α(pt) of a DM with beliefs pt.

The DM stops and makes a choice once she is sufficiently sure that either (i) one of
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the items is of high value or (ii) both items are of low value. Accordingly, we introduce

thresholds p and p such that p < z, pi0 < p. We define stopping regions F i = {p : pi ≥ p}
for i = 1, 2, F oo = {p : p1, p2 ≤ p} and F = F 1 ∪ F 2 ∪ F oo. Learning stops in the period

τ = min{t : pt ∈ F} with the DM choosing item i if pτ ∈ F i and the outside option if

pτ ∈ F oo. See Figure 1 for an illustration.

Let τ i denote the period in which the DM chooses item i; that is, τ i = τ if item i is chosen

and τ i = ∞ otherwise. Note that τ and τ i depend on the attention strategy; accordingly,

we write τ(α) and τ i(α) if the attention strategy α is not otherwise clear from the context.

The above rules specify, for any given pair of values v = (v1, v2), the joint stochastic

process of beliefs and focus of attention (pt, ιt)t, with the joint law denoted by P v
α . For any

strategy α and pair of values v, we let the interim demand for item i,

Di(v;α) = P v
α

(
pτ ∈ F i

)
,

be the probability that the DM stops with the choice of i when the true values are v.

(Stopping in F 1 and F 2 are mutually exclusive.)

We are interested in how manipulation of the DM’s attention strategy affects her choice.7

To this end, given a baseline strategy α, we introduce a manipulated strategy β constructed

from α by making item 1 the item of focus in the initial period and then returning to α in

all subsequent periods. That is, the item of focus β(p, t) in period t for beliefs p is given by

β(p, t) =

1 if t = 0,

α(p) if t > 0.

We say that an attention strategy α is non-wasteful if α(p) 6= i for any p such that

pi ≤ p. Non-wasteful strategies do not focus on an item that the DM deems to have low

value. Recall that a random variable τ (weakly) first-order stochastically dominates another

random variable τ ′ if Pr(τ ≤ t) ≤ Pr(τ ′ ≤ t) for every t.

Proposition 1. Suppose that the baseline attention strategy α is non-wasteful. For all pairs

of values v ∈ {0, 1}2, manipulating attention toward item 1 in the first period

7We do not explicitly model the mechanism of manipulation. Depending on the context, manipulation
could result from changes in visual salience, in relative inspection costs, or in the position of the items on a
list (as in online search results).
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1. (weakly) increases the demand for item 1 and decreases the demand for item 2; that is,

D1(v; β) ≥ D1(v;α)

and D2(v; β) ≤ D2(v;α),

and

2. accelerates the choice of item 1 and decelerates the choice of item 2; that is, τ 1(α)

first-order stochastically dominates τ 1(β) and τ 2(β) first-order stochastically dominates

τ 2(α).

When an item has low value, the DM’s belief about it tends to drift downward whenever

she focuses on it. Yet, perhaps surprisingly, the proposition indicates that manipulating

attention toward an item boosts its demand even in this case.

The first-order stochastic dominance results in the second part of the proposition combine

two conceptually distinct effects. For example, for item 1, the probability of its being chosen

under α is at most as high as under β, and hence the probability that τ 1(β) =∞ is at most

as large as the corresponding probability for τ 1(α). In addition, conditional on strategy β

leading to the choice of item 1, there is a sense (outlined below) in which item 1 is chosen

no later under strategy α.

Proposition 1 is a special case of Theorem 1 in the next section, and thus we provide

only an informal proof here. Imagine that there is a large (countably infinite) deck of cards

for each item, with each card showing a signal realization of 0 or 1. In each period t, the

attention strategy chooses a deck α(pt) from which to draw the next card, and then the DM

updates the relevant belief based on the signal shown on that card. Now consider the effect

of manipulation on choice for a given sequence of cards in each deck, where manipulation

induces the first card to come from the deck for item 1. To avoid trivialities, focus on the

case in which, absent manipulation, the DM first draws from deck 2. The following argument

shows that the statements in the proposition hold for each sequence of cards in each deck. It

follows that they also hold when averaging across sequences conditional on the items’ values

(or, for that matter, conditional on any other event).

The DM chooses item 1 if her belief p1
t reaches (at least) p before p2

t does. Intuitively,

inducing the DM to draw first from deck 1 should only cause p1
t to reach p sooner. There is

a complication, however, insofar as manipulation can cause the order of subsequent draws to

change since the DM may reach pairs of beliefs that she would not have reached otherwise.

The key observation is that, once we have fixed the sequence of the cards, we only need

to keep track of how many cards the baseline and manipulated strategies have drawn from
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each deck. At the end of the first period, compared to the baseline strategy, the manipulated

strategy is further ahead with deck 1 in the sense that more cards have been drawn from deck

1. Correspondingly, the baseline strategy is further ahead with deck 2. In each subsequent

period, either the manipulated strategy remains ahead with deck 1 (perhaps pulling even

further ahead) and the baseline strategy remains ahead with deck 2, or the numbers of draws

from both decks under the baseline strategy “meet” the numbers under the manipulated

strategy. In the latter case, the beliefs under the two processes coincide after the period in

which they meet (since beliefs are independent of the order in which signals are received).

Therefore, the manipulation has no effect on choice if the two processes meet. Accordingly,

consider the case in which the two processes do not meet before one of them stops.

Suppose that the baseline strategy leads to the choice of item 1; that is, the belief about

item 1 reaches p in some period τ before the belief about item 2 reaches p. Since the

manipulated strategy is further ahead with deck 1 and behind with deck 2 in each period

t < τ , it must be that under the manipulated strategy, the belief about item 1 reaches p

before the belief about item 2 does, and does so no later than period τ . Therefore, the

manipulated strategy also leads to the choice of item 1, with this choice occurring no later

than under the baseline strategy.

The argument for the statements about the demand and decision time for item 2 is

symmetric. Suppose that the manipulated strategy leads to the choice of item 2; that is,

under the manipulated strategy, the belief about item 2 reaches p in some period τ̂ before

the belief about item 1 does. Since the baseline strategy is further ahead with deck 2 and

behind with deck 1 in each period t < τ̂ , under the baseline strategy, the belief about item

2 reaches p before the belief about item 1 does, and does so no later than period τ̂ .

3 General result for binary values

We now extend the setting to allow for more than two items, general signal structures,

stochastic attention strategies, and arbitrary length of the manipulation window. At the end

of the learning process, the DM chooses one item from the set I = {1, . . . , I} or an outside

option with known value z ∈ (0, 1). Each item i ∈ I has an uncertain value vi ∈ {0, 1}, and

again, v = (v1, . . . , vI).

In each period t = 0, 1, . . ., the DM focuses on a single item. Her belief in period t that

item i is of high value (vi = 1) is denoted pit, and we write pt = (pit)i for the belief vector

in period t.8 As usual, given any finite set X, we write ∆(X) for the set of probability

distributions over X. A (stochastic) attention strategy is a function α : (∆({0, 1}))I×N −→
8We identify the probability pit ∈ [0, 1] attached to vi = 1 with the corresponding belief in ∆({0, 1}).
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∆(I) that specifies a probability distribution over items of focus as a function of the belief

vector at the beginning of a period together with the current time. We can think of α(p, t)

as a vector (αi(p, t))i, where αi(p, t) is the probability with which the DM focuses on item

i in period t. An attention strategy is stationary if it does not depend on time (i.e., if

α(p, t) = α(p, t′) for all p, t, and t′), in which case we simply write α(p) for α(p, t). If, for

every p and t, an attention strategy α(p, t) assigns probability one to a single item, then we

say that it is a pure strategy, and abuse notation slightly by writing α(p, t) for the item of

focus.

The evolution of beliefs as a function of the attention strategy is as follows. The DM

begins with a prior belief vector p0 = (p1
0, . . . , p

I
0). If the beliefs at the beginning of period

t are pt and the DM focuses on item i in period t, then the belief about item i follows a

stochastic transition φi : ∆({0, 1})× {0, 1} −→ ∆ (∆({0, 1})) that depends on pit and on vi,

while the beliefs about all other items remain unchanged; that is, conditional on pt, pt+1

is a random variable such that pit+1 is distributed according to φi(pit, v
i) and pjt+1 = pjt for

all j 6= i. By fixing the DM’s beliefs about items she is not currently focusing on, we are

implicitly assuming that she treats the items’ values as independent. One special case of

this setting is when the DM receives a (serially conditionally independent) signal about the

item she focuses on and updates her belief according to Bayes’ rule. However, we also allow

for non-Bayesian processes; for example, the “belief” pit could alternatively be a neural firing

rate, or the DM could under- or over-react to new information relative to Bayes’ law.

An attention strategy α naturally induces a process of items of focus (ιt)t and a process of

belief vectors (pt)t. The law of ιt conditional on (p0, ι0, . . . ,pt−1, ιt−1,pt) is α(pt, t), and the

belief vector pt+1 is drawn as described above, conditional on (p0, ι0, . . . ,pt−1, ιt−1,pt, ιt).

Given any vector of values v, we let P v
α denote the joint law of the (Markov) process (pt, ιt)t.

The time at which the DM stops learning is governed by thresholds pi and pi for each i

satisfying 0 ≤ pi < pi0, z < pi ≤ 1. If the DM’s belief pit satisfies pit ≤ pi then we say that

she is sufficiently certain that vi = 0, and similarly, if pit ≥ pi then she is sufficiently certain

that vi = 1. The DM learns until she is sufficiently certain of an optimal choice. We thus

define the stopping region F according to F = (
⋃
i F

i) ∪ F oo, where F i = {p : pi ≥ pi} and

F oo = {p : pi ≤ pi for all i}. The DM makes her choice at the stopping time τ = min{t :

pt ∈ F}: either pτ ∈ F i for some i, in which case this i is chosen, or pτ ∈ F oo, in which

case the outside option is chosen (these cases are mutually exclusive). For any item i, let

the stopping time τ i for i be equal to τ if i is chosen and ∞ otherwise. (We allow for the

possibility that learning does not stop, in which case τ = τ i =∞ for all i.)

An attention strategy α is non-wasteful if αi(p, t) = 0 for all p such that pi ≤ pi. A

non-wasteful strategy never focuses on an item that the DM is sufficiently certain is of low
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value.

A special case of particular interest is when the thresholds are given by pi = 0 and

pi = 1 for all i. These thresholds ensure that the DM learns until she is certain that she

can make an optimal choice (at which point she stops immediately). One type of learning

that eventually leads to certainty is so-called “Poisson learning”: the DM is a Bayesian who

receives a signal about the item she focuses on that perfectly reveals its value with positive

probability. (This probability may depend on the item and its value.) Under such a learning

process, thresholds of 0 and 1 are optimal for a DM who incurs a time cost of learning, but

(lexicographically) prioritizes the value of her choice over this cost. More generally, however,

we do not endogenize the stopping regions as resulting from optimization in a costly learning

process; doing so would make for a very challenging problem involving tradeoffs that are

orthogonal to the effect we identify. The key difference between our setting and one with

endogenous boundaries is that we require the thresholds pi and pi to be independent of the

DM’s beliefs about other items j 6= i. When the thresholds are interior, we interpret them

as capturing bounded rationality that is particularly natural when the cost of learning is

low (in which case the additional gain from precisely tailoring the thresholds is small). We

conjecture that, in this case, our results approximate those arising from optimal strategies

in Bayesian models with a small cost of learning.

An attention strategy α satisfies Independence of Irrelevant Alternative i (IIAi) if, con-

ditional on not focusing on item i, the probabilities of focusing on each item j 6= i are

independent of pi. Formally, this is the case when, for every t and p,q ∈ (∆({0, 1}))I such

that pj = qj for all j 6= i and αi(p, t), αi(q, t) 6= 1, we have that for every j 6= i,

αj(p, t)

1− αi(p, t)
=

αj(q, t)

1− αi(q, t)
.

We say that α satisfies Independence of Irrelevant Alternatives (IIA) if it satisfies IIAi for

all items i. Note that IIA is automatically satisfied if there are only two items. One way

in which a strategy could violate IIAi would be if it focuses on the least promising of the

remaining items when pi is the lowest belief (to check whether i is indeed the worst), and on

the most promising of the remaining items when pi is the highest belief (to check whether i is

indeed the best). In Subsection 3.2, we identify conditions under which the optimal strategy

satisfies IIA.

We define the interim demand for item i as

Di(v;α) = P v
α

(
pτ ∈ F i

)
;
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this is the probability, under strategy α, that the DM chooses item i when the vector of

values is v.

We compare the interim demand under a baseline attention strategy to that under a ma-

nipulated strategy capturing the effect of manipulating attention. Given a baseline strategy

α, a target item i, and a manipulation length m ≥ 1, the manipulated attention strategy (in

favor of i) is

βj[α, i,m](p, t) =

1j=i if t ≤ m− 1, and pi > pi,

α(p, t) otherwise.

Thus, under the manipulated attention strategy, the DM focuses on item i in the first m

periods unless she is sufficiently certain that i is of low value, and then follows her baseline

strategy in every subsequent period.9

The following proposition states that manipulation in favor of an item both increases

and accelerates demand for this item, and decreases and decelerates demand for every other

item. The result holds regardless of the underlying values: even if the target item is worse

than other items, drawing attention to it is never detrimental to the likelihood that it is

chosen.

Theorem 1. If an attention strategy α is stationary, satisfies IIAi, and is non-wasteful,

then for every v and manipulation length m ≥ 1,

Di(v; β[α, i,m]) ≥ Di(v;α)

and Dj(v; β[α, i,m]) ≤ Dj(v;α) for every j 6= i.

Moreover, τ i(α) first-order stochastically dominates τ i(β[α, i,m]), and τ j(β[α, i,m]) first-

order stochastically dominates τ j(α) for every j 6= i.

The result extends immediately to manipulation windows starting in any period t ≥ 1

provided that the manipulation does not affect the attention strategy employed before period

t. This assumptions corresponds to the idea that manipulation is unanticipated. In many

contexts, while attention-grabbing behavior might be expected, predicting the timing of

the manipulation and its target item is likely to be more difficult, which may preclude

anticipatory adjustments to the attention strategy.

9Since Theorem 1 holds for any manipulation length, m can be randomized without affecting the conclu-
sion.
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3.1 Proof of Theorem 1

The proof relies on a technique known as “coupling” (see, e.g., Lindvall, 1992): we fix the

vector of values v and construct a common probability space on which we can compare the

process of beliefs and items of focus (pt, ιt)t under the baseline attention strategy α with the

process (p̂t, ι̂t)t under the manipulated strategy β = β[α, i,m]. We construct this space in

such a way that the law of (pt, ιt)t is P v
α , while the law of (p̂t, ι̂t)t is P v

β .

We present here a coupling construction that suffices to prove the proposition for pure

attention strategies. In Appendix A.1, we extend the construction to stochastic attention

strategies, in which case the coupling argument is significantly more complex.

The probability space consists of realizations of a learning process π = (πj)Ij=1. The

process π is a family of independent learning processes πj = (πjκ)κ=0,1,... for each item j,

where πj is a Markov process starting at pj0 with transitions φj(·, vj). The κ-th term πjκ of

the learning process for item j specifies the belief about item j after κ periods of focus on

that item. A learning draw is a realization of the learning process π.

We now construct, for each pure strategy γ ∈ {α, β}, a realization of the process

(pt(γ), ιt(γ))t as a function of the learning draw. To do this, we recursively define (pt(γ), ιt(γ))t
as follows. For t ≥ 0, and given the process (ιs(γ))s<t, for each item j, let k(j, t; γ) denote

the cumulative focus of strategy γ on item j before period t; that is,

k(j, t; γ) = |{s < t : ιs(γ) = j}|.

Similarly, let k(−i, t; γ) = t − k(i, t; γ) denote the number of periods of focus on items

other than i. Set pjt(γ) = πjk(j,t;γ) for every j; i.e., set the belief about each item j after

k(j, t; γ) periods of focus on this item to be the k(j, t; γ)-th value of the learning process πj.

Given γ, let the focus in period t be ιt(γ) = γ(pt). By construction, the law of the process

(pt(γ), ιt(γ))t is P v
γ , as needed.

For notational purposes, it is convenient to extend the process (pt(γ), ιt(γ))t beyond the

stopping time τ . To this end, if pt(γ) ∈ F , then we set ιt(γ) = ∅ and pt+1(γ) = pt(γ). From

this point forward, we write (pt, ιt) for (pt(α), ιt(α)), (p̂t, ι̂t) for (pt(β), ιt(β)), and similarly

for k, and τ . We fix a learning draw and compare the two corresponding realizations of the

processes (pt, ιt)t and (p̂t, ι̂t)t.

For any n ≥ 0, let t(n) be the n-th period such that ιt 6= i; that is, t(n) = min{t :

k(−i, t) ≥ n}, where potentially t(n) =∞, and similarly, t̂(n) = min{t : k̂(−i, t) ≥ n}.

Lemma 1 (Coupling Lemma). The baseline and manipulated processes coincide when re-
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stricted to periods of focus on items other than the target i. That is, for every n,(
p−it(0), ιt(0), . . . ,p

−i
t(n), ιt(n)

)
=
(
p̂−i
t̂(0)
, ι̂̂t(0), . . . , p̂

−i
t̂(n)
, ι̂̂t(n)

)
.

Proofs omitted in the main text can be found in the appendix.

For t ≥ m, we say that the baseline and the manipulated processes meet (in period t) if

the cumulative focus on the target item i up to time t is the same for both processes, i.e. if

k(i, t) = k̂(i, t). Note that for the two processes to meet, the definition considers only the

cumulative focus on the target item. In general, this does not imply that the cumulative

focus on any other item coincides under the two processes at time t (see counterexamples

4.2 and 4.3). The Coupling Lemma shows that when stationarity and IIAi hold, meeting of

the two processes implies that the cumulative focus is the same for every item. According

to the next result, the processes then coincide in every subsequent period.

Lemma 2 (Meeting Lemma). If the baseline and manipulated processes meet in period t,

then (ps, ιs) = (p̂s, ι̂s) for all s ≥ t.

The Meeting Lemma implies the next result.

Lemma 3 (Attention Lemma). In every period, the cumulative focus on the target item

i is at least as large under the manipulated process as under the baseline process, and the

cumulative focus on any j 6= i is at least as large under the baseline process as under the

manipulated process. That is, for every t ≥ 1 and j 6= i,

k̂(i, t) ≥ k(i, t)

and k(j, t) ≥ k̂(j, t).

For any attention strategy γ, let τ oo(γ) = τ(γ) if pτ(γ) ∈ F oo (and thus the outside option

is chosen) and τ oo(γ) =∞ (indicating that the outside option is not chosen) otherwise.

Lemma 4 (Outside Option Lemma). For any two non-wasteful attention strategies γ and

γ′ and any learning draw, τ oo(γ) = τ oo(γ′).

The Outside Option Lemma implies in particular that the outside option is chosen under

the baseline process if and only if it is chosen under the manipulated process. Thus attention

manipulation shifts demand within items without affecting the total demand across all items.

Lemma 5 (Choice Lemma). For any learning draw,

1. if the target item i is chosen under the baseline process, then i is also chosen under the

manipulated process, and no later than under the baseline process; and
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2. if some item j 6= i is chosen under the manipulated process, then j is also chosen under

the baseline process, and no later than under the manipulated process.

Proof. Statement 1 : Consider any learning draw such that the target item i is chosen in

period τ under the baseline process. Then, by the Outside Option Lemma, the outside

option is not chosen under the manipulated process since it is not chosen under the baseline

process. Suppose for contradiction that j 6= i is chosen at some time τ̂ ≤ τ under the

manipulated process. Then p̂jτ̂ ≥ pj. By the Attention Lemma, the cumulative focus on

items −i by period τ̂ under the baseline process is at least as large as that under the

manipulated process; that is, k(−i, τ̂) ≥ k̂(−i, τ̂). By the Coupling Lemma, there exists a

period t ≤ τ̂ such that p−it = p̂−iτ̂ , and hence the baseline process stops with the choice of

j in period t, which establishes the contradiction since stopping in F i and F j are mutually

exclusive for j 6= i. Therefore, it cannot be that, under the manipulated process, an item

j 6= i is chosen at a time τ̂ ≤ τ . By the Attention Lemma, k̂(i, t) ≥ k(i, t) for all t. Hence,

there exists τ̂ ≤ τ such that p̂iτ̂ = piτ ≥ pi (since the manipulated process does not stop with

the choice of j 6= i or the outside option before τ̂). Thus, the manipulated process stops at

time τ̂ ≤ τ with the choice of i, as needed.

Statement 2 : The proof of the second statement is symmetric to that of the first. Ac-

cordingly, consider any draw such that, under the manipulated process, an item j 6= i is

chosen in period τ̂ . Then, by the Outside Option Lemma, the baseline process does not

choose the outside option. Suppose for contradiction that, under the baseline process, the

target item i is chosen in some period τ ≤ τ̂ . Then piτ ≥ pi. By the Attention Lemma,

k̂(i, τ) ≥ k(i, τ). Thus, there exists a period t ≤ τ such p̂it = piτ ≥ pi and hence under

the manipulated process, i is chosen in period t ≤ τ̂ , which establishes the contradiction.

Therefore, it cannot be that, under the baseline process, i is chosen at a time τ ≤ τ̂ . By the

Attention Lemma, k(−i, t) ≥ k̂(−i, t) for all t. By the Coupling Lemma, the beliefs p−i and

p̂−i coincide when restricted to the periods of focus on items −i. Hence, there exists τ ≤ τ̂

such that p−iτ = p̂−iτ̂ , and the baseline process stops in period τ with the choice of item j, as

needed.

Theorem 1 follows from the Choice Lemma by taking expectations across learning draws.

3.2 IIA and stationarity

We now provide an argument in support of the IIA and stationarity assumptions based on

optimization of the attention strategy. We fix, for each item i, the belief-updating process φi

and the stopping thresholds pi and pi, and let the DM control her attention strategy α. We

assume in this section that beliefs follow a Markov process (unconditional on v), as is the
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case if they are obtained through Bayesian updating based on observed signals. Until she

stops learning, the DM pays a uniformly bounded flow cost c (pιtt , ιt) ≥ 0 in each period t;

this flow cost may depend on the item ιt of current focus and on the belief pιtt in the current

period. After she terminates with an item i or with the outside option, the DM receives a

one-time payoff vi or z, respectively.

Given the stopping thresholds, the DM chooses a non-wasteful strategy α to maximize

the expected discounted value

V (α) = E

[
δτvi

∗ −
τ∑
t=0

δtc (pιtt , ιt)

]
, (2)

where i∗ is the chosen item or the outside option (i.e., the item for which pτ ∈ F i∗), vi
∗ ∈

{0, z, 1} is its value, and δ ∈ (0, 1) is a discount factor. The expectation is with respect to

the ex ante law P ea
α = EP v

α =
∑

v

(∏
j p

j
0(vj)

)
P v
α governing the evolution of beliefs.

We rely here on the theory of multi-armed bandits to show that a Gittins index strategy

is optimal: for each item i, there exists a Gittins index function Gi(pit) that depends only on

the belief about item i, such that the optimal strategy consists in each period of focusing on

an item with the highest Gittins index. When ties are broken with uniform randomization,

such a strategy satisfies IIA and stationarity.

Proposition 2. There exists a non-wasteful strategy that maximizes the objective (2) and

satisfies IIA and stationarity.

Note that, since this result holds for all fixed stopping thresholds, it also holds if the

thresholds are chosen optimally (subject to the constraint that the thresholds for each item

i are independent of the beliefs about items other than i).

The main challenge in proving this result is that the cost in (2) exhibits interdependence

across items because whether the decision process stops with the DM choosing the outside

option depends on the whole profile of beliefs. Since the theory of multi-armed bandits applies

to problems with flow payoffs that are independent across objects, we need to construct an

auxiliary multi-armed bandit problem with this property. The construction is based on

Lemma 4 (the Outside Option Lemma), which states that, conditional on the outside option

being chosen, the stopping time is independent of the attention strategy. This construction

applies because the stopping thresholds are restricted to be independent of the DM’s beliefs

about the other items; if both the attention strategy and the stopping region are optimized

as in Nikandrova and Pancs (2018) and Ke and Villas-Boas (2019), then there need not exist

an optimal Gittins index strategy and IIA and stationarity are not guaranteed.

17



4 Examples and counterexamples

4.1 Example: manipulation of the fastest strategy

To illustrate the quantitative impact of manipulating attention, we return to the simple

setting from Section 2 and examine the fastest attention strategy for the given stopping

thresholds. This strategy takes a simple form that allows for analytical characterization of

the impact of manipulation.

Recall from Section 2 that if the DM has beliefs pt and focuses on item j ∈ {1, 2} in

period t, she updates her belief about j to pjt [−] with probability (1− λ)vj + λ(1− vj) and

to pjt [+] with probability λvj + (1 − λ)(1 − vj), where p[−] and p[+] are specified in (1).

For simplicity, assume that the stopping thresholds p and p are the same for the two items,

and that each of these thresholds can be reached exactly through some sequence of signals.10

Thus, the belief process for each item takes realizations in the set {p, p[+], . . . , p[−], p}.
The strategy α∗ depicted in Figure 2A focuses on whichever item the DM views as more

promising. Accordingly, for each item j and i 6= j,

α∗j(p) =


1 if pj > pi,

1/2 if pj = pi,

0 otherwise.

(3)

The next result states that α∗ is the fastest attention strategy in this environment. Hence

α∗ is optimal for a DM who, given the stopping region F , minimizes a monotone time cost.11

To state this formally, define the stochastic stopping time τ ea(α) for strategy α to be the

minimal time t at which pt(α) ∈ F under the ex ante law P ea
α = EP v

α .

Proposition 3. For any strategy α, τ ea(α) weakly first-order stochastically dominates τ ea(α∗).

As with our main results, the proof makes use of coupling, although the particular con-

struction is distinct from our main one. A different coupling construction is necessary because

the strategy α∗ is not the fastest one in every learning draw: there exist draws in which fo-

cusing on the more promising item leads to a long sequence of contradictory signals. To

prove Proposition 3, we construct a distinct probability space in which a learning process

10On its own, the latter assumption is without loss of generality since moving a threshold within an interval
in which no belief is reached with positive probability has no effect. When combined with the commonality
of the thresholds, this assumption places a restriction on the prior belief vector.

11Given the structure of this example, minimizing time cost is equivalent to maximizing the value V (α) in
(2). This equivalence follows from the commonality of the thresholds across items together with the Outside
Option Lemma.
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Figure 2: A: the fastest attention strategy α∗. B: the ex ante demand D1
ea(p1, p2) for item

1 as a function of p1. The belief p2 is fixed at 0.7 (solid curve), or 0.3 (dashed curve),
respectively. The stopping thresholds are p ≈ .99 and p ≈ .01. The depicted (single-period)
manipulation effect e1 is evaluated for p1 = 0.5, and p2 = .7. The curve for p2 = 0.3 is
included for ease of comparison with the corresponding curve in Figure 3 when there is no
outside option.

generated by any strategy γ follows the ex ante law P ea
γ , and α∗ is always at least as fast as

any other strategy.

How much does the manipulation of attention affect demand? To quantify the effect,

define the ex ante demand (for item i) by

Di
ea(p0) = P ea

α∗

(
pτ ∈ F i

)
= Ep0 D

i(v;α∗).

Thus Di
ea(p0) is the ex ante probability that a DM with prior belief p0 chooses item i under

the fastest strategy α∗. We define the manipulation effect ei(p) to be the change in the ex

ante demand for i resulting from a single-period manipulation of the fastest strategy α∗ that

targets the item i; that is,

ei(p) = E
[
Di(v; β[α∗, 1, 1])−Di(v, α∗)

]
= EDi

ea

(
p̃i, p−i

)
−Di

ea(pi, p−i), (4)

where the first expectation is with respect to v distributed according to the prior p, p̃i is
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the belief resulting from a single-period update of pi, and the second expectation is over the

possible values pi[+] and pi[−] of p̃i. The magnitude of the effect is therefore determined

by the curvature of Di
ea(pi, p−i) with respect to pi around p; see Figure 2B. Note that, by

Theorem 1, ei(p) is nonnegative for all p.

Proposition 4. The manipulation effect ei(p) is

1. positive whenever manipulation affects attention (when pi ≤ p−i),

2. decreasing in p−i on {pi[+], . . . , p}, and

3. increasing in pi on {p, p[+], . . . , p−i[−]}.

4. nonvanishing as pi → 0 and pi → 1 (in the region where the effect is positive).

This result implies that manipulation has the strongest impact when it targets an item

with a small a priori disadvantage relative to the other item. The proof in the appendix

provides an explicit expression for the ex ante demand and the manipulation effect.

While the analysis above applies for exogenously fixed stopping beliefs, similar results

hold in two related settings in which the stopping region is chosen optimally. First, consider

a variant of the model in which learning terminates at an exogenous stochastic deadline T .

At the termination time, the DM makes an optimal choice given her posterior belief. The

optimal strategy in this problem solves

max
α

E max
{
z, p1

T (α), p2
T (α)

}
, (5)

where the expectation is with respect to T and the beliefs piT (α).

Proposition 5. The attention strategy α∗ defined in (3) solves Problem (5).

Second, Ke and Villas-Boas (2019) examine a related continuous-time setting with expo-

nential discounting and show that the analogue of the strategy α∗ (together with a stopping

region they characterize) is optimal. Despite the differences among these models, all three

converge to the same demands in the limit as learning becomes arbitrarily precise, i.e., in

the limit as p→ 0 and p→ 1 in our model, as the support of T tends to∞ in the stochastic

deadline model, and as the discount factor tends to 1 in the model of Ke and Villas-Boas.

Therefore, all three exhibit exactly the same manipulation effect in their respective limits.
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4.2 Counterexample: failure of IIA

The conclusions of Theorem 1 do not generally hold if the attention strategy does not satisfy

IIA. To illustrate this, consider an example with three items and a Bayesian DM with prior

belief pi0 = 1/2 for each item i ∈ {1, 2, 3}. If the DM’s belief about an item i is pit in period

t, focusing on i in t leads to belief pit+1 = pit[−] or pit[+] as in Section 2. The stopping

boundaries are p = 1
2
[−][−] and p = 1

2
[+][+] for each item. Let α be a stationary pure

attention strategy that satisfies

α(p) =


2 if p = p0,

1 if p2 6= p2
0 and p1 > p,

3 if p 6= p0, p2 = p2
0, and p3 > p.

When following such a strategy, the DM first focuses on item 2, and then, from the second

period onwards, focuses on item 1 until p1 reaches p or p. This leads to item 1 being chosen

with probability 1/2.

Now consider the manipulated strategy β = β[α, 1, 1] obtained by directing attention to

item 1 in the first period. From the second period onwards, the DM focuses on item 3 until

p3 reaches p or p, and thus β chooses item 1 only if p3 reaches p and p1 reaches p. Therefore,

the manipulated DM chooses the target item 1 with probability at most 1/4.

The strategy α violates the IIAi assumption for i = 1 since the allocation of attention

between items 2 and 3 at p−1 = (p2
0, p

3
0) depends on the belief about item 1. A failure of

IIA can cause the Meeting Lemma to be violated: the baseline and manipulated processes

may meet but not coincide thereafter. Recall that two processes meet at some time if, by

that time, they focus on the target item for the same number of periods. In this example,

the baseline and manipulated processes meet after the first two periods since both focus on

the target item (item 1) once. Yet the baseline beliefs p−1
2 and the manipulated beliefs p̂−1

2

about the non-target items differ, and hence the continuations of the processes differ as well.

4.3 Counterexample: failure of stationarity

We now show that the conclusions of Theorem 1 can fail if the attention strategy satisfies

IIA but is non-stationary. Suppose there are three items with prior beliefs pi0 = 1/2 for each

i ∈ {1, 2, 3}. The stopping thresholds p and p and the signal technology for items 1 and

2 are the same as in the previous counterexample. On the other hand, the value of item

3 is perfectly revealed as soon as the DM focuses on it for a single period. The stopping

thresholds are p and p for each item.
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Let α be a non-stationary pure attention strategy that satisfies the following for p1 > p:

α(p, t) =


2 if t = 0,

3 if t = 1, p1 6= p1
0, and p3 > p,

1 otherwise.

Under α, the DM first focuses on item 2, and then focuses on item 1 until p1 reaches p

or p. Hence she chooses item 1 with probability 1/2. Under the manipulated strategy

β = β[α, 1, 1], the DM first focuses on item 1, and then focuses on item 3—thereby learning

its value—in the second period. Thus, under β, the DM chooses item 1 only if item 3 has

value 0 and p1 reaches p, which occurs with probability 1/4.

As in the previous counterexample, Theorem 1 does not apply because the Meeting

Lemma fails. The baseline and manipulated processes meet after two periods since each

focuses on item 1 for exactly one of those periods. However, the beliefs about items 2 and 3

differ between these two processes at t = 2, which causes the continuation of the processes

to differ. When IIAi and stationarity are satisfied, the Meeting Lemma follows from the fact

that, for each draw, the accumulated focus k(i, t) on the target item i is a sufficient statistic

for the distribution of beliefs pt about all items in period t.

5 No outside option: forced choice

While our main results focus on choice in the presence of a known outside option, many

experiments employ a “forced choice” design in which there is no such option and subjects

must eventually choose one of the items. In this section, we show that, in our framework,

but absent an outside option, the effect of attention manipulation depends on the value of

the target item. As learning becomes precise (in the sense that the stopping thresholds

approach 0 and 1), manipulating attention toward a good item increases its demand, while

manipulating attention toward a bad item has the opposite effect. This result parallels the

experimental findings of Armel et al. (2008) and Milosavljevic et al. (2012), who manipulate

focus in forced choice problems involving either desirable or aversive items.

In our model of forced choice, the DM selects exactly one item from the set {1, . . . , I}.
Each item i has value vi ∈ {0, 1}. The DM learns about these values using an attention

strategy α, with beliefs transitioning according to a stochastic rule φi, just as in Section

3. Relative to our main model, the DM’s choice differs in the stopping rule: here, the DM

stops and chooses an item if she is sufficiently certain either that its value is high, or that

the values of all other items are low. More precisely, for each item i, there are thresholds
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pi and pi. Letting p = (p1, p1, p2, p2, . . . , pI , pI), the DM stops learning and chooses item i

whenever the belief p lies in the set

F i
no(p) =

{
p : pi ≥ pi or pj ≤ pj for all j 6= i

}
.

Let Fno(p) =
⋃I
i=1 F

i
no(p), and define the stopping time τ(α, p) = min{t : pt(α) ∈ Fno(p)};

to simplify notation, we write τ in place of τ(α, p) when the arguments are clear from the

context.

We identify the impact of attention manipulation conditional on the value of the target

item. To this end, let P vi

α = EP
(vi,v−i)
α , where the expectation is over v−i = (vj)j 6=i according

to the prior distribution p−i. Thus P vi

α describes the evolution of beliefs conditional on the

value vi of item i. The demand for item i, D̃i(vi;α, p) = P vi

α (pτ ∈ F i
no(p)), is the probability

that i is chosen conditional on its value.

The next result states that, in the limit as learning becomes perfectly precise, manip-

ulating attention increases demand for a high-value target item and decreases demand for

a low-value target item. This result holds for the same class of attention strategies as in

Theorem 1.12

Proposition 6. Suppose the attention strategy α is stationary, satisfies IIAi, and is non-

wasteful. Then, in the limit as all of the thresholds pj tend to 0 and pj tend to 1, manipulating

attention toward item i weakly increases its demand when its value is high and weakly de-

creases its demand when its value is low. That is, for each vector p of thresholds, letting αp

be an arbitrary stationary, non-wasteful attention strategy that satisfies IIAi,

lim inf
p→(0,1,...,0,1)

(
D̃i(1; β[αp, i,m], p)− D̃i(1;αp, p)

)
≥ 0, (6)

and lim sup
p→(0,1,...,0,1)

(
D̃i(0; β[αp, i,m], p)− D̃i(0;αp, p)

)
≤ 0. (7)

The proof in the appendix uses the same coupling construction as in the proof of The-

orem 1: the coupling is across learning processes πj that focus exclusively on items j =

1, . . . , I, respectively. Whenever the learning process for the target item i reaches its lower

threshold pi and the learning process for at least one other item j 6= i reaches its upper

threshold pj, no attention strategy leads to item i being chosen. Hence choice is manipula-

ble only if (i) the learning process πi for the target item reaches its upper threshold pi, or

12Proposition 6 does not generally hold outside of the limit. For a counterexample, consider a binary
choice with an attention strategy that focuses on item 2 whenever it is not excluded by the non-wastefulness
condition. Suppose v1 = 0. Then manipulation targeting item 1 increases its demand if there is some chance
that the belief p1 reaches p1 during the manipulation window.
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(ii) the learning processes for all items reach their lower thresholds. As the lower thresh-

olds approach 0 and the upper thresholds approach 1, the probability of event (i) vanishes

when vi = 0 and, likewise, the probability of event (ii) vanishes when vi = 1. Finally, the

manipulation effect is nonnegative in all draws in (i), and nonpositive in all draws in (ii).

The presence of an outside option affects demand in two distinct ways: directly, by

allowing the DM not to choose any item, and indirectly, by affecting the stopping region.

It turns out that the direct channel is irrelevant for the manipulation effect; the difference

between the two settings is driven by the indirect channel.

To disentangle the two effects, consider an alternative model in which there is no outside

option, and the stopping region is that from our main setting. Thus learning stops with the

choice of item i whenever pτ ∈ F i = {p : pi ≥ pi} for some i, and with an equal probability

of choosing any item whenever pτ ∈ F oo = {p : pj ≤ pj for all j}. The demand for item i is

therefore

Di
alt(v;α) = P v

α

(
pτ ∈ F i

)
+

1

I
P v
α (pτ ∈ F oo)

= Di(v;α) +
1

I
P v
α (pτ ∈ F oo) , (8)

where Di(v;α) is the interim demand for item i from our main setting with an outside

option. By Lemma 4 (Outside Option Lemma), the second summand in (8) is independent

of the attention strategy. It follows that

Di
alt(v; β[α, i,m])−Di

alt(v;α) = Di(v; β[α, i,m])−Di(v;α),

and thus, for each v, the manipulation effect in this alternative model is the same as in our

main model with an outside option; the presence of the outside option affects the impact of

manipulation only through the stopping region.13

To quantify the effect of attention manipulation in the forced choice model, consider

a binary forced choice problem with the signal technology from Section 2. We derive the

fastest attention strategy in this problem, which turns out to have a simple structure that

allows us to analytically quantify the manipulation effect and compare it with that of the

corresponding problem with an outside option. Consider threshold beliefs p and p = 1− p—
the same for the two items—such that each can be reached exactly through some sequence of

signals starting from the prior belief. Thus, the belief process for each item takes realizations

in the set {p, p[+], . . . , p[−], p}, which is symmetric around 1/2.

13In Section 6, we extend the model to allow for multiple values. There, we abstract from the presence
of the outside option, and instead assume that the DM wishes to learn the value of the chosen item. The
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Figure 3: A: the fastest attention strategy α∗∗. B: demand D1
no(p1, p2) for item 1 as a

function of p1. The belief p2 is fixed at .7 (solid curve), or .3 (dashed curve), respectively.
The stopping thresholds are p ≈ .99 and p ≈ .01. The depicted manipulation effect e1 is
evaluated for p1 = p2 = .3.

Let α∗∗ be the strategy that focuses on the item about which the DM is more certain;

that is, for j 6= i, let

α∗∗j(p) =


1 if |pj − 1/2| > |pi − 1/2|,

1/2 if |pj − 1/2| = |pi − 1/2|,

0 otherwise.

(9)

The strategy α∗∗ is represented graphically in Figure 3A. Our next result states that α∗∗ is

the fastest attention strategy in this setting. Let τ ea
no(α) denote the time to decision under

the ex ante law P ea
α = EP v

α .

Proposition 7. For any strategy α, τ ea
no(α) weakly first-order stochastically dominates τ ea

no(α∗∗).

To compare the manipulation effect for the fastest strategy in this setting to that in our

main setting with an outside option, we compute the ex ante demandD1
no(p) = P ea

α∗∗ (pτ ∈ F 1
no)

in Appendix A.3 and plot it in Figure 3B as a function of p1. For p1 = p2 = 0.3, the figure

demand defined in Section 6 is thus an extension of that in the alternative model described here.
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shows that manipulation of attention toward item 1 decreases the demand for this item: at

this prior, it is relatively likely that both π1 and π2 reach p before p. In any such draw, the

DM eliminates the first item for which her belief reaches p, and thus manipulating attention

toward an item increases its chance of being eliminated. More generally, when p−i < 1/2,

the ex ante demand Di
no(p) is concave in pi, and thus any manipulation with target item i

decreases its demand. Similarly, when p−i > 1/2, Di
no(p) is convex in pi, and manipulation

increases demand.

While manipulation can either increase or decrease demand for the target item when

the set of items is fixed, it tends only to increase demand as the set of items grows large.

Given any choice set I and prior p, consider the enlarged choice problem obtained by an

n-fold replication yielding choice set In and prior pn (i.e., the prior belief associated with

any replication of item i is the same as for i itself). Since the negative manipulation effect

arises only from draws in which the learning process for every item reaches its lower stopping

threshold, as n grows large, this effect vanishes uniformly across all lengths of the manipu-

lation window. In contrast, the positive manipulation effect arises from draws in which the

learning processes for the target item and at least one other item reach the upper stopping

threshold. Consequently, when n is sufficiently large, manipulation increases demand for the

target item if the manipulation window is long enough.

6 Multiple values

We now extend the model from Section 3 to allow for the values of the items to lie in a

finite set V ⊂ R. Instead of comparing items to an outside option, we assume that the DM

chooses an item i only if the belief pi lies in a fixed set. Our main interpretation is that

the DM wants to be informed about the chosen item, which may be useful for subsequent

decisions in which the optimal action depends on the chosen item’s value; accordingly, she

stops learning only once she is sufficiently certain of this value. For example, one can think

of the previous setup as involving a choice among items followed by a subsequent decision of

whether to trade the chosen item for the outside option. Even in the absence of an outside

option, an investor choosing among projects may not be content merely to learn that one

project is likely to be better than the alternatives if information about the chosen project

will help with other investment decisions.

As before, an attention strategy α(p, t) specifies the probability distribution over the

focus in period t at beliefs p ∈ (∆(V ))I . For pj ∈ ∆(V ), φj(pj, vj) ∈ ∆(∆(V )) describes the

distribution over beliefs about item j after one period of focus on this item starting from

belief pj when the true value is vj. We extend the stopping rule from Section 3 as follows.
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For each item j and value v, there is a nonempty sufficient certainty region Cj(v) ⊂ ∆(V ).

When pj ∈ Cj(v), we say that the DM is sufficiently certain that item j has value v. Let

Cj =
⋃
v∈V C

j(v) denote the set of beliefs at which the DM is sufficiently certain of the

value of item j. Similarly, for each j and v, there exists a nonempty dominated region

Lj(v) ⊂ ∆(V ). When pj ∈ Lj(v), we say that item j is v-dominated, with the interpretation

that the DM is sufficiently certain that the value of item j is at most v. If for some v and i,

pj ∈ Lj(v) and pi ∈ Ci(v), we say that j is dominated.

For any I∗ ⊆ I and any v, define the stopping region to be

F (I∗, v) =
{
p : pj ∈ Cj(v) for all j ∈ I∗ and pj ∈ Lj(v) for all j ∈ I \ I∗

}
.

Thus F (I∗, v) consists of those beliefs at which the DM is sufficiently certain that items

in I∗ have value v and all other items are v-dominated. Let F I
∗

=
⋃
v F (I∗, v); whenever

p ∈ F I∗ , we say that the DM deems items in I∗ optimal. Finally, let F =
⋃
I∗ F

I∗ . The DM

stops learning and makes a choice as soon as pt ∈ F ; accordingly, τ = min{t : pt ∈ F} is the

stopping time for the learning process. (Again, we allow for the possibility that the process

does not stop.) This stopping rule formalizes the assumption that the DM only stops when

she is sufficiently certain of the value of the chosen item (and that it is optimal).

One example of particular interest is that of a Bayesian DM who receives signals that

eventually, with some probability, perfectly reveal the value of the item she focuses on (as

with Poisson learning). The DM may then always choose an optimal item, and stop learning

as soon as she is certain of an optimal choice and of its value. In this case, the sets Ci(v) are

singletons consisting of the belief that attaches probability one to item i having value v, and

the sets Li(v) consist of those beliefs that attach probability one to the event that vi ≤ v.

We impose two restrictions on the attention strategy α:

1. non-wastefulness I : if p /∈ F and pj ∈ Cj, then αj(p, t) = 0; and

2. non-wastefulness II : if p /∈ F , and, for some v, pj ∈ Lj(v) and pj
′ ∈ Cj′(v) for some

j′, then αj(p, t) = 0.

The first of these properties states that the DM does not focus on an item if she is sufficiently

certain of its value. The second states that she does not focus on any item that is dominated.

For example, in the case with perfectly revealing signals described above, these two properties

are satisfied if she always focuses on an item for which the maximum of the support of the

belief is the highest. One such strategy, which also satisfies stationarity and IIA, is when

α(p) selects uniformly from arg maxj v(pj), where v(pj) = max{v ∈ V : pj(v) > 0}.14

14In particular, non-wastefulness I holds because if the DM is certain of an item in arg maxj v(pj) then
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Unlike the setting with binary values, with multiple values, the DM may deem more

than one item optimal at the stopping time. Her choice then depends on a tie-breaking

rule. Accordingly, let σ(j, I∗) be the probability that the DM chooses item j if she deems

the items in I∗ optimal. Assume that (i) σ(j, I∗) = 0 if j /∈ I∗ (optimality), and (ii)

σ(j, I∗) ≥ σ(j,J ∗) if I∗ ⊆ J ∗ (monotonicity). For instance, these two properties hold if the

DM selects uniformly from I∗. The interim demand for item j under attention strategy α is

Dj(v;α) =
∑
I∗

P v
α

(
pτ ∈ F I

∗)
σ(j, I∗).

As before, to compare the stopping times under the baseline and manipulated processes, let

τ j = τ if item j is chosen, and τ j = ∞ otherwise. Given any α and v, τ j has distribution

function

Hj(t;v, α) =
∑

τ ′≤t,v,I∗
P v
α

(
pτ ′ ∈ F I

∗)
σ (j, I∗) .

Let β[α, i,m] = β denote the manipulated strategy constructed from the baseline strategy

α by making the target item i the item of focus in periods t = 0, . . . ,m−1 whenever the DM

is not sufficiently certain about the value of i and i is not dominated; that is, βj(p, t) = 1j=i

if t ≤ m−1, pi 6∈ Ci, and there is no item j and value v such that pj ∈ Cj(v) and pi ∈ Li(v),

and β(p, t) = α(p, t) otherwise. Note that β inherits non-wastefulness I and II from α.

The following result generalizes Theorem 1.

Theorem 2. If an attention strategy α satisfies stationarity, IIAi, and non-wastefulness

properties I and II, then for every v and m ≥ 1,

Di(v; β[α, i,m]) ≥ Di(v;α), (10)

Dj(v; β[α, i,m]) ≤ Dj(v;α) for all j 6= i. (11)

Moreover, τ i(α) first-order stochastically dominates τ i(β[α, i,m]) and τ j(β[α, i,m]) first-

order stochastically dominates τ j(α) for every j 6= i.

7 Discussion

In light of our results, it is natural to ask when the effect of manipulation is largest. In

general, the answer to this question depends on the attention strategy employed by the DM.

We established in subsection 4.1 that, with two items and an outside option, if the DM

uses the fastest strategy, manipulating attention has the greatest impact when the decision

the process stops.
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makers belief about the target item is just below her belief about the other item, and when

she is close to being ready to choose one of the items.

Our model offers a number of testable predictions about attention and choice. First,

attention manipulation increases demand for the target item when an outside option is

available, but can either increase or decrease demand depending on the value of the target

item when there is no outside option. In binary choice problems, this prediction holds for

every baseline attention strategy. Second, when an outside option is available, manipulation

accelerates the choice of the target item (conditional on its being chosen). Third, in binary-

choice problems with an outside option, if strategies minimize learning time, then focus on an

item at any point in the process is positively associated with its choice relative to the other

item. Each of these predictions is amenable to experimental tests using standard methods

to identify focus and to manipulate attention either by boosting the salience of the target

item or by introducing the target item for inspection earlier than the other items.
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A Proofs

A.1 Proofs for Section 3

To accommodate stochastic attention strategies, we introduce the attention process describ-

ing, for each time t, (i) for each belief vector p = (pi,p−i), whether the DM focuses on the

target item i, and (ii) for each p−i, which item she focuses on when she does not focus on i.

The attention process is given by a family of random variables (ap,t)p,t, (bp−i,t)p−i,t where all

draws are independent and independent of the learning process. The random variable ap,t

takes values in {0, 1}; the probability that it takes the value 1 is αi(p). The random variable

bp−i,t takes values in I\{i}. For a fixed value of p−i, if there exists pi such that αi(pi,p−i) 6= 1,

then the probability that bp−i,t takes the value j 6= i is αj (pi,p−i) /(1− αi (pi,p−i)), where
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we note that the particular value of pi in the formula is irrelevant since α satisfies IIAi.15 A

realization of the attention process is called an attention draw. We refer to the pair of the

learning and attention draws simply as a draw.

We now recursively construct, for stochastic attention strategies γ ∈ {α, β}, the processes

(pt(γ), ιt(γ))t as functions of the learning and attention processes. As in the construction

for the pure strategies in subsection 3.1, let the belief pjt(γ) = πjk(j,t;γ) where k(j, t; γ) is the

cumulative focus on item j in periods 0, . . . , t− 1. We proceed to construct the focus ιt(γ).

Suppose that pt /∈ F . Given a sequence of beliefs and focus items (ps(γ), ιs(γ))s<t and any

vector p−i of beliefs about j 6= i, we let µ (p−i, t; γ) be the total number of periods starting

with belief p−i about items j 6= i in which the DM has not focused on the target item i

under the strategy γ before time t; that is,

µ(p−i, t; γ) = |{s < t : p−is (γ) = p−i, ιs(γ) 6= i}|.

Let ιt(γ) = i if apt(γ),t = 1 and ιt(γ) = bp−i
t (γ),µ(p−i

t (γ),t;γ) otherwise. Note a subtlety in

the construction: the element ap,t of the attention draw deciding whether the focus at p is

on the target item i depends on t, while the element bp−i,µ(p−i,t;γ) of the draw deciding the

item of focus conditional on its not being i depends on µ(p−i, t; γ). This asymmetry in the

construction is exploited in the proof of Lemma 2.

By construction, conditional on (p0(γ), ι0(γ), . . . ,pt−1(γ), ιt−1(γ),pt(γ)), ιt(γ) is dis-

tributed according to α(pt(γ)). Conditional on (p0(γ), ι0(γ), . . . ,pt(γ), ιt(γ)), pjt+1(γ) =

pjt(γ) for all j 6= ιt(γ), and p
ιt(γ)
t+1 (γ) is distributed according to the transition probability

φιt(γ)
(
p
ιt(γ)
t (γ), vιt(γ)

)
. Therefore, the law of the process (pt(γ), ιt(γ))t is P v

γ , as needed.

Proof of Lemma 1 (Coupling Lemma). We prove the result by induction. The property

holds for n = 0 since p−it(0) = p̂−i
t̂(0)

= p−i0 . Assume it holds for n. For item j = ιt(n) = ι̂̂t(n),

we have pjt(n+1) = πjk(j,t(n))+1 = πj
k̂(j,̂t(n))+1

= p̂j
t̂(n+1)

. For items j 6= i, ιt(n) that do not receive

attention in periods t(n) and t̂(n), respectively, we have pjt(n+1) = pjt(n) = p̂jt(n) = p̂j
t̂(n+1)

. We

thus have p−it(n+1) = p̂−i
t̂(n+1)

.

It remains to show that the items of attention in period t(n+ 1) of the baseline process

and in period t̂(n+1) of the manipulated process coincide. By the definitions of the attention

processes, we have

ιt(n+1) = b
p−i
t(n+1)

,µ
(
p−i
t(n+1)

,t(n+1)
) = b

p̂−i

t̂(n+1)
,µ
(
p̂−i

t̂(n+1)
,t(n+1)

) = b
p̂−i

t̂(n+1)
,µ̂
(
p̂−i

t̂(n+1)
,̂t(n+1)

) = ι̂̂t(n+1)

since, by the induction hypothesis, µ(p̂−it(n+1), t(n+ 1)) = µ̂(p̂−i
t̂(n+1)

, t̂(n+ 1)).

15The specification of bp−i,t when no such pi exists is immaterial for our purposes.
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The next proof exploits the subtlety in the coupling construction mentioned above. The

subtlety ensures that if the processes meet in period t, they coincide thereafter. The event

that they meet in period t implies that the two processes have visited each vector p−i in the

same number of periods, but it does not ensure that the number of periods they visited each

vector p is the same. To this end, the draw at in the coupling construction does not depend

on the number of periods that p was visited (as it could be different for the two processes),

but rather on t.

Proof of Lemma 2 (Meeting Lemma). Suppose the processes meet in period t, and thus

k(−i, t) = k̂(−i, t). Hence, by the Coupling Lemma,(
p−it(0), ιt(0) . . . ,p

−i
t(k(−i,t)), ιt(k(−i,t))

)
=
(
p̂−i
t̂(0)
, ι̂̂t(0), . . . , p̂

−i
t̂(k̂(−i,t)), ι̂̂t(k̂(−i,t))

)
.

Therefore, for every j ∈ I, k(j, t) = k̂(j, t), so that the cumulative focus on each item before

time t is the same in the two processes, which implies that pt = p̂t. The baseline process

focuses on the target item i at time t if and only if the manipulated process focuses on i

at t, since both processes focus on i at t if apt,t = ap̂t,t = 1. The baseline process focuses

on item j 6= i at time t if and only if the manipulated process focuses on j at t, since the

baseline process focuses on j at t if bp−i
t ,µ(p−i

t ,t) = j, the manipulated process focuses on j in

t if bp̂−i
t ,µ̂(p̂−i

t ,t) = j, and µ(p−it , t) = µ̂(p̂−it , t) by the Coupling Lemma. Thus ιt = ι̂t.

Note that k(i, t+ 1) = k̂(i, t+ 1). Therefore, if the two processes meet in period t ≥ m,

they also meet in period t + 1, and hence in every period s ≥ t. Thus, (pt, ιs) = (p̂t, ι̂s) for

all s ≥ t.

Proof of Lemma 3 (Attention Lemma). The statement obviously holds for every t ≤ m.

Since k̂(i,m) = m ≥ k(i,m), and k̂(i, t) = k(i, t) implies k̂(i, s) = k(i, s) for every s > t, we

have k̂(i, t) ≥ k(i, t) and k̂(−i, t) ≤ k(−i, t) for every t > m. The Coupling Lemma implies

that items j 6= i are explored in the same order under both processes, which in turn implies

that, for every t and every j 6= i, k̂(j, t) ≤ k(j, t), as needed.

Proof of Lemma 4 (Outside Option Lemma). Fix a learning draw such that τ oo(α) is finite;

that is, strategy α leads to the outside option being chosen. For each item i, let κi = min{κ :

πiκ ≤ pi} be the number of steps needed for the learning process πi to reach the threshold

pi. Since α stops with the choice of the outside option once all beliefs reach their respective

lower thresholds, τ oo(α) =
∑

i κ
i, which is independent of α.

Proof of Proposition 2. We construct a bandit problem that is a special case of the model

studied in Tsitsiklis (1994). In the model of Tsitsiklis (1994) (described in the language of
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our model), when the DM selects an item i = ιt with belief pit in period t, she receives a

stochastic flow reward R(pit, i) and the selected item remains active for T i(pit) periods. In

period t+T i(pit), the belief about item i transitions to a new belief pi
t+T i(pit)

= ψi(pit) according

to some stochastic function ψi, while the beliefs for all other items remain unchanged (that

is, pj
t+T i(pit)

= pjt for all j 6= i). Finally, the DM selects a new item ιt+T i(pit)
in period t+T i(pit).

Let tk denote the random sequence of periods in which the DM selects items: thus, t0 = 0

and tk+1 = tk + T (p
ιtk
tk

) for each k ≥ 0. The DM maximizes

Γ(α) = E
∞∑
k=0

δtkR
(
p
ιtk
tk
, ιtk
)
. (12)

Let φ̃i
(
pit+1 | pit

)
denote the ex ante Markov transition probabilities of the DM’s belief

about item i when she focuses on i in period t, and define the stochastic transition function

ψ by Pr (ψ(pit) = p) = φ̃i (p | pit) for each p. Fix the reward function to be

R (p, i) =


−c (p, i) if pi < ψi(p) < pi,

−c (p, i) + ψi(p) if ψi(p) ≥ pi,

−c otherwise,

where c is a uniform upper bound on c (pιtt , ιt). If item i is selected in period tk, we set the

activity length T i(pitk) to be 1 if pitk+1
< pi and ∞ otherwise.16

This problem differs from the original problem in that the flow cost from focusing on

item i in period t depends only on pit and is independent of pjt for j 6= i. The flow payoffs

in the original problem are interdependent in that whether the DM stops upon reaching

pit ≤ p depends on whether pjt ≤ p for all other items j 6= i. This difference allows us to

apply Tsitsiklis’s result from the theory of multi-armed bandits (see also Weber (1992)): an

optimal solution to the bandit problem (12) is a Gittins index strategy where the index for

an item depends only on the current belief. In particular, when ties for the highest Gittins

index are broken by uniform randomization, this describes an optimal strategy that satisfies

IIA and stationarity.

It remains to connect the bandit problem (12) to the original problem (2). Note that

any solution to the bandit problem (i) chooses an item i forever once pit ≥ pi, and (ii) always

chooses an item i such that pit > p if such an item exists.

Note that Γ(α) = V (α) − cE
∑∞

t=1 1t≥τoo(α), where the expectation is with respect to

τ oo(α). By the Outside Option Lemma, τ oo(α) is identical for all α satisfying (i) and (ii).

16This correlation among the active-period length, reward, and belief transition complies with Tsitsiklis’s
setting, as he allows for arbitrary correlations among these random variables.
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Therefore, there exists a constant Kδ such that

Γ(α) = C(α) +Kδ. (13)

Thus, a non-wasteful strategy α solves the auxiliary bandit problem if and only if it solves

the original problem, as needed.

A.2 Proofs for Section 4

Proof of Proposition 3. This proof makes use of coupling. We again construct a common

probability space on which we can compare the processes of beliefs pt(α) and pt(α
∗), where,

by construction, the beliefs under strategy α follow the law P ea
α while those under α∗ follow

P ea
α∗ . However, the particular construction differs from that in the proof of Theorem 1.

Let Π = {p[+], p[+][+], . . . , p[−][−], p[−]}, which is the set of transient beliefs that the

DM may attain for either item. For each π ∈ Π and κ = 0, 1, . . ., let `(π, κ) be an i.i.d. ran-

dom variable that attains values π[+] and π[−] with probabilities π−π[−]
π[+]−π[−]

and π[+]−π
π[+]−π[−]

,

respectively. An updating draw is a collection (`(π, κ))π,κ of realizations of `(π, κ), one for

each pair (π, κ) ∈ Π× N.

We interpret `(π, κ) as the updated belief of a DM who learns for one period about an

item i starting at the belief pi = π where κ is a counter indicating the total number of times

the DM has focused on an item with associated belief π. We now construct, for each fixed

updating draw and any attention strategy γ, the process of beliefs pt(γ). In this construction,

we use an auxiliary counter kt(γ) that takes values in N|Π|. Define the joint process of pt(γ)

and kt(γ) as follows. Let kπ0 (γ) = 0 for all π and p0(γ) = p0. In each period t, the focus of

attention ιt in t is chosen according to the attention strategy γ(pt, t). Recursively define

kπt+1(γ) =

kπt (γ) + 1 if π = pιtt ,

kπt (γ) otherwise

and

pjt+1(γ) =

`
(
π, k

pjt (γ)
t (γ)

)
if j = ιt,

pjt(γ) otherwise.

By construction, for each strategy γ, the beliefs pt(γ) follow the law P ea
γ .

For each transient belief π ∈ Π, we introduce the belief process at(π) that would result

from learning about a single item starting from the prior belief π, making use of a counter

hπ̃t . Formally, let a0(π) = π, hπ̃0 = 0 for all π̃ ∈ Π, and recursively define at+1(π) =
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`
(
at(π), h

at(π)
t

)
, and, for each π̃ ∈ Π,

hπ̃t+1 =

hπ̃t + 1 if π̃ = at(π),

hπ̃t otherwise.

For each strategy γ, let Mt(γ) = maxi=1,2 p
i
t(γ), M t(γ) = maxs=0,...,tMs(γ), and M t(γ) =

mins=0,...,tMs(γ). The strategy γ stops by period t, i.e., τ ea(γ) ≤ t, if

p = M t(γ) or M t(γ) = p.

We will prove that, for every prior, in each updating draw, if a strategy α stops by

t, then the strategy α∗ also stops by t. We proceed by induction on t. To see that the

statement holds for t = 1, note that if p1
0 6= p2

0, then M0(α) = M0(α∗) = max{p1
0, p

2
0} and

M1(α∗) = a1 (max{p1
0, p

2
0}) while M1(α) equals a1 (max{p1

0, p
2
0}) or max{p1

0, p
2
0}. (The latter

case arises when α focuses on the item with the lower belief in period 0.) Thus

M1(α∗) ≤M1(α) ≤M1(α) ≤M1(α∗),

as needed.

Suppose the statement holds for t − 1. If a strategy α stops by period t then, since

the induction hypothesis applies regardless of the prior, the strategy α̃ stops by t, where

α̃(p, 0) = α(p, 0) and α̃(p, t) = α∗(p) for t > 0. Therefore, to close the induction step,

it suffices to prove that if α̃ stops by t then α∗ stops by t. This is immediate if p1
0 = p2

0.

Accordingly, suppose that p1
0 6= p2

0 and, without loss of generality, take p1
0 < p2

0. If α̃ focuses

on item 2 in period 0, then the belief processes are the same under α̃ and α∗. Thus it suffices

to show that if β = β[α∗, 1, 1] stops by t then α∗ stops by t.17

To prove the last implication, we distinguish two sets of updating draws. The first set

consists of those for which as(p
2
0) > p1

0 in every period s = 0, 1, . . . , t− 1. For any (ordered)

belief pair p = (p1, p2), write 〈p〉 for the unordered pair {p1, p2}. (By considering the

unordered pairs of beliefs we eliminate the need to keep track of which item has the higher

belief and which is randomly chosen at a tie.) For each updating draw in this first set, for

each s = 1, 2, . . . , t,

〈ps(α∗)〉 =
{
p1

0, as
(
p2

0

)}
and Ms(α

∗) = as
(
p2

0

)
,

17Recall that β[α∗, 1, 1] is the strategy constructed from α∗ by making item 1 the item of focus at t = 0
and following α∗ for every t > 0.
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and

〈ps(β)〉 =
{
a1

(
p1

0

)
, as−1

(
p2

0

)}
and Ms(β) = as−1

(
p2

0

)
since as(p

2
0) > p1

0 and as(p
2
0) ≥ a1(p1

0) for all s = 1, 2, . . . , t − 1. Therefore, α∗ updates

the belief as(p
2
0) in all periods s = 0, . . . , t, and β updates the belief as−1(p2

0) in all periods

s = 1, . . . , t. Thus, for each updating draw in this first set,

M t(α
∗) ≤M t(β) ≤M t(β) ≤M t(α

∗),

and the induction step holds.

The second set of updating draws consists of those for which there exists a period s ∈
{1, 2, . . . , t − 1} in which as(p

2
0) = p1

0. (Note that the second set is complementary to the

first set.) Let s∗ be the minimal such period. For each draw in this second set, we have

〈ps∗+1(α∗)〉 =
{
p1

0, a1(p1
0)
}

since 〈ps∗(α∗)〉 = {p1
0, p

1
0} and the belief p1

0 is updated once by s∗. We also have

〈ps∗+1(β)〉 =
{
a1(p1

0), as∗(p
2
0)
}

since the belief p1
0 is updated once in period 0 and in each period s = 1, . . . , s∗, 〈ps(β)〉 =

{a1(p1
0), as−1(p2

0)} and as−1(p2
0) ≥ a1(p1

0). Thus the strategy β updates the belief as−1(p2
0) in

all periods s = 1, . . . , s∗. Since as∗(p
2
0) = p1

0, we have

〈ps∗+1(β)〉 =
{
a1(p1

0), p1
0

}
= 〈ps∗+1(α∗)〉 .

Therefore, in each updating draw from the second set, 〈ps(α∗)〉 = 〈ps(β)〉 for all s ≥ s∗ + 1.

In particular, α∗ and β stop in the same period, concluding the proof of the induction

step.

Proof of Proposition 4. Without loss of generality, we prove the statements for i = 1. We

claim that

D1
ea(p) =


p−p1

2(p−p2)

(
1− (p−p2)2

(p−p)
2

)
+ p1−p2

p−p2 if p1 ≥ p2,

p−p2
2(p−p1)

(
1− (p−p1)2

(p−p)2

)
if p1 ≤ p2.

(14)

If p1
0 = p2

0 = p, then α∗ stops with beliefs (p1
τ , p

2
τ ) = (p, p)—in which case the outside option

is chosen—with probability
(
p−p
p−p

)2

. By symmetry, conditional on not choosing the outside
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option, the DM chooses item 1 with probability 1/2. Thus

D1
ea(p, p) =

1

2

(
1−

(
p− p
p− p

)2
)
.

Now consider prior beliefs such that p1
0 > p2

0. The strategy α∗ initially focuses on item 1

until p1
t = p or p1

t = p2
0. In the former case, which occurs with probability

p10−p20
p−p20

, the DM

chooses item 1. In the latter case, which occurs with probability
p−p10
p−p20

, the DM chooses item

1 with probability D1
ea(p2

0, p
2
0). Therefore, for p1 > p2,

D1
ea(p1, p2) =

p1 − p2

p− p2
+
p− p1

p− p2
D1

ea(p2, p2),

in agreement with (14). Finally, consider prior beliefs such that p1
0 < p2

0. The strategy α∗

initially focuses on item 2 until p2
t = p or p2

t = p1
0. In the former case, the DM chooses

item 2. In the latter case, which occurs with probability
p−p20
p−p10

, the DM chooses item 1 with

probability D1
ea(p1

0, p
1
0). Thus, for p1 < p2 we have

D1
ea(p1, p2) =

p− p2

p− p1
D1

ea(p1, p1),

as needed.

Statement 1 of the proposition follows from the fact that D1
ea(p1, p2) is convex in p1 and

strictly convex in p1 for [p, p2].

Substituting (14) into the definition of ei(p) gives, for p1 < p2,

e1(p; p) =
(1− 2λ)2(1− p1)2(p1)2(p− p2)

(p− p1)(pp1 − p+ λp1 − pλ(2p1 − 1))(p1 − pp1 − λp1 + pλ(2p1 − 1))
. (15)

Statement 4 of the proposition follows immediately from this expression. Statements 2

and 3 follow from the monotonicity of the right-hand side of (15) with respect to p2 and p1,

respectively. Monotonicity with respect to p2 is straightforward. For p1, one may verify that
∂2

∂p1∂p
ln e1(p; p) < 0 for 0 < p1 < p < 1. Thus, it suffices to show that ln e1(p; p) for p = 1

increases in p1. At p = 1, (15) simplifies to

e1(p; 1) =
(2λ− 1)2(p1)2(1− p2)

(1− λ)λ(1− p1)
,

which is indeed increasing in p1.

Proof of Proposition 5. It suffices to prove the statement for all deterministic deadlines T ,
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for which we proceed by induction on T . The statement holds vacuously for T = 0. Assume

for induction that it holds for T − 1. Without loss of generality, consider a prior such that

p1
0 < p2

0. Since the induction hypothesis applies regardless of the prior, it suffices to prove

that the strategy α∗ achieves at least as high a payoff as does β = β[α∗, 1, 1], recalling that

β(p, 0) = 1 and β(p, t) = α∗(p) for t > 0.

Consider the same coupling construction and the same two sets of updating draws as in

the proof of Proposition 3. The first set consists of draws for which as(p
2
0) > p1

0 in every

period s = 0, 1, . . . , T , where as(p
2
0) is the belief about item 2 resulting from updating the

belief about item 2 in all periods up to s. The payoff achieved by β in this set of draws

is E max {z, aT−1(p2
0)}, where the expectation is with respect to aT−1(p2

0). The strategy α∗

achieves a payoff E max {z, aT (p2
0)} that is at least as large since max {z, p2} is convex in p2.

The second set of updating draws (complementary to the first set) consists of those for

which there exists a period s ∈ {1, 2, . . . , T} in which as(p
2
0) = p1

0. Let s∗ be the minimal

such period. The same argument as in the proof of Proposition 3 implies that the belief

ps∗+1(β) formed in period s∗+ 1 under strategy β is identical to the belief ps∗+1(α∗) formed

in period s∗ + 1 under α∗. Hence, the two strategies achieve the same payoff in each draw

from this set.

Proof of Proposition 6. We use the same coupling construction as in the proof of Theorem 1,

again denoting by pt and p̂t the belief sequences generated by strategies α and β = β[α, i,m],

respectively. Similarly, we denote variables generated with strategy α by τ , k(i, t), etc., and

variables generated by β by τ̂ , k̂(i, t), etc.

For each item i and learning process πi, we say that πi reaches pi if there exists κi

such that πiκi ≥ pi and pi < πiκ for all κ < κi. Similarly, we say that πi reaches pi if

there exists κi, such that πiκi ≤ pi and πiκ < pi for all κ < κi. Let r be any element of

{p1, p1}×{p2, p2}× · · ·×{pI , pI} and let ri ∈ {pi, pi} denote its ith component. That is, r is

a vector that specifies for each item i an upper or lower threshold ri. We define for each r a

set Π(r) consisting of those learning draws π = (π1, . . . , πI) for which the process πi reaches

the threshold ri for each i. Note that the sets Π(r) are disjoint and their union over all r

has probability 1.

We distinguish three sets of vectors r. The first set, R1, consists of all r such that ri = pi

for the target item i, and there exists j 6= i for which rj = pj. Consider r ∈ R1 and any draw

π ∈ Π(r). Regardless of her attention strategy, the DM does not choose the target item i in

π (and instead chooses some j for which rj = pj).

The second set, R2, consists of all r such that ri = pi for the target item i. Consider

r ∈ R2 and any draw π ∈ Π(r). We claim that if α leads to the choice of the target item i in

draw π, then so does β. The claim is immediate if πj reaches pj for each j 6= i; accordingly,

39



suppose that πj reaches pj for some j 6= i. If, under α, the DM chooses i in period τ ,

then piτ ≥ pi (since it is not the case that the belief for each other item reaches its lower

threshold). Assume for contradiction that, under β, the DM chooses j 6= i in some period

τ̂ ≤ τ , and hence p̂jτ̂ ≥ pj. By the Attention Lemma, k(j, τ̂) ≥ k̂(j, τ̂) and thus pjτ ′ ≥ pj for

some τ ′ ≤ τ̂ ≤ τ . Therefore, α leads to the choice of j 6= i in period τ ′ ≤ τ , contradicting

that α leads to the choice of i in period τ . Again by the Attention Lemma, k(i, τ) ≤ k̂(i, τ),

hence p̂iτ ≥ pi, and β leads to the choice of i in period τ or earlier.

The third set, R3, is the singleton {(p
1
, . . . , p

I
)}. Consider r = (p

1
, . . . , p

I
) and a draw

π ∈ Π(r). We claim that if β leads to the choice of the target item i in draw π, then so

does α. If, under β, the DM chooses i in period τ̂ , then p̂jτ̂ ≤ pj for all j 6= i. Assume

for contradiction that, under α, the DM chooses j∗ 6= i in some period τ ≤ τ̂ , and hence

pjτ ≤ pj for all j 6= j∗. By the Attention Lemma, k(i, τ) ≤ k̂(i, τ) and thus p̂iτ̂ ′ ≤ pi for some

τ̂ ′ ≤ τ ≤ τ̂ . Non-wastefulness of β together with the Coupling Lemma imply that pτ = p̂τ ,

and thus β leads to the choice of j∗ in period τ ≤ τ̂ , contradicting that β leads to the choice

of i in period τ̂ . Again by the Attention Lemma, k(i, τ̂) ≤ k̂(i, τ̂), which, together with the

Coupling Lemma, implies that pjτ̂ ≤ pj for all j 6= i and hence α leads to the choice of i in

period τ̂ or earlier.

Observe that, as p→ (0, 1, . . . , 0, 1),

Pr
(
Π
(
p1, . . . , pI

)
| vi = 1; p

)
≤ pi − pi

pi − pi
pi

pi
→ 0

and Pr

( ⋃
r∈R2

Π (r) | vi = 0; p

)
≤
pi − pi

pi − pi
1− pi

1− pi
→ 0

Therefore, the sign of lim infp→(0,1,...,0,1)(D̃
i(1; β, p)− D̃i(1;α, p)) is the same as that of

Pr

(
p̂τ̂ ∈ F i

no(p) |
⋃
r∈R2

Π (r) , vi = 1

)
− Pr

(
pτ ∈ F i

no(p) |
⋃
r∈R2

Π (r) , vi = 1

)
.

Result (6) holds since for any draw in Π (r) with r ∈ R2, pτ ∈ F i
no(p) implies p̂τ̂ ∈ F i

no(p).

Similarly, the sign of lim supp→(0,1,...,0,1)(D̃
i(0; β, p)− D̃i(0;α, p)) is the same as that of

Pr
(
p̂τ̂ ∈ F i

no(p) | Π
(
p1, . . . , p2

)
, vi = 0

)
− Pr

(
pτ ∈ F i

no(p) | Π
(
p1, . . . , p2

)
, vi = 0

)
.

Result (7) holds since for any draw in Π
(
p1, . . . , p2

)
, p̂τ̂ ∈ F i

no(p) implies pτ ∈ F i
no(p).

Proof of Proposition 7. The proof is similar to that of Proposition 3. The coupling construc-
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tion exploits the symmetry with respect to belief 1/2 as follows. Let

Π = {p[+], p[+][+], . . . , p[−][−], p[−]} ∩ [1/2, 1)

and

Π = {p[+], p[+][+], . . . , p[−][−], p[−]} ∩ (0, 1/2).

An updating draw is a collection (`(π, κ))(π,κ)∈Π×N, where `(π, κ) is an i.i.d. random variable

that attains values π[+] and π[−] with probabilities π−π[−]
π[+]−π[−]

and π[+]−π
π[+]−π[−]

, respectively.

For any attention strategy γ, we construct the process of beliefs pt(γ) in each updating

draw as follows. Let kπ0 (γ) = 0 for all π ∈ Π and p0(γ) = p0. In each period t, the focus

of attention ιt in t is chosen according to γ(pt, t). We distinguish two cases: pιt ≥ 1/2 and

pιt < 1/2. If pιtt ≥ 1/2, then

kπt+1(γ) =

kπt (γ) + 1 if π = pιtt ,

kπt (γ) if π ∈ Π \ {pιtt },

and

pjt+1(γ) =

`
(
pjt(γ), k

pjt (γ)
t (γ)

)
if j = ιt,

pjt(γ) otherwise.

If pιtt < 1/2, then

kπt+1(γ) =

kπt (γ) + 1 if π = 1− pιtt ,

kπt (γ) if π ∈ Π \ {1− pιtt },

and

pjt+1(γ) =

1− `
(

1− pjt(γ), k
1−pjt (γ)
t (γ)

)
if j = ιt,

pjt(γ) otherwise.

By construction, for each strategy γ, the beliefs pt(γ) follow the law P ea
γ .

We again define a belief process that would result from learning about a single item. For

any belief π ∈ Π ∪ Π, let π̂ = max{π, 1 − π}. Define the belief process at(π) as follows:

a0(π) = π̂ and hπ̃0 = 0 for all π̃ ∈ Π, and for t > 0, recursively define

at+1(π) = max
{
`
(
at(π), h

at(π)
t

)
, 1− `

(
at(π), h

at(π)
t

)}

41



and, for each π̃ ∈ Π,

hπ̃t+1 =

hπ̃t + 1 if π̃ = at(π),

hπ̃t otherwise.

For any attention strategy γ, let Mt(γ) = maxi=1,2 p̂
i
t(γ) and M t(γ) = maxs=0,...,tMs(γ).

The strategy γ stops by period t, i.e., τ ea
no(γ) ≤ t, if M t(γ) = p. We will prove by induction

on t that, for every prior, in each updating draw, if a strategy α stops by t, then the strategy

α∗∗ also stops by t.

To see that the statement holds for t = 1, note that if p1
0 6= p2

0, then M0(α) = M0(α∗∗) =

max {p̂1
0, p̂

2
0} andM1(α∗∗) = a1 (max {p̂1

0, p̂
2
0}) whileM1(α) equals a1 (max {p̂1

0, p̂
2
0}) or max {p̂1

0, p̂
2
0}.

(The latter case arises when α focuses on the less certain item in period 0.) Thus

M1(α) ≤M1(α∗∗),

as needed.

Suppose the statement holds for t−1. If α stops by t then, since the induction hypothesis

holds for every prior, strategy α̃ also stops by t, where α̃(p, 0) = α(p, 0) and α̃(p, t) = α∗∗(p)

for t > 0. Therefore, to close the induction step, it suffices to prove that if α̃ stops by t then

α∗∗ stops by t. This is immediate if p̂1
0 = p̂2

0 since then the two belief processes coincide.

Accordingly, suppose that p1
0 6= p2

0 and, without loss of generality, take p̂1
0 < p̂2

0. If α̃ focuses

on item 2 in period 0 then the belief processes coincide under α̃ and α∗∗. Thus it suffices to

show that if β = β[α∗∗, 1, 1] stops by t then α∗∗ stops by t.

To prove the last implication, we distinguish two sets of updating draws. The first set

consists of those for which as(p̂
2
0) > p̂1

0 in every period s = 0, 1, . . . , t − 1. For each draw in

this first set and each s = 1, 2, . . . , t,

{
p̂1
s(α
∗∗), p̂2

s(α
∗∗)
}

=
{
p̂1

0, as
(
p2

0

)}
and Ms(α

∗∗) = as
(
p2

0

)
,

and {
p̂1
s(β), p̂2

s(β)
}

=
{
a1

(
p1

0

)
, as−1

(
p2

0

)}
and Ms(β) = as−1

(
p2

0

)
since as(p

2
0) > p̂1

0 and as(p
2
0) ≥ a1(p1

0) for all s = 1, 2, . . . , t−1. Therefore, α∗∗ updates as(p
2
0)

in all periods s = 0, . . . , t, and β updates as−1(p2
0) in all periods s = 1, . . . , t. Thus, for each

updating draw in this first set,

M t(β) ≤M t(α
∗∗),

and the induction step holds.

The second set of updating draws consists of those for which there exists a period s ∈
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{1, 2, . . . , t − 1} in which as(p
2
0) = p̂1

0. (Note that the second set is complementary to the

first.) Let s∗ be the minimal such period and observe that

{
p̂1
s∗+1(α∗∗), p̂2

s∗+1(α∗∗)
}

=
{
p̂1

0, a1(p̂1
0)
}

since {p̂1
s∗(α

∗∗), p̂2
s∗(α

∗∗)} = {p̂1
0, p̂

1
0} and the belief with value p̂1

0 or 1 − p̂1
0 is updated once

by s∗. Also, {
p̂1
s∗+1(β), p̂2

s∗+1(β)
}

=
{
a1(p1

0), as∗(p
2
0)
}

since the belief p1
0 is updated once in period 0 and, for each period s = 1, . . . , s∗, {p̂1

s(β), p̂2
s(β)} =

{a1(p1
0), as−1(p2

0)} and as−1(p2
0) ≥ a1(p1

0). Since as∗(p
2
0) = p̂1

0, we have

{
p̂1
s∗+1(β), p̂2

s∗+1(β)
}

=
{
a1(p1

0), p̂1
0

}
=
{
p̂1
s∗+1(α∗∗), p̂2

s∗+1(α∗∗)
}
.

Therefore, in each updating draw from the second set, {p̂1
s(β), p̂2

s(β)} = {p̂1
s(α
∗∗), p̂2

s(α
∗∗)}

for all s ≥ s∗ + 1. In particular, α∗∗ and β stop in the same period, concluding the proof of

the induction step.

A.3 Computation of the ex ante demand from Section 5

We characterize Di
no for i = 1; the case of i = 2 is symmetric. By symmetry of α∗∗,

D1
no(p1, p2;α∗∗) = D2

no(p2, p1;α∗∗) = 1 − D1
no(p2, p1;α∗∗), and thus it suffices to compute

D1
no(p1, p2;α∗∗) for p1 ≥ p2 only. Demand D1

no for this set of beliefs is characterized in

(16)—(19) below.

Consider beliefs on the two main diagonals. First, symmetry implies that D1
no(p, p;α∗∗) =

1/2 whenever p < p < p. Second, consider prior beliefs of the form (p1
0, p

2
0) = (p, 1 − p),

where 1/2 < p < p. Starting from such a prior, if the strategy α∗∗ never leads to beliefs

(1/2, 1/2), then it stops either with p2
τ = p or with p1

τ = p; in either case, the DM chooses

item 1. If α∗∗ does lead to beliefs (1/2, 1/2), then the DM chooses item 1 with probability

1/2. Therefore, if 1/2 < p < p, D1
no(p, 1 − p;α∗∗) = 1 − x + x/2 where x is the probability

that the DM’s beliefs reach (1/2, 1/2).

The value of x may be computed as follows. Consider the event that π1
κ stops at p and

π2
κ stops at p. The ex ante probability of this event is

p− p
p− p

1− p− p
p− p

=

(
p− p
p− p

)2

,

where the equality follows from p = 1−p. Since this event can occur only if the DM’s beliefs
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reach (1/2, 1/2), in which case it occurs with probability 1/4, we have(
p− p
p− p

)2

=
x

4

and

D1
no(p, 1− p;α∗∗) = 1− 2

(
p− p
p− p

)2

whenever 1/2 < p < p.

Now consider beliefs in the set {p : p1 ≥ p2}. We partition this set into four disjoint

subsets:

1. For {p : p1 ∈ (p, 1/2], p2 ∈ (p, p1]}, α∗∗ initially focuses on item 2 until p2
t reaches p or

p1. Thus, for p in this subset,

D1
no(p;α∗∗) =

p1 − p2

p1 − p
+
p2 − p
p1 − p

D1
no(p1, p1;α∗∗). (16)

2. For {p : p1 ∈ (1/2, p], p2 ∈ (p, 1− p1]}, α∗∗ initially focuses on item 2 until p2
t reaches

p or 1− p1. Thus, for p in this subset,

D1
no(p;α∗∗) =

1− p1 − p2

1− p1 − p
+

p2 − p
1− p1 − p

D1
no(p1, 1− p1;α∗∗). (17)

3. For {p : p1 ∈ (1/2, p], p2 ∈ (1−p1, 1/2]}, α∗∗ initially focuses on item 1 until p1
t reaches

1− p2 or p. Thus, for p in this subset,

D1
no(p;α∗∗) =

p1 − 1 + p2

p− 1 + p2
+

p− p1

p− 1 + p2
D1

no(1− p2, p2;α∗∗). (18)

4. For {p : p1 ∈ (1/2, p], p2 ∈ (1/2, p1]}, α∗∗ initially focuses on item 1 until p1
t reaches p2

or p. Thus, for p in this subset,

D1
no(p;α∗∗) =

p1 − p2

p− p2
+
p− p1

p− p2
D1

no(p2, p2;α∗∗). (19)

A.4 Proof of Theorem 2

As in the proof of Theorem 1, for any variable η in the baseline process, let η̂ denote its

counterpart in the manipulated process. We construct the probability space and the baseline
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and manipulated processes (pt, ιt)t as in the proof of Theorem 1. Note that Lemmata 1, 2,

and 3 extend verbatim to the current setting.

Given any draw, let I∗ denote the set of items deemed optimal in the baseline process

and Î∗ the corresponding set in the manipulated process.

Lemma 6 (Choice Lemma for Multiple Values). Let i be the target item. For any draw,

1. if i ∈ I∗, then (i) i ∈ Î∗, (ii) Î∗ ⊆ I∗, and (iii) τ̂ ≤ τ .

2. for any j 6= i, if j ∈ Î∗, (i) j ∈ I∗, (ii) I∗ ⊆ Î∗, and (iii) τ ≤ τ̂ .

Proof. Statement 1 : Consider any draw in which the baseline process deems the target item

i optimal (i.e., i ∈ I∗) with stopping time τ . First suppose τ̂ ≥ τ . By the attention lemma,

k̂(i, τ) ≥ k(i, τ). Since α deems i optimal and stops at τ , the DM is sufficiently certain of

i’s value at τ . Hence, by non-wastefulness I, k̂(i, τ) = k(i, τ), and the two processes meet at

τ . Thus Î∗ = I∗, τ̂ = τ , and (i–iii) hold.

Now consider any draw in which τ̂ < τ . We first show that, under the manipulated

process, the DM does not deem any item j 6= i optimal. Suppose for contradiction that

j ∈ Î∗. Then there exists v such that p̂jτ̂ ∈ Cj(v) and for all j′ 6= j, we have p̂j
′

τ̂ ∈ Cj′(v) or

p̂j
′

τ̂ ∈ Lj
′
(v). By the Attention Lemma, k(j′′, τ̂) ≥ k̂(j′′, τ̂) for all j′′ 6= i. By the Coupling

Lemma, there exists a period t ≤ τ̂ such p−it = p̂−iτ̂ and k(−i, t) = k̂(−i, τ̂). Non-wastefulness

I and II imply that the baseline strategy does not focus on items j′′ 6= i in periods s > t,

and thus k(−i, τ̂) = k(−i, t) = k̂(−i, τ̂). Therefore, the baseline and manipulated processes

meet at τ̂ . By the Meeting Lemma, pτ̂ = p̂τ̂ , which implies that τ ≤ τ̂ , contradicting the

assumption that τ̂ < τ . Therefore, if the manipulated process stops at τ̂ < τ , then Î∗ = {i}
and properties (i–iii) again hold.

Statement 2 : Consider any draw in which the manipulated process deems an item j 6= i

optimal (i.e., j ∈ Î∗) with stopping time τ̂ . First suppose τ ≥ τ̂ . By the Attention Lemma,

k(−i, τ̂) ≥ k̂(−i, τ̂). By the Coupling Lemma, there exists t ≤ τ̂ such that k(−i, t) = k̂(−i, τ̂)

and p−it = p−iτ̂ . Since, under the manipulated strategy, the process stops at τ̂ and the DM

deems j optimal, it must be that for some v, pjτ̂ ∈ Cj(v) and for each j′ 6= j, pj
′

τ̂ ∈ Cj′ or

pj
′

τ̂ ∈ Lj
′
(v). Thus, by non-wastefulness I and II, the baseline strategy focuses only on item i

in each period s ≥ t, and hence k(−i, τ̂) = k(−i, t) = k̂(−i, τ̂). Therefore, the two processes

meet at τ̂ , Î∗ = I∗, τ̂ = τ , and (i–iii) hold.

Now consider any draw in which τ < τ̂ . We first show that, under the baseline process,

the DM does not deem item i optimal. Suppose for contradiction that i ∈ I∗. Then,

under the baseline process, in period τ the DM is sufficiently certain of the value of i. By

the Attention Lemma, k̂(i, τ) ≥ k(i, τ). Non-wastefulness I implies that k̂(i, τ) = k(i, τ).
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Therefore, the two processes meet at τ . By the Meeting Lemma, pτ = p̂τ , which implies

that τ̂ ≤ τ , contradicting the assumption that τ < τ̂ . Therefore, if the baseline process stops

at τ < τ̂ , then i /∈ I∗.
Next, observe that k(−i, τ) = k̂(−i, τ̂). Otherwise, one of the two processes γ ∈ {α, β}

focuses on items other than i in fewer periods by τ(γ) than the other process γ′ does by τ(γ′);

that is, k(−i, τ(γ′), γ′) > k(−i, τ(γ), γ). By the Coupling Lemma, there exists a period t such

that the process γ′ does not stop by t, k(−i, t; γ′) = k(−i, τ(γ); γ) and p−it (γ′) = p−iτ(γ)(γ).

Since γ stops at τ(γ) and the DM deems j 6= i optimal, it must be that, for some v,

pjτ(γ) ∈ Cj(v) and for each item j′ 6= i, either pj
′

τ(γ) ∈ Cj′ or pj
′

τ(γ) ∈ Lj
′
(v). Therefore,

non-wastefulness I and II imply that the strategy γ′ focuses only on item i in each period

s > t. Hence k(−i, τ(γ′), γ′) = k(−i, t; γ′) = k̂(−i, τ(γ), γ).

Therefore, p−iτ = p̂−iτ̂ . Since i is not the unique optimal item under either process, there

exists some v and a nonempty set I−i,∗ ⊆ I\{i} such that pjτ = p̂jτ̂ ∈ Cj(v) for each j ∈ I−i,∗,
and pjτ = p̂jτ̂ ∈ Lj(v) for each j 6= i such that j /∈ I−i,∗. Since the DM does not deem i

optimal under the baseline process, piτ ∈ Li(v) and I∗ = I−i,∗. The DM may deem i optimal

under the manipulated process, and hence either Î∗ = I−i,∗ or Î∗ = I−i,∗ ∪ {i}. Therefore,

either Î∗ = I∗ or Î∗ = I∗ ∪ {i}, and properties (i-iii) hold.

For (10) and (11), observe that optimality and monotonicity of σ and statements 1 and

2 of Lemma 6 imply, respectively, that σ(i, Î∗) ≥ σ(i, I∗) and σ(j, Î∗) ≤ σ(j, I∗) in each

draw. For the statements about first-order stochastic dominance, let hj(t) = 1τ≤tσ(j, I∗)
and ĥj(t) = 1τ̂≤tσ(j, Î∗). Statement 1 of Lemma 6 implies that hi(t) ≤ ĥi(t) for the target

item i and any period t. Statement 2 of the lemma implies that hj(t) ≥ ĥj(t) for all items

j 6= i and any period t. Taking expectations across draws yields the result.
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