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Abstract

We establish the existence of Walrasian equilibrium for economies with many discrete

goods and possibly one divisible good. Our goal is not only to study Walrasian equilibria

in new settings but also to facilitate the use of market mechanisms in resource alloca-

tion problems such as school choice or course selection. We consider all economies with

quasilinear gross substitutes preferences. We allow agents to have limited quantities of

the divisible good (limited transfers economies). We also consider economies without a

divisible good (nontransferable utility economies). We show the existence and efficiency

of Walrasian equilibrium in limited transfers economies and the existence and efficiency

of strong (Walrasian) equilibrium in nontransferable utility economies. Finally, we show

that various constraints on minimum and maximum levels of consumption and aggregate

constraints of the kind that are relevant for school choice or course selection problems can

be accommodated by either incorporating these constraints into individual preferences or

by incorporating a suitable production technology into nontransferable utility economies.

† This research was supported by grants from the National Science Foundation.



1. Introduction

In this paper, we establish the existence of Walrasian equilibrium in economies with

many discrete goods and either with a limited quantity of one divisible good or without

any divisible goods. Our goal is not only to study Walrasian equilibria in new settings

but also to facilitate the use of market mechanisms in resource allocation problems such

as school choice or course selection. To this end, we develop techniques for analyzing

allocation problems in economies with or without transfers and for incorporating additional

constraints into allocation rules. In particular, we show that individual distributional

requirements (for example, a rule stating that every BA student must take at least 2

science courses, 2 humanities courses and one 1 social science course for credit) can be

incorporated into preferences in a manner consistent with the resulting economy having a

Walrasian equilibrium. Such requirements are common in US universities. We also show

that aggregate constraints that restrict the total number of seats in a set of classes can be

rendered consistent with the existence of Walrasian equilibrium by incorporating a suitable

production technology into the economy.

In Kelso and Crawford (1982)’s formulation of the competitive economy, there is a

finite number of goods, and a finite number of consumers with quasilinear utility functions

that satisfy the substitutes property. Kelso and Crawford also assume that each consumer is

endowed with enough divisible good to ensure that she can purchase any bundle of discrete

goods at the equilibrium prices. This last condition would be satisfied, for example, if each

consumer had more of the divisible good than the value she assigns to the aggregate

endowment of indivisible goods in the economy. We call the Kelso-Crawford setting the

transferable utility economy. Kelso and Crawford’s ingenious formulation of the substitutes

property facilitates their existence theorem as well as a tatonnement process/dynamic

auction for computing Walrasian equilibrium. Subsequent research has identified various

important properties of Walrasian equilibrium in transferable utility economies.

Our first goal is to do away with the assumption that each consumer has enough

of the divisible good to purchase whatever she may wish at the equilibrium prices. In

particular, we allow for arbitrary positive endowments of the divisible good. We call this

the limited transfers economy. We also consider the nontransferable utility economy; that
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is, we consider economies in which there is no divisible good. This setting is particularly

well-suited for the analysis of many allocation problems such as school choice or course

selection where transfers are not allowed.

Substitutes preferences have been used to analyze a variety of market design prob-

lems1. Then, results suggesting that the Walrasian equilibrium correspondence is nearly

incentive compatible when there are sufficiently many agents (Roberts and Postlewaite,

1976) have been invoked to argue that Walrasian methods can play a role in market de-

sign. In most of these applications it is unreasonable to assume that each agent has enough

divisible good to acquire whatever she wishes. In many applications, transfers (i.e., the

divisible good or equivalently, money) are ruled out altogether and the problem is one of

assigning efficiently and fairly a fixed number of objects to individuals. Hence, both the

limited transfers economy and the nontransferable utility economy are of interest.

Theorem 1 establishes the existence of a Walrasian equilibrium (henceforth, equilib-

rium) in random allocations for limited transfers economies. In the transferable utility case,

randomization is not necessary since in such economies, a random equilibrium allocation

at prices p is simply a probability distribution over deterministic equilibrium allocations

at prices p. However, in both limited transfers and nontransferable utility economies, ran-

domization is necessary for the existence of equilibrium. The following simple example

establishes the necessity of randomization.

Example 1: There are two agents and a single good. Both agents’ utility for the indivisible

good is 2 but both have only one unit of the divisible good (in the limited transfers

economy) or fiat money (in the nontransferable utility economy). Without randomization,

if the price is less than or equal to 1, both agents will demand the good; if the price is

greater than 1 neither will demand the good. Since there is exactly one unit of the good,

there can be no deterministic equilibrium for this economy. If randomization is allowed,

the equilibrium price of the indivisible good is 2 and each agent will get the indivisible

good with probability 1/2.

1 See, for example, the literature on matching with contracts starting with Hatfield and Milgrom
(2005).
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Example 1, above, features utilities that satisfy the substitutes property and, as a

result, there exists a Walrasian equilibrium with a random allocation. Example 2, below,

illustrates how equilibrium existence fails if utilities do not satisfy the substitutes property.

Example 2: The economy has three agents and three indivisible goods. Initially, agents

1 and 2 each have 1 unit of the divisible good and no divisible goods. Agent 3’s initial

endowment consists of the three goods and zero units of the divisible good. For agents 1

and 2,

ui(A) =

{
0 if |A| < 2
2 |A| ≥ 2

while u3(A) = 0 for all A. Since the three goods are perfect substitutes, in equilibrium, all

three must have the same price. Let r be this common price. Clearly, r = 0 is impossible in

any equilibrium since both agents 1 and 2 would demand at least 2 goods with probability

1 and market clearing would fail. Then, in any equilibrium, r > 0 and agents 1 and 2 must

consume the three goods with probability 1. This implies r · 3 ≤ 2 and hence r ≤ 2/3. At

r ≤ 2/3 both agent 1 and 2 will want to consume any 2 of goods with probability 1/(2r)

and 0 goods with probability 1− /(2r). Market clearing requires, at a minimum, that the

expected total consumption of the these two agents is 3. Hence, 2 · 2 · 1/(2r) = 3 and

therefore r = 2/3. This means that the unique optimal random consumption bundle for

agent i = 1, 2 at these prices is the distribution that assigns her 2 goods with probability

3/4 and zero goods with probability 1/4. This pair of random consumptions is feasible in

expectation but is not implementable. That is, there is no random allocation that yields

this random consumption to both consumers at prices p1 = p2 = p3 = 2/3. To see why,

note that in any state of the world in which player 1 is allocated 2 goods, player 2 must be

allocated either 1 good, which is never optimal for him, or 0 goods. However, consuming

0 goods with probability 3/4 is not optimal for player 2.

The utility function of agents 1 and 2 in Example 2 does not satisfy the substitutes

property: consider p1 = p2 = 0.5, p3 = 3, then the optimal bundle is {1, 2}; however, when

we increase p2 to q2 = 3 and keep other prices unchanged, there is no optimal bundle that

includes good 1. Our main results show that examples such as the one above cannot be

constructed with utility functions that satisfy the substitutes property.
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The assignment of courses to students typically requires a mechanism without trans-

fers, i.e., without a divisible good. To address this and related applications, Theorem

2 demonstrates the existence of a competitive equilibrium for the nontransferable utility

economy. Hylland and Zeckhauser (1979) first proposed Walrasian equilibria as an al-

location mechanism for the unit demand nontransferable utility economy. They showed

that some equilibria may be Pareto inefficient because local non-satiation need not hold

in this setting. Nonetheless, Hylland and Zeckhauser (1979) showed that efficient equi-

libria always exist. Mas-Colell (1992) coins the term strong equilibrium for a competitive

equilibrium in which every consumer chooses the cheapest utility maximizing consumption

and shows that strong equilibria are efficient. Our Theorem 2 establishes the existence of

a strong and, therefore, Pareto efficient equilibrium.

Allocation problems often feature constraints on individual or group consumption.

In course assignment problems, university rules may constrain students’ course selection

either by imposing distributional requirements of the kind described above or by limiting

the number of courses that a student can take for credit from a specified list of courses

(as in Princeton’s rule of 12 discussed below). In a school choice problem, administrators

may restrict parents’ choices based on the location of their residence; and, finally, in

office allocation problems, choices may be constrained by employee seniority. We analyze

such constrained allocation problems in Theorem 3. There, we consider a broad range of

constraints on individual consumption and show that our model can incorporate them. In

some applications, groups of individuals may face constraints on their joint consumption

or there may be aggregate constraints. For example, a university may reserve a certain

number of seats in a class for those students who must take this class as a requirement

of their majors. In addition, there may be aggregate constraints on lab space that limit

the total number of seats available in a collection of related classes. We analyze such

constraints in section 3.

1.1 Related Literature

Kelso and Crawford (1982) establish the existence of a Walrasian equilibrium in the

transferable utility economy using an ascending tatonnement process. They show that this

process converges to a Walrasian equilibrium price vector. Gul and Stacchetti (1999) argue
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that, in a sense, Kelso and Crawford’s substitutes property is necessary for the existence of

equilibrium: given any utility function that violates the substitutes property, it is possible

to construct an N -person economy consisting of an agent with this utility function and

N − 1 agents with utility functions that satisfy the substitutes property, where there is

no Walrasian equilibrium.2 Hence, their result shows that it is impossible to extend Kelso

and Crawford’s existence result to a larger class of utility functions than those that satisfy

the substitutes property.

Sun and Yang (2006) provide a generalization of the Kelso-Crawford existence result

that allows for some complementarities in a transferable utility economy. They circumvent

Gul and Stacchetti’s impossibility result by imposing joint restrictions on agent’s prefer-

ences. In particular, they assume that the indivisible goods can be partitioned into two

sets such that all agents consider goods within each element of the partition as substitutes

and goods in different partition elements as complements.

As noted above, a special class of substitutes preferences are the unit demand pref-

erences. These describe situations in which agents can consume at most one unit of the

divisible good. Leonard (1983) studies transferable utility unit demand economies and

identifies an allocation rule that generalizes the second-price auction and has strong incen-

tive and efficiency properties. His allocation rule is the Walrasian rule together with the

lowest equilibrium prices. Hylland and Zeckhauser (1979) are the first to study what we

have called a nontransferable utility unit demand economy. They establish the existence

of an efficient Walrasian equilibrium in such economies. Hylland and Zeckhauser’s work

has led to a literature on competitive equilibrium solutions to market design problems:

Ashlagi and Shi (2016) study competitive equilibrium with equal incomes in a market

with continuum of agents. Le (2017), He, Miralles, Pycia and Yan (2017) and Echenique,

Miralles and Zhang (2018) maintain the assumption of unit demand preferences, but allow

for general endowments, non-EU preferences3 or priority-based allocations. Mas-Colell

(1992) and McLennan (2018) study more general convex economies with production.

There are two major differences between these papers and ours. First, most of these

papers introduce some notion of “slackness” into the definition of Walrasian equilibrium

2 Yang (2017) finds an error in Gul and Stacchetti’s proof and supplies an alternative proof.
3 That is, in the convexified economy, they allow utility functions that are nonlinear in probabilities.
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to guarantee its existence, while the equilibrium notion in our paper is standard. Second,

they focus on convex (or convexified) economies and thus there is no implementability

problem. In our setup implementability is the key issue. We provide a discussion of the

second point after the statement of Theorem 1.

Budish, Che, Kojima and Milgrom (2013) study a variety of probabilistic assignment

mechanisms. Our work relates to section 4 of their paper, where they define and show the

existence of what they call pseudo-Walrasian equilibrium.4 In that section, they consider

fully separable preferences and establish the existence of efficient pseudo-Walrasian equi-

librium. They also describe how individual constraints can be incorporated into pseudo-

Walrasian equilibrium.

In Appendix B of their paper, they consider a richer class of preferences adopted from

Milgrom (2009). These preferences amount to the closure of unit demand preferences under

satiation and convolution.5 Ostrovsky and Paes Leme (2015) prove that the closure of unit

demand preferences under endowment and convolution yields a strict subset of substitutes

preferences. They identify a rich class of preferences that belong to the latter but not the

former. It is easy to check that this class of preferences is also excluded from the class

described in Appendix B of Budish, Che, Kojima and Milgrom (2013). Thus, compared

to Budish, Che, Kojima and Milgrom (2013), we consider a richer class of preferences and

a richer class of constraints. In particular, their analysis of pseudo-Walrasian equilibrium

does not include group constraints or aggregate constraints, other than bounds on the

aggregate supply of each good.

Kojima, Sun and Yu (2018) study constraints in a transferable utility economy. They

show that imposing upper and lower bounds of quantities consumed (i.e., interval con-

straints) on gross substitutes preferences preserves the gross substitutes property. They

also show that a slight generalization of interval constraints are the only ones that preserve

the gross substitutes property for every gross substitutes utility function. Lemma 1 below

and the discussion prior to it is related to their first result regarding interval constraints.

4 Presumably, the qualifier ”pseudo” is to indicate the interjection of fiat money and also to acknowledge
various additional constraints that are typically not a part of the definition of a competitive economy. By
incorporating these constraints into preferences and technology and by assuming that the mechanism
designer/seller values the fiat money, we are able to interpret our equilibria as proper Walrasian equilibria.

5 See section 2.1 for a discussion of closures under substitutes preserving operations.
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Our main results focus on limited transfers and nontransferable utility economies and allow

for joint restrictions on the utility function and the constraints (and hence permit a larger

set of constraints than Kojima, Sun and Yu (2018)).

2. The Substitutes Property and the Limited Transfers Economy

Let H = {1, . . . , L} be the set of goods. Subsets of H are consumption bundles.6 We

identify each A ⊂ H with x ∈ X := {0, 1}L such that xj = 1 if and only if j ∈ A. Hence,

o = (0, . . . , 0) ∈ X is identified with the empty set.

For any x ∈ X, let supp (x) = {k ∈ H|xk = 1} and σ(x) =
∑
j x

j . A utility on X

is a function u : X → IR ∪ {−∞}. The effective domain of u, denoted as domu, is the

set domu = {x ∈ X : u(x) > −∞}. Without loss of generality, we normalize u so that

u(x) ≥ 0 for all x ∈ domu. Throughout, we adopt the following convention: −∞+(−∞) =

−∞ ≥ −∞. We assume that every agent’s overall utility function is quasilinear in the

divisible good. Given any price vector p ∈ IRL+, we let Ui(x, p) = u(x) − p · x denote the

agent’s objective function.7

For x, y ∈ X, we write x ≤ y to mean that each coordinate of x is no greater than the

corresponding coordinate of y and let x ∧ y denote z ∈ X such that zj = min{xj , yj} for

all j. Similarly, let x ∨ y denote z ∈ X such that zj = max{xj , yj} for all j. Without risk

of confusion, we sometimes refer to u as the utility function (instead of saying the utility

index associated with the utility function U). We let χj ∈ X denote the good j; that is,

χj(k) = 1 if k = j; otherwise, χj(k) = 0. Similarly, for any set of indivisible goods A ⊂ H,

define χA ∈ X as follows:

χA(k) =
{

1 if k ∈ A
0 otherwise

Throughout, we will assume that domu 6= ∅ and u is monotone; that is, x ≤ y implies

u(x) ≤ u(y).

6 We are assuming that there is a single unit of each good. This assumption makes the analysis of the
implementability problem easier and is without loss of generality, since we can label each of the multiple
units of a good as a distinct good. Equilibrium will ensure that each of these units has the same price.

7 If the agent has an endowment of indivisible goods, the objective function is unchanged since the
value of the endowment enters the utility function as a constant.
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2.1 The Substitutes Property and the Transferable Utility Economy

Define the transferable utility demand correspondence for u as follows:

Du(p) := {x ∈ X |u(x)− p · z ≥ u(y)− p · y for all y ∈ X}

Since domu 6= ∅ and q ∈ IRL+, Du(p) will always lie in the effective domain of u. The

substitutes property states the following: let x be an optimal consumption bundle at

prices p and assume that prices increase (weakly) to some p̂. Then, the agent must have

an optimal bundle at p̂ which has her consuming at least as much of every good that did

not incur a price increase. The formal definition is as follows:

Definition: The function u has the substitutes property if x ∈ Du(p), p ≤ p̂, p̂j = pj for

all j ∈ A implies there exists y ∈ Du(p̂) such that yj ≥ xj for all j ∈ A.

Kelso and Crawford (1982) introduced the substitutes property. Since then, numerous

alternative characterizations have been identified. For example, the substitutes property

is equivalent to M ]-concavity: the function u is M ]-concave if for all x, y ∈ domu, xj > yj

implies [u(x− χj) + u(y + χj) ≥ u(x) + u(y) or there is k such that yk > xk, u(x− χj +

χk)+u(y+χj−χk) ≥ u(x)+u(y)].8 Gul and Stacchetti (1999) show that that if u satisfies

the substitutes property, then it must be submodular:9

u(x) + u(y) ≥ u(x ∨ y) + u(x ∧ y)

If the inequality above always holds with equality, then u is additive.

Perhaps the best-known subclass of substitutes utility functions are unit demand

utilities. These utility functions are appropriate for situations in which each agent can

consume at most one unit of the indivisible goods: u is a unit demand utility if

u(x) = max{u(χj) |χj ≤ x}

Below, we describe operations on gross substitutes utility functions that enable us

to derive new gross substitutes utility functions. In section 3, we use these operations

8 See, for example, Fujishige and Yang (2003) or Theorem 4.1 in Shioura and Tamura (2015).
9 Gul and Stacchetti (1999) show this result for u such that domu = H. Their result extends imme-

diately to utilities functions u such that domu 6= X.
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to incorporate additional restrictions in school choice and course selection problems. Let

k > 0 be an integer, z ∈ X and u, v be two substitutes utility functions. Define,

uz(x) = u(x ∧ z)

uz(x) = u(x ∨ z)− u(z)

(u� v)(x) = max
y≤x
{u(y) + v(x− y)}

[u]k(x) = max
y≤x

σ(y)≤k

u(y)

[u]k(x) =

{
max y≤x

σ(y)≥k
u(y) if σ(x) ≥ k

−∞ otherwise.

Call uz the z-constrained u, uz the z-endowed u, u�v the convolution (or aggregation)

of u, v, [u]k the k-satiation of u and [u]k the k-lower bound u. It is easy to verify that a

z-endowed u satisfies the substitutes property whenever u does and that the convolution

of u and v satisfies the substitutes property whenever u and v both satisfy the substitutes

property. Similarly, verifying that a z-constrained utility satisfies the gross substitutes

property whenever domu ∩ {x |x ≤ z} 6= ∅ is straightforward.10

Bing, Lehmann and Milgrom (2004) prove that the k-satiation of the substitutes

utility u is a substitutes utility (provided there is at least one set in domu with k or fewer

elements). The following lemma establishes the substitutes property for k-lower bound u.

All proofs are in the Appendix.

Lemma 1: If u satisfies substitutes property and domu ∩ {x ∈ X|σ(x) ≥ k} 6= ∅, then

[u]k satisfies the substitutes property.

For any given class of utility functions, U , and set of substitutes preserving operations,

τ , let τ(U) denote the set of all utility functions that can be derived from the elements of

U by repeatedly applying various operations in τ . We will call τ(U) the τ -closure of U . In

other words, τ(U) is the smallest family of utility functions that includes U and is closed

under operations in τ . Clearly, if each element of U satisfies the substitutes property, then

so does the τ -closure of U .

10 In some cases, it is easier to verify that the new utility function satisfies M]-concavity which, as we
noted above, is equivalent to the substitutes property.
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Ostrovsky and Paes Leme (2015) show that the endowment and convolution closure of

the set of unit demand preferences is a strict subset of the set of all substitutes preferences.11

They also provide a rich class of examples that satisfy the substitutes property but are

not in the endowment and convolution closure of the set of unit demand preferences. Let

τ be the five substitutes preserving operations discussed above and let U be the set of all

unit demand preferences. Then, using Ostrovsky and Paes Leme’s arguments, it is easy

to verify that τ(U) is a strict subset of substitutes preferences and excludes the same rich

class of preferences that these authors have identified.

Next, we define a new class of utility functions that are useful for describing student

preferences over class schedules. We call these utility functions academic preferences since

they incorporate curricular requirements into the agent’s utility function. The following

example provides an illustration of academic preferences.

Example 3: Students are required to take at least three courses for credit and satisfy

a distributional requirement by taking courses from at least four out of five categories

a, b, c, d, e. Each class that a student takes for credit can potentially meet two of these

four requirements. There are ten classes, H = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}, each

identified by the requirements that it might satisfy. Students can use at most one class to

meet two different requirements simultaneously. The remaining two requirements must be

met with distinct classes.12 A student may get credit for an additional course if the four

courses together meet all five requirements. Hence, a student can meet the distributional

requirement by taking either three or four courses for credit, but students who take four

courses for credit must cover all of the five categories.

For example, the schedules {ab, ac, ad} and {ab, bc, cd, de} are both feasible; the former

yields three course credits, while the latter yields four. The schedule {ab, bc, ac} is not

feasible since it only covers three distinct categories; the schedule C = {ab, bc, cd, da} is

11 Ostrovsky and Paes Leme (2015) conjecture that the endowment and convolution closure of the
set of all weighted matroids is the set of substitutes preferences. They note that results from Murota
(1996), Murota and Shioura (1999), and Fujishige and Yang (2003) ensure that every weighted matroid
and hence every rank function satisfies the substitutes property. For the definitions of weighted matroid,
rank function and other relevant terms and results from matroid theory, see Appendix A. There we also
provide a short proof that weighted matroids satisfy the substitutes property based on Fujishige and Yang
(2003)’s result that the substitutes property is equivalent to M]-concavity.

12 Undergraduates need to satisfy distributional requirements in most universities. Northwestern’s
version allows multiple requirements to be met with a single course in some but not all situations.
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feasible but only yields three course credits since it only covers four categories. Let Y be

the set of all feasible schedules with all courses for credit. That is, each z ∈ Y either has

three courses and meets four distributional requirements or has four courses and meets five

distributional requirements. Let v be an additive utility function on X. When the student

takes course i ∈ H for credit, she enjoys utility v(ξi). Her objective is to choose a feasible

course schedule that maximizes the total utility of the courses she takes for credit.13 That

is,

u(x) =

{
max y∈Y

y≤x
v(y) if there is y ∈ Y such that y ≤ x

−∞ otherwise

In Appendix A, we offer a general definition of academic preferences, show that they include

the example above and that they satisfy the gross substitutes property.

We conclude this section by discussing the existence of equilibrium in a transferable

utility economy. Let N be the number of agents in the economy, ξ ∈ XN be an allocation

and let ξi denote agent i’s consumption in the allocation ξ. Then (ξ, p) is a (deterministic)

Walrasian equilibrium in the transferable utility economy if
∑N
i=1 ξi ≤ χH , ui(ξi)−p · ξi ≥

ui(x)− p · x for all x ∈ X, i and
∑N
i=1 ξ

a
i = 1 if pa > 0 for all a ∈ H. Kelso and Crawford

(1982) showed that if preferences satisfy monotonicity and the substitutes property, and the

effective domain is X for all agents, then there exists an equilibrium with (deterministic)

allocation in the transferable utility economy. To see how the result can be extended to

general effective domains, note that since domui 6= ∅, the demand Dui(p) ⊆ domui for

all i and p. Hence, for any candidate equilibrium allocation ξ, we have ξi ∈ domui for

each i. The existence of such an allocation is a necessary condition for the existence of an

equilibrium and we will incorporate it into the definition of a transferable utility economy.

Definition: E = {(ui)Ni=1} is a transferable utility economy if, ui satisfies the substitutes

property for all i and there exists an allocation ξ such that
∑N
i=1 ξi ≤ χH and ξi ∈ domui

for all i.

The following lemma states that the additional condition above is also sufficient for

the existence of an equilibrium when preferences satisfy the substitutes property.

13 The example is meant to show that a rich set of curricular restrictions can be accommodated with
academic preferences. Simpler versions can easily be constructed. For example, replacing the condition
“a student may get credit for an additional course if the four courses together meet all five distributional
requirements” with “a student who fulfills the requirements for 3 course credits can get an additional credit
by taking a fourth course” would also yield an academic preference.
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Lemma 2: The transferable utility economy has a (deterministic) equilibrium.14

Notice that efficient allocations of indivisible goods, optimal demands and Walrasian

equilibria are independent of the initial endowments in the transferable utility economy.

Therefore, the definition of the transferable utility economy omits them. However, endow-

ments will matter in the limited transfers economy, defined in the next section.

2.2 The Limited Transfers Economy

Example 1 shows that when agents have limited budgets, a deterministic equilibrium

may not exist even in the simplest limited transfers economies. Thus, we need to extend our

definition of an allocation to allow for randomness: a random consumption (of indivisible

goods) θ : X → [0, 1] is a probability distribution on X; that is,
∑
x∈X θ(x) = 1. Let Θ

denote the set of all random consumptions. For θ ∈ Θ, let θ̄ ∈ IRL+ denote the coordinate-

by-coordinate mean of θ; that is θ̄j =
∑
x∈X θ(x) ·xj . We assume that u is also the agent’s

von Neumann-Morgenstern utility function over indivisible goods. Hence,

u(θ) =
∑
z∈X

u(z)θ(z)

The effective domain of u on Θ consists of all the random consumptions such that θ(x) > 0

implies x ∈ domu.15

Quasilinearity ensures that we do not have to worry about randomness in the con-

sumption of the divisible good; we can identify every such random consumption with its

expectation. Hence, we define the von Neumann-Morgenstern utility function U as follows:

U(θ, p) = u(θ)− p · θ̄

Let wi ∈ X denote agent i’s endowment of indivisible goods and let bi denote her en-

dowment of the divisible good. For some applications, it is useful to have an additional

agent, the seller or market designer, who holds some or all of the aggregate endowment of

14 Variations of Lemma 2 are also proved in Fujishige and Yang (2002), Murota and Tamura (2003) and
Kojima, Sun and Yu (2018). See also Murota (2003) Chapter 11 and Shioura and Tamura (2015).

15 The function u : Θ→ [0, 1] is continuous on the effective domain but not on the whole domain. For
example, suppose that domu = X\{o}, x ∈ domu and take a sequence of random consumptions θn such
that θn(o) = 1/n and θn(x) = 1− 1/n. Clearly, u(θn) = −∞ for all n, but lim θn = θ such that θ(x) = 1
and therefore, u(θ) 6= −∞.
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the indivisible goods. We will sometimes refer to this agent as agent 0 and assume that

she derives no utility from the indivisible goods; she only values the divisible good. The

aggregate endowment of indivisible goods in the economy is χH := (1, . . . , 1) ∈ X and,

therefore, the seller’s endowment of the indivisible goods is w0 = χH −
∑N
i=1 wi. We will

assume that wi ∈ domui for each i to guarantee that agent i can afford at least one bundle

in the effective domain.

Definition: E = {(ui, wi, bi)Ni=1} is a limited transfers economy if, for all i, ui satisfies

the substitutes property, bi > 0 and wi ∈ domui.

A random allocation (of indivisible goods) for this economy is a probability distribu-

tion α : XN → [0, 1]. For any such α, let αi denote the i’th marginal distribution of α;

that is, αi ∈ Θ is the random consumption of agent i, where

αi(x) =
∑

{ξ:ξi=x}

α(ξ)

A random allocation α is feasible for the economy E if, for all ξ such that α(ξ) > 0,

ξi ∈ domui for all i and
∑N
i=1 ξi ≤ χH .

The budget (set) of an agent with endowment w, b at prices p is

B(p, w, b) =
{
θ ∈ Θ

∣∣∣ p · θ̄ ≤ p · w + b
}

Then, θ ∈ B(p, w, b) is optimal for agent i given budget B(p, w, b) if

Ui(θ, p) ≥ Ui(θo, p)

for all θo ∈ B(p, w, b).

Definition: A price vector p ∈ IRL+ and a random allocation α is an equilibrium for the

limited transfers economy E if

(1) α is feasible for the economy E ;

(2) for all i ≥ 1, αi is optimal for agent i given budget B(p, wi, bi);

(3) pj > 0 and α(ξ) > 0 imply
∑N
i=1 ξ

j
i = 1.

Theorem 1: The limited transfers economy E = {(ui, wi, bi)Ni=1} has an equilibrium.
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One possible way to prove Theorem 1 would be to prove the existence of equilibrium

for the convexified economy; that is, an economy in which agents have convex consumption

sets. To see how this can be done, let Z = [0, 1]L and define, û : Z → IR the convexified

version of u as follows:

û(z) = max{u(θ) | θ̄ ≤ z}

and define Û(z, p) = û(z)− p · z. Hence, û(z) is the maximum utility that the agent with

von Neumann-Morgenstern utility index u could get by choosing a lottery θ over indivisible

goods such that the expected consumption of indivisible good j is no greater than zj . Note

that Û is defined on the convex set Z × IRL+. An allocation (z1, . . . , zN ) is feasible in the

convexified economy if
∑
zi ≤ χH .

Establishing the existence of equilibrium in the convexified economy using standard

techniques is straightforward.16 The last step of this proof approach would be to implement

the equilibrium of the convexified economy with a random allocation. This last step is

not difficult for a unit demand economy since, for that case, an appeal to the Birkhoff-

von Neumann Theorem ensures existence of the desired random allocation. This line of

argument does not work generally when agents can consume multiple units of indivisible

goods and preferences are not separable. Example 2 in the introduction shows that, without

the substitutes property, the implementability problem is, in general, insurmountable.

Our proof relies on the existence of equilibrium in the transferable utility economy.

We seek a λi ∈ (0, 1] for each agent i and a Walrasian equilibrium (p, α) for the modified

transferable utility economy with random consumption in which each ui is replaced by

ûi = λiui

such that each agent i spends, in expectation, (1) no more that bi on indivisible goods

and (2) exactly bi on indivisible goods if λi < 1. It is possible to decrease an agent’s

equilibrium spending as much as needed by decreasing that agent’s λi. Hence, we can

satisfy condition (1). A fixed-point argument ensures that we can also satisfy condition

16 For example, it can be shown that the convexified version of the utility function satisfies the conditions
in McLennan (2018) and thus existence of equilibrium in the convexified economy can be guaranteed for all
utility index {ui}Ni=1. However, as is shown in the Example 2, without substitutes property, there might

be no equilibrium in the economy even though there is one in its convexified version.
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(2). The Walrasian equilibria for this modified economy are then shown to be equilibria

of the original economy.

3. Nontransferable Utility Economies and Constraints

In this section, we will consider allocation problems in settings without a divisible

good. We call this type of an economy a nontransferable utility economy. In many appli-

cations, nontransferable utility economies impose constraints on individual consumption,

or on the consumption of groups. To address some of these applications, we show how

our model can incorporate a variety of individual, group, and aggregate constraints. An

individual constraint restricts the number of goods that a single agent can consume from

a specified set of goods. A group constraint restricts the total number of goods from a

specified set of perfect substitutes that can be consumed by a particular group of agents.

Finally, aggregate constraints restrict the various combinations of goods available for the

entire population.

An example of an individual constraint is Princeton University’s rule of 12. According

to this rule, no more than 12 courses in a student’s major may be counted towards the

31 courses needed to obtain the A.B. degree. Distributional requirements are a second

type of individual constraints. For example, Art and Archaeology students at Princeton

University must take at least one course in each of the following three areas: group 1

(ancient), group 2 (medieval/early modern), and group 3 (modern/contemporary). An

example of a group constraint is the requirement that at least 50 percent of the slots in

each school should go to students who live in the school’s district. Similarly, the so-called

“controlled choice” constraints in school assignment that require schools to balance the

gender, ethnicity, income, and test score distributions among their students, are group

constraints.17 Aggregate constraints define the feasible allocations for the entire economy.

For example, suppose two versions of introductory physics are being offered: Phy 101, the

version that does not require calculus and Phy 103, the version that does require calculus.

Suppose each of these classes can accommodate 120 students, but because both courses

have lab requirements and lab facilities are limited, the total enrollment in the two courses

can be no greater than 200 students.

17 See Abdulkadiroğlu, Pathak and Roth (2005) for examples of such constraints in practice.
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In the next subsection, we describe the nontransferable utility economy, define a strong

(Walrasian) equilibrium and establish its existence and efficiency. Section 3.2 deals with

individual, group and aggregate constraints.

3.1 Nontransferable Utility Economies

In a nontransferable utility economy, each agent i has a substitutes utility function ui

and a quantity bi of fiat (or artificial) money. Initially, the entire aggregate endowment of

indivisible goods belongs to the market designer. Each agent’s utility depends only on her

consumption of indivisible goods. That is, agents solve the following utility maximization

problem:

Ui(p, bi) = maxui(θ) subject to p · θ̄ ≤ bi

Hence, Ui is the indirect utility function of agent i.

Definition: E∗ = {(ui, bi)Ni=1} is a nontransferable utility economy if, for all i, ui

satisfies the substitutes property, o ∈ domui and bi > 0.

In the nontransferable utility setting, Walrasian mechanisms provide a rich menu

of allocation rules with desirable properties. The designer may accommodate fairness

concerns by choosing the agents’ endowments of fiat money (the bi’s) appropriately. In

particular, choosing the same bi for every agent ensures that the resulting allocations are

envy-free. This is the setting for many allocation problems such as school choice, course

selection or office selection (for example, when a business or a department moves into a new

building). In such markets, the Walras correspondence can serve both as real allocation

mechanism and as a benchmark for evaluating other mechanisms.

Hylland and Zeckhauser (1979) note that in a nontransferable utility economy with

unit demand preferences, some Walrasian equilibria are inefficient. Specifically, nontrans-

ferable utility economies may have equilibria in which some agents do not purchase the

least expensive optimal option in their budget sets and equilibria with this property may

be inefficient. To address this problem, Mas-Colell (1992) introduces the concept of a

strong equilibrium; that is, a Walrasian equilibrium in which every consumer chooses the

least expensive optimal bundle and proves that strong equilibria are Pareto efficient.
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Definition: A price p ∈ IRL+ and a random allocation α is a strong equilibrium for the

nontransferable utility economy E∗ if

(1) α is feasible for the economy E∗;

(2) for all i ≥ 1, αi is optimal for agent i given budget B(p, bi) and costs no more than

any other optimal random consumption;

(3) pj > 0 and α(ξ) > 0 imply
∑N
i=1 ξ

j
i = 1.

The theorem below establishes the existence of a strong and, therefore, Pareto efficient

equilibrium for the nontransferable utility economy.

Theorem 2: The nontransferable utility economy has a strong equilibrium.

Our proof of Theorem 2 relies on Theorem 1: we consider a sequence of limited

transfers economies En = {(nui, wi, bi)ki=1} for n = 1, 2 . . . where wji = 0 for all j and i.

Hence, En is a limited transfers economy in which agent i’s endowment of indivisible goods

is equal to her endowment of indivisible goods in E∗ (i.e., zero), her endowment of the

divisible good is the same as her endowment of fiat money in E∗ and her utility function is

n-times her utility function in E∗. Then, we appeal to Theorem 1 to conclude that each En
has an equilibrium (pn, αn). Since this sequence lies in a compact set, it has a limit point.

Then, we show that this limit point must be an equilibrium of E∗. Since this equilibrium is

a limit-point of a sequence of equilibria for limited transfers economies; that is, equilibria

in which money has intrinsic value, it must be a strong equilibrium.

3.2 Group Constraints

In many applications, one group is given priority over another. For example, suppose

that the maximal enrollment in a particular physics class is n and there are m < n physics

majors who are required to take that class. Thus, at most n −m non-majors can enroll

in the class. More generally, a group constraint (A,n) for the group I ⊂ {1, . . . , N} with

n ≤ |A| states that the agents in I can collectively consume at most n units from the set

A, where A is a collection of perfect substitutes (for all agents).

To accommodate this constraint, pick any subset B of A with |A|−n elements. Then,

replace each ui for i ∈ I with u′i such that

u′i(x) = ui

(
x ∧ χB

c
)
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Thus, the new utility for members of group I is the their original utility restricted to the

complement of B. As we noted above, restrictions of utilities to a subset of choices satisfy

the substitutes property if the original utility satisfies the substitutes property. Moreover,

since elements of A are perfect substitutes, restricting the consumption of members of

group I to Bc is equivalent to restricting their aggregate consumption of the goods in

A. Thus, a group constraint can be accommodated by modifying some agents’ utility

functions.

3.3 Individual Constraints

The simplest individual constraints are bounds on the number of goods an agent may

consume from a given set of goods. For example, a student may be required to take 4 classes

each semester, but may be barred from enrolling in more than 6. We can incorporate this

constraint by modifying the student’s unconstrained utility function u as follows:

um(x) = max
y≤x
σ(y)≤6

û(y)

where

û(x) =

{
u(x) if σ(x) ≥ 4
−∞ if σ(x) < 4

The modified utility um incorporates the lower bound constraint by restricting the effective

domain of u to those bundles that satisfy the constraint. It incorporates the upper bound by

imposing satiation above the constraint. Next, we generalize these constraints and impose

bounds on overlapping subsets of goods. To preserve the gross substitutes property, we

require the utility function to be separable across subsets of goods that must satisfy a

constraint. A collection of goods, A ⊂ H, is a module of the utility u if for all x ∈ X,

u(x) = u(x ∧ χA) + u(x ∧ χA
c

)

Note that this condition is symmetric: if A is a module of u, then so is Ac. For example,

suppose that A is the set of all humanities courses and Ac is the set of all other courses.

If a student’s utility over various combinations of humanities courses is independent of her

utility over various combinations of the other courses, then A is a module. A collection of
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sets, H, is a hierarchy if A,B ∈ H and A ∩B 6= ∅ implies A ⊂ B or B ⊂ A. Given any u,

we say that the hierarchy H is modular if each element of H is a module of u.

A modular constraint places bounds on the agent’s consumption for subsets of items

that form a modular hierarchy. The collection c = {(A(k), l(k), h(k))Kk=1} is a constraint

if l(k), h(k) are integers, A(k) ⊂ H, and Xc ∩Xc 6= ∅, where

Xc := {x ∈ X| ∀k, σ(x ∧ χA(k)) ≥ l(k)}

are consumptions that satisfy the lower bound and

Xc = {x ∈ X| ∀k, σ(x ∧ χA(k)) ≤ h(k)}

are consumptions that satisfy the upper bound. The constraint c = {(A(k), l(k), h(k))Kk=1}

is a modular constraint for u if H = {A(1), . . . , A(K)} is a modular hierarchy for u and

(Xc ∩Xc) ∩ domu 6= ∅.

As an example of a modular constraint, suppose that students must take at least 3

humanities classes and at least 4 social science classes; moreover, each student is required

to take at least 8 but no more than 12 classes overall. In this case, the constraint is modular

if the student’s utility over combinations of science courses is independent of her utility

over combinations of humanities courses.

Given a utility function u, let ûc be the utility function with effective domain Xc ∩

domu; that is,

ûc(y) =

{
u(y) if y ∈ Xc

−∞ otherwise.

Finally, define u(c, ·) as follows:

u(c, x) = max
{
ûc(y)

∣∣∣ y ∈ Xc, y ≤ x
}

Then, the effective domain of u(c, ·) is domu(c, ·) = Xc ∩ domu 6= ∅.

Lemma 3: If u satisfies the substitutes property and c is a modular constraint for u,

then u(c, ·) satisfies the substitutes property.
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To see how the substitutes property may fail if the constraint is not modular, consider

the utility function described in equation (1) below. Let H = {0, 1, 2, 3}. Then,

u(x) =

{
2 if xj · xj⊕1 > 0 for some j ∈ H
0 if x = o
1 otherwise

(1)

where ⊕ denotes addition modulo 4. Note that u satisfies the substitutes property.18 Let

A = {0, 1} and suppose that the agent is restricted to consuming at most one unit from

A. Clearly, A is not a module of u. To see that the resulting constrained utility function

does not satisfy the substitutes property, set p0 = p1 = p2 = p3 = 1/2. Then, {0, 3} is an

optimal consumption set at prices p. The substitutes property fails since at prices q such

that q3 = 2 and qj = pj for j 6= 3, there is no optimal bundle that contains item 0.

To see how the substitutes property may fail if the sets in the constraint are modules

but fail to form a hierarchy, consider the following utility: u(x) = σ(x). LetH = {0, 1, 2, 3},

then any subset ofH is a module of u. Suppose the constraints are ({1, 2}, 0, 1), ({0, 1}, 0, 1)

and ({0, 1, 2, 3}, 0, 2). Then, at pj = 1/2 for all j ∈ H, {1, 3} is an optimal consumption

set at p. Again, the substitutes property fails since at prices q such that q3 = 2 and qj = pj

for j 6= 3, there is no optimal consumption set that contains 1.

To establish existence of equilibrium we must guarantee that the “interior” of each

agent’s budget set contains some consumption in the effective domain of her modified

utility. To address this issue, we add two assumptions to our earlier model. First, we

assume that there is a division of the aggregate resources into N + 1 consumption bundles

that meet every consumer’s lower bound constraint. Second, we assume that all agents

have equal endowments of fiat money, which we normalize to 1.

Definition: E∗c = {(ui, 1)Ni=1, {ci}Ni=1} is a nontransferable utility economy with modular

constraints if,

(i) for all i, ui satisfies the substitutes property;

(ii) for all i, ci is a modular constraint for ui;

(iii) there exist x1, · · · , xN+1 such that
∑N+1
k=1 xk ≤ χH and xk ∈ domui(ci, ·) for all k, i.

18 It is the convolution of the two unit demand preferences v and v̂ where v takes the value 1 at any
x such that x0 > 0 or x2 > 0 and is equal to zero otherwise and v̂ takes the value 1 at any x such that
x1 > 0 or x3 > 0 and is equal to zero otherwise.
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Clearly, a strong equilibrium (p, α) of E∗c will satisfy all of the lower bound constraints.

If α(ξ) > 0 and ξi violates some upper bound constraint, then there must be some x ≤ ξi
that satisfies all of the constraints such that ui(ci, x) = ui(ci, ξi). Then, pj = 0 for all j

such that ξji > xj ; otherwise, ξ could not be a strong equilibrium. Hence, we can replace

α with a random allocation β that satisfies all of the upper bound (and lower bound)

constraints such that (p, β) is also a strong equilibrium of E∗c . Hence, the existence of a

strong equilibrium in E∗c ensures the existence of a strong equilibrium in E∗c that satisfies

all of the constraints in c.

Theorem 3: The nontransferable utility economy with modular constraints has a strong

equilibrium.

The additional two assumptions in the definition of a nontransferable utility economy

with modular constraints are introduced to ensure that every agent can afford a consump-

tion in the effective domain of her modified utility function. Alternatively, we could assume

that there is a subset of goods in abundant supply (i.e., goods that have zero prices in

equilibrium) and every agent can choose a consumption bundle in the effective domain

from that subset. In the course selection problem, it may be the case that a subset of

classes is never oversubscribed and students can choose courses from that subset to meet

the requirements. In this case, the additional two assumptions can be dispensed with.

3.4 Aggregate Constraints

The example at the beginning of this section with a bound on the total enrollment

in two physics is an illustration of an aggregate constraint. Alternatively, suppose an

economics department schedules classes in labor economics, intermediate microeconomics

and in corporate finance. There are two types of TAs: those that can cover labor economics

and intermediate microeconomics, and those that can cover intermediate microeconomics

and corporate finance. There are 60 TAs of each type and, for simplicity, we assume that

each TA can be responsible for one student. TA time is fungible across different classes

so that at most 60 students can enroll in labor economics, at most 60 students enroll in

corporate finance and at most 120 students can enroll in any of the three types of classes.

In these examples, we can describe the aggregate constraint as a hierarchy H that

limits the supply of available items. That is, the aggregate constraint has the form
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{(A(k), n(k))Kk=1} such that the A(k) ⊆ H for all k, {A(k)}Kk=1 is a hierarchy and each

n(k) is a natural number describing the maximal quantity of indivisible goods that can be

supplied from set A(k).

Hierarchies are a special case of a class of constraints that can be described as matroids.

A collection of sets I ⊂ X is a matroid if (i) ∅ ∈ I, (ii) y ∈ I, x ≤ y implies x ∈ I and

(iii) x, y ∈ I, σ(x) < σ(y) implies there is j such that xj < yj and x + χj ∈ I.19 We will

re-interpret the aggregate constraint as a production technology; that is, we will define

a production possibility set for the economy that only includes the output combinations

consistent with the desired constraints.20

A nontransferable utility production economy is a collection Ẽ = {(ui, bi)Ni=1, I} such

that I is a matroid. To see how we can embed a collection of aggregate restrictions into a

matroid production set, let (A,n) denote a single aggregate restriction. Hence, the set of

feasible production plans given any X and the restriction (A,n) is:

X(A,n) = {x ∈ X |σ(x ∧ χA) ≤ n}

Given any hierarchy of aggregate restrictions d = {(A(k), n(k))Kk=1}, let Id denote the set

of all production plans consistent with d; that is,

Id =
⋂
a∈d

X(a)

Lemma 4: If d is a hierarchy of aggregate restrictions, then Id is a matroid.

In the economy with production, a random allocation α is a probability distribution

over XN × I. For any such α, the marginal αi is the random consumption for agent

i = 1, . . . , N and the marginal αN+1 is the production plan for the producer or seller.

Definition: Ẽ = {(ui, bi)Ni=1, I} is a production economy with nontransferable utility if,

for all i, ui satisfies the substitutes property, o ∈ domui and if I is a matroid.

19 A matroid can be defined in a variety of equivalent ways. In Appendix A, we offer two alternative
definitions and a few other relevant notions and results from matroid theory.

20 Note that (i) corresponds to the standard requirement that inaction is possible, while (ii) is the usual
comprehensiveness property of production possibility sets. The final condition, (iii) is a type of discrete
convexity.
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A random allocation α is feasible for the economy Ẽ = {(ui, bi)Ni=1, I} if, for all (ξ, z)

such that α(ξ, z) > 0,
∑N
i=1 ξi ≤ z, z ∈ I and ξi ∈ domui for all i. The definitions

of budget sets and consumer optimality remain unchanged. The random allocation α is

producer optimal if α(ξ, z) > 0 implies p · z ≥ p · z′ for all z′ ∈ I.

Definition: A price p ∈ IRL+ and a random allocation α is a strong equilibrium for the

production economy with nontransferable utility Ẽ if

(1) α is feasible for Ẽ ;

(2) for all i, αi is optimal given budget B(p, bi) and costs no more than any other optimal

random consumption;

(3) α is producer optimal;

(4) pj > 0 and α(ξ, z) > 0 imply
∑N
i=1 ξ

j
i = zj .

Hence, with production, a Walrasian equilibrium specifies prices and a random allo-

cation over consumptions and production plans. The implied random consumption and

production plans must be feasible and optimal for both the consumers and the producer.

The definition of a strong equilibrium is the same as in the previous section: the Walrasian

equilibrium (p, α) is a strong equilibrium if for each agent i, αi is the cheapest optimal

random consumption for i given the budget constraint.

Theorem 4: The production economy with nontransferable utility has a strong equilib-

rium. Strong equilibrium allocations are Pareto efficient.

Let B be the production possibility frontier of the technology I; that is, B = {x ∈

I | y ≥ x, y ∈ I implies y = x}. Each element in B is called an efficient production plan.

Part (3) of the definition below requires that every efficient production plan can be divided

into N+1 consumptions that satisfy every consumer’s lower bound constraint. This mirrors

a similar assumption in Theorem 3. The corollary below facilitates individual, group and

aggregate constraints by combining Theorems 3 and 4.

Definition: Ẽc = {(ui, 1)Ni=1, {ci}Ni=1, I} is a production economy with nontransferable

utility and modular constraints if

(1) ui satisfies the substitutes property for all i;

(2) ci is a modular constraint for ui for all i;
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(3) I is a matroid;

(4) for all z ∈ B, there exist x1, · · · , xN+1 such that
∑N+1
k=1 xk ≤ z and xk ∈ domui(ci, ·)

for all k, i.

Corollary: The production economy with nontransferable utility and modular con-

straints has a strong equilibrium.

4. Conclusion

Our results suggest that Walrasian methods can be employed in a variety of market

design problems whenever preferences satisfy the substitutes property. Gul and Stacchetti

(1999) show that given any utility function that does not satisfy the substitutes property,

we can construct a transferable utility economy with N agents, one with the preference in

question and N − 1 with substitutes preferences such that no equilibrium exists. Hence, it

seems unlikely that a general existence result for the nontransferable utility economy that

permits a larger set of preferences than the substitutes class can be proved.

However, Sun and Yang (2006) provide a generalization of the Kelso-Crawford exis-

tence result that allows for some complementarities in consumption. In particular, they

show that if the goods can be partitioned into two sets such that all agents consider goods

within each element of the partition substitutes and consider goods in different elements

complements, then a Walrasian equilibrium exists in the corresponding transferable utility

economy. A generalization of this result is offered in Shioura and Yang (2015). One possi-

ble extension of the current work would be the see if equilibrium also exists with Sun-Yang

preferences in the limited transfers and nontransferable utility economies.

5. Appendix A

Unless indicated otherwise, the definitions and results below can be found in Oxley

(2011):

Recall that a matroid I ⊂ X is a collection of sets such that (I1) ∅ ∈ I, (I2) y ∈ I,

x ≤ y implies x ∈ I and (I3) x, y ∈ I, σ(x) < σ(y) implies there is j such that xj < yj

and x+ χj ∈ I.
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There are various alternative ways to describe a matroid. One way is by characterizing

it maximal elements. For any matroid I, let B(I) = {x ∈ I | y ≥ x and y ∈ I implies y =

x} be the set of all maximal elements of I. Then, B(I) is a basis system; that is, (B1)

B(I) is nonempty and (B2) x, y ∈ B(I) and xj > yj implies there is k such that yk > xk

and x− χj + χk ∈ B(I).

If B ⊂ X satisfies (B1) and (B2), then I = {x ∈ X |x ≤ y for some y ∈ B} is a matroid

and B = B(I). Every basis system B satisfies the following stronger version of (B2): (B2∗)

x, y ∈ B(I) and xj > yj implies there is k such that yk > xk and x−χj +χk, y−χk+χj ∈
B(I). Also, all elements of a basis system have the same cardinality; that is, if x, y ∈ B
and B is a basis system, then σ(x) = σ(y). Hence, for any matroid I, B(I) is the set of

elements of I with the maximal cardinality; B(I) = {x ∈ I | y ∈ I implies σ(x) ≥ σ(y)}.
Gul and Stacchetti (2000) show that if u satisfies the substitutes property, then the

set of elements of Du(p) with the smallest cardinality is a basis system for every p.

For any B, let B⊥ = {χH − x |x ∈ B}. If B is a basis system, then B⊥ is also a basis

system and is called the dual of B.

A function r : X → IN is a rank function if (R1) 0 ≤ r(x) ≤ σ(x), (R2) x ≤ y implies

r(x) ≤ r(y) and (R3) r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y). For any rank function, r, the

set of all minimal (in the natural order on IRL) maximizers of r is a basis system. Also,

given any matroid I, the function r defined by r(x) = max{σ(y) | y ≤ x, y ∈ I} is a rank

function.

A weighted matroid is a function ρ defined as follows: for any additive and monotone

utility function v and any matroid I, let ρ(x) = max y≤x
y∈I

v(y). A rank function is a special

case of a weighted matroid where v(x) = σ(x).

To define academic preferences, we adopt the following concept from Yokote (2017):

Y ⊂ X is an M ]-convex set if x, y ∈ Y and xj > yj implies either x − χj , y + χj ∈ Y or

there is k such that yk > xk and x−χj +χk, y−χk+χj ∈ Y . It is easy to see that a set Y

is M ]-convex if and only if the function I∗Y such that I∗Y (x) = 0 if x ∈ Y and I∗Y (x) = −∞
if x /∈ Y is M ]-concave.

The utility function u is an academic preference if there exists an additive and mono-

tone utility function v and an M ]-convex set Y such that

u(x) =

{
max y∈Y

y≤x
v(y) if there is y ≤ x, y ∈ Y

−∞ otherwise
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Fact: Every academic preference satisfies the substitutes property.

Proof: Shioura (2009) shows that a weighted matroid is M ]-concave. The same argument

establishes that an academic preference is M ] concave. Since M ]-concavity is equivalent

to the substitute property, the fact follows.

Next, we will show that the utility function in Example 3 is an academic preference.

Identify H with the edges of an undirected graph with vertices {a, b, c, d, e}. Then, the set

of feasible schedules with all courses for credit, Y , is a collection of 3 or 4 edges that contain

no cycles. Let Z be the set of all subsets of H that contain no cycles. It is well-known

that Z is a matroid and therefore, Y ∗, the set of maximal elements of Z is a basis system.

Clearly, each element of Y ∗ has four edges and Y ∗ ⊂ Y . To prove that Y is M ] convex,

first assume that x, y ∈ Y ∗ and xj > yj . Then, by the strong exchange property B2∗, there

is k such that yk > xk and x− χj + χk, y − χk + χj ∈ Y ∗. If x ∈ Y ∗, y /∈ Y ∗ and xj > yj

(hence, x contains four edges and y contains three edges), we can always find ŷ ∈ Y ∗ such

that y ≤ ŷ and ŷj < xj . Then, by the strong exchange property B2∗, there is k such that

x − χj + χk, ŷ − χk + χj ∈ Y ∗. If yk = 1, then clearly x − χj + χk, y − χk + χj ∈ Y . If

yk = 0, then ŷ − χk + χj = y + χj ∈ Y and x− χj ∈ Y . Now we consider the case where

x /∈ Y ∗, y ∈ Y ∗ and xj > yj . Choose x̂ ∈ Y ∗ such that x ≤ x̂ and x̂j > yj . Then, by B2∗,

there is k such that x̂−χj +χk, y−χk +χj ∈ Y ∗ and hence x−χj +χk, y−χk +χj ∈ Y .

Finally, if x, y /∈ Y ∗ and xj > yj , choose x̂ ∈ Y ∗ such that x ≤ x̂ and clearly x̂j > yj .

Then we are back to the previous case for x̂ ∈ Y ∗ and y /∈ Y ∗ and we know that either

there exists k such that x̂− χj + χk, y− χk + χj ∈ Y or x̂− χj , y+ χj ∈ Y . In the former

case, x̂ − χj + χk ∈ Y ∗ and hence x − χj + χk, y − χk + χj ∈ Y . In the latter case, note

x − χj has only two edges and there is at most one other edge j′ such that x − χj + χj
′

forms a cycle. Find k′ 6= j′ and yk
′
> 0, then x− χj + χk

′
, y + χj − χk′ ∈ Y . Thus, Y is

M ] and the utility function in Example 3 is an academic preference.
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6. Appendix B

6.1 Proof of Lemma 1

First, we will modify the definition of the single improvement property (SI) (Gul and

Stacchetti, 1999) as follows:

Definition: The function u has the single improvement property (SI) if for all p such

that Du(p) ⊂ domu and all x ∈ domu − Du(p), there is y such that U(x, p) < U(y, p),

|supp (x)− supp (y)| ≤ 1 and |supp (y)− supp (x)| ≤ 1.

Theorem 4.1 and Theorem 5.1 in Shioura and Tamura (2015) establish that the sub-

stitutes property (SI) and M ]-concavity are equivalent. Also, a utility function u is sub-

modular if it satisfies the substitutes property. Gul and Stacchetti (1999) show that (SI)

is equivalent to the substitutes property if the effective domain is X. Their proof reveals

that the above modified definition of (SI) is equivalent to the substitutes property for a

general effective domain.

The following proof is similar to the proof that k-satiation preserves substitutes prop-

erty in Bing, Lehmann and Milgrom (2004). We first prove two auxiliary lemmas. Lemma

B1 provides an alternative characterization of M ]-concavity.

Lemma B1: Let u be a utility function that satisfies the substitutes property. If x, y ∈

domu with x 6≥ y and y 6≥ x, then there is k, j such that xj > yj , yk > xk and u(x− χj +

χk) + u(y + χj − χk) ≥ u(x) + u(y).

Proof: Since u satisfies the substitutes property, u is M ]-concave. Since y 6≥ x, there

exists j with xj > yj . Since x, y ∈ domu, M ]-concavity implies that either there is k such

that yk > xk such that u(x − χj + χk) + u(y + χj − χk) ≥ u(x) + u(y) and we are done,

or that u(x− χj) + u(y + χj) ≥ u(x) + u(y). That is,

u(y + χj)− u(y) ≥ u(x)− u(x− χj)

Similarly, since x 6≥ y, there exists l with yl > xl. It follows from M ]-concavity that either

there is k with xk > yk such that u(x − χk + χl) + u(y + χk − χl) ≥ u(x) + u(y) and we

are done, or

u(x+ χl)− u(x) ≥ u(y)− u(y − χl)
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The above two inequalities together with the submodularity of u imply

u(x− χj + χl)− u(x− χj) ≥ u(x+ χl)− u(x) ≥ u(y)− u(y − χl)

u(y − χl + χj)− u(y − χl) ≥ u(y + χj)− u(y) ≥ u(x)− u(x− χj)

Hence,

u(x− χj + χl) + u(y − χl + χj) ≥ u(x) + u(y)

as desired.

The following lemma states that if a bundle with n elements does not maximize utility

among all bundles with at least n elements, then we can increase its utility by either adding

an element to it or replacing one of its elements with a different one.

Lemma B2: Let u be a utility function that satisfies the substitutes property. Let A,B

be such that |B| ≥ n = |A|, χA ∈ domu and U(χB , p) > U(χA, p). Then, either there

exists l 6∈ A such that U(χA + χl, p) > U(χA, p) or there exists k ∈ A, l 6∈ A such that

U(χA + χl − χk, p) > U(χA, p).

Proof: Let D denote the utility maximizing bundles at price p among all bundles with at

least n elements. Denote the Hausdorff distance between any two sets Â, B̂ as d(Â, B̂) =

|Â − B̂| + |B̂ − Â|. Let B∗ minimize the Hausdorff distance from A among the elements

of D. By assumption, U(χB
∗
, p) > U(χA, p). Clearly B∗ − A 6= ∅, otherwise, since

|A| = n, |B∗| ≥ n and B∗ ⊆ A, we have A = B∗, a contradiction. Since χA ∈ domu, we

have χB
∗ ∈ domu.

First, assume A−B∗ 6= ∅. By Lemma B1, there exists k, l with k ∈ A−B∗, l ∈ B∗−A

such that

u(χA) + u(χB
∗
) ≤ u(χA − χk + χl) + u(χB

∗
− χl + χk)

Since the total cost of bundles on either side of the above inequality is the same, we have

U(χA, p) + U(χB
∗
, p) ≤ U(χA − χk + χl, p) + U(χB

∗
− χl + χk, p)

By assumption, U(χB
∗
, p) ≥ U(χB

∗−χl+χk, p). If U(χB
∗
, p) = U(χB

∗−χl+χk, p), then

χB
∗ − χl + χk is also optimal at price p among all bundles with at least n elements and
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d(A,B∗∪{k}−{l}) < d(A,B∗), which contradicts the definition of B∗. Thus, U(χB
∗
, p) >

U(χB
∗ − χl + χk, p) and by the inequality above, U(χA, p) < U(χA − χk + χl, p).

Second, assume A − B∗ = ∅. Then, since A 6= B∗, A is a strict subset of B∗ and

|B∗| ≥ n+ 1. For any j ∈ B∗ − A, d(B∗ − {j}, A) < d(B∗, A) and |B∗ − {j}| ≥ n. Then,

U(χB
∗
, p) > U(χB

∗ − χj , p) and therefore,

pj < u(χB
∗
)− u(χB

∗
− χj)

Since u is submodular, u has decreasing marginal returns. Recall that χA + χj ∈ domu,

χA ≤ χB∗ and j /∈ A. Hence,

pj < u(χB
∗
)− u(χB

∗
− χj) ≤ u(χA + χj)− u(χA)

That is, U(χA, p) < U(χA + χl, p).

Proof of Lemma 1: Since M ]-concavity is equivalent to (SI), it suffices to show that [u]k

satisfies the latter. Since the effective domain of [u]k is nonempty, there is s ∈ dom [u]k

such that σ(s) ≥ k, u(s) = [u]k(s) and s is optimal at price p for the utility function [u]k.

Let [U ]k be consumer s utility function over both indivisible goods and transfers; that is,

[U ]k(x, p) = [u]k(x)− p · x.

Suppose that x ∈ dom [u]k −D[u]k(p), then σ(x) ≥ k. We need to show there exists y

such that [U ]k(x, p) < [U ]k(y, p), |supp (x)− supp (y)| ≤ 1, |supp (y)− supp (x)| ≤ 1.

If σ(x) = k, then since σ(s) ≥ k and U(s, p) > U(x, p), Lemma B2 yields the desired

conclusion.

If σ(x) > k, then σ(z) ≥ k for any z such that |supp (x) − supp (z))| ≤ 1 and

|supp (z)−supp (x)| ≤ 1. Recall that u satisfies (SI) and x 6∈ Du(p), x ∈ dom [u]k ⊆ domu.

Then, there exists y such that U(x, p) < U(y, p), |supp (x) − supp (y)| ≤ 1, |supp (y) −

supp (x)| ≤ 1. Since σ(y), σ(x) ≥ k, [U ]k(x, p) = U(x, p), [U ]k(y, p) = U(y, p) and there-

fore, [U ]k(x, p) < [U ]k(y, p).

6.2 Proof of Lemma 2

This is a corollary of Theorem 8.2 in Shioura and Tamura (2015). Although they

assume {o, χH} ∈ domui, their proof can be applied under our assumption that there exists
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a feasible allocation ξ such that
∑N
i=1 ξi ≤ χH and ξi ∈ domui for all i. By monotonicity,

our assumption implies that there exists ξ∗ such that ξ∗i ∈ domui,
∑N
i=1 ξ

∗
i = χH and

N∑
i=1

ui(ξ
∗
i ) = max

{
N∑
i=1

ui(xi)|xi ∈ domui,∀i,
N∑
i=1

xi = χH

}

Then, the remainder of the proof follows Theorem 8.2 in Shioura and Tamura (2015).

6.3 Proof of Theorem 1

Suppose E = {(ui, wi, bi)Ni=1} is a limited transfers economy. The proof for existence

of an equilibrium relies on Lemma 2. We first introduce some properties of equilibria in

a transferable utility economy Eo = {(ui)Ni=1}. In Eo, as each agent has enough divisible

goods to buy whatever bundle of indivisible goods she desires, the set of equilibrium prices

and the set of equilibrium allocations of indivisible goods are independent of the initial

endowments of both divisible and indivisible goods. Hence we can state the consumers’

problem as maximizing the following function over x for given prices p:

Ui(x, p) = ui(x)− p · x

By assumption, wi ∈ domui and ui satisfies the substitutes property for each i. Then,

Lemma 2 establishes the existence of an equilibrium with deterministic allocations for the

transferable utility economy. It is easy to see that for any given allocation α, the set of

prices that support α (that is, p such that (p, α) is an equilibrium) is defined by a finite set of

linear weak inequalities and therefore is compact and convex. Since we are in a transferable

utility setting, any Pareto efficient allocation must maximize social surplus. It is also easy

to verify that if (p, ξ) is a (deterministic) equilibrium, and ξ̂ is a social surplus maximizing

allocation, then (p, ξ̂) is also an equilibrium. The following exchangeability property is a

consequence of the last two observations: if (p, α) and (p̂, α̂) are both equilibria, then (p, α̂)

is also an equilibrium. Then, it also follows that the set of random equilibrium allocations

is simply the convex hull of the set of deterministic equilibrium allocations and hence, the

set of equilibrium prices for random allocations is the same as the set of equilibrium prices

for deterministic allocations. It follows that for any transferable utility economy, there is
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a set of prices P ∗ and a set of random allocations A∗ such that the set of equilibria is

P ∗ ×A∗.

Since every price vector in P ∗ supports the same set of allocations, P ∗ is a nonempty,

convex and compact set as it is defined by a finite set of linear weak inequalities. Since

A∗ is the set of social surplus maximizing allocations, it is also a nonempty, convex and

compact set. We summarize these observations in Lemma B3 below.

Lemma B3: For any transferable utility economy Eo, the set of equilibria is P ∗ × A∗

for some nonempty compact convex set of prices P ∗ and the nonempty compact convex

set of social surplus maximizing random allocations A∗.

Given the transferable utility economy Eo, let Ao be the set of all feasible ran-

dom allocations contained in the product of the convex hulls of agents’ effective do-

mains. Restricting attention to Ao is without loss of generality; for any random allocation

α 6∈ Ao, there must be some agent with utility −∞ so that α cannot be efficient and

thus α /∈ A∗. Since the set of deterministic feasible allocations is finite and wi ∈ domui

for each i, Ao is a nonempty, compact and convex subset of a Euclidian space. For any

λ = (λ1, . . . , λN ) ∈ [0, 1]N , we define the folllowing maximization problem:

M(λ) = max
α∈Ao

∑
i

λiui(αi)

We set −∞ × 0 = −∞; that is, when λi = 0, λiui(·) has the same effective domain

as ui and remains 0 on the effective domain. Note that M(λ) is a linear programming

problem. Let ∆(λ) ⊂ Ao denote the set of solutions to this problem. For λ ∈ [0, 1]N , define

Eo(λ) = {(λiui)Ni=1}. As for each i, domui = domλiui and λui satisfies the substitutes

property, Eo(λ) is also a transferable utility economy.

By Lemma B3, ∆(λ) is the set of equilibrium allocations for the economy Eo(λ). Let

a =
∑
i ui(χ

H) and P = [0, a]N . Then any equilibrium price p of the transferable utility

economy Eo(λ) must lie in P. Let P ∗(λ) be the set of all equilibrium prices for Eo(λ).

Lemma B4: For any limited transfers economy E , there exists λ ∈ [0, 1]N and an equi-

librium (p, α) of the corresponding transferable utility economy Eo(λ) such that for each

i, if λi < 1, then p · ᾱi = bi and if λi = 1, then p · ᾱi ≤ bi.
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Proof: Let Uλi be consumer i’s utility function in the transferable utility economy Eo(λ);

that is, Uλi (θ, p) = λiui(θ)− p · θ̄.

By Lemma B3, the correspondences ∆ and P ∗ are nonempty, compact and convex

valued. Since ∆(λ) is also the solution of the maximization problem defined above, Berge’s

Theorem ensures that ∆ is upper hemi-continuous (uhc). Next, we will show that P ∗ is uhc

as well. Since P ∗ compact-valued, it is enough to show that λ(t) ∈ [0, 1]N , p(t) ∈ P ∗(λ(t))

for all t = 1, 2, . . ., limt→∞ λ(t) = λ and limt→∞ p(t) = p imply that p ∈ P ∗(λ).

Choose α(t) ∈ ∆(λ(t)) for all t. Since Ao is compact, we can assume, by passing to

a subsequence if necessary, that α(t) converges. Let α = limt→∞ α(t). Since ∆ is uhc,

α ∈ ∆(λ). Let β be any feasible allocation. Then, the efficiency of α and the feasibility of

β imply

U
λ(t)
i (αi(t), p(t)) = λi(t)ui(αi(t))− p(t) · ᾱi(t) ≥ λi(t)ui(βi)− p(t) · β̄i = U

λi(t)
i (βi, p(t))

Then, the continuity of ui ensures that Uλi (αi, p) ≥ Uλi (βi, p) for all β and for all i. This

implies that p ∈ P ∗(λ) and establishes the upper hemi-continuity of P ∗.

Next, for each i define correspondence Γi from P × [0, 1]L to [0, 1] as follows:

Γi(p, z) =

 [0, 1] if p · (z − wi) = bi
0 if p · (z − wi) > bi
1 if p · (z − wi) < bi

Clearly, for each i, Γi is nonempty, convex, compact valued and uhc.

Let S = P ×Ao × [0, 1]N and let f be a correspondence from S to itself defined as

f(p, α, λ) = P ∗(λ)×∆(λ)× Γ1(p, ᾱ1)× · · · × ΓN (p, ᾱN )

Since P ∗, ∆ and Γi’s are nonempty, convex, compact valued and uhc, and the mapping

α → ᾱi is continuous, f is also nonempty, convex, compact valued and uhc. Then, by

Kakutani’s Fixed-Point Theorem, there is an s∗ = (p∗, α∗, λ∗) such that f(s∗) = s∗. Thus,

(p∗, α∗) is an equilibrium of the transferable utility economy Eo(λ∗).

We claim that λ∗i > 0 for all i. Suppose λ∗i = 0 for some i. Then agent i’s utility is

identically 0 on the effective domain of ui and since s∗ is a fixed point of f , p · (ᾱ∗i −wi) ≥
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bi > 0. But this contradicts the fact that αi solves the consumer i’s utility maximization

problem.

To complete the proof of the lemma, we will show that p∗ · (ᾱ∗i −wi) ≤ bi for all i and

that the inequality is an equality if λ∗i < 1. Since s∗ is a fixed point of f and λ∗i > 0, by

definition of Γi, we must have p∗ · (ᾱ∗i −wi) ≤ bi. Moreover, if λ∗i < 1, again by definition

of Γi, we must have p∗ · (ᾱ∗i − wi) = bi.

To conclude the proof of Theorem 1, we will show that (p∗, α∗) is an equilibrium of the

limited transfers economy E . Consider any θ that i can afford in E ; that is, p∗ ·(θ̄−wi) ≤ bi.

The optimality of α∗i for i in the transferable utility economy implies

λ∗i (ui(θ)− ui(α∗i )) ≤ p∗ · θ̄ − p∗ · ᾱ∗i (2)

If λ∗i = 1, then equation (2) implies that αi solves the utility maximization problem of agent

i in the limited transfers economy E . If λ∗i < 1, since s∗ is a fixed-point of f , the right-hand

side of equation (2) must be less than or equal to zero as p∗ · (ᾱ∗i −wi) = bi. Then, we have

λ∗i (ui(θ) − ui(α∗i )) ≤ 0 and hence ui(θ) − ui(α∗i ) ≤ λ∗i (ui(θ) − ui(α∗i )) ≤ p∗ · θ̄ − p∗ · ᾱ∗i .

Again, this shows that αi solves the utility maximization problem of agent i in E .

6.4 Proof of Theorem 2

Fix the nontransferable utility economy E∗ = {(ui, bi)Ni=1} and define the sequence of

limited transfers economies En = {(nui, wi, bi)Ni=1} for n = 1, 2 . . . where wji = 0 for all

j, i. Since o ∈ domui for all i, by Theorem 1, each En has an equilibrium (pn, αn).21 By

monotonicity, o ∈ domui implies that domui = X and hence, we need not worry about

the issue of effective domains. Let P = [0,
∑
i bi]

L. Note that pn must lie in P . Hence, the

sequence (pn, αn) lies in a compact set and therefore has a limit point (p, α). By passing

to a subsequence if necessary, we assume that (pn, αn) converges to (p, α). To conclude

the proof, we show that this limit point must be a strong equilibrium of E∗.

Clearly, α is feasible for E∗. Since pn · ᾱni ≤ bi for all n, we know p · ᾱi ≤ bi and hence

αi is affordable for i in E∗. Take any other affordable random allocation θ for i in E∗; that

21 When there is no risk of confusion, we use superscripts to specify the particular indivisible good (with
generic element j) and the particular element in a sequence of prices or allocations (with generic element
n,m). Otherwise, we use double superscripts.
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is, p · θ̄ ≤ bi. We need to show that ui(θ) ≤ ui(αi). First, assume p · θ̄ < bi. Then, there

exists ε > 0 small enough such that for any p′ ∈ Bε(p)∩ IRL+, p′ · θ̄ < bi, where Bε(p) is the

ε-ball centered at p. Since limn→∞ pn = p, we can find M > 0 such that for all n ≥ M ,

pn ·θ̄ < bi. Hence, θ is affordable for i in En for n ≥M . Since αni is an optimal consumption

at pn, nui(θ)−pn · θ̄ ≤ nui(αni )−p · ᾱni ; that is, ui(θ)−ui(αni ) ≤ (pn · θ̄−pn · ᾱni )/n ≤ bi/n

for all n ≥M . Then, the continuity of ui ensures ui(θ) ≤ ui(αi) as desired.

Next, assume p · θ̄ = bi. Then, there exists a sequence θn converging to θ such that

p · θ̄n < bi for all n. In the previous paragraph, we showed that ui(θ
n) ≤ ui(αi). Taking a

limit and appealing to the continuity of ui yields ui(θ) ≤ ui(αi). Thus, αi is optimal for i

at prices p in E∗.

To prove that all goods with strictly positive prices are allocated to the agents, it is

enough to show that pj ·(1−
∑N
i=1 ᾱ

j
i ) = 0 for all j. This follows since pnj ·(1−

∑N
i=1 ᾱ

nj
i ) = 0

for all j, n and hence, the same equality holds in the limit as n goes to infinity. Thus, (p, α)

is an equilibrium of E∗.

To conclude, we will show that (p, α) is a strong equilibrium; that is, for all i, ui(θ) =

ui(αi) implies p·θ̄ ≥ p·ᾱi. If not, assume that p·θ̄ < p·ᾱi for some θ such that ui(θ) = ui(αi)

and consider two cases: (1) agent i is satiated at θ; that is, ui(θ) = ui(αi) = ui(χ
H) or (2)

she is not satiated at θ.

If (1) holds, then for sufficiently large n, purchasing θ instead of αi is affordable for i

at pn and nui(θ)− pn · θ̄ > nui(αi)− pn · ᾱni , contradicting the optimality of αni for agent

i in En. If (2) holds, then choose 0 < r < 1 such that p(rχH + (1− r)θ̄) < pᾱi. Again, for

n sufficiently large, the random consumption rδχH + (1− r)θ, where δχH is the degenerate

lottery that yields χH for sure, is affordable at pn and yields a higher utility than αni ,

contradicting its optimality for agent i in En.

6.5 Proof of Lemma 3 and Theorem 3

We call E∗ = {(ui, 1)Ni=1} a nontransferable utility economy with general consumption

sets if ui satisfies the substitutes property for all i and there is x1, · · · , xN+1 such that∑N+1
k=1 xk ≤ χH and xk ∈ domui for all k, i. Unlike a nontransferable utility economy, we

do not require that o ∈ domui. Hence, the definition of a nontransferable utility econ-

omy with general consumption sets is similar to that of a nontransferable utility economy
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with modular constraints; instead of modular constraints, there are more general utility

functions for which domui = X need not hold.

Lemma B5: A nontransferable utility economy with general consumption sets has a

strong equilibrium.

Proof: Fix E∗ = {(ui, 1)Ni=1} as a nontransferable utility economy with general con-

sumption sets. By definition, there exists x1, · · · , xN+1 such that xi ∈ domuj for all

i = 1, ..., N + 1, j = 1, ..., N . Since ui is monotone, we can assume
∑N+1
i=1 xi = χH . Define

the random consumptions θ0, θ1 as follows: θ0(xi) = 1/N for all i = 1, . . . , N − 1 and

θ0(xN + xN+1) = 1/N ; θ1(xi) = 1/(N + 1) for all i = 1, . . . , N + 1. Note that θ̄0j = 1/N

and θ̄1j = 1/(N + 1) for all j ∈ H. By monotonicity again, every realization of θ0 and θ1

lies in the effective domain of every agent’s utility function. Let α0 be a random allocation

such that α0
i = θ0 for all i = 1, . . . , N . Easy to see that such a random allocation exists.

Consider the following limited transfers economy with random endowments of indi-

visible goods. Each consumer i has the utility ui, the random endowment of indivisible

goods θ0 and the endowment of the divisible good bi = 1. Consumer i’s budget set is

B(p, θ0, 1) = {θ ∈ Θ| p · (θ̄ − θ̄0) ≤ 1}

Otherwise, this economy is identical to the limited transfers economy. Extending the

existence proof in Theorem 1 to this economy is straightforward since every realization of

the random endowment is in the effective domain of ui for each agent i.

Next, define the sequence of limited transfers economies En = {(nui, θ0, 1)Ni=1} for

n = 1, 2 . . .. Then, each En has an equilibrium (pn, αn). The monotonicity of the utility

functions implies that we can assume
∑N
i=1 ᾱ

n
i = χH for each n without loss of generality.

We distinguish two cases:

Case 1: {pn}n≥1 has a bounded subsequence.

As {αn}n≥1 is bounded, by passing to a subsequence if necessary, we assume that

(pn, αn) is bounded and converges to (p∗, α). Let p = γp∗ for γ = 1/(1 + p∗ · θ̄0). We will

show that (p, α) is an equilibrium of the economy E∗ = {(ui, 1)Ni=1}.

Clearly, α is feasible for E∗ and pn · (ᾱni − θ̄0) ≤ 1 for all n, i. Therefore, the definition

of γ ensures p · ᾱi ≤ 1 for all i. Hence, αi is affordable for i in E∗. Take any other
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affordable random allocation θ for i in E∗; that is, p · θ̄ ≤ 1. We need to show that

ui(θ) ≤ ui(αi). First, assume p · θ̄ < 1. Then, there exists ε > 0 small enough so that

for any p′ ∈ Bε(p) ∩ IRL+, p′ · θ̄ < 1. Since lim pn = p∗, we can find M > 0 such that for

all n ≥ M , pn · (θ̄ − θ̄0) < 1. That is, θ is affordable for i in En for n ≥ M . Since αni is

optimal, nui(θ)− pn · θ̄ ≤ nui(αni )− pn · ᾱni . Hence, ui(θ)−ui(αni ) ≤ pn · (θ̄− ᾱni )/n for all

n ≥M . Since {pn} is bounded, the right-hand side goes to 0 as n goes to infinity. Passing

to the limit and invoking the continuity of ui yields ui(θ) ≤ ui(αi) for all p · θ̄ < 1.

Next, assume p · θ̄ = 1. If ui(θ) = −∞, then we are done. Now suppose ui(θ) ∈ IR;

that is, θ’s support is contained in domui. Recall that ui(θ
0) ∈ IR and by definition of p,

p · θ̄0 < 1. Then, let θn = (1/n)θ0 + (1− 1/n)θ and note that p · θ̄n < 1 and ui(θn) ∈ IR.

Then, the argument in the previous paragraph yields ui(θ
n) ≤ ui(αi). Taking yet another

limit and appealing to the continuity of ui establishes ui(θ) ≤ ui(αi); that is, αi is optimal

for agent i at prices p in E∗.

Case 2:
∑L
j=1 p

nj →∞.

Let p̂n = N · pn/(
∑L
l=1 p

nl) and note that p̂n ∈ [0, N ]L. Let (p, α) be a limit point of

(p̂n, αn) and assume, without loss of generality, that (p̂n, αn) converges to (p, α). We will

show that this (p, α) must be an equilibrium of E∗ = {(ui, 1)Ni=1}. Clearly, α is feasible for

E∗. For any n, as αni is affordable for agent i at pn in economy En, we have

pn · ᾱni /pn · θ̄0 ≤ (1 + pn · θ̄0)/pn · θ̄0

Recall that θ̄0j = 1/N for all j and
∑L
j=1 p

nj →∞, we know pn · θ̄0 →∞ and hence

lim
n→∞

(1 + pn · θ̄0)/pn · θ̄0 = 1

Also by the definition of p̂n, pn · ᾱni /pn · θ̄0 = pn · ᾱni . Then passing the limit in the above

inequality implies that p · ᾱi ≤ 1 and thus αi is affordable at p as desired.

Since (pn, αn) is a Walrasian equilibrium and
∑N
i=1 ᾱ

n
i = χH , for each n,

N∑
i=1

p̂n · ᾱni = p̂n · χH = N
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The last equation comes from the definition of p̂n. Passing to the limit yields

N∑
i=1

p · ᾱi = N

Since p · ᾱi ≤ 1 for each i, we have p · ᾱi = 1 for all i.

Consider any affordable random allocation θ in E∗; that is, p · θ̄ ≤ 1. We will show

that ui(θ) ≤ ui(αi) for all i. First, assume p · θ̄ < 1 = p · ᾱi. Then, there exists ε > 0 such

that for any p′ ∈ Bε(p)∩ IRL+ and random consumption θ′ ∈ Bε(αi), we have p′ · θ̄ < p′ · θ̄′.

Since p = lim p̂n and αi = limαni , we can find M > 0 such that p̂n · θ̄ < p̂n · ᾱni for all

n ≥ M ; that is, pn · θ̄ < pn · ᾱni . Then, since αni is affordable for i in En for n ≥ M , so

is θ. Since αni is optimal, we can derive ui(ci, θ)− ui(ci, αni ) ≤ pn · (θ̄ − ᾱni )/n < 0 for all

n ≥ M . Passing to the limit, the continuity of ui implies ui(θ) ≤ ui(αi). Next, assume

p · θ̄ = 1 and recall that ui(θ
1) ∈ IR for any agents i and p · θ̄1 < p · θ̄0 = 1. Then, the

result follows from the corresponding argument in Case 1.

To prove that all goods with strictly positive prices are allocated to agents (for both

case 1 and case 2), it is sufficient to show that pj · (1−
∑N
i=1 ᾱ

j
i ) = 0 for all such j. This

is true since pnj · (1−
∑N
i=1 ᾱ

nj
i ) = 0 for all n = 1, 2 . . . and for all j ∈ H such that pj > 0

and, therefore, pj · (1−
∑N
i=1 ᾱ

j
i ) = 0. Thus, (p, α) is an equilibrium of E∗.

Finally, we will show that (p, α) is a strong equilibrium of E∗; that is, for all i,

ui(θ) = ui(αi) implies p · θ̄ ≥ p · ᾱi. If not, assume that p · θ̄ < p · ᾱi for some θ such that

ui(θ) = ui(αi). Then, for sufficiently large n, purchasing θ instead of αi is affordable for i

at pn in En and −p · θ̄ > −p · ᾱni , contradicting the optimality of αni for i in En.

Proof of Lemma 3: By assumption, the effective domain of u(c, ·) is nonempty. Recall

that the operations that transfrom u to uz (the z-constrained u), [u]k (the k-satiation of

u) and [u]k (the k-lower bound u) all preserve the substitutes property. Similarly, the

binary operation u � v (the convolution of u, v) also preserves the substitutes property.

Then, to complete the proof of the lemma, we note that given any modular constraint

c = {(A(k), l(k), h(k))Kk=1} for u, we can express u(c, ·) as a finite composition of these op-

erations applied to u. This is straightforward; for example, let c = {{(A(k), l(k), h(k))4k=1}
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where A1, A2, A3 ⊂ H are disjoint sets and A4 = A1 ∪A2. Then, define

û =
(
[[v � w]h4 ]l4 � [[uz3 ]h3 ]l3

)
� uz5 where

v = [[uz1 ]h1 ]l1 and w = [[uz2 ]h2 ]l2

zi = χAi for all i = 1, 2, 3, 4 and z5 = χH−A for A =
⋃4
i=1Ai. Since each utility function

on the right-hand side of the equation above satisfies the substitutes property and all of

the operations applied to them preserve the substitutes property, û satisfies the substitutes

property as well, and since c is a modular constraint for u, û = u(c, ·).

Proof of Theorem 3: Fix a nontransferable utility economy with modular constraints

E∗c = {(ui, 1)Ni=1, {ci}Ni=1}. Since ui is monotone, so is u(ci, ·). By Lemma 3, ui(ci, ·)

satisfies the substitutes property. Hence, E∗ = {(ui(ci, ·), 1)Ni=1} is a nontransferable utility

economy with general consumption sets and by Lemma B5, E∗c has a strong equilibrium.

6.6 Proof of Lemma 4, Theorem 4 and the Corollary

Proof of Lemma 4: Clearly, o ∈ Id and x, y ∈ Id and x ≤ y implies x ∈ Id. Hence, we

need only prove that x, y ∈ Id and σ(x) < σ(y) implies there is j such that xj < yj and

xj + χj ∈ Id.

We order d, the hierarchy of constraints, in the obvious way: (A, k) � (B,n) if A 6= B

and B ⊂ A. Call j a free element in d if j is not an element of any A such that (A,n) ∈ d

for some n. Otherwise, call j a constraint element. Let F ⊂ H be the set of free elements

in d and let F c = H\F be the set of constraint elements. Suppose there is j ∈ F such that

yj > xj . Then, clearly x+ χj ∈ Id and we are done. Otherwise, xj ≥ yj for all j ∈ F and

hence there must be some �-maximal constraint, (A,n), such that σ(y∧χA) > σ(x∧χA).

Let A1 = A,n1 = n. Then, either there is j ∈ A1 such that yj > xj , j /∈ B for any

(B,n′) ∈ d such that (A1, n1) � (B,n′) in which case we have x + χj ∈ Id and we are

done, or there is no such j. In the latter case, there must be a maximal element of the set

{(B,n′) ∈ d | (A1, n1) � (B,n′)} such that σ(y ∧ χB) > σ(x ∧ χB). Let A2 = B,n2 = n′

and continue in this fashion until we end up with (Al, nl) where σ(y ∧ χAl) > σ(x ∧ χAl)

and there is no (C, n′′) ∈ d such that (Al, nl) � (C, n′′). Hence, x+ χj ∈ Id.
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Proof of Theorem 4: Fix the substitutes economy with matroid technology Ẽ =

{(ui, bi)Ni=1, I}. Let B be the production possibility frontier of I. Hence, B is a basis

system (Appendix A). We will assume, without loss of generality, that there are at least

two elements in B. Otherwise, we are back to the standard case without production covered

in Theorem 3. Define

H = {1, . . . , L} := {i |xi > 0 for some x ∈ B} (3)

Let B⊥ = {χH−x |x ∈ B}. Then B⊥ is a basis system since B is a basis system (Appendix

A). Let r be the rank function associated with B⊥; that is,

r(x) = max{σ(x ∧ y) | y ∈ B⊥}

Since every weighted matroid satisfies the substitutes property, so does r (Appendix A).

Now, consider the sequence of N + 1-agent nontransferable utility economies without pro-

duction En = {(ui, bi)N+1
i=1 } with aggregate endowment of indivisible goods χH , uN+1 = r

and bN+1 = n. By Theorem 2, let (pn, αn) be a strong equilibrium for economy En. With-

out loss of generality, we assume that αn converges and each pnj converges either to a real

number or to infinity.

Let n∗ = σ(x) for all x ∈ B⊥ and let n̂ be the cardinality of B⊥. Since B⊥ is a basis

system, n∗ is well defined and n̂ ≥ 2 since |B| ≥ 2. We claim that there exists m such that

for all n > m, the equilibrium utility of agent N + 1 is maximal, i.e., equal to n∗. To see

why this is true, first assume that lim pnj <∞ for all j. Then, it is immediate that agent

N + 1’s utility is maximal since she can afford to buy the entire endowment in Ên when n

is sufficiently large.

Next, assume that lim pnj =∞ for all j. Then, agent N + 1 must be consuming each

j with arbitrarily high probability as n approaches infinity. In particular, there must be

some m such that for all n > m, the probability with which agent N+1 consumes j, ᾱjN+1,

must be greater than (n̂ − 1)/n̂. Equation (3) above ensures that for all j ∈ H, there is

y ∈ B such that yj > 0 and therefore, there is y ∈ B⊥ such that yj = 0. These observations

imply that agent N + 1 can afford the random consumption θ such that θ(x) = 1/n̂ for all

x ∈ B⊥. Clearly, this θ gives agent N + 1 her maximal utility.
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Finally, if there exists at least one j such that lim pnj < ∞ and some j’s such that

lim pnj =∞, then choose ε ∈ (0, 1− (n̂− 1)/n̂). The argument of the preceding paragraph

establishes that for large enough n, the probability with which agent N + 1 consumes any

good whose price goes to infinity must be greater than ε + (n̂ − 1)/n̂ for n large enough.

By consuming ε/2 less of one such good, this agent will have enough money to consume all

of the goods in the first category; that is, the goods such that lim pnj <∞. Hence, again,

agent N + 1 can afford the random consumption θ described above and her equilibrium

utility must be n∗.

Let θn be the equilibrium consumption of agent N + 1 in the economy En for some n

large enough to ensure that her payoff is maximal; that is, uN+1(θn) = n∗. Since (pn, αn)

is a strong equilibrium, we can assume, without loss of generality, that agent N + 1 only

consumes bundles in B⊥. That is, θn(x) > 0 implies x ∈ B⊥. This means that αn(ξ) > 0

implies
∑N
i=1 ξi ≤ z for some z ∈ B. Since ui is monotone for each i, it is without loss of

generality to assume y :=
∑N
i=1 ξi = z. If instead yj < zj , then the fact that αn is a strong

equilibrium ensures pnj = 0 in which case we can give good j to any agent i = 1, . . . , N

and still end up with optimal bundles for these agents.

Then, to construct a strong equilibrium (pn, β) of Ẽ = {(ui, bi)Ni=1, I} and let

β(x1, . . . , xN , z) = αn(x1, . . . , xN , χ
H − z)

for every deterministic allocation (x1, . . . , xn) and z ∈ B. Since αn is a strong equilibrium

for the (N + 1)-agent exchange economy En, αnN+1(χH − z) > 0 implies (χH − z) ∈ B⊥ is

the cheapest optimal consumption for agent N + 1; that is, pn(χH − z) ≤ pn(χH − y) for

all y ∈ B. This means that z maximizes profit among all y ∈ B. Other requirements of

a strong equilibrium follow immediately from the fact that (pn, α) is a strong equilibrium

of the exchange economy En. Hence, (pn, β) is a strong equilibrium of the production

economy with nontransferable utility Ẽ = {(ui, bi)Ni=1, I}.

The Pareto-efficiency of strong equilibria follows from standard arguments.

Proof of the Corollary: Fix Ẽc = {(ui, 1)Ni=1, {ci}Ni=1, I}, a production economy with

nontransferable utility and modular constraints. Let Ẽ = {(ui(ci, ·), 1)Ni=1, I}. Notice that
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Ẽ is not a production economy with nontransferable utility as domui(ci, ·) 6= X so that

Theorem 4 does not directly apply. However, similar to the proof for Theorem 3, we can

define Ẽ∗ = {(ui, 1)Ni=1} as a production economy with nontransferable utility and general

consumption sets if (1) ui satisfies the substitutes property for all i; (2) I is a matroid and

(3) for all z ∈ B, there exist x1, · · · , xN+1 such that
∑N+1
k=1 xk ≤ z and xk ∈ domui(ci, ·) for

all k, i. Clearly, Ẽ satisfies all those conditions. Then a combination of ideas in the proofs

of Theorem 3 and Theorem 4 can guarantee the existence of a strong equilibrium(p, α) in

Ẽ . It is easy to see (p, α) is also a strong equilibrium of Ẽc.
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