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Abstract

We study the repeated prisoner’s dilemma in a large population with random
matching and overlapping generations. Our goal is to study the extent to which
cooperation can be supported by equilibria where players use simple strategies
and have very limited information about their opponents. To this end, we assume
players have access to only first-order information about their current partners,
meaning that a player’s record tracks information about her past actions only,
and not her partners’ past actions (or her partners’ partners’ actions). Cooper-
ation in strict equilibrium is impossible if payoffs are submodular, or if players
can erase their records. If payoffs are sufficiently supermodular, then cooperation
can be sustained by a tolerant version of grim trigger strategies, where a player
retains good standing until her record reflects a certain number of defections.
Players close to the threshold may cooperate even with defectors; this “uncon-
ditional cooperation” is crucial for sustaining maximal cooperation. If players
can forge records of fake past interactions and successfully coordinate with their
current partners, this tolerant version of grim trigger is the unique family of
strategies that sustains cooperation in equilibrium.
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1 Introduction

In many settings of economic interest, individuals interact with different partners over

time, and bad behaviour against one partner causes a negative response by other

members of society. This paper studies such “community enforcement” in the repeated

prisoner’s dilemma. Our two goals are to better understand what sorts of information

suffice for good community outcomes and to provide a foundation for the analysis of

relatively simple strategies that we think might be descriptively plausible. To this end,

we depart from past models of community enforcement (which we review in Section

2) by dropping the assumption of a common start date and calendar time, and by

considering quite restrictive forms of information and record-keeping. We then study

when cooperation is possible under these restrictions, and how the maximal level of

cooperation varies with the parameters of the underlying game.

To place our work in context, recall that in the standard repeated game model,

a fixed set of players interacts repeatedly with a commonly known start date and a

common notion of calendar time. When each player’s signals are sufficient to statisti-

cally identify the vector of her opponents’ actions, equilibria that support cooperation

usually exist when players are patient, but the most efficient equilibria are typically

“complicated” if there is any noise in the monitoring structure. This model seems

natural for studying some long-term relationships with well-defined start dates among

a relatively small number of relatively sophisticated players, such as business partner-

ships or collusive agreements among firms. However, laboratory studies of repeated

games suggest that many subjects use fairly simple strategies.1 Moreover, repeated

games have also been used to model cooperation in large populations, and for these

applications the assumptions of a fixed population, a common start date, and common

calendar time seem less appropriate, and there is all the more reason to doubt whether

players will use complicated strategies.

Thus, instead of analyzing interactions in fixed pairs, we consider a class of repeated

1See e.g. Fudenberg, Rand, and Dreber (2012) and the survey by Dal Bó and Fréchette (2018).

1



games with random matching, no commonly known start date or calendar time, and

restrictive forms of information about past play. In our model, there is a continuum

of players with geometrically distributed lifespans. Each player has a series of pair-

wise interactions with different partners. We assume players have only “first-order”

information about their partners, meaning that their information depends only on the

actions the partner has taken, and not on the actions or histories of the partner’s

past partners. In particular, each player carries a “record” which depends only on

her own past actions (perhaps stochastically), and when two players meet they ob-

serve each other’s record and nothing else. We study steady states of this population

game, where the share of the population with each record is constant over time, and

each player’s strategy depends only on her own record and the record of her current

opponent. A preliminary result is that a steady state always exists.

We then assume the stage game is the standard prisoner’s dilemma:

C D

C 1, 1 −l, 1 + g

D 1 + g,−l 0, 0

Figure 1: The Prisoner’s Dilemma

with g, l > 0 and l + 1 > g, so (C,C) maximizes the sum of payoffs. Here g measures

the gain to defection (that is, playing D) when one’s opponent cooperates, for example

the cost savings from providing a low quality product or service, or the profit gained

by undercutting competitors in a cartel. Moreover, because l measures the gain from

playing D against D, the comparison of g and l is a measure of the complementarity

in the interaction. As we will see, the possibility and maximal extent of equilibrium

cooperation in our setting depend on the degree of complementarity as well as the

temptation to deviate. Intuitively, this is because first-order information is not suffi-

cient to distinguish between opportunistic deviations to D and equilibrium plays of D

that punish opponents with bad records, and so players must sometimes be willing to
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worsen their record by playing D against D when their continuation payoff would be

higher if they played C and incurred a short run loss.

Throughout the paper we restrict attention to strict equilibria; this captures a

simple form of robustness and, in particular, rules out “belief-free” equilibria and re-

lated constructions. The steady state where everyone always plays D regardless of

the records is always a strict equilibrium. As in the related random matching models

of Takahashi (2010) and Heller and Mohlin (2018), we find that when the prisoner’s

dilemma stage game is “submodular,” that is when g ≥ l, the only strict equilibrium

is Always Defect, regardless of the community’s record-keeping system. We thus focus

on the supermodular case where g < l. In our setting, though, this is not sufficient to

permit cooperative equilibria; we will see that we additionally require sufficiently high

complementarity.

The space of possible record-keeping systems that one could consider is very large.

To sharpen our focus, we note that in some economic environments players may be

able to manipulate their records, most notably by evading record-keeping or by forging

fake positive records. We show that, if players can evade record-keeping, the only

strict equilibrium is again Always Defect. We thus consider record-keeping systems

where evasion is impossible, and instead ask for robustness to forging records of fake

interactions, a property we call forgery-proofness.2 This consideration, along with an

interest in simplicity, leads us to study the very simple technology that records only

the number of times a player has played D, but not when those times were or how

many times the player has played C (as rewarding players for having more C’s in their

record would encourage them to fake C’s).

For this information structure, we study how much cooperation can be supported in

2Fake reviews are an important problem for many real-world reputation systems. For example,
fake reviews on Yelp are sufficiently common that Yelp uses an algorithm to (imperfectly) filter many
of them out (Luca and Zervas, 2016). For an empirical analysis of review manipulation on Expedia
and TripAdvisor, see Mayzlin, Dover, and Chevalier (2014). In the context of online book reviews,
Chevalier and Mayzlin (2006) find that the relatively rare one-star reviews carry a lot of weight with
consumers. They argue that this is because “the author can post a large number of meaningless
five-star reviews cheaply, (but) cannot prevent others from posting one-star reviews,” (pp. 349-350).
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the limit as expected lifespans grow to infinity (i.e. the continuation probability γ → 1)

and “noise” (i.e., the ε probability that a play of C is mis-recorded as D) shrinks to 0,

and say that there is a limit efficient equilibrium when this share converges to 1. Our

first observation here is that limit efficient strict equilibria always exist if the prisoner’s

dilemma is mild, meaning that g < 1. The strategies we use in this construction are

“forgiving,” in the sense that no matter how many D’s there are in a player’s record,

the appropriate sequence of play will lead to them being forgiven and treated as a

cooperator. Moreover, as in the strategy “perfect tit-for-tat” (Fudenberg and Maskin,

1990), the way a player earns forgiveness is by acquiring additional D’s in her record.

Thus, a player with more D’s in her record is sometimes treated better than a player

with fewer D’s. For this reason, the equilibrium is not forgery-proof.

However, forgery-proofness on its own does not rule out all the equilibria that we

find implausible. In particular, it allows there to be multiple disjoint sets of records,

where players with records in each set cooperate with each other but not with the

reciprocators in other sets: For example, players with 2 D’s might cooperate only with

other players with 2 D’s, and players with 4 D’s might only cooperate with other

players whose record is 4. Thus we also require that strategies are coordination-proof,

which means that, if the prisoner’s dilemma faced by a pair of players becomes a

coordination game when it is augmented by their equilibrium continuation payoffs (as

a function of their records), they play the Pareto-dominant equilibrium. Combined,

these restriction imply that each player uses a strategy of a form we call GrimKL.

This strategy partitions players into three groups: players with K − 1 or fewer D’s

in their records cooperate with any player with K + L − 1 or fewer D’s; players with

between K and K + L − 1 D’s are unconditional cooperators (who cooperate with

everyone); and players with K + L or more D’s are unconditional defectors. We call

the special case where L = 0—so there are no unconditional cooperators—GrimK.3

3GrimK was introduced by Fudenberg, Rand, and Dreber (2012) who noted that while, for K > 1,
it is never an equilibrium in a two player game with perfect monitoring, it can be an equilibrium when
actions are observed with noise, and that some experimental subjects seem to use such strategies
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Having identified GrimK and GrimKL as the only plausible strategies in our

environment, we then study when these strategies can support cooperation, and in

particular ask when they are limit efficient (for appropriately chosen K and L). We

find that GrimK cannot support any cooperation when the static incentive to deviate

from cooperation is “large” in the sense that g ≥ 1, regardless of the value of the

continuation probability γ. When instead g < 1 and l > g/(1 − g), GrimK can

support some cooperation in the limit where γ → 1 and then ε→ 0, and the degree of

limit inefficiency shrinks as l grows. To see the intuition, note that, since a player gains

at least g by deviating from C to D, a player’s continuation payoff must be reduced by

g whenever her record acquires a D. With GrimK strategies, this reduction must be

achieved by “switching” g future plays of the stage game from (C,C) to (D,D). Since

each such switch also adds a D to the partner’s record, this leads to additional switches.

When g < 1, these switches dampen over time, while when g ≥ 1 they “snowball.”

Thus, positive steady-state cooperation is possible when g < 1, but not when g ≥ 1.4

Our last main result is that the more flexible GrimKL strategies cannot support

cooperation in the limit when l < g (1 + g) (regardless of γ) but are limit efficient

when l > g (1 + g).5 (The condition g ≷ 1 plays no role here.) Thus, unlike GrimK

strategies, GrimKL strategies are sometimes fully limit efficient, and they can be limit

efficient even for parameters where GrimK strategies cannot support any cooperation.

Specifically, GrimKL does not require a “small” static gain from defection, and re-

quires less complementarity than GrimK does. The reason GrimKL strategies can

be effective even when g ≥ 1 is that they incorporate “extra effort” in addition to

“punishment”: With GrimK strategies a player’s continuation payoff can fall only by

switching play from (C,C) to (D,D), while with GrimKL strategies a player’s con-

tinuation payoff can also fall by switching play from (C,C) to (C,D). This additional

loss makes it possible to avoid the “snowballing” of D’s that precludes cooperation

4Moreover, as we show in section 5.1, this result extends to any strategy that does not involve
unconditional cooperators.

5Technically, the lower bound on l required for our limit efficiency result may be slightly greater
than g (1 + g) due to an integer problem. See Section 6.3.
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with GrimK strategies when g ≥ 1.

We find it particularly interesting that GrimKL strategies can support cooperation

even in severe prisoner’s dilemmas (g ≥ 1) by using extra effort from players with

marginal records to cut off the snowballing defections that would arise under GrimK.

This is somewhat related to notions of “repentance” or “restitution” that have been

shown to support sustainable cooperation in some well-known case studies (Milgrom,

North, and Weingast, 1990; Ellickson, 1994). However, under repentance a player with

marginal standing can improve her standing by cooperating, while under GrimKL the

best she can do is prevent further deterioration of her status. This difference comes

from the fact that we want equilibria to be forgery-proof: if players can forge records

that say they cooperated, repentance strategies break down, while GrimKL is robust.

All our main results involve records that (noisily) track the number of times a

player has played D. If records instead track the number of times a player has played

C, we show cooperation is impossible. More powerful record-keeping systems—for

example, systems that track the number of both C’s and D’s, or that track the timing

of actions—could sometimes support more cooperation. However, exploiting these

systems may require more complicated strategies, and we show that (very simple)

GrimKL strategies can already attain full limit efficiency when only D’s are tracked,

as long as the game is “sufficiently supermodular.” Nonetheless, investigating different

information structures is one promising direction for future research.

2 Literature Review

2.1 Random Matching with Limited Information

Rosenthal (1979) and Rosenthal and Landau (1979) introduced the study of repeated

games with random matching. Rosenthal (1979) considered the special case of first-

order information where players know only the action that their current opponent

played in the previous period. He showed that Markovian equilibria exist, and that in
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the prisoner’s dilemma cooperation can be supported by pure strategy equilibria only

for a particular knife-edge value of the discount factor.6

Kandori (1992) and Ellison (1994) showed that cooperation in the prisoner’s dilemma

can be enforced by “contagion equilibria” in finite populations even when the players

have “zero-order” information—that is, no information at all—about each other’s past,

but the required discount factor converges to 1 as the population becomes infinitely

large. Kandori constructed simple contagion equilibria that exist only under a fairly

strong restriction on the payoff functions—the loss parameter l needs to be sufficiently

large, and in particular must diverge to ∞ as δ → 1. The issue is that if a player is

very patient then even when he sees another player defect, and so knows that conta-

gion has begun, he may still choose to cooperate to slow the spread of the contagion.7

Ellison extended Kandori’s results both to arbitrary payoff parameters and to approx-

imately efficient equilibria in settings with a small amount of noise by using either

public randomizing devices or “threading,” which both serve to lower the players’ ef-

fective discount factor, and so make it incentive-compatible for players to to carry

out the punishments prescribed by the equilibrium. We find these sorts of strategies

unintuitive, and some of the details of our model are designed to rule out them out.8

Three previous papers have studied cooperation in continuum-player repeated games

with anonymous random matching and first-order information: Takahashi (2010),

Heller and Mohlin (2018), and Bhaskar and Thomas (2018). Takahashi (2010) shows

how cooperation can be supported when players know the entire record of each part-

6Rosenthal and Landau (1979) study two particular sorts of record-keeping technologies in the
setting of an asymmetric battle of the sexes game. Their second, simpler, model has an index that
goes up or down by 1 depending on which of the two actions the player uses, so it is related to the
sorts of records we analyze in this paper; their first model of “comparative records” allows records to
encode more than first-order information.

7Kandori also shows that cooperation can always be supported if higher-order information is avail-
able. Okuno-Fujiwara and Postlewaite (1995) derived a similar result in a continuum-population
model. See also the literature on “standing” in evolutionary biology, starting with Sugden (1986) and
more recently surveyed by Sigmund (2012).

8Deb, Sugaya, and Wolitzky (2018) prove the folk theorem for finite-population repeated games
with anonymous random matching. Their construction relies heavily on a finite population, common
calendar time, and non-strict incentives.
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ner’s past play—all of the “first-order” information—but no higher-order information,

such as the action that today’s partner’s partner took yesterday. Takahashi’s general

construction requires the use of somewhat complex and unintuitive “belief-free” mixed

strategies. These strategies track the expected payoff of each player given her history

of play and the equilibrium distribution of states and actions, and reduce a player’s

continuation payoff each time she plays D by just enough that she is always indifferent

between C and D at every history. Because of this indifference, each player is willing

to play C with exactly the probability corresponding to the current partner’s record.

Takahashi also shows that first-order information allows cooperation to be sup-

ported in strict equilibria when the players are patient and the game is strictly su-

permodular. To do this, he follows Ellison and uses threads to calibrate the effective

discount factor to be within the interval where players want to cooperate against a

player who cooperates and defect against the player who defects. Conversely, Taka-

hashi shows that no strategies support cooperation as a strict equilibrium when the

payoffs are strictly submodular. The intuition is simple: with only first-order informa-

tion, a player’s continuation payoff depends on her record and what she does today but

not on her current partner’s action. Thus, in order for a player to strictly prefer to co-

operate with a partner who will cooperate while defecting against a player who defects,

payoffs must be strictly supermodular, and moreover the effective discount factor must

be low enough that the difference in payoffs caused by the opponent’s current action

can offset the difference in future continuation payoffs.

Heller and Mohlin (2018)’s study of the prisoner’s dilemma with anonymous random

matching assumes that a small fraction of players are commitment types—which rules

out belief-free equilibria—and that players live forever and are infinitely patient, but

see only a finite sample of their partners’ past actions. Players are restricted to use

stationary strategies that condition only on the sampled actions of their partners and

not on their own histories. Here, as in Takahashi, there are no cooperative equilibria

when payoffs are submodular, and for much the same reason: players will play C or

D depending on how likely it is their opponent plays C, so when their observation of
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their partner’s play consists only of D’s they are most likely to play C. But this means

there is no incentive to play C, and cooperation breaks down. Conversely, Heller and

Mohlin show that when payoffs are supermodular, the presences of commitment types

allows the construction of an efficient and relatively simple mixed-strategy equilibrium

without threads or public randomization, and that this equilibrium is essentially the

only one that supports cooperation in their model.9

Bhaskar and Thomas (2018) study a sequential-move “lending game” with one-sided

moral hazard, where borrowers are constrained to default with a fixed i.i.d. probability.

They show that cooperation can be supported in a strict (or at least purifiable mixed)

equilibrium if lenders are told only whether or not a borrower has defaulted in any of

the last K periods for some sufficiently large K. The distinction between submodular

and supermodular games does not arise here due to the sequential nature of the game.

Nowak and Sigmund (1998) and many subsequent papers study the enforcement of

cooperation using “image scoring,” which means that each player has first-order infor-

mation about her partner, but conditions her action only on her partner’s record and

not her own record. These strategies are never a strict equilibrium, and are typically un-

stable in environments with noise (Panchanathan and Boyd, 2003). One interpretation

of our model is that it shows that image scoring-type strategies can be strict equilibria,

provided the game is supermodular and players condition on their own record as well

as their partner’s.

There is also a literature on repeated games with overlapping generations of non-

anonynous players, e.g. Cremer (1986), Kandori (1992), Salant (1991), and Smith

(1992). The lack of anonymity makes these papers less directly relevant.

9Heller and Mohlin also consider alternative information structures where players observe, for
example a finite sample of their partners’ past action profiles. The conditions for cooperation in this
setting depend on payoff parameters via “snowballing” considerations similar to those in some of our
results. However, the many differences between our models make the results difficult to compare
directly. In another model with commitment types, Dilmé (2016) constructs a belief-free cooperative
equilibrium for the case where g = l.
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2.2 Simple Strategies in Fixed-Pair Interactions

Rubinstein (1986) and Abreu and Rubinstein (1988) introduced the study of repeated

games played by automata. They assumed perfect monitoring, and as they acknowl-

edge, their results are not robust to even a slight amount of noise. Compte and

Postlewaite (2015) study fixed pairs playing the gift-exchange version of the prisoner’s

dilemma (which is on the boundary between the supermodular and submodular cases

described above) with imperfect binary private signals of the partner’s action. To

model simplicity, they assume that strategies can be represented by automata with

only two states, and they determine how the extent of cooperation is limited by the ac-

curacy of the monitoring technology. Joe et al. (2012) computationally study whether

“k-period mutual punishment strategies”, which are conceptually similar to perfect

tit-for-tat, can support cooperation in a two-player repeated prisoner’s dilemma with

private monitoring, and show that a simple version of this strategy can sustain fairly

high payoffs for a range of parameters. Möbius (2001) and Olszewski and Safronov

(2018a,b) consider simple “chips strategies” in repeated games, where a player gives

her partner a token whenever he does her a favor, and a player who runs out tokens

stops receiving favors until she reciprocates. These strategies are sometimes approxi-

mately efficient when players are patient.

Most evolutionary models of repeated games restrict to simple strategies to make

the analysis tractable. This is the case for example in Axelrod and Hamilton (1981),

who used evolutionary stability to argue that people will use the strategy “Tit-for-Tat”

in the repeated prisoner’s dilemma.10

Finally, the modern literature on repeated games in the laboratory provides evi-

dence that simple strategies are used in play of fixed-partner repeated games (see e.g.

Dal Bó and Fréchette (2018)). This helps motivate our interest in simple strategies.

10Axelrod (1984) showed that Tit-for-Tat and other simple strategies such as Tit-for-Two-Tats were
selected in tournaments where participants submitted fully complete strategies to play the repeated
game, but the requirement to submit strategies, as opposed to playing the extensive form version of
the game period-by-period, may have led to simpler strategies than would otherwise have been used.
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3 Steady-State Equilibria in Repeated Games with

First-Order Information

Although most of the paper studies the prisoner’s dilemma, we first present a model of

first-order information in general stage games that may be of use in future work. We

consider a discrete time model with a constant unit mass of players, each of whom has

a geometrically-distributed lifespan with continuation probability γ ∈ (0, 1), with exits

balanced by a steady flow of new entrants. To motivate our exclusion of strategies that

condition on calendar time, we assume the time horizon is doubly infinite.

Fix a finite symmetric game with action space A and payoff function u : A×A→ R.

When players match they observe each other’s record, which for now is an arbitrary

integer n ∈ Z. New players all enter with the same initial record n0, which we set equal

to 0 without loss of generality. One key restriction that we maintain throughout the

paper is that these records track only first-order information—that is, data about how

the player played—and do not depend on the play or records of the players she has

been matched with.11 The state of the system is then the share of players with each

possible record; we denote this by µ ∈ ∆(Z) := M .

To operationalize anonymous random matching in a continuum population, we

specify that, when the current state of the system is µ, the distribution of matches is

given by µ × µ, so that, for each ordered pair (n1, n2) ∈ Z2, µn1
µn2

is the fraction of

matches between player 1’s with record n1 and player 2’s with record n2.

Definition 1. A record-keeping system is a function r : Z× A→ ∆(Z) that specifies

a probability distribution over a player’s record tomorrow given the player’s current

record and her realized action in their current match. A record-keeping system r has

bounded-support updates if there exists B ∈ Z such that support (r(z, a)) has at most

B elements for all (z, a) ∈ Z× A.

11This contrasts with the “status levels” studied by Okuno-Fujiwara and Postlewaite (1995) and
the “standing” models of Sugden (1986) and Kandori (1991).
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Here the stochastic term can represent errors in record-keeping, but it could also

correspond to imperfect implementation of the intended action.12

We assume that when players meet each sees the record of her current opponent.

In principle, each player can condition her play on the entire sequence of outcomes and

past opponent records that she has seen. However, since we work in a model with a

continuum of players, only the player’s current record and that of her current partner

matter for the player’s current payoff, and only the player’s own record will matter in

the future. For this reason, all strict equilibria are record-dependent, meaning that they

condition only on the player’s current record and the record of her current partner. We

write a record-dependent pure strategy as a function s : Z×Z→ A, with the convention

that the first coordinate is the player’s own record and the second coordinate is that of

the partner. Since we will restrict attention to strict equilibria, we consider only pure

record-dependent strategies. Moreover, since every strict equilibrium in a symmetric,

continuum-population model is symmetric, we also assume all players use the same

strategy.

Given a record-keeping system r and a strategy s, we can define an update map fr,s :

M →M as follows: First, let φ (k′, k′′) := µk′µk′′ denote the probability that a player

with record k′ meets a player with record k′′. Next, let ρr,s(k
′, k′′) ∈ ∆(Z) be the proba-

bility distribution over next-period records of a player with record k′ who meets a player

with record k′′, when all players use strategy s. Thus, ρr,s(k
′, k′′)[k] = r(k′, s(k′, k′′))[k].

Then, for k 6= 0, fr,s(µ)[k] := γ
∑
k′,k′′

φ(k′, k′′)ρr,s(k
′, k′′)[k], and fr,s(µ)[0] := 1 − γ +

γ
∑
k′,k′′

φ(k′, k′′)ρr,s(k
′, k′′)[0]. A steady-state under r, s is a state µ such that fr,s(µ) = µ.

Theorem 1. Under any record-keeping system with bounded-support updates and any

record-dependent strategy, a steady state exists.

The proof is in A.1 of the Appendix; all other omitted proofs can be found in either

12To restrict records to first-order information, we do not allow the update of a player’s record
to depend on the action that her partner played. In the implementation-errors interpretation of
stochastic records, this requires that the signals have a product structure in the sense of Fudenberg,
Levine, and Maskin (1994).
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the Appendix (A) or the Online Appendix (OA). In outline, we relabel records so that

two players with different ages can never share the same record, let R(t) be the set of

feasible records for a player of age t, and let M̄ =
{
µ ∈M :

∑
k∈R(t) µk ≤ γt ∀t ∈ N

}
.

We first show M̄ is compact in the sup norm: intuitively, bounded-support updates

and geometrically distributed lifetimes imply that most players have records in the

finite set
⋃
t≤T R(t) for bounded T , so M̄ resembles a finite-dimensional space. We

then show that f maps M̄ to itself and is continuous in the sup norm and note that

M̄ is convex, so we can appeal to a fixed point theorem.

Throughout the paper, our focus will be on equilibrium steady states. But note

that Theorem 1 does not assert that the steady state for a given strategy is unique, and

indeed we will see examples where it is not, as is the case under the strategy Grim2.

Intuitively, this multiplicity corresponds to different initial conditions at time t = −∞.

It remains to define equilibrium. Given a record-keeping system r, strategy s, and

state µ, define the flow payoff of a player with record k as

πk,r,s,µ =
∑
k′

µk′u(s(k, k′), s(k′, k)).

Next, denote the probability that a player with record k today has record k′ t periods

from now by ρtr,s,µ(k)[k′]: this is defined recursively by

ρ1r,s,µ(k)[k′] =
∑
k′′

µk′′ρr,s,µ(k, k′′)[k′]

and, for t > 1,

ρtr,s,µ(k)[k′] =
∑
k′′

ρt−1r,s,µ(k)[k′′]ρ1r,s,µ(k′′)[k′].

The continuation value of a player with record k is then given by

Vk,r,s,µ = (1− γ)
∞∑
t=0

γt
∑
k′

ρtr,s,µ(k)[k′]πk′,r,s,µ.
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Note that we have normalized continuation payoffs by (1− γ) to express them in per-

period terms. A pair (s, µ) is an equilibrium if µ is a steady-state under r, s and, for

each own record k and opponent’s record k′, we have

s(k, k′) ∈ arg max
a∈A

[
(1− γ)u(a, s(k′, k)) + γ

∑
k′′

r(k, a)[k′′]Vk′′,r,s,µ

]
.

In particular, a player’s objective is to maximize her expected undiscounted lifetime

payoff. An equilibrium is strict if the argmax is unique for all pairs of records (k, k′).

Equilibrium existence follows immediately from Theorem 1.

Corollary 1. Under any record-keeping system with bounded-support updates, an equi-

librium exists.

Proof. Fix a symmetric stage game Nash equilibrium α∗, and let s recommend α∗ at

every record pair (k, k′). Then (s, µ) is an equilibrium for any steady state µ. �

In contrast, the existence of a strict equilibrium is not guaranteed. A sufficient

condition for strict equilibrium existence is for the stage game to have a strict and

symmetric Nash equilibrium, as is the case with the prisoner’s dilemma.

Corollary 2. Under any record-keeping system with bounded-support updates, a strict

equilibrium exists if the stage game has a strict and symmetric Nash equilibrium.

The proof of Corollary 2 is identical to that of Corollary 1, except α∗ is taken to

be a strict and symmetric stage game Nash equilibrium.

4 Non-Trivial Equilibria in the Prisoner’s Dilemma

For the rest of the paper we specialize to the case where the stage game is the prisoner’s

dilemma, given by Figure 1.13 Note that Always Defect (i.e., s(k, k′) = D for all k, k′) is

13The normalization in the figure is without loss: given a symmetric prisoner dilemma with payoff

matrix
C D

C R,R S, T
D T, S P, P

, we can subtract P from all entries and divide by R − P, so that g =

14



a strict equilibrium for any parameter values. We call an equilibrium non-trivial if C is

played with positive probability (i.e., s(k, k′) = C for some k, k′ with µk, µk′ > 0). This

section shows that, as in Takahashi (2010) and Heller and Mohlin (2018), a non-trivial

strict equilibrium can exist only if payoffs are strictly supermodular. This necessary

condition applies for any first-order information structure.

Recall that the prisoner’s dilemma is strictly supermodular if g < l, so the benefit of

defecting is greater when the opponent defects. Conversely, the stage game is strictly

submodular when g > l. A leading example of the prisoner’s dilemma is reciprocal

gift giving, where each player can pay a cost c > 0 to give her partner a benefit

b > c. In this case, a player receives the same static gain from playing D instead of

C regardless of the play of her opponent, so g = l, and the game is neither strictly

supermodular nor strictly submodular. Bertrand competition (with two price levels

H > L) is supermodular whenever L > H/2 (the condition for the game to be a

prisoner’s dilemma), and Cournot competition (with two quantity levels) is submodular

whenever marginal revenue is decreasing in the opponent’s quantity. Our first lemma

notes a simple consequence of strict equilibrium. Note that this result holds for any

record-keeping system.

Lemma 1. At any record k in any strict equilibrium:

1. If g = l then either the player is

• an unconditional defector who plays D regardless of the opponent’s record

• an unconditional cooperator who plays C regardless of the opponent’s record.

2. If g > l then either the player is

• an unconditional defector who plays D regardless of the opponent’s record

• an unconditional cooperator who plays C regardless of the opponent’s record

(T −R)/(R− P ) and l = (P − S)/(R− P ). If the stochastic nature of record updating comes from a
probability ε that attempts to play C result in D, then the expected payoff matrix is slightly different,
for example the payoff to (C,C) is (1 − ε)2R + ε(1 − ε)(T + S) + ε2P . In this case we denote the
corresponding normalized payoffs by g(ε) and l(ε) respectively, where g(0) = g and l(0) = l.
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• an anti-reciprocator who plays C against opponents who play D and plays

D against opponents who play C.

3. If g < l then either the player is

• an unconditional defector who plays D regardless of the opponent’s record

• an unconditional cooperator who plays C regardless of the opponent’s record

• a reciprocator who plays C against opponents who play C and plays D

against opponents who play D.

Proof. Fix a strict equilibrium. Because the records use only first-order information,

each player’s continuation payoff depends only on her current record and this period’s

play, so the optimal action in each period depends only on the player’s record and the

action prescribed by her opponent’s record. There are four forms such a strategy could

take; the lemma shows how which forms are possible in equilibrium depends on how g

compares to l.

1. If g = l, the current period gain from playing D instead of C is independent of

the opponent’s action, so C is the strict best response against C iff it is also the

strict best response to D, in which case the player is an unconditional cooperator.

Similarly, D is the best response to C iff the player is an unconditional defector.

2. If g > l and C is the strict best response to an opponent playing C, then playing

C is also strictly optimal against an opponent playing D. Thus, there are no

reciprocators, so every player is either an anti-reciprocator, an unconditional

cooperator, or an unconditional defector.

3. If g < l and D is strictly optimal against C, then D is also strictly optimal

against D, so there are no anti-reciprocators. �

Theorem 2. If the payoffs are not strictly supermodular, then the unique strict equi-

librium is Always Defect.
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Proof. Suppose that g ≥ l. Fix a number k, and suppose two players who both have

record k meet each other. By symmetry, they play either (C,C) or (D,D). In the

former case, C is the strict best response to C, and therefore is also the strict best

response to D. In the latter case, D is the strict best response to D, and therefore

is also the strict best response to C. Thus there are no anti-reciprocators, and each

player with record k is either an unconditional cooperator or an unconditional defector.

Since this holds for all k, the distribution of opposing actions faced by any player is

independent of her record. This implies D is always optimal. �

In what follows, we restrict to the strictly supermodular case where g < l. Here

it is possible for some records to be reciprocators, which is what will allow equilibria

that support some cooperation.

5 Simple Records and Robust Equilibria

5.1 Counting D’s

For the rest of the paper, we restrict attention to the following record-keeping system,

which we call “counting D’s”: Newborn players have record 0. Whenever a player

plays D, her record increases by 1. Whenever a player plays C, her record remains

constant with probability 1−ε, and her record increases by 1 with probability ε. Thus,

a player’s record is simply a count of the number of times she has been recorded as

having played D.14

One motivation for considering this information structure is that counting D’s is

a simple record-keeping system that can support cooperation. Moreover, the equally

simple system that counts C’s instead of D’s does not allow equilibria with any coop-

eration at all, as we show in the appendix. Roughly speaking, this is because a player

with a very high C count would always play D, which by supermodularity implies that

14One could also consider a version of this information system with “two-sided errors,” where
a player’s record remains constant with some probability ε′ > 0 when she plays D. This would
complicate notation without significantly affecting our results.
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she must receive a low payoff, but then there is no incentive to acquire C’s. Informa-

tion structures that count both C’s and D’s can support cooperation, but are more

complicated than counting only D’s.

More importantly, we think counting D’s is a natural information structure when

players can forge records of past interactions but cannot hide true records. In particular,

if players can create records of fake interactions where they played C, there cannot be

an equilibrium where players are rewarded for having played C in the past. Under

the plausible assumption that players are also not punished for having played C in the

past, equilibrium strategies cannot depend on the number of times a player has played

C at all. Thus, we consider record-keeping systems that only count D’s.

Even with this minimalist record-keeping system, there can be equilibria that we

regard as implausible and unintuitive. For this reason the next two subsections develop

refinements on the equilibrium strategies. Here is an example of one type of equilibrium

that we wish to rule out: Players with even records (including new players with record

0) are reciprocators and play C if and only if their partner’s record is also even. Players

with odd records are unconditional defectors and play D against all partners.

We will soon show that a family of strategies that generalize this “even-odd” form

can sometimes be used to achieve efficient cooperation in the sense of the following

definition.

Definition 2. Limit efficiency is attainable if, for every η > 0, there exists ε̄ < 1

and a function γ̄ : (0, 1)→ (0, 1) such that, whenever ε < ε̄ and γ > γ̄(ε), there exists

an equilibrium with V0 > 1− η.

Note that V0, the per-period expected payoff of a newborn agent, is also equal to

average payoff in the population in every period. This follows because the expected

fraction of a player’s lifetime spent at record k is equal to the fraction of the population

with record k (and there is no discounting, so both V0 and the population-average payoff

are given by
∑

k µkπk). Thus, when limit efficiency is attainable, the total population

payoff approaches its maximum possible value in the iterated limit where first γ → 1
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and then ε→ 0.

Proposition 1. Limit efficiency is attainable in strict equilibrium whenever the pris-

oner’s dilemma is mild (g < 1).

The proof of this result is in OA.2. Note that it leaves open whether and how limit

efficiency might be possible when the prisoner’s dilemma is severe (g ≥ 1).

The proof relies on strategies that generalize even-odd. In fact, even-odd strategies

themselves support limit efficiency in the case where g < 1 < l. To see this, note that,

if all players use even-odd and the noise in records is small, then most players will

be reciprocators, because odd records tend to change quickly. Thus, players’ values

are higher at even records, and so regardless of the parameters the prescribed play at

odd records is optimal, because it both maximizes short-run payoffs and leads to a

transition to a record with a higher payoff. Players with even records face different

incentives, depending on their partner’s record. When the partner has an even record

(and is thus expected to play C), the one-shot gain g from defecting is less than the

expected next-period loss of approximately 1 (when γ ≈ 1 and ε ≈ 0; note that with

probability close to 1 the player’s record in two periods will be even again whether

or not she deviates today), so playing C as prescribed is optimal. When instead the

partner has an odd record (and thus plays D), the one-shot gain from defecting is now

l, which is greater than the next-period loss of 1, so playing D is optimal.15

5.2 Forgery-Proofness

Motivated by the idea that players can forge records of past interactions, we restrict

attention to equilibria that are robust to adding D’s to one’s record.16

15If g < l < 1 then a one-period punishment for playing D is “too harsh,” in that reciprocators
then prefer to cooperate against defectors as well as cooperators. In this case, the construction must
be modified so that, “on average,” each play of D leads to a number ρ < 1 of punishment periods,
where ρ ∈ (g, l). For example, if players are reciprocators with record 0 or 1 mod 3, and unconditional
defectors with record 2 mod 3, the average punishment is ρ = .5

16In their lending model, Bhaskar and Thomas (2018) use a similar restriction to rule out equilibria
where borrowers with two defaults are treated better than borrowers with only one.
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Definition 3. An equilibrium is forgery-proof if Vk ≥ Vk′ for every k ≤ k′.

For example, even-odd violates forgery-proofness because a player with an odd

record can avoid punishment by forging one interaction where she plays D. Note that

even-odd has the flavor of the strategy “perfect tit-for-tat,” which says to cooperate

today if yesterday both partners played C or both partners played D, and to play

D if exactly one partner played C. Moreover, like even-odd here, perfect tit-for-tat

can be a strict equilibrium in the prisoner’s dilemma with fixed pairs and imperfectly

observed actions.17 Both even-odd and perfect tit-for-tat are “forgiving” in the sense

that the punishment phases are of finite length. Forgiveness could also be achieved

with “repenting” strategies, where it is understood that if one player defects against

the other, the defector will cooperate for a few rounds while their partner defects until

the books are balanced and both players resume reciprocation. Although forgiving

strategies have appealing properties in settings where records cannot be manipulated,

these strategies cannot support cooperation in environments where D’s can be forged.

However, we will see that other non-trivial equilibria can satisfy forgery-proofness.

Forgery-proofness has a natural “dual” condition, which arises if, after taking her

action and seeing what updated record the system assigns her, a player can choose

whether to “erase” this update and return to previous record. In the current context,

where a player’s record either remains constant or increases by 1, this is simply the

opposite of forgery-proofness: an equilibrium is erasure-proof if Vk ≤ Vk′ for every

k ≤ k′. Under erasure-proofness, playing D maximizes both the stage game payoff

and the continuation payoff, so the only erasure-proof equilibrium is Always Defect. In

fact, we show in OA.4 that erasure-proofness rules out cooperation with any first-order

information system, not just Counting D’s.18

17“Ordinary” tit-for-tat is not an equilibrium with fixed pairs, imperfectly observed actions, and
generic payoffs.

18The ability to erase individual records is more powerful than the ability to re-enter the game
under a pseudonym, thus completely clearing one’s record. In the latter case, for some information
structures cooperation is possible via strategies where new players must “establish a reputation” for
a number of periods before anyone will cooperate with them. See Friedman and Resnick (2001) for
an analysis of “pseudonym-proofness” in a random-matching model with perfect monitoring.
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5.3 Coordination-Proofness

We now define an additional robustness property, which we call coordination-proofness.

The idea is that the equilibrium should not use “miscoordination” within a match as

a threat to support social cooperation, because such an equilibrium will fall apart if

matched partners do manage to coordinate successfully.

To formalize this property, let ûk (a, a′) be the augmented payoff of a player with

record k at action profile (a, a′), given by

ûk(a, a
′) = (1− γ)u(a, a′) + γ

∑
k′

r(k, a)[k′]Vk′ .

Given our restriction to strict equilibria, a player with record k is a reciprocator iff

ûk (C,C)− ûk (D,C) > 0 > ûk (C,D)− ûk (D,D) .

In other words, the augmented stage game played between any two reciprocators is

a coordination game, where both (C,C) and (D,D) are stage-game Nash equilibria.

It is straightforward to see that (C,C) is always the Pareto dominant equilibrium

of this augmented game: since the gain to defection is always positive, ûk (C,C) −

ûk (D,C) > 0 implies Vk > Vk+1, so for any reciprocator the (C,C) equilibrium yields

higher continuation payoffs as well as higher stage-game payoffs. This observation

motivates the following definition:

Definition 4. An equilibrium is coordination-proof if whenever two reciprocators

match, they play (C,C).19

We will restrict attention to coordination-proof equilibria for the rest of the pa-

per. An example of a strategy profile that satisfies forgery-proofness but violates

coordination-proofness is the following: When players with records k and k′ match, they

19Because two matched players will never face each other again, the coordination problem here is
much simpler than that in dynamic games with a fixed set of partners, as in e.g. Bernheim and Ray
(1989), Farrell and Maskin (1989), and Chassang and Takahashi (2011).
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play (C,C) if k+ k′ < 10, and they play (D,D) otherwise. This violates coordination-

proofness because any player with record k ≤ 9 is a reciprocator, but two players with

record 9 play D when matched with each other. The spirit of coordination-proofness

is that this equilibrium is “unreasonable” because, if two partners with record 9 could

agree to play (C,C) instead of (D,D) (holding fixed everyone else’s strategy), both

would have a strict incentive to abide by the agreement.

Our first result for coordination-proof equilibria is a partial converse to Proposition

1.20

Proposition 2. If the prisoner’s dilemma is severe (g ≥ 1) then Always Defect is

the unique coordination-proof strict equilibrium such that there is no record at which a

player plays C for all opposing records (i.e., there are no unconditional cooperators).

The introduction gave an intuition for Proposition 2 based on the “snowballing”

of D’s. A more detailed argument shows that we must have µR ≥ g, where µR is

the fraction of reciprocators in the population, in any non-trivial equilibrium without

unconditional cooperators. Thus, no such equilibrium can exist when g ≥ 1.

To see this, let Dk be the occupation measure of D’s faced by a player with record

k.21 Without unconditional cooperators, only (C,C) and (D,D) are played on path,

so if a player with record k is a conditional cooperator, Dk must increase by at least

g whenever she plays D (otherwise, she would never play C). Note that, when she

matches with a defector, she both faces D today and plays D today.22 Therefore,

Dk ≥
(
1− µR

)
(1 + g) . (1)

Moreover, if a player with record k is an unconditional defector, she faces D today

for sure, and hence Dk ≥ Dk+1 ≥ . . . ≥ Dk′ , where k′ is the least integer greater than

20More generally, we have shown that, for any record-keeping system (not just Counting D’s),
Always Defect is the unique coordination-proof strict equilibrium without unconditional cooperators
that is robust to forging C’s. Under the Counting D’s information structure, all equilibria are trivially
robust to forging C’s, since a player’s C count is completely irrelevant for her future play and payoffs.

21This is the “expected discounted number of D’s”.
22Supporting an equilibrium with no defectors—that is, µR = 1—is impossible whenever ε > 0.
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k such that a player with record k′ is a reciprocator (and if k′ =∞, then Dk = Dk+1 =

. . . = 1). Therefore, Equation 1 also holds for unconditional defectors, and hence must

hold for everyone.

This implies that the total share of (D,D) outcomes, which equals 1−
(
µR
)2

, is at

least
(
1− µR

)
(1 + g). Thus,

1−
(
µR
)2 ≥ (1− µR) (1 + g) .

This requires µR ≥ g when µR 6= 1.

As we will see in Section 6, cooperation in the severe prisoner’s dilemma is nonethe-

less possible under strategies with unconditional cooperators, such as GrimKL.

Coordination-proofness implies that every reciprocator plays C when matched with

another reciprocator or an unconditional cooperator, and plays D when matched with

a defector, so all reciprocators play C against the same set of opposing records. There-

fore, under coordination-proofness, a strategy profile is completed characterized by a

description of which records are reciprocators, which are unconditional cooperators,

and which are defectors (formally, a mapping σ : Z+ → {R,UC,D}).

This characterization simplifies the equilibrium conditions as follows: Fix an equi-

librium (σ, µ). Recall that µk denotes the population share with record k. For each

class of records z ∈ {R,UC,D}, let Kz ⊂ N be the set of records in class z: that is,

Kz = {k ∈ N : σ(k) = z}. Then, let µz denote the share of the population in class z,

given by µz =
∑

k∈Kz µk. Finally, we will also use the term cooperator for all players

who are either reciprocators or unconditional cooperators (i.e., anyone who is not a de-

fector), and we denote the population share of cooperators by µC = µR+µUC = 1−µD.

The following result establishes how each player’s record stochastically evolves from

one period to the next (assuming the player survives to the next period).

Lemma 2. Consider a steady state with share of cooperators µC.

1. Before being matched in the current period, the probability that a reciprocator with
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record k has record k at the end of the period is (1 − ε)µC, and the probability

that she has record k + 1 is 1− (1− ε)µC.

2. Before being matched in the current period, the probability that an unconditional

cooperator with record k has record k at the end of the period is 1 − ε and the

probability that she has record k + 1 is ε.

3. Before being matched in the current period, the probability that a defector with

record k has record k + 1 at the end of the period is 1.

Proof. Consider a reciprocator with record k. With probability µC , she will face an-

other reciprocator in the upcoming period. In this case, she will play C, and her record

will remain the same with probability 1 − ε and increase to k + 1 with probability ε.

With probability 1−µC , she will face a defector. In this case, she will play D, and her

record will increase to k+ 1 with probability 1. Thus, the probability that the recipro-

cator’s record remains the same is the probability she faces another reciprocator times

the probability that her action of C is correctly recorded, which equals (1−ε)µC , while

the probability that her record increases to k + 1 is the complementary probability of

1− (1− ε)µC .

An unconditional cooperator with record k plays C regardless of her opponent’s

record, which causes her record to remain the same with probability 1 − ε and to

increase to k + 1 with probability ε.

A defector always plays D, which always increases her record by 1. �

We now characterize the incentive constraints of coordination-proof equilibria. We

use the following notation: for a player with record k, (C|C)k is the condition that C

is the best response to C, (D|D)k is the condition that D is the best response to D,

(C|D)k is the condition that C is the best response to D, and (D|C)k is the condition

that D is the best response to C. Note that, if a player with record k is a reciprocator,

(C|C)k and (D|D)k must both hold; if a player with record k is an unconditional
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cooperator, (C|D)k must hold (which also implies (C|C)k, by supermodularity); and if

a player with record k is a defector, (D|C)k must hold (which also implies (D|D)k).

Lemma 3.

1. The (C|C)k constraint is

γ(1− ε)(Vk − Vk+1) > (1− γ)g.

The (D|C)k constraint is the opposite inequality.

2. The (D|D)k constraint is

γ(1− ε)(Vk − Vk+1) < (1− γ)l.

The (C|D)k constraint is the opposite inequality

Proof. Consider a player with record k. When she plays C, her expected continuation

payoff is (1−ε)Vk+εVk+1, while it is instead Vk+1 when she plays D. Thus, the (C|C)k

constraint is

1− γ + γ(1− ε)Vk + γεVk+1 > (1− γ)(1 + g) + γVk+1,

which is equivalent to the expression in Part 1 of the result. Likewise, the (D|D)k

constraint is

γVk+1 > −(1− γ)l + γ(1− ε)Vk + γεVk+1,

which is equivalent to the expression in Part 2. Clearly, (D|C)k is the opposite of

(C|C)k, and (C|D)k is the opposite of (D|D)k. �
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6 GrimKL Strategies

6.1 Combining Forgery-Proofness and Coordination-Proofness

The main result of this subsection characterizes the unique family of strategies that can

be equilibria that satisfy both forgery-proofness and coordination-proofness. This is

the family of GrimKL strategies, which is defined for non-negative integers K and L so

that a player is a reciprocator for the first K records, 0 ≤ k ≤ K− 1, an unconditional

cooperator for the next L records, K ≤ k ≤ K + L − 1, and a defector for all other

records, k ≥ K+L. Note that GrimKL with K = L = 0 is the familiar Always Defect

strategy, and GrimKL with L = 0 is GrimK: here a player is a reciprocator for the

first K records, 0 ≤ k ≤ K − 1, and a defector for all other records, k ≥ K, but never

an unconditional cooperator.23

Figure 2 depicts the steady state record shares, µk, and the value functions, Vk,

in a GrimKL equilibrium for γ = .95, ε = .05, g = .5, and l = 1; here K = 4 and

L = 1. In this equilibrium, µR ≈ .492, µUC ≈ .260, and µD ≈ .247. We note that there

is no non-trivial GrimK equilibrium for these parameters, which can be shown using

the characterization of GrimK equilibria in A.6. Intuitively, the fact that players with

k = 4 always play C implies that transitions from record 4 to record 5 are unlikely,

which keeps the total share of cooperators high enough for a non-trivial GrimKL

equilibrium to exist, whereas with GrimK strategies transitions to the defector region

occur too quickly to support positive steady-state cooperation.

We now present the characterization result.

Theorem 3. Any strict equilibrium that satisfies forgery-proofness and coordination-

proofness corresponds to GrimKL for some K,L. Moreover, if for some K,L, GrimKL

is a strict equilibrium, it satisfies forgery-proofness and coordination-proofness.

The result can be understood in three steps. First, forgery-proofness implies that

there is a critical record k̄ such that all records k ≥ k̄ are defectors. Intuitively, this

23Note that Always Defect is a special case of GrimK as well as GrimKL.
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Figure 2: Steady state record shares and valuation functions for Grim41.

follows because, if there were infinitely many cooperator records, a player could prof-

itably deviate by always playing D and then inflating her record to the next cooperator

record. Second, this critical record k̄ can be chosen so that all records k < k̄ are either

reciprocators or unconditional cooperators, because whenever there is a defector record

that is followed by a cooperator record, a player at the defector record could profitably

deviate by inflating her record to the next cooperator record. The third and last step

is to classify the first k̄ records as reciprocators or unconditional cooperators. Note

that a player’s opponent plays the same way towards her whether she is a reciprocator

or an unconditional cooperator. Thus, all incentives to play C for players with records

k < k̄ come from avoiding the “punishment” of reaching record k̄ and triggering an

increase in the fraction of partners who will play D. Since the survival probability γ

is less than 1, this penalty looms larger the closer a player’s record is to k̄. Hence,

players with larger records are willing to incur greater costs to prevent their records

from rising further. This implies that there is a critical record k∗ < k̄ such that only

players with records greater than k∗ are willing to play C at a cost of l (while players

with records less than k∗ are willing to play C at a cost of g, but not at a cost of l). We

conclude that it is those players with lower records who must be reciprocators, which

yields a GrimKL profile with K = k∗ and L = k − k∗.
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The following two subsections will analyze the maximum level of cooperation that

can be supported by the family of GrimKL strategies. We first define the maximal

equilibrium level of cooperation for both the GrimKL and GrimK strategy families.

Let µCKL(γ, ε) be the maximal share of cooperators that is attained in any GrimKL

equilibrium for parameters γ and ε:

µCKL(γ, ε) = sup{µC : µC is the share of cooperators in a GrimKL equilibrium}.

Likewise, let µCK(γ, ε) be the maximal share of cooperators that is attained in any

GrimK equilibrium for parameters γ and ε:

µCK(γ, ε) = sup{µC : µC is the share of cooperators in a GrimK equilibrium}.

6.2 GrimK Strategies

We first focus on the case of GrimK, where unconditional cooperators are not present.

Theorem 4.

1. For g < 1 and l > g/(1− g),

lim
ε→0

lim
γ→1

µCK(γ, ε) =
l

1 + l
.

2. For g < 1 and l ≤ g/(1− g),

lim
ε→0

lim
γ→1

µCK(γ, ε) = 0.

3. For g ≥ 1, µCK(γ, ε) = 0 for all (γ, ε) ∈ (0, 1)× (0, 1).

Part 3 of Theorem 4 says that no cooperation is possible in a GrimK equilibrium

whenever g ≥ 1, regardless of γ and ε. Thus, Always Defect (i.e. Grim0) is the unique
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equilibrium in this family in a severe prisoner’s dilemma. This is a consequence of

Proposition 1, since with GrimK there are no unconditional cooperators.

Part 1 of Theorem 4 says that in a mild prisoner’s dilemma with g < 1 and l >

g/(1 − g), GrimK strategies can support strictly positive cooperation, and moreover

that the maximal level of cooperation tends to l/(1 + l) in the iterated limit where γ

approaches 1 and then ε approaches 0. Part 2 says that for g < 1 and l < g/(1−g) the

level of cooperation approaches 0 in the iterated limit. The reason a higher l makes

cooperation easier to sustain in a GrimK equilibrium is that it makes it it easier to

satisfy the (D|D) constraints for higher values of µC .24

To understand this result, note that the (D|D)K−1 constraint may be written as

µC <
1

γ(1− ε)
l

1 + l
. (2)

This comes from combining the recursive equation for VK−1,

VK−1 = (1− γ)µC + γµC(1− ε)VK−1

(which follows because, once a player with record K−1 gains another D in her record,

she receives payoff 0 forever), with the (D|D)K−1 constraint

0 > (1− γ)(−l) + γ(1− ε)VK−1.

As γ → 1 and ε→ 0, Equation 2 yields the upper bound µC < l
1+l

.

On the other hand, since GrimK does not involve unconditional cooperators, by

the discussion following Proposition 2 we must have µC > g. There exists such a value

of µC that also satisfies the upper bound µC < l
1+l

if and only if l > g
1−g .

We note that Grim2 provides a simple example of a strategy profile with multiple

associated steady states. For example, if γ = .8 and ε = .01 then there are three steady-

24This is essentially the same reason that a high value of l is necessary for contagion strategies to
form an equilibrium in Kandori (1992).
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state values of µC under Grim2, given by µC ≈ .6738, µC ≈ .8536, and µC ≈ .9979.

Additionally, for g < .171 and l > 3.77, Grim2 is an equilibrium for all three of these

values of µC .

6.3 General GrimKL Strategies

We now turn to the full family of GrimKL strategies, where L can be greater than 0.

Let b : R+ → R be the function given by

b(g) = min

{
1 + g

| ln(1 + g)− 1|
, 21.9223− 3.57143g

}
.25

Theorem 5.

1. For l > max{g(g + 1), b(g)}, limε→0 lim infγ→1 µ
C
KL(γ, ε) = 1.

2. For l ≤ g(g + 1), limγ→1 µ
C
KL(γ, ε) = 0 for all ε ∈ (0, 1).

3. For g ≥ 1 and l ≤ g(g + 1), µCKL(γ, ε) = 0 for all (γ, ε) ∈ (0, 1)× (0, 1).

Remark 1: Interpreting the parametric conditions of Theorem 6. Part 3 of Theorem

5 says that, when g ≥ 1 and l ≤ g(g+ 1) so that the prisoner’s dilemma is both severe

and mildly supermodular, Always Defect is the unique equilibrium in the GrimKL

family. Part 2 says that when the prisoner’s dilemma is mildly supermodular, the

maximal level of cooperation approaches 0 as γ → 1, for any value of ε, regardless of

whether the prisoner’s dilemma is severe.

In contrast, Part 1 of Theorem 5 says that when the prisoner’s dilemma is sufficiently

supermodular, the maximal level of cooperation with GrimKL strategies tends to 1

in the iterated limit. In particular, for sufficiently severe prisoner’s dilemmas with

g(g + 1) > b(g) (i.e., g >≈ 2.858), limit efficiency is achieved if l > g(g + 1). For

smaller values of g, we use the stronger requirement that l > b(g) to guarantee limit

efficiency. We do not know whether this condition is necessary for limit efficiency; it

2521.9223− 3.57143g is the approximate form of (3eφ − 2− 2g)/(φ− 1) when φ = 1.56.
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Figure 3: The performance of the maximally efficient GrimKL and GrimK strategies
in the iterated limit where γ approaches 1 and then ε approaches 0. GrimKL attains
limit efficiency in the green regions and has limit cooperation of 0 in the red region.
Our results do not pin down the limit performance of GrimKL in the blue regions.
Solid shading indicates that GrimK attains strictly positive limit cooperation; vertical
lines indicate that GrimK has limit cooperation of 0.

comes from the fact that K and L must be integers, which affects the feasibility of

generating particular values of µC , µR, µUC , as is discussed in A.7. Our results do

not say much about cooperation in the iterated limit when l > g(g + 1) holds, but

l > b(g) does not. However, if integer problems could be ignored, then l > g(g + 1)

would again suffice for limit efficiency. If this were the case, for any parameters such

that the GrimK family permits cooperation in the iterated limit, the GrimKL family

would enable cooperation in the iterated limit with strictly smaller values of l because

g(g + 1) < g/(1 − g) for all g < 1. Figure 3 presents a graphical illustration of the

performance of GrimKL and GrimK in the iterated limit.

Remark 2: Why limit efficiency requires l > g(g + 1). The inequality l > g(g + 1)

comes from combining the constraints µR > 1− 1
1+g

and µR < 1− g
l
. We now explain

each of these in turn.

The condition µR > 1 − 1
1+g

is necessary for the flow payoff of an unconditional

cooperator to exceed the flow payoff of a defector, which in turn is necessary for

GrimKL to be an equilibrium. (Otherwise, unconditional cooperators would pre-

fer to defect.) In particular, unconditional cooperators earn a higher flow payoff
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than defectors if and only if µC −
(
1− µC

)
l > µUC (1 + g), and this is equivalent

to µR (1 + l) + µUC (l − g) > l. The left-hand side of this inequality is increasing in

µUC , so a necessary condition is that it holds when µUC takes on its highest pos-

sible value of 1 − µR. Thus, substituting µUC = 1 − µR, the inequality becomes

µR (1 + l) +
(
1− µR

)
(l − g) > l, which is equivalent to µR > 1− 1

1+g
.

The condition µR < 1 − g
l

is necessary for (C|C)0 and (D|D)K−1 to be satisfied

simultaneously. In particular, the probability that a player survives to reach record

K − 1 is the ratio of the benefit of playing C with record 0 to the benefit of playing C

with record K − 1, and it is also approximately equal to 1 − µR, the share of players

with record ≥ K.26 Thus,

benefit of playing C at k = 0

benefit of playing C at k = K − 1
≈ 1− µR.

On the other hand, we have

cost of playing C vs. C

cost of playing C vs. D
=
g

l
.

Now, for it to be optimal both to play C vs. C with record k = 0 and to play D vs.

D with record k = K − 1, it must be the case that

benefit of playing C at k = 0

cost of playing C vs. C
>

benefit of playing C at k = K − 1

cost of playing C vs. D
.

Combining these observations, we have

1− µR > g

l
⇐⇒ µR < 1− g

l
.

Note also that the constraint µR < 1 − g
l

implies that, in any equilibrium that

supports µC ≈ 1, we must have µUC > g
l
. Thus, unless l is much larger than g, there

26This follows because 1−µR is the probability that a player survives to reach record K, and when
γ is large relative to ε these two probabilities are almost the same.
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must be a substantial share of unconditional cooperators in any efficient equilibrium.

Remark 3: The role of unconditional cooperators. Theorem 5 demonstrates the

power of unconditional cooperation in sustaining equilibrium cooperation. Intuitively,

unconditional cooperators help support cooperation in two ways. First, there is the

relatively straightforward effect that turning those reciprocators who are most tempted

to play C against D into unconditional cooperators relaxes the (D|D) constraint. This

explains why GrimKL can sometimes support almost full cooperation, while GrimK

can never support µC > l
1+l

.

Second, there is the novel effect that the presence of unconditional cooperators in-

creases the steady-state share of cooperators by slowing the transition from cooperator

records to defector records, and in particular cuts off the snowballing D’s that can de-

stroy the possibility of positive steady-state cooperation in severe prisoner’s dilemmas.

We show in Proposition 4 in the Appendix that the the (C|C) constraint cannot be sat-

isfied if g ≥ 1, so it is distinct from the (D|D) constraint. For this reason, when g ≥ 1

then GrimK strategies cannot support positive cooperation even in the relaxed prob-

lem where players’ incentives when their opponents play D are completely ignored.27

Thus, this benefit of unconditional cooperators has nothing to do with relaxing the

(D|D) constraint.

Remark 4: Proving Theorem 5. The proof of Theorem 5 is more involved than that

of Theorem 4. The main additional complication is that the cost of increasing one’s

record by 1 is very similar for a player with record K − 1 and a player with record K,

which makes it hard to find K and L that simultaneously satisfy the (D|D)K−1 and

(C|D)K constraints. This issue is also the source of the integer problems that lead to

the requirement that l > b(g) in Part 1 of Theorem 5. We provide a detailed proof

outline at the beginning of A.7.

27Moreover, the proof of the more general Proposition 2 uses only the (C|C) constraints and not
the (D|D) constraints.
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7 Conclusion

We conclude with some observations about extensions and alternative models.

Other types of equilibria. With the classes of strategies we have discussed so far, it is

necessary that either g < 1 or l > g(g+ 1) for any cooperation to occur in equilibrium.

This is not true in general if forgery-proofness and coordination-proofness are not

imposed. Consider the family of strategies defined for four non-negative integers, K1,

K2, K3, and K4, as follows: A player is a reciprocator for the first K1 records, a defector

for the next K2 records, a reciprocator again for the next K3 records, an unconditional

cooperator for the next K4 periods, and a defector for all higher records. We show in

OA.11 that strategies in this family can sometimes enable cooperation in equilibrium

even when g > 1 and l < g(g + 1). Our intuition for this result is that, by splitting

the set of defector records into two classes, these strategies accelerate the punishment

for acquiring D’s and thus strengthen incentives for the first class of reciprocators.

However, players in the first defector class would gain by forging D’s.

Endogenous Stochastic transitions. We have restricted attention to equilibria with

exogeneous record transitions. Stochastic transitions that can be tuned to the game pa-

rameters can be used as randomization devices, and improve on GrimK and GrimKL

strategies in at least two ways. First, a stochastic version of GrimK can attain full

limit efficiency when g < 1: the intuition is that making transitions from the recip-

rocator state to the defector state stochastic relaxes the (D|D) constraint, which was

responsible for the µC ≤ l
1+l

upper bound for deterministic strategies, as well as the

requirement that l > g/(1 − g).28 Second, a stochastic version of GrimKL can avoid

the integer problems that arose in Theorem 6, and thus relax the condition for limit

efficiency from l > max{g(g+ 1), b(g)} to l > g(g+ 1).29 We demonstrate these results

28We prove this with a strategy with only two records, where record-0 players are reciprocators and
record-1 players are defectors.

29We prove this with a strategy with three records, where record-0 players are reciprocators, record-
1 players are unconditional cooperators, and record-2 players are defectors. As with GrimKL, the
defectors remain defectors forever; the difference is that playing D causes one’s record to increase
with probability less than 1. We do not know whether more complex stochastic transition rules could
allow limit efficiency for a wider range of parameters.
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in OA.12, using transition probabilities between records that depend on the parameters

ε and γ.30

Higher-order information. We have also restricted to record-keeping systems that

use only first-order information. If the update of a player’s record can depend on her

opponent’s action as well as her own, supporting cooperation becomes much easier: for

example, if a player’s record increases only when she plays D versus C, this cuts off the

“snowballing” problem, and we prove in OA.13 that limit efficiency can be attained

by GrimK strategies for any values of g and l, even those with g > l. This shows

that the key limitation of first-order information is that, when a player sees that her

opponent has played a certain number of D’s, she cannot tell if these plays correspond

to “selfish” deviations or “deserved” punishments.31

More general interaction structures. Our model assumes that each player is matched

to play the game every period. The same model describes the steady states when some

constant non-zero share of players is selected at random to play each period, with γ

now interpreted as the probability of surviving for one more interaction. If different

players are matched to play the game at different frequencies, the steady-state equations

would be the same, but different players would face different incentive constraints. This

extension seems interesting but we do not cover it here, except to note that, since our

equilibria are strict, they are robust to small differences in interaction frequencies.

Different stage games. Our model of random-matching with first-order information

could also be used to study stage games other than the prisoner’s dilemma. It is also

easy to adapt our model to settings with multiple populations of players. For example,

suppose a population of player 1’s and a population of player 2’s repeatedly play the

product choice game, where only player 1 faces binding moral hazard at the efficient

action profile (and player 2 wants to match player 1’s action). In this game, efficient

30These results consider the problem of designing an optimal record-keeping system within some
class, while the rest of this paper studies a particular simple and natural record-keeping system. See
Bhaskar and Thomas (2018) for an information-design perspective in a lending game model.

31In a related result, Heller and Mohlin (2018) show that, in their model, full cooperation is always
possible when players observe only their partners’ past actions when facing C.
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payoffs can always be supported in the limit where first γ → 1 and then ε→ 0, using

the following adaptation of GrimK strategies: in each match, both partners play C if

player 1’s record is k < K, and both play D if player 1’s record is k ≥ K. This example

suggests our model might be especially tractable in settings with 1-sided moral hazard.
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Appendix

All omitted proofs are in the Online Appendix (OA).

A.1 Proof of Theorem 1

Let B be a bound on the update supports. Without loss, relabel records so that two

players with different ages can never share the same record. Then let R(t) be the set of

feasible records for a player of age t, and let M̄ =
{
µ ∈M :

∑
k∈R(t) µk ≤ γt ∀t ∈ N

}
.

Clearly, M̄ is convex. Section OA.1 establishes the following three claims:

Claim 1. M̄ is compact in the sup norm topology.

Claim 2. fr,s maps M̄ to itself.

Claim 3. fr,s is continuous in the sup norm topology.

Since every normed space is a locally convex Hausdorff space, the theorem follows

from Corollary 17.56 (page 583) of Aliprantis and Border (2006). The key point is that
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the combination of bounded-support updates and geometric player lifetimes means

that the tails of the feasible population states must be thin. This explains why M̄ is

compact, and also plays a key role in ensuring that f is continuous.

A.2 Impossibility for Counting C’s

We show cooperation cannot be supported when a player’s record is the number of

times she has played C (where a play of C is recorded as D with probability ε). We

continue to assume g < l, as otherwise Theorem 2 already implies that cooperation is

impossible.

Proposition 3. When records count C’s, the unique strict equilibrium is Always De-

fect.

Proof. Note that, in any strict equilibrium, if records k and k + 1 are both reached

with positive probability, then Vk ≤ Vk+1. For if Vk > Vk+1, then a player with record k

always plays D (since this maximizes both her flow payoff and her continuation payoff),

but since plays of D are always recorded accurately this implies no player ever reaches

record k + 1.

We now show that there exists K∗ such that a player with record k > K∗ always

defects. To see this, let V ∗ = supk Vk. For a player with record k, the gain in contin-

uation value from playing C is is at most V ∗ − Vk, while the gain in flow utility from

playing D is at least (1− γ) g. Hence, whenever Vk > V ∗ − (1− γ) g, a player with

record k always defects. Since Vk is non-decreasing, there exists K∗ such that a player

with record k > K∗ always defects.

By supermodularity, everyone other than unconditional cooperators play D against

a player with record k > K∗. Therefore, VK∗+1 = V ∗, and this is precisely the payoff a

player receives from always playing D while facing C from unconditional cooperators

and D from everyone else. Note that this is also a lower bound on the payoff attained

by a player who always plays D from the beginning of the game. Therefore, V0 ≥ V ∗,
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which since Vk is non-decreasing implies V0 = V ∗. But this implies that Vk is constant,

so playing D is always optimal. �

The above argument uses the fact that plays of D are perfectly recorded to establish

that Vk is non-decreasing. However, as we show in Section OA.3, the same conclusion

applies even if playing D causes the record to increase with probability 1− ε′ < 1.

A.3 Proof of Proposition 2

Let KR denote the set of reciprocator records, and let µR =
∑

k∈KR µk be the share of

reciprocators. Since only (C,C) and (D,D) are played on path, coordination-proofness

implies that the flow payoff of a player with record k is µR if k ∈ KR and 0 if k /∈ KR.

Thus,

V0 =
∑
k∈N

µkπk =
∑
k∈KR

µkµ
R =

(
µR
)2
. (3)

play (C,C).

Suppose a player with record k is a reciprocator: k ∈ KR. The corresponding

(C|C)k constraint gives

Vk − Vk+1 >
1

1− ε
1− γ
γ

g. (4)

On the other hand,

Vk = (1− γ)µR + γ(1− ε)µRVk + γ(1− (1− ε)µR)Vk+1.
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Grouping terms, we obtain

(1− γ)Vk = (1− γ)µR − γ
(
1− (1− ε)µR

)
(Vk − Vk+1)

< (1− γ)µR − γ
(
1− (1− ε)µR

)( 1

1− ε
1− γ
γ

g

)
(by (4))

= (1− γ)µR − (1− γ)

(
1

1− ε
− µR

)
g

⇐⇒

Vk < (1 + g)µR − g

1− ε
. (5)

Next, we establish that either KR = ∅ (in which case the conclusion of the propo-

sition is immediate) or

V0 < (1 + g)µR − g

1− ε
. (6)

If 0 ∈ KR, (6) is simply (5) with k = 0. So suppose instead that 0 /∈ KR and KR 6= ∅.

Recall that k /∈ KR means that πk = 0. Therefore, k /∈ KR implies that Vk ≤ Vk+1.

If we let k′ be the smallest record such that k′ ∈ KR (which exists since KR 6= ∅), we

have V0 ≤ Vk′ , so (6) follows since (5) holds for k = k′.

Combining (3) and (6) gives

(
µR
)2

< (1 + g)µR − g

1− ε
⇐⇒

−
(
µR
)2

+ (1 + g)µR − g

1− ε
> 0.

If g ≥ 1 the left-hand side of this inequality is increasing in µR, yet at µR = 1 it is

negative. Thus, this inequality cannot be satisfied for any µR ∈ [0, 1] when g ≥ 1.
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A.4 Lemmas about Coordination-Proof Equilibria

Define ik to be the total inflow of players into record k. This equals 1 − γ for k = 0

since all newborn players have record k = 0, while ik equals the share of players that

move into record k from record k − 1 in a period for k > 0. Define τ k to be the total

share of players that transition from record k to record k + 1 in a period. Finally,

define δk to be the total share of players in record k that die in a period. The steady

state equation for record k is

δk + τ k = ik, (7)

which guarantees that the total inflow of players into record k precisely balances with

the total outflow of players from record k.

Lemma 4. Consider an equilibrium with total share of cooperators µC.

1. δk = (1− γ)µk.

2. i0 = 1− γ and ik+1 = τ k for all k.

Lemma 5. Consider a steady state with total share of cooperators µC.

1. If k is a reciprocator record, then τ k = γ(1− (1− ε)µC)µk.

2. If k is an unconditional cooperator record, then τ k = γεµk.

3. If k is a defector record, then τ k = γµk.

Part 1 of Lemma 4 follows because each player dies in a given period with probability

γ, independently of every other living player. Part 2 is a consequence of the count D’s

record-keeping system. Lemma 5 comes from Lemma 2 and a player’s play and survival

being independent.

It will also be useful to compute the probability that a player with record k increases

her record to k + 1 before dying. When k is a defector record, this probability simply
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equals γ, the probability of survival to the next period. When k is an unconditional

cooperator record, this value is
∑∞

n=0(γ(1−ε))nγε, since from Lemma2 the probability

that a record k player becomes a record k + 1 player exactly n periods from now is

(γ(1− ε))nγε. Straightforward algebra shows that

∞∑
n=0

(γ(1− ε))nγε =
γε

1− γ(1− ε)
:= α(γ, ε).

Similarly, when k is a reciprocator record, the probability that a player with record k

increases her record to k+1 before dying is β(γ, ε, µC), where β : (0, 1)×(0, 1)×[0, 1]→

(0, 1) is given by

β(γ, ε, µC) =
γ(1− (1− ε)µC)

1− γ(1− ε)µC
.32

These probabilities play a key role in deriving the continuation value function.

Lemma 6. Consider a steady state with total share of cooperators µC. Consider the

value function of a player with record k.

1. If k is a reciprocator record, Vk = (1− β(γ, ε, µC))µC + β(γ, ε, µC)Vk+1 .

2. If k is an unconditional cooperator record, Vk = (1 − α(γ, ε))(µC − µDl) +

α(γ, ε)Vk+1 .

3. If k is a defector record, Vk = (1− γ)µUC(1 + g) + γVk+1 .

Proof. The expected flow payoff of a reciprocator is µC . Combining this with Lemma

2 yields Vk = (1− γ)µC + γ(1− ε)Vk + γ(1− (1− ε)µC)Vk+1. Solving for Vk gives Part

1 of the result.

The expected flow payoff of an unconditional cooperator is µC − µDl. Combining

this with Lemma 2 yields Vk = (1 − γ)(µC − µDl) + γ(1− ε)Vk + γεVk+1. Solving for

Vk gives Part 2 of the result.

The expected flow payoff of a defector is µUC(1 + g). Combining this with Lemma

2 yields Vk = (1− γ)µUC(1 + g) + γVk+1. Solving for Vk gives Part 3 of the result. �
32This comes from β(γ, ε, µC) =

∑∞
n=0(γ(1− ε)µC)nγ(1− (1− ε)µC).
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A.5 Proof of Theorem 3

The proof that any equilibrium that satisfies forgery-proofness and coordination-proofness

corresponds to GrimKL for some K,L proceeds by establishing the following two lem-

mas, the proofs of which are in OA.5.

Lemma 7. In any equilibrium that satisfies forgery-proofness, there exists a record k̄

such that a record k is an unconditional defector record iff k ≥ k̄.

To see why this result holds, note that the (C|C)k constraint implies that Vk−Vk+1

is uniformly bounded from below by a strictly positive value for all records k at which

a player is not an unconditional defector. Forgery-proofness then implies that there

can be only finitely many records at which players are not unconditional defectors,

because otherwise there would be some record k at which Vk < 0. Additionally, a

defector record can never precede a cooperator record in a forgery-proof equilibrium.

Otherwise, the defector would forge their record to skip to the next record at which

some cooperation occurs.

Lemma 8. In any equilibrium that satisfies forgery-proofness and coordination-proofness,

there exists a record k∗ such that all records k < k∗ are reciprocators and all records

k ≥ k∗ are either unconditional cooperators or unconditional defectors.

Intuitively, since survival is uncertain, players prefer to obtain the higher flow payoff

from reciprocation earlier than the lower flow payoff from unconditional cooperation,

so if a UC record k was followed by an R record k + 1, a player could gain by playing

R at record k and UC at k + 1.

These lemmmas show that only GrimKL can satisfy both forgery-proofness and

coordination-proofness. For the converse, note that Grimk KL satisfies Coordination

Proofness. Moreover, if GrimKL is an equilibrium, it must satisfy Vk > Vk+1 for all

k < K + L, as otherwise some reciprocator or unconditional cooperator would prefer

to defect. Since in addition Vk is constant for all k ≥ K + L, it follows that Vk is

everywhere non-increasing, so forgery-proofness is satisfied.
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A.6 Proof of Theorem 4

Parts 1 and 2 of Theorem 4 come from the following proposition.

Proposition 4. There is a GrimK equilibrium with share of cooperators µC if and

only if the following conditions hold:

1. Feasibility:

µC = 1− β(γ, ε, µC)K .

2. Incentives:

(C|C)0 : µC ∈

(
1 + g −

√
(1 + g)2 − 4

1−εg

2
,
1 + g +

√
(1 + g)2 − 4

1−εg

2

)
(D|D)K−1 : µC <

1

γ(1− ε)
l

1 + l
.

The proof of Proposition 4 is in OA.6. The feasibility constraint comes from solving

for the steady state record shares µk and using the fact that µC =
∑K−1

k=0 µk. The

(C|C)0 and (D|D)K−1 incentive constraints come from computing the value functions

for the GrimK strategy using Lemma 6 and then applying Lemma 3. It is without

loss to restrict attention to the (C|C) constraint for record 0 and the (D|D) constraint

for record K − 1, as these two incentive constraints imply all of the others, because

Vk−Vk+1 is increasing in k for 0 ≤ k ≤ K−1. Intuitively, the incentive for reciprocators

to play D when they should play C is greatest when k = 0 as then they are farthest

away from the punishment phase. Likewise, the incentive for reciprocators to play C

when they should play D is greatest when they are closest to the punishment phase,

which is when their record is k = K − 1.

To see how Part 2 of Theorem 4 comes from Proposition 4, note that

lim
ε→0

1 + g −
√

(1 + g)2 − 4
1−εg

2
= g
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and

lim
ε→0

lim
γ→1

1

γ(1− ε)
l

1 + l
=

l

1 + l
.

Thus, it is impossible to satisfy both the (C|C)0 and (D|D)K−1 constraints when

g > l/(1 + l), which is precisely when l < g/(1 − g). OA.7 gives a slightly modified

argument that handles the case where l = g/(1− g). To see how Part of 1 Theorem 4

comes from Proposition 4, note that, in addition to the above two limit results,

lim
ε→0

1 + g +
√

(1 + g)2 − 4
1−εg

2
= 1.

It follows that values of µC smaller than, but arbitrarily close to, l/(1 + l) satisfy the

(C|C)0 and (D|D)K−1 constraints in the iterated limit. Thus, the only issue is the

feasibility of µC as a steady-state level of cooperation. Because K must be an integer,

some values of µC cannot be generated by any K, for given values of γ and ε. The

following result shows that this “integer problem” become irrelevant in the iterated

limit. Intuitively, any value of µC ∈ [0, 1] can be approximated aritrarily closely by a

feasible share of cooperators in a GrimK steady state as γ → 1.

Lemma 9. Fix ε ∈ (0, 1). For all ∆ > 0, there exists γ < 1 such that, for all γ > γ

and µC ∈ [0, 1], there exists a µ̂C satisfying |µ̂C − µC | < ∆ that satisfies the Feasibility

constraint of Proposition 4 for some K.

The proof of Lemma 9 is in OA.8.

A.7 Proof of Theorem 5

A.7.1 Proof Outline

Theorem 5 comes from the following characterization of GrimKL equilibria.

Proposition 5. There is a GrimKL equilibrium with total share of cooperators µC,

share of reciprocators µR, and share of unconditional cooperators µUC if and only if the
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following conditions hold:

1. Feasibility:

µC = 1− α(γ, ε)Lβ(γ, ε, µC)K ,

µR = 1− β(γ, ε, µC)K ,

µUC = (1− α(γ, ε)L)β(γ, ε, µC)K .

2. Incentives:

(C|C)0 :
(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
> g,

(D|D)K−1 :
γ(1− ε)(1− µC)

1− γ(1− ε)µC
[
µR + µUC(l − g)

]
+ µRl < l,

(C|D)K :
(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
+ µRl > l.

The proof, which is similar to that of Proposition 4, is in OA.9. In particular,

the feasibility constraints come from calculating the steady state shares µk for the

GrimKL strategy and then setting µC =
∑K+L−1

k=0 µk, µ
R =

∑K−1
k=0 µk, and µUC =∑K+L−1

k=K µk. Moreover, the (C|C)0, (D|D)K−1, and (C|D)K incentive constraints come

from computing the value functions for the GrimKL strategy using Lemma 6 and then

applying Lemma 3.

Part 3 of Theorem 5 follows from Proposition 5 because (C|C)0 and (C|D)K are

impossible to satisfy simultaneously when g ≥ 1 and l ≤ g(g + 1), regardless of γ and

ε. Part 2 also follows from Proposition 5, because, as γ approaches 1, the left-hand

side of the (D|D)K−1 constraint becomes identical to the left-hand side of the (C|D)K

constraint, so both constraints must hold with equality in this limit. Combining this

with (C|C)0 shows that µR ≤ 1− g/l must be satisfied for all GrimKL equilibria with

L > 0 in the γ → 1 limit. However, neither the (C|C)0 nor the (D|D)K−1 constraints

can be satisfied with µR ≤ 1 − g/l when l ≤ g(g + 1). The formal proofs of Parts 2

and 3 of Theorem 5 are given in A.7.2.
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Proving that Part 1 of Theorem 5 follows from Proposition 5 is more involved than

proving that Part 1 of Theorem 4 follows from Proposition 4. The demonstration

proceeds by first identifying a target level of cooperation for fixed ε. The greatest

difficulty in the proof involves showing that there are feasible profiles satisfying the

incentive constraints where the level of cooperation actually attains this target as γ

approaches 1. The proof then shows that that this level of cooperation approaches 1

as ε approaches 0.

A.7.2 Proof of Parts 2 and 3 of Theorem 5

Proof of Part 3 of Theorem 5. Fix ε ∈ (0, 1), g ≥ 1, and l ≤ g(g + 1). Since

(1− ε)(1− µC)

1− (1− ε)µC
< 1

for all µC ∈ [0, 1], the (C|C)0 constraint requires

µR + µUC(l − g) > g, (8)

and the (C|D)K constraint requires

µR(1 + l) + µUC(l − g) > l. (9)

Since µR ≥ 0, µUC ≥ 0, and µR + µUC ≤ 1, Inequality 8 requires l > 2g. Note

that l > 2g and l ≤ g(g + 1) cannot be jointly satisfied when g = 1, and hence the

(C|C)0 constraint cannot be satisfied when g = 1. As equilibria with unconditional

cooperators but not reciprocators are impossible, it follows that, when g = 1, there is

no equilibrium with cooperators, so µCKL(γ, ε) = 0 when g = 1. Now, consider g > 1.

Inequality 8 additionally requires µR < l−2g
l−g−1 .
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Because (l − 2g)/(l − g − 1) is strictly increasing in l for l > 2g, it follows that

µR <
g(g + 1)− 2g

g(g + 1)− g − 1
=

g

g + 1
, (10)

since l ≤ g(g + 1) by assumption. Similarly, Inequality 9 requires

µR >
g

g + 1
. (11)

However, Inequalities 10 and 11 are mutually incompatible, so the (C|C)0 and (C|D)K

constraints cannot be jointly satisfied. Therefore, there is no GrimKL equilibrium with

both reciprocators and unconditional cooperators. As Inequality 8 cannot be satisfied

with µUC = 0 and equilibria with unconditional cooperators but not reciprocators are

impossible, it follows that there is no equilibrium with cooperators. Consequently,

µCKL(γ, ε) = 0 when g > 1. �

Proof of Part 2 of Theorem 5. We show that lim supγ→1 µ
C
KL(γ, ε) = 0 for all ε ∈ (0, 1)

when l ≤ g(g + 1). Suppose otherwise that lim supγ→1 µ
C
KL(γ, ε) > 0. Then there is

some γn → 1 and a sequence of associated equilibria with shares (µRn , µ
UC
n ), such that

(µRn , µ
UC
n ) converges to (µR, µUC) with µC = µR + µUC > 0. Theorem 4 implies that

lim supγ→1 µ
C
K(γ, ε) = 0 for l ≤ g(g + 1), so such a sequence must satisfy the (C|C)0,

(C|D)K−1, and (D|D)K constraints for each corresponding γn. Taking the limit of

these constraints as n → ∞ shows that (µR, µUC) must satisfy the following “limit”

constraints.

Limit (C|C)0 :
(1− ε)(1− µC)

1− (1− ε)µC
(µR + µUC(l − g)) ≥ g,

Limit (D|D)K−1 :
(1− ε)(1− µC)

1− (1− ε)µC
(µR + µUC(l − g)) + µRl ≤ l,

Limit (C|D)K :
(1− ε)(1− µC)

1− (1− ε)µC
(µR + µUC(l − g)) + µRl ≥ l.

(12)
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The limit (D|D)K−1 and (C|D)K constraints together imply that

(1− ε)(1− µC)

1− (1− ε)µC
(µR + µUC(l − g)) + µRl = l.

Along with the limit (C|C)0 constraint, this implies that µR ≤ 1− g/l.

For any ε ∈ (0, 1),
(1− ε)(1− µC)

1− (1− ε)µC
< 1

for all µC ∈ [0, 1]. Therefore, the Limit (C|D)K constraint requires

µR(1 + l) + µUC(l − g) > l. (13)

Since 0 ≤ µR ≤ 1− g/l, µUC ≥ 0, and µR + µUC ≤ 1, it follows that

µR(1 + l) + µUC(l − g) ≤ (1− g

l
)(1 + l) +

g

l
(l − g) = l +

1

l
(l − g(g + 1)).

Since l ≤ g(g + 1), this implies that µR(1 + l) + µC(l − g) ≤ l, a contradiction. �

A.7.3 Proof of Part 1 of Theorem 5

Fix µR ∈ (g/(1 + g), 1− g/l]. Consider the equation

(1− ε)(1− µC)

1− (1− ε)µC
[
(l − g)µC + (1 + g − l)µR

]
+ lµR = l (14)

and the function h(ε, µR) defined by h(ε, µR) = max{µC ∈ [0, 1] : µC solves Equation 14}.

If h(ε, µR) is well-defined, it gives the maximum level of cooperation for the given µR

and ε that satisfies the γ → 1 “limit” constraints of Equation 12. Straightforward

calculations show that, for any µR ∈ (g/(1 + g), 1 − g/l], h(ε, µR) is well-defined for

sufficiently small and positive ε, and that

lim
ε→0

1− h(ε, µR)

ε
=

l(1− µR)

(1 + g)µR − g
.
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An immediate implication of this is limε→0 h(ε, µR) = 1. Combining this with the

following two lemmas proves Part 1 of Theorem 5.

Let κ : (g/(1 + g), 1− g/l]→ R be the function given by

κ(µR) =
l ln(1− µR)(1− µR)

l − g + (1 + g − l)µR
,

and ι : (g/(1 + g), 1− g/l]→ R+ be the function given by

ι(µR) =
(1 + g)µR − g + 1

l − g + (1 + g − l)µR
.

Lemma 10. Fix µR ∈ (g/(1 + g), 1 − g/l]. If |1 + κ(µR)| > ι(µR), then there exists

some ε > 0, such that lim infγ→1 µ
C
KL(γ, ε) ≥ h(ε, µR) for ε < ε.

Lemma 11. Suppose that l > g(g + 1). Some µR ∈ (g/(1 + g), 1 − g/l] satisfies

|1 + κ(µR)| > ι(µR) if l > max{g(g + 1), b(g)}.

OA.10.1 presents the proof of Lemma 10. It makes heavy use of the inverse function

theorem and other tools of differential calculus to show that, when |1 + κ(µR)| >

ι(µR), for sufficiently small ε, any neighborhood of (h(ε, µR), µR) can be approached

by feasible profiles for sufficiently high γ. The proof of Lemma 11 is in OA.10.2.
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OA.1 Proofs of Results for Theorem 1

Recall that R(t) is the set of feasible records for a player of age t, and

M̄ =
{
µ ∈M :

∑
k∈R(t) µk ≤ γt ∀t ∈ N

}
.

Claim 1. M̄ is compact in the sup norm topology.

Proof of Claim 1. Since M̄ is a metric space under the sup norm topology, it suffices

to show that it is sequentially compact. Consider a sequence {µn}n∈N of µn ∈ M̄ . By a

standard diagonalization argument, there exists some µ̃ ∈ [0, 1]Z and some subsequence

{µnm}m∈N such that limm→∞ µ
nm
k = µ̃k for all k ∈ Z. This, along with the fact that

∑
t′<t

∑
k∈R(t′)

µnmk ≥ 1− γt

1− γ

∗We thank V Bhaskar, Glenn Ellison, Yuval Heller, Takuo Sugaya, Satoru Takahashi, and Caroline
Thomas for helpful comments and conversations, and NSF grants SES 1643517 and 1555071 and Sloan
Foundation grant 2017-9633 for finanical support.
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for all t ∈ N and m ∈ N implies that

∑
t′<t

∑
k∈R(t′)

µ̃k ≥ 1− γt

1− γ

for all t ∈ N. Thus,
∑

k∈Z µ̃k = 1 since γt → 0 as t → ∞, so µ̃ ∈ M . Additionally,

since ∑
k∈R(t)

µnmk ≤ γt

for all t ∈ N and m ∈ N, it follows that

∑
k∈R(t)

µ̃k ≤ γt

for all t ∈ N, so µ̃ ∈ M̄ .

Now, we show that limm→∞ µ
nm = µ̃. Fix ε > 0. Let T ∈ N be such that γT < ε,

and let M ∈ N be such that |µnmk − µ̃k| < ε for all k ∈ R(t), t < T and m > M . Thus,

sup
k∈Z
|µnmk − µ̃k| < ε

for all m > M . �

Claim 2. fr,s maps M̄ to itself.

Proof of Claim 2. By the definition of R(t), for all µ ∈ M and all t ∈ N, we have

γ
∑

k∈R(t) µk =
∑

k∈R(t+1) fr,s(µ) [k]. Hence, if
∑

k∈R(t) µk ≤ γt for all t ∈ N then∑
k∈R(t+1) fr,s(µ) [k] ≤ γt+1 for all t ∈ N (and, trivially,

∑
k∈R(0) fr,s(µ)[k] ≤ 1). That

is, fr,s maps M̄ to itself. �

Claim 3. fr,s is continuous in the sup norm topology.

Proof of Claim 3. Given a vector µ ∈ M̄ , define the vector µ|T ∈ M̄T by setting µt|T =

µτ for t ∈
⋃
t≤T R(t) and µt|T = 0 for t /∈

⋃
t≤T R(t). For each T , define the function

fr,s|T : M̄ → M̄ by setting fr,s|T (µ) = fr,s(µ)|T for each µ ∈ M̄ . Note that fr,s|T (µ) =
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fr,s|T (µ′) whenever µ|⋃t≤T R(t) = µ′|
⋃
t≤T R(t). Thus, fr,s|T can equivalently be viewed

as a function from M̄T to M̄ , and as a polynomial function it is continuous on M̄T ,

and hence on M̄ . Moreover, since the mass on records outside
⋃
t≤T R(t) goes to 0 as

T →∞, for any ε > 0 there exists T such that |fr,s(µ)− fr,s(µ)|T | < 2ε for all µ ∈ M̄ .

Hence, fr,s is also continuous on M̄ . �

OA.2 Proof of Proposition 1

Proposition 1. Limit efficiency is attainable in strict equilibrium whenever the pris-

oner’s dilemma is mild (g < 1).

Assume g < 1. Fix any rational number ρ satisfying g < ρ < min{l, 1}. Let m and

n be integers such that m ≥ n > 0 and n/m = ρ.

We consider a strategy with m + n phases, where a player is in phase j whenever

her record equals j − 1 mod m + n. The first m phases, denoted G1 through Gm, are

good phases, and the remaining n phases, denoted Bm+1 through Bm+n, are bad phases.

A player is a reciprocator while in a good phase and a defector while in a bad phase.

We denote the share of players in phase Gj by µGj and the share of players in phase Bj

by µBj . Consequently, the total share of cooperators is µC =
∑m

j=1 µGj and the total

share of defectors is µD =
∑m+n

j=m+1 µBj = 1− µC .

We first prove that under this strategy the share of cooperators µC converges to 1

in the iterated limit where γ approaches 1 and then ε approaches 0.1 We then prove

that the strategy does in fact give strict equilibria. This result holds for all ρ < 1, so

for any g and l such that g < min{l, 1}, there is a strategy that obtains limit efficiency.

This proves Proposition 1.

Lemma 12. limε→0 limγ→1 µ
C = 1.

Before proving the lemma, we give a heuristic argument. As γ → 1, the mass µC of

reciprocators will be approximately equally distributed among the first m phases, while

1Here and subsequently we do not track the dependence of endogenous objects like µC on γ and ε
in the notation.
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the mass 1−µC of defectors will be approximately equally distributed among the next

n phases. Following γ → 1, as ε→ 0, the flow from phase m+n to phase 1 (the “inflow

into cooperation”) is approximately (1− µC)/n, while the flow from phase m to phase

m + 1 (the “inflow into defection”) is approximately (1 − µC)(µC/m). If these flows

were equal for some µC < 1, this would imply µC = m/n < 1. But this contradicts the

fact that m ≥ n as there are more good phases than bad phases. Therefore, a steady

state requires that µC = 1 in the iterated limit.

Proof of Lemma 12. Since the first m phases all correspond to reciprocator records,

Lemmas 4 and 5 imply that iGj = γ(1− (1−ε)µC)µGj−1
and τGj = γ(1− (1−ε)µC)µGj

for all 1 < j ≤ m. By Equation 7, µGj = β(γ, ε, µC)µGj−1
, so induction gives

µGj = β(γ, ε, µC)j−1µG1
(15)

for 1 ≤ i ≤ m.

Since the phase m corresponds to reciprocator records and phase m+1 corresponds

to defector records, Lemmas 4 and 5 give iBm+1 = γ(1 − (1 − ε)µC)µGm and τBm+1 =

γµBm+1
, so Equation 7 implies

µBm+1
= γ(1− (1− ε)µC)µGm

= β(γ, ε, µC)m(1− γ(1− ε)µC)µG1
.

(16)

Since the last n phases all correspond to defector records, Lemmas 4 and 5 give

iBj = γµBj−1
and τBj = γµBj for m < j ≤ m + n. Thus, Equation 7 implies that

µBj = γµBj−1
, so induction, combined with Equation 16, gives

µBm+n
= γn−1µBm+1

= γn−1β(γ, ε, µC)m(1− γ(1− ε)µC)µG1
.

(17)

Finally, since phase 1 corresponds to reciprocator records and phase m + n corre-

sponds to defector records, Lemmas 4 and 5 give iG1 = 1 − γ + γµBm+n and τG1 =
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γ(1− (1− ε)µC)µG1
, so Equations 7 and 17 imply

µG1 =
1− γ

1− γ(1− ε)µC
+

γ

1− γ(1− ε)µC
µBm+n

= 1− β(γ, ε, µC) + γnβ(γ, ε, µC)mµG1.

Solving this for µG1
gives

µG1
=

1− β(γ, ε, µC)

1− γnβ(γ, ε, µC)m
. (18)

Equations 15 and 18 together imply that

m∑
j=1

µGj =
m∑
j=1

β(γ, ε, µC)j−1
( 1− β(γ, ε, µC)

1− γnβ(γ, ε, µC)m

)
=

1− β(γ, ε, µC)m

1− γnβ(γ, ε, µC)m
.

Therefore,

µC =
1− β(γ, ε, µC)m

1− γnβ(γ, ε, µC)m
. (19)

Consider the function f : [0, 1]× (0, 1)× [0, 1]→ R given by

f(γ, ε, µC) =


1−β(γ,ε,µC)m

1−γnβ(γ,ε,µC)m if γ < 1

1
1+ρ(1−(1−ε)µC) if γ = 1

.

This function extends (1 − β(γ, ε, µC)m)/(1 − γnβ(γ, ε, µC)m) to γ = 1 and, for any

fixed value of ε ∈ (0, 1), is a continuous function of (γ, µC) ∈ [0, 1] × [0, 1], which can

be shown using L’Hôpital’s rule.

Therefore, for fixed ε, any limit point of any sequence of steady state µC as γ → 1

must satisfy

µC = f(1, ε, µC)

=
1

1 + ρ(1− (1− ε)µC)
.
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The only such µC ∈ [0, 1] that satisfies this equation for ε is

µC(ε) =
1 + ρ−

√
(1 + ρ)2 − 4(1− ε)ρ
2(1− ε)ρ

,

so limγ→1 µ
C = µC(ε) for all ε. Lemma 12 follows since limε→0 µ

C(ε) = 1. �

The next lemma formalizes the idea that, on average, adding a D to one’s record

while in a good phase leads to an extra ρ periods of punishment. Let VGj denote the

value function of a player in phase Gj and VBj denote the value function of a player in

phase Bj.

Lemma 13. The following iterated limits hold:

lim
ε→0

lim
γ→1

VGj − VGj
1− γ

= ρ for 1 ≤ j < m and lim
ε→0

lim
γ→1

VGm − VBm+1

1− γ
= ρ.

By Lemma 3, this implies that the (C|C) and (D|D) constraints for a player in

a good phase are satisfied in the iterated limit when g < ρ < l. The incentives for

players in bad phases are trivial, because the value function in the next phase is larger

than the value function in the current phase whenever the current phase is bad. This

implies that playing D while in a bad phase maximizes both the flow payoff and the

continuation payoff. Therefore, Lemma 3, along with Lemma 12, suffices to prove

Proposition 1.

Proof of Lemma 13. By Lemma 6,

VGj − VGj+1

1− γ
=

µC − VGj+1

1− γ(1− ε)µC

for all 1 ≤ j < m and
VGm − VBm+1

1− γ
=

µC − VBm+1

1− γ(1− ε)µC
.
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Lemma 6 also implies that the value functions in all phases converge to the same value

as γ → 1 for fixed ε. Therefore, it suffices to show that

lim
ε→0

lim
γ→1

µC − VG1

1− γ(1− ε)µC
= ρ.

Since the first m phases all correspond to reciprocator records, combining Lemma

6 with induction gives

VG1 = (1− β(γ, ε, µC)m)µC + β(γ, ε, µC)mVBm+1 .

Likewise, since the last n phases all correpsond to defector records, Lemma 6, along

with the fact that µUC = 0 in the strategies considered, implies

VBm+1 = γnVG1 .

Combining these equations gives

VG1 = (1− β(γ, ε, µC)m)µC + γnβ(γ, ε, µC)VG1 ,

and solving this for VG1 renders

VG1 =
( 1− β(γ, ε, µC)m

1− γnβ(γ, ε, µC)m

)
µC .

Therefore,

µC − VG1

1− γ(1− ε)µC
=
( (1− γn)β(γ, ε, µC)m

(1− γ(1− ε)µC)(1− γnβ(γ, ε, µC)m)

)
µC .

Since limε→0 limγ→1 µ
C = 1 by Lemma 12, we need only show that

lim
ε→0

lim
γ→1

(1− γn)β(γ, ε, µC)m

(1− γ(1− ε)µC)(1− γnβ(γ, ε, µC)m)
= ρ. (20)

7



Consider the function f̃ : [0, 1]× (0, 1)× [0, 1]→ R given by

f̃(γ, ε, µC) =


(1−γn)β(γ,ε,µC)m

(1−γ(1−ε)µC)(1−γnβ(γ,ε,µC)m)
if γ < 1

ρ
1+ρ(1−(1−ε)µC) if γ = 1

.

For any fixed value of ε, this function is a continuous function of (γ, µC) ∈ [0, 1]× [0, 1],

which can be shown using L’Hôpital’s rule. Therefore,

lim
ε→0

lim
γ→1

(1− γn)β(γ, ε, µC)m

(1− γ(1− ε)µC)(1− γnβ(γ, ε, µC)m)
= lim

ε→0
lim
γ→1

f̃(γ, ε, µC)

= lim
ε→0

ρ

1 + ρ(1− (1− ε)µC(ε))

= ρ,

where the second and third equalities follow from the facts established in the proof of

Lemma 12 that limγ→1 µ
C = µC(ε) and limε→0 µ

C(ε) = 1. Thus, the limit in Equation

20 is satisfied, and Lemma 13 follows. �

OA.3 Extension of Proposition 3

Proposition 6. When records count C’s, the unique strict equilibrium remains Always

Defect even if plays of D are mis-recorded as C with probability ε′ > 0.

Proof. It suffices to show that Vk ≤ Vk+1 for all k ∈ N and apply the proof of Propo-

sition 3. So suppose Vk > Vk+1 for some k. Then a player with record k always plays

D: this maximizes both her flow payoff and her continuation payoff. Since there are

no anti-reciprocators, this implies that only unconditional cooperators play C against

a player with record k.

Now, let πk denote the flow payoff of a player with record k, i.e. a player who

always plays D while facing C from unconditional cooperators and D from everyone

else. We claim that πk ≤ Vk′ for every record k′, and in particular πk ≤ Vk+1. To

see this, note that a player who always plays D gets at least πk in every period (as

8



unconditional cooperators always play C against her, and depending on her record

maybe other players do, too). So if πk > Vk′ then a player with record k′ would do

strictly better to play D forever.

We now have Vk > Vk+1 and πk ≤ Vk+1. But Vk is a weighted average of πk and

Vk+1, a contradiction. �

OA.4 Erasure-Proofness

Proposition 7. For any record-keeping system, the only erasure-proof equilibrium is

Always Defect.

Proof. Let π̄ be the supremum of the flow payoffs earned at any record. We claim

first that if an equilibrium prescribes cooperation at any record (whether or not it

is erasure-proof), then no player with an unconditional defector record can earn flow

payoffs within 1−γ
γ
g of π̄. This follows from the fact that there are no anti-reciprocators,

so at any record a player who deviates to D will receive flow payoff no less than that

of players who are prescribed to play D. Hence, at any record where cooperation

is prescribed, deviating to always playing D increases a player’s instantaneous payoff

by at least (1 − γ)g and reduces her continuation payoff by at most 1−γ
γ
g, and thus

constitutes a profitable deviation.

Now let k be a record where the flow payoff is within 1−γ
γ
g of π̄. Then any erasure-

proof equilibrium must prescribe unconditional defection at record k, as playing D and

erasing the record update to keep one’s record fixed at k increases one’s instantaneous

payoff by at least (1− γ)g and reduces one’s continuation payoff by at most 1−γ
γ
g.

Combining these two observations implies that players must defect at every record

in any erasure-proof equilibrium. �

9



OA.5 Proofs of Results for Theorem 3

Lemma 14. In every non-trivial equilibrium, πR > πD. In every equilibrium with

unconditional cooperators, πR > πUC > πD.

Proof of Lemma 14. πR > πUC follows from µD > 0. To see that µD > 0, note that, if

µD = 0, then every player would face only cooperators for the duration of her lifetime

regardless of her history of play. However, then every player would defect in every

period, a contradiction.

Next, if πD ≥ πUC , then unconditional cooperators would receive the lowest flow

payoff of any class. Since Vk is a convex combination of πk′ for k′ ≥ k and a player’s

record remains constant when she plays C, this implies that a player at any uncondi-

tional cooperator record would do strictly better by playing D until her record changes,

a contradiction.

Hence, πR > πUC > πD in any equilibrium with unconditional cooperators. A

similar argument implies πR > πD in any non-trivial equilibrium without unconditional

cooperators. �

Lemma 7. In any equilibrium that satisfies forgery-proofness, there exists a record k̄

such that a record k is an unconditional defector record iff k ≥ k̄.

Proof of Lemma 7. First, we establish that there must be some cutoff record after

which a player is always an unconditional defector. Note that for any record k at

which a player is not an unconditional defector, the (C|C)k constraint requires that

Vk − Vk+1 >
1− γ
γ(1− ε)

g.

Thus, if in a forgery-proof equilibrium where the value function is everywhere non-

increasing, there were infinitely many records at which a player is not an unconditional

defector, there would be some k for which Vk < 0, which is impossible in equilibrium.

We now establish that unconditional defector records can only be followed by other

unconditional defector records. The reason for this is that otherwise, there would be

10



some unconditional defector record k at which a player would strictly prefer to inflate

her record until she reaches the next record at which some cooperation occurs, which

would violate forgery proofness. �

Lemma 8. In any equilibrium that satisfies forgery-proofness and coordination-proofness,

there exists a record k∗ such that all records k < k∗ are reciprocators and all records

k ≥ k∗ are either unconditional cooperators or unconditional defectors.

Proof of Lemma 8. From Lemma 7, there exists some record k such that all records

k ≥ k are unconditional defector records and all records k < k are either reciprocator or

unconditional cooperator records. Suppose that there are m records at which a player

is a reciprocator and k −m records at which a player is an unconditional cooperator.

We must show that the first m records, 0 ≤ k ≤ m−1, correspond to R while the next

k − m records, m ≤ k ≤ k − 1, correspond to UC. Note that this is vacuously true

if m = 0 or m = k. We now show that it is true for 0 < m < k. Suppose towards a

contradiction that there exists some k satisfying 0 ≤ k < k − 1 which corresponds to

UC and is such that k + 1 corresponds to R. By the familiar recursive expressions for

a player’s expected payoff as a function of their record, a record k+1 player’s expected

payoff given by the strategy profile is Vk+1 = (1−β(γ, ε, µC))πR +β(γ, ε, µC)Vk+2, and

a record k player’s expected payoff given by the strategy profile is

Vk = (1− α(γ, ε))πUC + α(γ, ε)Vk+1

= α(γ, ε)(1− β(γ, ε, µC))πR + (1− α(γ, ε))πUC + α(γ, ε)β(γ, ε, µC)Vk+2,

where Vk+2 is the player’s expected payoff upon reaching record k+2. However, suppose

instead that the player changed their strategy so that she plays according to R at record

k and according to UC at record k + 1, but otherwise keeps her strategy the same.

Then the player’s expected payoff upon reaching record k + 1, which we denote by

Ṽk+1, would be Ṽk+1 = (1−α(γ, ε))πUC +α(γ, ε)Vk+2, and the player’s expected payoff
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upon reaching record k, which we denote by Ṽk, would be

Ṽk = (1− β(γ, ε, µC))πR + β(γ, ε, µC)Vk+1

= (1− β(γ, ε, µC))πR + (1− α(γ, ε))β(γ, ε, µC)πUC + α(γ, ε)β(γ, ε, µC)Vk+2.

Note that Ṽk − Vk = (1− α(γ, ε))(1− β(γ, ε, µC))(πR − πUC) > 0 where the inequality

follows because πR > πUC by Lemma 14. Thus the profile is not an equilibrium. �

OA.6 Proof of Proposition 4

Proposition 4. There is a GrimK equilibrium with share of cooperators µC if and

only if the following conditions hold:

1. Feasibility:

µC = 1− β(γ, ε, µC)K .

2. Incentives:

(C|C)0 : µC ∈

(
1 + g −

√
(1 + g)2 − 4

1−εg

2
,
1 + g +

√
(1 + g)2 − 4

1−εg

2

)
,

(D|D)K−1 : µC <
1

γ(1− ε)
l

1 + l
.

Lemma 15. In a GrimK steady state with total share of cooperators µC,

µk =

β(γ, ε, µC)k(1− β(γ, ε, µC)) if 0 ≤ k ≤ K − 1

γk−Kβ(γ, ε, µC)K(1− γ) if k ≥ K

. (21)

Moreover, µC satisfies the equation

µC = 1− β(γ, ε, µC)K . (22)
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Proof. Since i0 = 1 − γ and τ 0 = γ(1 − (1 − ε)µC)µ0, Equation 7 implies µ0 =

1−γ
1−γ(1−ε)µC = 1− β(γ, ε, µC). Moreover, by Lemmas 4 and 5, ik+1 = γ(1− (1− ε)µC)µk

and τ k+1 = γ(1 − (1 − ε)µC)µk+1 for 0 ≤ k ≤ K − 1. Thus, Equation 7 implies

µk+1 = β(γ, ε, µC)µk for 0 ≤ k ≤ K−1. By induction, µk = β(γ, ε, µC)k(1−β(γ, ε, µC))

for 0 ≤ k ≤ K − 1.

By Lemmas 4 and 5, iK = γ(1 − (1 − ε)µC)µK−1 and τK = γµK , so Equation 7

implies µK = γ(1− (1− ε)µC)µK−1 = β(γ, ε, µC)K(1− γ). Likewise, by Lemmas 4 and

5, ik+1 = γµk and τ k+1 = γµk+1 for k ≥ K. Hence, Equation 7 implies µk+1 = γµk

for k ≥ K. Combining this with the previously derived µK = β(γ, ε, µC)K(1 − γ)

and applying induction gives µk = γk−Kβ(γ, ε, µC)K(1 − γ) for k ≥ K. This proves

Equation 21.

To prove Equation 22, note that Equation 21 implies that

µC =
K−1∑
k=0

µk =
K−1∑
k=0

β(γ, ε, µC)k(1− β(γ, ε, µC)) = 1− β(γ, ε, µC)K .

�

Lemma 16. The value function of a player with record k is

Vk =

(1− β(γ, ε, µC)K−k)µC if 0 ≤ k ≤ K − 1

0 if k ≥ K

(23)

Proof. Players with record k ≥ K are defectors and obtain a flow payoff of 0 in all

future periods, so Vk = 0 for k ≥ K. Combining this with Vk = (1− β(γ, ε, µC))µC +

β(γ, ε, µC)Vk+1 for 0 ≤ k ≤ K − 1 from Lemma 6 and solving inductively for Vk gives

Vk = (1− β(γ, ε, µC)K−k)µC for 0 ≤ k ≤ K − 1. �

Lemma 17.
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1. The (C|C)0 constraint is

1− ε
1− γ(1− ε)µC

β(γ, ε, µC)KµC > g. (24)

2. The (D|D)K−1 constraint is

µC <
1

γ(1− ε)
l

1 + l
. (25)

Proof. We first derive the (C|C)0 constraint. From Lemma 23,

γ(1− ε)V0 − V1
1− γ

= γ(1− ε)1− β(γ, ε, µC)

1− γ
β(γ, ε, µC)K−1µC

=
1− ε

1− (1− ε)µC
β(γ, ε, µC)KµC ,

and the (C|C)0 constraint is equivalent to

1− ε
1− γ(1− ε)µC

β(γ, ε, µC)KµC > g.

We now derive the (D|D)K−1 constraint. From Lemma 23, VK−1 = (1−β(γ, ε, µC))µC

and VK = 0. Therefore,

γ(1− ε)VK−1 − VK
1− γ

=
1− β(γ, ε, µC)

1− γ
γ(1− ε)µC

=
1

1− γ(1− ε)µC
γ(1− ε)µC .

Hence, the (D|D)K−1 constraint is equivalent to

1

1− γ(1− ε)µC
γ(1− ε)µC < l.

Manipulating this inequality yields (25.) �

Corollary 3. When combined with the steady state condition Equation 22, (25) reduces
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to

µC ∈

(
1 + g −

√
(1 + g)2 − 4

1−εg

2
,
1 + g +

√
(1 + g)2 − 4

1−εg

2

)
. (26)

Proof. Equation 22 implies that β(γ, ε, µC)K = 1−µC . Combining this with Inequality

25 gives

(1− µC)µC >
g

1− ε
− gµC .

Solving this inequality for µC provides the desired expression. �

Proposition 4 follows from combining the feasibility constraint given by Equation

22 in Lemma 15 and the incentive constraints given by (25) in Lemma 17 and (26) in

Corollary 3.

OA.7 Proof of Part 2 of Theorem 4

Theorem 4 (Part 2). For g < 1 and l ≤ g/(1− g),

lim
ε→0

lim
γ→1

µCK(γ, ε) = 0.

Proof. The case l < g/(1−g) was already handled in A.6. Here we handle the case l =

g/(1−g), or equivalently l/(1+ l) = g. We show that there exists some ε > 0 such that

lim supγ→1 µ
C
K(γ, ε) = 0 for all ε < ε. Suppose that lim supγ→1 µ

C
K(γ, ε) = µC(ε) > 0

for some ε. Then there is some γn → 1 and a sequence of associated equilibria with

share of cooperators µC(γn, ε) such that limn→∞ µ
C(γn, ε) = µC(ε). Such a sequence

must satisfy the (C|C)0 and (D|D)K−1 constraints for each corresponding γn. Taking

the limit of these constraints as n → ∞ shows that µC(ε) must satisfy the following
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“limit” constraints.

Limit (C|C)0 : µC(ε) ∈

[
1 + g −

√
(1 + g)2 − 4

1−εg

2
,
1 + g +

√
(1 + g)2 − 4

1−εg

2

]
,

Limit (D|D)K−1 : µC(ε) ≤ 1

1− ε
g.

We show that the function

q(ε) :=
1 + g −

√
(1 + g)2 − 4

1−εg

2
− 1

1− ε
g

is strictly positive for all sufficiently small, but non-zero, ε, which precludes µC(ε)

satisfying the above “limit” constraints for such ε. To see that q(ε) for sufficiently

small, but non-zero, ε, note that q(ε) = 0, while the ε derivative of q evaluated at

ε = 0 is
dq

dε
(0) = g

( 1

1− g
− 1
)
> 0,

where the inequality comes from 0 < g < 1. �

OA.8 Proof of Lemma 9

Lemma 9. Fix ε ∈ (0, 1). For all ∆ > 0, there exists γ < 1 such that, for all γ > γ

and µC ∈ [0, 1], there exists a µ̂C satisfying |µ̂C − µC | < ∆ that satisfies the Feasibility

constraint of Proposition 4 for some K.

Let K̃ : (0, 1)× (0, 1)× (0, 1)→ R+ be the function given by

K̃(γ, ε, µC) =
ln(1− µC)

ln(β(γ, ε, µC))
. (27)

By construction, K̃(γ, ε, µC) is the unique K ∈ R+ such that µC = 1 − β(γ, ε, µC)K .
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Let d : (0, 1]× (0, 1)× (0, 1)→ R be the function given by

d(γ, ε, µC) =

1 + ln(1− µC)(1− µC)
∂β

∂µC
(γ,ε,µC)

β(γ,ε,µC) ln(β(γ,ε,µC))
if γ < 1

1 + (1−ε) ln(1−µC)(1−µC)
1−(1−ε)µC if γ = 1

.

The µC derivative of K̃(γ, ε, µC) is related to d(γ, ε, µC) in the following lemma.

Lemma 18. K̃ : (0, 1) × (0, 1) × (0, 1) → R+ is differentiable in µC with derivative

given by
∂K̃

∂µC
(γ, ε, µC) = − d(γ, ε, µC)

(1− µC) ln(β(γ, ε, µC))
.

Proof of Lemma 18. From Equation 27, it follows that K̃(γ, ε, µC) is differentiable in

µC with derivative given by

∂K̃

∂µC
(γ, ε, µC) = −

ln(β(γ,ε,µC))
1−µC +

ln(1−µC) ∂β

∂µC
(γ,ε,µC)

β(γ,ε,µC)

ln(β(γ, ε, µC))2

= −
1 + ln(1− µC)(1− µC)

∂β

∂µC
(γ,ε,µC)

β(γ,ε,µC) ln(β(γ,ε,µC))

(1− µC) ln(β(γ, ε, µC))

= − d(γ, ε, µC)

(1− µC) ln(β(γ, ε, µC))
. �

The following two lemmas concern properties of d(γ, ε, µC) that will be useful for

the proof of Lemma 9.

Lemma 19. d : (0, 1]× (0, 1)× (0, 1)→ R is well-defined and continuous.

Proof of Lemma 19. Since β(γ, ε, µC) is differentiable and only takes values in (0, 1),

it follows that d(γ, ε, µC) is well-defined. Moreover, since β(γ, ε, µC) is continuously

differentiable for all (γ, µC) ∈ (0, 1) × (0, 1), d(γ, ε, µC) is continuous for γ < 1. All

that remains is to check that d(γ, ε, µC) is continuous for γ = 1.

First, note that d(1, ε, µC) is continuous in µC . Thus, we need only check the limit
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in which γ approaches 1, but never equals 1. Note that

∂β
∂µC

(γ, ε, µC)

β(γ, ε, µC) ln(β(γ, ε, µC))
= −

γ(1−ε)(1−γ)
(1−γ(1−ε)µC)2

β(γ, ε, µC) ln(β(γ, ε, µC))

= −
( γ(1− ε)
β(γ, ε, µC)(1− γ(1− ε)µC)

)(1− β(γ, ε, µC)

ln(β(γ, ε, µC))

)
.

(28)

It is clear that

lim
(γ,µ)→(1,µC)

γ 6=1

γ(1− ε)
β(γ, ε, µC)(1− γ(1− ε)µC)

=
1− ε

(1− (1− ε)µC)
(29)

for all µC ∈ (0, 1). For γ close to 1,

ln(β(γ, ε, µC)) = β(γ, ε, µC)− 1 +O((β(γ, ε, µC)− 1)2).

Thus,

lim
(γ,µ)→(1,µC)

γ 6=1

1− β(γ, ε, µC)

ln(β(γ, ε, µC))
= −1 (30)

for all µC ∈ (0, 1). Equations 28, 29, and 30 together imply that d(γ, ε, µC) is contin-

uous for γ = 1. �

Lemma 20. For any fixed ε, d(1, ε, µC) has at most two zeros in µC ∈ (0, 1).

Proof of Lemma 20. It suffices to show that

ln(1− µC)(1− µC)

1− (1− ε)µC

is single-peaked in µC ∈ (0, 1). Note that

∂

∂µC

[ ln(1− µC)(1− µC)

1− (1− ε)µC
]

=
(1− ε)µC − ε ln(1− µC)− 1

(1− (1− ε)µC)2
.

The single-peakedness of ln(1− µC)(1− µC)/(1− (1− ε)µC) follows from (1− ε)µC −

ε ln(1− µC)− 1 being increasing in µC . �
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With these preliminaries established, we now present the proof of Lemma 9.

Proof of Lemma 9. Fix ε ∈ (0, 1). Lemma 20 says d(1, ε, µC) has at most two zeros

for µC ∈ (0, 1). Because of this, there exists µ1, µ2, µ3, µ4, µ5, µ6 ∈ (0, 1) satisfying

0 < µ1 < µ2 < µ3 < µ4 < µ5 < µ6 < 1 such that

min{|µC − µ1|, |µC − µ2|, |µC − µ3|, |µC − µ4|, |µC − µ5|, |µC − µ6|} < ∆/2 (31)

for all µC ∈ [0, 1], and d(1, µC) is non-zero on the intervals [µ1, µ2], [µ3, µ4], and [µ5, µ6].

Let M = [µ1, µ2] ∪ [µ3, µ4] ∪ [µ5, µ6]. Equation 31 says that the interval endpoints can

be chosen so that M is no farther than ∆/2 from any µC ∈ [0, 1], while the second

condition implies that

|d(1, µC)| > 0 (32)

for all µC ∈M .

Lemma 19 says d(γ, ε, µC) is continuous for (γ, µC) ∈ (0, 1]×(0, 1). Hence, d(γ, ε, µC)

is uniformly continuous for (γ, µC) ∈ [γ, 1]×M for any γ > 0. Equation 32 then implies

that there exists some λ > 0 and γ̃ ∈ (0, 1) such that |d(γ, ε, µC)/(1− µC)| > λ for all

γ > γ̃ and µC ∈M .

Define η ∈ (0, 1) to be

η = min
{µ2 − µ1

2
,
µ4 − µ3

2
,
µ6 − µ5

2
,
∆

2

}
.

Because limγ→1 minµC∈[0,1] β(γ, ε, µC) = 1, there exists γ′ ∈ (0, 1) such that | ln(β(γ, ε, µC))| <

λη for all γ > γ′ and µC ∈M .

Moreover, limγ→1 minµC∈[0,1] β(γ, ε, µC) = 1 implies that there exists γ̂ ∈ (0, 1) such

that K̃(γ, ε, µC) ≥ 1 for all γ > γ̂ and µC ∈M .

Let γ = max{γ̃, γ′, γ̂}. Thus, |d(γ, ε, µC)/((1 − µC) ln(β(γ, ε, µC)))| > 1/η and

K̃(γ, ε, µC) ≥ 1 for all γ > γ and µC ∈ M . For the remainder of the proof, fix

γ ∈ (γ, 1). We now show that, for a given µC ∈ M , there exists some µ̂C ∈ M and
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non-negative integer K̂ such that |µ̂C − µC | < ∆/2 and µ̂C = 1 − β(γ, ε, µ̂)K̂ . This,

when combined with Equation 31, completes the proof.

Fix µC ∈ M . Suppose for concreteness that µC ∈ [µ1, µ2]. An identical argument

handles the case when µC ∈ [µ3, µ4] ∪ [µ5, µ6]. By construction, η is weakly smaller

than both (µ2 − µ1)/2 and ∆/2. Therefore, there is some µ̃C ∈ [µ1, µ2] such that

η ≤ |µ̃C − µC | ≤ ∆/2. Because |d(γ, ε, µC)/((1 − µC) ln(β(γ, ε, µC)))| > 1/η for

all µC ∈ M , it follows from Lemma 18 that |∂β/∂µC(γ, ε, µC)| > 1/η for all µC ∈ M .

Hence, |K̃(γ, ε, µ̃C)−K̃(γ, ε, µC)| > 1. It thus follows that there exists some µ̂C between

µC and µ̃C and some non-negative integer K̂ between K̃(γ, ε, µC) and K̃(γ, ε, µ̃C) such

that K̃(γ, ε, µ̂C) = K̂. Thus, |µ̂C − µC | < ∆/2 and µ̂C = 1− β(γ, ε, µ̂C)K̂ . �

OA.9 Proof of Proposition 5

Proposition 5. There is a GrimKL equilibrium with total share of cooperators µC,

share of reciprocators µR, and share of unconditional cooperators µUC if and only if the

following conditions hold:

1. Feasibility:

µC = 1− α(γ, ε)Lβ(γ, ε, µC)K ,

µR = 1− β(γ, ε, µC)K ,

µUC = (1− α(γ, ε)L)β(γ, ε, µC)K .

2. Incentives:

(C|C)0 :
(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
> g,

(D|D)K−1 :
γ(1− ε)(1− µC)

1− γ(1− ε)µC
[
µR + µUC(l − g)

]
+ µRl < l,

(C|D)K :
(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
+ µRl > l.
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Lemma 21. In a GrimKL steady state with total share of cooperators µC,

µk =


β(γ, ε, µC)k(1− β(γ, ε, µC)) if 0 ≤ k ≤ K − 1

α(γ, ε)k−Kβ(γ, ε, µC)K(1− α(γ, ε)) if K ≤ k ≤ K + L− 1

γk−K−Lα(γ, ε)Lβ(γ, ε, µC)K(1− γ) if k ≥ K

.

Moreover, µC satisfies the equation

µC = 1− α(γ, ε)Lβ(γ, ε, µC)K ,

µR satisfies the equation

µR = 1− β(γ, ε, µC)K ,

and µUC satisfies the equation

µUC = (1− α(γ, ε)L)β(γ, ε, µC)K .

Proof. We establish the first part of this result. Since i0 = 1− γ and τ 0 = γ(1− (1−

ε)µC)µ0, Equation 7 implies

µ0 =
1− γ

1− γ(1− ε)µC

= 1− β(γ, ε, µC).

Moreover, by Lemmas 4 and 5, ik+1 = γ(1−(1−ε)µC)µk and τ k+1 = γ(1−(1−ε)µC)µk+1

for 0 ≤ k ≤ K − 1. Thus, Equation 7 implies µk+1 = β(γ, ε, µC)µk for 0 ≤ k ≤ K − 1.

By induction, µk = β(γ, ε, µC)k(1− β(γ, ε, µC)) for 0 ≤ k ≤ K − 1.

By Lemmas 4 and 5, iK = γ(1 − (1 − ε)µC)µK−1 and τK = γεµK , so Equation 7
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implies

µK =
γ(1− (1− ε)µC)

1− γ(1− ε)
µK−1

= β(γ, ε, µC)K(1− α(γ, ε)).

Likewise, by Lemmas 4 and 5, ik+1 = γεµk and τ k+1 = γεµk+1 for K ≤ k ≤ K+L− 1.

Hence, Equation 7 implies µk+1 = α(γ, ε)µk for K ≤ k ≤ K + L − 1. Combining

this with the previously derived µK = β(γ, ε, µC)K(1−α(γ, ε)) and applying induction

gives µk = α(γ, ε)k−Kβ(γ, ε, µC)K(1− α(γ, ε)) for K ≤ k ≤ K + L− 1.

By Lemmas 4 and 5, iK+L = γεµK+L−1 and τK+L = γµK+L, so Equation 7 implies

µK+L = γεµK+L−1

= α(γ, ε)Lβ(γ, ε)K(1− γ).

Likewise, by Lemmas 4 and 5, ik+1 = γµk and τ k+1 = γµk+1 for k ≥ K + L.

Hence, Equation 7 implies µk+1 = γµk for k ≥ K + L. Combining this with the

previously derived µK+L = α(γ, ε)Lβ(γ, ε, µC)K(1 − γ) and applying induction gives

µk = γk−K−Lα(γ, ε)Lβ(γ, ε, µC)K(1− γ) for k ≥ K + L.

Now we establish the second part of the result. Using Equation 21, it follows that

µR =
K−1∑
k=0

µk =
K−1∑
k=0

β(γ, ε, µC)k(1− β(γ, ε, µC))

= 1− β(γ, ε, µC)K ,

µUC =
K+L−1∑
k=K

µk =
K+L−1∑
k=K

α(γ, ε)k−Kβ(γ, ε, µC)K(1− α(γ, ε))

= (1− α(γ, ε)L)β(γ, ε, µC)K ,

and

µC = µR + µUC = 1− α(γ, ε)Lβ(γ, ε, µC)K ,
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which establishes Equation 22. �

Lemma 22. The value function of a player with record k is

Vk =



(1− β(γ, ε, µC)K−k)µC + β(γ, ε, µC)K−k(1− α(γ, ε))L(µC − µDl)

+β(γ, ε, µC)K−kα(γ, ε)LµUC(1 + g) if 0 ≤ k ≤ K − 1

(1− α(γ, ε)K+L−k)(µC − µDl) + α(γ, ε)K+L−kµUC(1 + g) if K ≤ k ≤ K + L− 1

µUC(1 + g) if k ≥ K + L

Proof. Players with record k ≥ K+L are defectors and obtain a flow payoff of µUC(1+g)

in all future periods, so Vk = µUC(1 + g) for k ≥ K + L. Combining this with

Vk = (1− α(γ, ε))(µC − µDl) + α(γ, ε)Vk+1 for 0 ≤ k ≤ K + L− 1 from Lemma 6 and

solving inductively for Vk gives

Vk = (1− α(γ, ε)K+L−k)(µC − µDl) + α(γ, ε)K+L−kµUC(1 + g)

for K ≤ k ≤ K + L − 1. Finally, combining this with Vk = (1 − β(γ, ε, µC))µC +

β(γ, ε, µC)Vk+1 for 0 ≤ k ≤ K − 1 from Lemma 6 and solving inductively for Vk gives

Vk = (1− β(γ, ε, µC)K−k)µC + β(γ, ε, µC)K−k(1− α(γ, ε)L)(µC − µDl)

+ β(γ, ε, µC)K−kα(γ, ε)LµUC(1 + g)

for K ≤ k ≤ K + L− 1. �

Lemma 23.

1. The (C|C)0 constraint is

1− ε
1− (1− ε)µC

β(γ, ε, µC)K
[
µC−(1−α(γ, ε)L)(µC−µDl)−α(γ, ε)µUC(1+g)

]
> g.
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2. The (D|D)K−1 constraint is

γ(1− ε)
1− γ(1− ε)µC

[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)LµUC(1 + g)

]
< l.

3. The (C|D)K constraint is

1− ε
ε

α(γ, ε)L
[
µC − µDl − µUC(1 + g)

]
> l.

Proof. We first derive the (C|C)0 constraint. From Lemma 22,

V0−V1 = (1−β(γ, ε, µC))β(γ, ε, µC)K−1
[
µC−(1−α(γ, ε)L)(µC−µDl)−α(γ, ε)LµUC(1+g)

]
.

Therefore,

γ(1− ε)V0 − V1
1− γ

= γ(1− ε)1− β(γ, ε, µC)

1− γ
β(γ, ε, µC)K−1

[
µC − (1− α(γ, ε)L)(µC − µDl)

− α(γ, ε)LµUC(1 + g)
]

= (1− ε) γ

1− γ(1− ε)µC
β(γ, ε, µC)K−1

[
µC − (1− α(γ, ε)L)(µC − µDl)

− α(γ, ε)LµUC(1 + g)
]

=
1− ε

1− (1− ε)µC
β(γ, ε, µC)K

[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)LµUC(1 + g)

]
.

Hence, the (C|C)0 constraint is equivalent to

1− ε
1− (1− ε)µC

β(γ, ε, µC)K
[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)µUC(1 + g)

]
> g.

We now derive the (D|D)K−1 constraint. From Lemma 22,

VK−1 − VK = (1− β(γ, ε, µC))
[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)LµUC(1 + g)

]
.
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Therefore,

γ(1− ε)VK−1 − VK
1− γ

= γ(1− ε)1− β(γ, ε, µC)

1− γ

[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)LµUC(1 + g)

]
=

γ(1− ε)
1− γ(1− ε)µC

[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)LµUC(1 + g)

]
.

Hence, the (D|D)K−1 constraint is equivalent to

γ(1− ε)
1− γ(1− ε)µC

[
µC − (1− α(γ, ε)L)(µC − µDl)− α(γ, ε)LµUC(1 + g)

]
< l.

We now derive the (C|D)K constraint. From Lemma 22,

VK − VK+1 = (1− α(γ, ε))α(γ, ε)L−1
[
µC − µDl − µUC(1 + g)

]
.

Therefore,

γ(1− ε)VK − VK+1

1− γ
= γ(1− ε)1− α(γ, ε)

1− γ
α(γ, ε)L−1

[
µC − µDl − µUC(1 + g)

]
= (1− ε) γ

1− γ(1− ε)
α(γ, ε)L−1

[
µC − µDl − µUC(1 + g)

]
=

1− ε
ε

α(γ, ε)L
[
µC − µDl − µUC(1 + g)

]
.

Hence, the (C|D)K constraint is equivalent to

1− ε
ε

α(γ, ε)L
[
µC − µDl − µUC(1 + g)

]
> l.

�

Corollary 4. When combined with the steady state conditions from Lemma 21,

1. The (C|C)0 constraint reduces to

(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
> g.
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2. The (D|D)K−1 constraint reduces to

γ(1− ε)(1− µC)

1− γ(1− ε)µC
[
µR + µUC(l − g)

]
+ µRl < l.

3. The (C|D)K constraint reduces to

(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
+ µRl > l.

Proof. The steady state condition from Lemma 21 implies that β(γ, ε, µC)K = 1− µR,

1 − α(γ, ε)L = µUC/(1 − µR), and α(γ, ε)L = (1 − µC)/(1 − µR). Imposing these

conditions on the (C|C)0, (D|D)K−1, and (C|D)K constraints in Lemma 23 and ma-

nipulating the various inequalities gives the inequalities in Corollary 5. �

OA.10 Supporting Results for Part 1 of Theorem 5

Let ρ : [0, 1]× (0, 1)× [0, 1]→ [0, 1) be the function given by

ρ(γ, ε, µC) =
γ(1− ε)(1− µC)

1− γ(1− ε)µC
.

Equation 14 can be equivalently written as

ρ(1, ε, µC)
[
(l − g)µC + (1 + g − l)µR

]
+ lµR = l.

Setting µC = h(ε, µR) in the above equation and solving for ρ(1, ε, h(ε, µR)) gives

ρ(1, ε, h(ε, µR)) =
l(1− µR)

(l − g)h(ε, µR) + (1 + g − l)µR

for all ε such that h(ε, µR) is well-defined. Since limε→0 h(ε, µR) = 1, an immediate

corollary follows.
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Corollary 5. For every µR ∈ (g/(1 + g), 1− g/l],

lim
ε→0

ρ(1, ε, h(ε, µR)) =
l(1− µR)

l − g + (1 + g − l)µR
.

OA.10.1 Proof of Lemma 10

Lemma 10. Fix µR ∈ (g/(1 + g), 1 − g/l]. If |1 + κ(µR)| > ι(µR), then there exists

some ε > 0, such that lim infγ→1 µ
C
KL(γ, ε) ≥ h(ε, µR) for ε < ε.

Define the function I : [0, 1]× (0, 1)× [0, 1]× [0, 1]→ R by

I(γ, ε, µC , µR) = ρ(γ, ε, µC)((l − g)µC + (1 + g − l)µR) + lµR.

The (D|D)K−1 constraint is equivalent to I(γ, ε, µC , µR) < l, and the (C|D)K constraint

is equivalent to I(1, ε, µC , µR) > l. The (C|C)0 constraint holds whenever the (C|D)K

constraint holds and µR ≤ 1− g/l, which is true for the profiles we consider.

Lemma 24. Fix µR ∈ (g/(1 + g), 1− g/l]. There exists ε > 0 such that

∂I

∂µC
(1, ε, h(ε, µR), µR) < 0 <

∂I

∂µR
(1, ε, h(ε, µR), µR)

for all ε < ε.

Proof of Lemma 24. Note that

∂I

∂µR
(1, ε, h(ε, µR), µR) = ρ(1, ε, h(ε, µR))(1 + g − l) + l > ρ(1, ε, h(ε, µR))(1 + g) > 0,

since 0 < ρ(1, ε, h(ε, µR)) < 1.
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Moreover,

∂I

∂µC
(1, ε, h(ε, µR), µR) =−

(
1

1− h(ε, µR)

)(
ε

1− (1− ε)h(ε, µR)

)
ρ(1, ε, h(ε, µR))((1 + g − l)µR + (l − g)h(ε, µR))

+ ρ(1, ε, h(ε, µR))(l − g)

= −
(

1

1− h(ε, µR)

)(
ε

1− (1− ε)h(ε, µR)

)
l(1− µR)

+ ρ(1, ε, h(ε, µR))(l − g).

Since limε→0 h(ε, µR) = 1 and

lim
ε→0

ε

1− (1− ε)h(ε, µR)
=

(1 + g)µR − g
(1 + g − l)µR + l − g

,

it follows that

lim
ε→0

∂I

∂µC
(1, ε, h(ε, µR), µR) = −∞.

Thus, there exists some ε > 0 such that

∂I

∂µC
(1, ε, h(ε, µR), µR) < 0

for all ε < ε. �

Let K̃ : (0, 1)× (0, 1)× (0, 1)× (0, 1)→ R be the function given by

K̃(γ, ε, µC , µR) =
ln(1− µR)

ln(β(γ, ε, µC))
, (33)

and L̃ : (0, 1)× (0, 1)× (0, 1)× (0, 1)→ R+ be the function given by

L̃(γ, ε, µC , µR) =
ln(1− µC)− ln(1− µR)

ln(α(γ, ε))
. (34)

Note that L̃(γ, ε, µC , µR) ≥ 0 whenever µC ≥ µR, which is the case of interest. By
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construction, K̃(γ, ε, µC , µR) and L̃(γ, ε, µC , µR) are the unique (K,L) ∈ R+×R+ such

that the feasibility constraints in Proposition 5 are satisfied.

Differentiating Equations 33 and 34 gives the following result.

Lemma 25. K̃(γ, ε, µC , µR) and L̃(γ, ε, µC , µR) are differentiable in (µC , µR) ∈ (0, 1)×

(0, 1) with partial derivatives

∂K̃

∂µC
(γ, ε, µC , µR) = −

ln(1− µR)∂β
∂µ

(γ, ε, µC)

ln(β(γ, ε, µC))2β(γ, ε, µC)
,

∂L̃

∂µC
(γ, ε, µC , µR) = − 1

(1− µC) ln(α(γ, ε))
,

∂K̃

∂µR
(γ, ε, µC , µR) = − 1

(1− µR) ln(β(γ, ε, µC))
,

∂L̃

∂µR
(γ, ε, µC , µR) =

1

(1− µR) ln(α(γ, ε))
.

Let J(γ, ε, µC , µR) be the Jacobian matrix comprising the various partial derivatives

of K̃ and L̃. That is,

J(γ, ε, µC , µR) =

 ∂K̃
∂µC

(γ, ε, µC , µR) ∂K̃
∂µR

(γ, ε, µC , µR)

∂L̃
∂µC

(γ, ε, µC , µR) ∂L̃
∂µR

(γ, ε, µC , µR)


=

− ln(1−µR) ∂β
∂µ

(γ,ε,µC)

ln(β(γ,ε,µC))2β(γ,ε,µC)
− 1

(1−µR) ln(β(γ,ε,µC))

− 1
(1−µC) ln(α(γ,ε))

1
(1−µR) ln(α(γ,ε))

 .
Let ζ : [0, 1]× (0, 1)× (0, 1)× (0, 1)→ R be the function given by

ζ(γ, ε, µC , µR) =

ln(1− µR)
(1−µC) ∂β

∂µ
(γ,ε,µC)

β(γ,ε,µC) ln(β(γ,ε,µC))
if γ < 1

ln(1− µR)ρ(1, ε, µC) if γ = 1

.

The following lemma comes from direct calculation.

Lemma 26.
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1. The determinant of J(γ, ε, µC , µR) is

det(J(γ, ε, µC , µR)) = − 1 + ζ(γ, ε, µC , µR)

(1− µC)(1− µR) ln(α(γ, ε)) ln(β(γ, ε, µC))
.

2. When J(γ, ε, µC , µR) is invertible, its inverse is

J(γ, ε, µC , µR)−1 =

− (1−µC) ln(β(γ,ε,µC))
1+ζ(γ,ε,µC ,µR)

− (1−µC) ln(α(γ,ε))
1+ζ(γ,ε,µC ,µR)

− (1−µR) ln(β(γ,ε,µC))
1+ζ(γ,ε,µC ,µR)

ζ(γ,ε,µC ,µR)(1−µR) ln(α(γ,ε))
1+ζ(γ,ε,µC ,µR)

 .

We establish the continuity of ζ(γ, ε, µR, µC).

Lemma 27. For all ε ∈ (0, 1), ζ(γ, ε, µC , µR) is continuous in (γ, µC , µR).

Proof of Lemma 27. Clearly, ζ(γ, ε, µC , µR) is continuous whenever γ < 1. What re-

mains is to show that it is continuous when γ = 1. Note that ln(1 − µR)ρ(1, ε, µC) is

continuous in (µC , µR). Thus, we need only check the limit in which γ approaches 1,

but never equals 1. Recall that

∂β
∂µ

(γ, ε, µC)

β(γ, ε, µC) ln(β(γ, ε, µC))
= −

γ(1−ε)(1−γ)
(1−γ(1−ε)µC)2

β(γ, ε, µC) ln(β(γ, ε, µC))

= −
( γ(1− ε)
β(γ, ε, µC)(1− γ(1− ε)µ)

)(1− β(γ, ε, µC)

ln(β(γ, ε, µC))

)
.

It is clear that

lim
(γ,µ)→(1,µC)

γ 6=1

γ(1− ε)
β(γ, ε, µ)(1− γ(1− ε)µ)

=
1− ε

(1− (1− ε)µC)

for all µC ∈ (0, 1). For γ close to 1,

ln(β(γ, ε, µC)) = β(γ, ε, µC)− 1 +O((β(γ, ε, µC)− 1)2).
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Thus,

lim
(γ,µ)→(1,µC)

γ 6=1

1− β(γ, ε, µ)

ln(β(γ, ε, µ))
= −1

for all µC ∈ (0, 1). Combining these results, it follows that

lim
(γ,µ)→(1,µC)

γ 6=1

(1− µ)∂β
∂µ

(γ, ε, µ)

β(γ, ε, µ) ln(β(γ, ε, µ))
= ρ(1, ε, µC)

for all µC ∈ (0, 1). Hence, ζ(γ, ε, µC , µR) is continuous. �

The following lemma concerns the extent to which, for small ε and fixed µ̂R ∈

(g/(1 + g), 1 − g/l], profiles (µC , µR) near (h(ε, µ̂R), µ̂R) are close to feasible profiles.

It combines Lemmas 26 and 27 with the inverse function theorem to obtain a bound

on how far such (µC , µR) are from feasible profiles when the corresponding value of

L̃ is an integer. Moreover, the size of this bound is related to the magnitude of 1 +

ζ(1, ε, h(ε, µ̂R), µ̂R), which is close to |1 + κ(µ̂R)| for small ε.

Lemma 28. Fix µ̂R ∈ (g/(1 + g), 1 − g/l] and η > 0. If |1 + κ(µ̂R)| > λ for some

λ > 0, there exists some ε > 0 such that, for all ε < ε, there exists some γ < 1 and

an open neighborhood of (h(ε, µ̂R), µ̂R), M , such that, for all γ > γ and (µC , µR) ∈M ,

whenever L = L̃(γ, ε, µC , µR) is an integer, there exists some feasible µ̃C and µ̃R such

that

0 ≤ µ̃C − µC < −1 + η

λ
(1− h(ε, µ̂R)) ln(β(γ, ε, h(ε, µ̂R))),

0 ≤ µ̃R − µR < −1 + η

λ
(1− µ̂R) ln(β(γ, ε, h(ε, µ̂R))).

Proof of Lemma 28. We handle the case where 1 + κ(µ̂R) > λ > 0. The case where

1 + κ(µ̂R) < −λ < 0 can be handled analogously.

Note that

1 + ζ(1, ε, h(ε, µ̂R), µ̂R) = 1 + ln(1− µ̂R)ρ(1, ε, h(ε, µ̂R)).
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Moreover,

lim
ε→0

ln(1− µ̂R)ρ(1, ε, h(ε, µ̂R)) = κ(µ̂R)

by Lemma 5. Thus, when 1 + κ(µ̂R) > λ, there exists some ε > 0 such that, for all

ε < ε, there exists γ1 < 1 and an open neighborhood of (h(ε, µ̂R), µ̂R), M1, such that

1 + ζ(γ, ε, µC , µR) < −λ

for all γ > γ1 and (µC , µR) ∈ M1. By Lemma 26, J(γ, ε, µC , µR) is invertible for all

such points. Thus, for a given ε < ε and γ > γ1, the inverse function theorem implies

the existence of differentiable functions of (K,L), µ̃C and µ̃R, that constitute a local

inverse of K̃ and L̃ for (µC , µR) ∈ M1. Additionally, the partial derivatives of these

functions are given by J−1, so that

∂µ̃C

∂K
(γ, ε,K, L) = −(1− µ̃C(γ, ε,K, L)) ln(β(γ, ε, µ̃C(γ, ε,K, L)))

1 + ζ(γ, ε, µ̃C(γ, ε,K, L), µ̃R(γ, ε,K, L))
,

∂µ̃R

∂K
(γ, ε,K, L) = −(1− µ̃R(γ, ε,K, L)) ln(β(γ, ε, µ̃C(γ, ε,K, L)))

1 + ζ(γ, ε, µ̃C(γ, ε,K, L), µ̃R(γ, ε,K, L))
,

∂µ̃C

∂L
(γ, ε,K, L) = − (1− µ̃C(γ, ε,K, L)) ln(α(γ, ε))

1 + ζ(γ, ε, µ̃C(γ, ε,K, L), µ̃R(γ, ε,K, L))
,

∂µ̃R

∂L
(γ, ε,K, L) =

ζ(γ, ε, µ̃C(γ, ε,K, L), µ̃R(γ, ε,K, L))(1− µ̃R(γ, ε,K, L)) ln(α(γ, ε))

1 + ζ(γ, ε, µ̃C(γ, ε,K, L), µ̃R(γ, ε,K, L))
,

for any (K,L) that equals (K̃(γ, ε, µC , µR), L̃(γ, ε, µC , µC)) for some (µC , µR) ∈M1.

There is a neighborhood of (h(ε, µ̂R), µ̂R), M2, such that

1− µC <
√

1 + η(1− h(ε, µ̂R))

and

1− µR <
√

1 + η(1− µ̂R)
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for all (µC , µR) ∈M2. Moreover, because β(γ, ε, µC) is decreasing in µC and

lim
γ→1

ln(β(γ, ε, µC1 ))

ln(β(γ, ε, µC2 ))
=

1− (1− ε)µC2
1− (1− ε)µC1

for all (γ, ε) ∈ (0, 1)× (0, 1) and µC1 , µ
C
2 ∈ [0, 1], we can take the neighborhood M2 to

be small enough so that

ln(β(γ, ε, µC)) >
√

1 + η ln(β(γ, ε, h(ε, µ̂R)))

for all (µC , µR) ∈M and γ > γ2 for some sufficiently high γ2 < 1.

Combining the expression for the partial derivatives of µ̃C and µ̃R with these in-

equalities gives

1 + η

λ
(1− h(ε, µ̂R)) ln(β(γ, ε, h(ε, µ̂R))) <

∂µ̃C

∂K
(γ, ε,K, L) < 0,

1 + η

λ
(1− µ̂R) ln(β(γ, ε, h(ε, µ̂R))) <

∂µ̃R

∂K
(γ, ε,K, L) < 0,

1 + η

λ
(1− h(ε, µ̂R)) ln(α(γ, ε)) <

∂µ̃C

∂L
(γ, ε,K, L) < 0,

(1 + η)(λ+ 1)

λ
(1− µ̂R) ln(α(γ, ε)) <

∂µ̃R

∂L
(γ, ε,K, L) < 0,

for all γ > max{γ1, γ2} and any (K,L) that equals (K̃(γ, ε, µC , µR), L̃(γ, ε, µC , µR))

for some (µC , µR) ∈M1 ∩M2.

Along with the mean value theorem, these bounds on the partial derivatives of

µ̃C and µ̃R imply that there exists some γ < 1 and some open neighborhood of

(h(ε, µ̂R), µ̂R), M , such that

0 ≤ µ̃C(γ, ε, bK̃(γ, ε, µC , µR)c, L̃(γ, ε, µC , µR))− µC < −1 + η

λ
(1− h(ε, µ̂R)) ln(β(γ, ε, h(ε, µ̂R))),

0 ≤ µ̃R(γ, ε, bK̃(γ, ε, µC , µR)c, L̃(γ, ε, µC , µR))− µR < −1 + η

λ
(1− µ̂R) ln(β(γ, ε, h(ε, µ̂R))),

for all γ > γ and (µC , µR) ∈M .

Lemma 28 then follows by noting that µ̃C(γ, ε, bK̃(γ, ε, µC , µR)c, L̃(γ, ε, µC , µR))

33



and µ̃R(γ, ε, bK̃(γ, ε, µC , µR)c, L̃(γ, ε, µC , µR)) is feasible whenever L̃(γ, ε, µC , µR) is an

integer. �

Fix µ̂R ∈ (g/(1 + g), 1− g/l], η > 0, and λ > 0. Let JC
µ̂R,η,λ

: [0, 1]× (0, 1)× (0, 1)×

(0, 1)→ R be the function given by

JC
µ̂R,η,λ

(γ, ε, µC , µR) = I
(

1, ε, µC − 1 + η

λ
(1− h(ε, µ̂R)) ln(β(γ, ε, h(ε, µ̂R))), µR

)
, (35)

and JD
µ̂R,η,λ

: [0, 1]× (0, 1)× (0, 1)× (0, 1)→ R be the function given by

JD
µ̂R,η,λ

(γ, ε, µC , µR) = I
(
γ, ε, µC , µR − 1 + η

λ
(1− µ̂R) ln(β(γ, ε, h(ε, µ̂R)))

)
. (36)

Combining Lemmas 24 and 28, it follows that, if |1 + κ(µ̂R)| > λ, there exists some

ε > 0 such that, for all ε < ε and η > 0, there exists γ < 1 and an open neigh-

borhood of (h(ε, µ̂R), µ̂R), M , such that, for all γ > γ and (µC , µR) ∈ M , whenever

L = L̃(γ, ε, µC , µR) is a non-negative integer, the feasible profile (µ̃C , µ̃R) described

in Lemma 28 is such that I(1, ε, µ̃C , µ̃R) ≥ JC
µ̂R,η,λ

(γ, ε, µC , µR) and I(γ, ε, µ̃C , µ̃R) ≤

JD
µ̂R,η,λ

(γ, ε, µC , µR).

Next we give conditions under which the γ partial derivatives of JC
µ̂R,η,λ

and JD
µ̂R,η,λ

evaluated at (γ, µC , µR) = (1, h(ε, µ̂R), µ̂R) are both strictly negative, and are such that

the γ partial derivative of JD
µ̂R,η,λ

is strictly less than that of JC
µ̂R,η,λ

. An implication

of this is that, for all sufficiently high γ, there is a (µC , µR) isocurve of I(1, γ, µC , µR)

in M such that JD
µ̂R,η,λ

(γ, ε, µC , µR) < 0 < JC
µ̂R,η,λ

(γ, ε, µC , µR) for all (µC , µR) on the

isocurve.

Lemma 29. Fix µ̂R ∈ (g/(1 + g), 1− g/l]. If there is some λ such that |1 + κ(µ̂R)| >

λ > ι(µ̂R), then there exists some η > 0 and ε > 0 such that, for all ε < ε,

0 <
∂JC

µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R) <

∂JD
µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R).
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Proof of Lemma 29. Differentiating Equation 35, we find that

∂JC
µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R) = −1 + η

λ

1− h(ε, µ̂R)

1− (1− ε)h(ε, µ̂R)

∂I

∂µC
(1, ε, h(ε, µ̂R), µ̂R)

=
l(1− µ̂R)

1− (1− ε)h(ε, µ̂R)

1 + η

λ

( ε

1− (1− ε)h(ε, µ̂R)

− 1− h(ε, µ̂R))

l(1− µ̂R)
ρ(1, ε, h(ε, µ̂R))(l − g)

)
.

Differentiating Equation 36, we find that

∂JD
µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R) =

∂I

∂γ
(1, ε, h(ε, µ̂R), µ̂R)− 1 + η

λ

1− µ̂R

1− (1− ε)h(ε, µ̂R)

∂I

∂µR
(1, ε, h(ε, µ̂R), µ̂R)

=
l(1− µ̂R)

1− (1− ε)h(ε, µ̂R)

(
1− 1 + η

λ

(1

l
ρ(1, ε, h(ε, µ̂R))(1 + g − l) + 1

))
.

Note that

lim
ε→0

l(1− µ̂R)

1− (1− ε)h(ε, µ̂R)

∂JC
µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R) =

1 + η

λ

(1 + g)µ̂R − g
(1 + g − l)µ̂R + l − g

and

lim
ε→0

l(1− µ̂R)

1− (1− ε)h(ε, µ̂R)

∂JD
µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R) = 1− 1 + η

λ

( 1

(1 + g − l)µ̂R + l − g

)
.

When λ > ι(µ̂R),

1− 1

λ

( 1

(1 + g − l)µ̂R + l − g

)
>

1

λ

(1 + g)µ̂R − g
(1 + g − l)µ̂R + l − g

> 0,

so there is some η > 0 such that

1− 1 + η

λ

( 1

(1 + g − l)µ̂R + l − g

)
>

1 + η

λ

(1 + g)µ̂R − g
(1 + g − l)µ̂R + l − g

> 0.

35



Thus, for such an η, there exists some ε such that

0 <
∂JC

µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R) <

∂JD
µ̂R,η,λ

∂γ
(1, ε, h(ε, µ̂R), µ̂R)

for all ε < ε. �

Lemma 30. Fix µ̂R ∈ (g/(1 + g), 1 − g/l]. There exists some ε > 0 such that,

for all ε < ε, the isocurves of L̃(γ, ε, µC , µR) and I(1, ε, µC , µR) are not tangent at

(h(ε, µ̂R), µ̂R).

Proof of Lemma 30. By Lemma 25, we the isocurve of L̃(γ, ε, µC , µR) has slope

dµC

dµR
= −

∂L̃
∂µR

(γ, ε, h(ε, µ̂R), µ̂R)

∂L̃
∂µC

(γ, ε, h(ε, µ̂R), µ̂R)

=
1− h(ε, µ̂R)

1− µ̂R

at (h(ε, µ̂R), µ̂R).

Likewise, we find that the isocurve of I(1, ε, µC , µR) has slope

dµC

dµR
= −

∂I
∂µR

(1, ε, h(ε, µ̂R), µ̂R)
∂I
∂µC

(1, ε, h(ε, µ̂R), µ̂R)

=
ρ(1, ε, h(ε, µ̂R))(1 + g − l) + l

ε
1−(1−ε)h(ε,µ̂R) l − (1− h(ε, µ̂R))(1− µ̂R)ρ(1, ε, h(ε, µ̂R))(l − g)

(1− h(ε, µ̂R)

1− µ̂R
)

at (h(ε, µ̂R), µ̂R).

Since

lim
ε→0

ρ(1, ε, h(ε, µ̂R))(1 + g − l) + l
ε

1−(1−ε)h(ε,µ̂R) l − (1− h(ε, µ̂R))(1− µ̂R)ρ(1, ε, h(ε, µ̂R))(l − g)
=

1

(1 + g)µ̂R − g
> 1,

the result follows. �

Combining Lemmas 29 and 30 gives the following result.
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Lemma 31. Fix µ̂R ∈ (g/(1 + g), 1 − g/l]. If |1 + κ(µ̂R)| > ι(µ̂R), there exists some

ε > 0 such that, for all ε < ε and all open neighborhoods of (h(ε, µ̂R), µ̂R), M , there

exists γ < 1 such that, for all γ > γ, there is a feasible (µC , µR) ∈M that satisfies the

incentive constraints.

Proof of Lemma 31. By Lemma 29, there exists some γ < 1, sufficiently small neigh-

borhood of (µC , µR) = (h(ε, µ̂R), µ̂R), M , and η1, η2 > 0 such that

0 <
∂JC

µ̂R,η,λ

∂γ
(γ, ε, µC , µR) < η1 < η2 <

∂JD
µ̂R,η,λ

∂γ
(γ, ε, µC , µR)

for all (µC , µR) ∈M and γ > γ. Therefore,

JC
µ̂R,η,λ

(γ, ε, µC , µR) ≥ JC
µ̂R,η,λ

(1, ε, µC , µR)− η1(1− γ)

= I(1, ε, µC , µR)− η1(1− γ)

JD
µ̂R,η,λ

(γ, ε, µC , µR) ≤ JD
µ̂R,η,λ

(1, ε, µC , µR)− η2(1− γ)

= I(1, ε, µC , µR)− η2(1− γ)

for all (µC , µR) ∈ M and γ > γ. It thus follows that if there is some (µC , µR) ∈

M such that L̃(γ, ε, µC , µR) is a non-negative integer and that satisfies η1(1 − γ) <

I(1, ε, µC , µR) < η2(1 − γ) and µR ≤ 1 − g/l, then (µ̃C(γ, ε, µC , µR), µ̃R(γ, ε, µC , µR))

is both feasible and satisfies all of the incentive constraints for γ.

All that remains is to show that, for all γ > γ, there exists some (µC , µR) ∈M for

which these conditions are met. Because

∂I

∂µC
(1, ε, h(ε, µ̂R), µ̂R) < 0,

it follows that, for sufficiently large γ, isocurves of the form I(1, ε, µC , µR) = (η1 +

η2)/2(1− γ) intersect M for every µR in an open neighborhood of 1− g/l. By Lemma

30, the isocurves of I(1, ε, µC , µR) and L̃(γ, ε, µC , µR) are not tangent. Because the
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L̃(γ, ε, µC , µR) isocurves do not depend on γ and

lim
γ→1

ln(α(γ, ε)) = 0,

it follows by Lemma 25 that there exists some (µC , µR) ∈M on the isocurve I(1, ε, µC , µR) =

(η1 + η2)/2(1− γ) that satisfies µR ≤ 1− g/l and is such that L̃(γ, ε, µC , µR) is a non-

negative integer for sufficiently large γ. �

Lemma 10 is an immediate consequence of Lemma 31.

OA.10.2 Proof of Lemma 11

Lemma 11. Suppose that l > g(g + 1). Some µR ∈ (g/(1 + g), 1 − g/l] satisfies

|1 + κ(µR)| > ι(µR) if l > max{g(g + 1), b(g)}.

Lemma 11 is a consequence of the following lemma.

Lemma 32. Suppose l > g(g+1). Some µR ∈ (g/(1+g), 1−g/l] satisfies |1+κ(µR)| >

ι(µR) if any of the following conditions hold.

1. g < e− 1 and

l >
1 + g

1− ln(1 + g)
.

2. g > e− 1 and

l >
1 + g

ln(1 + g)− 1
.

3. For some φ > 1, g < eφ − 1, l ≥ eφg, and

l >
3eφ − 2− 2g

φ− 1
.

Proof of Lemma 32. We handle Cases 2 and 3. The proof for Case 1 is similar to that

for Case 2.
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Suppose that g > e− 1 and l > (1 + g)/(ln(1 + g)− 1). Note that

lim
µR→ g

1+g

|1 + κ(µR)| − ι(µR) = ln(1 + g)− 1− 1 + g

l
.

Since l > (1 + g)/(ln(1 + g)− 1), ln(1 + g)− 1− (1 + g)/l > 0, and the result follows.

Suppose that, for some φ > 1, g < eφ − 1, l ≥ eφg and l > (3eφg− 2− 2g)/(φ− 1).

Note that g/(1 + g) < 1− e−φ ≤ 1− g/l and

|1 + κ(1− e−φ)| − ι(1− e−φ) =
|l(φ− 1)− eφ + 1 + g| − 2eφ + 1 + g

eφ − 1− g + l
.

Since l > (3eφ − 2 − 2g)/(φ − 1), |l(φ − 1) − eφ + 1 + g| − 2eφ + 1 + g > 0, and the

result follows. �

Applying the special case where φ = 1.56 to Lemma 32 and noting that, for φ =

1.56,

g ≥ eφ − 1 or eφg >
3eφ − 2− 2g

φ− 1

only when (1+g)/| ln(1+g)−1| < (3eφ−2−2g)/(φ−1) or g(g+1) > (1+g)/| ln(1+g)−1|

gives Lemma 11.

OA.11 Another Family of Strategies

Fix positive integers K1, K2, K3, K4 and consider the following strategy: If 0 ≤ k ≤

K1 − 1, the player is a conditional cooperator; if k1 ≤ K ≤ k1 + k2 − 1, the player is

a defector, if k1 + k2 ≤ K ≤ k1 + k2 + k3 − 1, the player is a conditional cooperator, if

k1 + k2 + k3 ≤ K ≤ k1 + k2 + k3 + k4 − 1, the player is an unconditional cooperator,

and if k ≥ K1 +K2 +K3 +K4, the player is a defector.

Combining Equations 7, 4, and 5 and using induction shows that the steady-state
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record shares are

µk =



β(γ, ε, µC)k(1− β(γ, ε, µC)) if 0 ≤ k ≤ K1 − 1

γk−K1β(γ, ε, µC)K1(1− γ) if 0 ≤ k −K1 ≤ K2 − 1

γK2β(γ, ε, µC)k−K2(1− β(γ, ε, µC)) if 0 ≤ k −K1 −K2 ≤ K3 − 1

γK2α(γ, ε)k−K1−K2−K3β(γ, ε, µC)K1+K3(1− α(γ, ε)) if 0 ≤ k −K1 −K2 −K3 ≤ K4 − 1

γk−K1−K3−K4α(γ, ε)K4β(γ, ε, µC)K1+K3 if k ≥ K1 +K2 +K3 +K4

.

Thus,

µCC =

k1−1∑
k=0

µk +

k1+k2+k3−1∑
k=k1+k2

µk

=
[ k1−1∑
k=0

β(γ, ε, µC)k +

k1+k2+k3−1∑
k=k1+k2

γk2β(γ, ε, µC)k−k2
]
(1− β(γ, ε, µC))

= 1− β(γ, ε, µC)k1 + γk2β(γ, ε, µC)k1(1− β(γ, ε, µC)k3)

(37)

and

µUC =

k1+k2+k3+k4−1∑
k=k1+k2+k3

µk

=

k1+k2+k3+k4−1∑
k=k1+k2+k3

γk2α(γ, ε)k−k1−k2−k3β(γ, ε, µC)k1+k3(1− α(γ, ε))

= γk2(1− α(γ, ε)k4)β(γ, ε, µC)k1+k3 .

(38)

Equations 37 and 38 give

µC = µCC + µUC

= 1− β(γ, ε, µC)k1 + γk2β(γ, ε, µC)k1 − γk2α(γ, ε)k4β(γ, ε, µC)k1+k3 .
(39)

The only incentive constraints that need to be checked are (C|C)0, (D|D)K1−1,

40



(C|C)K1+K2 , (D|D)K1+K2+K3−1, and (C|D)K1+K2+K3 . By Lemma 3, these are

(C|C)0 : γ(1− ε)(V0 − V1) > (1− γ)g,

(D|D)K1−1 : γ(1− ε)(VK1−1 − VK1) < (1− γ)l,

(C|C)K1+K2 : γ(1− ε)(VK1+K2 − VK1+K2+1) > (1− γ)g,

(D|D)K1+K2+K3−1 : γ(1− ε)(VK1+K2+K3−1 − VK1+K2+K3) < (1− γ)l,

(C|D)K1+K2+K3 : γ(1− ε)(VK1+K2+K3 − VK1+K2+K3+1) > (1− γ)l.

(40)

To check these incentive constraints, it suffices to compute the relevant value func-

tions by performing the following calculations sequentially:

VK1+K2+K3+K4 = µUC(1 + g),

VK1+K2+K3+1 = (1− α(γ, ε)K4−1)(µC − (1− µC)l) + α(γ, ε)K4−1VK1+K2+K3+K4 ,

VK1+K2+K3 = (1− α(γ, ε)K4)(µC − (1− µC)l) + α(γ, ε)K4VK1+K2+K3+K4 ,

VK1+K2+K3−1 = (1− β(γ, ε, µC))µC + β(γ, ε, µC)VK1+K2+K3 ,

VK1+K2+1 = (1− β(γ, ε, µC)K3−1)µC + β(γ, ε, µC)K3−1VK1+K2+K3 ,

VK1+K2 = (1− β(γ, ε, µC)K3)µC + β(γ, ε, µC)K3VK1+K2+K3 ,

VK1 = (1− γK2)µUC(1 + g) + γK2VK1+K2 ,

VK1−1 = (1− β(γ, ε, µC))µC + β(γ, ε, µC)VK1 ,

V1 = (1− β(γ, ε, µC)K1−1)µC + β(γ, ε, µC)K1−1VK1 ,

V0 = (1− β(γ, ε, µC)K1)µC + β(γ, ε, µC)K1VK1 .

(41)

The validity of these equations comes from combining Lemma 6 with recursion and the

fact that every player with record k ≥ K1 + K2 + K3 + K4 is a defector who faces a

flow payoff of µUC(1 + g) in every future period.

When g = 1.0001, l = 2, γ = .99999, and ε = .0000000001, we numerically verified

that the strategy with K1 = 1, K2 = 2, K3 = 1, and K4 = 1 has a steady state

satisfying Equations 38 and 39 with µC ≈ .999984 and µUC ≈ .378686. With these
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values, we calculated the relevant value functions using Equation 41 and showed that

the constraints in Inequality 40 were satisfied. Thus, this strategy has an equilibrium

even when g > 1 and l < g(g + 1).

OA.12 Stochastic Transitions

OA.12.1 Stochastic GrimK

This subsection shows that a stochastic version of GrimK strategies can support full

limit cooperation whenever g < 1.

We use the following record-keeping system: There are two possible records, 0 and

1. Newborn players have record 0. When a player with record 0 plays D, her record

transitions to 1 with probability χ. When a player with record 0 plays C, her record

transitions to 1 with probability εχ. Record 1 is absorbing.

We consider Grim1 strategies under this record-keeping system: A player plays C

if and only if both she and her opponent have record 0.

Theorem 6. Fix parameters (g, l, ε, γ). There exists χ ∈ (0, 1) such that GRIM1 is a

strict equilibrium with steady-state cooperation share µC > 0 if and only if the following

conditions hold.

1. Feasibility:
(1− γ)

(
1− µC

)
γ (1− (1− ε)µC)µC

< 1.

2. Incentives:

(C|C)0 : µC ∈

1 + g −
√

(1 + g)2 − 4 g
1−ε

2
,
1 + g +

√
(1 + g)2 − 4 g

1−ε

2


(D|D)0 : µC /∈

1 + l −
√

(1 + l)2 − 4 l
1−ε

2
,
1 + l +

√
(1 + l)2 − 4 l

1−ε

2

 .
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Moreover, letting µ̄C (γ, ε) be the maximal level of µC that can be supported for any

choice of χ, the following hold:

1. If g < 1, then limε→0 limγ→1 µ̄
C (γ, ε) = 1.

2. If g ≥ 1, then µ̄C (γ, ε) = 0.

Note that g < l implies that any µC that satisfies (D|D)0 also satisfies (C|C)0. In

particular, (D|D)0 never rules out the greatest level of µC that satisfies (C|C)0. In

addition, (C|C)0 and (D|D)0 are independent of γ, and Feasibility is always satisfied

when γ is sufficiently large. Combined with the fact that the right endpoint of the

interval describing (C|C)0 converges to 1 as γ → 1 whenever g < 1 (and is always

at least 1 whenever g ≥ 1), these observations imply that second part of the theorem

follows immediately from the first.

Proof. Let µC be the population share with record 0. Let VC be the continuation value

of a player with record 0. Note that the continuation value of a player with record 1 is

0. Therefore, VC = (1− γ)µC + γ[1− χ(1− (1− ε)µC)]VC , which is equivalent to

VC =
(1− γ)µC

1− γ + γχ(1− (1− ε)µC)
.

On the other hand, the steady-state equation for µC is 1− γ = (1− γ)µC + γχ(1−

(1− ε)µC)µC , which is equivalent to

µC =
1− γ

1− γ + γχ(1− (1− ε)µC)
. (42)

These equations imply VC =
(
µC
)2

.

It will be helpful to solve (42) for χ:

χ =
(1− γ)

(
1− µC

)
γ (1− (1− ε)µC)µC

. (43)

Feasibility requires that this quantity is less than 1.
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Next, note that (C|C)0 is γ(1− εχ)VC > (1− γ)g+ γ(1− χ)VC . The above results

imply that this is equivalent to

χ >
1− γ
γ

g

1− ε
1

(µC)2
.

Comparing this with (43), we see that (C|C)0 holds iff

(1− γ)(1− µC)

γ(1− (1− ε)µC)µC
>

1− γ
γ

g

1− ε
1

(µC)2
.

Solving this gives

µC ∈

1 + g −
√

(1 + g)2 − 4 g
1−ε

2
,
1 + g +

√
(1 + g)2 − 4 g

1−ε

2

 .

Similarly, (D|D)0 is γ(1− εχ)VC < (1−γ)l+γ(1−χ)VC . By the preceding results,

this is equivalent to the corresponding constraint in Theorem 6.

Using (43) and solving the resulting inequality, (D|D)0 holds iff the constraint in

Theorem 6 holds. �

OA.12.2 Stochastic GrimKL

In this subsection, we show that a stochastic version of GrimKL strategies can support

full limit cooperation whenever either g < 1 or l > g(g + 1).

We use the following record-keeping system: There are three possible records, 0, 1,

and 2. Newborn players have record 0. When a player with record 0 plays D, her record

transitions to 1 with probability χ1, while her record transitions to 1 with probability

εχ1 when she plays C. When a player with record 1 plays D, her record transitions to

2 with probability χ2, while her record transitions to 2 with probability εχ2 when she

plays C. Record 2 is absorbing.

We consider GrimKL strategies under this record-keeping system, with K = 1 and

L = 1: Players with record 0 are reciprocators, players with record 1 are unconditional
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cooperators, and players with record 2 are defectors.

Theorem 7. Fix parameters (g, l, ε, γ). There exist χ1 ∈ (0, 1) and χ2 ∈ (0, 1) such

that GrimKL with K = 1 and L = 1 is an equilibrium with steady-state cooperation

shares µR and µUC if and only if

1. Feasibility:

max

{
(1− γ)

(
1− µR

)
γ (1− (1− ε)µC)µR

,
(1− γ)µD

γεµUC

}
< 1.

2. Incentives:

(C|C)0 :
(1− ε)(1− µC)

1− (1− ε)µC
[
µR + µUC(l − g)

]
> g,

(D|D)0 :
(1− ε)(1− µC)

1− γ(1− ε)µC
[
µR + µUC(l − g)

]
< l,

(C|D)1 :
(1− ε)(1− µC)

ε(1− µR)
[µR − gµUC − l(1− µC)] > l.

Moreover, letting µ̄C (γ, ε) be the maximal level of µC that can be supported for any

choice of χ1 and χ2, the following hold:

1. If g ≥ 1 and l ≥ g (1 + g), then µ̄C (γ, ε) = 0.

2. If either g < 1 or l > g (1 + g), then limε→0 limγ→1 µ̄
C (γ, ε) = 1.

Proof. We first compute the value functions. For defectors, we have V D = (1 + g)µUC .

For unconditional cooperators, we have V UC = (1−γ)(µC− lµD)+γ(1−εχ2)V
UC+

γεχ2V
D, which is equivalent to

V UC =
(1− γ)(µC − lµD) + γεχ2(1 + g)µUC

1− γ(1− εχ2)
.

For reciprocators, we have V R = (1−γ)µC +γ(1−χ1(1− (1− ε)µC))V R +γχ1(1−

(1− ε)µC)V UC , which is equivalent to

V R =
(1− γ)µC + γχ1(1− (1− ε)µC)V UC

1− γ + γχ1(1− (1− ε)µC)
.
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We next consider the steady-state equations. For µR, we have 1 − γ = (1 − γ +

γχ1(1− (1− ε)µC))µR, or equivalently

µR =
1− γ

1− γ + γχ1 (1− (1− ε)µC)
⇐⇒ χ1 =

(1− γ)
(
1− µR

)
γ (1− (1− ε)µC)µR

.

For µUC , we have

γχ1

(
1− (1− ε)µC

)
µR = (1− γ + γεχ2)µ

UC .

Using the above equation for χ1, we can solve for χ2 as

χ2 =
(1− γ)µD

γεµUC
.

Note that Feasibility says that χ1 and χ2 must be less than 1.

We now consider the incentive constraints. The (C|C)0 constraint is γ(1−ε)χ1(V
R−

V UC) > (1− γ)g, which is equivalent to

V R − V UC >
(1− γ) g

γ (1− ε)χ1

.

Note that

V R − V UC =
(1− γ)

(
µC − V UC

)
1− γ + γχ1 (1− (1− ε)µC)

= µR
(
µC − V UC

)
and

1− γ (1− εχ2) = 1− γ +
(1− γ)µD

µUC
= (1− γ)

(
1 +

µD

µUC

)
= (1− γ)

1− µR

µUC
.
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Therefore,

V UC =
(1− γ)

(
µC − lµD

)
+ γεχ2 (1 + g)µUC

1− γ (1− εχ2)
=

µUC

1− µR

(
µC − lµD +

µD

µUC
(1 + g)µUC

)
=

µUC

1− µR
(
1− µD − lµD + (1 + g)µD

)
=

µUC

1− µR
(
1− (l − g)µD

)
.

Thus, (C|C)0 is equivalent to

µR
(
µC − µUC

1− µR
(
1− (l − g)µD

))
>

(
1− (1− ε)µC

)
µRg

(1− ε) (1− µR)
,

which gives the corresponding constraint in Theorem 7.

Similarly, the (D|D)0 constraint is γ(1 − ε)χ1(V
R − V UC) < (1 − γ)l, which is

equivalent to the constraint given in Theorem 7 by the previous results.

Finally, the (C|D)1 constraint is γ(1−ε)χ2(V
UC−V D) > (1−γ)l, which is equivalent

to the constraint in Theorem 7 by the previous results.

We now consider the iterated limit. For fixed values of ε, µR, µUC , and µD, Feasibil-

ity is satisfied for high enough γ. Thus, we can ignore Feasibility and simply ask when

there exist µR, µUC , and µD that satisfy the ε → 0 “limit” versions of the incentive

constraints:

(C|C)0 : µR + (l − g)µUC > g

(D|D)0 : µR + (l − g)µUC < l

(C|D)1 : µR − gµUC − l(1− µC) > 0.

We show that if g ≥ 1 and l ≤ g (1 + g) then these constraints cannot be satisfied for

any values of µR, µUC , and µD; while if g < 1 or l > g (1 + g) then they can be satisfied

for values of µR, µUC , and µD such that µD = 0. This completes the proof.

Suppose g ≥ 1 and l ≤ g (1 + g). Note that a necessary condition for (C|D)1 is

µR ≥ g
1+g

; otherwise, the left-hand side of (C|D)1 must be negative. Now, if µR ≥ g
1+g
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and g ≥ 1, for (C|C)0 to hold it must be that

g

1 + g
+ (l − g)

1

1 + g
> g ⇐⇒ l > g (1 + g) .

Hence, if l < g (1 + g) the constraints cannot be satisfied.

Now suppose g < 1 or l > g (1 + g). If µC = 1 then µR ≥ g
1+g

is a sufficient

condition for (D|D)0. We can therefore support an equilibrium with µC = 1 iff there

exists µR ≥ g
1+g

such that g < µR + (l − g)
(
1− µR

)
< l, or equivalently

2g − l < µR (1 + g − l) < g. (44)

Consider three cases. First, if l = 1 + g then g < 1, so 2g− l < 0 < g and thus (44)

is trivially satisfied.

Second, if l < 1 + g, then (44) is equivalent to

2g − l
1 + g − l

< µR <
g

1 + g − l
.

In this case, note that g
1+g

< g
1+g−l , so there is a value of µR satisfying the constraints

iff 2g−l
1+g−l < 1, i.e. g < 1. Thus, the constraints can be satisfied if l < 1 + g and g < 1.

Third, if l > 1 + g, then (44) is equivalent to

l − 2g

l − 1− g
> µR > − g

l − 1− g
.

In this case, there is a value of µR satisfying the constraints iff

g

1 + g
<

l − 2g

l − 1− g
⇐⇒ l > g (1 + g) .

Thus, the constraints can be satisfied if l > max {g, 1} (1 + g).

Putting this together, if g < 1 then either l < 1 + g or l > max {g, 1} (1 + g). In

either case, the constraints can be satisfied, and they can also be satisfied if g ≥ 1 and

48



l > g (1 + g). �

OA.13 Higher-Order Information

We analyze the efficiency properties of GrimK when we no longer restrict the record-

keeping system to only use first-order information. Here players are still reciprocators

for the first K records, 0 ≤ k ≤ K − 1, and defectors for all other records, k ≥ K, but

a player has record k if the number of times she has played D and her opponent has

played C is k, rather than if the number of times she has played D in total is k. As we

defined the function β(γ, ε, µC) for the analysis of GrimK when records count D’s, so

will it be useful here to define the function ω : (0, 1)× (0, 1)× [0, 1]→ (0, 1) given by

ω(γ, ε, µC) =
γε(1− ε)µC

1− γ(1− ε(1− ε)µC)
.

We first characterize the steady-state record shares. While i0 = 1−γ remains true,

now ik+1 = τ k = γε(1 − ε)µCµk for all 0 ≤ k < K − 1, which is different than what

Lemmas 4 and 5 would give. This is because a reciprocator’s record only increases

when she plays C and her opponent plays D. Equation 7 still applies and says that

µ0 = 1−γ
1−γ(1−ε)(1−ε)µC = 1 − ω(γ, ε, µC) and µk+1 = ω(γ, ε, µC)µk for 0 ≤ k < K − 1.

Induction gives µk = ω(γ, ε, µC)k(1− ω(γ, ε, µC)) for 0 ≤ k ≤ K − 1. Thus,

µC =
K−1∑
k=0

µk =
K−1∑
k=0

ω(γ, ε, µC)k(1− ω(γ, ε, µC)) = 1− ω(γ, ε, µC)K . (45)

We now compute the value functions. Since defectors receive a flow payoff of 0

in every period, Vk = 0 for all k ≥ K. Just as before, a reciprocator receives a flow

payoff of µC . Moreover, before being matched in the current period, a reciprocator

with record k has a probability of 1− ε(1− ε)µC of retaining her record of k at the end
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of the period and a probability of ε(1− ε)µC of her record increasing to k + 1. Thus,

Vk = (1− γ)µC + γ(1− ε(1− ε)µC)Vk + γε(1− ε)µCVk+1

for all 0 ≤ k ≤ K − 1, which is equivalent to

Vk =
1− γ

1− γ(1− ε(1− ε)µC)
µC +

γε(1− ε)µC

1− γ(1− ε(1− ε)µC)
Vk+1

= (1− ω(γ, ε, µC))µC + ω(γ, ε, µC)Vk+1.

Recursively solving this gives

Vk = (1− ω(γ, ε, µC)K−k)µC (46)

for 0 ≤ k ≤ K − 1.

Finally, the only incentive constraints we need worry about are the (C|C)k con-

straints, since a reciprocator’s record never increases when the strategy calls upon her

to play D. The (C|C)k constraints take the following form, which is slightly different

than those in Lemma 3:

γ(1− ε(1− ε))(Vk − Vk+1) > (1− γ)g,

which is equivalent to

γ(1− ε(1− ε))Vk − Vk+1

1− γ
> g.

By the usual argument, the (C|C)0 constraint implies all other (C|C)k constraints.

Furthermore, Equation 46 shows that (C|C)0 is equivalent to

1− ε(1− ε)
ε(1− ε)

ω(γ, ε, µC)K > g.

Combining this with the steady-state condition given in Equation 45 implies that
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(C|C)0 is equivalent to

µC < 1− ε(1− ε)
1− ε(1− ε)

g. (47)

Equations 45 and 47 together give the following characterization of GrimK equi-

libria.

Proposition 8. There is a GrimK equilibrium with total share of cooperators µC if

and only if the following conditions hold:

1. Feasibility: µC = 1− ω(γ, ε, µC)K.

2. Incentives: µC < 1− ε(1−ε)
1−ε(1−ε)g.

The following result shows that GrimK can always achieve limit efficiency in this

setting, regardless of the values of g and l.

Theorem 8. limε→0 limγ→1 µ
C
K(γ, ε) = 1 .

Theorem 8 follows from combining limε→0 1− ε(1− ε)/(1− ε(1− ε))g = 1 with the

following lemma, which is an analog of Lemma 9.

Lemma 33. Fix ε ∈ (0, 1). For all ∆ > 0, there exists γ < 1 such that, for all γ > γ

and µC ∈ [0, 1], there exists a µ̂C satisfying |µ̂C − µC | < ∆ that satisfies the Feasibility

constraint of Proposition 8 for some K.

Proof of Lemma 33. We first state the properties of the function ω(γ, ε, µC) that we

use in the proof.

1. For all (γ, ε) ∈ (0, 1) × (0, 1), ω(γ, ε, µC) is continuous and non-decreasing in

µC ∈ [0, 1].

2. For all (γ, ε) ∈ (0, 1)× (0, 1), ω(γ, ε, µC) > 0 for all µC > 0.

3. For all (ε, µC) ∈ (0, 1)× (0, 1], limγ→1 ω(γ, ε, µC) = 1.
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Note that, by the intermediate value theorem, for all γ ∈ (0, 1) and non-negative in-

tegers K, there exists some µC ∈ [0, 1] such that µC = 1−ω(γ, ε, µC)K . Let µC(γ, ε,K)

denote the smallest such µC . That is,

µC(γ, ε,K) = min{µC ∈ [0, 1] : µC = 1− ω(γ, ε, µC)K}.

Fix ∆ > 0. There exists some 0 < γ < 1 such that 1−∆/2 < ω(γ, ε, µC) < 1 for all

γ ∈ (γ, 1) and µ ∈ [∆/2, 1]. For the remainder of the proof, we assume that γ ∈ (γ, 1).

Since 1 − ∆/2 < ω(γ, ε, µC) < 1 for all µ ∈ [∆/2, 1], µC(γ, ε,K) < ∆/2. More-

over, because limK→∞ µ
C(γ, ε,K) = 1, there exists some integer, K > 1, such that

µC(γ, ε,K) ≥ 1 − ∆/2 and µC(γ, ε,K) < 1 − ∆/2 for all K < K. Since 1 −

∆/2 < ω(γ, ε, µC) < 1 for all µ ∈ [∆/2, 1], it follows that both µC(γ, ε,K) < ∆

and µC(γ, ε,K) < µC(γ, ε,K + 1) < µC(γ, ε,K) + ∆ hold for all K ≥ K. These two

conditions together imply that the subset {µC(γ, ε,K)}K≥K of [0, 1] is of distance no

more than ∆ from any point µC ∈ [0, 1]. �
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