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Abstract. We study the design of optimal interventions in network games, where individ-

uals’ incentives to act are affected by their network neighbors’ actions. A planner shapes

individuals’ incentives, seeking to maximize the group’s welfare. We characterize how the

planner’s intervention depends on the network structure. A key tool is the decomposition of

any possible intervention into principal components, which are determined by diagonalizing

the adjacency matrix of interactions. There is a close connection between the strategic

structure of the game and the emphasis of the optimal intervention on various principal

components: In games of strategic complements (substitutes), interventions place more

weight on the top (bottom) principal components. For large budgets, optimal interventions

are simple – targeting a single principal component.
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1. Introduction

We consider an environment where individuals’ actions have spillover effects, which can

be strategic (altering the incentives of others to act) or non-strategic (taking the form of

pure externalities). A utilitarian planner with limited resources can intervene to change

individuals’ incentives for taking the action. Our goal is to understand how the planner can

use her knowledge of the spillovers to best target the intervention.

We now lay out the main elements of the model.

Individuals play a simultaneous-move game in which everyone chooses an action. This

action confers standalone benefits on the individual, independent of anyone else’s action,

but it also creates spillovers. The intensity of these spillovers is described by a network,

with the strength of a link between two individuals reflecting how strongly the action of

one affects the marginal benefits experienced by the other. The effects may take the form

of strategic complements or strategic substitutes. In addition, there may be positive and

negative externalities imposed by network neighbors on each other, separate from strategic

effects. This framework encompasses a number of well-known economic examples from the

literature: spillovers in educational/criminal effort (Ballester, Calvó-Armengol, and Zenou,

2006), research collaboration among firms (Goyal and Moraga-Gonzalez, 2001), local public

goods (Bramoulle and Kranton, 2007), investment games and beauty contests (Angeletos

and Pavan, 2007; Morris and Shin, 2002), and peer effects in smoking (Jackson et al., 2017).

Before the individuals play this simultaneous-move game, the planner can target some

individuals and alter their standalone marginal benefits. The cost of the intervention is

increasing in the magnitude of the change and is separable across individuals. The planner

seeks to maximize the utilitarian welfare under equilibrium play of the game, subject to a

budget constraint. Our results characterize the optimal intervention policy.

A key observation is that an intervention on one individual potentially has direct and

indirect effects on the incentives of others. These effects are mediated by the network in a

way that depends on the nature of the game. For example, suppose the planner targets a

given individual and increases his standalone marginal benefits to effort: this induces more

effort by the targeted individual. If actions are strategic complements, this will push up the

incentives of the targeted individual’s neighbors. That will in turn increase the efforts of

the neighbors of these neighbors, and so forth. In contrast, under strategic substitutes an

intervention that encourages an individual to exert more effort will discourage the individual’s

neighbors. This in turn may well push up the efforts of the neighbors of these neighbors. At

the heart of our approach is a particular way to organize these spillover effects in terms of

the principal components of the matrix of interactions. We now spell out our approach and

summarize our main results.
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An intervention is a change in the vector of standalone (marginal) returns from individual

actions. A crucial step is to express this vector in a new basis in which the strategic spillovers

are simple to analyze. If interactions are symmetric,1 there is an orthonormal basis for

the space of all possible interventions consisting of eigenvectors of the adjacency matrix

of the network. (This basis comes from diagonalizing the adjacency matrix.) These can

be viewed as principal components for interventions.2 Consider now an intervention that

changes incentives in proportion to one of these components. It turns out that the change

this intervention causes in equilibrium actions is confined to the same component; in other

words, it is proportional to the original intervention. Moreover, its magnitude is equal to the

product of the magnitude of the intervention and an amplification factor characteristic of that

principal component. Thus the principal component approach gives us a set of orthogonal

basis vectors in which the effect of interventions is simple to describe.

Our main result, Theorem 1, builds on these observations to characterize the optimal

intervention in terms of how similar it is to various principal components (in the sense of

cosine similarity, a standard notion of how close two vectors are in terms of their directions).

This characterization identifies the role of the four primitives of the model: (i) the initial

standalone marginal returns to individuals; (ii) the matrix of interaction between individuals;

(iii) the nature of the strategic interaction; (iv) the budget of the planner. Equipped with

this characterization, we examine more closely the properties of the optimal intervention.

Corollary 1 shows that the relationship between the optimal intervention and the principal

components is decisively shaped by the nature of the strategic interaction. We order the

principal components of the network (recall that these are eigenvectors of the network) by their

associated eigenvalues (from high to low). In games of strategic complements, the optimal

intervention is most similar to the first principal component, which is the familiar eigenvector

centrality, and progressively less similar as we move down the principal components. In

games of strategic substitutes, by contrast, the optimal intervention is most similar to the

last principal component. The “top” principal components capture the more global structure

of the network, which is important for taking advantage of strategic complementarities. The

“later” or “bottom” principal components capture the local structure of the network: they

help the planner to target the intervention so that it does not cause crowding out between

adjacent neighbors, which is an important concern when actions are strategic substitutes.

We next examine the circumstances under which the optimal intervention is simple in

the sense that the relative emphasis of the intervention on different individuals depends

only on their network positions, and not on the details of the initial profile of incentives or

the exact size of the budget. Propositions 1 and 2 show that for large enough budgets the

optimal intervention is (approximately) simple in this sense. Moreover, the network structure

1That is, the strategic effect of individual i on individual j is the same as the effect of individual j on i.
2For an illustration of different principal components in a simple circle network, see Figure 1.
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determines how large the budget must be for optimal interventions to be simple. In games

with strategic complements, the difference between the largest and second-largest eigenvalues

of the network is important: when that difference is large, even at moderate budgets the

intervention is invariant to all primitives, except the network structure. In the case of

strategic substitutes, the relevant spectral statistic is the difference between the smallest and

second-smallest eigenvalues. We develop examples that highlight these connections between

optimal interventions and spectral graph theory.

To illustrate how our approach applies beyond our benchmark intervention problem, we

propose and solve two related problems. The first is in a setting where the planner does

not know the standalone marginal returns to individuals but knows their distribution. In

this setting, the intervention will target the mean and the variance–covariance matrix of the

standalone marginal returns. We demonstrate that our approach can be used to characterize

the optimal intervention in this setting of incomplete information, and that the key insights

about the ordering of principal components extend. The second extension takes up a setting

in which a planner provides monetary payments to individuals that alter their incentives

to choose different courses of action. We show that this optimal intervention problem has

the same mathematical structure as the one we study in our basic model. Going beyond

symmetric adjacency matrices, our approach to finding optimal interventions builds on the

singular value decomposition (SVD) of the adjacency matrix. The SVD is the appropriate

generalization in our setting of the diagonalization, allowing us to describe the relationship

between equilibrium actions and the aggregate equilibrium utility using suitable orthogonal

decompositions.

We now place the paper in the context of the literature. At a basic level, the intervention

problem concerns optimal policy in the presence of externalities. In this sense, it takes up a

theme central to public economics. Research over the past two decades has deepened our

understanding of the empirical structure of networks and the theory of the role networks play

in strategic behavior (see, for example, Goyal, Moraga, and van der Leij (2006), Ballester,

Calvó-Armengol, and Zenou (2006), Bramoullé, Kranton, and d’Amours (2014), and Galeotti,

Goyal, Jackson, Vega-Redondo, and Yariv (2010)). Our paper builds on this body of research

to contribute to the study of optimal policy design.

Network interventions are currently an active subject not only in economics but also in

related disciplines such as computer science, sociology, and public health. For a general

introduction to the subject, see Rogers (1983), Kempe, Kleinberg, and Tardos (2003), Borgatti

(2006), and Valente (2012). Within economics, a prominent early contribution is Ballester,

Calvó-Armengol, and Zenou (2006); recent contributions include Banerjee, Chandrasekhar,

Duflo, and Jackson (2013), Belhaj and Deroian (2017), Bloch and Querou (2013), Candogan,

Bimpikis, and Ozdaglar (2012), Demange (2017), Fainmesser and Galeotti (2017), Galeotti

and Goyal (2009), Galeotti and Rogers (2013), Leduc, Jackson, and Johari (2017), and
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Akbarpour, Malladi, and Saberi (2017). Our paper is most closely related to the strand

of work in which individuals engage in strategic interaction; for a survey of this work, see

Zenou (2016). The main contribution of this paper lies in (i) using the principal components

approach to decompose the effect of an intervention on social welfare and (ii) using the

structure afforded by this decomposition to characterize optimal interventions. Specifically,

we show that there is a mapping between the strategic structure (complements or substitutes)

and the appropriate principal component to target.3

The rest of the paper is organized as follows. Section 2 presents the optimal intervention

problem. Section 3 sets out notation and basic facts about the diagonalization of the adjacency

matrix of interactions into principal components and presents its application to the network

game. In Section 4 we characterize optimal interventions and study their properties. Section

5 discusses how our approach and methods can also be applied when we relax assumptions

relating to the nature of externalities, the adjacency matrix, and the costs of intervention.

Section 6 takes up intervention in games where the planner has incomplete information about

the standalone marginal returns to the individuals. Section 7 relates our work to existing

literature on other network measures. Section 8 concludes. Appendix A contains the proofs

of all the main results of the paper. The Online Appendix takes up extensions and related

technical issues.

2. The model

We consider a simultaneous-move game among individuals in the set N = {1, . . . , n} with

n ≥ 2. Individual i chooses an action, ai ∈ R. The vector of actions is denoted by a ∈ Rn.

The payoff to individual i depends on this vector, a, the network with adjacency matrix G,

and other parameters, described below:

Ui(a,G) = ai

(
bi + β

∑
j

gijaj

)
︸ ︷︷ ︸
returns from own action

− 1

2
a2i︸︷︷︸

private costs
of own action

+Pi(a−i,G, b)︸ ︷︷ ︸
pure externalities

. (1)

The private marginal returns from increasing the action ai depend both on i’s own action,

ai, and on others’ actions. The coefficient bi ∈ R corresponds to the part of i’s marginal

return that is independent of others’ actions, and is thus called i’s standalone marginal return.

The contribution of others’ actions to i’s marginal return is given by the term β
∑

j gijaj.

Here gij ≥ 0 is a measure of the strength of the interaction between i and j. The parameter

β captures the overall magnitude and sign of strategic interdependencies. If β > 0, then

actions are strategic complements; if β < 0, then actions are strategic substitutes. The

function Pi(a−i,G, b) captures pure externalities, that is, spillovers that do not affect the

3Section 7 presents a discussion of the relationship between principal components and other network measures
in the literature.
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best response. The first-order condition for individual i’s action to be optimal is:

ai = bi + β
∑

gijaj.

Any Nash equilibrium action profile a∗ of this game satisfies

[I − βG]a∗ = b. (2)

If the matrix is invertible, the unique Nash equilibrium of the game can be characterized by

a∗ = [I − βG]−1b. (3)

We now make two assumptions about the network and the strength of strategic spillovers.

Assumption 1. The adjacency matrix G is symmetric.

We extend our analysis to more general G in Section 5.2.

For our next assumption, recall that the spectral radius of a matrix is the maximum of its

eigenvalues’ absolute values.

Assumption 2. The spectral radius of βG is less than 1,4 and all eigenvalues of G are

distinct (the latter condition holds generically).

Assumption 2 ensures the existence of the inverse in (3), and also the uniqueness and stability

of the Nash equilibrium; see Ballester et al. (2006) and Bramoullé et al. (2014) for detailed

discussions of this assumption and the interpretation of the solution given by (3).

The vector of equilibrium actions is denoted by a∗. The utilitarian social welfare at

equilibrium is given by the sum of the equilibrium utilities:

W (b,G) =
∑
i

Ui(a
∗,G).

We now introduce the planner. The planner wishes to maximize the aggregate equilibrium

utility and can modify, at a cost, the incentive of each individual by changing the standalone

marginal returns to the individuals from the status quo, b̂, to new values, b. The timing

is as follows. The planner moves first and chooses her intervention, and then individuals

simultaneously choose actions. The incentive-targeting (IT) problem is given by

max
b

W (b,G) (IT)

s.t.: a∗ = [I − βG]−1b,

K(b, b̂) =
∑
i∈N

(
bi − b̂i

)2
≤ C,

4An equivalent condition is for β to be less than the reciprocal of the spectral radius of G.
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where C is a given budget. The marginal costs of altering the bi are separable across

individuals, and increasing in the magnitude of the change for each individual. For discussions

and extensions on more general cost functions, see Sections 5.3 and 5.4.

We next present three economic applications to illustrate the scope of our model.

Example 1 (The investment game). Individual i makes an investment ai at a cost 1
2
a2i .

The private marginal return on that investment is bi + β
∑

j gijaj, where bi is individual i’s

standalone marginal return and
∑

j gijaj is the aggregate local effort. The utility of i is

Ui(a,G) = ai

(
bi + β

∑
j

gijaj

)
− 1

2
a2i .

The case with β > 0 is the canonical case of investment complementarities as in Ballester et al.

(2006). Here, an individual’s marginal returns are enhanced when his neighbors work harder;

this creates both strategic complementarities and positive externalities. The case of β < 0

corresponds to strategic substitutes and negative externalities; this can be microfounded via

a model of competition in a market after the investment decisions have been made, as in

Goyal and Moraga-Gonzalez (2001).

It can be verified that the Nash equilibrium action a∗ satisfies condition (3), and that the

equilibrium utilities, Ui(a
∗,G), and the utilitarian social welfare at equilibrium, W (b,G),

are as follows:

Ui(a
∗,G) =

1

2
(a∗i )

2 and W (b,G) =
1

2
(a∗)T a∗.

Example 2 (Investment game with coordination concerns). This example is inspired by

Morris and Shin (2002) and Angeletos and Pavan (2007). Individuals trade off the returns

from effort against the costs, as in the first example, but also care about coordinating with

others. These considerations are captured in the following payoff:

Ui(a,G) = ai

(
b̃i + β̃

∑
j

gijaj

)
− 1

2
a2i −

γ

2

∑
j

gij[aj − ai]2,

where we assume that β̃ > 0 and γ > 0 and that
∑

j gij = 1 for all i, so the total interaction

is the same for each individual. This formulation also relates to the theory of teams and

organizational economics (see, for example, Dessein et al. (2016), Marschak and Radner

(1972), and Calvó-Armengol et al. (2015)). We may interpret individuals as managers in

different divisions within an organization. Each manager selects the action that maximizes

the private returns for the division, but the manager also cares about coordinating with other

divisions’ actions.5 This is a game of strategic complements; moreover, an increase in j’s

5In the Online Appendix B.2 we study optimal interventions in a standard (local) beauty contest game in

which Ui(a,G) = −(ai − b̃i)2 − γ
∑
j gij [aj − ai]2. Here, we focus on a modification of the standard beauty

contest game that makes the mapping to our formulation easier to present.
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action has a positive effect on individual i’s utility if and only if aj < ai. It can be verified

that the first-order condition for individual i is given by

ai =
b̃i

1 + γ
+
b̃i + γ

1 + γ

∑
gijaj.

By defining β = β̃+γ
1+γ

and b = 1
1+γ

b̃, we obtain a best-response structure exactly as in condition

(2). Moreover, the aggregate equilibrium utility is W (b, g) = 1
2

(a∗)T a∗.

Example 3 (Local public good). Following Bramoulle and Kranton (2007), Galeotti and

Goyal (2010), and Allouch (2015, 2017), we consider a local public goods problem—for

instance, collecting non-rival information. Without information-acquisition costs, the optimal

amount of information to acquire would be τ .6 Individual i has an amount b̃i < τ of

information to begin with. He can expend effort to personally acquire additional information,

increasing his amount of information to b̃i + ai. If his neighbors acquire information, then he

can also access β̃
∑

j gijaj , with β̃ ∈ (0, 1] capturing a loss in the transmission of information.

The total information that individual i has is

xi = b̃i + ai + β̃
∑
j

gijaj.

The utility of i is

Ui(a,G) = −1

2
(τ − xi)2 −

1

2
a2i .

This is a game of strategic substitutes and positive externalities. Setting β = −β̃/2 and

bi = [τ − b̃i]/2 yields a best-response structure exactly as in condition (2). The aggregate

equilibrium utility is W (b,G) = − (a∗)T a∗.

These three canonical examples of network games all have the technically convenient

property that the aggregate equilibrium utility is proportional to the sum of the squares of

the equilibrium actions:

Property A. The aggregate equilibrium utility is proportional to the sum of the squares of

the equilibrium actions, that is, W (b,G) = w (a∗)T a∗ for some w ∈ R, where a∗ is the Nash

equilibrium of the network game.

While this property is convenient for exposition, it is not essential. Section 5 presents an

example where this assumption is violated, and discusses how our results can be extended to

such settings.

6This can be taken to be the maximum amount of information available; equilibrium acquisitions will always
be less than this.
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3. Principal components

This section introduces basic concepts that we use to characterize optimal interventions. A

key aspect of our analysis is the use of a convenient basis for the space of standalone marginal

returns and actions. The basis is obtained by diagonalizing the interaction (adjacency) matrix

G. The advantage of this basis is that strategic effects take a very simple form; moreover, the

objective function of the planner remains simple. To diagonalize G, we rely on the assumption

that G is symmetric, that is, Assumption 1. We generalize the analysis to arbitrary G in

Section 5.2.

3.1. Principal components: notation and definitions. The following statement intro-

duces our notation for the diagonalization of a matrix (Meyer, 2000).

Fact 1. If G satisfies Assumption 1, then G = UΛUT, with the right-hand side satisfying

the following conditions:

1. Λ is an n× n diagonal matrix whose diagonal entries Λll = λl are the eigenvalues of G

(which are real numbers), ordered from greatest to least: λ1 ≥ λ2 ≥ · · · ≥ λn.

2. U is an orthogonal matrix. The `th column of U , which we call u`, is a real eigenvector

of G, namely the eigenvector associated to the eigenvalue λ`, which is normalized in the

Euclidean norm: ‖u`‖ = 1.

For generic G, the decomposition is uniquely determined, except that any column of U is

determined only up to multiplication by −1.

An important interpretation of this diagonalization is as a decomposition into principal

components. We can think of the columns of G as n data points. The first principal component

of G is defined as the n-dimensional vector that minimizes the sum of squares of the distances

to the columns of G. The first principal component can therefore be thought of as a fictitious

column that “best summarizes” the dataset of all columns of G. To characterize the next

principal component, we orthogonally project all columns of G off this vector and repeat

this procedure for the new columns. We continue in this way, projecting orthogonally off

the vectors obtained to date, to find the next principal component. A well-known result is

that the eigenvectors of G that diagonalize the matrix (i.e., the columns of U) are indeed

the principal components of G in this sense. Moreover, the eigenvalue corresponding to a

given principal component quantifies the residual variation explained by that vector. When

we refer to the `th principal component of G, we mean the `th eigenvector of G, which we

denote by u`(G). In Section 5.2, we discuss how the singular value decomposition generalizes

this for non-symmetric G.

Figure 1 illustrates some eigenvectors/principal components of a circle network with 14

nodes and with links all having equal weight given by 1. For each principal component, the

color of a node indicates the sign of the entry of that node in that principal component (the
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Figure 1. (Top) Eigenvectors 2, 4, 6. (Bottom) Eigenvectors 10, 12, 14.

color red means negative), while the size of a node indicates the absolute value of that entry.

A general feature that is worth noting is that the weights for the top principal components

(smaller values of `) are clustered among neighboring nodes, while the weights for the bottom

principal components (larger values of `) tend to be negatively correlated among neighboring

nodes.7

3.2. Analysis of the game using principal components. For any vector z ∈ Rn, let

z = UTz. From now on, we will refer to z` as the projection of z onto the `th principal

component, or the magnitude of z in that component. Substituting the expression G =

UΛUT into equation (2), which characterizes equilibrium, we obtain

[I − βUΛUT]a∗ = b.

Multiplying both sides of this equation by UT gives us an analogue of (3) characterizing the

solution of the game:

[I − βΛ]a∗ = b ⇐⇒ a∗ = [I − βΛ]−1b.

This system is diagonal, and we denote the `th diagonal entry of [I − βΛ]−1 by 1
1−βλ`

. Hence,

for every ` ∈ {1, 2, . . . , n},
a∗` =

1

1− βλ`
b`. (4)

As stated earlier, the principal components of G constitute a basis in which strategic effects

are easily described. In each principal component, the equilibrium action is simply a scaling of

the corresponding entry of the standalone marginal returns vector b. Indeed, the equilibrium

action a∗` in the `th principal component of G is the product of an amplification factor

7As the network is perfectly symmetric, there is a degree of freedom with regard to the partitioning of nodes.
The key element here is the pattern of clustering and negative correlation across neighboring nodes, as we
move from the top to the bottom principal components.
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(determined by the strategic parameter β and the eigenvalue λ`) and b`, which is simply the

projection of b onto that principal component. Under Assumption 2, and for a generic G,

1− βλ` > 0 for all ` (the spectral radius assumption implies that βΛ has no entries larger

than 1). Moreover, when β > 0, the amplification factor is greater for principal components

with greater eigenvalues, that is, it is decreasing in `. When β < 0, the amplification factor

is greater for principal components with lower eigenvalues, that is, it is increasing in `.

Rewriting the equilibrium action in the original coordinates:

a∗i =
∑
`

1

1− βλ`
u`ib`.

Thus, individual i’s action is proportional to the representations of i in the principal

components (u`i), the representations of the standalone marginal returns vector in the

principal components (b`), and the magnifications from the corresponding factors, 1
1−βλ`

.

3.3. A notion of vector similarity. An intervention can be described via a vector of

changes to individuals’ standalone marginal returns relative to the status quo. As we shall

see, to describe the determinants of these changes in the optimal intervention, it is useful to

define a measure that allows us to compare two vectors, in terms of similarity. A standard

measure is cosine similarity.

Definition 1. The cosine similarity of two nonzero vectors z and y is

ρ(z,y) =
z · y
‖z‖‖y‖

This is the cosine of the angle between the two vectors in the plane determined by y and

z. When ρ(z,y) = 1, vector z is a positive scaling of y. When ρ(z,y) = 0, vectors z and y

are orthogonal. When ρ(z,y) = −1, vector z is a negative scaling of y.

4. Optimal interventions

This section develops a characterization of optimal interventions and studies their properties.

Recall that under Property A, the planner’s payoff as a function of the equilibrium actions

a∗ is W (b,G) = w (a∗)T a∗.

We begin by dealing with a straightforward case of the planner’s problem. If w < 0, the

planner wishes to minimize the sum of the squares of the equilibrium actions. In this case,

when the budget is large, that is, C ≥ ‖b̂‖, the planner can allocate resources to ensure

that individuals have a zero target action by setting b∗i = 0 for all i. It follows from the

best-response equations that all individuals choose action 0 in equilibrium, and so the planner

achieves the first-best.8 The next assumption implies that the planner’s bliss point cannot be

achieved, so that there is an interesting optimization problem:

8In the local public good application, recall Example 3, w = −1, and so when C ≥ ‖b̂‖, b∗i = 0. Recalling our

change of variables there (bi = [τ − b̃i]/2), the optimal intervention in that case is to modify the endowment
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Assumption 3. Either w < 0 and C < ‖b̂‖, or w > 0.

Let b∗ solve the incentive-targeting problem (IT), and let y∗ = b∗ − b̂ be the changes in

individuals’ standalone marginal benefits at the optimal intervention. Furthermore, let

α` =
1

(1− βλ`)2

and recall that a∗` =
√
α`b` is the equilibrium action in the `th principal component of G (see

equation (4)).

Theorem 1. Suppose Assumptions 1–3 hold and the network game satisfies Property A. At

the optimal intervention, the similarity between y∗ and principal component u`(G) satisfies

the following proportionality:

ρ(y∗,u`(G)) ∝ ρ(b̂,u`(G))
wα`

µ− wα`
, ` = 1, 2, . . . , n, (5)

where µ, the shadow price of the planner’s budget, is uniquely determined as the solution to∑
`

(
wα`

µ− wα`

)2

b̂
2

` = C (6)

and satisfies µ > wα` for all `, so that all denominators are positive.

We briefly sketch the main arguments here; the proof of this theorem and all the other

results in this section are presented in the Appendix.

Define x` = (b` − b̂`)/b̂` as the relative change of b` relative to b̂`, the projection of b̂ onto

the `th principal component. By rewriting the objective function of the intervention using the

expression for the equilibrium action in terms of the principal components of G (expression

(4)), we obtain

W (b,G) =
∑
`

wα`(1 + x`)
2.

In the same variables, the budget constraint of the planner is∑
`

b̂
2

`x
2
` ≤ C.

If the planner allocates a marginal unit of the budget to principal component `, the marginal

return and marginal cost are proportional, respectively, to

wα`(1 + x`)︸ ︷︷ ︸
marginal return

and µx`︸︷︷︸
marginal cost

of each individual so that everyone accesses the optimal level of the local public good without investing
personally.
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It follows that wα`

µ−wα`
is exactly the value of x` at which the marginal return and the marginal

cost are equalized.9 Moreover, by the definitions of x` and cosine similarity, we have:

x` =
‖y∗‖ ρ(y∗,u`(G))

‖b̂‖ ρ(b̂,u`(G))
.

Observe that, up to a scaling, the similarity ρ(y∗,u`(G)) determines the optimal interven-

tion y∗ as a linear combination of the u`(G). The scaling is easily computed by exhausting

the budget. Thus Theorem 1 provides a full characterization of the optimal intervention. Next,

we explain the formula for the similarities given in expression (5). The similarity between y∗

and u`(G) measures the extent to which principal component u`(G) is represented in the

optimal intervention y∗. Equation (5) tells us that this is proportional to two factors. The

first factor, ρ(b̂,u`(G)), corresponds to the similarity of the `th principal component with

the status-quo vector b̂. Therefore, this factor summarizes how much the initial condition

influences or biases the optimal intervention for a given budget.

The second factor, wα`

µ−wα`
, is determined by two quantities: the eigenvalue corresponding

to u`(G) (via α` = 1
1−βλ`

), and the budget C (via the shadow price µ—recall expression (6)).

To focus on the second factor, we define the similarity ratio of u`(G) to be the fraction

r∗` =
ρ(y∗,u`(G))

ρ(b̂,u`(G))
.

Theorem 1 shows that, as we vary `, the similarity ratio r∗` is proportional to wα`

µ−wα`
. As

λ` is decreasing in `, it follows that the similarity ratio is greater, in absolute value, for

the principal components ` with the greatest α`. Which principal components these are is

determined by the nature of the game, as follows:

Corollary 1. Suppose Assumptions 1–3 hold and the network game satisfies Property A. If

the game has the strategic complements property (β > 0), then |r∗` | is decreasing in `; if the

game has the strategic substitutes property (β < 0), then |r∗` | is increasing in `.

In some problems there may be a nonnegativity constraint on actions, in addition to the

constraints in the statement of problem (IT). Note that as long as the status quo actions b̂

are positive, this constraint will be respected for all C less than some Ĉ, and so our approach

will give information about the relative effects on various components in this case as well.

We present numerical examples to illustrate the results in this section. They are based on

payoffs taken from Example 1, and we assume undirected networks with binary links. For the

case of strategic complements, we set β = 0.1, and for strategic substitutes we set β = −0.1.

Assumptions 1 and 2 are satisfied and Property A holds.

9It can be verified that the ratio for every ` ∈ {1, . . . , n− 1}, x`/x`+1 is increasing (decreasing) in β for the
case of strategic complements (substitutes): thus the intensity of the strategic interaction shapes the relative
importance of different principal components.
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Figure 2. Similarity ratios

To illustrate the content of the Corollary we consider a simple 11-node network containing

two hubs, L0 and R0, that are connected by an intermediate node M ; the network is depicted

in Figure 2(A). The numbers next to the nodes are the initial standalone marginal returns.

Figures 2(B) and 2(C) illustrate the monotonicity of the similarity ratio across network

components. In the case of strategic complements, for every level of C the similarity ratio of

the first principal component is higher than that of the other network components (Figure

2(B)). In the case of strategic substitutes, the monotonicity is reversed (Figure 2(C)).

The optimal intervention takes an especially simple form for the case of small and large

budgets. From equation (6), we can deduce that the shadow price µ is decreasing in C. For

w > 0, it follows then that an increase in C raises wα`

µ−wα`
and that the principal components

with larger α` become larger in relative terms as well; that is, if w > 0 and α` > α`′ , then

r∗`/r
∗
`′ is increasing in C.10 For simplicity of exposition, we suppress the dependence of

outcomes on C in the following statement, but note that y∗ and thus the r∗` are all functions

of C.

Proposition 1. Suppose Assumptions 1–3 hold and the network game satisfies Property A.

Then the following hold:

10Analogously, when w < 0, wα`

µ−wα`
and r∗` /r

∗
`′ are both decreasing in C.
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1. As C → 0, in the optimal intervention,
r∗`
r∗
`′
→ α`

α`′
.

2. As C →∞, in the optimal intervention

2a. If the game has the strategic complements property, β > 0, then the similarity of

y∗ and the first principal component of the network tends to 1, ρ(y∗,u1(G))→ 1.

2b. If the game has the strategic substitutes property, β < 0, then the similarity of y∗

and the last principal component of the network tends to 1, ρ(y∗,un(G))→ 1.

This result can be understood by recalling equation (5) in Theorem 1. First, consider the

case of small C. When the planner’s budget becomes small, the shadow price µ tends to ∞.11

Equation (5) then implies that the similarity ratio of the `th principal component becomes

proportional to α`. Turning now to the case where C grows large, the shadow price converges

to wα1 if β > 0, and to wαn if β < 0 (by equation (6)). Plugging this into equation (5), we

find that in the case of strategic complements, the optimal intervention shifts individuals’

standalone marginal returns (very nearly) in proportion to the first principal component

of G, so that y∗ →
√
Cu1(G). In the case of strategic substitutes, on the other hand the

planner changes individuals’ standalone marginal returns (very nearly) in proportion to the

last principal component, namely y∗ →
√
Cun(G).12

Figure 3 presents optimal targets in the same simple network when the budget is large—in

particular, for C = 500. The top-left figure illustrates the first eigenvector, and the top-right

figure depicts optimal targets in a game with strategic complements. The bottom-left figure

illustrates the last eigenvector, and the bottom-right figure depicts the optimal targets when

the game has strategic substitutes. The node size represents the size of the intervention,

|b∗i − b̂i|; its color represents the sign of the intervention (with green signifying a positive

intervention and red indicating a negative intervention).

In line with part 2 of Proposition 1 for large C, the optimal intervention is guided by

the “main” component of the network (corresponding to the largest or smallest eigenvalue).

Under strategic complements, this is the “first” eigenvector of the network, which corresponds

to individuals’ eigenvector centrality. Intuitively, by increasing the standalone marginal

return of each individual in proportion to his eigenvector centrality, the planner targets the

individuals in proportion to their global contributions to strategic feedbacks, and this is

welfare maximizing.

11As costs are quadratic, small relaxation in the budget around zero can have a large impact on aggregate
welfare.
12When individuals’ initial standalone marginal returns are zero (b̂ = 0), we can dispense with the approxi-

mations invoked for a large budget C. Assuming that G is generic, if b̂ = 0 then, regardless of the level of C,
the entire budget is spent either (i) on changing b1 (if β > 0) or (ii) on changing bn (if β < 0). To see this,

set b̂ = 0 in the maximization problem (IT-PC), the principal component version of (IT); note that if the
allocation is not monotonic, then the effort can be reallocated profitably among the principal components
without changing the cost.
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Figure 3. Optimal targets with large budgets

Under strategic substitutes, optimal targeting is determined by the “last” eigenvector of

the network, corresponding to its smallest eigenvalue. This network component contains

information about the local structural properties of the network: it determines the way to

partition the set of nodes into two sets so that most of the links are across individuals in

different sets.13 The optimal intervention increases the standalone marginal returns of all

individuals in one set and decreases those of individuals in the other set. The planner wishes

to target neighboring nodes asymmetrically, as this reduces possible crowding-out effects by

the strategic substitutes property of individuals’ best replies.

To see why this happens, it is instructive to examine the nature of best replies: an increase

in bi raises ai, and, by the strategic substitutes property, this exerts a downward pressure on

neighbor j’s action, aj. A smaller aj in turn pushes ai up further, and that lowers aj even

more, and so forth, until we reach a new equilibrium configuration. This process is amplified

if, for adjacent nodes i and j, we simultaneously increase bi and decrease bj. On the other

hand, if we were to raise bi and bj simultaneously, then the pressure toward a greater effort

by both i and j would tend to cancel them against each other; that would be wasteful.

4.1. When are interventions simple? We have just seen examples illustrating how, with

large budgets, interventions are guided by the principal components corresponding to extreme

eigenvalues. Our final result in this section gives the corresponding formal statement: For large

13The last eigenvector of a graph is useful in determining the bipartiteness of a graph and its chromatic
number. Desai and Rao (1994) characterize the smallest eigenvalue of a graph and relate it to the degree of
bipartiteness of a graph. Alon and Kahale (1997) demonstrate that the last eigenvector of a graph corresponds
to a coloring of the underlying graph, that is, a labeling of nodes by a minimal set of integers such that no
neighboring nodes share the same label.
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budgets C, interventions that target players’ incentives according to the two extreme principal

components—simple interventions—are approximately optimal, that is, they generate most

of the maximum achievable welfare.

Definition 2 (Simple interventions). An intervention is simple if, for all i ∈ N ,

• bi − b̂i =
√
Cu1i when the game has the strategic complements property (β > 0),

• bi − b̂i =
√
Cuni when the game has the strategic substitutes property (β < 0).

Let W ∗ be the aggregate utility under the optimal intervention, and let W s be the aggregate

utility under the simple intervention.

Proposition 2. Suppose w > 0, Assumptions 1 and 2 hold, and the network game satisfies

Property A. Then we have the following:

1. If the game has the strategic complements property, β > 0, then for any ε > 0, if

C > 2‖b̂‖2
ε

(
α2

α1−α2

)2
, then W ∗/W s < 1 + ε and ρ(y∗,

√
Cu1) >

√
1− ε.

2. If the game has the strategic substitutes property, β < 0, then for any ε > 0, if

C > 2‖b̂‖2
ε

(
αn−1

αn−αn−1

)2
, then W ∗/W s < 1 + ε and ρ(y∗,

√
Cun) >

√
1− ε.

Proposition 2 gives a condition on the size of the budget beyond which (a) simple interven-

tions achieve most of the optimal welfare and (b) the optimal intervention is very similar to

the simple intervention. This bound depends on the status quo standalone marginal returns

and the structure of the network.

• Consider the status quo benefits: Observe that the first term on the right-hand side

of the inequality is proportional to ‖b̂‖. This inequality is therefore easier to satisfy

when the standalone status quo marginal returns are smaller, in the sense of having

a smaller norm. The inequality is harder to satisfy when these marginal returns

are large and/or heterogenous.14 Other things being equal, greater heterogeneity in

status quo benefits will mean that the budget has to be larger before the optimal

intervention approximates the main principal component.

• The role of the network: Recall that α` = (1 − βλ`)
−2; thus if β > 0, the term

α2/(α1 − α2) of the inequality is large when λ1 − λ2, the “spectral gap” of the

graph, is small. Networks with a small spectral gap require large budgets before

the optimal intervention approximates the first principal component. If β < 0,

then the term αn−1/(αn−1 − αn) depends on λn−1 ≈ λn, the “bottom gap” of the

graph. Networks with a small bottom gap require large budgets before the optimal

intervention concentrates on the last principal component.

Figure 4 illustrates the role of the network structure in shaping the rate (in terms of the

size of the budget C) at which the optimal intervention converges to a simple intervention

14Recall that ‖ 1n b̂‖
2 is equal to the sum of

(
1
n

∑
i b̂i

)2
and the variance of the entries of the vector b̂.
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(Proposition 2). This example will highlight the idea that in some networks there are two

different embedded sub-structures that offer a similar potential for amplifying the effect of

interventions. In such networks, interventions will not be simple for reasonable budgets.

Mathematically, this property of the network is captured by a small spectral or bottom gap.

Under strategic complements, the optimal intervention converges faster in a network that

has a large spectral gap. Recall that the two largest eigenvalues can be expressed in terms of

the corresponding eigenvectors as follows:

λ1 = max
u:‖u‖=1

∑
ij

gijuiuj λ2 = max
u : ‖u‖=1
u·u1=0

∑
ij

gijuiuj.

Eigenvector u1 = arg maxu:‖u‖=1

∑
ij gijuiuj (corresponding to λ1) assigns the same sign,

(say) positive, to adjacent nodes in the network. Clearly, eigenvector u2 must assign negative

values to some of the nodes (as it is orthogonal to u1). In the network on the right side of

4(A), by assigning positive signs to nodes in one community and negative signs to nodes in

the other community, λ2 will be almost as large as λ1, because most of the adjacent nodes

will have the same sign. This will yield a small spectral gap. In the network on the left side

of Figure 4(A) this assignment is not possible; as a result, λ2 will be much smaller than λ1,

leading to a large spectral gap. In words, the spectral gap measures the level of “cohesiveness”

of the network, and it is this property that dictates fast convergence to simple interventions.15

Turning next to strategic substitutes, the convergence of the optimal intervention to the

simple intervention is faster in networks with a larger bottom gap. Figure 4d illustrates the

impact of the bottom gap on the rate at which the optimal intervention strategy converges

to the simple intervention. Recall that the smallest two eigenvalues, λn and λn−1, can be

written in terms of the corresponding eigenvectors as follows:

λn = min
u:‖u‖=1

∑
ij

gijuiuj λn−1 = min
u : ‖u‖=1
u·un=0

∑
ij

gijuiuj. (7)

This tells us that |λn| is large when the eigenvector un = arg minu:‖u‖=1

∑
ij gijuiuj (corre-

sponding to λn) assigns opposite signs to most pairs of adjacent nodes, that is, if gij = 1

then sign(uni ) = −sign(unj ). In other words, the last eigenvalue is large when nodes can be

partitioned into two sets and most of the connections are across sets: thus |λn| is maximized

in a bipartite graph. The second-smallest eigenvalue of G reflects the extent to which the

next-best eigenvector (orthogonal to un) is good at solving the same minimization problem.

Hence, the bottom gap of G is small when there are two orthogonal ways to partition the

network into two sets so that, either way, the “quality” of the bipartition, as measured by∑
ij gijuiuj , is similar. We illustrate this with a comparison of the two graphs in Figure 4(C).

15See Hartfiel and Meyer (1998), Levin et al. (2009), and Golub and Jackson (2012a,b,c) for discussions and
further citations to the literature on spectral gap.
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Figure 4. Spectral gap, bottom gap, and optimal interventions

The left-hand graph is bipartite, so there is a normalized vector u for which
∑

ij gijuiuj = −3:

set ui = ± 1√
3
, with the sign suggested by the shading in Figure 4(C). This turns out to be

an eigenvector un associated to λn = −3. Now, recall the expression for λn−1 from equation

7. Orthogonality to un requires that the u achieving the minimum there makes the ui the

same sign some adjacent nodes in the graph, with considerable magnitudes (as this u must

have norm 1). This makes λn−1 considerably less extreme; it turns out the be only −1.64.

Thus, the second-best “bipartition” is much worse than the best. For a contrast, we consider

instead the graph on the right of Figure 4(C), which looks only slightly different. However,

the difference has real implications for targeting. This graph is not bipartite. This makes

it impossible to find as extreme a bottom eigenvalue; it is only λn = −2.62 in this case.

Moreover, it turns out there is another normalized u, orthogonal to un, achieving a similar

value of
∑

ij gijuiuj; the second best is λn−1 = −2.30.16

This gives some intuition for why the left-hand graph has a large bottom gap, while the

right-hand graph has a small one. And we see the consequences reflected in targeting policy

16Intuitively, when we solve the minimization problem for λn−1, orthogonality to un does not force as many
neighboring nodes to have positive uiuj products, because un does not correspond to a perfect bipartition.
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as we vary C in Figure 4(D): in the graph with large bottom gap, it does not take much

growth in the budget for the intervention to stop putting mass on un−1 eigenvector; but it

takes much more growth for this to happen with small bottom gap.

We conclude by noting the influence of the initial vector of standalone marginal returns in

shaping optimal interventions for small budgets. For a small budget C, the cosine similarity

of the optimal intervention for non-main network components can be higher than the one for

the main component. This is true when the initial vector b̂ is similar to some of the non-main

network components. For small C, in the small spectral gap network the cosine similarity for

the second principal component is larger than the one for the first principal component (see

Figure 4(B)). Figure 4(D) shows that in both the small and large bottom gap networks the

cosine similarity of the optimal intervention is higher for the next-to-last principal component.

In all cases, the influence of the initial condition vanishes as the planner’s budget becomes

sufficiently large.

5. Discussion

This section extends our basic model to study settings where (a) Property A is not satisfied,

(b) the matrix G is non-symmetric, (c) the exact quadratic cost specification does not hold,

and (d) the interventions occur via monetary incentives for activity.

5.1. General non-strategic externalities. Section 4 characterizes optimal interventions

for network games that satisfy Property A. We now relax this assumption. Recall that player

i’s utility for action profile a is

Ui(a,G) = Ûi(a,G) + Pi(a−i,G, b),

where Ûi(a,G) = ai(bi +
∑

j gijaj)−
1
2
a2i .

At an equilibrium a∗, it can be checked that
∑

i Ûi(a
∗,G) ∝ (a∗)T a∗. Therefore, a

sufficient condition for Property A to be satisfied is that
∑

i Pi(a
∗
−i,G, b) is also proportional

to (a∗)T a∗. Examples 1–3 satisfy this property. However, as the next example shows, there

are natural environments in which it is violated.

Example 4 (Social interaction and peer effects). Individual decisions on smoking and

alcohol consumption are susceptible to peer effects (see Jackson et al. (2017) for references

to the extensive literature on this subject). For example, an increase in smoking among an

adolescent’s friends increases her incentives to smoke and, at the same time, has negative

effects on her welfare. These considerations are reflected in the following payoff function:

Ui(a,G) = Ûi(a,G)− γ
∑
j 6=i

aj,
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where β > 0 and γ is positive and sufficienctly large. It can be checked that the aggregate

equilibrium welfare is:

W (b,G) =
1

2
(a∗)T a∗ − nγ

∑
i

a∗i , (8)

with a∗ given by expression (3).17

To extend the analysis beyond Property A, we allow the non-strategic externality term

Pi(a−i,G, b) to take a form that allows for flexible externalities within the linear–quadratic

family:18

Pi(a−i,G) = m1

∑
j

gijaj +m2

∑
j

gija
2
j +m3

∑
j 6=i

aj +m4

(∑
j 6=i

aj

)2

+m5

∑
j 6=i

a2j .

We also make the following assumption on the matrix G:

Assumption 4. The total interaction is constant across individuals, that is,
∑

j gij = 1 for

all i ∈ N .

Using equation (3) and Assumption 4, we can rewrite the expression for the aggregate

equilibrium utility as follows:

W (b,G) = w1 (a∗)T a∗ +
w2

n

(∑
i

a∗i

)2

+
w3√
n

∑
i

a∗i ,

where w1 = 1 +m2 +m5 + (n− 1)m4, w2 = nm5(n− 2), and w3 =
√
n[m1 + (n− 1)m3].

Observe that Property A clearly holds when w2 = w3 = 0. On the other hand, if (say)

w1 = w2 = 0, then the planner’s objective is to maximize the sum of the equilibrium actions,

which is a fairly different type of objective.19

Under Assumption 4, the sum of the equilibrium actions is proportional to the sum of the

standalone marginal returns. Because u1 is proportional to the all-ones vector 1, this sum in

turn is equal to b1.

Together, these facts allow us to extend our earlier analysis to the case of general w2 and

w3. First, we can still express the objective function simply in terms of the singular value

decomposition; the only difference is that now b1 will enter both in a quadratic term and in a

linear term. In view of this, we first solve the problem (exactly analogously to the previous

solution) for a given value of b1, and then we optimize over b1. This derivation is presented

in Online Appendix B.1.

17In this specification the last (externality) term is a global term. We can easily accommodate local negative
externalities by replacing that term with

∑
j gijaj .

18We can also accommodate externalities that depend directly on the bi, but we omit this for brevity.
19A characterization of the optimal intervention when the planner’s objective is to maximize the sum of the
equilibrium actions can be found in Corollary 2 of Online Appendix B.1.
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5.2. Beyond symmetric and non-negative G. In this subsection we relax the assumption

that G is symmetric. Recall that equilibrium actions are determined by:

a∗ = [I − βG]−1b.

When G is not symmetric, we employ the singular value decomposition (SVD) of the matrix

M = I − βG. This allows to diagonalize the system of equilibrium actions and to obtain

an orthogonal decomposition of welfare. An SVD of M is defined to be a tuple (U ,S,V )

satisfying:

M = USV T, (9)

where:

(1) U is an orthogonal n× n matrix whose columns are eigenvectors of MMT;

(2) V is an orthogonal n× n matrix whose columns are eigenvectors of MTM ;

(3) S is an n × n matrix with all off-diagonal entries equal to zero and nonnegative

diagonal entries Sll = sl, which are called singular values of M . As a convention, we

order the singular values so that s` > s`+1.

It is a standard fact that an SVD exists.20 For expositions of the SVD, see Golub and

Van Loan (1996) and Horn and Johnson (2012). The `th left singular vector of M corresponds

to the `th principal component of M . When G is symmetric, the SVD of M = I − βG can

be taken to have U = V , and the SVD basis is one in which G is diagonal.

Let a = V Ta and b = UTb; then the equilibrium condition implies that:

a∗` =
1

s`
b2` ,

and therefore the objective function is:

W (b,G) = w (a∗)T a∗ = wa∗Ta∗.

It is now apparent that the analysis of the optimal intervention can be carried out in the same

way as in Section 4. Theorem 1 applies, with the only difference that now α` = 1/s2` . We can

also extend Proposition 1 and Proposition 2. As the budget tends to 0, r∗`/r
∗
`′ tends to α`/α`′ ;

on the other hand, when C is very large, the optimal intervention is proportional to the

first principal component of M , and a simple intervention that focuses on the first principal

component performs (nearly) as well as the optimal intervention. When G is symmetric, the

strategic property of the game (determined by β) pins down the principal component that

most amplifies an intervention. If G is non-symmetric, the singular values sl of M are not

equal to 1− βλl, where λl are the eigenvalues of G; the singular vectors of M are not the

eigenvectors of G; and the left and right singular vectors need not be the same.

20The decomposition is uniquely determined up to a permutation that (i) reorders the singular values of M
and correspondingly reorders the columns of U and V , and (ii) flips the sign of any column of U and V .
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5.3. More general costs of intervention. In Section 4 we solved the optimal intervention

problem under a specific cost function. This section develops properties that a reasonable cost

function must satisfy. We then show that our analysis of the optimal intervention extends to

this general class of cost functions as long as the budget is small.

We begin by developing properties that a reasonable cost function (b, b̂) 7→ K(b; b̂) must

satisfy.

Assumption 5.

(1) Translation-invariance: For any z ∈ Rn, we have K(b + z; b̂ + ẑ) = K(b; b̂), that is.,

there is a function κ : Rn → R such that K(b; b̂) = κ(b− b̂).

(2) Symmetry: For any permutation σ of {1, . . . , n}, it is true that κ(yσ(1), yσ(2), . . . , yσ(n)) =

κ(y1, y2, . . . , yn).

(3) Nonnegativity: κ is nonnegative, and κ(0) = 0.

(4) Local separability: ∂2κ(y)
∂yi∂yj

= 0 evaluated at 0.

(5) Well-behaved second derivative at 0: κ is twice differentiable with ∂2κ
∂y2i

(0) > 0 for all i.

Translational invariance says that there is no dependence on the starting point. Symmetry

across players implies that names don’t matter for costs. Nonnegativity implies that the

planner cannot extract money from the system: κ(0) = 0 is the definition of the status quo

b̂, and it does not cost anything to enact b̂. Local separability across individuals requires

that there are no spillovers in the costs of interventions. This is reasonable, as it ensures

that the complementarities we study come from the benefits side and not from the costs of

interventions. Finally, the twice differentiability of the function is a technical assumption

to facilitate the analysis while the positive value of the second derivative at 0 rules out cost

functions such as κ(y) =
∑

i y
4
i in which the increase in marginal costs at 0 is too slow.

Consider a cost function that satisfies Assumption 5: κ(y) =
∑

i κ̃(yi), where κ̃(y) =

y2 + cy3ey + c′y4, with c and c′ being arbitrary constants. Our main result is that the

structure of interventions identified in Section 3.2 carries over to such cost functions as long

as the budget is small.

Proposition 3. Consider the intervention problem (IT) with the modification that the cost

function satisfies Assumption 5. Suppose Assumptions 1 and 2 hold and the network game

satisfies Property A. At the optimal intervention, if C → 0 we have
r∗`
r∗
`′
→ α`

α`′
.

In Online Appendix B.3 we further clarify the relationship between our original cost

formulation and the requirements of Assumption 5. Specifically, we show that adding one

more restriction—a generalization of homogeneity—yields a cost function that is equivalent

to our original formulation with quadratic costs.

We conclude by noting that the assumption that the cost of intervention is convex implies

that the planner will distribute the budget across individuals. With a linear cost function,
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that is, K(b, b̂) =
∑

i |bi − b̂i|, the optimal intervention will target a single individual. Online

Appendix B.4 presents the details, and there we also show that the methods for identifying

this single individual build on the methods that we develop in this paper.

5.4. Monetary incentives. In the basic model presented in Section 2, an intervention alters

incentives for individual action through a direct change in marginal benefits/marginal costs.

The convexity in the cost of changing these marginal benefits plays a key role in the analysis.

In this section we provide a demonstration of how our approach can be applied beyond this

cost setting. We do this by using our methods to solve the problem of offering monetary

incentives to individuals for choosing between two actions.

Let us reinterpret a node i as a population; thus N = {1, 2, . . . , n} is the set of populations.

Within population i, there is a continuum of individuals distributed uniformly in I = [0, τ ].

Each individual in population i chooses whether to take action 1 or to take action 0. A

strategy of an individual in population i is a function qi : [0, τ ] → [0, 1] that describes the

probability that an individual of type τi ∈ [0, τ ] chooses action 1. Without loss of generality,

we focus on the equilibrium in which all the players within a population have the same

strategy.

The payoff to an individual who chooses action 0 is normalized to 0. If individual τi

takes action 1, then he incurs a cost τi and gets a benefit that depends on his population’s

standalone marginal benefit of action 1, bi, and the number of other individuals he meets

who have also taken action 1. We assume that the interaction between populations takes the

form of random matching, with the following specification: An individual τi in population i

meets someone from population j with probability gij, and, within population j, τi meets

an individual selected uniformly at random. Suppose τi meets type τj, and let qj be the

strategy of individuals in population j. Then individual τi’s payoff for the interaction with

the random partner τj is

β̃qj(τj) + bi − τi.

In this expression, β̃qj(τj) represents the payoffs from interacting with peers that have also

taken action 1.

In Online Appendix B.5 we develop the analysis of this model. First, we show that the

conditions for an equilibrium are isomorphic to those of the games we studied in Section 3.2.

We then consider a planner who intervenes in the system. The planner has complete

information about the type of each individual in each population and can subsidize types to

take action 1 or to take action 0, in a perfectly targeted manner. In doing this, the planner

effectively shifts the bi of some individuals in some populations. The cheapest individuals

to influence are those who are close to being indifferent between the two actions, so that

they do not need to be paid very much to change their behavior. Indeed, the payment to an

individual is proportional to his distance x from the marginal type in equilibrium: Integrating



TARGETING INTERVENTIONS IN NETWORKS 25

across all the individuals whose actions are changed gives
∫ yi
0
x dx, a cost that is quadratic

in the magnitude of the change. The intervention problem turns out to be mathematically

equivalent to (IT), and so all our results apply.

6. Incomplete information

In the basic model, we assumed that the planner knows the key payoff parameter—the

standalone marginal return bi—of every individual. This section studies settings where

the planner does not know this parameter and shows that our approach of characterizing

interventions based on their principal components, and our main results, have analogues

in this environment. For purposes of exposition, we focus on network games that satisfy

Property A.

Formally, fix a probability space (Ω,F ,P). The planner’s belief over states is given by

P. This represents the planner’s uncertainty, given all her information. The planner has

control over the random vector (r.v.) B, that is, a function B : Ω → Rn. The choice of B
determines the cost of intervention. A realization of the random variable is denoted by b.

This realization is common knowledge among individuals when they choose their actions.

Thus, the game individuals play is one of complete information.21 We also define a function

K that gives the cost K(B) of implementing the random variable B.22

We solve the following generalized incomplete-information intervention problem:

choose r.v. B to maximize E [W (b;G)] (IT-G)

s.t. [I − βG]a∗ = b,

K(B) ≤ C.

Note that the intervention problem (IT) under complete information is a special case of a

degenerate r.v. B: one in which the planner knows the vector of standalone marginal returns

exactly and implements a deterministic adjustment relative to it.

To guide our modeling of the cost of intervention, we now review the features of the

distribution of B that matter for aggregate welfare. For network games that satisfy Property

A, we can write:

E [W (b;G)] = wE[(a∗)T a∗] = wE[aTa] = w
∑
`

α`
(
E[b`]

2 + Var[b`]
)
. (10)

Therefore, we focus on the mean and variance of the realized components b`; these in turn

are determined by the first and second moments of the chosen random variable B. In view of

21It is possible to go further and allow for incomplete information among the individuals about each other’s
bi. We do not pursue this substantial generalization here; see Golub and Morris (2017) and Lambert et al.
(2018) for analyses in this direction.
22The domain of this function is the set of all random vectors taking values in Rn defined on our probability
space.
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this, we will consider intervention problems that can modify the mean and the covariance

matrix of B, and the cost of intervention will depend only on these modifications.

6.1. Mean shifts. We consider an intervention where there is an arbitrarily distributed

vector of standalone marginal returns and the planner’s intervention shifts it in a deterministic

way. Formally, fix a random variable B̂, called the status quo, with typical realization b̂

(we use notation analogous to that which we defined for B and b). The planner’s policy is

given by b = b̂ + y, where y ∈ Rn is a deterministic vector. We denote the corresponding

random variable by By. In terms of interpretation, note that implementing this policy does

not require knowing b̂ as long as the planner has an instrument that shifts incentives.

Assumption 6. The cost of implementing r.v. By is

K(By) =
∑
i

y2i ,

and K(B) is ∞ for any other random variable.

In contrast to the analysis of Theorem 1, the vector b̂ is a random variable. But we take the

analogue of the cost function used there, noting that in the deterministic setting this formula

held with y = b− b̂.

Proposition 4. Consider problem (IT-G) with the cost of intervention satisfying Assumption

6. Suppose Assumption 1 and 2 hold and the network game satisfies Property A. The optimal

intervention policy B∗ is equal to By∗ , where y∗ is the optimal intervention in the deterministic

problem with b = E[b̂] as the status quo vector of standalone marginal returns.

6.2. Intervention on variances. We next consider the case where the planner faces a

vector of means, fixed at b̄, and can choose any random variable B subject to that mean.

In that case, the difference in the expected welfare for two different interventions B and B̃
depends only on the variance–covariance matrix of B and B̃. Thus, the planner effectively

faces the problem of intervening on variances. We prove a result on optimal intervention for

all cost functions satisfying certain symmetries.

Assumption 7. The cost function satisfies two properties: (a) K(B) = ∞ if Eb 6= b̄; (b)

K(B) = K(B̃) if b̃− b̄ = O(b− b̄), where O is an orthogonal matrix.

Part (a) is a restriction on feasible interventions, namely a restriction to interventions that

are mean neutral. Part (b) means that rotations of coordinates around the mean do not affect

the cost of implementing a given distribution. This assumption gives the cost a directional

neutrality, which ensures that our results are driven by the benefits side rather than by

asymmetries operating through the costs. For example, let ΣB be the variance–covariance
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matrix of the random variable B. That is, σBii is the variance of bi. Suppose that the cost of

implementing B with Eb = b̄ is a function of the sum of the variances of the bi:

K(B) =

{
φ
(∑

i σ
B
ii

)
if Eb = b̄

∞ otherwise.
(11)

The cost function (11) satisfies property (a) of Assumption 7. Moreover, it satisfies property

(b) of Assumption 7 because
∑

i σ
B
ii = trace ΣB; this trace is the sum of the eigenvalues of

ΣB, which is invariant to the transformation defined in (b).23

Proposition 5 (Variance control). Consider problem (IT-G) with the cost of intervention

satisfying Assumption 7. Suppose Assumptions 1 and 2 hold and the network game satisfies

Property A. Let the optimal intervention be B∗. We have the following:

1. Suppose the planner likes variance (i.e., w > 0). If the game has strategic complements

(β > 0), then Var(u`(G) · b∗) is weakly decreasing in `; if the game has strategic

substitutes (β < 0), then Var(u`(G) · b∗) is weakly increasing in `.

2. Suppose the planner dislikes the variance (i.e., w < 0). If the game has strategic

complements (β > 0), then Var(u`(G) · b∗) is weakly increasing in `; if the game has

strategic substitutes (β < 0), then Var(u`(G) · b∗) is weakly decreasing in `.

We now provide an intuition for Proposition 5. Shocks to individuals’ standalone marginal

returns create variability in the players’ equilibrium actions. The assumption that the

intervention is mean neutral (part (a) of Assumption 7) leaves the planner to control only the

variances and covariances of these marginal returns with her intervention. Hence, the solution

to the intervention problem describes what the planner should do to induce volatilities in

actions that maximize the ex-ante expected welfare.

Suppose first that investments are strategic complements. Then a perfectly correlated

shock in individual standalone marginal returns is amplified by strategic interaction. In

fact, the type of shock that is most amplifying (at a given size) is the one that is perfectly

correlated across individuals, with the magnitude of a given individual’s shock proportional

to the first principal component (his eigenvector centrality). These shocks are exactly what

b∗1 = u1(G) · b∗ captures. Hence, this is the dimension of volatility that the planner most

wants to increase if she likes variability in actions (w > 0) and most wants to decrease if she

dislikes variability in actions (w < 0).

If investments are strategic substitutes, then a perfectly correlated shock does not create a

lot of variability in actions: The first-order response of all individuals to an increase in their

standalone marginal returns is to increase investment, but that in turn makes all individuals

to decrease their investment somewhat because of the strategic substitutability with their

23When we look at the variance–covariance matrix of b̃ defined by b̃− b̄ = O(b− b̄), the variance–covariance
matrix becomes OΣOT, and this has the same eigenvalues and therefore the same trace.
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neighbors. Hence, highly positively correlated shocks do not translate into high volatility.

The shock profiles that create most variability in actions are the ones in which neighbors have

negatively correlated shocks. A planner that loves variability in actions will then prioritize

such shocks. Because the last eigenvector of the system describes the local connections across

nodes, this is exactly the type of volatility that is of greatest concern, and this is what the

planner will focus on most.

Example 5 (Illustration in the case of the circle). Figure 1 depicts six of the eigenvec-

tors/principal components, beginning with eigenvector 2, of a circle network with 14 nodes.

The first principal component is a positive vector and so B projected on u1(G) captures

positively correlated shocks across all players. The second principal component (top left

panel of Figure 1) splits the graph into two sides, one with positive entries and the other with

negative entries. Hence, B projected on u2(G) captures shocks that are highly positively

correlated on each side of the circle network, with the two opposite sides of the circle being

anti-correlated. As we move along the sequence, we can see that B projected on the `th eigen-

vector represents shocks that are more and more local, with shocks to any given node being

anti-correlated with shocks to nearby nodes. For example, the ` = 10 or ` = 12 component

(bottom-right panel of Figure 1) depict volatility that is locally highly anti-correlated—the

shocks of neighbors are usually opposite—but not quite as strongly as in the last component,

` = 14, where shocks of connected individuals are perfectly anti-correlated.

With this interpretation, we can now appreciate that when the game has strategic com-

plements the intervention will give priority to changing the variances of the top principal

components, as these are the ones representing the shocks that, by the strategic nature of

the game, amplify more and so create greater volatility. Analogously, when the game has

strategic substitutes the intervention will give priority to changing the variance of the last

principal components. Whether the planner wants to decrease or increase the likelihood of

these shocks will depend on whether the planner likes variance (w > 0) or dislikes it (w < 0).

7. Principal components and other network measures

This section discusses the relation between the principal components and related network

statistics.

First principal component and eigenvector centrality: For ease of exposition, let the network

be connected, that is, let G be irreducible. By the Perron–Frobenius Theorem, u1(G) is

entry-wise positive; indeed, this vector is the Perron vector of the matrix, also known as

the vector of individuals’ eigenvector centralities. Thus, our results of Section 4 imply that,

under strategic complementarities, interventions that aim to maximize the aggregate utility

should change individuals’ incentives in proportion to their eigenvector centralities.
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It is worth comparing this result with results that highlight the importance of Bonacich

centrality. Under strategic complements, equilibrium actions are proportional to the individu-

als’ Bonacich centralities in the network (Ballester et al., 2006).24 Within the Ballester et al.

(2006) framework, it can easily be verified that if the objective of the planner is linear in

the sum of actions, then under a quadratic cost function the planner will target individuals

in proportion to their Bonacich centralities (see also Demange (2017)). Bonacich centrality

converges to eigenvector centrality as the spectral radius of βG tends to 1; otherwise the two

vectors can be quite different (see, for example, Calvó-Armengol et al. (2015) or Golub and

Lever (2010)).

The substantive point is that the objective of our planner when solving the intervention

problem (IT) is to maximize the aggregate equilibrium utility, not the sum of actions, and

that explains the difference in the targeting strategy. Indeed, our planner’s objective (under

Property A) can be written as follows (introducing a different constant factor for convenience):∑
i

ui ∝
1

n

∑
i

a2i = ā2 + σ2
a,

where σ2
a is the variance of the action profile and a is the mean action. Thus, our planner

cares about the sum of actions and also their diversity, simply as a mathematical consequence

of her objective. This explains the reason why her policies differ from those that would be

in effect if just the mean action were the focus. To reiterate this point, we finally note that

if we consider problem (IT) but we assume that the cost of intervention is linear, that is,

K(b, b̂) =
∑

i |bi − b̂i|, then the optimal intervention will target only one individual (see also

the discussion in Section 5.3). The targeted individual is not necessarily the individual with

the highest Bonacich centrality; the optimal intervention is characterized in Online Appendix

B.4.

Last principal component: We have shown that in games with strategic substitutes, for

large budgets interventions that aim to maximize the aggregate utility target individuals

in proportion to the eigenvector of G associated to the smallest eigenvalue of G, the last

principal component.

There is a connection between this result and the work of Bramoullé et al. (2014). Bramoullé

et al. (2014) study the set of equilibria of a network game with linear best replies and strategic

substitutes. They observe that such a game is a potential game, and they derive the potential

function explicitly. From this, they can deduce that the smallest eigenvalue of G is crucial

for whether the equilibrium is unique, and it is also useful for analyzing the stability of a

particular equilibrium.25 The basic intuition is that the magnitude of the smallest eigenvalue

24For a different economics context in which eigenvector centrality reflects equilibrium outcomes, see also
Elliott and Golub (2018).
25For stability of equilibrium, what is relevant is the magnitude of the smallest eigenvalue of an appropriately
defined subgraph of G.
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determines how small changes in individuals’ actions propagate, via strategic substitutes, in

the network. When these amplifications are strong, multiple equilibria can emerge. Relatedly,

when these amplifications are strong around an equilibrium, that equilibrium will be unstable.

Our study of the strategic substitutes case is driven by different questions, and delivers

different sorts of characterizations. We assume that there is a stable equilibrium which

is unique at least locally, and then we characterize optimal interventions in terms of the

eigenvectors of G. In general, all the eigenvectors—not just the one associated to the smallest

eigenvalue—can matter. Interventions will focus more on the eigenvectors with smaller

eigenvalues. When the budget is sufficiently large, the intervention will (in the setting of

Section 4) focus on only the smallest-eigenvalue eigenvector. As discussed in Section 4, the

network determinants of whether targeting is simple can be quite subtle. To the best of our

knowledge, these considerations are all new in the study of network games.

Nevertheless, at an intuitive level there are important points of contact between our

intuitions and those of Bramoullé et al. (2014). In our context, as discussed earlier, our

planner likes to move the incentives of adjacent individuals in opposite directions. The

eigenvector associated to the smallest eigenvalue emerges as the one identifying the best way

to do this at a given cost, and the eigenvalue itself measures how intensely the strategic

effects amplify. This “amplification” property involves forces similar to those that make the

smallest eigenvalue important to stability and uniqueness in Bramoullé et al. (2014).

Spectral approaches to variance control: Acemoglu et al. (2016) give a general analysis of which

network statistics matter for volatility of network equilibria. Baqaee and Farhi (2017) develop

a rich macroeconomic analysis relating network measures to aggregate volatility. Though

both papers note the importance of eigenvector centrality in (their analogues of) the case of

strategic complements, their main focus is on how the curvature of best responses changes

the volatility of an aggregate outcome, and which “second order” (curvature-related) network

statistics are important. We use the principal components of the network to understand

which first-order shocks are most amplified, and how this depends on the nature of strategic

interactions.

8. Concluding remarks

We study the problem of a planner who seeks to optimally target individuals in a network

of interaction. Our framework allows for a broad class of strategic and non-strategic spillovers

across individuals. The analysis builds on the diagonalization of the adjacency matrix

of interactions—this yields the principal components—and offers a general approach for

understanding the amplification and attenuation of interventions. The key insight is that

there is a clear mapping between the strategic structure—complements or substitutes–and the

appropriate principal component to target. Building on this insight, we are able to show that

optimal interventions are simple—exclusively targeting a single principal component—for
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large budgets. Principal components of matrices are simple to describe, and therefore we

expect that they may be of interest to empirical researchers. We briefly elaborate on one

further application.

In some circumstances, the planner seeks a budget-balanced tax/subsidy scheme in order

to improve the economic outcome. In a supply chain, for example, a planner could tax some

suppliers, thereby increasing their marginal costs, and then use that tax revenue to subsidize

other suppliers. The planner will solve a problem similar to the one we have studied here, with

the important difference that he will face a different constraint, namely, a budget-balance

constraint. In ongoing work, Galeotti et al. (2018) show that the decomposition of the

network that we employed in this paper is useful in deriving the optimal taxation scheme

and, in turn, in determining the welfare gains that can be achieved in supply chains.
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de Statistique, 33–48.

Golub, B. and C. Lever (2010): “The Leverage of Weak Ties: How Linking Groups

Affects Inequality,” Working paper, Harvard University.

Golub, B. and S. Morris (2017): “Expectations, Networks and Conventions,” Available

at SSRN: https://ssrn.com/abstract=2979086.



TARGETING INTERVENTIONS IN NETWORKS 33

Golub, G. H. and C. F. Van Loan (1996): Matrix Computations, The Johns Hopkins

University Press.

Goyal, S., J. Moraga, and M. van der Leij (2006): “Economics: an emerging small

world?” Journal of Political Economy, 114, 403–412.

Goyal, S. and J. Moraga-Gonzalez (2001): “R&D Networks,” The Rand Journal of

Economics, 32, 686–707.

Hartfiel, D. and C. D. Meyer (1998): “On the Structure of Stochastic Matrices with a

Subdominant Eigenvalue Near 1,” Linear Algebra and its Applications, 272, 193–203.

Horn, R. A. and C. R. Johnson (2012): Matrix Analysis, New York, NY, USA: Cambridge

University Press, 2nd ed.

Jackson, M., B. W. Rogers, and Y. Zenou (2017): “The Economic Consequences of

Social-Network Structure ,” Journal of Economic Literature, 55, 49–95.

Kempe, D., J. Kleinberg, and E. Tardos (2003): “Maximizing the Spread of Influence

through a Social Network.” in Proceedings 9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining.

Lambert, N. S., G. Martini, and M. Ostrovsky (2018): “Quadratic Games,” Available

at NBER: https://www.nber.org/papers/w24914.

Leduc, M. V., M. O. Jackson, and R. Johari (2017): “Pricing and referrals in diffusion

on networks,” Games and Economic Behavior, 104, 568–594.

Levin, D. A., Y. Peres, and E. L. Wilmer (2009): Markov Chains and Mixing Times,

Providence, RI: American Mathematical Society.

Marschak, T. and R. Radner (1972): Economic Theory of Teams, New Haven, USA:

Cowles Foundation.

Meyer, C. D. (2000): Matrix Analysis and Applied Linear Algebra, Philadelphia, PA, USA:

Society for Industrial and Applied Mathematics.

Morris, S. and H. S. Shin (2002): “Social Value of Public Information,” American

Economic Review, 92, 1521–1534.

Rogers, E. (1983): Diffusion of Innovations. Third Edition, Free Press. New York.

Valente, T. (2012): “Network Interventions,” Science, 337, 49–53.

Zenou, Y. (2016): “Key Players,” in Oxford Handbook of the Economics of Networks, ed.
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Appendix A. Proofs

Proof of Theorem 1. We wish to solve

max
b

waTa

s.t.: [I − βG]a∗ = b,
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i

(bi − b̂i)2 ≤ C

The first step is to transform the maximization problem into the basis given by the principal

components of G. To this end, we first rewrite the cost and the objective in the principal com-

ponents basis, using the fact that norms do not change under the orthogonal transformation

UT. Letting y = b− b̂,

K(b, b̂) =
∑
i

y2i = ‖y‖22 =
∑
`

y2
`

and

waTa = w‖a‖22 = w‖a‖22 = waTa.

By recalling that, in equilibrium, a∗ = [I − βΛ]−1b, and using the definition α` = 1
(1−βλ`(G))2

,

the intervention problem (IT) can be rewritten as:

max
b

w
∑
`

α`b
2
`

s.t.
∑
`

y2
`
≤ C.

We now transform the problem so that the control variable is x where x` = y`/b̂`. We obtain

max
x

w
∑
`

α`(1 + x`)
2b̂`

subject to
∑
`

b̂
2

`x
2
` ≤ C

Note that, for all `, α` are well-defined (by Assumption 1) and strictly positive (by genericity

of G). This has two implications.26

First, at the optimal solution x∗ the resource constraint problem must bind. To see this,

note that Assumption 3 says that either w > 0, or w < 0 and
∑

` b̂
2

` > C. Suppose that at

the optimal solution the constraint does not bind. Then, without violating the constraint, we

can slightly increase or decrease any x`. If w > 0 (resp. w < 0) the increase or the decrease

is guaranteed to increase (resp. decrease) the corresponding (x` + 1)2 (since the α` are all

strictly positive).

Second, we show that the optimal solution x∗ satisfies x∗` ≥ 0 for every ` if w > 0,

and x∗` ∈ [−1, 0] for every ` if w < 0. Suppose w > 0 and, for some `, x∗` < 0. Then

[−x∗` + 1]2 > [x∗` + 1]2. Since w > 0 and every α` is positive, we can raise the aggregate

utility without changing the cost by flipping the sign of x∗` . Analogously, suppose w < 0. It

is clear that if x∗` < −1, then by setting x` = −1 the objective improves and the constraint

is relaxed; hence, at the optimum, x∗` ≥ −1. Suppose next that x` > 0 for some `. Then

26Note that if Assumption 3 does not hold (that is, w < 0 and
∑
` b̂

2

` ≤ C) then the optimal solution is
x∗` = −1 for all `. This is what we stated before Theorem 1.
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[−x∗` + 1]2 < [x∗` + 1]2. Since w < 0 and every α` is positive, we can improve the objective

function without changing the cost by flipping the sign of x∗` .

We now complete the proof. Observe that the Lagrangian corresponding to the maximiza-

tion problem is

L = w
∑
`

α`(1 + x`)
2b̂` + µ

[
C −

∑
`

b̂
2

`x
2
`

]
.

Taking our observation above that the constraint is binding at x = x∗, together with the

standard results on the Karush–Kuhn–Tucker conditions, the first-order conditions must hold

exactly at the optimum with a positive µ:

0 =
∂L
∂x`

= 2b̂
2

` [wα`(1 + x∗`)− µx∗` ] = 0. (12)

We take a generic b̂ such that b̂` 6= 0 for all `. If for some ` we had µ = wα` then the right-hand

side of the second equality in (12) would be 2b̂
2

`wα`, which, by the generic assumption we

just made and the positivity of α`, would contradict (12). Thus, the following holds with a

nonzero denominator:

x∗` =
wα`

µ− wα`
,

and the Lagrange multiplier µ is therefore pinned down by∑
`

w2b̂
2

`

(
α`

µ− wα`

)2

= C.

Note finally that

ρ(y∗,u`(G)) =
y∗ · u`(G)

‖y∗‖‖u`(G)‖
=

y∗
`√
C

=
b̂`x
∗
`√
C

=
‖b̂‖√
C
ρ(b̂,u`(G))x∗` ∝` ρ(b̂,u`(G))x∗` .

�

Proof of Proposition 1. Part 1. From expression 6 of Theorem 1, it follows that if C → 0

then µ→∞. The result follows by noticing that

r∗`
r∗`′

=
α`
α`′

µ− wα′`
µ− wα`

.

Part 2. Suppose that β > 0. Using the derivation of the last part of the proof of Theorem 1,

we write:

ρ(y∗,u`(G)) =
‖b̂‖√
C
ρ(b̂,u`(G))x∗` ,

with x∗` = wα`

µ−wα`
. From expression 6 of Theorem 1, it follows that if C →∞ then µ→ wα1.

This implies that x∗` →
α`

α1−α`
for all ` 6= 1. As a result, if C →∞ then ρ(y∗,u`(G))→ 0 for
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all ` 6= 1. Furthermore, we can rewrite expression 6 of Theorem 1 as∑
`

(
‖b̂‖ρ(b̂,u`(G))

x∗`√
C

)2

= 1,

and therefore

lim
C→∞

∑
`

(
‖b̂‖ρ(b̂,u`(G))

x∗`√
C

)2

= lim
C→∞

(
‖b̂‖ρ(b̂,u1(G))

x∗1√
C

)2

= 1,

where the first equality follows because x∗` →
α`

α1−α`
for all ` 6= 1. The proof for the case of

β < 0 follows the same steps, with the only exception that if C →∞ then µ→ wαn.

�

Proof of Proposition 2. We first prove the result on welfare and then the result on cosine

similarity.

Welfare. Consider the case of strategic complementarities, β > 0. Define by x̃ the simple

intervention, and note that x̃1 =
√
C/b̂1 and that x̃` = 0 for all ` > 1. The aggregate utility

obtained under the simple intervention is:

W s =
∑
`

b̂
2

`α`(1 + x̃`)
2 = b̂

2

1α1x̃1(x̃1 + 2) +
∑
`

α`b̂
2

` .

The aggregate utility at the optimal intervention is

W ∗ =
∑
`

b̂
2

`α`(1 + x∗`)
2 = b̂

2

1α1x
∗
1(x
∗
1 + 2) +

∑
`6=1

b̂
2

`α`x
∗
`(x
∗
` + 2) +

∑
`

α`b̂
2

`

Hence

W ∗

W s
=

b̂
2

1α1x
∗
1(x
∗
1 + 2) +

∑
` α`b̂

2

`

b̂
2

1α1x̃1(x̃1 + 2) +
∑

` α`b̂
2

`

+

∑
`6=1 b̂

2

`α`x
∗
`(x
∗
` + 2)

b̂
2

1α1x̃1(x̃1 + 2) +
∑

` α`b̂
2

`

≤ 1 +

∑
6̀=1 b̂

2

`α`x
∗
`(x
∗
` + 2)

b̂
2

1α1x̃1(x̃1 + 2) +
∑

` α`b̂
2

`

≤ 1 +

∑
`6=1 b̂

2

`α`x
∗
`(x
∗
` + 2)

b̂
2

1α1x̃21

= 1 +

∑
` 6=1 b̂

2

`α`x
∗
`(x
∗
` + 2)

α1C
≤ 1 +

2α1 − α2

α1

‖b̂‖2

C

(
α2

α1 − α2

)2

≤ 1 +
2‖b̂‖2

C

(
α2

α1 − α2

)2

,

where the first inequality follows because, by definition, x̃1 > x∗1; the second inequality follows

because each term in the denominator is positive; and the second equality follows because

the simple policy allocates the entire budget to changing b1 and so b21x̃
2
1 = C. The third

inequality follows because∑
` 6=1

b̂
2

`α`x
∗
`(x
∗
` + 2) ≤ α2

∑
` 6=1

b̂
2

`x
∗
`(x
∗
` + 2) ≤ α2x

∗
2(x
∗
2 + 2)

∑
` 6=1

b̂
2

` ≤ α2
wα2

µ− wα2

(
wα2

µ− wα2

+ 2

)∑
` 6=1

b̂
2

`
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≤ α2
wα2

wα1 − wα2

(
wα2

wα1 − wα2

+ 2

)
‖b̂‖2 =

(
α2

α1 − α2

)2

(2α1 − α2) ‖b̂‖2

Hence, the inequality

C >
2‖b̂‖2

ε

(
α2

α1 − α2

)2

is sufficient to establish that W ∗

W s < 1 + ε. The proof for the case of strategic substitutes

follows the same steps; the only difference is that we use αn instead of α1 and αn−1 instead

of α2.

Cosine similarity. We now turn to the cosine similarity result. We focus on the case of

strategic complements. The proof for the case of strategic substitutes is analogous. We start

by writing an explicit expression for ρ(∆b∗,
√
Cu1):

ρ(∆b∗,
√
Cu1) =

(b∗ − b̂) · (
√
Cu1)

‖b∗ − b̂‖‖
√
Cu1‖

=
(b∗ − b̂) · (u1)√

C
,

where the last equality follows because, at the optimum, ‖b∗ − b̂‖2 = C. At the optimal

intervention,

b∗` − b̂` =
wα`

µ− wα`
b̂`

and using the definition that b = UTb, we have that

b∗i − b̂i = w
∑
`

ui`
α`

µ− wα`
b̂`

and therefore

(b∗ − b̂) · u1 =
∑
i

∑
`

u1iu
`
i

wα`
µ− wα`

b̂` =
∑
`

wα`
µ− wα`

b̂`(u
1 · u`) =

wα1

µ− wα1

b̂1

Hence

ρ(∆b∗,u1) =
1√
C

wα1

µ− wα1

b̂1 ≥
√

1− ε

if and only if (
wα1

µ− wα1

)2

b̂
2

1 − C(1− ε) ≥ 0.

The following lemma shows that this inequality follows from our hypothesis that

C >
2‖b̂‖2

ε

(
α2

α1 − α2

)2

.

Lemma 1. Assume

C >
2‖b̂‖2

ε

(
α2

α1 − α2

)2

.

Then (
wα1

µ− wα1

)2

b̂
2

1 ≥ C(1− ε) (13)



38 TARGETING INTERVENTIONS IN NETWORKS

Proof of Lemma 1. Note that

C >
2‖b̂‖2

ε

(
α2

α1 − α2

)2

=⇒ εC > ‖b̂‖2
(

α2

α1 − α2

)2

,

and therefore

C(1− ε) < C − ‖b̂‖2
(

α2

α1 − α2

)2

.

But then(
wα1

µ− wα1

)2

b̂
2

1 − C(1− ε) ≥
(

wα1

µ− wα1

)2

b̂
2

1 − C + ‖b̂‖2
(

α2

α1 − α2

)2

=

(
wα1

µ− wα1

)2

b̂
2

1 −
∑
`

(
wα`

µ− wα`

)2

b̂2` + ‖b̂‖2
(

α2

α1 − α2

)2

= ‖b̂‖2
(

α2

α1 − α2

)2

−
∑
`6=1

(
wα`

µ− wα`

)2

b̂2`

=

(
α2

α1 − α2

)2∑
`

b̂
2

` −
∑
`6=1

(
wα`

µ− wα`

)2

b̂2` > 0

where the first inequality follows from substituting the upper bound on C(1− ε) derived from

our initial condition on C. The first equality follows by substituting the condition on the

binding budget constraint at the optimum. The second equality follows by isolating the term

for the first component in the sum and by noticing that that cancels against the first term.

The last equality follows by noticing that ‖b̂‖2 = ‖b̂‖2. The last inequality follows because,

using the fact that µ > wα1 and that α1 > α2 > · · · > αn, tfor each ` > 1 we have,

wα`
µ− wα`

<
wα`

wα1 − wα`
=

α`
α1 − α`

<
α2

α1 − α2

�

This concludes the proof of Proposition 2. �

Proof of Proposition 3. First, we state and prove a lemma.

Lemma 2. Under the conditions of Assumption 5, on any compact set the function

C−1κ(C1/2z) converges uniformly to k‖z‖2, as C ↓ 0, where k > 0 is some constant. We call

the limit G.

Proof. Consider the Taylor expansion of κ around 0 (κ is defined by part (1) of the assumption).

We will now study its properties under parts (2) to (5) of Assumption 5. (5) ensures that the

Taylor expansion exists. Local separability (4) says that there are no terms of the form yiyj.

Non-negativity (3) (κ is nonnegative and κ(0) = 0) implies that all first-order terms are zero.

Also, (5) says that terms of the form y2i must have positive coefficients, and symmetry (2)

says that their coefficients must all be the same. �
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Write y := b − b̂. Let ∆(y) denote the change in welfare from the status quo. Fix all

parameters of the problem, and recall the main optimization problem:

max
b

∆(y) (IT(C))

s.t. κ(y) ≤ C

We maintain, but do not explicitly write, that welfare is evaluated at a∗(y), where a∗ =

[I − βG]−1(b̂ + y).

Let y(C) be the solution of problem IT(C), which is unique for small enough C. Then we

claim that, as C ↓ 0, we have
r∗`
r∗`′
→ α`

α`′
,

where the similarity ratios are defined at the optimum y(C).

We will prove the result by studying an equivalent problem using Berge’s Theorem of the

Maximum. Let y̌ = C−1/2y. We will now define a rescaled version of the problem, ǏT(C).

max
b

C−1∆(C1/2y̌) (ǏT(C))

s.t. C−1κ(C1/2y̌) ≤ 1.

This is clearly equivalent to the original problem. Let y̌∗(C) be the (possibly set-valued)

solution for C.

The problem ǏT(C) is not yet defined at C = 0, but we now define it there. Let the

objective at C = 0 be the limit of C−1∆(C1/2y̌) as C ↓ 0, which we call F . Let the constraint

be G(y̌) ≤ 1, where G is from Lemma 2.

Let us restrict ǏT(C) to a compact set K such that the constraint set {y : C−1κ(C1/2y̌) ≤ 1}
is contained in K for all small enough C. Now we claim that the conditions of Berge’s Theorem

of the Maximum are satisfied: The constraint correspondence is continuous at C = 0 because

C−1κ(C1/2y̌) converges uniformly to G, while the objective function is jointly continuous in

its two arguments.

The Theorem of the Maximum therefore implies that the maximized value is continuous at

C = 0. Because the convergence of the objective is actually uniform on K by the Lemma,

this is possible if and only if y̌ approaches the solution of the problem

max
b

F (y̌)

s.t. ‖y̌‖2 ≤ 1.

By the same argument, the same point is the limit of the solutions to

max
b

C−1∆(C1/2y̌)

s.t. ‖y̌‖2 ≤ 1.
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By Proposition 1, in that limit this satisfies

r∗`
r∗`′
→ α`

α`′
.

�

Proof of Proposition 4. Using expression (10), we can write E [W (b;G)] determined by inter-

vention By as follows:

E [W (b;G)] = w
∑
`

α`

({
E[b̂`] + y

`

}2

+ Var[b`]

)
.

Choosing y to maximize this is identical to the problem analyzed in the deterministic setting

in the proof of Theorem 1. Thus, defining x` = y
`
/b`, with b` = E[B̂`], it satisfies the same

conditions at the optimum as those derived in Theorem 1. �

Proof of Proposition 5. Given Assumption 7, without loss of generality we can normalize

b̄ = 0. Using expression (10) and normalization, we obtain that if the optimal solution is B∗

the expected welfare obtained is

E [W (b∗;G)] = w
∑
`

α`Var(b∗`).

Note that the random variable B∗ = UTB∗, and so the variance–covariance matrix of the

random variable B∗ is ΣB∗ = UTΣB∗U , where recall that ΣB∗ is the variance–covariance

matrix of the random variable B∗.
We consider the case of w > 0 and β > 0; the proof of the other cases is analogous and

therefore omitted. The expected welfare is a weighted sum of the variances of the principal

components, Var(b∗`) = Var(u`(G) · b∗), and the weight α` on the variance of principal

component ` of G is an increasing function of its eigenvalue λ`, because β > 0.

Suppose the Proposition is violated, that is there exists a `, `′ such that ` < `′ and

Var(b∗`) < Var(b∗`′). We construct an alternative intervention that has the same cost and does

strictly better. Take the permutation matrix (and therefore an orthogonal matrix) P such

that Pkk = 1 for all k 6∈ {`, `′} and P``′ = P`′` = 1. Define B∗∗ = OB∗ with O = UPUT.

Clearly, O is orthogonal, as U and P are both orthogonal. Hence, by Assumption 7,

K(DB∗) = K(DB∗∗). Furthermore, the matrix

ΣB∗∗ = PΣB∗P
T

and so Var(b∗∗k ) = Var(b∗k) for all k 6∈ {`, `′} and Var(b∗∗` ) = Var(b∗`′) > Var(b∗∗`′ ) = Var(b∗`).

Since α` > α`′ intervention B∗∗ does strictly better than B∗, a contradiction to our initial

hypothesis that B∗ was optimal. �

Appendix B. Online appendix



TARGETING INTERVENTIONS IN NETWORKS 41

B.1. Non-strategic externalities. Section 4 characterizes optimal interventions for network

games that satisfy Property A. We explain here how to extend the analysis beyond this

assumption. We maintain Assumption 1 and Assumption 2. Recall that player i’s utility for

action profile a is

Ui(a,G) = Ûi(a,G) + Pi(a−i,G, b)

where Ûi(a,G) = ai(bi +
∑

j gijaj)−
1
2
a2i and Pi(a−i,G, b) is a non-strategic externality term

that takes the following form:

Pi(a−i,G) = m1

∑
j

gijaj +m2

∑
j

gija
2
j +m3

∑
j 6=i

aj +m4

(∑
j 6=i

aj

)2

+m5

∑
j 6=i

a2j .

Here we have taken local and global externality terms given by second-order polynomials

in actions. (We could also accommodate externalities that depend directly on the bi in the

same sort of way, as will become clear in the proof, but we omit this for brevity.)

The implication of Assumption 4 for our analysis is summarized next.

Lemma 3. Assumption 4 implies that:

1. for any a ∈ Rn,
∑

i

∑
j gijaj =

∑
i ai and

∑
i

∑
j gija

2
j =

∑
i a

2
i

2. λ1(G) = 1 and u1i (G) =
√
n for all i

3.
∑

i a
∗
i = 1

1−β
∑
bi =

√
n

1−β b1 =
√
nα1b1, where a∗ is equilibrium action profile.27

The proof of Lemma 3 is immediate. Using part 1 of Lemma 3, and that individuals play

an equilibrium (actions satisfy expression (3)), we obtain:

W (b,G) = w1 (a∗)T a∗ +
w2

n

(∑
i

a∗i

)2

+
w3√
n

∑
i

a∗i ,

with:

w1 = 1 +m2 +m5 + (n− 1)m4

w2 = nm5(n− 2)

w3 =
√
n[m1 + (n− 1)m3].

Using the decomposition G = UΛUT, together with part 2 and part 3 of Lemma 3, we

obtain:

W (b,G) = w1a
∗Ta∗ + w2α1b

2
1 + w3

√
α1b1.

The intervention problem reads

max
b

w1a
∗Ta∗ + w2α1b

2
1 + w3

√
α1b1

subject to a∗` =
√
α`b`

27The last equality follows because α1 = 1/(1− βλ1)2, and assumption 4 implies that λ1 = 1.
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`

(b` − b̂`)2 ≤ C.

Using the expression for equilibrium actions, we obtain:

max
b

w1

∑
`=1

α`b
2
` + w2α1b

2
1 + w3

√
α1b1

subject to
∑
`

(b` − b̂`)2 ≤ C.

Recalling the definition x` =
b`−b̂`
b̂`

for every `, we finally rewrite the problem as:

max
x

w1

∑
`=1

α`b̂
2

`(1 + x`)
2 + w2α1b̂

2

1(1 + x1)
2 + w3

√
α1b̂1(1 + x1)

subject to
∑
`

b̂
2

`x
2
` ≤ C.

Theorem 2 characterizes optimal interventions for two cases: (i) w1 ≥ 0 and (ii) w1 < 0 and∑
`=2 b̂

2

` > C. The extension of the analysis for the remaining case w1 < 0 and
∑

`=2 b̂
2

` < C

is explained in Remark 1, which is presented after the proof of Theorem 2. Taken together,

Theorem 2, and Remark 1 following it, constitute our extension of Theorem 1 to games that

do not satisfy Property A.

Theorem 2. Suppose Assumptions 1, 2 and 4 hold. Suppose that either: (i) w1 ≥ 0 or that

(ii) w1 < 0 and
∑

`=2 b̂
2

` > C. The optimal intervention is characterized as follows:

1.

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
,

and, for all ` ≥ 2,

x∗` =
w1α`

µ− w1α`
.

The shadow price of the planner’s budget, µ > (w1 + w2)α1, is uniquely determined

as the solution of:∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C

2. a. For all ` 6= 1, x∗` > 0 if and only if w1 > 0;

b. x∗1 > 0 if and only if w1 + w2 + w3

2
√
α1b̂1

> 0. 2b. If the game has strategic

complements, β > 0, then |x∗2| > |x∗3| > · · · > |x∗n|. If the game has strategic

substitutes, β < 0, then |x∗2| < |x∗3| < · · · < |x∗n|.
3. Suppose w1 6= 0. In the limit as C → 0, µ→∞ and:

x∗`
x∗`′

→ α`
α`′

for all `, `′ 6= 1
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x∗1
x∗`
→ α1

α`

[
w1 + w2 +

w3

2
√
α1b̂1

]
for all ` 6= 1

4. Suppose the game has strategic complements, β > 0. In the limit as C → ∞,

µ→ max{w1α2, (w1 + w2)α1}, and

a. If w1α2 > (w1 + w2)α1 then

x∗1 →
α1

w1α2 − (w1 + w2)α1

[
w1 + w2 +

w3

2b̂1
√
α1

]
,

|x∗2| → ∞,

|x∗` | →
α`

α2 − α`
for all ` > 2.

b. If w1α2 < (w1 + w2)α1 then

|x∗1| → ∞

x∗` →
w1α`

(w1 + w2)α1 − w1α`
for all ` ≥ 2.

5. Suppose the game has strategic substitutes, β < 0. In the limit as C → ∞, µ →
max{w1αn, (w1 + w2)α1}. Hence:

a. If w1αn > (w1 + w2)α1 then:

x∗1 →
α1

w1αn − (w1 + w2)α1

[
w1 + w2 +

w3

2b̂1
√
α1

]
,

|x∗` | →
α`

αn − α`
for all ` ∈ {2, . . . , n− 1},

|x∗n| → ∞.

b. If w1αn < (w1 + w2)α1 then

|x∗1| → ∞

x∗` →
w1α`

(w1 + w2)α1 − w1α`
for all ` ≥ 2.

Before the proof, we briefly explain the sense in which this extends Theorem 1 and

associated results in the basic model. The formula for x∗` in part 1 is a direct generalization

of equation (5), with the shadow price characterized by an equation analogous to (6). The

monotonicity relations on x∗` in part 2 correspond to Corollary 1. The small-C analysis of

part 3 corresponds to Proposition 1. The large-C analysis in parts 4 and 5 corresponds to

the limits studied in Section 4.1.

Proof of Theorem 2. Part 1. For a given x ∈ Rn, define

K(x1) = (w1 + w2)α1b̂
2

1(1 + x1)
2 + w3

√
α1b̂1(1 + x1)

C(x1) = C − b̂
2

1x
2
1.
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The maximization problem can be rewritten as:

max
x

w1

∑
`=2

α`b̂
2

`(1 + x`)
2 +K(x1)

subject to
∑
`=2

b̂
2

`x
2
` ≤ C(x1)

We solve this problem in two steps.

First Step. We fix x1 so that C(x1) ≥ 0; that is, x1 ∈ [−C/b̂1, C/b̂1]. We then solve

max
x−1

w1

∑
`=2

α`b̂
2

`(1 + x`)
2

subject to
∑
`=2

b̂
2

`x
2
` ≤ C(x1)

In the case in which w1 = 0 we skip this first step. If w1 6= 0, then we argue in a way exactly

analogous to the proof of Theorem 1 that for all ` 6= 1,

x∗` =
w1α`

µ− w1α`

where, for all ` 6= 1, µ ≥ w1α` and it solves∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x1).

Note that, for all ` ≥ 2, x∗` > 0 if w1 > 0 and x∗` < 0 if w1 < 0.

Note also that if w1 < 0 the constraint binds: the bliss point (x∗` = −1 for all ` 6= 1) cannot

be achieved because C <
∑n

`=2 b̂
2

` .

Second Step. Substituting into the objective function the expression for x∗` , for all ` ≥ 2,

we obtain:

max
x1

W = w1

∑
`=2

α`b̂
2

`

(
µ

µ− w1α`

)2

+K(x1)

subject to
∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x1)

x1 ∈

[
−C
b̂1
,
C

b̂1

]
The following lemma is instrumental to the solution of this problem. It characterizes µ,

which is implicitly a function of x1.

Lemma 4. From the budget constraint in the above problem it follows that

1. limx1→−
√
C/b̂1

µ = limx1→
√
C/b̂1

µ =∞
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2.
dµ

dx1
=

b̂
2

1x1∑
`=2

w2
1 b̂

2
1α

2
`

(µ−w1α`)3

3. dµ
dx1

> 0 if x1 > 0 and dµ
dx1

< 0 if x1 < 0;

4. limx1→−
√
C/b̂1

dµ
dx1

= −∞ and limx1→
√
C/b̂1

dµ
dx1

=∞.

Proof of Lemma 4. The proof of part 1 of Lemma 4 follows directly by inspection of the

budget constraint. Expression 2 in part 2 of Lemma 4 is derived by implicit differentiation of

the budget constraint. Part 3 and part 4 of Lemma 4 follow by inspection of the expression

in part 2, and the fact that µ > w1α`. This concludes the proof of Lemma 4. �

Lemma 4 implies that µ as a function of x1 ∈
[
−C/b̂1, Cb̂1

]
is U-shaped; the slope is −∞

at x1 = −C/b̂1 and +∞ at x1 = C/b̂1; and it reaches a minimum at x1 = 0.

For w1 6= 0, taking the derivative of the objective function W in expression (14) with

respect to x1, we obtain:

dW

dx1
= −2µ

∑
`=2

w2
1 b̂

2

1α
2
`

(µ− w1α`)3
dµ

dx1
+ 2(w1 + w2)α1b̂

2

1(1 + x1) + w3

√
α1b̂1.

Plugging in expression for dµ
dx1

in part 2 of Lemma 4 we obtain that:

dW

dx1
= −2µb̂

2

1x1 + 2(w1 + w2)α1b̂
2

1(1 + x1) + w3

√
α1b̂1.

Part 1 of Lemma 4 implies that dW
dx1
→ ∞ when x1 → −

√
C/b̂1, whereas dW

dx1
→ −∞ when

x1 →
√
C/b̂1. Hence, the optimal x1 must be interior, which implies that dW

dx1
= 0 or,

equivalently:

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
.

Substituting x∗1, in the budget constraint∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

= C(x∗1),

we obtain that the Lagrange multiplier µ must solve:

∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C.

The conclusion for w1 = 0 are obtained by taking the limits as w1 → 0 of the expression x∗1
and the expression determining µ. This concludes the proof of part 1 of Theorem 2.

Part 2. We have already proved that, for all ` ≥ 2, x∗` > 0 if and only if w1 > 0. We now

claim that x∗1 > 0 if and only if w1 + w2 + w3

2b̂1
√
α1
> 0. Suppose, toward a contradiction, that

x∗1 < 0. Suppose, toward a contradiction, that x∗1 < 0. By inspection of the maximization
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problem

max
x

w1

∑
`=2

α`b̂
2

`(1 + x`)
2 +K(x1)

subject to
∑
`=2

b̂
2

`x
2
` ≤ C(x1)

note that if w1 +w2 + w3

2b̂1
√
α1
> 0 and x∗1 < 0, then, by flipping the sign of x∗1, K(x1) increases

and the constraint is unaltered; this is a contradiction to our initial assumption that x∗1 was

optimal.

We have just established that x∗1 > 0. Now, by (B.1) above, x∗1 > 0 if and only if

w1 + w2 + w3

2b̂1
√
α1
> 0. And since

x∗1 =
α1

µ− (w1 + w2)α1

[
w1 + w2 +

w3

2
√
α1b̂1

]
it follows that µ > α1(w1 + w2). Finally, if the game has strategic complements then

α2 > · · · > αn and so |x∗2| > |x∗3| > · · · > |x∗n|, and if the game has strategic substitutes then

α2 < · · · < αn and so |x∗2| < |x∗3| < · · · < |x∗n|.
Part 3. This follows by using the characterization in part 1 and by noticing that if C → 0

then µ→∞.

Part 4 and Part 5. Both parts follow by using the characterization together with the

following fact, which we will now establish.

lim
C→∞

µ = max{w1 max{α2, αn}, (w1 + w2)α1}.

To show this, recall from above that we have the following equation for the Lagrange

multiplier:

∑
`=2

b̂
2

`

(
w1α`

µ− w1α`

)2

+ b̂
2

1

(
α1

µ− (w1 + w2)α1

)2
[
w1 + w2 +

w3

2
√
α1b̂1

]2
= C

If C tends to ∞ it must be that either the first denominator (µ − w1α`) or the second

denominator (µ− (w1 + w2)α1) tends to zero. Concerning the first one, this is true if either

w1α2 or w1αn (depending on which one is positive) approaches µ. The second denominator

tends to 0 if (w1 + w2)α1 tends to µ. Both denominators are positive by definition of the

Lagrange multiplier, so it will be the greater of w1 max{α2, αn} and (w1 +w2)α1 which tends

to µ. This concludes the proof of Theorem 2. �

A special case of Theorem 2 is one where the planner wants to maximize the sum of

equilibrium actions. This occurs when w1 = w2 = 0. In this case we obtain
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Corollary 2. Suppose Assumption 1, 2 and 4 hold. Suppose that w1 = w2 = 0 and w3 > 0,

i.e., the planner wants to maximize the sum of equilibrium actions. Then the optimal

intervention is b∗ = b̂ + u1
√
C.

Remark 1. Suppose w1 < 0 and
∑

`=2 b
2
` < C, in contrast to what was assumed in the

theorem. If x1 is sufficiently small, the solution in Step 1 in the proof of Theorem 2 entails

x` = −1 for all ` ≥ 2. That is, fixing x1, the bliss point can be achieved with the remaining

budget after x1 is paid for, C(x1). This implies that when we move to Step 2 and optimize

over x1, we need to take into account that, for small values of x1. Step 1 yields a corner

solution. Hence, the analysis of how the network multiplier changes when x1 changes will

need to be adapted to take this fact into account.

Example 4, continued. Social interaction and peer effects

We conclude this Appendix by applying Theorem 2 to Example 4 from Section 5.1. In this

example w1 = 1, w2 = 0 and w3 = −γ
√
n(n− 1).

Corollary 3. The optimal intervention in Example 4 is characterized by

x∗1 =
α1

µ− α1

[
1− γ

√
n(n− 1)

2
√
α1b̂1

]
and, for all ` ≥ 2:

x∗` =
α`

µ− α`
where the Lagrange multiplier µ solves

∑
`=2

b̂
2

`

(
α`

µ− α`

)2

+ b̂
2

1

(
α1

µ− α1

)2
[

1− γ
√
n(n− 1)

2
√
α1b̂1

]2
= C.

Corollary 4. Consider the optimal intervention in Example 4. It has the following properties.

1. x∗2 > · · · > x∗n > 0; x∗1 > 0 if and only γ <
2
√
α1b̂1√

n(n−1)
2. If C → 0

x∗`
x∗`′

→ α`
α`′

, for all `, `′ 6= 1

x∗1
x∗`
→ α1

α`

[
1− γ

√
n(n− 1)

2
√
α1b̂1

]
, for all ` 6= 1

3. If C →∞ then |x∗1| → ∞ and x∗` →
α`

(α1−α`)
for all ` ≥ 2.

B.2. Beauty contest with local interactions. Each individual has a preferred action, bi,

but also cares about coordinating with her neighbors. The utility of individual i is

Ui(a,G) = −(ai − bi)2 − γ
∑
j

gij(aj − ai)2.
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(In Morris and Shin (2002) and Angeletos and Pavan (2007), every individual’s target action is

the same, b, but there is uncertainty in b. Furthermore, in their environment each individual

cares about coordinating with the action of all other individuals.) We maintain the assumption

that
∑

j gij = 1 for all i.

Denote by β = γ
1+γ

. Expanding the utility above we can write

Ui(a,G)

2(1 + γ)
= ai

(
bi

1 + γ
+ β

∑
j

gijaj

)
− 1

2
a2i −

1

2(1 + γ)
[b2i + γ

∑
j

gija
2
j ]

The Nash equilibrium conditions read

[I − βG]a∗ =
1

1 + γ
b

and player i’s equilibrium utility is

Ui(a
∗,G) = (1 + γ)[a∗i ]

2 − b2i − γ
∑
j

gija
2
j

We obtain that

W (b,G) = (a∗)T a∗ − bTb

The intervention problem of the planner is

max
b

W (b,G) (IT-BC)

s.t. [I − βG]a∗ =
1

1 + γ
b,

K(b; b̂) =
∑
i∈N

(
bi − b̂i

)2
≤ C,

We can solve problem (IT-BC) using our method. Specifically, we rewrite:

W (b,G) = [a∗Ta∗ − bTb]

with equilibrium actions projected in the principal components being equal to:

a∗` =
1

(1 + γ)(1− βλ`)
b` =

1

(1 + γ − γλ`)
b`

where the second equality follows by using the definition of β. Hence, define α` = 1
(1+γ−γλ`)2

,

we obtain

W (b,G) =
∑
`

(α` − 1)b2`

Since λ1 = 1 it follows that α1 − 1 = 0. Moreover, α` < 1 for all ` and α2 > α3 > . . . > αn

and so

W (b,G) = −
∑
`=2

(1− α`)b2`
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or

W (x,G) = −
∑
`=2

(1− α`)(1 + x`)
2

where x` = (b` − b̂`)/b̂`. The respective budget constraint is∑
`

b̂
2

`x
2
` ≤ C

Hence, at the optimal intervention the first component is unchanged, x∗1 = 0. Intuitively, the

planner would like to align individuals’ ideal points so that each individual can match it and

in the same time coordinate with others. The first component is a scalar of the sum of ideal

points and its value does not affect expected welfare. When C >
∑

`6=1 b̂
2

` the planner can

set x` = −1 for all ` 6= 1 and in this way the first best is achieved. When C <
∑

` 6=1 b̂
2

` the

planner cannot achieve the first best. In this case the optimal intervention has the property

that for all ` > 1, x∗` < 0 and |x∗2| < |x∗3| < · · · < |x∗n|.

B.3. More general costs of intervention. We conclude by imposing an additional re-

striction on the structure of the costs of intervention and we show that this new restriction

together with Assumption 5 fully characterizes the cost functions that we used in our main

analysis.

Assumption 8. There is a function f : R+ → R+ so that κ(sy) = f(s)κ(y).

Proposition 6. Consider a cost function that satisfies Assumptions 5 and 8. There is a

function f : R+ → R+ such that

κ(y) = f(‖y‖).

Proposition 6 says that the costs of intervention y are the same as the cost of an intervention

obtained as an orthogonal transformation of y; that is κ(y) = κ(Oy) with O be an orthogonal

matrix. This allows to rewrite the intervention problem using the orthogonal decomposition

of welfare and costs that we employ in Section 4, and all the results developed there extends

to this more general environment.

B.4. Linear costs of intervention. In this section we solve optimal intervention in Example

1 and for the case of a linear costs of intervention. We also retain Assumption 1 and Assumption

2. The analysis can be easily extended to general network games. We consider the following

intervention problem:

max
b

(a∗)T a∗ (IT-Linear Cost)

s.t. a∗ = [I − βG]−1b,

K(b; b̂) =
∑
i∈N

|bi − b̂i| ≤ C,
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Proposition 7. The solution to problem IT-Linear Cost has the property that there exists

i∗ such that b∗i 6= b̂i∗ and b∗i = b̂i for al i 6= i∗.

Proof of Proposition 7. Define W (b) = a(b)Ta(b). Let F be the set of feasible b, those

satisfying the budget constraint K(b; b̂) ≤ C. Suppose the conclusion does not hold and let

b∗ be the optimum, with W ∗ = W (b∗). Then, because by hypothesis the optimum is not at

an extreme point, F contains a line segment L such that b∗ is in the interior of L.28

Now restrict attention to a plane P containing this L and the origin. Note that L is

contained in a convex set

E = {b : W (b) ≤ W ∗}.

The point b∗ is contained in the interior of L; thus b∗ is in the interior of E. On the other

hand, b∗ must be on the (elliptical) boundary of E because U is strictly increasing in each

component (by irreducibility of the network) and continuous. This is a contradiction. �

We now characterize the optimal target for the case of strategic complements, i.e., β > 0.

Remark 2 explains how to extend the analysis for the case of strategic substitutes.

In the case of strategic complements, it is clear that the planner uses all the budget C to

increase the standalone marginal benefit of i∗, i.e., b∗i = b̂i + C; reducing someone’s effort

can never help. Thus, the planner changes the status quo b̂ into b = b̂ + C1i∗ where 1i∗ is a

vector of 0 except for entry i∗ that takes value 1. Let a(1i) be the Nash equilibrium when all

individuals have bj = 0 and bi = 1, i.e., a(1i) = [I − βG]−11i. It is easy to verify that the

solution to problem IT-Linear Cost is:

i∗ = argmax
i

{
a(b̂ + C1i)

Ta(b̂ + C1i)− a(b̂)Ta(b̂)
}
.

This is equivalent to

i∗ = argmax
i

{
C‖a(1i)‖

[
2‖a(b̂)‖ρ(a(1i),a(b̂)) + C‖a(1i)‖

]}
. (14)

where recall that ρ(a(1i),a(b̂)) is the cosine similarity between vectors a(1i) and a(b̂). There

are two characteristics of a player that determines whether the player is a good target.

The first characteristic is ‖a(1i)‖. This is the square root of the aggregate equilibrium

utility in the game with b = 1i, i.e., the squared root of a(1i)
Ta(1i). So, a player with a high

‖a(1i)‖ is a player who induces a large welfare in the game in which he is the only player with

positive standalone marginal benefit. We call this the welfare centrality of an individual. It is

convenient to express the welfare centrality of individual i in terms of principal components

of G. Note that

‖a(1i)‖ = ‖a(1i)‖ =

√∑
`

α`(u`i)
2.

28Formally, for some z > 0 there is a linear map ϕ : [−z, z]→ F such that ϕ(0) = b∗.
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Recall that under strategic complement α1 > α2 > .. > αn and so an individual with a high

welfare centrality is one that is highly represented in the main principal components of the

network.

The second factor is ρ(a(1i),a(b̂)). This measures the vector similarity between (i) the

equilibrium action profile in the game with b = 1i; and (ii) the status quo equilibrium action

profile. A player with a large ρ(a(1i),a(b̂)) is a player that, in the game in which he is the

only player with positive standalone marginal benefit, leads a distribution of effort similar to

the distribution of effort in the status quo.

Small C. Suppose C ≈ 0. Then the optimal target is selected based on the first term of

expression (14); that is:

i∗ = argmax
i
‖a(1i)‖ρ(a(1i),a(b̂))

For small budgets, the optimal intervention focuses on the player who has a large welfare

centrality and that, in the same time, leads to a distribution of effort not too different from

the status quo equilibrium effort.

Large C. Suppose C ≈ 0. Then the optimal target is selected based on the first term of

expression (14); that is:

i∗ = argmax
i
‖a(1i)‖ρ(a(1i),a(b̂))

For small budgets, the optimal intervention focuses on the player who has a large welfare

centrality and that, in the same time, leads to a distribution of effort not too different from

the status quo equilibrium effort.

Large C. For C sufficiently large, the last term of expression (14) dominates and therefore

the player that is targeted is the player with the higest welfare centrality.

Remark 2 (Extension to the case of strategic substitutes). In the case of strategic substitutes,

we know for the targeted player i∗, b∗i∗ = b̂i ± C, but we cannot say, a priori, which (positive

or negative), and indeed it is easy to provide examples that both can happen. Under this

qualification, the analysis developed for the case of strategic complements extends

B.5. Monetary intervention. We provide an outline of the analysis of optimal intervention

in this game. It is immediate to see that the best reply of each individual in population i is

a cutoff strategy: there exists a cutoff ai ∈ I so that q(τi) = 1 for all τi ≤ ai and q(τi) = 0

otherwise. The equilibrium condition for these cutoffs is that, for all i ∈ N ,

β̃
∑
j

gijP [τj ≤ a∗j ] + bi − a∗i = 0 ⇐⇒ ai = bi +
β̃

τ

∑
j

gija
∗
j .

Denoting by β = β̃/τ , the equilibrium threshold profile a∗ solves

[I − βG]a∗ = b.
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The equilibrium expected payoff to group i is:

Ui(a
∗, b) =

∫ a∗i

0

(
β
∑
j

gija
∗
j + bi − τi

)
dτi

=

∫ a∗i

0

(a∗i − τi) dτi =
1

2
a∗2i ,

where the second equality follows by using the best response of each population. So aggregate

equilibrium utility is

W (b,G) =
1

2
(a∗)T a∗.

Suppose the planner, before the players choose their action, commits to the a subsidy

scheme. The subsidy scheme depends on realized actions, which are taken after the scheme

is announced. More precisely, the planner selects a vector y ∈ Rn and offers the following

scheme:

Subsidizing action 1. If yi > 0 then the planner gives a subsidy of s1i (τi) = τi− [ai(y)− yi]
to all population i’s types τi ∈ [ai(y)− yi, ai(y)] who take action 1.

Subsidizing action 0. If yi < 0 then the planner gives a subsidy of s0i (τi) = [ai(y)+ |yi|]−τi
to all τi ∈ [ai(y), ai(y) + |yi|] who do not adopt the new technology (take action 0).

We make three observations. First, under intervention y the profile of thresholds a(y) is

a Nash equilibrium. Furthermore, the planner does not waste resources in the sense that

she uses the minimum amount of resources to implement a(y). To see this note that, by

construction, the planner provides monetary payments to take action 1 or to take action 0

only to types who need such transfers to satisfy their incentive compatibility constraint. The

monetary payments make these incentive compatible constrains just bind. Finally, let 1yi>0

be an indicator function that takes value 1 if yi > 0 and 0 otherwise, then note that the cost

of intervention y is

K(y) =
1

2

∑
i

1yi>0

∫ ai(y)

ai(y)−yi
s1i (τi)dτi +

∑
i

(1− 1yi>0)

∫ ai(y)+|yi|

ai(y)

s0i (τi)dτi

=
1

2

∑
i

y2i

We can now define the intervention problem of the planner as follows. Starting from the

status quo b̂, the planner chooses intervention y to maximize aggregate equilibrium utility

under the constraint that individuals play according to equilibrium and that the cost of the

intervention cannot exceed C. Formally,

max
y∈Rn

1

2
aTa (IT-P)

s.t. [I − βG]a = b̂ + y,
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K(y) =
1

2

∑
i

y2i ≤ C,

Intervention problem (IT-P) is equivalent to the intervention problem (IT) defined in

Section 2.


